
Finding Maximal Quasiperiodi
ities in StringsGerth St�lting Brodal? and Christian N. S. Pedersen?Abstra
t. Apostoli
o and Ehrenfeu
ht de�ned the notion of a maximalquasiperiodi
 substring and gave an algorithm that �nds all maximalquasiperiodi
 substrings in a string of length n in time O(n log2 n). Inthis paper we give an algorithm that �nds all maximal quasiperiodi
substrings in a string of length n in time O(n log n) and spa
e O(n).Our algorithm uses the suÆx tree as the fundamental data stru
ture
ombined with eÆ
ient methods for merging and performing multiplesear
hes in sear
h trees. Besides �nding all maximal quasiperiodi
 sub-strings, our algorithm also marks the nodes in the suÆx tree that havea superprimitive path-label.1 Introdu
tionChara
terizing and �nding regularities in strings are important problems in manyareas of s
ien
e. In mole
ular biology repetitive elements in 
hromosomes deter-mine the likelihood of 
ertain diseases. In probability theory regularities areimportant in the analysis of sto
hasti
 pro
esses. In 
omputer s
ien
e repetitiveelements in strings are important in e.g. data 
ompression, spee
h re
ognition,
oding, automata and formal language theory.A widely studied regularity in strings are 
onse
utive o

urren
es of thesame substring. Two 
onse
utive o

urren
es of the same substring is 
alled ano

urren
e of a square or a tandem repeat. In the beginning of the last 
entury,Thue [25, 26℄ showed how to 
onstru
t arbitrary long strings over any alphabet ofmore than two 
hara
ters that 
ontain no squares. Sin
e then a lot of work havefo
used on developing eÆ
ient methods to 
ount or dete
t squares in strings.Several methods [12, 18, 23℄ 
an determine if a string of length n 
ontains asquare in time O(n), and methods [6, 11, 17, 24℄ 
an �nd o

urren
es of squaresin a string of length n in time O(n logn) plus the time it takes to output thedete
ted squares. Re
ently two methods [14, 16℄ have been presented that �nd a
ompa
t representation of all squares in a string of length n in time O(n).A way to des
ribe the regularity of an entire string in terms of repetitive sub-strings is the notion of a periodi
 string. Gus�eld [13, page 40℄ de�nes string Sas periodi
 if it 
an be 
onstru
ted by 
on
atenations of a shorter string �.The shortest string from whi
h S 
an be generated by 
on
atenations is the pe-riod of S. A string that is not periodi
 is primitive. Some regularities in strings
annot be 
hara
terized eÆ
iently using periods or squares. To remedy this,? Basi
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Ehrenfeu
ht, as referred in [3℄, suggested the notation of a quasiperiodi
 string.A string S is quasiperiodi
 if it 
an be 
onstru
ted by 
on
atenations and su-perpositions of a shorter string �. We say that � 
overs S. Several strings might
over S. The shortest string that 
overs S is the quasiperiod of S. A 
overingof S implies that S 
ontains a square, so by the result of Thue not all strings arequasiperiodi
. A string that is not quasiperiodi
 is superprimitive. Apostoli
o,Fara
h and Iliopoulos [5℄ presented an algorithm that �nds the quasiperiod of agiven string of length n in time O(n). This algorithm was simpli�ed and madeon-line by Breslauer [7℄. Moore and Smyth [22℄ presented an algorithm that �ndsall substrings that 
overs a given string of length n in time O(n).Similar to the period of a string, the quasiperiod of a string des
ribes aglobal property of the string, but quasiperiods 
an also be used to 
hara
terizesubstrings. Apostoli
o and Ehrenfeu
ht [4℄ introdu
ed the notion of maximalquasiperiodi
 substrings of a string. Informally, a quasiperiodi
 substring 
 of Swith quasiperiod � is maximal if no extension of 
 
an be 
overed by � or �a,where a is the 
hara
ter following 
 in S. Apostoli
o and Ehrenfeu
ht showedthat the maximal quasiperiodi
 substrings of S 
orrespond to path-labels of
ertain nodes in the suÆx tree of S, and gave an algorithm that �nds all max-imal quasiperiodi
 substrings of a string of length n in time O(n log2 n) andspa
e O(n logn). The algorithm is based on a bottom-up traversal of the suf-�x tree in whi
h maximal quasiperiodi
 substrings are dete
ted at the nodes inthe suÆx tree by maintaining various data stru
tures during the traversal. Thegeneral stru
ture of the algorithm resembles the stru
ture of the algorithm byApostoli
o and Preparata [6℄ for �nding tandem repeats.In this paper we present an algorithm that �nds all maximal quasiperiodi
substrings in a string of length n in time O(n logn) and spa
e O(n). Similar tothe algorithm by Apostoli
o and Ehrenfeu
ht, our algorithm �nds the maximalquasiperiodi
 substrings in a bottom-up traversal of the suÆx tree. The improvedtime and spa
e bound is a result of using eÆ
ient methods for merging andperforming multiple sear
hes in sear
h trees, 
ombined with observing that someof the work done, and data stored, by the Apostoli
o and Ehrenfeu
ht algorithmis avoidable. The analysis of our algorithm is based on a stronger version of thewell known \smaller-half tri
k" used in the algorithms in [6, 11, 24℄ for �ndingtandem repeats. The stronger version of the \smaller-half tri
k" is hinted atin [20, Exer
ise 35℄ and stated in Lemma 6. In [21, Chapter 5℄ it is used in theanalysis of �nger sear
hes, and in [8℄ it is used in the analysis and formulationof an algorithm to �nd all maximal pairs with bounded gap in a string.Re
ently, and independent of our work, Iliopoulos and Mou
hard in [15℄ re-port an algorithm with running time O(n logn) for �nding all maximal quasiperi-odi
 substrings in a string of length n. Their algorithm di�ers from our algo-rithm as it does not use the suÆx tree as the fundamental data stru
ture, butuses the partitioning te
hnique used by Cro
hemore [11℄ 
ombined with severalother data stru
tures. Finding maximal quasiperiodi
 substrings 
an thus bedone in two di�erent ways similar to the di�eren
e between the algorithms byCro
hemore [11℄ and Apostoli
o and Preparata [6℄ for �nding tandem repeats.



The rest of this paper is organized as follows. In Se
t. 2 we de�ne the pre-liminaries used in the rest of the paper. In Se
t. 3 we state and prove propertiesof quasiperiodi
 substrings and suÆx trees. In Se
t. 4 we state and prove resultsabout eÆ
ient merging of and sear
hing in height-balan
ed trees. In Se
t. 5 westated our algorithm to �nd all maximal quasiperiodi
 substrings in a string. InSe
t. 6 we analyze the running time of our algorithm and in Se
t. 7 we showhow the algorithm 
an be implemented to use linear spa
e.2 De�nitionsIn the following we let S; �; �; 
 2 �� denote strings over some �nite alphabet �.We let jsj denote the length of S, S[i℄ the ith 
hara
ter in S for 1 � i � jSj, andS[i :: j℄ = S[i℄S[i+1℄ � � �S[j℄ a substring of S. A string � o

urs in a string 
 atposition i if � = 
[i :: i+ j�j � 1℄. We say that 
[j℄, for all i � j � i+ j�j � 1, is
overed by the o

urren
e of � at position i.A string � 
overs a string 
 if every position in 
 is 
overed by an o

urren
eof �. Figure 1 shows that 
 = abaabaabaabaab is 
overed by � = abaab. Note thatif � 
overs 
 then � is both a pre�x and a suÆx of 
. A string is quasiperiodi
if it 
an be 
overed by a shorter string. A string is superprimitive if it is notquasiperiodi
, that is, if it 
annot be 
overed by a shorter string. A superprimitivestring � is a quasiperiod of a string 
 if � 
overs 
. In Lemma 1 we show thatif � is unique, and � is therefore denoted the quasiperiod of 
.The suÆx tree T (S) of the string S is the 
ompressed trie of all suÆxes ofthe string S$, where $ =2 �. Ea
h leaf in T (S) represents a suÆx S[i :: n℄ of Sand is annotated with the index i. We refer to the set of indi
es stored at theleaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).Ea
h edge in T (S) is labelled with a nonempty substring of S su
h that the pathfrom the root to the leaf annotated with index i spells the suÆx S[i :: n℄. Werefer to the substring of S spelled by the path from the root to node v as thepath-label of v and denote it L(v). Figure 2 shows a suÆx tree.For a node v in T (S) we partition LL(v) = (i1; i2; : : : ; ik), where ij < ij+1for 1 � j < k, into a sequen
e of disjoint subsequen
es R1; R2; : : : ; Rr, su
h thatea
h R` is a maximal subsequen
e ia; ia+1; : : : ; ib, where ij+1 � ij � jL(v)j fora � j < b. Ea
h R` is denoted a run at v and represents a maximal substringof S that 
an be 
overed by L(v), i.e. L(v) 
overs S[minR` :: jL(v)j�1+maxR`℄,and we say that R` is a run from minR` to jL(v)j � 1 +maxR`. A run R` at vis said to 
oales
e at v if R` 
ontains indi
es from at least two 
hildren of v, i.e.if for no 
hild w of v we have R` � LL(w). We use C(v) to denote the set of
oales
ing runs at v.3 Maximal Quasiperiodi
 SubstringsIf S is a string and 
 = S[i :: j℄ a substring 
overed by a shorter string � =S[i :: i+j�j�1℄, then 
 is quasiperiodi
 and we des
ribe it by the triple (i; j; j�j). A




 = S[i :: j℄a a a b a a b b b a b a a b a a b a a b a a b b a a a b a�Fig. 1. The substring 
 = abaabaabaabaab is a maximal quasiperiodi
 substring withquasiperiod � = abaab. Note that the quasiperiod � 
overs the substring 
.triple (i; j; j�j) des
ribes a maximal quasiperiodi
 substring of S, in the followingabbreviated MQS, if the following requirements are satis�ed.1. 
 = S[i :: j℄ is quasiperiodi
 with quasiperiod �.2. If � 
overs S[i0 :: j0℄, where i0 � i � j � j0, then i0 = i and j0 = j.3. �S[j + 1℄ does not 
over S[i :: j + 1℄.Figure 1 shows a maximal quasiperiodi
 substring. The problem we 
onsiderin this paper is for a string S to generate all triples (i; j; j�j) that des
ribeMQSs. This problem was �rst studied by Apostoli
o and Ehrenfeu
ht in [4℄. Inthe following we state important properties of quasiperiodi
 substrings whi
hare essential to the algorithm to be presented.Lemma 1. Every quasiperiodi
 string 
 has a unique quasiperiod �.Proof. Assume that 
 is 
overed by two distin
t superprimitive strings � and �.Sin
e � and � are pre�xes of 
 we 
an without loss of generality assume that �is a proper pre�x of �. Sin
e � and � are suÆxes of 
, then � is also a propersuÆx of �. Sin
e � and � 
over 
, and � is a pre�x and suÆx of � it followsthat � 
overs �, implying the 
ontradi
tion that � is not superprimitive. utLemma 2. If 
 o

urs at position i and j in S, and 1 � j � i � j
j=2, then 
is quasiperiodi
.Proof. Let � be the pre�x of 
 of length j
j � (j � i), i.e. � = S[i :: i+ j
j � (j �i)�1℄ = S[j :: i+j
j�1℄. Sin
e j�i � j
j=2 implies that i�1+j
j�(j�i) � j�1,we 
on
lude that � 
overs 
. utLemma 3. If the triple (i; j; j�j) des
ribes a MQS in S, then there exists a non-leaf node in the suÆx tree T (S) with path-label �.Proof. Assume that � 
overs the quasiperiodi
 substring S[i :: j℄ and that nonode in T (S) has path-label �. Sin
e all o

urren
es of � in S are followed bythe same 
hara
ter a = S[i+ j�j℄, �a must 
over S[i :: j + 1℄, 
ontradi
ting themaximality requirement 3. utLemma 4. If 
 is a quasiperiodi
 substring in S with quasiperiod � and u isa non-leaf node in the suÆx tree T (S) with path-label 
, then there exists anan
estor node v of u in T (S) with path-label �.



Proof. Sin
e u is a non-leaf node in T (S) of degree at least two, there exist
hara
ters a and b su
h that both 
a and 
b o

ur in S. Sin
e � is a suÆx of 
we then have that both �a and �b o

ur in S, i.e. there exist two suÆxes of Shaving respe
tively pre�x �a and �b, implying that there exists a node v in T (S)with L(v) = �. Sin
e � is also a pre�x of 
, v is an an
estor of u in T (S). utLemma 5. If v is a node in the suÆx tree T (S) with a superprimitive path-label �, then the triple (i; j; j�j) des
ribes a MQS in S if and only if there is arun R from i to j that 
oales
es at v.Proof. Let (i; j; j�j) des
ribe a MQS in S and assume that the run R 2 C(v)from i and j does not 
oales
e at v. Then there exists a 
hild v0 of v in T (S) su
hthat R � LL(v0). The �rst symbol along the edge from v to v0 is a = S[i+ j�j℄.Every o

urren
e of � in R is thus followed by a, i.e. �a 
overs S[i :: j + 1℄.This 
ontradi
ts the maximality requirement 3 and shows the \if" part of thetheorem.Let R be a 
oales
ing run from i to j at node v, i.e. L(v) = � 
overs S[i :: j℄,and let a = S[j+1℄. To show that (i; j; j�j) des
ribes a MQS in S it is suÆ
ientto show that �a does not 
over S[i :: j+1℄. Sin
e R 
oales
es at v, there exists aminimal i00 2 R su
h that �a does not o

ur in S at position i00. If i00 = i = minRthen �a 
annot 
over S at position i00 sin
e it by the de�nition of R 
annoto

ur any position ` in S satisfying i � j�j � ` � i. If i00 6= i = minR then �ao

urs at minR and maxR, i.e. there exists i0; i000 2 R, su
h that i0 < i00 < i000,�a o

urs at i0 and i000 in S, and �a does not o

our at any position ` in Ssatisfying i0 < ` < i000. To 
on
lude that (i; j; j�j) des
ribes a MQS we only haveto show that S[i000 � 1℄ is not 
overed by the o

ouren
e of �a at position i0, i.e.i000 � i0 > j�j+ 1. By Lemma 2 follows that i00 � i0 > j�j=2 and i000 � i00 > j�j=2,so i000 � i0 � j�j+ 1. Now assume that i000 � i0 = j�j+ 1. This implies that j�j isodd and that i00 � i0 = i000 � i00 = (j�j+ 1)=2. Using this we geta = S[i0 + j�j℄ = S[i00 + (j�j � 1)=2℄ = S[i000 + (j�j � 1)=2℄ = S[i00 + j�j℄ 6= a :This 
ontradi
tion shows that (i; j; j�j) des
ribes a MQS and shows the \onlyif" part of the theorem. utTheorem 1. Let v be a non-leaf node in T (S) with path-label �. Sin
e v is anon-leaf node in T (S) there exists i1; i2 2 LL(v) su
h that S[i1+j�j℄ 6= S[i2+j�j℄.The path-label � is quasiperiodi
 if and only if there exists an an
estor node u 6= vof v in T (S) with path-label � that for ` = 1 or ` = 2 satis�es the following two
onditions.1. Both i` and i` + j�j � j�j belong to a 
oales
ing run R at u, and2. for all i0; i00 2 LL(u), ji0 � i00j > j�j=2.Proof. If � is superprimitive, then no string � 
overs �, i.e. there exists nonode u in T (S) where C(u) in
ludes a run 
ontaining both i` and i` + j�j � j�jfor ` = 1 or ` = 2. If � is quasiperiodi
, then we argue that the quasiperiod �
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Fig. 2. The suÆx tree of the string babaaaababaab. Node v has a superprimitive path-label aba. There is a 
oales
ing run at v from 7 to 11. Hen
e the substring ababao

urring at position 7 in babaaaababaab is a maximal quasiperiodi
 substring.of � satis�es 
onditions 1 and 2. Sin
e � is superprimitive, 
ondition 2 is satis�edby Lemma 2. Sin
e � is the quasiperiod of �, we by Lemma 4 have that � is thepath-label of a node u in T (S). Sin
e � = S[i1 :: i1+j�j�1℄ = S[i2 :: i2+j�j�1℄ =S[i1+j�j�j�j :: i1+j�j�1℄ = S[i2+j�j�j�j :: i2+j�j�1℄ and S[i1+j�j℄ 6= S[i2+j�j℄then either S[i1+ j�j℄ 6= S[i1+ j�j℄ or S[i2+ j�j℄ 6= S[i2+ j�j℄, whi
h implies thateither i1 and i1 + j�j � j�j are in a 
oales
ing run at u, or i2 and i2 + j�j � j�jare in a 
oales
ing run at u. Hen
e, 
ondition 1 is satis�ed. utTheorem 2. A triple (i; j; j�j) des
ribes a MQS in S if and only if the followingthree requirements are satis�ed1. There exists a non-leaf node v in T (S) with path-label �.2. The path-label � is superprimitive.3. There exists a 
oales
ing run R from i to j at v.Proof. The theorem follows dire
tly from the de�nition of MQS, Lemma 3 andLemma 5. utFigure 2 illustrates the properties des
ribed by Theorem 2.4 Sear
hing and Merging Height-Balan
ed TreesIn this se
tion we 
onsider various operations on height-balan
ed binary trees [2℄,e.g. AVL-trees [1℄, and present an extension of the well-known \smaller-halftri
k" whi
h implies a non-trivial bound on the time it takes to perform a se-quen
e of operations on height-balan
ed binary trees. This bound is essential to



3113 415 25 37 447 17 30 35 42 4914 21
315 496135 306 4135 49555 72 2514 305 3735 372 4442 4957 1714 214 30 35 42 4914 21Fig. 3. A height-balan
ed tree with 15 elements, and the 
orresponding extendedheight-balan
ed tree. Ea
h node in the extended height-balan
ed tree with at leastone 
hild is annotated with min (left), max (right) and max-gap (bottom). The empha-sized path is the sear
h path for �-Pred(T; 4; 42)the running time of our algorithm for �nding maximal quasiperiodi
 substringsto be presented in the next se
tion.For a sorted list L = (x1; : : : ; xn) of n distin
t elements, and an element xand a value Æ, we de�ne the following fun
tions whi
h 
apture the notation ofprede
essors and su

essors of an element, and the notation of �-prede
essorsand �-su

essors whi
h in Se
t. 5 will be used to 
ompute the head and the tailof a 
oales
ing run.pred(L; x) = maxfy 2 L j y � xg ;su

(L; x) = minfy 2 L j y � xg ;max-gap(L) = maxf0; x2 � x1; x3 � x2; : : : ; xn � xn�1g ;�-pred(L; Æ; x) = minfy 2 L j y � x ^ max-gap(L \ [y; x℄) � Æg ;�-su

(L; Æ; x) = maxfy 2 L j y � x ^ max-gap(L \ [x; y℄) � Æg :If L = (5; 7; 13; 14; 17; 21; 25; 30; 31), then pred(L; 20) = 17, su

(L; 20) = 21,max-gap(L) = 13 � 7 = 6, �-pred(L; 4; 20) = 13, and �-su

(L; 4; 20) = 25.Note that pred(L; x) = �-pred(L; 0; x) and su

(L; x) = �-su

(L; 0; x).We 
onsider an extension of hight-balan
ed trees where ea
h node v in addi-tion to key(v), height(v), left(v), right(v), and parent(v), whi
h respe
tively storesthe element at v, the height of the subtree Tv rooted at v, pointers to the left andright 
hildren of v and a pointer to the parent node of v, also stores the followinginformation: previous(v) and next(v) are pointers to the nodes whi
h store theimmediate prede
essor and su

essor elements of key(v) in the sorted list, min(v)and max(v) are pointers to the nodes storing the smallest and largest elementsin the subtree rooted at v, and max-gap(v) is the value of max-gap applied tothe list of all elements in the subtree Tv rooted at v. Figure 3 shows a height-balan
ed tree and the 
orresponding extended height-balan
ed tree (previousand next pointers are omitted in the �gure).If v has a left 
hild v1, min(v) points to min(v1). Otherwise min(v) points to v.Symmetri
ally, if v has a right 
hild v2, max(v) points to max(v2). Otherwise



max(v) points to v. If v stores element e and has a left 
hild v1 and a right
hild v2, then max-gap(v) 
an be 
omputed asmax-gap(v) = maxf0;max-gap(v1);max-gap(v2);key(v)� key(max(v1)); key(min(v2))� key(v)g : (1)If v1 and/or v2 do not exist, then the expression is redu
ed by removing theparts of the expression involving the missing nodes/node. The equation 
an beused to re
ompute the information at nodes being rotated when rebalan
ing aheight-balan
ed sear
h tree. Similar to the fun
tion max-gap(L) and the oper-ation max-gap(v), we 
an de�ne and support the fun
tion min-gap(L) and theoperation min-gap(v). The operations we 
onsider supported for an extendedheight-balan
ed tree T are the following, where e1; : : : ; ek denotes a sorted listof k distin
t elements. The output of the four last operations is a list of k pointersto nodes in T 
ontaining the answer to ea
h sear
h key ei.{ MultiInsert(T; e1; : : : ; ek) inserts (or merges) the k elements into T .{ MultiPred(T; e1; : : : ; ek) for ea
h ei �nds pred(T; ei).{ MultiSu

(T; e1; : : : ; ek) for ea
h ei �nds su

(T; ei).{ Multi-�-Pred(T; Æ; e1; : : : ; ek) for ea
h ei �nds �-pred(T; Æ; ei).{ Multi-�-Su

(T; Æ; e1; : : : ; ek) for ea
h ei �nds �-su

(T; Æ; ei).We merge two height-balan
ed trees T and T 0, jT j � jT 0j, by inserting theelements in T 0 into T , i.e. MultiInsert(T; e1; e2; : : : ; ek) where e1; e2; : : : ; ek arethe elements in T 0 in sorted order. The following theorem states the runningtime of the operations.Theorem 3. Ea
h of the operations MultiInsert, MultiPred, MultiSu

, Multi-�-Pred, and Multi-�-Su

 
an be performed in time O(k � maxf1; log(n=k)g),where n is the size of the tree and k is the number elements to be inserted orsear
hed for.Proof. If k � n, the theorem follows immediately. In the following we thereforeassume k � n. Brown and Tarjan in [10℄ show how to merge two height-balan
edtrees in time O(k �maxf1; log(n=k)g), espe
ially their algorithm performs k top-down sear
hes in time O(k �maxf1; log(n=k)g). Sin
e a sear
h for an element eeither �nds the element e or the prede
essor/su

essor of e it follows that Multi-Pred and MultiSu

 
an be 
omputed in time O(k �maxf1; log(n=k)g) using theprevious and next pointers. The implementation of MultiInsert follows from thealgorithm of [10℄ by observing that only the O(k �maxf1; log(n=k)g) nodes visitedby the merging need to have their asso
iated min, max and max-gap informationre
omputed due to the inserted elements, and the re
omputing 
an be done in atraversal of these nodes in time O(k �maxf1; log(n=k)g) using Equation 1. Theimplementation of the Multi-�-Pred and Multi-�-Su

 operations is more te
h-ni
al. For the details see [9, Se
t. 4℄. ut



If ea
h node in a binary tree supplies a term O(k), where k is the number ofleaves in the smallest subtree rooted at a 
hild of the node, then the sum overall terms is O(N logN). In the literature, this bound is often referred to as the\smaller-half tri
k". It is essential to the running time of several methods for�nding tandem repeats [6, 11, 24℄. Our method for �nding maximal quasiperiodi
substrings uses a stronger version of the \smaller-half tri
k" hinted at in [20,Exer
ise 35℄ and stated in Lemma 6. It implies that we at every node in abinary tree with N leaves 
an perform a �xed number of the operations statedin Theorem 3, with n and k as stated in the lemma, in total time O(N logN).Lemma 6. If ea
h internal node v in a binary tree with N leaves supplies aterm O(k log(n=k)), where n is the number of leaves in the subtree rooted at vand k � n=2 is the number of leaves in the smallest subtree rooted at a 
hildof v, then the sum over all terms is O(N logN).5 AlgorithmThe algorithm to �nd all maximal quasiperiodi
 substrings in a string S oflength n �rst 
onstru
ts the suÆx tree T (S) of S in time O(n) using any existingsuÆx tree 
onstru
tion algorithm, e.g. [19, 27, 28℄, and then pro
esses T (S) intwo phases. Ea
h phase involves one or more traversals of T (S). In the �rst phasethe algorithm identi�es all nodes of T (S) with a superprimitive path-label. Inthe se
ond phase the algorithm reports the maximal quasiperiodi
 substringsin S. This is done by reporting the 
oales
ing runs at the nodes whi
h in the�rst phase were identi�ed to have superprimitive path-labels.To identify nodes with superprimitive path-labels we apply the 
on
epts ofquestions, 
hara
teristi
 o

urren
es of a path-label, and sentinels of a node.Let v be a non-leaf node in T (S) and u 6= v an an
estor node of v in T (S).Let v1 and v2 be the two leftmost 
hildren of v, and i1 = min(LL(v1)) and i2 =min(LL(v2)). A question posed to u is a triple (i; j; v) where i 2 LL(v) � LL(u)and j = i + jL(v)j � jL(u)j 2 LL(u), and the answer to the question is true ifand only if i and j are in the same 
oales
ing run at u.We de�ne the two o

urren
es of L(v) at positions i1 and i2 to be the
hara
teristi
 o

urren
es of L(v), and de�ne the sentinels v̂1 and v̂2 of v asthe positions immediately after the two 
hara
teristi
 o

urren
es of L(v), i.e.v̂1 = i1 + jL(v)j and v̂2 = i2 + jL(v)j. Sin
e i1 and i2 are indi
es in leaf-lists oftwo distin
t 
hildren of v, we have S[v̂1℄ 6= S[v̂2℄. In the following we let SL(v)be the list of the sentinels of the nodes in the subtree rooted at v in T (S). Sin
ethere are two sentinels for ea
h non-leaf node jSL(v)j � 2jLL(v)j � 2.Theorem 1 implies the following te
hni
al lemma whi
h forms the basis fordete
ting nodes with superprimitive path-labels in T (S).Lemma 7. The path-label L(v) is quasiperiodi
 if and only if there exists asentinel v̂ of v, and an an
estor w of v (possibly w = v) for whi
h there existsj 2 LL(w)\ ℄v̂� 2 �min-gap(LL(w)) ; v̂[ su
h that (v̂� jL(v)j; j; v) is a questionthat 
an be posed and answered su

essfully at an an
estor node u 6= v of w(possibly u = w) with jL(u)j = v̂ � j and min-gap(LL(u)) > jL(u)j=2.



Proof. If there exists a question (v̂ � jL(v)j; v̂ � jL(u)j; v) that 
an be answeredsu

essfully at u, then v̂ � jL(v)j and v̂ � jL(u)j are in the same run at u, i.e.L(u) 
overs L(v) and L(v) is quasiperiodi
.If L(v) is quasiperiodi
, we have from Theorem 1 that there for i` = v̂` �jL(v)j, where ` = 1 or ` = 2, exists an an
estor node u 6= v of v where both i`and i` + jL(v)j � jL(u)j belong to a 
oales
ing run at u and min-gap(LL(u)) >jL(u)j=2. The lemma follows by letting w = u and j = v̂` � jL(u)j. utSin
e j and v̂ uniquely determine the question (v̂�jL(v)j; j; v), it follows thatto de
ide the superprimitivity of all nodes it is suÆ
ient for ea
h node w to �ndall pairs (v̂; j) where v̂ 2 SL(w) and j 2 LL(w) \ ℄v̂ � 2 �min-gap(LL(w)) ; v̂[,or equivalently j 2 LL(w) and v̂ 2 SL(w) \ ℄j ; j + 2 �min-gap(LL(w))[. Fur-thermore, if v̂ and j result in a question at w, but j 2 LL(w0) and v̂ 2 SL(w0)for some 
hild w0 of w, then v̂ and j result in the same question at w0 sin
emin-gap(LL(w0)) � min-gap(LL(w)), i.e. we only need to �nd all pairs (v̂; j)at w where v̂ and j 
ome from two distin
t 
hildren of w. We 
an now state thedetails of the algorithm.Phase I { Marking Nodes with Quasiperiodi
 Path-Labels In Phase Iwe mark all nodes in T (S) that have a quasiperiodi
 path-label by performingthree traversals of T (S). We �rst make a depth-�rst traversal of T (S) where wefor ea
h node v 
ompute min-gap(LL(v)). We do this by 
onstru
ting for ea
hnode v a sear
h tree TLL(v) that stores LL(v) and supports the operations inSe
t. 4. In parti
ular the root of TLL(v) should store the value min-gap(TLL(v))to be assigned to v. If v is a leaf, TLL(v) only 
ontains the index annotated to v.If v is an internal node, we 
onstru
t TLL(v) by merging the TLL trees of the
hildren of v from left-to-right when these have been 
omputed. If the 
hildren ofv are v1; : : : ; vk we merge TLL(v1); : : : ; TLL(vi+1) by performing a binary mergeof TLL(vi+1) with the result of merging TLL(v1); : : : ; TLL(vi). As a side e�e
t of
omputing TLL(v) the TLL trees of the 
hildren of v are destroyed.We pose and answer questions in two traversals of T (S) explained below asStep 1 and Step 2. For ea
h node v we let Q(v) 
ontain the list of questionsposed at v. Inititially Q(v) is empty.Step 1 (Generating Questions) In this step we perform a depth-�rst traversalof T (S). At ea
h node v we 
onstru
t sear
h trees TLL(v) and TSL(v) whi
h storerespe
tively LL(v) and SL(v) and support the operations mentioned in Se
t. 4.For a non-leaf node v with leftmost 
hildren v1 and v2, we 
ompute the sentinelsof v as v̂1 = min(TLL(v1)) + jLL(v1)j and v̂2 = min(TLL(v2)) + jLL(v1)j. TheTLL trees need to be re
omputed sin
e these are destroyed in the �rst traversalof T (S). The 
omputation of TSL(v) is done similarly to the 
omputation ofTLL(v) by merging the TSL lists of the 
hildren of v from left-to-right, ex
eptthat after the merging the TSL trees of the 
hildren we also need to insert thetwo sentinels v̂1 and v̂2 in TSL(v).We visit node v, and 
all it the 
urrent node, when the TLL and TSL trees atthe 
hildren of v are available. During the traversal we maintain an array depth



su
h that depth(k) refers to the node u on the path from the 
urrent node tothe root with jL(u)j = k if su
h a node exists. Otherwise depth(k) is undef. Wemaintain depth by setting depth(jL(u)j) to u when we arrive at u from its parent,and setting depth(jL(u)j) to undef when we return from u to its parent.When v is the 
urrent node we have from Lemma 7 that it is suÆ
ientto generate questions for pairs (ŵ; j) where ŵ and j 
ome from two di�erent
hildren of v. We do this while merging the TLL and TSL trees of the 
hildren.Let the 
hildren of v be v1; : : : ; vk. Assume LLi = LL(v1) [ � � � [ LL(vi) andSLi = SL(v1)[ � � � [SL(vi) has been 
omputed as TLLi and TSLi and we are inthe pro
ess of 
omputing LLi+1 and SLi+1. The questions we need to generatewhile 
omputing LLi+1 and SLi+1 are those where j 2 LLi and ŵ 2 SL(vi+1) orj 2 LL(vi+1) and ŵ 2 SLi. Assume j 2 TLL and ŵ 2 TSL, where either TLL =TLLi and TSL = TSL(vi+1) or TLL = TLL(vi+1) and TSL = TSLi . There are two
ases. If jTLLj � jTSLj we lo
ate ea
h j 2 TLL in TSL by performing a MultiSu

operation. Using the next pointers we 
an then for ea
h j report those ŵ 2 TSLwhere ŵ 2 ℄j ; j + 2 �min-gap(LL(v))[. If jTLLj > jTSLj we lo
ate ea
h ŵ 2 TSLin TLL by performing a MultiPred operation. Using the previous pointers we 
anthen for ea
h ŵ report those j 2 TSL where j 2 ℄ŵ � 2 �min-gap(LL(v)) ; ŵ[.The two sentinels v̂1 and v̂2 of v are handled similarly to the later 
ase byperforming two sear
hes in TLL(v) and using the previous pointers to generatethe required pairs involving the sentinels v̂1 and v̂2 of v.For a pair (ŵ; j) that is generated at the 
urrent node v, we generate aquestion (ŵ � jL(w)j; j; w) about des
endent w of v with sentinel ŵ, and posethe question at an
estor u = depth(ŵ�j) by inserting (ŵ�jL(w)j; j; w) intoQ(u).If su
h an an
estor u does not exists, i.e. depth(ŵ� j) is undef, or min-gap(u) �jL(u)j=2 then no question is posed.Step 2 (Answering Questions) Let Q(v) be the set of questions posed at node vin Step 1. If there is a 
oales
ing run R in C(v) and a question (i; j; w) in Q(v)su
h that minR � i < j � maxR, then i and j are in the same 
oales
ing runat v and we mark node w as having a quasiperiodi
 path-label.We identify ea
h 
oales
ing run R in C(v) by the tuple (minR;maxR). Weanswer question (i; j; w) in Q(v) by de
iding if there is a run (minR;maxR)in C(v) su
h that minR � i < j � maxR. If the questions (i; j; w) in Q(v)and runs (minR;maxR) in C(v) are sorted lexi
ographi
ally, we 
an answer allquestions by a linear s
an through Q(v) and C(v). In the following we des
ribehow to generate C(v) in sorted order and how to sort Q(v).Constru
ting Coales
ing Runs The 
oales
ing runs are generated in a traversalof T (S). At ea
h node v we 
onstru
t TLL(v) storing LL(v). We 
onstru
t TLL(v)by merging the TLL trees of the 
hildren of v from left-to-right. A 
oales
ingrun R in LL(v) 
ontains an index from at least two distin
t 
hildren of v, i.e.there are indi
es i0 2 LL(v1) and i00 2 LL(v2) in R for two distin
t 
hildren v1and v2 of v su
h that i0 < i00 are neighbors in LL(v) and i00 � i0 � jL(v)j. Wesay that i0 is a seed of R. We identify R by the tuple (minR;maxR). We haveminR = �-pred(LL(v); jL(v)j; i0) and maxR = �-su

(LL(v); jL(v)j; i0).



To 
onstru
t C(v) we 
olle
t seeds ir1 ; ir2 ; : : : ; irk of every 
oales
ing runin LL(v) in sorted order. This done by 
he
king while merging the TLL treesof the 
hildren of v if an index gets a new neighbor in whi
h 
ase the in-dex 
an be identi�ed as a seed. Sin
e ea
h insertion at most generates twoseeds we 
an 
olle
t all seeds into a sorted list while performing the merging.From the seeds we 
an 
ompute the �rst and last index of the 
oalesing runsby doing Multi-�-Pred(TLL(v); jL(v)j; ir1 ; ir2 ; : : : ; irk) and Multi-�-Su

(TLL(v),jL(v)j, ir1 ; ir2 ; : : : ; irk). Sin
e we might have 
olle
ted several seeds of the samerun, the list of 
oales
ing runs R1; R2; : : : ; Rk might 
ontain duplets whi
h 
anbe removed by reading through the list on
e. Sin
e the seeds are 
olle
ted insorted order, the resulting list of runs is also sorted.Sorting the Questions We 
olle
t the elements in Q(v) for every node v in T (S)into a single list Q that 
ontains all question (i; j; w) posed at nodes in T (S).We annotate every element in Q with the node v it was 
olle
ted from. By
onstru
tion every question (i; j; w) posed at a node in T (S) satis�es that 0 �i < j < n. We 
an thus sort the elements in Q lexi
ographi
ally with respe
tto i and j using radix sort. After sorting the elements in Q we distribute thequestions ba
k to the proper nodes in sorted order by a linear s
an through Q.Phase II { Reporting Maximal Quasiperiodi
 Substrings After Phase Iall nodes that have a quasiperiodi
 path-label are marked, i.e. all unmarkednodes are nodes that have a superprimitive path-label. By Theorem 2 we reportall maximal quasiperiodi
 substrings by reporting the 
oales
ing runs at everynode that has a superprimitive path-label. In a traversal of the marked suÆx treewe as in Phase I 
onstru
t C(v) at every unmarked node and report for everyR inC(v) the triple (minR;maxR; jL(v)j) that identi�es the 
orresponding maximalquasiperiodi
 substring.6 Running TimeIn every phase of the algorithm we traverse the suÆx tree and 
onstru
t atea
h node v sear
h trees that stores LL(v) and/or SL(v). At every node v we
onstru
t various lists by 
onsidering the 
hildren of v from left-to-right andperform a 
onstant number of the operations in Theorem 3. Sin
e the overallmerging of information in T (S) is done by binary merging we by Lemma 6 havethat this amounts to time O(n logn) in total. To generate and answer questionswe use time proportional to the total number of questions generated. Lemma 8state that the number of questions is bounded by O(n logn). We 
on
lude thatthe running time of the algorithm is O(n logn).Lemma 8. At most O(n logn) questions are generated.Proof. We prove that ea
h of the 2n sentinels 
an at most result in the generationof O(logn) questions. Consider a sentinel ŵ of node w and assume that it gen-erates a question (ŵ�jL(w)j; j; w) at node v. Sin
e ŵ� j < 2 �min-gap(LL(v)),



j is either pred(LL(v); ŵ � 1) (a question of Type A) or the left neighbor ofpred(LL(v); ŵ � 1) in LL(v) (a question of Type B). For ŵ we �rst 
onsider allindi
es resulting in questions of Type A along the path from w to the root. Notethat this is an in
reasing sequen
e of indi
es. We now show that the distan
e ofŵ to the indi
es is geometri
ally de
reasing, i.e. there are at most O(logn) ques-tions generated of Type A. Let j and j0 be two 
onse
utive indi
es resulting inquestions of Type A at node v and at an an
estor node u of v. Sin
e j < j0 < ŵand j0 � j � min-gap(LL(u)) and ŵ � j0 < 2 � min-gap(LL(u)), we have thatŵ � j0 < 23 (ŵ � j). Similarly we 
an bound the number of questions generatedof Type B for sentinel ŵ by O(logn). ut7 A
hieving Linear Spa
eStoring the suÆx tree T (S) uses spa
e O(n). During a traversal of the suÆxtree we 
onstru
t sear
h trees as explained. Sin
e no element, index or sentinel,at any time is stored in more than a 
onstant number of sear
h trees, storingthe sear
h trees uses spa
e O(n). Unfortunately, storing the sets C(v) and Q(v)of 
oales
ing runs and questions at every node v in the suÆx tree uses spa
eO(n logn). To redu
e the spa
e 
onsumption we must thus avoid to store C(v)and Q(v) at all nodes simultaneously. The tri
k is to modify Phase I to alternatebetween generating and answering questions.We observe that generating questions and 
oales
ing runs (Step 1 and the�rst part of Step 2) 
an be done in a single traversal of the suÆx tree. Thistraversal is Part 1 of Phase I. Answering questions (the last part of Step 1)is Part 2 of Phase I. To redu
e the spa
e used by the algorithm to O(n) wemodify Phase I to alternate in rounds between Part 1 (generating questions and
oales
ing runs) and Part 2 (answering questions).We say that node v is ready if C(v) is available and all questions from it hasbeen generated, i.e. Part 1 has been performed on it. If node v is ready thenall nodes in its subtree are ready. Sin
e all questions to node v are generatedat nodes in its subtree, this implies that Q(v) is also available. By de�nitionno 
oales
ing runs are stored at non-ready nodes and Lemma 9 states thatonly O(n) questions are stored at non-ready nodes. In a round we produ
e readynodes (perform Part 1) until the number of questions plus 
oales
ing runs storedat nodes readied in the round ex
eed n, we then answer the questions (performPart 2) at nodes readied in the round. After a round we dispose questions and
oales
ing runs stored at nodes readied in the round. We 
ontinue until all nodesin the suÆx tree have been visited.Lemma 9. There are at most O(n) questions stored at non-ready nodes.Proof. Let v be a node in T (S) su
h that all nodes on the path from v tothe root are non-ready. Consider a sentinel ŵ 
orresponding to a node in thesubtree rooted at v. Assume that this sentinel has indu
ed three questions (ŵ�jL(w)j; j0; w), (ŵ � jL(w)j; j00; w) and (ŵ � jL(w)j; j000; w), where j0 < j00 < j000,that are posed at an
estors of v. By 
hoi
e of v, these an
estors are non-ready



nodes. One of the an
estors is node u = depth(ŵ � j0). Sin
e question (ŵ �jL(w)j; j0; w) is posed at u, min-gap(LL(u)) > jL(u)j=2. Sin
e j0; j00; j000 2 LL(u)and j000 � j0 � ŵ � j0 = jL(u)j, it follows that min-gap(LL(u)) � minfj00 �j0; j000 � j00g � jL(u)j=2. This 
ontradi
ts that min-gap(LL(u)) > jL(u)j=2 andshows that ea
h sentinel has generated at most two questions to non-ready nodes.The lemma follows be
ause there are at most 2n sentinels in total. utAlternating between Part 1 and Part 2 
learly results in generating and an-swering the same questions as if Part 1 and Part 2 were performed without alter-nation. The 
orre
tness of the algorithm is thus una�e
ted by the modi�
ationof Phase I. Now 
onsider the running time. The running time of a round 
an bedivided into time spent on readying nodes (Part 1) and time spent on answeringquestions (Part 2). The total time spent on readying nodes is 
learly una�e
tedby the alternation. To 
on
lude the same for the total time spent on answeringquestions, we must argue that the time spent on sorting the posed questions inea
h round is proportional to the time otherwise spent in the round.The 
ru
ial observation is that ea
h round takes time 
(n) for posing ques-tions and identifying 
oales
ing runs, implying that the O(n) term in ea
h radixsorting is negle
table. We 
on
lude that the running time is una�e
ted by themodi�
ation of Phase I. Finally 
onsider the spa
e used by the modi�ed algo-rithm. Besides storing the suÆx tree and the sear
h trees whi
h uses spa
e O(n),it only stores O(n) questions and 
oales
ing runs at nodes readied in the 
urrentround (by 
onstru
tion of a round) and O(n) questions at non-ready nodes (byLemma 9). In summary we have the following theorem.Theorem 4. All maximal quasiperiodi
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