
Finding Maximal Quasiperiodiities in StringsGerth St�lting Brodal? and Christian N. S. Pedersen?Abstrat. Apostolio and Ehrenfeuht de�ned the notion of a maximalquasiperiodi substring and gave an algorithm that �nds all maximalquasiperiodi substrings in a string of length n in time O(n log2 n). Inthis paper we give an algorithm that �nds all maximal quasiperiodisubstrings in a string of length n in time O(n log n) and spae O(n).Our algorithm uses the suÆx tree as the fundamental data strutureombined with eÆient methods for merging and performing multiplesearhes in searh trees. Besides �nding all maximal quasiperiodi sub-strings, our algorithm also marks the nodes in the suÆx tree that havea superprimitive path-label.1 IntrodutionCharaterizing and �nding regularities in strings are important problems in manyareas of siene. In moleular biology repetitive elements in hromosomes deter-mine the likelihood of ertain diseases. In probability theory regularities areimportant in the analysis of stohasti proesses. In omputer siene repetitiveelements in strings are important in e.g. data ompression, speeh reognition,oding, automata and formal language theory.A widely studied regularity in strings are onseutive ourrenes of thesame substring. Two onseutive ourrenes of the same substring is alled anourrene of a square or a tandem repeat. In the beginning of the last entury,Thue [25, 26℄ showed how to onstrut arbitrary long strings over any alphabet ofmore than two haraters that ontain no squares. Sine then a lot of work havefoused on developing eÆient methods to ount or detet squares in strings.Several methods [12, 18, 23℄ an determine if a string of length n ontains asquare in time O(n), and methods [6, 11, 17, 24℄ an �nd ourrenes of squaresin a string of length n in time O(n logn) plus the time it takes to output thedeteted squares. Reently two methods [14, 16℄ have been presented that �nd aompat representation of all squares in a string of length n in time O(n).A way to desribe the regularity of an entire string in terms of repetitive sub-strings is the notion of a periodi string. Gus�eld [13, page 40℄ de�nes string Sas periodi if it an be onstruted by onatenations of a shorter string �.The shortest string from whih S an be generated by onatenations is the pe-riod of S. A string that is not periodi is primitive. Some regularities in stringsannot be haraterized eÆiently using periods or squares. To remedy this,? Basi Researh In Computer Siene (BRICS), Centre of the Danish National Re-searh Foundation, Department of Computer Siene, University of Aarhus, NyMunkegade, 8000 �Arhus C, Denmark. E-mail: fgerth,stormg�bris.dk.



Ehrenfeuht, as referred in [3℄, suggested the notation of a quasiperiodi string.A string S is quasiperiodi if it an be onstruted by onatenations and su-perpositions of a shorter string �. We say that � overs S. Several strings mightover S. The shortest string that overs S is the quasiperiod of S. A overingof S implies that S ontains a square, so by the result of Thue not all strings arequasiperiodi. A string that is not quasiperiodi is superprimitive. Apostolio,Farah and Iliopoulos [5℄ presented an algorithm that �nds the quasiperiod of agiven string of length n in time O(n). This algorithm was simpli�ed and madeon-line by Breslauer [7℄. Moore and Smyth [22℄ presented an algorithm that �ndsall substrings that overs a given string of length n in time O(n).Similar to the period of a string, the quasiperiod of a string desribes aglobal property of the string, but quasiperiods an also be used to haraterizesubstrings. Apostolio and Ehrenfeuht [4℄ introdued the notion of maximalquasiperiodi substrings of a string. Informally, a quasiperiodi substring  of Swith quasiperiod � is maximal if no extension of  an be overed by � or �a,where a is the harater following  in S. Apostolio and Ehrenfeuht showedthat the maximal quasiperiodi substrings of S orrespond to path-labels ofertain nodes in the suÆx tree of S, and gave an algorithm that �nds all max-imal quasiperiodi substrings of a string of length n in time O(n log2 n) andspae O(n logn). The algorithm is based on a bottom-up traversal of the suf-�x tree in whih maximal quasiperiodi substrings are deteted at the nodes inthe suÆx tree by maintaining various data strutures during the traversal. Thegeneral struture of the algorithm resembles the struture of the algorithm byApostolio and Preparata [6℄ for �nding tandem repeats.In this paper we present an algorithm that �nds all maximal quasiperiodisubstrings in a string of length n in time O(n logn) and spae O(n). Similar tothe algorithm by Apostolio and Ehrenfeuht, our algorithm �nds the maximalquasiperiodi substrings in a bottom-up traversal of the suÆx tree. The improvedtime and spae bound is a result of using eÆient methods for merging andperforming multiple searhes in searh trees, ombined with observing that someof the work done, and data stored, by the Apostolio and Ehrenfeuht algorithmis avoidable. The analysis of our algorithm is based on a stronger version of thewell known \smaller-half trik" used in the algorithms in [6, 11, 24℄ for �ndingtandem repeats. The stronger version of the \smaller-half trik" is hinted atin [20, Exerise 35℄ and stated in Lemma 6. In [21, Chapter 5℄ it is used in theanalysis of �nger searhes, and in [8℄ it is used in the analysis and formulationof an algorithm to �nd all maximal pairs with bounded gap in a string.Reently, and independent of our work, Iliopoulos and Mouhard in [15℄ re-port an algorithm with running time O(n logn) for �nding all maximal quasiperi-odi substrings in a string of length n. Their algorithm di�ers from our algo-rithm as it does not use the suÆx tree as the fundamental data struture, butuses the partitioning tehnique used by Crohemore [11℄ ombined with severalother data strutures. Finding maximal quasiperiodi substrings an thus bedone in two di�erent ways similar to the di�erene between the algorithms byCrohemore [11℄ and Apostolio and Preparata [6℄ for �nding tandem repeats.



The rest of this paper is organized as follows. In Set. 2 we de�ne the pre-liminaries used in the rest of the paper. In Set. 3 we state and prove propertiesof quasiperiodi substrings and suÆx trees. In Set. 4 we state and prove resultsabout eÆient merging of and searhing in height-balaned trees. In Set. 5 westated our algorithm to �nd all maximal quasiperiodi substrings in a string. InSet. 6 we analyze the running time of our algorithm and in Set. 7 we showhow the algorithm an be implemented to use linear spae.2 De�nitionsIn the following we let S; �; �;  2 �� denote strings over some �nite alphabet �.We let jsj denote the length of S, S[i℄ the ith harater in S for 1 � i � jSj, andS[i :: j℄ = S[i℄S[i+1℄ � � �S[j℄ a substring of S. A string � ours in a string  atposition i if � = [i :: i+ j�j � 1℄. We say that [j℄, for all i � j � i+ j�j � 1, isovered by the ourrene of � at position i.A string � overs a string  if every position in  is overed by an ourreneof �. Figure 1 shows that  = abaabaabaabaab is overed by � = abaab. Note thatif � overs  then � is both a pre�x and a suÆx of . A string is quasiperiodiif it an be overed by a shorter string. A string is superprimitive if it is notquasiperiodi, that is, if it annot be overed by a shorter string. A superprimitivestring � is a quasiperiod of a string  if � overs . In Lemma 1 we show thatif � is unique, and � is therefore denoted the quasiperiod of .The suÆx tree T (S) of the string S is the ompressed trie of all suÆxes ofthe string S$, where $ =2 �. Eah leaf in T (S) represents a suÆx S[i :: n℄ of Sand is annotated with the index i. We refer to the set of indies stored at theleaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).Eah edge in T (S) is labelled with a nonempty substring of S suh that the pathfrom the root to the leaf annotated with index i spells the suÆx S[i :: n℄. Werefer to the substring of S spelled by the path from the root to node v as thepath-label of v and denote it L(v). Figure 2 shows a suÆx tree.For a node v in T (S) we partition LL(v) = (i1; i2; : : : ; ik), where ij < ij+1for 1 � j < k, into a sequene of disjoint subsequenes R1; R2; : : : ; Rr, suh thateah R` is a maximal subsequene ia; ia+1; : : : ; ib, where ij+1 � ij � jL(v)j fora � j < b. Eah R` is denoted a run at v and represents a maximal substringof S that an be overed by L(v), i.e. L(v) overs S[minR` :: jL(v)j�1+maxR`℄,and we say that R` is a run from minR` to jL(v)j � 1 +maxR`. A run R` at vis said to oalese at v if R` ontains indies from at least two hildren of v, i.e.if for no hild w of v we have R` � LL(w). We use C(v) to denote the set ofoalesing runs at v.3 Maximal Quasiperiodi SubstringsIf S is a string and  = S[i :: j℄ a substring overed by a shorter string � =S[i :: i+j�j�1℄, then  is quasiperiodi and we desribe it by the triple (i; j; j�j). A



 = S[i :: j℄a a a b a a b b b a b a a b a a b a a b a a b b a a a b a�Fig. 1. The substring  = abaabaabaabaab is a maximal quasiperiodi substring withquasiperiod � = abaab. Note that the quasiperiod � overs the substring .triple (i; j; j�j) desribes a maximal quasiperiodi substring of S, in the followingabbreviated MQS, if the following requirements are satis�ed.1.  = S[i :: j℄ is quasiperiodi with quasiperiod �.2. If � overs S[i0 :: j0℄, where i0 � i � j � j0, then i0 = i and j0 = j.3. �S[j + 1℄ does not over S[i :: j + 1℄.Figure 1 shows a maximal quasiperiodi substring. The problem we onsiderin this paper is for a string S to generate all triples (i; j; j�j) that desribeMQSs. This problem was �rst studied by Apostolio and Ehrenfeuht in [4℄. Inthe following we state important properties of quasiperiodi substrings whihare essential to the algorithm to be presented.Lemma 1. Every quasiperiodi string  has a unique quasiperiod �.Proof. Assume that  is overed by two distint superprimitive strings � and �.Sine � and � are pre�xes of  we an without loss of generality assume that �is a proper pre�x of �. Sine � and � are suÆxes of , then � is also a propersuÆx of �. Sine � and � over , and � is a pre�x and suÆx of � it followsthat � overs �, implying the ontradition that � is not superprimitive. utLemma 2. If  ours at position i and j in S, and 1 � j � i � jj=2, then is quasiperiodi.Proof. Let � be the pre�x of  of length jj � (j � i), i.e. � = S[i :: i+ jj � (j �i)�1℄ = S[j :: i+jj�1℄. Sine j�i � jj=2 implies that i�1+jj�(j�i) � j�1,we onlude that � overs . utLemma 3. If the triple (i; j; j�j) desribes a MQS in S, then there exists a non-leaf node in the suÆx tree T (S) with path-label �.Proof. Assume that � overs the quasiperiodi substring S[i :: j℄ and that nonode in T (S) has path-label �. Sine all ourrenes of � in S are followed bythe same harater a = S[i+ j�j℄, �a must over S[i :: j + 1℄, ontraditing themaximality requirement 3. utLemma 4. If  is a quasiperiodi substring in S with quasiperiod � and u isa non-leaf node in the suÆx tree T (S) with path-label , then there exists ananestor node v of u in T (S) with path-label �.



Proof. Sine u is a non-leaf node in T (S) of degree at least two, there existharaters a and b suh that both a and b our in S. Sine � is a suÆx of we then have that both �a and �b our in S, i.e. there exist two suÆxes of Shaving respetively pre�x �a and �b, implying that there exists a node v in T (S)with L(v) = �. Sine � is also a pre�x of , v is an anestor of u in T (S). utLemma 5. If v is a node in the suÆx tree T (S) with a superprimitive path-label �, then the triple (i; j; j�j) desribes a MQS in S if and only if there is arun R from i to j that oaleses at v.Proof. Let (i; j; j�j) desribe a MQS in S and assume that the run R 2 C(v)from i and j does not oalese at v. Then there exists a hild v0 of v in T (S) suhthat R � LL(v0). The �rst symbol along the edge from v to v0 is a = S[i+ j�j℄.Every ourrene of � in R is thus followed by a, i.e. �a overs S[i :: j + 1℄.This ontradits the maximality requirement 3 and shows the \if" part of thetheorem.Let R be a oalesing run from i to j at node v, i.e. L(v) = � overs S[i :: j℄,and let a = S[j+1℄. To show that (i; j; j�j) desribes a MQS in S it is suÆientto show that �a does not over S[i :: j+1℄. Sine R oaleses at v, there exists aminimal i00 2 R suh that �a does not our in S at position i00. If i00 = i = minRthen �a annot over S at position i00 sine it by the de�nition of R annotour any position ` in S satisfying i � j�j � ` � i. If i00 6= i = minR then �aours at minR and maxR, i.e. there exists i0; i000 2 R, suh that i0 < i00 < i000,�a ours at i0 and i000 in S, and �a does not oour at any position ` in Ssatisfying i0 < ` < i000. To onlude that (i; j; j�j) desribes a MQS we only haveto show that S[i000 � 1℄ is not overed by the oourene of �a at position i0, i.e.i000 � i0 > j�j+ 1. By Lemma 2 follows that i00 � i0 > j�j=2 and i000 � i00 > j�j=2,so i000 � i0 � j�j+ 1. Now assume that i000 � i0 = j�j+ 1. This implies that j�j isodd and that i00 � i0 = i000 � i00 = (j�j+ 1)=2. Using this we geta = S[i0 + j�j℄ = S[i00 + (j�j � 1)=2℄ = S[i000 + (j�j � 1)=2℄ = S[i00 + j�j℄ 6= a :This ontradition shows that (i; j; j�j) desribes a MQS and shows the \onlyif" part of the theorem. utTheorem 1. Let v be a non-leaf node in T (S) with path-label �. Sine v is anon-leaf node in T (S) there exists i1; i2 2 LL(v) suh that S[i1+j�j℄ 6= S[i2+j�j℄.The path-label � is quasiperiodi if and only if there exists an anestor node u 6= vof v in T (S) with path-label � that for ` = 1 or ` = 2 satis�es the following twoonditions.1. Both i` and i` + j�j � j�j belong to a oalesing run R at u, and2. for all i0; i00 2 LL(u), ji0 � i00j > j�j=2.Proof. If � is superprimitive, then no string � overs �, i.e. there exists nonode u in T (S) where C(u) inludes a run ontaining both i` and i` + j�j � j�jfor ` = 1 or ` = 2. If � is quasiperiodi, then we argue that the quasiperiod �
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Fig. 2. The suÆx tree of the string babaaaababaab. Node v has a superprimitive path-label aba. There is a oalesing run at v from 7 to 11. Hene the substring ababaourring at position 7 in babaaaababaab is a maximal quasiperiodi substring.of � satis�es onditions 1 and 2. Sine � is superprimitive, ondition 2 is satis�edby Lemma 2. Sine � is the quasiperiod of �, we by Lemma 4 have that � is thepath-label of a node u in T (S). Sine � = S[i1 :: i1+j�j�1℄ = S[i2 :: i2+j�j�1℄ =S[i1+j�j�j�j :: i1+j�j�1℄ = S[i2+j�j�j�j :: i2+j�j�1℄ and S[i1+j�j℄ 6= S[i2+j�j℄then either S[i1+ j�j℄ 6= S[i1+ j�j℄ or S[i2+ j�j℄ 6= S[i2+ j�j℄, whih implies thateither i1 and i1 + j�j � j�j are in a oalesing run at u, or i2 and i2 + j�j � j�jare in a oalesing run at u. Hene, ondition 1 is satis�ed. utTheorem 2. A triple (i; j; j�j) desribes a MQS in S if and only if the followingthree requirements are satis�ed1. There exists a non-leaf node v in T (S) with path-label �.2. The path-label � is superprimitive.3. There exists a oalesing run R from i to j at v.Proof. The theorem follows diretly from the de�nition of MQS, Lemma 3 andLemma 5. utFigure 2 illustrates the properties desribed by Theorem 2.4 Searhing and Merging Height-Balaned TreesIn this setion we onsider various operations on height-balaned binary trees [2℄,e.g. AVL-trees [1℄, and present an extension of the well-known \smaller-halftrik" whih implies a non-trivial bound on the time it takes to perform a se-quene of operations on height-balaned binary trees. This bound is essential to
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315 496135 306 4135 49555 72 2514 305 3735 372 4442 4957 1714 214 30 35 42 4914 21Fig. 3. A height-balaned tree with 15 elements, and the orresponding extendedheight-balaned tree. Eah node in the extended height-balaned tree with at leastone hild is annotated with min (left), max (right) and max-gap (bottom). The empha-sized path is the searh path for �-Pred(T; 4; 42)the running time of our algorithm for �nding maximal quasiperiodi substringsto be presented in the next setion.For a sorted list L = (x1; : : : ; xn) of n distint elements, and an element xand a value Æ, we de�ne the following funtions whih apture the notation ofpredeessors and suessors of an element, and the notation of �-predeessorsand �-suessors whih in Set. 5 will be used to ompute the head and the tailof a oalesing run.pred(L; x) = maxfy 2 L j y � xg ;su(L; x) = minfy 2 L j y � xg ;max-gap(L) = maxf0; x2 � x1; x3 � x2; : : : ; xn � xn�1g ;�-pred(L; Æ; x) = minfy 2 L j y � x ^ max-gap(L \ [y; x℄) � Æg ;�-su(L; Æ; x) = maxfy 2 L j y � x ^ max-gap(L \ [x; y℄) � Æg :If L = (5; 7; 13; 14; 17; 21; 25; 30; 31), then pred(L; 20) = 17, su(L; 20) = 21,max-gap(L) = 13 � 7 = 6, �-pred(L; 4; 20) = 13, and �-su(L; 4; 20) = 25.Note that pred(L; x) = �-pred(L; 0; x) and su(L; x) = �-su(L; 0; x).We onsider an extension of hight-balaned trees where eah node v in addi-tion to key(v), height(v), left(v), right(v), and parent(v), whih respetively storesthe element at v, the height of the subtree Tv rooted at v, pointers to the left andright hildren of v and a pointer to the parent node of v, also stores the followinginformation: previous(v) and next(v) are pointers to the nodes whih store theimmediate predeessor and suessor elements of key(v) in the sorted list, min(v)and max(v) are pointers to the nodes storing the smallest and largest elementsin the subtree rooted at v, and max-gap(v) is the value of max-gap applied tothe list of all elements in the subtree Tv rooted at v. Figure 3 shows a height-balaned tree and the orresponding extended height-balaned tree (previousand next pointers are omitted in the �gure).If v has a left hild v1, min(v) points to min(v1). Otherwise min(v) points to v.Symmetrially, if v has a right hild v2, max(v) points to max(v2). Otherwise



max(v) points to v. If v stores element e and has a left hild v1 and a righthild v2, then max-gap(v) an be omputed asmax-gap(v) = maxf0;max-gap(v1);max-gap(v2);key(v)� key(max(v1)); key(min(v2))� key(v)g : (1)If v1 and/or v2 do not exist, then the expression is redued by removing theparts of the expression involving the missing nodes/node. The equation an beused to reompute the information at nodes being rotated when rebalaning aheight-balaned searh tree. Similar to the funtion max-gap(L) and the oper-ation max-gap(v), we an de�ne and support the funtion min-gap(L) and theoperation min-gap(v). The operations we onsider supported for an extendedheight-balaned tree T are the following, where e1; : : : ; ek denotes a sorted listof k distint elements. The output of the four last operations is a list of k pointersto nodes in T ontaining the answer to eah searh key ei.{ MultiInsert(T; e1; : : : ; ek) inserts (or merges) the k elements into T .{ MultiPred(T; e1; : : : ; ek) for eah ei �nds pred(T; ei).{ MultiSu(T; e1; : : : ; ek) for eah ei �nds su(T; ei).{ Multi-�-Pred(T; Æ; e1; : : : ; ek) for eah ei �nds �-pred(T; Æ; ei).{ Multi-�-Su(T; Æ; e1; : : : ; ek) for eah ei �nds �-su(T; Æ; ei).We merge two height-balaned trees T and T 0, jT j � jT 0j, by inserting theelements in T 0 into T , i.e. MultiInsert(T; e1; e2; : : : ; ek) where e1; e2; : : : ; ek arethe elements in T 0 in sorted order. The following theorem states the runningtime of the operations.Theorem 3. Eah of the operations MultiInsert, MultiPred, MultiSu, Multi-�-Pred, and Multi-�-Su an be performed in time O(k � maxf1; log(n=k)g),where n is the size of the tree and k is the number elements to be inserted orsearhed for.Proof. If k � n, the theorem follows immediately. In the following we thereforeassume k � n. Brown and Tarjan in [10℄ show how to merge two height-balanedtrees in time O(k �maxf1; log(n=k)g), espeially their algorithm performs k top-down searhes in time O(k �maxf1; log(n=k)g). Sine a searh for an element eeither �nds the element e or the predeessor/suessor of e it follows that Multi-Pred and MultiSu an be omputed in time O(k �maxf1; log(n=k)g) using theprevious and next pointers. The implementation of MultiInsert follows from thealgorithm of [10℄ by observing that only the O(k �maxf1; log(n=k)g) nodes visitedby the merging need to have their assoiated min, max and max-gap informationreomputed due to the inserted elements, and the reomputing an be done in atraversal of these nodes in time O(k �maxf1; log(n=k)g) using Equation 1. Theimplementation of the Multi-�-Pred and Multi-�-Su operations is more teh-nial. For the details see [9, Set. 4℄. ut



If eah node in a binary tree supplies a term O(k), where k is the number ofleaves in the smallest subtree rooted at a hild of the node, then the sum overall terms is O(N logN). In the literature, this bound is often referred to as the\smaller-half trik". It is essential to the running time of several methods for�nding tandem repeats [6, 11, 24℄. Our method for �nding maximal quasiperiodisubstrings uses a stronger version of the \smaller-half trik" hinted at in [20,Exerise 35℄ and stated in Lemma 6. It implies that we at every node in abinary tree with N leaves an perform a �xed number of the operations statedin Theorem 3, with n and k as stated in the lemma, in total time O(N logN).Lemma 6. If eah internal node v in a binary tree with N leaves supplies aterm O(k log(n=k)), where n is the number of leaves in the subtree rooted at vand k � n=2 is the number of leaves in the smallest subtree rooted at a hildof v, then the sum over all terms is O(N logN).5 AlgorithmThe algorithm to �nd all maximal quasiperiodi substrings in a string S oflength n �rst onstruts the suÆx tree T (S) of S in time O(n) using any existingsuÆx tree onstrution algorithm, e.g. [19, 27, 28℄, and then proesses T (S) intwo phases. Eah phase involves one or more traversals of T (S). In the �rst phasethe algorithm identi�es all nodes of T (S) with a superprimitive path-label. Inthe seond phase the algorithm reports the maximal quasiperiodi substringsin S. This is done by reporting the oalesing runs at the nodes whih in the�rst phase were identi�ed to have superprimitive path-labels.To identify nodes with superprimitive path-labels we apply the onepts ofquestions, harateristi ourrenes of a path-label, and sentinels of a node.Let v be a non-leaf node in T (S) and u 6= v an anestor node of v in T (S).Let v1 and v2 be the two leftmost hildren of v, and i1 = min(LL(v1)) and i2 =min(LL(v2)). A question posed to u is a triple (i; j; v) where i 2 LL(v) � LL(u)and j = i + jL(v)j � jL(u)j 2 LL(u), and the answer to the question is true ifand only if i and j are in the same oalesing run at u.We de�ne the two ourrenes of L(v) at positions i1 and i2 to be theharateristi ourrenes of L(v), and de�ne the sentinels v̂1 and v̂2 of v asthe positions immediately after the two harateristi ourrenes of L(v), i.e.v̂1 = i1 + jL(v)j and v̂2 = i2 + jL(v)j. Sine i1 and i2 are indies in leaf-lists oftwo distint hildren of v, we have S[v̂1℄ 6= S[v̂2℄. In the following we let SL(v)be the list of the sentinels of the nodes in the subtree rooted at v in T (S). Sinethere are two sentinels for eah non-leaf node jSL(v)j � 2jLL(v)j � 2.Theorem 1 implies the following tehnial lemma whih forms the basis fordeteting nodes with superprimitive path-labels in T (S).Lemma 7. The path-label L(v) is quasiperiodi if and only if there exists asentinel v̂ of v, and an anestor w of v (possibly w = v) for whih there existsj 2 LL(w)\ ℄v̂� 2 �min-gap(LL(w)) ; v̂[ suh that (v̂� jL(v)j; j; v) is a questionthat an be posed and answered suessfully at an anestor node u 6= v of w(possibly u = w) with jL(u)j = v̂ � j and min-gap(LL(u)) > jL(u)j=2.



Proof. If there exists a question (v̂ � jL(v)j; v̂ � jL(u)j; v) that an be answeredsuessfully at u, then v̂ � jL(v)j and v̂ � jL(u)j are in the same run at u, i.e.L(u) overs L(v) and L(v) is quasiperiodi.If L(v) is quasiperiodi, we have from Theorem 1 that there for i` = v̂` �jL(v)j, where ` = 1 or ` = 2, exists an anestor node u 6= v of v where both i`and i` + jL(v)j � jL(u)j belong to a oalesing run at u and min-gap(LL(u)) >jL(u)j=2. The lemma follows by letting w = u and j = v̂` � jL(u)j. utSine j and v̂ uniquely determine the question (v̂�jL(v)j; j; v), it follows thatto deide the superprimitivity of all nodes it is suÆient for eah node w to �ndall pairs (v̂; j) where v̂ 2 SL(w) and j 2 LL(w) \ ℄v̂ � 2 �min-gap(LL(w)) ; v̂[,or equivalently j 2 LL(w) and v̂ 2 SL(w) \ ℄j ; j + 2 �min-gap(LL(w))[. Fur-thermore, if v̂ and j result in a question at w, but j 2 LL(w0) and v̂ 2 SL(w0)for some hild w0 of w, then v̂ and j result in the same question at w0 sinemin-gap(LL(w0)) � min-gap(LL(w)), i.e. we only need to �nd all pairs (v̂; j)at w where v̂ and j ome from two distint hildren of w. We an now state thedetails of the algorithm.Phase I { Marking Nodes with Quasiperiodi Path-Labels In Phase Iwe mark all nodes in T (S) that have a quasiperiodi path-label by performingthree traversals of T (S). We �rst make a depth-�rst traversal of T (S) where wefor eah node v ompute min-gap(LL(v)). We do this by onstruting for eahnode v a searh tree TLL(v) that stores LL(v) and supports the operations inSet. 4. In partiular the root of TLL(v) should store the value min-gap(TLL(v))to be assigned to v. If v is a leaf, TLL(v) only ontains the index annotated to v.If v is an internal node, we onstrut TLL(v) by merging the TLL trees of thehildren of v from left-to-right when these have been omputed. If the hildren ofv are v1; : : : ; vk we merge TLL(v1); : : : ; TLL(vi+1) by performing a binary mergeof TLL(vi+1) with the result of merging TLL(v1); : : : ; TLL(vi). As a side e�et ofomputing TLL(v) the TLL trees of the hildren of v are destroyed.We pose and answer questions in two traversals of T (S) explained below asStep 1 and Step 2. For eah node v we let Q(v) ontain the list of questionsposed at v. Inititially Q(v) is empty.Step 1 (Generating Questions) In this step we perform a depth-�rst traversalof T (S). At eah node v we onstrut searh trees TLL(v) and TSL(v) whih storerespetively LL(v) and SL(v) and support the operations mentioned in Set. 4.For a non-leaf node v with leftmost hildren v1 and v2, we ompute the sentinelsof v as v̂1 = min(TLL(v1)) + jLL(v1)j and v̂2 = min(TLL(v2)) + jLL(v1)j. TheTLL trees need to be reomputed sine these are destroyed in the �rst traversalof T (S). The omputation of TSL(v) is done similarly to the omputation ofTLL(v) by merging the TSL lists of the hildren of v from left-to-right, exeptthat after the merging the TSL trees of the hildren we also need to insert thetwo sentinels v̂1 and v̂2 in TSL(v).We visit node v, and all it the urrent node, when the TLL and TSL trees atthe hildren of v are available. During the traversal we maintain an array depth



suh that depth(k) refers to the node u on the path from the urrent node tothe root with jL(u)j = k if suh a node exists. Otherwise depth(k) is undef. Wemaintain depth by setting depth(jL(u)j) to u when we arrive at u from its parent,and setting depth(jL(u)j) to undef when we return from u to its parent.When v is the urrent node we have from Lemma 7 that it is suÆientto generate questions for pairs (ŵ; j) where ŵ and j ome from two di�erenthildren of v. We do this while merging the TLL and TSL trees of the hildren.Let the hildren of v be v1; : : : ; vk. Assume LLi = LL(v1) [ � � � [ LL(vi) andSLi = SL(v1)[ � � � [SL(vi) has been omputed as TLLi and TSLi and we are inthe proess of omputing LLi+1 and SLi+1. The questions we need to generatewhile omputing LLi+1 and SLi+1 are those where j 2 LLi and ŵ 2 SL(vi+1) orj 2 LL(vi+1) and ŵ 2 SLi. Assume j 2 TLL and ŵ 2 TSL, where either TLL =TLLi and TSL = TSL(vi+1) or TLL = TLL(vi+1) and TSL = TSLi . There are twoases. If jTLLj � jTSLj we loate eah j 2 TLL in TSL by performing a MultiSuoperation. Using the next pointers we an then for eah j report those ŵ 2 TSLwhere ŵ 2 ℄j ; j + 2 �min-gap(LL(v))[. If jTLLj > jTSLj we loate eah ŵ 2 TSLin TLL by performing a MultiPred operation. Using the previous pointers we anthen for eah ŵ report those j 2 TSL where j 2 ℄ŵ � 2 �min-gap(LL(v)) ; ŵ[.The two sentinels v̂1 and v̂2 of v are handled similarly to the later ase byperforming two searhes in TLL(v) and using the previous pointers to generatethe required pairs involving the sentinels v̂1 and v̂2 of v.For a pair (ŵ; j) that is generated at the urrent node v, we generate aquestion (ŵ � jL(w)j; j; w) about desendent w of v with sentinel ŵ, and posethe question at anestor u = depth(ŵ�j) by inserting (ŵ�jL(w)j; j; w) intoQ(u).If suh an anestor u does not exists, i.e. depth(ŵ� j) is undef, or min-gap(u) �jL(u)j=2 then no question is posed.Step 2 (Answering Questions) Let Q(v) be the set of questions posed at node vin Step 1. If there is a oalesing run R in C(v) and a question (i; j; w) in Q(v)suh that minR � i < j � maxR, then i and j are in the same oalesing runat v and we mark node w as having a quasiperiodi path-label.We identify eah oalesing run R in C(v) by the tuple (minR;maxR). Weanswer question (i; j; w) in Q(v) by deiding if there is a run (minR;maxR)in C(v) suh that minR � i < j � maxR. If the questions (i; j; w) in Q(v)and runs (minR;maxR) in C(v) are sorted lexiographially, we an answer allquestions by a linear san through Q(v) and C(v). In the following we desribehow to generate C(v) in sorted order and how to sort Q(v).Construting Coalesing Runs The oalesing runs are generated in a traversalof T (S). At eah node v we onstrut TLL(v) storing LL(v). We onstrut TLL(v)by merging the TLL trees of the hildren of v from left-to-right. A oalesingrun R in LL(v) ontains an index from at least two distint hildren of v, i.e.there are indies i0 2 LL(v1) and i00 2 LL(v2) in R for two distint hildren v1and v2 of v suh that i0 < i00 are neighbors in LL(v) and i00 � i0 � jL(v)j. Wesay that i0 is a seed of R. We identify R by the tuple (minR;maxR). We haveminR = �-pred(LL(v); jL(v)j; i0) and maxR = �-su(LL(v); jL(v)j; i0).



To onstrut C(v) we ollet seeds ir1 ; ir2 ; : : : ; irk of every oalesing runin LL(v) in sorted order. This done by heking while merging the TLL treesof the hildren of v if an index gets a new neighbor in whih ase the in-dex an be identi�ed as a seed. Sine eah insertion at most generates twoseeds we an ollet all seeds into a sorted list while performing the merging.From the seeds we an ompute the �rst and last index of the oalesing runsby doing Multi-�-Pred(TLL(v); jL(v)j; ir1 ; ir2 ; : : : ; irk) and Multi-�-Su(TLL(v),jL(v)j, ir1 ; ir2 ; : : : ; irk). Sine we might have olleted several seeds of the samerun, the list of oalesing runs R1; R2; : : : ; Rk might ontain duplets whih anbe removed by reading through the list one. Sine the seeds are olleted insorted order, the resulting list of runs is also sorted.Sorting the Questions We ollet the elements in Q(v) for every node v in T (S)into a single list Q that ontains all question (i; j; w) posed at nodes in T (S).We annotate every element in Q with the node v it was olleted from. Byonstrution every question (i; j; w) posed at a node in T (S) satis�es that 0 �i < j < n. We an thus sort the elements in Q lexiographially with respetto i and j using radix sort. After sorting the elements in Q we distribute thequestions bak to the proper nodes in sorted order by a linear san through Q.Phase II { Reporting Maximal Quasiperiodi Substrings After Phase Iall nodes that have a quasiperiodi path-label are marked, i.e. all unmarkednodes are nodes that have a superprimitive path-label. By Theorem 2 we reportall maximal quasiperiodi substrings by reporting the oalesing runs at everynode that has a superprimitive path-label. In a traversal of the marked suÆx treewe as in Phase I onstrut C(v) at every unmarked node and report for everyR inC(v) the triple (minR;maxR; jL(v)j) that identi�es the orresponding maximalquasiperiodi substring.6 Running TimeIn every phase of the algorithm we traverse the suÆx tree and onstrut ateah node v searh trees that stores LL(v) and/or SL(v). At every node v weonstrut various lists by onsidering the hildren of v from left-to-right andperform a onstant number of the operations in Theorem 3. Sine the overallmerging of information in T (S) is done by binary merging we by Lemma 6 havethat this amounts to time O(n logn) in total. To generate and answer questionswe use time proportional to the total number of questions generated. Lemma 8state that the number of questions is bounded by O(n logn). We onlude thatthe running time of the algorithm is O(n logn).Lemma 8. At most O(n logn) questions are generated.Proof. We prove that eah of the 2n sentinels an at most result in the generationof O(logn) questions. Consider a sentinel ŵ of node w and assume that it gen-erates a question (ŵ�jL(w)j; j; w) at node v. Sine ŵ� j < 2 �min-gap(LL(v)),



j is either pred(LL(v); ŵ � 1) (a question of Type A) or the left neighbor ofpred(LL(v); ŵ � 1) in LL(v) (a question of Type B). For ŵ we �rst onsider allindies resulting in questions of Type A along the path from w to the root. Notethat this is an inreasing sequene of indies. We now show that the distane ofŵ to the indies is geometrially dereasing, i.e. there are at most O(logn) ques-tions generated of Type A. Let j and j0 be two onseutive indies resulting inquestions of Type A at node v and at an anestor node u of v. Sine j < j0 < ŵand j0 � j � min-gap(LL(u)) and ŵ � j0 < 2 � min-gap(LL(u)), we have thatŵ � j0 < 23 (ŵ � j). Similarly we an bound the number of questions generatedof Type B for sentinel ŵ by O(logn). ut7 Ahieving Linear SpaeStoring the suÆx tree T (S) uses spae O(n). During a traversal of the suÆxtree we onstrut searh trees as explained. Sine no element, index or sentinel,at any time is stored in more than a onstant number of searh trees, storingthe searh trees uses spae O(n). Unfortunately, storing the sets C(v) and Q(v)of oalesing runs and questions at every node v in the suÆx tree uses spaeO(n logn). To redue the spae onsumption we must thus avoid to store C(v)and Q(v) at all nodes simultaneously. The trik is to modify Phase I to alternatebetween generating and answering questions.We observe that generating questions and oalesing runs (Step 1 and the�rst part of Step 2) an be done in a single traversal of the suÆx tree. Thistraversal is Part 1 of Phase I. Answering questions (the last part of Step 1)is Part 2 of Phase I. To redue the spae used by the algorithm to O(n) wemodify Phase I to alternate in rounds between Part 1 (generating questions andoalesing runs) and Part 2 (answering questions).We say that node v is ready if C(v) is available and all questions from it hasbeen generated, i.e. Part 1 has been performed on it. If node v is ready thenall nodes in its subtree are ready. Sine all questions to node v are generatedat nodes in its subtree, this implies that Q(v) is also available. By de�nitionno oalesing runs are stored at non-ready nodes and Lemma 9 states thatonly O(n) questions are stored at non-ready nodes. In a round we produe readynodes (perform Part 1) until the number of questions plus oalesing runs storedat nodes readied in the round exeed n, we then answer the questions (performPart 2) at nodes readied in the round. After a round we dispose questions andoalesing runs stored at nodes readied in the round. We ontinue until all nodesin the suÆx tree have been visited.Lemma 9. There are at most O(n) questions stored at non-ready nodes.Proof. Let v be a node in T (S) suh that all nodes on the path from v tothe root are non-ready. Consider a sentinel ŵ orresponding to a node in thesubtree rooted at v. Assume that this sentinel has indued three questions (ŵ�jL(w)j; j0; w), (ŵ � jL(w)j; j00; w) and (ŵ � jL(w)j; j000; w), where j0 < j00 < j000,that are posed at anestors of v. By hoie of v, these anestors are non-ready



nodes. One of the anestors is node u = depth(ŵ � j0). Sine question (ŵ �jL(w)j; j0; w) is posed at u, min-gap(LL(u)) > jL(u)j=2. Sine j0; j00; j000 2 LL(u)and j000 � j0 � ŵ � j0 = jL(u)j, it follows that min-gap(LL(u)) � minfj00 �j0; j000 � j00g � jL(u)j=2. This ontradits that min-gap(LL(u)) > jL(u)j=2 andshows that eah sentinel has generated at most two questions to non-ready nodes.The lemma follows beause there are at most 2n sentinels in total. utAlternating between Part 1 and Part 2 learly results in generating and an-swering the same questions as if Part 1 and Part 2 were performed without alter-nation. The orretness of the algorithm is thus una�eted by the modi�ationof Phase I. Now onsider the running time. The running time of a round an bedivided into time spent on readying nodes (Part 1) and time spent on answeringquestions (Part 2). The total time spent on readying nodes is learly una�etedby the alternation. To onlude the same for the total time spent on answeringquestions, we must argue that the time spent on sorting the posed questions ineah round is proportional to the time otherwise spent in the round.The ruial observation is that eah round takes time 
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