Worst-Case Efficient External-Memory Priority Queues

Gerth Stglting Brodal* Jyrki Katajainen'
Max-Planck-Tnstitut fiur Informatik University of Copenhagen
Im Stadtwald Universitetsparken 1
D-66123 Saarbriicken, Germany DK-2100 Copenhagen Fast, Denmark
E-mail: brodal@mpi-sb.mpg.de E-mail: jyrki@diku.dk

October 2, 1997

Abstract

A priority queue @) is a data structure that maintains a collection of elements, each ele-
ment having an associated priority drawn from a totally ordered universe, under the operations
INSERT, which inserts an element into @, and DELETEMIN, which deletes an element with the
minimum priority from . Tn this paper a priority-queue implementation is given which is ef-
ficient with respect to the number of block transfers or T/Os performed between the internal
and external memories of a computer. Let B and M denote the respective capacity of a block
and the internal memory measured in elements. The developed data structure handles any
intermixed sequence of INSERT and DELETEMIN operations such that in every disjoint interval
of B consecutive priority-queue operations at most clogy, 5 % 1/0s are performed, for some

positive constant ¢. These 1/0s are divided evenly among the operations: if B > clogyp %,

one 1/0 is necessary for every B/(clogM/R %)th operation and if B < clogy;, 5 %, 7 logy %
1/0s are performed per every operation. Moreover, every operation requires O(log, N) compar-
isons in the worst case. The best earlier solutions can only handle a sequence of § operations

with ()(2;11 1ﬁlog,v,/,g i) T/0s, where N; denotes the number of elements stored in the data

structure prior to the ith operation, without giving any guarantee for the performance of the
individual operations.

1 Introduction

A priority queue is a data structure that stores a set of elements, each element consisting of some
information and a priority drawn from some totally ordered universe. A priority queue supports
the operations:

INSERT(2:): Insert a new element x with an arbitrary priority into the data structure.

DELETEMIN(): Delete and return an element with the minimum priority from the data structure.
In the case of ties, these are broken arbitrarily. The precondition is that the priority queue
is not empty.

*Supported by the Carlsberg foundation under grant No. 96-0302/20. Partially supported by the ESPRIT T.ong
Term Research Program of the EU under contract No. 20244 (project ALCOM-TT).

tSupported partially by the Danish Natural Science Research Council under contract No. 9400952 (project Com-
putational Algorithmics).

]

Registers

External
memory

External
memory

Figure 1: The model of computation

Priority queues have numerous applications, a few listed by Sedgewick [28] are: sorting algorithms,
network optimization algorithms, discrete event simulations and job scheduling in computer sys-
tems. For the sake of simplicity, we will not hereafter make any distinction between the elements
and their priority.

In this paper we study the problem of maintaining a priority queue on a computer with a two-
level memory: a fast internal memory and a slow ezternal memory (see Fig. 1). We assume that
the computer has a processing unit, the processor or CPU, and a collection of hardware, the I/0
subsystem, which is responsible for transferring data between internal and external memory. The
processor together with the internal memory can be seen as a traditional random access machine
(RAM) (see, e.g., [3]). In particular, note that the processor can only access data stored in internal
memory. The capacity of the internal memory is assumed to be bounded so it might be necessary
to store part of the data in external memory. The I/O subsystem takes care of transferring the
data between the two memory levels, and this is done in blocks of a fixed size.

The behavior of algorithms on such a computer system can be characterized by two quantities:
processor performance and I/0 performance. By the processor performance we mean the number
of primitive operations performed by the processor. Qur measure of processor performance is the
number of element comparisons carried out. It is straightforward to verify that the total number
of other (logical, arithmetical, etc.) operations required by our algorithms is proportional to that
of comparisons. Assuming that the elements occupy only a constant number of computer words,
the total number of primitive operations is asymptotically the same as that of comparisons. OQur
measure of 1I/O performance is the number of block transfers or I/0s performed, i. e., the number
of blocks read from the external memory plus the number of blocks written to the external memory
by the T/O subsystem. Our main goal is to analyze the total work carried out by the processor and
the I/O subsystem during the execution of the algorithms.

The system performance, 1. e., the total elapsed execution time when the algorithms are run on
a real computer, depends heavily on the realization of the computer. A real computer may have

multiple processors (see, e.g., [18]) and/or the I/O subsystem can transfer data between several
disks at the same time (cf. [2, 25, 30]), the processor operations (see, e.g., [27]) and/or the 1/0s
(cf. [19]) might be pipelined, but the effect of these factors is not considered here. It has been
observed that in many large-scale computations the increasing bottleneck of the computation is the
performance of the I/O subsystem (see, e.g., [15, 26]), increasing the importance of I/O efficient
algorithms.

When expressing the performance of the priority-queue operations, we use the following par-
ameters:

B: the number of elements per block,
M: the number of elements fitting in internal memory, and

N: the number of elements currently stored in the priority queune; more specifically, the number of
elements stored in the structure just prior to the execution of INSERT or DELETEMIN.

We assume that each block and the internal memory also fit some pointers in addition to the
elements, and B > 1 and M > 23B. Furthermore, we use log,n as a shorthand notation for
max(1,lnn/Ina), where In denotes the natural logarithm.

Several priority-queue schemes, such as implicit heaps [33], leftist heaps [12, 20], and binomial
queues [9, 31] have been shown to permit both INSERT and DELETEMIN with worst-case O(logy N')
comparisons. Some schemes, such as implicit binomial queues [10] guarantee worst-case O(1)
comparisons for INSERT and O(log, N) comparisons for DELETEMIN. Also any kind of balanced
search trees, such as AVL trees [1] or red-black trees [16] could be used as priority queues. However,
due to the usage of explicit or implicit pointers the performance of these structures deteriorates
on a two-level memory system. It has been observed by several researchers that a d-ary heap
performs better than the normal binary heap on multi-level memory systems (see, e. g., [22, 24]).
For instance, a B-ary heap reduces the number of I/Os from O(log, %) (cf. [4]) to O(logg %) per
operation [24]. Of course, a B-tree [8, 11] could also be used as a priority queue, with which a
similar /O performance is achieved. However, in a virtual-memory environment a B-ary heap
seems to be better than a B-tree [24].

When a priority queue is maintained in a two-level memory, it is advantageous to keep the small
elements in internal memory and the large elements in external memory. Hence, due to insertions
large elements are to be moved from internal memory to external memory and due to deletions
small elements are to be moved from external memory to internal memory. Assuming that we
maintain two buffers of B elements in internal memory, one for INSERTs and one for DELETEMINS,
at most every Bth INSERT and DrLETEMIN will cause a buffer overflow or underflow. Several
data structures take advantage of this kind of buffering. Fishspear, developed by Fischer and
Paterson [14], can be implemented by a constant number of push-down stacks, implying that any
sequence of S INSERT and DELETEMIN operations requires at most ()(Zf:] % log, N;) 1/0s, where
N, denotes the size of the data structure prior to the ith operation. Wegner and Teuhola [32]
realized that a B-ary heap, in which each node stores B elements, guarantees worst-case O (log, %)
I/0s for every Bth INSERT and every Bth DELETEMIN operation.

The above structures assume that the internal memory can only fit O(B) elements, i.e., a
constant number of blocks. Even faster solutions are possible if the whole capacity of the internal
memory is utilized. Arge [5, 6] introduced an (a,b)-tree structure that can be used to carry out any
sequence of S INSERT and DELETEMIN operations with ()(% logas/m %) I/Os. Fadel et al. [13] gave
a heap structure with a similar /O performance but their bound depends on the size profile, not

on S. Their heap structure can handle any sequence of S operations with ()(2;11 %logM/B %)

I/0s, where N; denotes the size of the data structure prior to the ith operation. The number of
comparisons required when handling the sequence is ()(2;11 log, N;). When this data structure is
used for sorting N elements, both the processor and 1/0O performance match the well-known lower
bounds Q(% logas/m %) I/0s [2] and Q(N log, N) comparisons (see, e. g., [20]), which are valid for
all comparison-based algorithms.

To achieve the above bounds as well as our bounds the following facilities must be provided:

1. we should know the capacity of a block and the internal memory beforehand,
2. we must be able to align elements into blocks, and

3. we must have a full control over the replacement of the blocks in internal memory.

There are operating systems that provide support for these facilities (see, e.g., [17, 21, 23]).

The tree structure of Arge and the heap structure of Fadel et al. do not give any guarantees
for the performance of individual operations. In fact, one INSERT or DELETEMIN can be extremely
expensive, the cost of handling the whole sequence being an upper bound. Therefore, it is risky
to use these structures in on-line applications. For large-scale real-time discrete event simulations
and job scheduling in computer systems it is often important to have a guaranteed worst-case
performance.

We describe a new data structure that gives worst-case guarantees for the cost of individual
operations. Basically, our data structure is a collection of sorted lists that are incrementally merged.
This idea is borrowed from a RAM priority-queue structure of Thorup [29]. Thorup used two-way
merging in his internal data structure but we use multi-way merging since it behaves better in
an external-memory environment. As to the processor and 1/O performance, our data structure
handles any intermixed sequence of operations as efficiently as the heap structure by Fadel et al. [13].
In every disjoint interval of B consecutive priority-queue operations our data structure requires at
most clogyr/ g % I/0s, for some positive constant c¢. These I/Os are divided evenly among the

operations. If B > clogy;/p %, one I/0 is necessary for every B/(clogy,/p %)th priority-queue

operation, and if B < clogy;/p %, 5 logn/n %, I/0s are performed per every priority-queue
operation. Moreover, every operation requires O(log, N) comparisons in the worst case.

The outline of the remaining of the paper is as follows. In Sect. 2 the basic data structure is
described. In Sect. 3 algorithms are developed for performing batch insertions and deletions on the
external-memory part of the data structure. In Sect. 4 we combine internal-memory buffers with
incrementally performed batch operations to achieve the claimed performance bounds. Finally, in
Sect. b some concluding remarks are given.

2 Basic data structure

The basic component of our priority-queue data structure is a collection of sorted lists. When new
elements arrive, these are added to a list which is kept in internal memory and sorted incrementally.
If the capacity of internal memory is exceeded due to insertions, a fraction of the list containing
the recently inserted elements is transferred to external memory. To bound the number of lists in
external memory we merge the existing lists. This merging is related to the merging done by the
external mergesort algorithm [2]. One particular list that is kept in internal memory contains the
smallest elements. If this list is exhausted due to deletions, new smallest elements are extracted
from the lists in external memory. Because we are interested in worst-case bounds the merging is
accomplished incrementally. A similar idea has been applied by Thorup [29] to construct RAM
priority queues but instead of two-way merging we rely on multi-way merging.

Internal part

Work area
MIN NEW

< 3K < 2K <AK + 5B

External part

Lists of rank ¢

Figure 2: The data structure

Before giving the details of the data structure, let us recall the basic idea of external mergesort
which sorts N elements with O(% logas/m &) 1/Os [2]. First, the given N elements are partitioned
into O(N/M) lists each of length ©(M). Second, each of the lists are read into internal memory
and sorted, requiring O(N/B) 1/0s in total. Third, ©(M/B) sorted lists of shortest length are
repeatedly merged until only one sorted list remains containing all the elements. Since each element
takes part in O(logys/p %) merges, the total number of 1/0s is ()(%logM/B %)

Our data structure consists of two parts: an internal part and an external part (see Fig. 2). The
data structure takes two parameters K and m, where K is a multiple of B, 9K 4+ 5B < M, and
m = K/B. The internal part of the data structure stores O(K) elements and is kept all the time
in internal memory. The external part is a priority queue which permits the operations:

BATCHINSERT i (X): Insert asorted list X of K elements into the external-memory data structure.

BATCHDELETEMIN (): Delete the K smallest elements from the external-memory data structure.

Both of these operations require at most ()(%logm %) I/0s and O(K log, %) comparisons in the
worst, case. For every Kth operation on the internal part we do at most one batch operation
involving K elements on the external part of the data structure.

The internal part of the data structure consists of two sorted lists MIN and NEW of length at
most 3K and 2K, respectively. We represent both MIN and NEW as a balanced search tree that
permits insertions and deletions of elements with O(log, K') comparisons. The role of MIN is to
store the current at most 3K smallest elements in the priority queue whereas the intuitive role of
NEW is to store the at most 2K recently inserted elements. All elements in MIN are smaller than
the elements in NEW and the elements in the external part of the data structure, 1. e., the overall
minimum element is the minimum of MIN.

The external part of the data structure consists of sorted lists of elements. Each of these lists
has a rank, which is a positive integer, and we let R denote the mazimum rank. In Sect. 3.5 we
show how to guarantee that R < log,, % + 2. The lists with rank 4,7 € {1,..., R}, are

L L2 o TN I T

) PRt I Rt S

and ;.
For each rank 7, the lists f: - ,f,ﬁ' are being merged incrementally and the result of this merge
is to be appended to the list L;. The list L, contains the already merged part of f:; oo LAl

the elements in L; are smaller than those in f:; ..., L. When the incremental merge of lists with
rank 7 finishes, the list I; is promoted to a list with rank i+ 1, provided that L, is sufficiently long,
and a new incremental merge of lists with rank 7 is initiated by making L!,..., L the new fz
lists.

We guarantee that the length of each of the external lists is a multiple of B. An external list
L containing |L| elements is represented by a single linked list of |L|/B blocks, each block storing
B elements plus a pointer to the next block, except for the last block which stores a null pointer.
There is one exception to this representation. The last block of L; does not store a null pointer,

but a pointer to the first block of f} (if m; = 0, the last block of L; stores a null pointer). This
allows us to avoid updating the last block of L; when merging the lists f:; s L

1

In the following, we assume that pointers to all the external lists are kept in internal memory
together with their sizes and ranks. If this is not possible, it is sufficient to store this information
in a single linked list in external memory. This increases the number of 1/0s required by our
algorithms only by a small constant.

In Sect. 3 we describe how BATCHINSERTx and BATCHDELETEMINg operations are accom-
plished on the external part of the data structure, and in Sect. 4 we describe how the external
part can be combined with the internal part of the data structure to achieve a worst-case efficient

implementation of INSERT and DELETEMIN operations.

3 Maintenance of the external part

3.1 Invariants

We start by presenting the invariants maintained by the BATCHINSERT - and BATCHDRLETEMIN
operations on the external part of the data structure. Recall that the lists with rank 7, 7 €
{1,...,R},are L, ..., LY L; and f}, ..., L. As earlier, we let |L| denote the number of elements
in list L.

The aim of invariants (1) and (2) is to guarantee that the utilization of the external memory is
maximized, 1. e., all the blocks in external memory are full of elements.

z |LZ|7 Z |f,7|7 and |L;| are multiples of K (and B), for alli € {1,...,R} . (1)
7=1 7=1

|L17| and |f17| are multiples of B, for all 7 and 7 . (2)

Invariants (3) and (4) are to avoid considering empty lists.
|LZ| >0 and |f,7| >0, foralliandj. (3)

> 0= |L;| > K, forallie{l,...,R}. (4)

The remaining invariants capture the progress of the incremental merge of lists with rank s.
We have two invariants especially for rank 1. The total length of the lists L] is by invariant (5)
bounded by the length of the list merged already. Invariant (6) bounds the total length of lists
with rank 1 that are still to be merged.

nq] _
ML =[] <0. (5)
g=1
n . I .
Yo+ Y IT <2Km - K . ©)
J=1 J=1
For rank i € {2,..., R}, we have similar invariants. Because L; ; can be promoted to a new LZ

list before the next incremental merge of lists with rank ¢ is initiated, we “include” |L; 1] in the
ni i
sum >0, | L7

(Tl + SOIE]) — 1Tl < 21{%, forall i € {2,..., R} . (7)
j=1 o
n;) n; . /17+1 . m
Ti 4|+ i) + <o~ forallie{2,....R). 8
L Ll Ll < 2F -
3 ' 3 m —
7=1 7=1

The last invariant bounds the length of the result of each incremental merge.

. n; ;i mt _om .

|L,;|+;|L;|<2Kﬁ, forallie {1,...,R}. (9)
3.2 The MERGEK procedure
The heart of our construction is the incremental merge procedure MERGE i (X1, X3, ..., X/), which
merges and removes the K smallest elements from the sorted lists Xy, ..., X,. All list lengths are

assumed to be multiples of B. After the merging of the K smallest elements we rearrange the
remaining elements in the X; lists such that the lists still have lengths which are multiples of B.
We allow MERGE) to make the X lists shorter or longer. We just require that the resulting X
lists remain sorted. For the time being, we assume that the result of MERGE) is stored in internal
memory.

The procedure MERGE K is implemented as follows. For each list X; we keep the block containing
the current minimum of X; in internal memory. In internal memory we maintain a heap [33] over
the current minima of all the lists. We use the heap to find the next element to be output in the
merging process. Whenever an element is output, it is the current minimum of some list X;. We
remove the element from the heap and the list X, and insert the new minimum of X; into the heap,
provided that X, has not become empty. If necessary, we read the next block of X; into internal
memory.

After the merging phase, we have from each list X; a partially filled block B; in internal memory.
Let | B;| denote the number of elements left in block B;. Because we have merged K elements from
the blocks read and K is a multiple of B, Y2¢_, |B;| is also a multiple of B. Now we merge
the remaining elements in the B; blocks in internal memory. This merge requires O(/Blog, ()
comparisons. Let X denote the resulting list and let B; be the block that contained the maximum

element of X. Finally, we write X to external memory such that X; becomes the list consisting
of X concatenated with the part of X, that already was stored in external memory. Note that X
remains sorted.

In total, MERGEk performs at most K/B + ¢ I/Os for reading the prefixes of X, ..., X, (for
each list X;, we read at most one block of elements that do not take part in the merging) and at
most £ 1/Os for writing X to external memory. The number of comparisons required for MERGE
for each of the K 4 (B elements read into internal memory is O(log, ¢). Hence, we have proved

Lemma 1 MERGEg (X1,..., X,) performs at most 20 + K/B I/0Os and O((K 4 (B)log, () com-
parisons. The number of elements to be kept in internal memory by MERGEx 1s at most K + (B.
If the resulting list is written to external memory incrementally, only ((4+ 1)B elements have to be
kept in internal memory simultaneously.

3.3 Batch insertions

To insert a sorted list of K elements into the external part of the data structure we increment

ny and let LY contain the K new elements. To reestablish the invariants we apply the procedure
MRRGESTEP (i), for each 7 € {1,..., R}.
The procedure MERGESTEP (i) doeq the following. If m; = 0, the 1ncremen‘ral merge of lists with

rank i is finished, and we make L; the list LH'_T + , provided that |L;| > Km'. Otherwise, we let L;

be the list Lm'1 because ‘rhe list is too short to be promoted. Finally, we initiate a new incremental

merge by making the lists L;,..., L the new f’j lists. If @; > 0, we concatenate L; with the result
of MERGEf (L:;7 .. ,f:]'), 1. e., we perform K steps of the incremental merge of L Li'i. Note

that, by writing the first block of the merged list to the block of external memory tha,t stored the
first block of f} earlier, we do not need to update the pointer in the previous last block of L,.
Pseudo code for the BATCHINSERT K and the MERGESTEP procedures is given in Fig. 3.

We now argue that this implementation of batch insertions reestablishes the invariants. That
invariants (1) (4) remain satisfied is straightforward to verify. For invariants (5) (9) we give an
inductive argument in ¢ that the invariants become reestablished. 4

For the lists of rank one there are two cases to consider. If 271:1 |L}| > K, MERGESTREP (1)
increases |L1| by K and decreases 271:1 |L7| by K. Because the list containing the K new elements
increases 7L, |L17| by K, it follows that MERGESTEP(1) in this case reestablishes the invariants
(5) and (6). Otherwise 271:1 |L7| = 0 and after performing MERGESTEP (1) invariant (5) is satisfied
because Z;”:] |L17| = 0. There are now two subcases depending on if L; is made a list with rank
1 or 2. If Ly is promoted, the merging part of MERGESTEP (1) decreases the left-hand side of (6)
by K and reestablishes (6). On the other hand, if L; is not promoted, then Ly < Km — K and by
(5) we have that before inserting the K new elements Y3"', [L{] < Km — K. We conclude that (6)
is satisfied after the execution of MERGESTEP(1). Becauqe the left-hand side of (9) only changes
when a new incremental merge is initialized and (6) is satisfied prior to the insertion, it follows
that invariant (9) is satisfied for rank 1 after the execution of MERGESTEP(1).

For rank 7 € {2,..., R}, MERGESTEP(i — 1) increases the left-hand side of (7) and (8) by
at most K. If Z"’1 |L | > K, MERGESTEP(i) decreases Z J|L! by K and (7) and (8) are
reeq‘rabhqhed The left-hand §1d9 of (9) does not change a,nd () remains satisfied. Otherwise

J|T! = 0. Because Py |L1,| = 0 after the execution of MERGESTEP (i) and (9) is satisfied for
rank v — 1, it follows that, 1nvaria,nt (7) is satisfied for rank 7. To see that (8) is satisfied we consider
two subcases depending on whether L; is promoted or not. If L, is promoted, the merging part of

procedure MERGESTEP (7)
if m, = 0 and |L;| > 0 then
if |I;| > Km’ then
iyl < N1 + 17 L:I_;_T — f,j, f,j — @
else
n; +—n; +1, L:“ — f,j, f,j — 0
fi
fi
if m;, =0 and n;, > () then
Wi niy (Lyy oo D) = (LY, L), ny 0
fi
if m; > 0 then

T, « L; - Meraeg (L), ..., T

i
remove empty fz lists
fi

end

procedure BATCHINSERT i (X))

ny—n + 1,07 « X

for i + 1 to R do MRRGESTEP (i) od
end

Figure 3: The MERGESTEP procedure and the insertion of K elements into the external part.

MERGESTEP (i) decreases the left-hand side of (8) by K and (8) is reestablished, provided that the
left-hand side of (8) is different from |L; {|. Otherwise (8) is satisfied due to (9) for rank i — 1. If
L; is not promoted, then |L;| < Km’ — K and by (7) the left-hand side of (8) is bounded by

m' —m m't —

+o(Kmi — Ky <ok —— T
m—1

K+ 2K (10)

m—1
To see that (9) is reestablished note that the left-hand side of (9) for rank ¢ only changes when
MERGESTEP (7) has finished its merge and makes L; a list with rank i or i + 1. If L; keeps its rank,
then the left-hand side of (9) is similarly to (8) bounded by (10). If L, is promoted, then (9) follows
from (8), because if MERGESTEP (i — 1) temporary makes (8) violated for rank 7 by increasing the
left-hand side by K, it is the case that |L; || > K. We conclude (9) is reestablished.

The total number of I/Os performed in a batched insertion of K elements is K /B for writing
the K new elements to external memory and by Lemma 1 at most 2(m; + K/B) for incrementally
merging the lists with rank 7. The number of comparisons for rank i is O((%;B + K) log, ;). The
maximum number of elements to be stored in internal memory for batched insertions is (Tymax+1) B,
where Timax = max{7y,...,ig}. To summarize, we have

Lemma 2 A sorted list of K elements can be inserted into the external part of the data structure
by performing (14+2R)K/B+2 SR 7w I/Os and ()(ZR (7; B+ K) log, ;) comparisons. At most

i=1
(Trmax + 1) B elements need to be stored in internal memory.

3.4 Batch deletions

The removal of the K smallest elements from the external part of the data structure is carried out
in two steps. In the first step the K smallest elements are located without affecting the invariants.
In the second step the actual deletion is accomplished followed by some processing to reestablish
the invariants.

Let £ be one of the lists L} or L;, for some i, or an empty list. We will guarantee that the
list £ contains the K smallest elements of the lists considered so far. Initially £ is empty. Note
that by invariant (4) we do not have to consider lists L] when finding the minimum elements.
By performing L! < MERGREx(L},..., L") - L] no invariant changes its truth value and L} now
contains the K smallest elements of L!, ..., L7, The procedure SPLITMERGR takes two sorted
lists as its arguments and returns (the name of) one of the lists. If the first argument is an empty
list, then the second list is returned. Otherwise, we require that the length of both lists to be
at least K and we rearrange the K smallest elements of both lists as follows. The two prefixes
of length K are merged and split among the two lists such that the lists remain sorted and the
length of the lists remain unchanged. One of the lists will now have a prefix containing K elements
which are smaller than all the elements in the other list. The list with this prefix is returned.
For each rank i € {1,...R}, we now carry out the assignments L! + MERGEx(L},..., L) - L},
L + SPUITMERGEK (L, L)), and £ + SPLITMERGEK (L, L;).

It is straightforward to verify that after performing the above, the prefix of the list £ contains the
K smallest elements in the external part of the data structure and that the invariants are satisfied.

We now delete the K smallest elements from list £. If £ is L], it follows that P |LZ| has been
decreased by K, and the invariants remain satisfied. Otherwise, £ is L; and |L;| has been decreased
by K. The only invariant that can become violated is (7) if 7 > 2 or (5) if # = 1. By performing
MERGESTEP (7) the invariants will become reestablished. There are two cases to consider depending
on Z?Q |L!|. Tf the sum is nonzero, the MERGESTEP operation will increase |I;| by |K| and the
invariants again become reestablished. If the sum is zero, the argument follows as for insertions.

Fig. 4 gives pseudo code for the deletion of the K smallest elements. The procedure PoP g removes
and returns the first K elements of a list.

procedure BATCHDELETEMIN i ()
L+
for i < 1to R do
if n; > 0 then
L} « MerGRg (L, ..., L) - L]

20

remove empty L! lists
L + SPLITMERGEK (L, L))
fi
if |L;| > 0 then £ + SpruiTMerGEx (L, L;) fi
od
X « Poprg(L)
if £ = L; then MrrGRESTEP (1) fi
return X
end

Figure 4: The deletion of K smallest elements from the external part.

10

By always keeping the prefix of £ in internal memory the total number of 1/0s for the deletion
of the K smallest elements (without the call to MERGESTEP) is (4R —1)(K/B)+2 Zf; n; because,
for each rank i, n; + 2(K/B) blocks are to be read into internal memory and all blocks except the
K /B blocks holding the smallest elements should be written back to external memory. The number
of comparisons for rank 7 is O((K + Bn;)log, n,;). The additional call to MERGESTEP requires at
most K/B+m,; additional block reads and block writes, and O((K + B7;) log, ;) comparisons. The
maximum number of elements to be stored in internal memory for the batched minimum deletions
is 2K + B max{nmax, Tmax }» Where nyax = max{ny,...,nr} and T = max{ny,..., TR}

Lemma 8 The K smallest elements can be deleted from the external part of the data structure
by performing at most 4R(K/B) + 2P n; 4+ Timax I/Os and O(XF, (K + n;B)log, n; + (K +
BTimax) 1085 Timax) comparisons. At most 2K + B max{nmax, Tmax} €lements need to be stored in
internal memory.

3.5 Bounding the maximum rank

We now describe a simple approach to guarantee that the maximum rank R of the external data
structure is bounded by log,, N/K + 2. Whenever insertions cause the maximum rank to increase,
this is because of MERGESTEP (R — 1) has finished an incremental merge resulting a list of length
Km"?=1 which implies that R < log, %—I— 1. The problem we have to consider is how to decrement
R when deletions are performed.

Our solution is the following. Whenever MERGESTEP (R) finishes the incremental merge of lists
with rank R, we check if the resulting list Lp is very small. If Lp is very small, i. e., [Lr| < KmP~1,
and there are no other list of rank R, we make Lp a list with rank R — 1 and decrease R. The
modifications to the MERGESTEP procedure are shown in Fig. 5.

procedure MERGESTEP (7)
ifi>2and i =R and ngp =0 and ip = 0 and |Lp| < Km"™ ' then
np_1 +—np_1 + 1, L?'Ri1 — ER, R—R-1,i+ R
fi
the code for MERGESTEP from Fig. 3
end

Figure 5: The modifications to the MERGESTEP procedure to handle deletions.

To guarantee that the same is done also in the connection with batched minimum deletions,
we always call after each BATCHDELETEMINi operation, described in Sect. 3.4, MERGESTEP (R)
k times (for m > 4 it turns out that & = 1 is sufficient).

Assume that at some point the number of elements is N/ = Km®~" and that the following
sequence of INSERT and DRELETEMIN operations keeps N < N’, i.e., it is guaranteed that no call
to MERGESTEP(R — 1) creates a new list with rank R. In the following we give a bound on the
number of deletions that can be performed before the maximum rank is guaranteed to decrease.

Note that for every deletion of K elements from the external part the length of Lp is increased
by kK, implying that after at most N’/(k + 1) batched deletions mr = 0. If ngp > 0, another
incremental merge is required for rank R. Because we assume N < Km”~' it follows that np = 0

11

when the second incremental merge finishes. Therefore, we conclude that at most

,< 1 N k 1 >_N,2k+1
E+1 k4+1 k4+1) 7 (k41)2

(11)

deletions can be performed before R is guaranteed to decrease.

If m = 2, then at least N'/2 (in general N'/m) elements have to be present when R is decreased.
From equation (11) it follows that this is guaranteed if k¥ > 3. For m = 3 it is sufficient if & = 2, and
for m > 4it is only required that k > 1. We conclude that when R decreases, N > N'/m = Km?2,
and we get R <log,, % + 2.

3.6 The merging degree

In the previous discussion we assumed that n; and m; where sufficiently small, such that we could
apply MERGESTEP to the L and L] lists. Let m/ denote a maximum bound on the merging degree.

The LZ lists can be created in three different ways:

1. when MERGRSTEP (i — 1) makes L, ¢ an LZ list,
2. when the resulting L; list is made an LZ list, and

3. when the resulting L,y list is made an LZ list because the maximum rank decreases from
1+ 1 tos.

At most one L! can be created because of 2, and at most one because of 3.

From invariant (6) or (8) it follows that at most QKW insertions can be done before a

new incremental merge of lists with rank 7 is initiated. ACtila,lly, if an incremental merge of lists
. .. . i
of rank ¢ > 2 is initiated, then from (8) it follows that at most 2K %

7% — |L;_1]| insertions can
follow before a new incremental merge is initiated. Because |L; 1| only increases when performing
insertions, and because L; i is promoted to an L! list only when its length is at least Km'™', it

follows that the number of lists created due to 1 is at most PK%/(KW%F])J, and it follows

mt —m

/) <24 [2K :
K R T rom ey

J <542m, forme€{2,3,4,...}.

3.7 Resource bounds for the external part

Because m = K /B it follows that the maximum rank is at most logy/5 %—I—Q and that the maximum
merging degree is 5 + 2K /B. From Lemmas 2 and 3 it follows that the number of 1/Os required
for inserting K elements or deleting the K smallest elements is at most ()(%logk»/ﬁ %) and the
number of comparisons required is O (K log, %) The maximal number of elements to be stored in
internal memory is 4K + 5B.

4 Internal buffers and incremental batch operations

We now describe how to combine the buffers NEW and MIN represented by binary search trees with
the external part of the priority-queue data structure. We maintain the invariant that |[MIN] > 1,
provided that the priority queue is nonempty. Recall that we also required that |[MIN] < 3K and
INEW] < 2K.

12

We first consider INSERT(2). If 2 is less than or equal to the maximum of MIN or all elements
of the priority queue are stored in MIN, we insert z into MIN with O(log, K) comparisons. If
MIN exceeds its maximum allowed size, | MIN] = 3K + 1, we move the maximum of MIN to NEW.
Otherwise, z is larger than the maximum of MIN and we insert z into NEW with O(log, K)
comparisons. The implementation of DELETEMIN deletes and returns the minimum of MIN. Both
operations require at most O(log, K) comparisons.

There are two problems with the above implementation of INSERT and DELETEMIN. Insertions
can cause NEW to become too big and deletions can make MIN empty. We therefore for every
Kth priority-queue operation perform one batch insertion or deletion. If |[NEW| > K, we remove
K elements from NEW one by one and perform BATCHINSERTr on the removed elements. If
INEW| < K and |MIN| < 2K, we instead increase the size of MIN by moving K small elements
to MIN as follows. First, we perform a BATCHDELETEMINg operation to extract the K least
elements from the external part of the data structure. The K extracted elements are inserted into
NEW one by one, using O(K log, K) comparisons. Second, we move the K smallest elements of
NEW to MIN one by one. If |[NEW| < K and |MIN| > 2K, we do nothing but delay the batch
operation until | MIN| = 2K or [NEW| = K. Each batch operation requires at most O (% logr/m 2
I/0s and at most O (K (log, X + log, K)) = O(K log, N') comparisons.

By doing one of the above described batch operations for every Kth priority-queue operation
it is straightforward to verify that

INEW| + (3K — |MIN]) < 2K,

provided that the priority queue contains at least K elements, implying |[NEW| < 2K and |MIN| >
K, because each batch operation decreases the left-hand side of the equation by K.

The idea is now to perform a batch operation incrementally over the next K priority-queune
operations. Let N denote the number of elements in the priority queue, when the corresponding
batch operation is initiated. Notice that N can at most be halved while performing a batch
operation, because N > 2K prior to the batch operation. Because |MIN] > K when a batch
operation is initiated, it is guaranteed that MIN is nonempty while incrementally performing the
batch operation over the next K priority-queue operations.

Because a batch operation requires at most ()(%logk»/ﬁ %) I/Os and at most O(K log, N)
comparisons, it is sufficient to perform at most O(log, N) comparisons of the incremental batch
operation per priority-queue operation and if B > clogy;/p %, one I/0 for every B/(clogy/p %)th
priority-queue operation and if B < clogy;/p %, 5 logn/n % I/0s for every priority-queue oper-
ation, for some positive constant ¢, to guarantee that the incremental batch operation is finished
after K priority-queue operations.

Because |MIN| < 3K, INEW| < 2K, and a batched operation at most requires 4K + 5B
elements to be stored in internal memory, we have the constraint that 9K + 5B < M. Let now
K = |(M — 5B)/9]|. Recall that we assumed that M > 23B. Therefore, K > 2B. Since M > K,
O(loga) = O(logy/n). Hence, we have proved the main result of this paper.

Main theorem There erists an external-memory priority-queue implementation that supports
INSERT and DELETEMIN operations with worst-case O(logy, N') comparisons per operation. If B >
clogy /g %, one 1/0 is necessary for every B/(clogy/p %)f,h operation and if B < clogy/ g %,

5 logy/n % I/0s are performed per every operation, for some positive constant c.

13

5 Concluding remarks

We have presented an efficient priority-queue implementation which guarantees a worst-case bound
on the number of comparisons and I/0s required for the individual priority-queue operations. OQur
bounds are comparison based.

If the performance bounds are allowed to be amortized the data structure can be simplified
considerably, because no list merging and batch operation is required to be incrementally performed.
Then no L; and L} lists are required, and we can satisfy 1 < |MIN|] < K, |[NEW| < K, and n; < m

by always (completely) merging exactly m lists of equal rank, the rank of a list L being |log,, %J

What if the size of the elements or priorities is not assumed to be constant? That is, express
the bounds as a function of N and the length of the priorities. How about the priorities having
variable lengths? Initial research is this direction has been carried out by Arge et al. [7], who
consider sorting strings in external memory.

Acknowledgment
We would like to thank Jukka Teuhola for helpful discussions.

References

[1] G.M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the organization of information,
Soviet Mathematics, Volume 3, pages 1259 1263, 1962.

[2] A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, Volume 31, pages 1116 1127, 1988.

[3] A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, Reading, 1974.

[4] T.O. Alanko, H.H. A. Erkié, and I..J. Haikala. Virtual memory behavior of some sorting
algorithms. IEEE Transactions on Software Engineering, Volume SE-10), pages 422 431, 1984.

[5] L. Arge. The buffer tree: A new technique for optimal 1/O-algorithms. In Proceedings of the
4th Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science 955,
pages 334 345, Springer, Berlin/Heidelberg, 1995.

[6] L. Arge. Efficient external-memory data structures and applications. BRICS Dissertation DS-
96-3, Department of Computer Science, University of Aarhus, Arhus, 1996.

[7] L. Arge, P. Ferragina, R. Grossi, and J.S. Vitter. On sorting strings in external memory. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM Press, New
York, pages 540 548, 1997.

[8] R. Bayer and E.M. McCreight. Organization and maintenance of large ordered indexes. Acta
Informatica, Volume 1, pages 173 189, 1972.

[9] M.R. Brown. Implementation and analysis of binimial queue algorithms. STAM Journal on
Computing, Volume 7, pages 298 319, 1978.

[10] S. Carlsson, J.1. Munro, and P. V. Poblete. An implicit binomial queue with constant insertion
time. In Proceedings of the 1st Scandinavian Workshop on Algorithm Theory, Lecture Notes
in Computer Science 318, pages 1 13, Springer-Verlag, Berlin/Heidelberg, 1988.

[11] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, Volume 11, pages 121 137, 1979.

[12] C.A. Crane. Linear lists and priority queues as balanced trees. Technical Report STAN-CS-
72-259, Computer Science Department, Stanford University, Stanford, 1972.

14

[13]

[14]
[15]

[16]

[17]

R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on secondary stor-
age. Submitted to Theoretical Computer Science. A preliminary version appeared as “External
heaps combined with effective buffering” in Proceedings of the Computing: The Australasian
Theory Symposium, Australian Computer Science Communications, Volume 19, Number 2,
pages 72 78, 1997.

M. J. Fischer and M.S. Paterson. Fishspear: A priority queue algorithm. Journal of the ACM,
Volume 41, pages 3 30, 1994.

G. A. Gibson, J.S. Vitter, J. Wilkes et al. Strategic directions in storage 1/0 issues in large-
scale computing. ACM Computing Surveys, Volume 28, pages 779 793, 1996.

L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In Proceedings
of the 19th Annual Symposium on Foundations of Computer Science, IEEE, New York, pages
8 21, 1978.

K. Harty and D.R. Cheriton. Application-controlled physical memory using external page-
cache management. In Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems, ACM SIGPLAN Notices, Volume 27,
Number 9, pages 187 197, 1992.

J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, Read-
ing, 1992.

B.H.H. Juurlink and H. A. G. Wijshoff. The parallel hierarchical memory model. In Proceedings
of the 4th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science
824, pages 240 251, Springer-Verlag, Berlin/Heidelberg, 1994.

D.E. Knuth. The Art of Computer Programming, Volume 3/ Sorting and Searching. Addison-
Wesley Publishing Company, Reading, 1973.

K. Krueger, D. Loftesness, A. Vahdat, and T. Anderson. Tools for the development of
application-specific virtual memory management. In Proceedings of the 8th Annual Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications, ACM SIGPLAN
Notices, Volume 28, Number 10, pages 48 64, 1993.

A. LaMarca and R.E. Ladner. The influence of caches on the performance of sorting. In
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 370
379, ACM, New York and STAM, Philadelphia, 1997.

D. McNamee and K. Amstrong. Extending the Mach external pager interface to accommodate
user-level block replacement policies. Technical Report 90-09-05, Department of Computer
Science and Engineering, University of Washington, Seattle, 1990.

D. Naor, C.U. Martel, and N.S. Matloff. Performance of priority queue structures in a virtual
memory environment. The Computer Journal, Volume 34, pages 428 437, 1991.

M. H. Nodine and J.S. Vitter. Large-scale sorting in parallel memories, In Proceedings of the
Srd ACM Symposium on Parallel Algorithms and Architectures, ACM Press, New York, pages
29 39, 1991.

Y. N. Patt. Guest editor’s introduction: The I/O subsystem A candidate for improvement.
IEEE Computer, Volume 27, Number 3, pages 15 16, 1994.

D. A. Patterson and J. L. Hennessy, Computer Organization & Design: The Hardware/Software
Interface. Morgan Kaufmann Publishers, San Francisco, 1994.

R. Sedgewick. Algorithms. Addison-Wesley Publishing Company, Reading, 1983.

M. Thorup. On RAM priority queues. In Proceedings of the 7th Annual ACM-STAM Symposium
on Discrete Algorithms, pages 59 67, ACM, New York and STAM, Philadelphia, 1996.

J.S. Vitter and E. A. M. Shriver. Algorithm for parallel memory, I: Two-level memories. Algo-
rithmica, Volume 12, pages 110 147, 1994.

15

[31] J. Vuillemin. A data structure for manipulating priority queues. Communications of the ACM,
Volume 21, pages 309 315, 1978.

[32] L. M. Wegner and J. 1. Teuhola. The external heapsort. IEEE Transactions on Software Engi-
neering, Volume 15, pages 917 925, 1989.

[33] J.W.J. Williams. Algorithm 232, Heapsort. Communications of the ACM, Volume 7, pages
347 348, 1964.

16

