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AAAA ����CPU Registers� �6��? ��?Internal memoryExternalmemory Externalmemory��� @@@Figure 1: The model of computationPriority queues have numerous applications, a few listed by Sedgewick [28] are: sorting algorithms,network optimization algorithms, discrete event simulations and job scheduling in computer sys-tems. For the sake of simplicity, we will not hereafter make any distinction between the elementsand their priority.In this paper we study the problem of maintaining a priority queue on a computer with a two-level memory: a fast internal memory and a slow external memory (see Fig. 1). We assume thatthe computer has a processing unit, the processor or CPU, and a collection of hardware, the I/Osubsystem, which is responsible for transferring data between internal and external memory. Theprocessor together with the internal memory can be seen as a traditional random access machine(RAM) (see, e.g., [3]). In particular, note that the processor can only access data stored in internalmemory. The capacity of the internal memory is assumed to be bounded so it might be necessaryto store part of the data in external memory. The I/O subsystem takes care of transferring thedata between the two memory levels, and this is done in blocks of a �xed size.The behavior of algorithms on such a computer system can be characterized by two quantities:processor performance and I/O performance. By the processor performance we mean the numberof primitive operations performed by the processor. Our measure of processor performance is thenumber of element comparisons carried out. It is straightforward to verify that the total numberof other (logical, arithmetical, etc.) operations required by our algorithms is proportional to thatof comparisons. Assuming that the elements occupy only a constant number of computer words,the total number of primitive operations is asymptotically the same as that of comparisons. Ourmeasure of I/O performance is the number of block transfers or I/Os performed, i. e., the numberof blocks read from the external memory plus the number of blocks written to the external memoryby the I/O subsystem. Our main goal is to analyze the total work carried out by the processor andthe I/O subsystem during the execution of the algorithms.The system performance, i. e., the total elapsed execution time when the algorithms are run ona real computer, depends heavily on the realization of the computer. A real computer may have2



multiple processors (see, e. g., [18]) and/or the I/O subsystem can transfer data between severaldisks at the same time (cf. [2, 25, 30]), the processor operations (see, e. g., [27]) and/or the I/Os(cf. [19]) might be pipelined, but the e�ect of these factors is not considered here. It has beenobserved that in many large-scale computations the increasing bottleneck of the computation is theperformance of the I/O subsystem (see, e. g., [15, 26]), increasing the importance of I/O e�cientalgorithms.When expressing the performance of the priority-queue operations, we use the following par-ameters:B: the number of elements per block,M : the number of elements �tting in internal memory, andN : the number of elements currently stored in the priority queue; more speci�cally, the number ofelements stored in the structure just prior to the execution of Insert or DeleteMin.We assume that each block and the internal memory also �t some pointers in addition to theelements, and B � 1 and M � 23B. Furthermore, we use loga n as a shorthand notation formax(1; lnn= ln a), where ln denotes the natural logarithm.Several priority-queue schemes, such as implicit heaps [33], leftist heaps [12, 20], and binomialqueues [9, 31] have been shown to permit both Insert and DeleteMin with worst-case O(log2N)comparisons. Some schemes, such as implicit binomial queues [10] guarantee worst-case O(1)comparisons for Insert and O(log2N) comparisons for DeleteMin. Also any kind of balancedsearch trees, such as AVL trees [1] or red-black trees [16] could be used as priority queues. However,due to the usage of explicit or implicit pointers the performance of these structures deteriorateson a two-level memory system. It has been observed by several researchers that a d-ary heapperforms better than the normal binary heap on multi-level memory systems (see, e. g., [22, 24]).For instance, a B-ary heap reduces the number of I/Os from O(log2 NB ) (cf. [4]) to O(logB NB ) peroperation [24]. Of course, a B-tree [8, 11] could also be used as a priority queue, with which asimilar I/O performance is achieved. However, in a virtual-memory environment a B-ary heapseems to be better than a B-tree [24].When a priority queue is maintained in a two-level memory, it is advantageous to keep the smallelements in internal memory and the large elements in external memory. Hence, due to insertionslarge elements are to be moved from internal memory to external memory and due to deletionssmall elements are to be moved from external memory to internal memory. Assuming that wemaintain two bu�ers of B elements in internal memory, one for Inserts and one for DeleteMins,at most every Bth Insert and DeleteMin will cause a bu�er over
ow or under
ow. Severaldata structures take advantage of this kind of bu�ering. Fishspear, developed by Fischer andPaterson [14], can be implemented by a constant number of push-down stacks, implying that anysequence of S Insert and DeleteMin operations requires at most O(PSi=1 1B log2Ni) I/Os, whereNi denotes the size of the data structure prior to the ith operation. Wegner and Teuhola [32]realized that a B-ary heap, in which each node stores B elements, guarantees worst-case O(log2 NB )I/Os for every Bth Insert and every Bth DeleteMin operation.The above structures assume that the internal memory can only �t O(B) elements, i. e., aconstant number of blocks. Even faster solutions are possible if the whole capacity of the internalmemory is utilized. Arge [5, 6] introduced an (a,b)-tree structure that can be used to carry out anysequence of S Insert and DeleteMin operations with O( SB logM=B SM ) I/Os. Fadel et al. [13] gavea heap structure with a similar I/O performance but their bound depends on the size pro�le, noton S. Their heap structure can handle any sequence of S operations with O(PSi=1 1B logM=B NiM )3



I/Os, where Ni denotes the size of the data structure prior to the ith operation. The number ofcomparisons required when handling the sequence is O(PSi=1 log2Ni). When this data structure isused for sorting N elements, both the processor and I/O performance match the well-known lowerbounds 
(NB logM=B NM ) I/Os [2] and 
(N log2N) comparisons (see, e. g., [20]), which are valid forall comparison-based algorithms.To achieve the above bounds|as well as our bounds|the following facilities must be provided:1. we should know the capacity of a block and the internal memory beforehand,2. we must be able to align elements into blocks, and3. we must have a full control over the replacement of the blocks in internal memory.There are operating systems that provide support for these facilities (see, e.g., [17, 21, 23]).The tree structure of Arge and the heap structure of Fadel et al. do not give any guaranteesfor the performance of individual operations. In fact, one Insert or DeleteMin can be extremelyexpensive, the cost of handling the whole sequence being an upper bound. Therefore, it is riskyto use these structures in on-line applications. For large-scale real-time discrete event simulationsand job scheduling in computer systems it is often important to have a guaranteed worst-caseperformance.We describe a new data structure that gives worst-case guarantees for the cost of individualoperations. Basically, our data structure is a collection of sorted lists that are incrementally merged.This idea is borrowed from a RAM priority-queue structure of Thorup [29]. Thorup used two-waymerging in his internal data structure but we use multi-way merging since it behaves better inan external-memory environment. As to the processor and I/O performance, our data structurehandles any intermixed sequence of operations as e�ciently as the heap structure by Fadel et al. [13].In every disjoint interval of B consecutive priority-queue operations our data structure requires atmost c logM=B NM I/Os, for some positive constant c. These I/Os are divided evenly among theoperations. If B � c logM=B NM , one I/O is necessary for every B=(c logM=B NM )th priority-queueoperation, and if B < c logM=B NM , cB logM=B NM , I/Os are performed per every priority-queueoperation. Moreover, every operation requires O(log2N) comparisons in the worst case.The outline of the remaining of the paper is as follows. In Sect. 2 the basic data structure isdescribed. In Sect. 3 algorithms are developed for performing batch insertions and deletions on theexternal-memory part of the data structure. In Sect. 4 we combine internal-memory bu�ers withincrementally performed batch operations to achieve the claimed performance bounds. Finally, inSect. 5 some concluding remarks are given.2 Basic data structureThe basic component of our priority-queue data structure is a collection of sorted lists. When newelements arrive, these are added to a list which is kept in internal memory and sorted incrementally.If the capacity of internal memory is exceeded due to insertions, a fraction of the list containingthe recently inserted elements is transferred to external memory. To bound the number of lists inexternal memory we merge the existing lists. This merging is related to the merging done by theexternal mergesort algorithm [2]. One particular list that is kept in internal memory contains thesmallest elements. If this list is exhausted due to deletions, new smallest elements are extractedfrom the lists in external memory. Because we are interested in worst-case bounds the merging isaccomplished incrementally. A similar idea has been applied by Thorup [29] to construct RAMpriority queues but instead of two-way merging we rely on multi-way merging.4



Internal part����� AAAAAMIN� 3K ����� AAAAANEW� 2K '& $%Work area� 4K + 5BExternal partLists of rank iL1i L2i � � �Lnii Liz }| {L1i L2i � � �Lnii� � � � � �Figure 2: The data structureBefore giving the details of the data structure, let us recall the basic idea of external mergesortwhich sorts N elements with O(NB logM=B NM ) I/Os [2]. First, the given N elements are partitionedinto �(N=M) lists each of length �(M). Second, each of the lists are read into internal memoryand sorted, requiring O(N=B) I/Os in total. Third, �(M=B) sorted lists of shortest length arerepeatedly merged until only one sorted list remains containing all the elements. Since each elementtakes part in O(logM=B NM ) merges, the total number of I/Os is O(NB logM=B NM ).Our data structure consists of two parts: an internal part and an external part (see Fig. 2). Thedata structure takes two parameters K and m, where K is a multiple of B, 9K + 5B � M , andm = K=B. The internal part of the data structure stores O(K) elements and is kept all the timein internal memory. The external part is a priority queue which permits the operations:BatchInsertK(X): Insert a sorted list X of K elements into the external-memory data structure.BatchDeleteMinK(): Delete the K smallest elements from the external-memory data structure.Both of these operations require at most O(KB logm NK ) I/Os and O(K log2 NK ) comparisons in theworst case. For every Kth operation on the internal part we do at most one batch operationinvolving K elements on the external part of the data structure.The internal part of the data structure consists of two sorted lists MIN and NEW of length atmost 3K and 2K, respectively. We represent both MIN and NEW as a balanced search tree thatpermits insertions and deletions of elements with O(log2K) comparisons. The rôle of MIN is tostore the current at most 3K smallest elements in the priority queue whereas the intuitive rôle ofNEW is to store the at most 2K recently inserted elements. All elements in MIN are smaller thanthe elements in NEW and the elements in the external part of the data structure, i. e., the overallminimum element is the minimum of MIN. 5



The external part of the data structure consists of sorted lists of elements. Each of these listshas a rank, which is a positive integer, and we let R denote the maximum rank. In Sect. 3.5 weshow how to guarantee that R � logm NK + 2. The lists with rank i, i 2 f1; : : : ; Rg, areL1i ; L2i ; : : : ; Lnii ; L1i ; L2i ; : : : ; Lnii ; and Li :For each rank i, the lists L1i ; : : : ; Lnii are being merged incrementally and the result of this mergeis to be appended to the list Li. The list Li contains the already merged part of L1i ; : : : ; Lnii . Allthe elements in Li are smaller than those in L1i ; : : : ; Lnii . When the incremental merge of lists withrank i �nishes, the list Li is promoted to a list with rank i+1, provided that Li is su�ciently long,and a new incremental merge of lists with rank i is initiated by making L1i ; : : : ; Lnii the new Ljilists.We guarantee that the length of each of the external lists is a multiple of B. An external listL containing jLj elements is represented by a single linked list of jLj=B blocks, each block storingB elements plus a pointer to the next block, except for the last block which stores a null pointer.There is one exception to this representation. The last block of Li does not store a null pointer,but a pointer to the �rst block of L1i (if ni = 0, the last block of Li stores a null pointer). Thisallows us to avoid updating the last block of Li when merging the lists L1i ; : : : ; Lnii .In the following, we assume that pointers to all the external lists are kept in internal memorytogether with their sizes and ranks. If this is not possible, it is su�cient to store this informationin a single linked list in external memory. This increases the number of I/Os required by ouralgorithms only by a small constant.In Sect. 3 we describe how BatchInsertK and BatchDeleteMinK operations are accom-plished on the external part of the data structure, and in Sect. 4 we describe how the externalpart can be combined with the internal part of the data structure to achieve a worst-case e�cientimplementation of Insert and DeleteMin operations.3 Maintenance of the external part3.1 InvariantsWe start by presenting the invariantsmaintained by the BatchInsertK and BatchDeleteMinKoperations on the external part of the data structure. Recall that the lists with rank i, i 2f1; : : : ; Rg, are L1i ; : : : ; Lnii ; Li; and L1i ; : : : ; Lnii . As earlier, we let jLj denote the number of elementsin list L.The aim of invariants (1) and (2) is to guarantee that the utilization of the external memory ismaximized, i. e., all the blocks in external memory are full of elements.niXj=1 jLji j; niXj=1 jLji j; and jLij are multiples of K (and B), for all i 2 f1; : : : ; Rg : (1)jLji j and jLji j are multiples of B, for all i and j : (2)Invariants (3) and (4) are to avoid considering empty lists.jLji j > 0 and jLji j > 0; for all i and j : (3)ni > 0) jLij � K; for all i 2 f1; : : : ; Rg : (4)6



The remaining invariants capture the progress of the incremental merge of lists with rank i.We have two invariants especially for rank 1. The total length of the lists Lj1 is by invariant (5)bounded by the length of the list merged already. Invariant (6) bounds the total length of listswith rank 1 that are still to be merged. n1Xj=1 jLj1j � jL1j � 0 : (5)n1Xj=1 jLj1j+ n1Xj=1 jLj1j � 2Km�K : (6)For rank i 2 f2; : : : ; Rg, we have similar invariants. Because Li�1 can be promoted to a new Ljilist before the next incremental merge of lists with rank i is initiated, we \include" jLi�1j in thesum Pnij=1 jLji j. (jLi�1j+ niXj=1 jLji j)� jLij � 2Kmi �mm� 1 ; for all i 2 f2; : : : ; Rg : (7)(jLi�1j+ niXj=1 jLji j) + niXj=1 jLji j � 2Kmi+1 �mm� 1 ; for all i 2 f2; : : : ; Rg : (8)The last invariant bounds the length of the result of each incremental merge.jLij+ niXj=1 jLji j � 2Kmi+1 �mm� 1 ; for all i 2 f1; : : : ; Rg : (9)3.2 The MergeK procedureThe heart of our construction is the incremental merge procedure MergeK(X1; X2; : : : ; X`); whichmerges and removes the K smallest elements from the sorted lists X1; : : : ; X`. All list lengths areassumed to be multiples of B. After the merging of the K smallest elements we rearrange theremaining elements in the Xi lists such that the lists still have lengths which are multiples of B.We allow MergeK to make the Xi lists shorter or longer. We just require that the resulting Xilists remain sorted. For the time being, we assume that the result of MergeK is stored in internalmemory.The procedureMergeK is implemented as follows. For each list Xi we keep the block containingthe current minimum of Xi in internal memory. In internal memory we maintain a heap [33] overthe current minima of all the lists. We use the heap to �nd the next element to be output in themerging process. Whenever an element is output, it is the current minimum of some list Xi. Weremove the element from the heap and the list Xi, and insert the new minimum of Xi into the heap,provided that Xi has not become empty. If necessary, we read the next block of Xi into internalmemory.After the merging phase, we have from each list Xi a partially �lled block Bi in internal memory.Let jBij denote the number of elements left in block Bi. Because we have merged K elements fromthe blocks read and K is a multiple of B, Pì=1 jBij is also a multiple of B. Now we mergethe remaining elements in the Bi blocks in internal memory. This merge requires O(`B log2 `)comparisons. Let X̂ denote the resulting list and let Bj be the block that contained the maximum7



element of X̂. Finally, we write X̂ to external memory such that Xj becomes the list consistingof X̂ concatenated with the part of Xj that already was stored in external memory. Note that Xjremains sorted.In total, MergeK performs at most K=B + ` I/Os for reading the pre�xes of X1; : : : ; X` (foreach list Xi, we read at most one block of elements that do not take part in the merging) and atmost ` I/Os for writing X̂ to external memory. The number of comparisons required for MergeKfor each of the K + `B elements read into internal memory is O(log2 `). Hence, we have provedLemma 1 MergeK(X1; : : : ; X`) performs at most 2` + K=B I/Os and O((K + `B) log2 `) com-parisons. The number of elements to be kept in internal memory by MergeK is at most K + `B.If the resulting list is written to external memory incrementally, only (`+ 1)B elements have to bekept in internal memory simultaneously.3.3 Batch insertionsTo insert a sorted list of K elements into the external part of the data structure we incrementn1 and let Lni1 contain the K new elements. To reestablish the invariants we apply the procedureMergeStep(i), for each i 2 f1; : : : ; Rg.The procedureMergeStep(i) does the following. If ni = 0, the incremental merge of lists withrank i is �nished, and we make Li the list Lni+1+1i+1 , provided that jLij � Kmi. Otherwise, we let Libe the list Lni+1i because the list is too short to be promoted. Finally, we initiate a new incrementalmerge by making the lists L1i ; : : : ; Lnii the new Lji lists. If ni > 0, we concatenate Li with the resultof MergeK(L1i ; : : : ; Lnii ), i. e., we perform K steps of the incremental merge of L1i ; : : : ; Lnii . Notethat, by writing the �rst block of the merged list to the block of external memory that stored the�rst block of L1i earlier, we do not need to update the pointer in the previous last block of Li.Pseudo code for the BatchInsertK and the MergeStep procedures is given in Fig. 3.We now argue that this implementation of batch insertions reestablishes the invariants. Thatinvariants (1){(4) remain satis�ed is straightforward to verify. For invariants (5){(9) we give aninductive argument in i that the invariants become reestablished.For the lists of rank one there are two cases to consider. If Pn1j=1 jLj1j � K, MergeStep(1)increases jL1j by K and decreases Pn1j=1 jLj1j by K. Because the list containing the K new elementsincreases Pn1j=1 jLj1j by K, it follows that MergeStep(1) in this case reestablishes the invariants(5) and (6). Otherwise Pn1j=1 jLj1j = 0 and after performingMergeStep(1) invariant (5) is satis�edbecause Pn1j=1 jLj1j = 0. There are now two subcases depending on if L1 is made a list with rank1 or 2. If L1 is promoted, the merging part of MergeStep(1) decreases the left-hand side of (6)by K and reestablishes (6). On the other hand, if L1 is not promoted, then L1 � Km�K and by(5) we have that before inserting the K new elements Pn1j=1 jLj1j � Km�K. We conclude that (6)is satis�ed after the execution of MergeStep(1). Because the left-hand side of (9) only changeswhen a new incremental merge is initialized and (6) is satis�ed prior to the insertion, it followsthat invariant (9) is satis�ed for rank 1 after the execution of MergeStep(1).For rank i 2 f2; : : : ; Rg, MergeStep(i � 1) increases the left-hand side of (7) and (8) byat most K. If Pnij=1 jLji j � K, MergeStep(i) decreases Pnij=1 jLji j by K and (7) and (8) arereestablished. The left-hand side of (9) does not change and (9) remains satis�ed. OtherwisePnij=1 jLji j = 0. Because Pnij=1 jLji j = 0 after the execution ofMergeStep(i) and (9) is satis�ed forrank i� 1, it follows that invariant (7) is satis�ed for rank i. To see that (8) is satis�ed we considertwo subcases depending on whether Li is promoted or not. If Li is promoted, the merging part of8



procedure MergeStep(i)if ni = 0 and jLij > 0 thenif jLij � Kmi thenni+1  ni+1 + 1, Lni+1i+1  Li, Li  ;elseni  ni + 1, Lnii  Li, Li  ;��if ni = 0 and ni > 0 thenni  ni, (L1i ; : : : ; Lnii ) (L1i ; : : : ; Lnii ), ni  0�if ni > 0 thenLi  Li �MergeK(L1i ; : : : ; Lnii )remove empty Lji lists�endprocedure BatchInsertK(X)n1  n1 + 1; Ln11  Xfor i 1 to R do MergeStep(i) odendFigure 3: The MergeStep procedure and the insertion of K elements into the external part.MergeStep(i) decreases the left-hand side of (8) by K and (8) is reestablished, provided that theleft-hand side of (8) is di�erent from jLi�1j. Otherwise (8) is satis�ed due to (9) for rank i� 1. IfLi is not promoted, then jLij � Kmi �K and by (7) the left-hand side of (8) is bounded byK + 2Kmi �mm� 1 + 2(Kmi �K) < 2Kmi+1 �mm� 1 : (10)To see that (9) is reestablished note that the left-hand side of (9) for rank i only changes whenMergeStep(i) has �nished its merge and makes Li a list with rank i or i+1. If Li keeps its rank,then the left-hand side of (9) is similarly to (8) bounded by (10). If Li is promoted, then (9) followsfrom (8), because if MergeStep(i� 1) temporary makes (8) violated for rank i by increasing theleft-hand side by K, it is the case that jLi�1j � K. We conclude (9) is reestablished.The total number of I/Os performed in a batched insertion of K elements is K=B for writingthe K new elements to external memory and by Lemma 1 at most 2(ni +K=B) for incrementallymerging the lists with rank i. The number of comparisons for rank i is O((niB +K) log2 ni). Themaximum number of elements to be stored in internal memory for batched insertions is (nmax+1)B,where nmax = maxfn1; : : : ; nRg. To summarize, we haveLemma 2 A sorted list of K elements can be inserted into the external part of the data structureby performing (1+2R)K=B+2PRi=1 ni I/Os and O(PRi=1(niB+K) log2 ni) comparisons. At most(nmax + 1)B elements need to be stored in internal memory.9



3.4 Batch deletionsThe removal of the K smallest elements from the external part of the data structure is carried outin two steps. In the �rst step the K smallest elements are located without a�ecting the invariants.In the second step the actual deletion is accomplished followed by some processing to reestablishthe invariants.Let L be one of the lists L1i or Li, for some i, or an empty list. We will guarantee that thelist L contains the K smallest elements of the lists considered so far. Initially L is empty. Notethat by invariant (4) we do not have to consider lists Lji when �nding the minimum elements.By performing L1i  MergeK(L1i ; : : : ; Lnii ) � L1i no invariant changes its truth value and L1i nowcontains the K smallest elements of L1i ; : : : ; Lnii . The procedure SplitMergeK takes two sortedlists as its arguments and returns (the name of) one of the lists. If the �rst argument is an emptylist, then the second list is returned. Otherwise, we require that the length of both lists to beat least K and we rearrange the K smallest elements of both lists as follows. The two pre�xesof length K are merged and split among the two lists such that the lists remain sorted and thelength of the lists remain unchanged. One of the lists will now have a pre�x containing K elementswhich are smaller than all the elements in the other list. The list with this pre�x is returned.For each rank i 2 f1; : : :Rg, we now carry out the assignments L1i  MergeK(L1i ; : : : ; Lnii ) � L1i ,L  SplitMergeK(L; L1i ), and L  SplitMergeK(L; Li).It is straightforward to verify that after performing the above, the pre�x of the list L contains theK smallest elements in the external part of the data structure and that the invariants are satis�ed.We now delete the K smallest elements from list L. If L is L1i , it follows that Pnij=1 jLji j has beendecreased by K, and the invariants remain satis�ed. Otherwise, L is Li and jLij has been decreasedby K. The only invariant that can become violated is (7) if i � 2 or (5) if i = 1. By performingMergeStep(i) the invariants will become reestablished. There are two cases to consider dependingon Pnij=1 jLji j. If the sum is nonzero, the MergeStep operation will increase jLij by jKj and theinvariants again become reestablished. If the sum is zero, the argument follows as for insertions.Fig. 4 gives pseudo code for the deletion of the K smallest elements. The procedure PopK removesand returns the �rst K elements of a list.procedure BatchDeleteMinK()L  ;for i 1 to R doif ni > 0 thenL1i  MergeK(L1i ; : : : ; Lnii ) � L1iremove empty Lji listsL  SplitMergeK(L; L1i )�if jLij > 0 then L  SplitMergeK(L; Li) �odX  PopK(L)if L = Li then MergeStep(i) �return XendFigure 4: The deletion of K smallest elements from the external part.10



By always keeping the pre�x of L in internal memory the total number of I/Os for the deletionof the K smallest elements (without the call toMergeStep) is (4R�1)(K=B)+2PRi=1 ni because,for each rank i, ni + 2(K=B) blocks are to be read into internal memory and all blocks except theK=B blocks holding the smallest elements should be written back to external memory. The numberof comparisons for rank i is O((K + Bni) log2 ni). The additional call to MergeStep requires atmostK=B+ni additional block reads and block writes, and O((K+Bni) log2 ni) comparisons. Themaximum number of elements to be stored in internal memory for the batched minimum deletionsis 2K + Bmaxfnmax; nmaxg, where nmax = maxfn1; : : : ; nRg and nmax = maxfn1; : : : ; nRg.Lemma 3 The K smallest elements can be deleted from the external part of the data structureby performing at most 4R(K=B) + 2PRi=1 ni + nmax I/Os and O(PRi=1(K + niB) log2 ni + (K +Bnmax) log2 nmax) comparisons. At most 2K + Bmaxfnmax; nmaxg elements need to be stored ininternal memory.3.5 Bounding the maximum rankWe now describe a simple approach to guarantee that the maximum rank R of the external datastructure is bounded by logmN=K+ 2. Whenever insertions cause the maximum rank to increase,this is because of MergeStep(R� 1) has �nished an incremental merge resulting a list of lengthKmR�1, which implies that R � logm NK +1. The problem we have to consider is how to decrementR when deletions are performed.Our solution is the following. WheneverMergeStep(R) �nishes the incremental merge of listswith rank R, we check if the resulting list LR is very small. If LR is very small, i. e., jLRj < KmR�1,and there are no other list of rank R, we make LR a list with rank R � 1 and decrease R. Themodi�cations to the MergeStep procedure are shown in Fig. 5.procedure MergeStep(i)if i � 2 and i = R and nR = 0 and nR = 0 and jLRj < KmR�1 thennR�1  nR�1 + 1; LnR�1i  LR; R R� 1; i R�the code for MergeStep from Fig. 3endFigure 5: The modi�cations to the MergeStep procedure to handle deletions.To guarantee that the same is done also in the connection with batched minimum deletions,we always call after each BatchDeleteMinK operation, described in Sect. 3.4, MergeStep(R)k times (for m � 4 it turns out that k = 1 is su�cient).Assume that at some point the number of elements is N 0 = KmR�1 and that the followingsequence of Insert and DeleteMin operations keeps N < N 0, i. e., it is guaranteed that no callto MergeStep(R � 1) creates a new list with rank R. In the following we give a bound on thenumber of deletions that can be performed before the maximum rank is guaranteed to decrease.Note that for every deletion of K elements from the external part the length of LR is increasedby kK, implying that after at most N 0=(k + 1) batched deletions nR = 0. If nR > 0, anotherincremental merge is required for rank R. Because we assume N < KmR�1, it follows that nR = 011



when the second incremental merge �nishes. Therefore, we conclude that at mostN 0� 1k + 1 + kk + 1 � 1k + 1� = N 0 2k + 1(k + 1)2 (11)deletions can be performed before R is guaranteed to decrease.Ifm = 2, then at least N 0=2 (in general N 0=m) elements have to be present when R is decreased.From equation (11) it follows that this is guaranteed if k � 3. Form = 3 it is su�cient if k = 2, andform � 4 it is only required that k � 1. We conclude that when R decreases, N � N 0=m = KmR�2,and we get R � logm NK + 2.3.6 The merging degreeIn the previous discussion we assumed that ni and ni where su�ciently small, such that we couldapplyMergeStep to the Lji and Lji lists. Let m0 denote a maximum bound on the merging degree.The Lji lists can be created in three di�erent ways:1. when MergeStep(i� 1) makes Li�1 an Lji list,2. when the resulting Li list is made an Lji list, and3. when the resulting Li+1 list is made an Lji list because the maximum rank decreases fromi+ 1 to i.At most one Lji can be created because of 2, and at most one because of 3.From invariant (6) or (8) it follows that at most 2Kmi+1�mm�1 insertions can be done before anew incremental merge of lists with rank i is initiated. Actually, if an incremental merge of listsof rank i � 2 is initiated, then from (8) it follows that at most 2Kmi+1�mm�1 � jLi�1j insertions canfollow before a new incremental merge is initiated. Because jLi�1j only increases when performinginsertions, and because Li�1 is promoted to an Lji list only when its length is at least Kmi�1, itfollows that the number of lists created due to 1 is at most j2Kmi+1�mm�1 =(Kmi�1)k, and it followsm0 � 2 + $2K mi+1 �m(m� 1)(Kmi�1)% � 5 + 2m; for m 2 f2; 3; 4; : : :g :3.7 Resource bounds for the external partBecausem = K=B it follows that the maximum rank is at most logK=B NK+2 and that the maximummerging degree is 5 + 2K=B. From Lemmas 2 and 3 it follows that the number of I/Os requiredfor inserting K elements or deleting the K smallest elements is at most O(KB logK=B NK ) and thenumber of comparisons required is O(K log2 NK ). The maximal number of elements to be stored ininternal memory is 4K + 5B.4 Internal bu�ers and incremental batch operationsWe now describe how to combine the bu�ers NEW andMIN represented by binary search trees withthe external part of the priority-queue data structure. We maintain the invariant that jMINj � 1,provided that the priority queue is nonempty. Recall that we also required that jMINj � 3K andjNEWj � 2K. 12



We �rst consider Insert(x). If x is less than or equal to the maximum of MIN or all elementsof the priority queue are stored in MIN, we insert x into MIN with O(log2K) comparisons. IfMIN exceeds its maximum allowed size, jMINj = 3K+ 1, we move the maximum of MIN to NEW.Otherwise, x is larger than the maximum of MIN and we insert x into NEW with O(log2K)comparisons. The implementation of DeleteMin deletes and returns the minimum of MIN. Bothoperations require at most O(log2K) comparisons.There are two problems with the above implementation of Insert and DeleteMin. Insertionscan cause NEW to become too big and deletions can make MIN empty. We therefore for everyKth priority-queue operation perform one batch insertion or deletion. If jNEWj � K, we removeK elements from NEW one by one and perform BatchInsertK on the removed elements. IfjNEWj < K and jMINj � 2K, we instead increase the size of MIN by moving K small elementsto MIN as follows. First, we perform a BatchDeleteMinK operation to extract the K leastelements from the external part of the data structure. The K extracted elements are inserted intoNEW one by one, using O(K log2K) comparisons. Second, we move the K smallest elements ofNEW to MIN one by one. If jNEWj < K and jMINj > 2K, we do nothing but delay the batchoperation until jMINj = 2K or jNEWj = K. Each batch operation requires at most O(KB logK=B NK )I/Os and at most O(K(log2 NK + log2K)) = O(K log2N) comparisons.By doing one of the above described batch operations for every Kth priority-queue operationit is straightforward to verify thatjNEWj+ (3K � jMINj) � 2K;provided that the priority queue contains at least K elements, implying jNEWj � 2K and jMINj �K, because each batch operation decreases the left-hand side of the equation by K.The idea is now to perform a batch operation incrementally over the next K priority-queueoperations. Let N denote the number of elements in the priority queue, when the correspondingbatch operation is initiated. Notice that N can at most be halved while performing a batchoperation, because N � 2K prior to the batch operation. Because jMINj � K when a batchoperation is initiated, it is guaranteed that MIN is nonempty while incrementally performing thebatch operation over the next K priority-queue operations.Because a batch operation requires at most O(KB logK=B NK ) I/Os and at most O(K log2N)comparisons, it is su�cient to perform at most O(log2N) comparisons of the incremental batchoperation per priority-queue operation and if B � c logM=B NM , one I/O for every B=(c logM=B NM )thpriority-queue operation and if B < c logM=B NM , cB logM=B NM I/Os for every priority-queue oper-ation, for some positive constant c, to guarantee that the incremental batch operation is �nishedafter K priority-queue operations.Because jMIN j � 3K, jNEW j � 2K, and a batched operation at most requires 4K + 5Belements to be stored in internal memory, we have the constraint that 9K + 5B � M . Let nowK = b(M � 5B)=9c. Recall that we assumed that M � 23B. Therefore, K � 2B. Since M > K,O(logM=B NM ) = O(logK=B NM ). Hence, we have proved the main result of this paper.Main theorem There exists an external-memory priority-queue implementation that supportsInsert and DeleteMin operations with worst-case O(log2N) comparisons per operation. If B �c logM=B NM , one I/O is necessary for every B=(c logM=B NM )th operation and if B < c logM=B NM ,cB logM=B NM I/Os are performed per every operation, for some positive constant c.13
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