Skewed Binary Search Trees

Gerth Stglting Brodal'** and Gabriel Moruz'

BRICS**, Department of Computer Science, University of Aarhus, IT Parken,
Abogade 34, DK-8200 Arhus N, Denmark. E-mail: {gerth,gabi}@daimi.au.dk

Abstract. It is well-known that to minimize the number of comparisons
a binary search tree should be perfectly balanced. Previous work has
shown that a dominating factor over the running time for a search is
the number of cache faults performed, and that an appropriate memory
layout of a binary search tree can reduce the number of cache faults
by several hundred percent. Motivated by the fact that during a search
branching to the left or right at a node does not necessarily have the
same cost, e.g. because of branch prediction schemes, we in this paper
study the class of skewed binary search trees. For all nodes in a skewed
binary search tree the ratio between the size of the left subtree and the
size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced
trees). In this paper we present an experimental study of various memory
layouts of static skewed binary search trees, where each element in the
tree is accessed with a uniform probability. Our results show that for
many of the memory layouts we consider skewed binary search trees can
perform better than perfect balanced search trees. The improvements in
the running time are on the order of 15%.

1 Introduction

In this paper we discuss the problem of building binary search trees that achieve
good running times in practice for random queries. Theoretically, the minimum
number of comparisons is achieved by perfectly balanced binary search trees,
where for each given node the number of nodes in the left subtree is approxi-
mately equal to the number of nodes in the right subtree [15]. We show that in
practice better running times can be achieved if we allow the search tree to be
skewed, i.e. allow one of the subtrees to have more nodes than the other subtree.

When analyzing the complexity of an algorithm, usually the number of in-
structions performed by the CPU is counted. However, in practice there are other
hardware issues besides the amount of computation that can affect the running
time. During a search in a binary search tree, it is usually assumed that branch-
ing left and right at any given node inflicts the same cost on the running time.
This does not always hold, since modern processors prefetch the instructions in
a pipeline and therefore must predict the outcome of the conditional branches as

* Supported by the Danish Natural Science Foundation.
** Basic Research in Computer Science, www.brics.dk, funded by the Danish National
Research Foundation.

their outcome is not known when they enter the instruction pipeline. If a branch
is incorrectly predicted, the entire pipeline must be flushed, which results in a
performance loss which is proportional with the pipeline size.

In the design of algorithms, in the RAM model it is assumed that all the
memory accesses take constant time. Due to the memory hierarchy on modern
computers, this hardly happens in practice. The access time for a given item can
vary from one CPU cycle if it is stored in a CPU register to over 10,000,000 CPU
cycles if the item must be fetched from the hard-disk. Due to the high costs of
memory transfers between the different levels, data is not transfered in individual
items, but in contiguous blocks. If the memory size and the block size are known,
B-trees [5] support random searches in O(logg N) block transfers, where B is the
block size. If the memory parameters are not known, cache-oblivious B-trees [6,
7] achieve the same bound. Given a tree stored in memory, Gil and Itai [14]
gave optimal algorithms for computing optimal layouts, while Alstrup et al. [2]
introduced faster approximate algorithms for minimizing the expected number
of memory transfers and Demaine et al. [12] proved worst case bounds. Brodal
et al. [9] introduced an efficient version of cache-oblivious search trees and gave
experimental results on the performance of some different memory layouts for
search tress.

Recently, Sanders and Winkel [16] studied the influence that branch mis-
predictions have over the running time of algorithms in practice. They gave
a distribution based sorting algorithm and show that in certain cases branch
mispredictions can be avoided by using certain processor specific instructions,
namely predicative instructions. Some other works focused on the influence of
branch mispredictions over the running time of sorting algorithms, both theo-
retically and experimentally [10, 11].

Outline. The paper is structured as follows. In Section 2 we describe skewed
balanced search trees and give an upper bound on the running time performed
for a random query. In Section 3 we give brief insights on the hardware issues
that affect the running time in practice. For a random query we give upper
bounds on the number of branch mispredictions in Section 4, while in Section 5
we introduce different memory layouts and give upper bounds on the number of
cache misses. In Section 6 we describe the setup for the experiments we perform
and in Section 7 we show and discuss our experimental results.

2 Skewed binary search trees

A skewed binary search tree is a binary search tree where there exists a constant
a, 0 < a < 1/2, such that for each node v there is a fixed ratio between the
number of nodes in the subtree rooted in the left child and the subtrees rooted at
v. More precisely, size(left(v)) = |« - size(v) |, where size(v) denotes the number
of nodes in the subtree rooted at v.

Skewed binary search trees are the extreme unbalanced cases of BB[a] trees
of Nievergelt and Reingold [15].

0 0.2 0.4 0.6 0.8 1

Fig. 1. Bound on the expected cost for a random search, where the cost for visiting
the left child is ¢; = 1 and the cost for processing the right child is ¢, = 0,1,2,...,28
(¢» = 0 being the lowest curve).

Theorem 1 (Mehlhorn, Theorem 2, Section II1.5.1). The average path
length P, is at most (1 + 1/n)log(n + 1)/H (), where H(a) = —aloga — (1 —
a)log(1l — a).

In practice, due to hardware issues, the running time spent at a given node
might depend on the next node to process, i.e. the left or right child. In Corol-
lary 1 we analyze the running time for a random search in the case where the
costs for visiting the left and right children of a given node are different.

Corollary 1. Consider a skewed search tree T of balance a, and let ¢; and c,
be the costs for branching left and right respectively. A random search has

O((ac + (1 — a)¢y) logn/H(a)) (1)
expected cost, where H(a) = —aloga — (1 — a)log(l — a).

Proof. Due to the linearity of expectation, the expected number of comparisons
performed for a random search is equal to the average path length, which is
O(logn/H(a)) cf. Theorem 1. If for branching left and right we have costs ¢
and ¢, we obtain at a given node an expected cost of ac; + (1 — a)c¢,, since the
probabilities of branching left and right are a and 1—« respectively. We conclude
that the expected cost of a random search is O((ac;+ (1 —a)c,)logn/H(a)). O

In Figure 1 we show the function from the bound (1) on the expected cost for
a random search where we consider different costs for visiting the left and the
right child respectively. We note that in all the cases where ¢; # ¢, the minimum
occurs for « values different than 1/2.

3 Hardware discussion

The running time of algorithms is usually analyzed by counting the instructions
performed by the CPU. However, in practice, the running time of an algorithm

can be severely affected by some other hardware factors besides the CPU in-
structions. We show that the branch mispredictions that occur in the CPU and
the cache faults can have a major effect over the running time of searching in
skewed binary search trees.

To increase the clock speed, modern CPUs include instruction pipelines in
their architecture, where the instructions are prefetched before being executed.
When a conditional branch enters the pipeline, its outcome is not known prior to
its execution and thus its direction must be predicted to ensure the prefetching
of the following instructions. If the branch is incorrectly predicted, the whole
pipeline must be flushed, since the instructions in the pipeline correspond to
a wrong execution path. This obviously leads to a performance loss, which in-
creases proportionally with the length of the pipeline. In such a case, we say that
a branch misprediction occurs. Since the pipelines are getting longer and longer
(e.g. 18 instructions for Pentium P4 and 31 for Intel Prescott), branch mispre-
dictions are having an increasing influence over the running time of algorithms
in practice.

In the traditional RAM model, all memory accesses are considered to have
equal access times. In practice, nowadays computers have a hierarchy of memory
layers, each of them having smaller size and access time than the next one, from
the CPU registers to the hard-disk. The data can be transfered only between
consecutive layers, and is performed in blocks of consecutive data rather than
individual items.

4 Branch mispredictions

Branch mispredictions can dramatically affect the running time in practice. Even
though in most of the cases the branch predictors incorporated in the CPU
architectures are accurate and yield good performances, in certain algorithms
the outcome of certain branches is hard to guess. Sorting and searching are two
such examples, since they involve comparisons among elements and the outcome
of an element comparison is usually hard to predict.

There are two major types of branch prediction schemes, namely static and
dynamic. In static branch predictors, each branch is predicted in the same direc-
tion at all times, and the direction of the branch is either given at compile time
or it follows some simple heuristics, e.g. forward branches predicted taken and
backward branches predicted not taken. On the other hand, the dynamic branch
prediction schemes predict the direction of the branches at runtime, taking ad-
vantage of the execution history. In the case of searching in a balanced search
tree, since the number of nodes in the left and right subtrees of a given node are
approximately the same, the outcome of any branch is hard to predict and hence
we expect branch mispredictions in around half of the cases. On the other hand,
for the skewed search trees, we expect the number of branch mispredictions to
decrease when increasing the skewness, since the probability that the search key
lies in the larger subtree is increasing. In Theorem 2 we prove an upper bound

on the number of branch mispredictions performed for a skewed binary search
tree when a static branch predictor is used.

Theorem 2. The expected number of branch mispredictions performed for a
random search in a skewed binary search tree of balance a is O(alogn/H (o)),
where H(a) = —aloga — (1 — a)log(1 — «), assuming a static branch predictor
and 0 < a < 1/2.

Proof. Since we consider o < 1/2, for each non-leaf node of the search tree,
the right subtree will have more nodes than the left subtree, hence visiting the
right subtree next is more likely than visiting the left subtree. We use a static
prediction scheme where for each node we predict that the search key is larger
than the key stored at the given node. Using Corollary 1 with ¢; = 1 and ¢, =0,
we obtain that for a random search we perform expected O(alogn/H (o)) branch
mispredictions. O

5 Memory layouts

The difference in access times between the different layers of the memory hier-
archy, especially from the internal memory to the hard disk, has led to several
models that deal with capturing the cache effect. One of the most successful is
the I/O model introduced by Aggarwal and Vitter [1] and consist of a two level
memory hierarchy, containing a fast memory of bounded size M and a slow, infi-
nite memory. The computation is performed in the fast memory and the data is
transfered between the slow and fast memories in blocks of B consecutive items.
The I/O complexity of an algorithm is given by the number of blocks transfered.
Since in practice hardware architectures contain several memory levels with dif-
ferent values for the fast memory size M and the block size B, Frigo et al. [13]
introduced the cache oblivious model. A cache oblivious algorithm is an algo-
rithm whose analysis holds for any values of M and B. Most of the algorithms
in this model assume a tall cache, i.e. M = 2(B?). For a comprehensive list of
efficient external memory algorithms, e.g. refer to [3,4,8,17].

We analyze different memory layouts for the static skewed binary search trees.
For all the layouts the tree is stored as an array of n nodes, where each node is
a structure containing two pointers to the left and the right subtree respectively
together with an integer key. We note that the number of comparisons and
branch mispredictions performed for searches is not affected by the way the tree
is laid in memory, as they only depend on the height of the tree and the number
of left turns on a path from the root to a certain leaf (for @ < 1/2, assuming
a static branch prediction scheme). However, the number of cache faults can be
dramatically affected by the memory layout, ranging from O(1/log B) to O(1)
I/0Os for each node on a search path.

Consider a balanced binary search tree T' of n nodes. The different memory
layouts that we consider together with the expected number of I/Os for a random
search are introduced below.

Random. Each node of T is stored at a random position in the array.

Since in this layout the nodes are stored at random locations in the array,
for each node on a search path we perform an I/0, hence the expected number
of I/Os is given by the average path length.

BFS. In this layout the nodes of the tree are stored according to the BFS
traversal of T', where the nodes at a level are processed in a left-to-right order.
The first B nodes of the array contain the topmost subtree. In any practical
setting, i.e. the tree is not severely skewed, the length of any path in this subtree
is O(log B). The top subtree is loaded into memory using in a single I/O, hence
for the first O(log B) nodes on any path we use O(1) I/Os. Afterward, for the
remaining nodes on any search path we consume O(1) I/Os per node, thus
obtaining expected O(1 + |P| —log B) 1/Os for a following a search path P.

Inorder. The tree is stored in the array according to the inorder traversal, i.e.
the array is sorted.

Following a path from the root to a leaf takes O(1) I/Os per node, except for
possibly the last subtree of @(B) nodes, since they will be loaded using a single
I/0. Considering the case when in a subtree of size B the length of a search
path is O(log B), we obtain that for a search path P in this layout we perform
between O(|P|) and O(1 + |P| —log B) I/0s, where |P| denotes the length of P,
depending whether P reaches the bottom levels of the tree or not.

DFSl. The tree is laid out in the array according to a DFS traversal, where after
visiting the root, the left child is traversed before the right child.

Since the left child is stored next to the parent, they are stored in the same
block, hence branching left takes O(1/B) I/Os. In what concerns the right child,
accessing it requires O(1) I/Os. Using Corollary 1 we obtain that for a random
search we perform expected O((a/B+(1—a))logn/H(a)) 1/Os, where H(a) =
—aloga — (1 —a)log(l — a).

DFSr. This layout is similar to DFSI, except for the fact that the right child
is traversed first and the left child afterwards. Using a similar argument, we
obtain that the number of I/Os performed for a random search is expected

O(a+ (1—a)/B)logn/H(a).

k-level grouping. Given a tree T, in this layout we first store the first & levels of
T in the order given by a BFS traversal and then recursively store the subtrees
rooted in the nodes at level k£ + 1, in a right-to-left order.

Choosing k = log B, we obtain that following a search path P takes P(1 +
|P|/log B) 1/0s, each block is loaded using O(1) I/Os and in each block we
process O(log B) nodes of the search path, except for possibly the last block
loaded. Since the expected length of P is O(logn/H(c)), we obtain that the
expected number of memory transfers is O(1 + (1/H(a)) - logg n).

pgDFS. In a preprocessing phase, for each node v we assign its weight w(v) as
the number of nodes contained by the subtree rooted at v. Given a parameter p,
we first store consecutively the p heaviest nodes in decreasing order with respect
to their weights. The subtrees rooted at the children of the nodes on the frontier,
if any, are then recursively stored. The children are laid out in decreasing order
of their weights. If two or more nodes have the same weight, no assumption can
be made with respect to the order in which they will be stored. To implement
this layout we use a priority queue, hence its name.

To optimize the number of memory transfers, we choose p = ©(B) and thus
the group of the p heaviest nodes is stored in O(1) memory blocks. For the
children of the frontier of a group of p nodes the ratio between the weight of the
lightest and heaviest child0 is at least a (for 0 < a < 1/2). This implies that
each subtree in the frontier of the group has at most a fraction of 1/(Ba + 1) of
the size of the subtree rooted at the root of the group. It follows that a search
uses O(logg,41 1) I/Os.

Skewed van Emde Boas. This layout is a variation of the van Emde Boas layout,
which is known to match in the cache-oblivious model, i.e. where the parameters
M and B are not known, the best bounds known for searching in the I/O-model.
Given a node v and a tree, the weight of the node is given by the number of nodes
in the subtree rooted in v. Given a tree of n nodes, we split it into a top subtree
containing [1/n] nodes and O(y/n) bottom subtrees. The top subtree contains
the nodes with the highest weights and the bottom subtrees have as roots the
children of the leaves of the top subtree. After the splitting phase, the top and
the botttom subtrees are recursively stored in consecutive memory locations.
Since the top subtree contains the heaviest [v/n]) nodes, by a similar argu-
ment to pgDFS the ratio between the weights of the lightest and heaviest root
of the bottom subtrees is at least a (for 0 < @ < 1/2). If the root of the tree has
weight n, we obtain that the number of nodes in each of the bottom subtrees is
at most n/(ay/n + 1) nodes. In the recursive layout, when n = @(B) searching
in the corresponding subtree takes O(1) I/Os. We obtain that a search takes

O(logpggy 1 n) 1/0s.

6 Experimental setup

We analyze how the skewness factor a of the binary tree affects the running
time in practice for the different layouts. To avoid additional costs inflicted over
the running time by recursive calls, we use the iterative searching procedure in
Figure 2. We generate a large sequence of random successful queries and mea-
sure the running time together with the number of comparisons, the number
of branch mispredictions and the L1 data cache misses performed. We conduct
our experiments on two standard Linux machines, having two different archi-
tectures. One of them has a P4 3.4 GHz CPU and 1 GB RAM, running linux
2.6.10. The other one has an AMD Athlon XP 2400+ 2.0 GHz CPU with 1GB
RAM, running linux 2.6.8.1. To count the number of branch mispredictions and

while(root!=NULLV)

{

if (key==t [root] .key)
return root;

if (key>t [root] .key)
root=t[root] .right;

else
root=t[root].left;

}

Fig. 2. An iterative C source code for searching.

L1 data cache misses we use the PAPI 3.0 library. The code is compiled with
gee 3.3.2 using optimization level -O3. We will restrict ourselves to showing in
the paper empirical results for AMD architecture. For the Pentium 4 processor
the same behavior was observed as for the AMD architecture. The source code
together with the scripts running the experiments and the plotted resulting data
are available at wuw.daimi.au.dk/"gabi/esa06.tar.gz.

7 Experimental results

We demonstrate experimentally that in practice the skewed binary search trees
can outperform the theoretically better balanced binary search trees, because of
the different costs for branching left or right.

Since the number of branch mispredictions and the amount of computation
(i-e. the number of comparisons) are independent on the memory layout, we can
count them on any layout. The charts in Figure 3 are obtained by counting the
number of comparisons (left) and the number of branch mispredictions (right) for
a tree of 25 x 103 items and 10% queries. As expected, the number of comparisons
achieves a minimum for perfectly balanced trees, i.e. for a ~ 0.5, and increases
with the skewness of the tree. In what concerns branch mispredictions, their
number increases by a factor of 350% when decreasing the skewness, following
the expectation in Theorem 2. Intuitively, this happens because the more nodes
one of the subtrees rooted at the children of a given node has, the more likely
is that a random search path will contain that child, hence the more likely the
searching conditional branch will be correctly predicted. We observe that the
number of branch mispredictions has a maximum for a &~ 0.52 and that for very
high values of a the number of branch mispredictions is greater by about 25%
than for very low values. This is because of the rounding for small instances, i.e.
the number in the left subtree is |an| which yields a rightmost path for an < 1.

As previously stated, the number of cache faults performed for a random
search depends not only on the skewness factor a, but also on the memory
layout of the tree. We first analyze the layouts that do not use blocking, that is
DFSL, DFSr, BFS, Inord and Rand. In Figure 4 we give the running time (left)
and the number of cache misses (right) performed by 10® queries in a skewed

Tet+08 p— T T T T T Be+06 T T T T T T T T T

T T T
Comparisons +
6e+08 |- B Te+06 |- M 4
5e B 6e-+06 fﬁ -
1408 5e+06 [~ -
406 - ffﬁ 4
1

1
2e+08 + 3e+06 |- o
4 i &

R
s MWWM ey]

0 ! ! ! ! ! 1 1 1 ! 1e+06 ! ! ! ! ! ! ! ! !
0

Comparisons
Mispredictions

se+08 £
e

Fig. 3. The number of comparisons (left) and branch mispredictions (right) performed
by a skewed search tree of 25 x 10° items for 10® queries.

search tree of 25 x 10% nodes. As expected, the Rand layout achieves the worst
running time, since it performs one cache fault for each element on a given path.
Inord and BFS achieve competitive running times, whereas DFS] and DFSr
are best layouts that do not use blocking, with respect to both running time
and cache misses performed. We note that the Inord layout performs less cache
faults and achieves better running times than BFS for very skewed trees, i.e. very
small or very large values of a;, whereas when the trees are almost balanced BFS
outperforms Inord. Also, it is expected that DFSI and DFSr have symmetric
charts for the number of cache misses and implicitly the running time, since
they are symmetric layouts, where DFSr is efficient for a < 0.5, since there are
more nodes in the right subtree, and DFSI is more efficient for a > 0.5. We
recall that in the case of DFSr, since the right child is recursively stored after
the root, branching right takes O(1/B) I/Os whereas we spend O(1) I/Os for
branching left, whereas in the case of DFS] we spend O(1/B) I/Os for branching
left and O(1) I/Os for branching right. We note that the minimum running time
is achieved for a & 0.2 in the case of DFSr and for a = 0.75, and is better by
around 15% compared to « = 0.5. In DFSr, for 0.2 < a < 0.5, even though
less comparisons are performed, both cache faults and branch mispredictions
increase and the overall running time increases too.

We now analyze the blocked layouts. We conduct experiments for tuning the
parameterized layouts, i.e. k-level grouping and pgDFS. Again, we perform 108
queries on a skewed search tree of 25 x 10% nodes, for different values of the
parameters. For k-level grouping, we give experimental data for different values
of the parameter k, i.e. the number of levels grouped together in the layout,
for different values of a. For each pair of values for k and «, we perform three
series of queries and select the median of the running times. For each value
of the parameter k we choose the smallest running time among the different
possible skewness factors. The data we obtained is shown in Figure 5 (left). The
differences in the running times are up to 5%, and the minimum running time is
achieved for k = 2, i.e. when two levels of the tree are grouped together. Thus,
in our further experiments involving this layout we use this value.

We perform the same experiments for the pgDFS layout, varying the number
p of the heaviest nodes grouped in a block, see Figure 5 (right). Unlike the k-level
grouping, in this case the differences in the running times are very small. Since
the minimum running time was obtained when grouping p = 40 nodes together,
in the further experiments we are using p = 40.

We perform a comparative study for the blocked layouts, i.e. k-level grouping,
pgqDFS, and skewed van Emde Boas, together with DFSr, since it is the non-
blocked layout that achieved the best running time. In Figure 6 we show the
running times (left) and the number of cache misses (right) performed for these
layouts on a skewed binary search tree of 25 x 10® nodes for 10% queries. We note
that even though all layouts achieve approximately the same running times, at
all times the skewed van Emde Boas is the fastest. The heuristics of grouping
the heavy nodes achieves good results in practice, since pqDFS is faster than
blocking k levels (bDFS). Finally, we note that DFSr is slightly slower than the
blocked layouts. In what concerns the data cache misses, for all the algorithms
the number of data cache misses is almost similar and is approximately the same
regardless of the skewness factor for a < 0.5, except for the case when the tree
is extremely skewed, i.e. for very small values of a. We note when increasing the
skewness factor a up to 0.5, the number of comparisons decreases, the number
of cache misses is approximately the same except for extremely low values of «,
whereas the number of branch mispredictions is increasing. The resulting effect
is that the minimum running time is achieved for a = 0.3, and is better by a
factor of 5% compared to the perfectly balanced search trees for all the blocked
layouts. As stated before, for DFSr, the observed improvement in the running
time is up to 15%. In what concerns the number of caches, the blocked layouts
performed much better than the non-blocked layouts, as the skewed van Emde
Boas and pgDFS layouts achieve significant improvements against BFS, Inord
and Rand.

Finally, we study for which values of the skewness factor a we achieve the
minimum running time when varying the size of the tree. We choose to perform
our experiments on two of the layouts that achieved the best running times,
namely pqDFS and the skewed van Emde Boas. For a given tree size, we vary
the skewness factor a and for each value of o we perform three series of 108
queries and pick the median of the running times. We then measure the skewness
factor for which the minimum running time was achieved. In Figure 7, we show
the resulting data for both the AMD (left) and P4 (right) architectures. We
notice that for both architectures the pgDFS achieves its best running time for
smaller values of o than skewed van Emde Boas. Also, the best skewness factor
is increasing while increasing the input size in the case of the AMD architecture,
whereas for the P4 it has a constant behavior when increasing the input size.

3e+07

04— T T T T T T T I T T T T
M DFSI + DFs!
DFSr X DFSr
0.35 | BFS ¥ 250407 |- BFS
Inord [Inord
[] Rand W Rand

2e+407

1.5e+07

o B
Cache misses

Running time

le+07

Se+06

! ! ! ! ! ! ! ! ! 0

Fig. 4. The running time (left) and the number of L1 data cache misses (right) per-
formed by a skewed search tree of 25 x 10% items for 10° queries for the non-blocked
layouts.

Running time
=
&
T
+
+
+
I
Running time
=
T
I

0.12 ! ! ! ! ! ! ! 0.12 ! ! ! ! !
0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120
k P

Fig. 5. The best running times for k-level grouping (left) and pgDFS where p nodes
are grouped together (right), for 10° queries and a skewed search tree of 25 x 102 nodes.

0.22 - - - - - T 1e+07 - - - -
DFSr + DFSr +
021 - vEB X VEB X
02 it éi; Bes06 - RS B]
o 09 f ¥
E o1s | f * 6e-+06
£ $¢ * B
g e & i{x* § E 4e+06
= 0_15% % %EQE i
015 5 iéﬁig ééii § %ég B 2e+06
ou | aiﬁaigiiiiiiiiﬁ ; i
0.13 1 1 1 1 1 1 1 0 1 1 1 1
01 02 03 04 05 06 07 08 09 0 0.2 0.4 0.6 08 1
a a

Fig. 6. The running time (left) and the number of L1 data cache misses (right) per-
formed by a skewed search tree of 25 x 10® nodes for 10° queries for the blocked layouts.

055 T T T T T 05 T T T T T
VEB + VEB +
05 - % + paDFS X 045 paDFS X
045 [-
o+ A 04 . g
04 [-
+ X+ + 0.35 | B
a 035 B @
+ XX RKOKX X + 03 [-
03 -
X * + o+ +
0.25 HHKHX X+ + + 0.25 - -
25 | -
ool X+ + + + o+ o+t X
02 -
015 1 1 d N J 0.15 } 1 1, . 1
12 14 16 18 20 22 24 12 14 16 18 20 2 24
logn logn

Fig. 7. The skewness factors that achieved the minimum running times for different
tree sizes for the Athlon (left) and P4 (right) architectures.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

S. Alstrup, M. A. Bender, E. D. Demaine, M. Farach-Colton, J. I. Munro, T. Rauhe,
and M. Thorup. Efficient tree layout in a multilevel memory hierarchy. Manuscript,
2003.

L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313-358. Kluwer
Academic Publishers, 2002.

L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivious data structures. In
D. Mehta and S. Sahni, editors, Handbook of Data Structures and Applications,
page 27. CRC Press, 2004.

R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173-189, 1972.

M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In
Proc. 41st Annual Symposium on Foundations of Computer Science, pages 399—
409, 2000.

M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious
dynamic dictionary. In Proc. 18th Annual ACM-SIAM symposium on Discrete
algorithms, pages 29-38, 2002.

G. S. Brodal. Cache-oblivious algorithms and data structures. In Proc. 9th Scandi-
navian Workshop on Algorithm Theory, volume 3111 of Lecture Notes in Computer
Science, pages 3—13. Springer Verlag, Berlin, 2004.

G. S. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees via binary
trees of small height. In Proc. 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 39-48, 2002.

G. S. Brodal, R. Fagerberg, and G. Moruz. On the adaptiveness of quicksort. In
Proc. Tth Workshop on Algorithm Engineering and Ezperiments, pages 130-140,
2005.

G. S. Brodal and G. Moruz. Tradeoffs between branch mispredictions and compar-
isons for sorting algorithms. In Proc. 9th International Workshop on Algorithms
and Data Structures, volume 3608 of Lecture Notes in Computer Science, pages
385-395. Springer Verlag, Berlin, 2005.

E. D. Demaine, J. Iacono, and S. Langerman. Worst-case optimal tree layout in a
memory hierarchy. Manuscript, August 2004.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache oblivious
algorithms. In 40th Annual IEEE Symposium on Foundations of Computer Science,
pages 285-298, 1999.

J. Gil and A. Itai. How to pack trees. Journal of Algorithms, 32(2):108-132, 1999.
J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. In Proc.
4th Annual ACM Symposium on Theory of Computing, pages 137-142, 1972.

P. Sanders and S. Winkel. Super scalar sample sort. In Proc. 12th European
Symposium on Algorithms, volume 3221 of Lecture Notes in Computer Science,
pages 784-796. Springer Verlag, Berlin, 2004.

J. S. Vitter. External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing Surveys, 33(2):209-271, 2001.

