Finding Maximal Quasiperiodicities in Strings

Gerth Stglting Brodal* and Christian N. S. Pedersen*

Abstract. Apostolico and Ehrenfeucht defined the notion of a maximal
quasiperiodic substring and gave an algorithm that finds all maximal
quasiperiodic substrings in a string of length n in time O(nlog?n). In
this paper we give an algorithm that finds all maximal quasiperiodic
substrings in a string of length n in time O(nlogn) and space O(n).
Our algorithm uses the suffix tree as the fundamental data structure
combined with efficient methods for merging and performing multiple
searches in search trees. Besides finding all maximal quasiperiodic sub-
strings, our algorithm also marks the nodes in the suffix tree that have
a superprimitive path-label.

1 Introduction

Characterizing and finding regularities in strings are important problems in many
areas of science. In molecular biology repetitive elements in chromosomes deter-
mine the likelihood of certain diseases. In probability theory regularities are
important in the analysis of stochastic processes. In computer science repetitive
elements in strings are important in e.g. data compression, speech recognition,
coding, automata and formal language theory.

A widely studied regularity in strings are consecutive occurrences of the
same substring. Two consecutive occurrences of the same substring is called an
occurrence of a square or a tandem repeat. In the beginning of the last century,
Thue [25,26] showed how to construct arbitrary long strings over any alphabet of
more than two characters that contain no squares. Since then a lot of work have
focused on developing efficient methods to count or detect squares in strings.
Several methods [12,18,23] can determine if a string of length n contains a
square in time O(n), and methods [6,11,17,24] can find occurrences of squares
in a string of length n in time O(nlogn) plus the time it takes to output the
detected squares. Recently two methods [14, 16] have been presented that find a
compact representation of all squares in a string of length n in time O(n).

A way to describe the regularity of an entire string in terms of repetitive sub-
strings is the notion of a periodic string. Gusfield [13, page 40] defines string S
as periodic if it can be constructed by concatenations of a shorter string a.
The shortest string from which S can be generated by concatenations is the pe-
riod of S. A string that is not periodic is primitive. Some regularities in strings
cannot be characterized efficiently using periods or squares. To remedy this,

* Basic Research In Computer Science (BRICS), Centre of the Danish National Re-
search Foundation, Department of Computer Science, University of Aarhus, Ny
Munkegade, 8000 Arhus C, Denmark. E-mail: {gerth,cstorm}@brics.dk.

Ehrenfeucht, as referred in [3], suggested the notation of a quasiperiodic string.
A string S is quasiperiodic if it can be constructed by concatenations and su-
perpositions of a shorter string . We say that a covers S. Several strings might
cover S. The shortest string that covers S is the quasiperiod of S. A covering
of S implies that S contains a square, so by the result of Thue not all strings are
quasiperiodic. A string that is not quasiperiodic is superprimitive. Apostolico,
Farach and Tliopoulos [5] presented an algorithm that finds the quasiperiod of a
given string of length n in time O(n). This algorithm was simplified and made
on-line by Breslauer [7]. Moore and Smyth [22] presented an algorithm that finds
all substrings that covers a given string of length n in time O(n).

Similar to the period of a string, the quasiperiod of a string describes a
global property of the string, but quasiperiods can also be used to characterize
substrings. Apostolico and Ehrenfeucht [4] introduced the notion of maximal
quasiperiodic substrings of a string. Informally, a quasiperiodic substring v of S
with quasiperiod « is maximal if no extension of v can be covered by a or aa,
where a is the character following « in S. Apostolico and Ehrenfeucht showed
that the maximal quasiperiodic substrings of S correspond to path-labels of
certain nodes in the suffix tree of S, and gave an algorithm that finds all max-
imal quasiperiodic substrings of a string of length n in time O(nlog®n) and
space O(nlogn). The algorithm is based on a bottom-up traversal of the suf-
fix tree in which maximal quasiperiodic substrings are detected at the nodes in
the suffix tree by maintaining various data structures during the traversal. The
general structure of the algorithm resembles the structure of the algorithm by
Apostolico and Preparata [6] for finding tandem repeats.

In this paper we present an algorithm that finds all maximal quasiperiodic
substrings in a string of length n in time O(nlogn) and space O(n). Similar to
the algorithm by Apostolico and Ehrenfeucht, our algorithm finds the maximal
quasiperiodic substrings in a bottom-up traversal of the suffix tree. The improved
time and space bound is a result of using efficient methods for merging and
performing multiple searches in search trees, combined with observing that some
of the work done, and data stored, by the Apostolico and Ehrenfeucht algorithm
is avoidable. The analysis of our algorithm is based on a stronger version of the
well known “smaller-half trick” used in the algorithms in [6,11,24] for finding
tandem repeats. The stronger version of the “smaller-half trick” is hinted at
in [20, Exercise 35] and stated in Lemma 6. In [21, Chapter 5] it is used in the
analysis of finger searches, and in [8] it is used in the analysis and formulation
of an algorithm to find all maximal pairs with bounded gap in a string.

Recently, and independent of our work, Iliopoulos and Mouchard in [15] re-
port an algorithm with running time O(nlogn) for finding all maximal quasiperi-
odic substrings in a string of length n. Their algorithm differs from our algo-
rithm as it does not use the suffix tree as the fundamental data structure, but
uses the partitioning technique used by Crochemore [11] combined with several
other data structures. Finding maximal quasiperiodic substrings can thus be
done in two different ways similar to the difference between the algorithms by
Crochemore [11] and Apostolico and Preparata [6] for finding tandem repeats.

The rest of this paper is organized as follows. In Sect. 2 we define the pre-
liminaries used in the rest of the paper. In Sect. 3 we state and prove properties
of quasiperiodic substrings and suffix trees. In Sect. 4 we state and prove results
about efficient merging of and searching in height-balanced trees. In Sect. 5 we
stated our algorithm to find all maximal quasiperiodic substrings in a string. In
Sect. 6 we analyze the running time of our algorithm and in Sect. 7 we show
how the algorithm can be implemented to use linear space.

2 Definitions

In the following we let S, a, 8, € X* denote strings over some finite alphabet Y.
We let |s| denote the length of S, S[i] the ith character in S for 1 < i < |S|, and
Sli..j] = S[i)S[i + 1] - - - S[j] a substring of S. A string a occurs in a string v at
position i if @ = v[i..i + |a| — 1]. We say that y[j], forall i < j <i+|a| —1,is
covered by the occurrence of v at position 1.

A string a covers a string «y if every position in v is covered by an occurrence
of a. Figure 1 shows that v = abaabaabaabaab is covered by a = abaab. Note that
if o covers v then « is both a prefix and a suffix of 7. A string is quasiperiodic
if it can be covered by a shorter string. A string is superprimitive if it is not
quasiperiodic, that is, if it cannot be covered by a shorter string. A superprimitive
string « is a quasiperiod of a string «y if a covers . In Lemma 1 we show that
if a is unique, and « is therefore denoted the quasiperiod of ~.

The suffiz tree T(S) of the string S is the compressed trie of all suffixes of
the string S$, where § ¢ X. Each leaf in T'(S) represents a suffix S[i..n] of S
and is annotated with the index i. We refer to the set of indices stored at the
leaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).
Each edge in T'(S) is labelled with a nonempty substring of S such that the path
from the root to the leaf annotated with index i spells the suffix S[i..n]. We
refer to the substring of S spelled by the path from the root to node v as the
path-label of v and denote it L(v). Figure 2 shows a suffix tree.

For a node v in T'(S) we partition LL(v) = (i1,42,...,1x), where i; < ij4q
for 1 < j < k, into a sequence of disjoint subsequences Ry, Rs, ..., R, such that
each Ry is a maximal subsequence i4,%q+1,-..,%, Where i;41 —i; < |L(v)| for

a < j < b. Each Ry is denoted a run at v and represents a maximal substring
of S that can be covered by L(v), i.e. L(v) covers S[min Ry .. |L(v)| —1+max Ry],
and we say that Ry is a run from min R, to |L(v)| — 1 + max Ry. A run R, at v
is said to coalesce at v if Ry contains indices from at least two children of v, i.e.
if for no child w of v we have Ry C LL(w). We use C(v) to denote the set of
coalescing runs at v.

3 Maximal Quasiperiodic Substrings

If S is a string and v = SJ[i..j] a substring covered by a shorter string a =
STi..i4+|a|—1], then v is quasiperiodic and we describe it by the triple (4, 7, |a]). A

v =5[i..j]
aaabaabbbabaabaabaabaabbaaaba

o

Fig. 1. The substring v = abaabaabaabaab is a maximal quasiperiodic substring with
quasiperiod o = abaab. Note that the quasiperiod a covers the substring ~.

triple (i, , |@|) describes a mazimal quasiperiodic substring of S, in the following
abbreviated M@QS, if the following requirements are satisfied.

1. v = S[i .. j] is quasiperiodic with quasiperiod «.
2. If a covers S[i’ .. j'], where ¢’ <i < j < j', then i’ =4 and j' = j.
3. aS[j + 1] does not cover S[i..j + 1].

Figure 1 shows a maximal quasiperiodic substring. The problem we consider
in this paper is for a string S to generate all triples (i, j,|a|) that describe
MQSs. This problem was first studied by Apostolico and Ehrenfeucht in [4]. In
the following we state important properties of quasiperiodic substrings which
are essential to the algorithm to be presented.

Lemma 1. Every quasiperiodic string v has a unique quasiperiod o.

Proof. Assume that v is covered by two distinct superprimitive strings a and .
Since o and 8 are prefixes of v we can without loss of generality assume that a
is a proper prefix of 8. Since o and 3 are suffixes of 7, then « is also a proper
suffix of 5. Since a and 3 cover 7, and « is a prefix and suffix of g it follows
that a covers 3, implying the contradiction that £ is not superprimitive. O

Lemma 2. If v occurs at position i and j in S, and 1 < j —1i < |v|/2, then vy
is quasiperiodic.

Proof. Let a be the prefix of 7 of length |y| — (j —i),i.e.a=S[i..i+|y|—(j —
i)—1] = S[j ..i+]|y|—1]. Since j—i < |7|/2 implies that i —1+|vy|—(j—i) > j—1,
we conclude that a covers 7. O

Lemma 3. If the triple (i, j, |a|) describes a MQS in S, then there exists a non-
leaf node in the suffix tree T(S) with path-label a.

Proof. Assume that a covers the quasiperiodic substring SJi .. j] and that no
node in T'(S) has path-label «. Since all occurrences of a in S are followed by
the same character a = S[i + |a|], @a must cover S[i..j + 1], contradicting the

maximality requirement 3. ad

Lemma 4. If v is a quasiperiodic substring in S with quasiperiod o and u is
a non-leaf node in the suffix tree T(S) with path-label ~y, then there exists an
ancestor node v of u in T'(S) with path-label .

Proof. Since u is a non-leaf node in T(S) of degree at least two, there exist
characters a and b such that both ya and b occur in S. Since « is a suffix of ~
we then have that both aa and ab occur in S, i.e. there exist two suffixes of S
having respectively prefix aa and ab, implying that there exists a node v in T'(S)
with L(v) = a. Since a is also a prefix of v, v is an ancestor of u in T'(S). O

Lemma 5. If v is a node in the suffiz tree T'(S) with a superprimitive path-
label «, then the triple (i, 7, |a|) describes a MQS in S if and only if there is a
run R from i to j that coalesces at v.

Proof. Let (i,],|a|) describe a MQS in S and assume that the run R € C(v)
from i and j does not coalesce at v. Then there exists a child v’ of v in T'(S) such
that R C LL(v'). The first symbol along the edge from v to v’ is a = S[i + |«|].
Every occurrence of a in R is thus followed by a, i.e. aa covers S[i..j + 1].
This contradicts the maximality requirement 3 and shows the “if” part of the
theorem.

Let R be a coalescing run from 7 to j at node v, i.e. L(v) = «a covers STi .. j],
and let a = S[j + 1]. To show that (i, j, |a|) describes a MQS in S it is sufficient
to show that aa does not cover S[i..j+ 1]. Since R coalesces at v, there exists a
minimal i € R such that aa does not occur in S at position i". If " = i = min R
then aa cannot cover S at position i” since it by the definition of R cannot
occur any position £ in S satisfying i — |a| < £ < i. If i # ¢ = min R then aa
occurs at min R and max R, i.e. there exists ¢, € R, such that ' < i" < ",
aa occurs at 1" and " in S, and aa does not occour at any position £ in S
satisfying i’ < £ < i"". To conclude that (i, j,|a|) describes a MQS we only have

to show that S[i" — 1] is not covered by the occourence of aa at position ', i.e.
i"" —i' > |a] + 1. By Lemma 2 follows that " — i’ > |«|/2 and "’ — i" > |a|/2,
so i"" —i' > |Ja| + 1. Now assume that ¢/ — i’ = |a| + 1. This implies that |«] is

odd and that ¢ —4' =4"" —i" = (Ja| + 1)/2. Using this we get
a=S[i"+a|]] = S[i" + (Ja| = 1)/2] = S[iI" + (Ja| = 1)/2] = S[i" + |a|]] # a .

This contradiction shows that (i,7,|a|) describes a MQS and shows the “only
if” part of the theorem. O

Theorem 1. Let v be a non-leaf node in T(S) with path-label «. Since v is a
non-leaf node in T (S) there exists i1,i2 € LL(v) such that S[i1+|a|] # Slia+|a|]-
The path-label o is quasiperiodic if and only if there exists an ancestor node u # v
of v in T(S) with path-label B that for £ =1 or £ = 2 satisfies the following two
conditions.

1. Both i and ig + |a| — |B] belong to a coalescing run R at u, and
2. for alli',i" € LL(u), |i' —i"| > |B]/2.

Proof. If o is superprimitive, then no string [covers a, i.e. there exists no
node u in T(S) where C(u) includes a run containing both i; and i; + |a| — ||
for £ =1 or £ = 2. If « is quasiperiodic, then we argue that the quasiperiod 3

Fig. 2. The suffix tree of the string babaaaababaab. Node v has a superprimitive path-
label aba. There is a coalescing run at v from 7 to 11. Hence the substring ababa
occurring at position 7 in babaaaababaab is a maximal quasiperiodic substring.

of a satisfies conditions 1 and 2. Since 3 is superprimitive, condition 2 is satisfied
by Lemma 2. Since 3 is the quasiperiod of a;, we by Lemma 4 have that (3 is the
path-label of a node w in T'(S). Since 8 = S[iy .. 71 +|8|—1] = S[iz ..i2+|5]|—1] =
Slir+lal =18 i1 +la|—1] = S[iz-+la|=|8| ..iz+|al—1] and S[iz+lal] # Sfis-+lal]
then either S[iy + |a|] # S[i1 +5]] or S[i2 + |a|] # S[iz 4+ |B]], which implies that
either 4; and i; + |a| — |f] are in a coalescing run at u, or iz and iz + |a| — |5]
are in a coalescing run at u. Hence, condition 1 is satisfied. O

Theorem 2. A triple (i, j,|a|) describes a MQS in S if and only if the following
three requirements are satisfied

1. There ezists a non-leaf node v in T'(S) with path-label o.

2. The path-label a is superprimitive.

3. There exists a coalescing run R from i to j at v.

Proof. The theorem follows directly from the definition of MQS, Lemma 3 and
Lemma 5. d

Figure 2 illustrates the properties described by Theorem 2.

4 Searching and Merging Height-Balanced Trees

In this section we consider various operations on height-balanced binary trees [2],
e.g. AVL-trees [1], and present an extension of the well-known “smaller-half
trick” which implies a non-trivial bound on the time it takes to perform a se-
quence of operations on height-balanced binary trees. This bound is essential to

Fig. 3. A height-balanced tree with 15 elements, and the corresponding extended
height-balanced tree. Each node in the extended height-balanced tree with at least
one child is annotated with min (left), max (right) and max-gap (bottom). The empha-
sized path is the search path for A-Pred(T,4,42)

the running time of our algorithm for finding maximal quasiperiodic substrings
to be presented in the next section.

For a sorted list L = (z1,...,%,) of n distinct elements, and an element z
and a value §, we define the following functions which capture the notation of
predecessors and successors of an element, and the notation of A-predecessors
and A-successors which in Sect. 5 will be used to compute the head and the tail
of a coalescing run.

pred(L,z) =max{y € L |y <z},
succ(L,z) =min{y € L |y > =},

A-pred(L,0,z) =min{y € L |y <z A max-gap(L N[y, z]) <},

)
)
max-gap(L) = max{0, 22 — 21,23 — Ta,...,Tp — Tp_1},
)
A-succ(L,d,2) =max{y € L |y >z A max-gap(L N [z,y]) <} .

If L = (5,7,13,14,17,21,25,30,31), then pred(L,20) = 17, succ(L,20) = 21,
max-gap(L) = 13 — 7 = 6, A-pred(L,4,20) = 13, and A-succ(L, 4,20) = 25.
Note that pred(L, z) = A-pred(L, 0, z) and succ(L,z) = A-succ(L,0, z).

We consider an extension of hight-balanced trees where each node v in addi-
tion to key(v), height(v), left(v), right(v), and parent(v), which respectively stores
the element at v, the height of the subtree T}, rooted at v, pointers to the left and
right children of v and a pointer to the parent node of v, also stores the following
information: previous(v) and next(v) are pointers to the nodes which store the
immediate predecessor and successor elements of key(v) in the sorted list, min(v)
and max(v) are pointers to the nodes storing the smallest and largest elements
in the subtree rooted at v, and max-gap(v) is the value of max-gap applied to
the list of all elements in the subtree T, rooted at v. Figure 3 shows a height-
balanced tree and the corresponding extended height-balanced tree (previous
and next pointers are omitted in the figure).

If v has a left child v1, min(v) points to min(vy). Otherwise min(v) points to v.
Symmetrically, if v has a right child vy, max(v) points to max(vs). Otherwise

max(v) points to v. If v stores element e and has a left child v; and a right
child vs, then max-gap(v) can be computed as

max-gap(v) = max{0, max-gap(v1), max-gap(va),
key(1) — key(max(u1)). key(min(v2)) — key(v)} . (1)

If v; and/or vy do not exist, then the expression is reduced by removing the
parts of the expression involving the missing nodes/node. The equation can be
used to recompute the information at nodes being rotated when rebalancing a
height-balanced search tree. Similar to the function max-gap(L) and the oper-
ation max-gap(v), we can define and support the function min-gap(L) and the
operation min-gap(v). The operations we consider supported for an extended
height-balanced tree T are the following, where eq, ..., e denotes a sorted list
of k distinct elements. The output of the four last operations is a list of k pointers
to nodes in T containing the answer to each search key e;.

— Multilnsert(T, ey, ..., ex) inserts (or merges) the k elements into T'.
— MultiPred(T, e, .. ., ex) for each e; finds pred(T,e;).
— MultiSucc(T, ey, ..., ex) for each e; finds succ(T), ¢;).

— Multi-A-Pred(T, §, €1, ..., ex) for each e; finds A-pred(T, 4, e;).

3

Multi-A-Succ(T, d, e, . .., ex) for each e; finds A-succ(T, 6, ¢;).

We merge two height-balanced trees T and T', |T| > |T'|, by inserting the
elements in 7" into T, i.e. Multilnsert(T, ey, ez, ...,e;) where e1,es,..., e are

the elements in T” in sorted order. The following theorem states the running
time of the operations.

Theorem 3. Fach of the operations Multilnsert, MultiPred, MultiSucc, Multi-
A-Pred, and Multi-A-Succ can be performed in time O(k - max{1,log(n/k)}),
where n is the size of the tree and k is the number elements to be inserted or
searched for.

Proof. If k > n, the theorem follows immediately. In the following we therefore
assume k < n. Brown and Tarjan in [10] show how to merge two height-balanced
trees in time O(k - max{1,log(n/k)}), especially their algorithm performs k top-
down searches in time O(k - max{1,log(n/k)}). Since a search for an element e
either finds the element e or the predecessor/successor of e it follows that Multi-
Pred and MultiSucc can be computed in time O(k - max{1,log(n/k)}) using the
previous and next pointers. The implementation of Multilnsert follows from the
algorithm of [10] by observing that only the O(k-max{1,log(n/k)}) nodes visited
by the merging need to have their associated min, max and max-gap information
recomputed due to the inserted elements, and the recomputing can be done in a
traversal of these nodes in time O(k - max{1,log(n/k)}) using Equation 1. The
implementation of the Multi-A-Pred and Multi-A-Succ operations is more tech-
nical. For the details see [9, Sect. 4]. O

If each node in a binary tree supplies a term O(k), where k is the number of
leaves in the smallest subtree rooted at a child of the node, then the sum over
all terms is O(N log N). In the literature, this bound is often referred to as the
“smaller-half trick”. It is essential to the running time of several methods for
finding tandem repeats [6, 11, 24]. Our method for finding maximal quasiperiodic
substrings uses a stronger version of the “smaller-half trick” hinted at in [20,
Exercise 35] and stated in Lemma 6. It implies that we at every node in a
binary tree with IV leaves can perform a fixed number of the operations stated
in Theorem 3, with n and & as stated in the lemma, in total time O(N log N).

Lemma 6. If each internal node v in a binary tree with N leaves supplies a
term O(klog(n/k)), where n is the number of leaves in the subtree rooted at v
and k < n/2 is the number of leaves in the smallest subtree rooted at a child
of v, then the sum over all terms is O(N log N).

5 Algorithm

The algorithm to find all maximal quasiperiodic substrings in a string S of
length n first constructs the suffix tree T'(S) of S in time O(n) using any existing
suffix tree construction algorithm, e.g. [19,27,28], and then processes T'(S) in
two phases. Each phase involves one or more traversals of T'(S). In the first phase
the algorithm identifies all nodes of T'(S) with a superprimitive path-label. In
the second phase the algorithm reports the maximal quasiperiodic substrings
in S. This is done by reporting the coalescing runs at the nodes which in the
first phase were identified to have superprimitive path-labels.

To identify nodes with superprimitive path-labels we apply the concepts of
questions, characteristic occurrences of a path-label, and sentinels of a node.
Let v be a non-leaf node in T(S) and u # v an ancestor node of v in T'(S).
Let vy and vy be the two leftmost children of v, and 41 = min(LL(vy)) and iy =
min(LL(vs)). A question posed to u is a triple (7, j,v) where i € LL(v) C LL(u)
and j = i+ |L(v)| — |L(u)| € LL(u), and the answer to the question is true if
and only if 7 and j are in the same coalescing run at u.

We define the two occurrences of L(v) at positions i; and i to be the
characteristic occurrences of L(v), and define the sentinels 1 and 02 of v as
the positions immediately after the two characteristic occurrences of L(v), i.e.
01 = i1 + |L(v)| and 02 = iy + |L(v)]. Since i1 and i are indices in leaf-lists of
two distinct children of v, we have S[0;] # S[02]. In the following we let SL(v)
be the list of the sentinels of the nodes in the subtree rooted at v in T'(.S). Since
there are two sentinels for each non-leaf node |SL(v)| < 2|LL(v)| — 2.

Theorem 1 implies the following technical lemma which forms the basis for
detecting nodes with superprimitive path-labels in T'(.S).

Lemma 7. The path-label L(v) is quasiperiodic if and only if there exists a
sentinel O of v, and an ancestor w of v (possibly w = v) for which there exists
Jj € LL(w)N]o — 2-min-gap(LL(w)) ; 9] such that (0 — |L(v)|,j,v) is a question
that can be posed and answered successfully at an ancestor node u # v of w
(possibly u = w) with |L(u)| = 0 — j and min-gap(LL(u)) > |L(u)|/2.

Proof. If there exists a question (¢ — |L(v)|,o — |L(u)|,v) that can be answered
successfully at u, then ¢ — |L(v)| and © — |L(u)| are in the same run at u, i.e.
L(u) covers L(v) and L(v) is quasiperiodic.

If L(v) is quasiperiodic, we have from Theorem 1 that there for iy = 0, —
|L(v)|, where £ = 1 or £ = 2, exists an ancestor node u # v of v where both i,
and iy + |L(v)| — |L(u)| belong to a coalescing run at u and min-gap(LL(u)) >
|L(u)|/2. The lemma follows by letting w = u and j = 0 — |L(u)|. O

Since j and ¢ uniquely determine the question (¢ —|L(v)|, j,v), it follows that
to decide the superprimitivity of all nodes it is sufficient for each node w to find
all pairs (v, j) where ¢ € SL(w) and j € LL(w) N |0 — 2 - min-gap(LL(w)) ; 9],
or equivalently j € LL(w) and ¢ € SL(w) N]j; j + 2 - min-gap(LL(w))[. Fur-
thermore, if § and j result in a question at w, but j € LL(w') and ¢ € SL(w")
for some child w' of w, then ¢ and j result in the same question at w' since
min-gap(LL(w')) > min-gap(LL(w)), i.e. we only need to find all pairs (9, j)
at w where ¥ and j come from two distinct children of w. We can now state the
details of the algorithm.

Phase I — Marking Nodes with Quasiperiodic Path-Labels In Phase I
we mark all nodes in T'(S) that have a quasiperiodic path-label by performing
three traversals of T'(S). We first make a depth-first traversal of T'(S) where we
for each node v compute min-gap(LL(v)). We do this by constructing for each
node v a search tree Ty (v) that stores LL(v) and supports the operations in
Sect. 4. In particular the root of T7,r,(v) should store the value min-gap(Trr,(v))
to be assigned to v. If v is a leaf, Tr,1,(v) only contains the index annotated to v.
If v is an internal node, we construct T,z (v) by merging the Ty, trees of the
children of v from left-to-right when these have been computed. If the children of
v are vy,...,v; we merge T (v1),..., T (vit1) by performing a binary merge
of Tr1,(viy1) with the result of merging T, (v1),...,Trr(vi). As a side effect of
computing Tr.r,(v) the T, trees of the children of v are destroyed.

We pose and answer questions in two traversals of T'(S) explained below as
Step 1 and Step 2. For each node v we let Q(v) contain the list of questions
posed at v. Inititially @Q(v) is empty.

Step 1 (Generating Questions) In this step we perform a depth-first traversal
of T(S). At each node v we construct search trees 77,7, (v) and Tsr,(v) which store
respectively LL(v) and SL(v) and support the operations mentioned in Sect. 4.
For a non-leaf node v with leftmost children v; and vy, we compute the sentinels
of v as 01 = min(Trr(v1)) + |LL(v1)| and 09 = min(TLy(v2)) + |LL(v1)]. The
T, trees need to be recomputed since these are destroyed in the first traversal
of T'(S). The computation of Tz, (v) is done similarly to the computation of
Trr.(v) by merging the Tsy, lists of the children of v from left-to-right, except
that after the merging the Tsy, trees of the children we also need to insert the
two sentinels 97 and 0y in Tsp,(v).

We visit node v, and call it the current node, when the T, and Ty, trees at
the children of v are available. During the traversal we maintain an array depth

such that depth(k) refers to the node u on the path from the current node to
the root with |L(u)| = k if such a node exists. Otherwise depth(k) is undef. We
maintain depth by setting depth(|L(u)|) to u when we arrive at u from its parent,
and setting depth(|L(u)|) to undef when we return from u to its parent.

When v is the current node we have from Lemma 7 that it is sufficient
to generate questions for pairs (w,j) where w and j come from two different
children of v. We do this while merging the 775, and Tsy, trees of the children.
Let the children of v be v1,...,v;. Assume LL; = LL(vy) U --- U LL(v;) and
SL; = SL(vy)U---USL(v;) has been computed as T, and Tsy,, and we are in
the process of computing LL;; and SL;+1. The questions we need to generate
while computing LL;;, and SL;; are those where j € LL; and w € SL(v;41) or
j € LL(viy1) and @ € SL;. Assume j € Try, and & € Tsy,, where either Ty, =
Trr, and Tsy, = Tsyp, ('Uz'+1) or Ty, = TLL('Ui+1) and Tsr, = Tsr,,. There are two
cases. If | Ty 1| < |Tsy| we locate each j € Try, in Tsy, by performing a MultiSucc
operation. Using the next pointers we can then for each j report those w € Tsy,
where W € |j; j + 2 - min-gap(LL(v))[. If |Trr| > |Tsr| we locate each w € T,
in Tr1, by performing a MultiPred operation. Using the previous pointers we can
then for each w report those j € Tsy where j € | — 2 - min-gap(LL(v)); wl.
The two sentinels 97 and o2 of v are handled similarly to the later case by
performing two searches in T, (v) and using the previous pointers to generate
the required pairs involving the sentinels 9; and 99 of v.

For a pair (w,7) that is generated at the current node v, we generate a
question (w — |L(w)]|, j,w) about descendent w of v with sentinel w, and pose
the question at ancestor u = depth(w—j) by inserting (w—|L(w)|, j, w) into Q(u).
If such an ancestor u does not exists, i.e. depth(w — j) is undef, or min-gap(u) <
|L(u)|/2 then no question is posed.

Step 2 (Answering Questions) Let Q(v) be the set of questions posed at node v
in Step 1. If there is a coalescing run R in C(v) and a question (i, j,w) in Q(v)
such that min R < ¢ < 7 < max R, then i and j are in the same coalescing run
at v and we mark node w as having a quasiperiodic path-label.

We identify each coalescing run R in C(v) by the tuple (min R, max R). We
answer question (i,7,w) in Q(v) by deciding if there is a run (min R, max R)
in C(v) such that min R < i < j < maxR. If the questions (i, 7, w) in Q(v)
and runs (min R, max R) in C(v) are sorted lexicographically, we can answer all
questions by a linear scan through Q(v) and C'(v). In the following we describe
how to generate C'(v) in sorted order and how to sort Q(v).

Constructing Coalescing Runs The coalescing runs are generated in a traversal
of T'(S). At each node v we construct T, (v) storing LL(v). We construct T (v)
by merging the Ty trees of the children of v from left-to-right. A coalescing
run R in LL(v) contains an index from at least two distinct children of v, i.e.
there are indices i’ € LL(v1) and i € LL(v2) in R for two distinct children v,
and ve of v such that i’ < i" are neighbors in LL(v) and i" — i’ < |L(v)|. We
say that i’ is a seed of R. We identify R by the tuple (min R, max R). We have
min R = A-pred(LL(v), |L(v)],4') and max R = A-succ(LL(v),|L(v)]|,i").

To construct C'(v) we collect seeds iy, ,0p,,... i, of every coalescing run
in LL(v) in sorted order. This done by checking while merging the Tr,1, trees
of the children of v if an index gets a new neighbor in which case the in-
dex can be identified as a seed. Since each insertion at most generates two
seeds we can collect all seeds into a sorted list while performing the merging.
From the seeds we can compute the first and last index of the coalesing runs
by doing Multi-A-Pred(Tr1,(v), |L(V)|,ipy s @pg, - - ip,,) and Multi-A-Suce(Tr 1 (v),
|L(0)|, %y y8pgs- -, 0p,). Since we might have collected several seeds of the same

run, the list of coalescing runs Ry, R, ..., R might contain duplets which can

be removed by reading through the list once. Since the seeds are collected in
sorted order, the resulting list of runs is also sorted.

Sorting the Questions We collect the elements in Q(v) for every node v in T'(S)
into a single list @) that contains all question (4,7, w) posed at nodes in T'(S).
We annotate every element in) with the node v it was collected from. By
construction every question (i, j,w) posed at a node in T'(S) satisfies that 0 <
i < j < n. We can thus sort the elements in @ lexicographically with respect
to i and j using radix sort. After sorting the elements in) we distribute the
questions back to the proper nodes in sorted order by a linear scan through Q.

Phase IT — Reporting Maximal Quasiperiodic Substrings After Phase I
all nodes that have a quasiperiodic path-label are marked, i.e. all unmarked
nodes are nodes that have a superprimitive path-label. By Theorem 2 we report
all maximal quasiperiodic substrings by reporting the coalescing runs at every
node that has a superprimitive path-label. In a traversal of the marked suffix tree
we as in Phase I construct C(v) at every unmarked node and report for every R in
C(v) the triple (min R, max R, |L(v)|) that identifies the corresponding maximal
quasiperiodic substring.

6 Running Time

In every phase of the algorithm we traverse the suffix tree and construct at
each node v search trees that stores LL(v) and/or SL(v). At every node v we
construct, various lists by considering the children of v from left-to-right and
perform a constant number of the operations in Theorem 3. Since the overall
merging of information in T'(S) is done by binary merging we by Lemma 6 have
that this amounts to time O(nlogn) in total. To generate and answer questions
we use time proportional to the total number of questions generated. Lemma 8
state that the number of questions is bounded by O(nlogn). We conclude that
the running time of the algorithm is O(nlogn).

Lemma 8. At most O(nlogn) questions are generated.

Proof. We prove that each of the 2n sentinels can at most result in the generation
of O(logn) questions. Consider a sentinel @ of node w and assume that it gen-
erates a question (w — |L(w)|, j,w) at node v. Since @ — j < 2 min-gap(LL(v)),

Jj is either pred(LL(v),w — 1) (a question of Type A) or the left neighbor of
pred(LL(v),w — 1) in LL(v) (a question of Type B). For @ we first consider all
indices resulting in questions of Type A along the path from w to the root. Note
that this is an increasing sequence of indices. We now show that the distance of
w to the indices is geometrically decreasing, i.e. there are at most O(logn) ques-
tions generated of Type A. Let j and j' be two consecutive indices resulting in
questions of Type A at node v and at an ancestor node u of v. Since j < j' < W
and j' —j > min-gap(LL(u)) and @ — j' < 2 - min-gap(LL(u)), we have that
w—j < %(71) — 7). Similarly we can bound the number of questions generated
of Type B for sentinel @ by O(logn). O

7 Achieving Linear Space

Storing the suffix tree T'(S) uses space O(n). During a traversal of the suffix
tree we construct search trees as explained. Since no element, index or sentinel,
at any time is stored in more than a constant number of search trees, storing
the search trees uses space O(n). Unfortunately, storing the sets C'(v) and Q(v)
of coalescing runs and questions at every node v in the suffix tree uses space
O(nlogn). To reduce the space consumption we must thus avoid to store C(v)
and Q(v) at all nodes simultaneously. The trick is to modify Phase I to alternate
between generating and answering questions.

We observe that generating questions and coalescing runs (Step 1 and the
first part of Step 2) can be done in a single traversal of the suffix tree. This
traversal is Part 1 of Phase I. Answering questions (the last part of Step 1)
is Part 2 of Phase I. To reduce the space used by the algorithm to O(n) we
modify Phase I to alternate in rounds between Part 1 (generating questions and
coalescing runs) and Part 2 (answering questions).

We say that node v is ready if C(v) is available and all questions from it has
been generated, i.e. Part 1 has been performed on it. If node v is ready then
all nodes in its subtree are ready. Since all questions to node v are generated
at nodes in its subtree, this implies that Q(v) is also available. By definition
no coalescing runs are stored at non-ready nodes and Lemma 9 states that
only O(n) questions are stored at non-ready nodes. In a round we produce ready
nodes (perform Part 1) until the number of questions plus coalescing runs stored
at nodes readied in the round exceed n, we then answer the questions (perform
Part 2) at nodes readied in the round. After a round we dispose questions and
coalescing runs stored at nodes readied in the round. We continue until all nodes
in the suffix tree have been visited.

Lemma 9. There are at most O(n) questions stored at non-ready nodes.

Proof. Let v be a node in T(S) such that all nodes on the path from v to
the root are non-ready. Consider a sentinel @ corresponding to a node in the
subtree rooted at v. Assume that this sentinel has induced three questions (w —
|L(w)], 5", w), (= [L(w)], 5", w) and (b — |L(w)|, 5", w), where j" < j" < j",

that are posed at ancestors of v. By choice of v, these ancestors are non-ready

nodes. One of the ancestors is node u = depth(w — j'). Since question (W —
|L(w)],j',w) is posed at u, min-gap(LL(u)) > |L(u)|/2. Since j', 5", 7" € LL(u)
and j"' — j' < w — j" = |L(u)|, it follows that min-gap(LL(u)) < min{j" —
J', 7" — 3"} < |L(u)|/2. This contradicts that min-gap(LL(u)) > |L(u)|/2 and
shows that each sentinel has generated at most two questions to non-ready nodes.
The lemma follows because there are at most 2n sentinels in total. O

Alternating between Part 1 and Part 2 clearly results in generating and an-
swering the same questions as if Part 1 and Part 2 were performed without alter-
nation. The correctness of the algorithm is thus unaffected by the modification
of Phase I. Now consider the running time. The running time of a round can be
divided into time spent on readying nodes (Part 1) and time spent on answering
questions (Part 2). The total time spent on readying nodes is clearly unaffected
by the alternation. To conclude the same for the total time spent on answering
questions, we must argue that the time spent on sorting the posed questions in
each round is proportional to the time otherwise spent in the round.

The crucial observation is that each round takes time {2(n) for posing ques-
tions and identifying coalescing runs, implying that the O(n) term in each radix
sorting is neglectable. We conclude that the running time is unaffected by the
modification of Phase I. Finally consider the space used by the modified algo-
rithm. Besides storing the suffix tree and the search trees which uses space O(n),
it only stores O(n) questions and coalescing runs at nodes readied in the current
round (by construction of a round) and O(n) questions at non-ready nodes (by
Lemma 9). In summary we have the following theorem.

Theorem 4. All maximal quasiperiodic substrings of a string of length n can
be found in time O(nlogn) and space O(n).

References

1. G. M. Adel’'son-Vel’skii and Y. M. Landis. An algorithm for the organization of
information. Doklady Akademii Nauk SSSR, 146:263-266, 1962. English translation
in Soviet Math. Dokl., 3:1259-1262.

2. A.V. Aho, J. E. Hopcraft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

3. A. Apostolico and D. Breslauer. Of periods, quasiperiods, repetitions and covers.
In A selection of essays in honor of A. Ehrenfeucht, volume 1261 of Lecture Notes
in Computer Science. Springer, 1997.

4. A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in
strings. Theoretical Computer Science, 119:247-265, 1993.

5. A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity testing
for strings. Information Processing Letters, 39:17-20, 1991.

6. A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theoretical Computer Science, 22:297-315, 1983.

7. D. Breslauer. An on-line string superprimitivity test. Information Processing
Letters, 44:345-347, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

G. S. Brodal, R. B. Lyngsg, C. N. S. Pedersen, and J. Stoye. Finding maximal pairs
with bounded gap. In Proceedings of the 10th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 1645 of Lecture Notes in Computer Science,
pages 134-149, 1999.

G. S. Brodal and C. N. S. Pedersen. Finding maximal quasiperiodicities in strings.
Technical Report RS-99-25, BRICS, September 1999.

M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the ACM,
26(2):211-226, 1979.

M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Information Processing Letters, 12(5):244-250, 1981.

M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45:63-86, 1986.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

D. Gusfield and J. Stoye. Linear time algorithms for finding and representing
all the tandem repeats in a string. Technical Report CSE-98-4, Department of
Computer Science, UC Davis, 1998.

C. S. Iliopoulos and L. Mouchard. Quasiperiodicity: From detection to normal
forms. Journal of Automata, Languages and Combinatorics, 4(3):213-228, 1999.
R. Kolpakov and G. Kucherov. Maximal repetitions in words or how to find all
squares in linear time. Technical Report 98-R-227, LORIA, 1998.

M. G. Main and R. J. Lorentz. An O(nlogn) algorithm for finding all repetitions
in a string. Journal of Algorithms, 5:422-432, 1984.

M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. In
A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume
F12 of NATO ASI Series, pages 271-278. Springer, Berlin, 1985.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262-272, 1976.

K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms.
Springer-Verlag, 1994.

K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

D. Moore and W. F. Smyth. Computing the covers of a string in linear time. In
Proceedings of the 5th Annual Symposium on Discrete Algorithms (SODA), pages
511-515, 1994.

M. Rabin. Discovering repetitions in strings. In A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words, volume F12 of NATO ASI Series, pages 279—
288. Springer, Berlin, 1985.

J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats
using a suffix tree. In Proceedings of the 9th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 1448 of Lecture Notes in Computer Science,
pages 140-152, 1998.

A. Thue. Uber unendliche Zeichenreihen. Skrifter udgivet af Videnskabsselskabet i
Christiania, Mathematisk- og Naturvidenskabeligklasse, 7:1-22, 1906.

A. Thue. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Skrifter
udgivet af Videnskabsselskabet © Christiania, Mathematisk- og Naturvidenskabelig-
klasse, 1:1-67, 1912.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260, 1995.
P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Sym-
posium on Switching and Automata Theory, pages 1-11, 1973.

