
BRICS
Basic Research in Computer Science

Faster Algorithms for Computing
Longest Common Increasing Subsequences

Gerth Stølting Brodal
Kanela Kaligosi
Irit Katriel
Martin Kutz

BRICS Report Series RS-05-37

ISSN 0909-0878 December 2005

B
R

IC
S

R
S

-05-37
B

rodaletal.:
F

aster
A

lgorithm
s

for
C

om
puting

LongestC
om

m
on

Increasing
S

ubsequences

Copyright c© 2005, Gerth Stølting Brodal & Kanela Kaligosi & Irit
Katriel & Martin Kutz.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectoryRS/05/37/

Faster Algorithms for Computing Longest

Common Increasing Subsequences

Gerth Stølting Brodal∗† Kanela Kaligosi‡ Irit Katriel∗§

Martin Kutz‡

December 14, 2005

Abstract

We present algorithms for finding a longest common increasing subse-
quence of two or more input sequences. For two sequences of lengths m

and n, where m ≥ n, we present an algorithm with an output-dependent
expected running time of O((m + nℓ) log log σ + Sort) and O(m) space,
where ℓ is the length of a LCIS, σ is the size of the alphabet, and Sort is
the time to sort each input sequence.

For k ≥ 3 length-n sequences we present an algorithm which improves
the previous best bound by more than a factor k for many inputs. In both
cases, our algorithms are conceptually quite simple but rely on existing
sophisticated data structures.

Finally, we introduce the problem of longest common weakly-increasing
(or non-decreasing) subsequences (LCWIS), for which we present an O(m+
n log n) time algorithm for the 3-letter alphabet case. For the extensively
studied Longest Common Subsequence problem, comparable speedups
have not been achieved for small alphabets.

1 Introduction

Algorithms that search for the longest common subsequence (LCS) of two input
sequences or the longest increasing subsequence (LIS) of one input sequence
date back several decades.

Formally, given two sequences A = (a1, . . . , an) and B = (b1, . . . , bm) with
elements from an alphabet Σ and with m ≥ n, a common subsequence of A and B
is a subsequence (aj1 = bκ1

, aj2 = bκ2
, . . . ajℓ

= bκℓ
), where j1 < j2 < · · · < jℓ

∗BRICS, Basic Research in Computer Science (www.brics.dk), funded by the
Danish National Research Foundation, University of Aarhus, Århus, Denmark.
{gerth,irit}@daimi.au.dk.

†Partially supported by the Danish Research Agency.
‡Max-Plank-Institut für Informatik, Saarbrücken, Germany. {kaligosi,mkutz}@

mpi-sb.mpg.de.
§Supported by the Danish Research Agency (grant # 272-05-0081).

1

and κ1 < κ2 < · · · < κℓ. Given one sequence A = (a1, . . . , an) where the ai’s are
drawn from a totally ordered set, an increasing subsequence of A is a subsequence
(aj1 , aj2 , . . . , ajℓ

) such that j1 < j2 < · · · < jℓ and aj1 < aj2 < · · · < ajℓ
.

A classic algorithm by Wagner and Fischer [11] solves the LCS problem using
dynamic programming in O(mn) time and space. Hirschberg [6] reduced the
space complexity to O(n), using a divide-and-conquer approach. The fastest
known algorithm by Masek and Paterson [8] runs in O(n2/ log n) time. Faster
algorithms are known for special cases, such as when the input consists of per-
mutations or when the output is known to be very long or very short. Hunt and
Szymanski [7] studied the LCS problem in terms of matching index pairs, i.e.,
they defined r to be the number of index-pairs (i, j) with ai = bj (such a pair is
called a match) and designed an algorithm that finds the LCS of two sequences
in O(r log n) time. For a survey on the LCS problem see [2].

Fredman [4] showed how to compute a LIS of a length-n sequence in optimal
O(n log n) time. The expected length of a longest increasing subsequence of
a random permutation has been shown (after successive improvments) to be
2
√

n− o(
√

n); for a survey see [1].
Note that after sorting both input sequences we can in linear time remove

symbols that do not appear in both sequences and rename the remaining sym-
bols to the alphabet {1, 2, . . . , σ}. We can therefore assume that this prepro-
cessing stage was performed and hence the size of the alphabet, σ, is at most n.
In the following we let SortΣ (m) denote the time required to sort a length-m
input sequence drawn from the alphabet Σ.

Recently, Yang et al. [12] combined the two concepts, and defined a com-
mon increasing subsequence (CIS) of two sequences A and B, i.e., an increasing
sequence which is a subsequence of both A and B. They designed a dynamic
programming algorithm that finds a longest CIS (an LCIS, for short) of A and B
using Θ(mn) time and space.

Subsequently, Chan et al. [3] obtained an upper bound of O(min{r log σ, mσ+
r} log log m+SortΣ (m)). The number of matches r is in the worst case Ω(mn),
but in some important cases it is much smaller. For instance, when A and B
are permutations of {1, . . . , n} then r = O(n).

Chan et al. proceeded to generalize their algorithm to find an LCIS of k ≥ 3
length-n sequences. They show that this can be done in

O(min{kr2, kr log σ logk−1 r} + kSortΣ (n))

time, where r is again the number of matches, i.e., k-coordinate vectors that
contain an index from each input sequence, all with the same symbol.

1.1 Our results

In this paper we present three new upper bounds for the LCIS problem. The first
is an output-dependent algorithm which runs in O((m+nℓ) log log σ+SortΣ (m))
expected time and O(m) worst-case space, where ℓ is the length of an LCIS.
Whenever n = Ω(log log σ + SortΣ (m)/m) and either m = Ω(n log log σ) or
ℓ = o(n/ log log n), it is faster than Yang et al.’s Θ(mn)-time algorithm.

2

Symbol Meaning
m, n Lengths of input sequences (we assume m ≥ n).

ℓ Length of the LCIS/LCWIS.
k Number of input sequences.
σ Size of the alphabet (number of different symbols).
r Number of matches in the input sequences.

Table 1: Parameters of the LCIS/LCWIS problems.

Previous Results New

k = 2 O(mn) [12] O((m + nℓ) log log σ + SortΣ (m))

O(min{r log σ, mσ + r} log log m O(m) when σ = 2
+SortΣ(m)) [3] O(m + n log n) when σ = 3

k ≥ 3 O(min{kr2, kr log σ logk−1 r} O(min{kr2, r logk−1 r log log r}
+kSortΣ (n)) [3] +kSortΣ(n))

Table 2: Previous and new results. The new upper bounds apply to both LCIS
and LCWIS.

For a strictly-increasing subsequence we have ℓ ≤ σ. However, in the weakly-
increasing (i.e. non-decreasing) variant, the length of the output can be arbitrar-
ily larger than the size of the alphabet. We show that a longest common weakly
increasing subsequence (LCWIS) can be found in linear time for an alphabet
of size two and in O(m + n logn) time for an alphabet of size three. These
results are interesting because they pinpoint what seems to be a fundamental
difference between the LCS and LWCIS problems. The approach we use cannot
be applied to LCS, and to date, comparable speedups have not been achieved
for LCS with small alphabets.

Finally, we consider the case of k ≥ 3 length-n sequences. The upper bound
of Chan et al. is achieved by two algorithms; the first is a simple O(kr2 +
kSortΣ (n)) time algorithm and the second is a more complex implementation
of the same approach, which runs in O(kr log σ logk−1 r + kSortΣ (n)) time. We
describe an algorithm which is significantly simpler than the latter and obtain
a running time of O(min{kr2, r logk−1 r log log r}+ kSortΣ (n)).

Table 1 provides a list of the symbols used in the paper and Table 2 sum-
marizes the previous and new results.

The rest of the paper is organized as follows. In Section 2 we describe a
dynamic programming algorithm that uses a data structure based on van Emde
Boas trees and runs in expected O((m+nℓ) log log σ+SortΣ (m)) time and O(m)

3

space. In Section 3 we present our results on LCWIS with small alphabets,
which use different techniques. Finally, in Section 4 we describe how to use a
data structure by Gabow et al. [5] to obtain an algorithm for finding an LCIS
or LCWIS of k ≥ 3 sequences, which is simpler and faster than Chan et al.’s
algorithm.

2 An Output-Dependent Upper Bound

2.1 Bounded heaps

In our output-dependent algorithm we use a data structure, in the following
denoted a bounded heap (BH), that supports the following operations:

• Insert(H, k, p, d): Insert into the BH H the key k with priority p and
associated data d.

• DecreasePriority(H, k, p, d): If the BH H does not contain the key k,
perform Insert(H, k, p, d). Otherwise, set this key’s priority to min{p, p′},
where p′ is its previous priority.

• BoundedMin(H, k): Return the item that has minimum priority among
all items in H with key smaller than k. If H does not contain any items
with key smaller than k, return “invalid”.

The priority search tree (PST) of McCreight [9] supports each of these oper-
ations in O(log n) time. However, the PST also allows deletions, which the BH
is not required to support. Using van Emde Boas trees, we obtain a faster BH
for integer keys:

Lemma 1 There exists an implementation of bounded heaps that requires O(n)
space and supports each operation in O(log log n) amortized time, where keys
are drawn for the set {1, . . . , n}.

Proof. The data structure applies standard techniques, such as those described
in Section 3 of [5].

We rely on the fact that a snapshot of the heap, at any point in time, can be
represented as a decreasing step function. More precisely, let BM (s) be the value
that would be returned by a BoundedMin(H, s) query. Then BM (s) ≤ BM(s′)
whenever s > s′, i.e., the function BM is non-increasing in s (see Figure 1).

key k 1 2 3 4 5 6 7 8 9 10
priority 7 10 6 8 5 3 2 4 1 9
BM (k) ∞ 7 7 6 6 5 3 2 2 1

Figure 1: Example of BM values.

4

Assume that the keys are {s1, s2, . . .} with si ≤ si+1 for all i. To answer
BoundedMin queries, it suffices to maintain a search structure that contains the
BM (si) value for every si at which the function BM changes, i.e., BM (si) <
BM (si−1). Then, we answer a BoundedMin(s) by searching the data structure
for the largest key which is at most s and returning its BM value. If the search
structure is a van Emde Boas tree [10], this takes O(log log n) time.

It remains to show how to support Insert and DecreasePriority operations
in O(log log n) amortized time. When the priority of a key si decreases to a new
value of p, the following occurs:

1. si + 1 is inserted into the tree if p < BM (si−), where si− is the largest
key in the tree which is smaller than si.

2. sj is removed from the tree if j > i and BM (sj) > p.

With van Emde Boas trees, the two steps are handled, respectively, as follows.

1. Searching for si− , checking whether si should be inserted and inserting it
if so, takes O(log log n) time.

2. Beginning at si, we repeatedly find the next item sj in the tree (i.e., the
smallest key larger than the current one) and remove it from the tree if
BM (sj) > p. The total time is O(k log log n), where k is the number
of items that were removed. Since the total number of items deleted
by DecreasePriority operations is upper bounded by the total number of
Insert operations, we can charge the cost of each deletion to the insertion
of the same item, and obtain that the amortized cost of each operation is
O(log log n). �

2.2 An O((m + nℓ) log log σ + SortΣ (m)) time algorithm

Our output-dependent algorithm for the LCIS problem is shown in Figure 3
in the appendix. In a preprocessing step, it removes from each sequence all
elements which do not appear in the other sequence; this is easy after the
sequences are sorted. For every remaining element s, it generates a sorted list
Occs that contains ∞ and the indices of all occurrences of s in B.

Then, the algorithm in n iterations identifies common increasing subse-
quences (CISs) of increasing lengths: In iteration i it identifies length-i CISs
(using the results of iteration i− 1). More precisely, for every element aj in A,
it identifies the minimum index κ in B such that there is a length-i CIS which
ends at aj in A and at bκ in B. The index κ is stored in Li[j].

To compute the array L1[1 . . . n], the algorithm traverses A and for each aj ,
sets L1[j] to be the minimum index in the list Occaj

, i.e., the earliest occurrence
of aj in B. Note that due to the preprocessing, there exists such an index in B.

For i > 1, the ith iteration proceeds as follows. The algorithm traverses
A again, and for every aj , it checks whether aj (together with some bκ) can

5

extend a length-(i− 1) CIS to a length-i CIS, and if so, identifies the minimum
such κ. For this purpose, the algorithm maintains a bounded heap H. When
it begins processing aj, H contains all elements at ∈ {a1, . . . , aj−1} for which
Li−1[t] 6= ∞. The key of at in H is at itself and its priority is Li−1[t], i.e., the
minimum index of the endpoint in B of a length-(i− 1) CIS which ends, in A,
at index t. The algorithm queries H to find the leftmost endpoint (in B) of a
length-(i− 1) CIS which contains only elements smaller than aj . Let κ′ be this
endpoint. Then, Li[j] is set to the first occurrence of aj in B which lies behind
κ′; we prove that this is the leftmost endpoint in B of a length-i CIS which
ends, in A, at aj .

We emphasize that H is built anew for every single pass. The only informa-
tion saved between different scans of A and B is maintained in the arrays Li.

The arrays Link1,Link2, . . . are used to save the information we need in order
to construct the LCIS: Whenever we detect that the index pair (j, κ) can extend
a length-(i− 1) CIS which ends at the index pair (j′, κ′), we set Link i[j] = j′.
Finally, if there is a length-(i− 1) CIS which ends at aj , then aj is inserted into
H with priority Li−1[aj]; it may later be extended into a length-i CIS by some
aj′ with j′ > j.

2.2.1 Correctness

The correctness of the algorithm relies on the following lemma, which states
that if there is a solution then the algorithm finds it. It is straightforward to
show that the algorithm will not produce an invalid sequence.

Lemma 2 Let A and B be two sequences that have a length-ℓ CIS which ends
in A at index j and in B at index κ. Then at the end of the iteration in which
i = ℓ, Lℓ[j] ≤ κ.

Proof. By induction on ℓ. For ℓ = 1, the claim is obvious. Assume that it holds
for any length-(ℓ−1) CIS and that we are given A and B which have a length-ℓ
CIS c1, . . . , cℓ, which is located in A as aj1 , . . . , ajℓ

and in B as bκ1
, . . . , bκℓ

.
By the induction hypothesis, at the end of the i = ℓ − 1 iteration, Li−1

contains entries which are not equal to∞. Hence, the algorithm will proceed to
perform iteration i = ℓ. Again by the induction hypothesis, Lℓ−1[jℓ−1] ≤ κℓ−1.

Since ajℓ−1
< ajℓ

, it is guaranteed that when j = jℓ, H contains an item with
key ajℓ−1

, priority κ′ ≤ κℓ−1 and d = (jℓ−1, κ
′). So the BoundedMin operation

will return a valid value. If the value returned is (jℓ−1, κℓ−1), then the smallest
occurrence of aℓ in B after κℓ−1 is not beyond κℓ. So the algorithm will set
Lℓ[jℓ] ≤ κℓ. On the other hand, if the value returned is not (jℓ−1, κℓ−1), then it
is (jℓ−1, κ

′) for some κ′ ≤ κℓ−1. Since aj′ < aℓ, again we get that the smallest
occurrence of aℓ in B after κℓ−1 is not beyond κℓ. So the algorithm will set
Lℓ[jℓ] ≤ κℓ. �

6

2.2.2 Time complexity

The preprocessing phase takes O(SortΣ (m)) time, to sort each of the sequences
A and B. The construction of the Occs’s takes O(m) time.

The array A is traversed O(ℓ) times. During each traversal, O(n) operations
are performed on the bounded heap, each of which takes O(log log σ) amortized
time, and the Occs lists are queried at most n times. We now sketch a possible
implementation of the Occs lists.

We partition the range {1, . . . , m} into m/σ blocks of σ consecutive locations
and for every 1 ≤ i ≤ m/σ we denote by bi the block containing locations
(i − 1)σ + 1, . . . , iσ. For each i and each s ∈ Σ we create a data structure
that represents occurances of s in the block bi and is based on Willard’s y-fast
tries. In addition, for each block we store the first occurance of s succeeding
the block. To answer a query in Occs, we first identify the block containing the
query point in constant time. We then search for the smallest index larger than
the query point in the y-fast trie for this block in time O(log log σ). If we found
one, we are done. Otherwise, we return the first s succeeding the block, using
the stored information. Initializing the m y-fast tries with a total of m elements
takes O(m log log σ) expected time. Note that this initialization step needs to
be carried out only once.

In total, the main loop takes O(m+nℓ log log σ) time. Finally, Constructing
the LCIS takes O(ℓ) time. We get that the total expected running time of the
algorithm is O((m + nℓ) log log σ + SortΣ (m)).

2.2.3 Space complexity

As for space complexity, note that in the main loop we only use Li−1 and Li.
Therefore, we do not need to save the previous L’s. In order to construct the
LCIS, the algorithm as described requires O(nℓ) space for the Link arrays.

However, we can reduce the space complexity to O(m) with the technique
developed by Hirschberg [6] for LCS. First, we run the algorithm once to com-
pute ℓ (without constructing the Link arrays). Then we run a recursive version
of the algorithm that construct the LCIS. The top recursive level invokes the
usual algorithm, except that this time we remember only some of the Link in-
formation: Each match in the second half of a CIS knows the location in A and
B of the ⌊ℓ/2⌋-th match of the CIS that it was appended to. This information
is found in the ⌊ℓ/2⌋-th iteration of the main loop and propagated by the later
iterations while the L arrays are constructed. Then, we know for every LCIS the
location (i, j) in A and B of the middle match. We select one LCIS and recur-
sively run the same algorithm to find the length-⌊ℓ/2⌋−1 LCIS of (a1, . . . , ai−1)
(b1, . . . , bj−1) and the length-⌈ℓ/2⌉ LCIS of (ai+1, . . . , an) and (bj+1, . . . , bm).
The base case is when we look for a constant-size LCIS. Then we run the orig-
inal algorithm in linear space. To achive that the time complexity remains
unchanged we need to limit the work done processing B during the recursion.
For the preprocessing for the outermost recursion we need time SortΣ (m). For
the remaining recursive calls we do not need to sort the arrays again and the pre-

7

processing time is O(m). The computation of a middle match considers at most
matches involving nℓ entries from B. These entries in B can be marked during
the computation of the middle match, and only this subsequence of B is provided
to the recursive calls. The thinning of B is done before each recursive call. Let
T (m, n, ℓ) be the running time of the recursion on two sequences of lengths n and
m with a length-ℓ LCIS and m ≤ nℓ. Assume that the middle match is (n1, m1).
Then T (m, n, ℓ) ≤ nℓ log log σ + nℓ + T (m1, n1, ℓ/2) + T (m2, n2, ℓ/2), where
n1 +n2 +1 = n and m1 +m2 +1 ≤ m. This recurrence solves to O(nℓ log log σ).
The total running time becomes O((m + nℓ) log log σ + SortΣ (m)). It is easy to
see that the amount of space we need is O(m).
In conclusion, we have shown:

Theorem 1 An LCIS of two sequences of lengths m and n with m ≥ n can be
found in O((m + nℓ) log log σ + SortΣ (m)) expected time and O(m) worst-case
space where ℓ is the length of the output and SortΣ (m) is the time required to
sort a length-m input sequence.

3 Weakly Increasing Subsequences

We now turn to longest common non-decreasing or weakly increasing subse-
quences (LCWIS) for small alphabets. By simply replacing < by ≤ in the
BoundedMin operation in our algorithm for the LCIS problem, it is straight-
forward to verify that the algorithm solves the LCWIS problem in O((m +
nℓ) log log σ + Sort(m)) time. But while the LCIS problem can be solved in
linear time for alphabets of bounded size t, simply because the length of the
solution is then also bounded by t, it is not clear how this fact should carry over
to LCWIS, where the output size need not relate to t at all.

We show how to solve LCWIS for the 2– and the 3-letter alphabet in linear
respectively O(m+n log n) time. This is in contrast to the classic LCS problem,
where already the 2-letter case seems to be essentially as hard as the general
problem. In fact, it seems that LCWIS behaves very different from both LCIS
and LCS.

3.1 Preprocessing

Let us use as our alphabet the Greek letters Σ = {α, β, γ} in their standard
order: α < β < γ. For both tasks, the 2-letter and 3-letter cases, we prepare
arrays NumA,α,NumB,α,NumA,β, . . .,NumB,γ that count the number of αs, βs and
γs, respectively, in prefixes of A and B. For example, NumA,γ [9] contains the
number of γs in A up to position 9 (inclusively). We also create arrays PosA,α

through PosB,γ , which provide us with the position of the ith occurrence of
α, β, or γ in A or B. E.g., PosB,α[5] contains the position of the 5th α within
sequence B. These arrays can clearly be prepared in O(m) time. Note that they
also provide constant-time lookup for the reversed mode, which counts elements
from the end of the sequences A and B. For example, PosA,β [NumA,β [n] − 23]
tells us the position of the last but 23rd β in A.

8

3.2 The 2-letter case is simple

After the preprocessing, the 2-letter case becomes trivial. For each i, where
0 ≤ i ≤ min{NumA,α[n], NumB,α[m]}, we determine the position of the ith α in
A and B and then the number of βs that come after those positions in the two
sequences using the expression

min{ NumA,β[n]− NumA,β [PosA,α[i]] , NumB,β [m]− NumB,β[PosB,α[i]] } .

This gives us, for every i, the length of an LCWIS of type αiβ∗. The longest of
them over all i are the LCWIS’s of the two sequences. The total time is O(m).

3.3 Three-letter case – split diagrams

The näıve extension of the above approach to three letters would have to deal
with a quadratic number of tentative exponent pairs (i, j) for subsequences of
type αiβjγ∗. We somehow need to avoid the testing of all such pairs. The basis
of our almost-linear algorithm for a 3-letter alphabet are what we like to call
“split-diagrams,” a data structure that stores information about parts of the
given sequences in a compact way.

Assume we were only interested in subsequences of A that have all their αs
up to some fixed position s and all their γs strictly after s. Likewise, we only
consider subsequences in B with all αs up to some position t and all γs after
that. We shall see that under these conditions, with a fixed split between αs
and γs, it is possible to find an LCWIS in linear time.

Say, we try and see how long a sequence we can build if we started with
exactly i many αs. We determine the ith pair of αs from the left and then
count the number of βs in A and B up to the split (s, t). There are p =
NumA,β [s]−NumA,β [PosA,α[i]] such βs in A and q = NumB,β [t]−NumB,β[PosB,α[i]]
in B.

Assume p ≤ q for the moment. For the three values i, p, q, we define a
piecewise-linear function fs,t

i consisting of a slope-1 segment from (0, i + p) to
(q − p, i + q) and a horizontal extension from that point to infinity as shown in
the left diagram of Figure 2.

What is the purpose of this function? Assume we tried to find a long common
subsequence by matching exactly j many γs in the two sequences. We would
align these j pairs as far to the right as possible in order to gain as many βs
as possible. So count the number of βs between position s and the leftmost
matched γ in A and likewise in B. Say, there are x such βs in A and y in the
respective part of B. We can now use our function fs,t

i to obtain the length of
an LCWIS of type αiβ∗γj: Compute the surplus z = x− y of unmatchable βs
in A on the right (assuming x ≥ y for the moment) and read off the function
value of fs,t

i for that argument. The value fs,t
i (z) tells us exactly how long a

subsequence we can build to the left of the split if we throw in a surplus of z βs
into A.

For example, with no extra βs from the right, we only get min(p, q) = p many
pairs of βs, which together with the i αs yield a sequence of length fs,t

i (0) =

9

i + p

i + q

0 q − p

fs,t
i

Figure 2: Split diagrams.

i + p. If we have q − p free βs on the right, we could get a sequence of length
f(q − p) = i + q. More βs would not bring an advantage, which is expressed
in the stagnation of the function f beyond q − p. The case q > p, which we
had originally excluded for cleaner presentation, is simply covered by a function
f̄s,t

i , defined in the obvious way to handle free βs on the right of the split in
sequence B.

Of course, we have not gained anything yet from the function fs,t
i . The trick

is now to draw the functions fs,t
i for all values of i into one diagram. Their

point-wise maximum fs,t, the upper envelope of their plots, indicated in the
right of Figure 2, gives us the best possible length to the left of the split for any
surplus of βs from the right.

Lemma 3 Amongst all subsequences that have all their αs to the left and all
γs to the right of a fixed split (s, t), we can find an LCWIS in linear time.

Proof. For 0 ≤ i ≤ min(NumA,α[s], NumB,α[t]), “draw” all functions fs,t
i into one

split diagram. One can build an array of function values of the upper envelope
in O(n) time. After that, test for each right-aligned match of γs, how many
βs match to the right of the split (s, t) and evaluate the envelope function for
the respective surplus of βs. Actually constructing an LCWIS once its length
is known is an easy task. �

In order to turn the split technique into a fast algorithm for the general
case, where we do not have any pre-knowledge about good splits, we will have
to refine it a little further. If we know that there is an LCWIS with many βs,
we can apply Lemma 3 immediately.

Theorem 2 For two length-n sequences over three letters α < β < γ, we can
find an LCWIS that contains at least rn many βs (r ∈ (0, 1)) in O(n/r2) time.

Proof. Put a marker every rn positions in A and also in B. Test all ⌈1/r⌉2
candidate splits at marker pairs. Any α∗β⌈rn⌉β∗γ∗ subsequence must cover at
least one of those pairs with its β-section. Hence we will find it. �

10

3.4 A hierarchy of splits

In the general case, when we need to make sure that we identify subsequences
with only a few βs, we need a few tricks to further reduce the number of
splits. To this end, first note that we may restrict attention to splits (s, t)
that are given by left-aligned α-matches: The collection S of all splits of the
form (PosA,α[i], PosB,α[i]) suffices to find an LCWIS.

Note that S comes with a natural linear order since no two of its splits cross
and hence, |S| = O(n). Yet, if we drew a complete split diagram for every split
in S, we would still face a quadratic running-time. To reduce the work further,
we avoid drawing complete diagrams for all splits but spread information over
splits. Therefore, assign levels to the splits in S: let the level of the ith split
(counting from left) be the index of the least significant bit equal to one in the
binary representation of i. This scheme has the nice property that between any
two splits on the same level there lies another split on a higher level.

Conceptually, our algorithm proceeds in two sweeps over the sequences. In
the first sweep it constructs a split diagram for each of the splits in S. However,
not all left-side configurations are entered into all diagrams. For each integer i,
match the first i αs from A and B and enter the corresponding functions into
the split diagram of the closest split (s, t) to the right on each level. This means
that the effect of starting with exactly i αs is entered into O(log |S|) = O(log n)
diagrams.

After all diagrams are prepared, the algorithm makes a second sweep of
the sequences forming all right-aligned matches of γs. For each such partial
subsequence we then query the split diagrams for the closest split to the left on
each level to obtain the maximum length of an LCWIS with these many γs. A
formal description of the algorithm is given in Figure 4 in the appendix.

Theorem 3 We can find an LCWIS of two three-letter sequences of lengths m
and n, with m ≥ n, in O(m + n log n) time.

Proof. Consider an LCWIS embedded in A and B with its i αs left-aligned
and j γs right-aligned so that the α/γ-free region is as large as possible. There
is a unique highest S-split S within this region. Hence, the match of i αs is
entered into the diagram of S and the match of j γs queries this diagram; so we
are bound to detect the sequence. Again, it is easy to see how to construct an
LCWIS once a suitable j is known.

The preprocessing phase takes O(m) time. The rest can be performed in
O(m + n logn) time as follows. During the first sweep we simply create a list of
O(n log n) quadruples (i, p, q, s) that represent the contents of the O(n) splitters:
s is the identity of a splitter, and (i, p, q) are the parameters that define one
of the functions illustrated in the left of Figure 2. Similarly, during the second
sweep we construct a list of O(n log n) quadruples (i, p, q, s) where (i, p, q) is a
query and s is the splitter on which it is to be performed. After bucket-sorting
each list, all queries can be answered by a simultaneous linear scan of the lists.

�

11

4 Multiple Sequences

In this section we consider the problem of finding an LCIS of k length-n se-
quences, for k ≥ 3. We will denote the sequences by A1 = (a1

1, . . . , a
1
n),

A2 = (a2
1, . . . , a

2
n), . . . , Ak = (ak

1 , . . . , ak
n).

A match is a vector (i1, i2, . . . , ik) of indices such that a1
i1

= a2
i2

= · · · = ak
ik

.
Let r be the number of matches. Chan et al. [3] showed that an LCIS can
be found in O(min(kr2, kr log σ logk−1 r) + kSortΣ (n)) time (they show two
algorithms, each corresponding to one of the terms in the min). We present a
simpler solution which replaces the second term by O(r logk−1 r log log r).

We denote the ith coordinate of a vector v by v[i], and the alphabet symbol
corresponding to the match described by a vector v will be denoted s(v). A
vector v dominates a vector v′ if v[i] > v′[i] for all 1 ≤ i ≤ k, and we write
v′ < v. Clearly, an LCIS corresponds to a sequence v1, . . . , vℓ of matches such
that v1 < v2 < · · · < vℓ and s(v1) < s(v2) < · · · < s(vℓ).

To find an LCIS, we use a data structure by Gabow et al. [5, Theorem 3.3],
which stores a fixed set of n vectors from {1, . . . , n}k. Initially all vectors are
inactive. The data structure supports the following two operations:

1. Activate a vector with an associated priority.

2. A query of the form “what is the maximum priority of an active vector
that is dominated by a vector p ?”

A query takes O(logk−1 n log log n) time, and the total time for at most n
activations is O(n logk−1 n log log n). The data structure requires O(n logk−1 n)
preprocessing time and space.

Each of the r matches v = (v1, . . . , vk) corresponds to a vector. The priority
of v will be the length of the longest LCIS that ends at the match v. We
will consider the matches by non-decreasing order of their symbols. For each
symbol s of the alphabet, we first compute the priority of every match v with
s(v) = s. This is equal to 1 plus the maximum priority of a vector dominated
by v. Then, we activate these vectors in the data structure with the priorities
we have computed; they should be there when we compute the priorities for
matches v with s(v) > s.

The algorithm applies to the case of a common weakly-increasing subse-
quence by the following modification: The matches will be considered by non-
decreasing order of s(v) as before, but within each symbol also in non-decreasing
lexicographic order of v. For each match, we compute its priority and imme-
diately activate it in the data structure (so that it is active when considering
other matches with the same symbol). The lexicographic order ensures that if
v > v′ then v′ is in the data structure when v is considered.

Theorem 4 An LCIS or LCWIS of k length-n sequences can be computed in
O(r logk−1 r log log r) time, where r counts the number of match vectors.

12

5 Outlook

The central question about the LCS problems is, whether it can be solved in
O(n2−ǫ) time in general. It seems that with LCIS we face the same frontier.
Our new algorithms provide solutions fast in many situations, but in general,
we do not obtain subquadratic running-time, either.

On the other hand, LCWIS seems to behave very different from the other two
problems. Our result shows that it behaves somewhat like a mixture of LCS and
LCIS. While already the 2-letter problem is unsolved for LCS, finite alphabets
are trivial for LCIS. With LCWIS now, we present almost-linear solutions for
alphabets with up to three letters, while it is unclear whether similar results
can be obtained for all finite alphabets.

References

[1] David Aldous and Persi Diaconis. Longest increasing subsequences: From
patience sorting to the Baik-Deift-Johansson theorem. Bulletin (New Se-
ries) of the American Mathematical Society, 36(4):413–432, 1999.

[2] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subse-
quence algorithms. In SPIRE ’00: Proceedings of the Seventh International
Symposium on String Processing Information Retrieval (SPIRE’00), pages
39–48. IEEE Computer Society, 2000.

[3] W.-T. Chan, Y. Zhang, S. P.Y. Fung, D. Ye, and H. Zhu. Efficient Algo-
rithms for Finding A Longest Common Increasing Subsequence. In 16th
Annual International Symposium on Algorithms and Computation (ISAAC
2005), 2005.

[4] M.L. Fredman. On computing the length of longest increasing subse-
quences. Discrete Mathematics, 11(1):29–35, 1975.

[5] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and
related techniques for geometry problems. In STOC ’84: Proceedings of the
sixteenth annual ACM symposium on Theory of computing, pages 135–143,
New York, NY, USA, 1984. ACM Press.

[6] D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Commun. ACM, 18(6):341–343, 1975.

[7] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest
common subsequences. Commun. ACM, 20(5):350–353, 1977.

[8] W.J. Masek and M.S. Paterson. A faster algorithm computing string edit
distances. J. Comput. System Sci., 20:18–31, 1980.

[9] E. M. McCreight. Priority search trees. SIAM Journal on Computing,
14(2):257–276, 1985.

13

[10] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of
an efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[11] Robert A. Wagner and Michael J. Fischer. The string-to-string correction
problem. J. ACM, 21(1):168–173, 1974.

[12] I.-H. Yang, C.-P. Huang, and K.-M. Chao. A fast algorithm for computing
a longest common increasing subsequence. Information Processing Letters,
93/5:249–253, 2005.

14

Appendix

Function LCIS(A = (a1, . . . an), B = (b1, . . . bm))
Preprocess (* Clean A and B and build Occs for every s *)
i← 1

(* Compute L1[1 . . . n] *)
for j = 1 to n do Li[j]← MinimumKey(Occaj

)

(* Main loop *)
do

H ← [] (* Empty Bounded Heap *)
i← i + 1
for j = 1 to n do

Li[j]←∞
(j′, κ′)← BoundedMin(H, aj)
if (j′, κ′) 6= “invalid” then

Li[j]← min{κ : κ ∈ Occaj
∧ κ > κ′}

Link i[j] = j′

endif
if Li−1[j] 6=∞ then

(* Recall that DecreasePriority inserts aj if it is not already there *)
DecreasePriority (H, aj , Li−1[j], (j, Li−1[j]))

endif
endfor

while i < n and Li 6=∞
n

(* Generate a LCIS in reverse order *)
if Li =∞n then i← i− 1
j ← an index such that Li[j] 6=∞
while i > 0 do

output aj

j ← Link i[j]
i← i− 1

end while
end

Figure 3: An O((m + nℓ) log log σ + SortΣ (m)) time LCIS algorithm for k = 2.

15

Function LCWIS3 (A = (a1, . . . , an), B = (b1, . . . , bm))

Preprocess (* create arrays Num.,.[] and Pos.,.[] *)

t← min(NumA,α[n], NumB,α[m] (* the size of S *)
h := ⌊log2 t⌋ (* the highest level *)
for i = 1 to t do create empty split diagrams Di and D̄i

for position (µi, νi)← (PosA,α[i], PosB,α[i]) with level max{r : 2r|i}
(* First sweep: filling the diagrams *)
for i = 1 to t do

for r = 0 to h do
d← index of closest level-r diagram to the right (≥)

of (PosA,α[i], PosB,α[i])
p← NumA,β [µd]− NumA,β[PosA,α[i]]
q ← NumB,β[νd]− NumB,β [PosB,α[i]]
enter triple (i, p, q) into Dd and triple (i, q, p) into D̄d

od
od

Preprocess all Di and D̄i for quick look-up

(* Second sweep: reading the diagrams *)
best← 0
for i = 0 to min(NumA,γ [n], NumB,γ [m])− 1 do

for r = 0 to h do
d← index of closest level-r diagram to the left (<)

of (PosA,γ [n− i], PosB,γ [m− i])
x← NumA,β [PosA,γ [n− i]]− NumA,β[µd]
y ← NumB,β [PosB,γ [m− i]]− NumB,β [νd]
length← i + min(x, y) + max(Dd(x, y), D̄d(y, x))
if length > best then best← length

od
od

return best

Figure 4: A 3-letter LCWIS algorithm.

16

Recent BRICS Report Series Publications

RS-05-37 Gerth Stølting Brodal, Kanela Kaligosi, Irit Katr iel, and Mar-
tin Kutz. Faster Algorithms for Computing Longest Common
Increasing Subsequences. December 2005. 16 pp.

RS-05-36 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On
the Static and Dynamic Extent of Delimited Continuations. De-
cember 2005. ii+33 pp. To appear in the journalScience of
Computer Programming. Supersedes BRICS RS-05-13.

RS-05-35 Kristian Støvring.Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative. November 2005. 19 pp.

RS-05-34 Henning Korsholm Rohde.Formal Aspects of Polyvariant Spe-
cialization. November 2005. 27 pp.

RS-05-33 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2005. 33 pp. This paper supersedes BRICS
Report RS-04-24. An extended abstract of this paper appeared
in Algebra and Coalgebra in Computer Science, 1st Conference,
CALCO 2005, Swansea, Wales, 3–6 September 2005, Lecture
Notes in Computer Science 3629, pp. 54–68, Springer-Verlag,
2005.

RS-05-32 Anders Møller, Mads Østerby Olesen, and Michael I.
Schwartzbach. Static Validation of XSL Transformations. Oc-
tober 2005. 50 pp.

RS-05-31 Christian Kirkegaard and Anders Møller. Type Checking with
XML Schema in XACT . September 2005. 20 pp.

RS-05-30 Karl Krukow. An Operational Semantics for Trust Policies.
September 2005. 38 pp.

RS-05-29 Olivier Danvy and Henning Korsholm Rohde. On Obtaining
the Boyer-Moore String-Matching Algorithm by Partial Evalua-
tion. September 2005. ii+9 pp. To appear inInformation Pro-
cessing Letters. This version supersedes BRICS RS-05-14.

RS-05-28 Jǐr ı́ Srba. On Counting the Number of Consistent Genotype As-
signments for Pedigrees. September 2005. 15 pp. To appear in
FSTTCS ’05.

RS-05-27 Pascal Zimmer. A Calculus for Context-Awareness. August
2005. 21 pp.

