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Abstract

Evolutionary trees describing the relationship for a set of species are central in evolutionary
biology, and quantifying differences between evolutionary trees is therefore an important task.
The quartet distance is a distance measure between trees previously proposed by Estabrook,
McMorris and Meacham. The quartet distance between two unrooted evolutionary trees is
the number of quartet topology differences between the two trees, where a quartet topology
is the topological subtree induced by four species. In this paper, we present an algorithm for
computing the quartet distance between two unrooted evolutionary trees of n species, where
all internal nodes have degree three, in time O(n log n). The previous best algorithm for the
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{gerth,rolf,cstorm}@brics.dk. Partially supported by the Future and Emerging Technologies programme of the
EU under contract number IST-1999-14186 (ALCOM-FT).

‡Supported by the Carlsberg Foundation (contract number ANS-0257/20).



1 Introduction

The evolutionary relationship for a set of species can be described by an evolutionary tree, which
is a rooted tree where the leaves correspond to the species, and the internal nodes correspond to
speciation events, i.e. the points in time where the evolution has diverged in different directions.
The direction of the evolution is described by the location of the root, which corresponds to the most
recent common ancestor for all the species, and the duration of evolutionary periods is described
by assigning lengths to the edges. The true evolutionary tree for a set of species is most often
unknown; estimating it from obtainable information about the species, e.g. genomic data, is of
great interest in evolutionary biology. The problem of computationally estimating aspects of the
true evolutionary tree requires a model describing how to use the available information about the
species in question. Given a model, the problem of estimating aspects of the true evolutionary tree
is referred to as constructing the evolutionary tree in that model. Many models and construction
methods are available, see [11, Chapter 17] for an overview.

An important aspect of the true evolutionary tree for a set of species is its undirected tree
topology induced by ignoring the location of the root and the length of the edges. Many models
and methods are concerned with estimating just this tree topology, usually under the further
assumption that all internal nodes have degree three. We say that such models and methods are
concerned with constructing the unrooted evolutionary tree of degree three for a set of species.
For the remainder of this paper, an evolutionary tree will denote an unrooted evolutionary tree of
degree three.

Different models and methods often yield different estimates of the evolutionary tree for the
same set of species, and even the same model and method can yield different evolutionary trees
for the same set of species when applied to different information about the species, e.g. different
genes. To study such differences in a systematic manner, one has to be able to quantify differences
between evolutionary trees using well-defined and efficient methods.

One approach used for comparing two evolutionary trees is to define a distance measure be-
tween two trees and compare the two trees by computing the distance between them. Many
distance measures have been proposed—among these are the symmetric difference metric [16], the
nearest-neighbor interchange metric [19], the subtree transfer distance [1], the Robinson and Foulds
metric [17], and the quartet metric [9]. Each distance measure has different properties and reflects
different aspects of biology, e.g. the subtree transfer distance is related to the number of recombi-
nation events between the two sets of species. Bryant et al. in [6] argue that the quartet metric
has several attractive properties and does not suffer from drawbacks of other distance measures,
such as measures based on transformation operations (e.g. the subtree transfer distance) not dis-
tinguishing between transformations that affect a large number of leaves and transformations that
affect a small number of leaves.

In this paper, we study the quartet metric. For an evolutionary tree for a set of n species, the
quartet topology of four species is the topological subtree induced by these species. In general, there
are four possible quartet topologies, as shown in Figure 1. However, if we assume that all internal
nodes have degree three, then the right-most quartet topology cannot occur. It is well-known that
the complete set of quartet topologies is unique for a given tree and that the tree can be recovered
from its set of quartet topologies in polynomial time [7]. If the tree has degree three, then, as
observed in [13], it can be recovered from its set of quartet topologies in time O(n log n) using
methods for constructing an evolutionary tree in the experiment model [4, 10, 12, 13, 15].

Given two evolutionary trees on the same set of n species, the quartet distance between them
is the number of sets of four species for which the quartet topologies differ in the two trees. Since
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Figure 1: The four possible quartet topologies of species a, b, c, and d.
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Figure 2: The two orientations of a quartet topology.

there are
(n
4

)

sets of four species, the quartet distance can be calculated in time O(n4) by examining
the sets one by one. Steel and Penny in [18] presented an algorithm for computing the quartet
distance in time O(n3). Bryant et al. in [6] presented an improved algorithm which computes the
quartet distance in time O(n2).

In this paper, we present an algorithm which computes the quartet distance in time O(n log n).
Our solution is based on a data structure related to the data structure for dynamic expression
trees [8], the “extended smaller-half trick” [5], and the on-the-fly compression of the data structure
to facilitate the use of the extended smaller-half trick.

The rest of the paper is organized as follows. In Section 2, we introduce quartets and our
strategy for computing the quartet distance between two unrooted evolutionary trees. In Section 3,
we describe and analyze a hierarchical decomposition of unrooted trees which is an essential part of
the data structure used by our algorithm. In Section 4, we present the details of our data structure.
In Section 5, we describe an algorithm with running time O(n log2 n), which will serve as a basis
for our final algorithm. In Section 6, we present our final algorithm with running time O(n log n).

2 Terminology

As mentioned, we in this paper by an evolutionary tree mean an unrooted tree where all nodes are
either leaves (i.e. have degree one) or have degree three, and where the leaves are uniquely labeled
by the elements of a set S of species. Let n denote the size of S. For an evolutionary tree T , the
quartet topology of a set {a, b, c, d} ⊆ S of four species is the topological subtree of T induced by
these species. In general, the possible quartet topologies for species a, b, c, d are the four shown in
Figure 1. Of these, the right-most does not occur in our setting, due to the assumption about all
internal nodes having degree tree. Hence, the quartet topology is a pairing of the four species into
two pairs, defined by letting a and b be a pair if among the three paths in T from a to respectively b,
c, and d, the path to b is the first to separate from the others—more formally, the quartet topology
is a two-set of two-sets {{a, b}, {c, d}}.

Given two evolutionary trees T1 and T2 on the same set S of species, the quartet distance
between the two trees is the number of four-sets {a, b, c, d} ⊆ S, for which the quartet topologies in
T1 and T2 differ. As there are

(n
4

)

different four-sets in S, the quartet distance can also be calculated
as
(n
4

)

minus the number of four-sets for which the quartet topologies in T1 and T2 are identical.
In this paper, we show how to find this number in time O(n log n).

To facilitate the counting of identical quartet topologies in the two trees, we view the quartet
topology of a four-set {a, b, c, d} as two oriented quartet topologies given by the two possible
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Figure 3: A generic quartet ab · cd.

A

B

C

v

Figure 4: Subtrees incident to an internal node v.

orientations of the “middle edge” of the topology. Figure 2 shows the two oriented quartet topologies
arising from one non-oriented quartet topology. More formally, an oriented quartet topology is an
ordered pair of two-sets ({a, b}, {c, d}). Clearly, the number of identical oriented quartet topologies
between the trees T1 and T2 is twice the number of identical non-oriented quartet topologies. The
goal of our algorithm is to count identical oriented quartet topologies. For brevity, we in the
rest of this paper let the word quartet denote an oriented quartet topology of a four-set, and use
the notation ab · cd for ({a, b}, {c, d}). There are 2 · 3 ·

(n
4

)

possible quartets of S, of which any
evolutionary tree T contains a subset QT of size 2 ·

(n
4

)

.
We associate the quartets in QT1 with internal nodes in T1 as follows: Consider the generic

quartet ab · cd in Figure 3. There is a unique node v in T1 where the paths from a and b to c (and
d) meet. We associate the quartet with the node v. This partitions QT1 into n− 2 disjoint sets, as
there are n − 2 internal nodes in a tree of n leaves, when all internal nodes have degree three. For
an internal node v in T1, we by Qv denote the set of quartets associated with v.

For an internal node v in T1, we by the subtrees incident to v mean the three subtrees which
arise if v and its three incident edges are removed from T1. These are shown in Fig 4, denoted by
A, B, and C. The number of quartets associated with v is given by the expression

(

|A|

2

)

· |B| · |C| +

(

|B|

2

)

· |A| · |C| +

(

|C|

2

)

· |A| · |B| ,

where |T | denotes the number of leaves in subtree T . The three terms of the expression are the
number of quartets where c and d (in Figure 3) are in respectively the subtree A, B, and C (in
Figure 4).

Our strategy for computing the quartet distance between T1 and T2 is for each internal node v
in T1 to count how many of the quartets associated with v which are also quartets of T2. The sum
over all internal nodes in T1 of these counts then gives the required number of identical quartets
in T1 and T2. In other words, we use the fact that |QT1 ∩ QT2 | =

∑

v∈T1
|Qv ∩ QT2|.

To implement the above strategy, we construct an algorithm which colors the elements of S
using the three colors A, B, and C. We relate the coloring and the quartets to each other by the
following two definitions: For an internal node v in T1, we say that the elements of S are colored

3



according to v if the labels of the leaves of one of the three subtrees incident to v all have color A,
the labels of the leaves of another of the subtrees all have color B, and the labels of the leaves of
the remaining subtree all have color C. For a coloring of the elements in S and a quartet ab · cd,
we say that the quartet is compatible with the coloring if a and b have different colors, and c and d
both have the remaining color. From these definitions the lemma below is immediate.

Lemma 1 When S is colored according to a choice of v in T1, then the set of possible quartets
of S that are compatible with the coloring is exactly the set Qv of quartets associated with v.

From Lemma 1, it follows that if the coloring of S is according to a choice of v in T1, then the
quartets in T2 compatible with the coloring are exactly the quartets associated with v which are in
both T1 and T2.

We maintain the coloring via a data structure described in Section 4. The central feature of
the data structure is that it can in constant time return the number of quartets in T2 compatible
with the current coloring. The data structure also allows the color of k elements to be changed in
time O(k + k log n

k ), given k pointers to the elements. For each node v in T1 the algorithm will
ensure a coloring according to v and then query the data structure to find the number of quartets
associated with v that also are quartets of T2.

3 Hierarchical Decomposition

An essential part of the data structure in Section 4 is a hierarchical decomposition of the evolution-
ary tree T2. In the following, we describe how to obtain a well balanced hierarchical decomposition
of any unrooted tree T with nodes of degree at most three. Our decomposition is related to the
decompositions used for solving the parallel and dynamic expression tree evaluation problems [2, 8],
but in our setting the underlying tree is unrooted.

The hierarchical decomposition is based on the notion of components. A component C in T is
a connected subset of nodes in T . An external edge of C is an edge in T connecting nodes in C and
T \ C, i.e. an edge crossing the cut defined by C. The degree of C is its number of external edges.
We allow only the following two types of components:

1. Components containing a single node of T .

2. Components of degree at most two.

We let each node of T (including leaves) constitute a component of type 1. Components of
type 2 are formed as the union of two adjacent components C ′ and C ′′, where C ′ and C ′′ are said
to be adjacent if there exists an edge (u, v) in T such that u ∈ C ′ and v ∈ C ′′. We call such a union
a composition. Each composition of two components corresponds to a unique edge in the tree T ,
namely the edge connecting the two components.

We allow only the four compositions depicted in Figure 5, where nodes represent contracted
components and ovals represent compositions. Types (i), (iii), and (iv) are the cases where a
component with degree one is composed with a component of degree three, two, and one respectively.
Type (ii) is the case where two components with degree two are composed into a new component
with degree two. Note that these compositions will only produce components of degree at most
two.

A hierarchical decomposition of T is a set of components produced during some sequence of
compositions, starting from an initial set containing one type 1 component for each node in T . If
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Figure 5: The four possible types of compositions of components.
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Figure 6: A hierarchical decomposition of a tree T with eight nodes and the corresponding hier-
archical decomposition tree H(T ) with eight leaves. Each node in the hierarchical decomposition
tree corresponds to a component in the hierarchical decomposition of the tree. The labels are the
types of compositions used.

we contract components to single nodes after each composition, the compositions correspond to
edge contractions. As new components have degree at most two, we in this contracted view always
have a tree with nodes of degree at most three. We can therefore always apply a composition of
type (i), (iii), or (iv), unless we already have a single component containing all of T .

For hierarchical decompositions that include a component containing all of T , we may in a
natural way view the decomposition as a rooted binary tree H(T ), which we call a hierarchical
decomposition tree for T . Each node of H(T ) represents a component in the decomposition. Leaves
of H(T ) represent the components of type 1 in a one-to-one fashion, and an internal node v of H(T )
represents a component of type 2 formed by the composition of the two components represented by
the children of v. Figure 6 shows a hierarchical decomposition of a tree T and the corresponding
hierarchical decomposition tree H(T ).

We will show how to construct hierarchical decomposition trees which are locally-balanced. A
rooted binary tree with n nodes is c-locally-balanced if for all nodes v in the tree, the height of
the subtree rooted at v is at most c · (1 + log |v|), where |v| is the number of leaves in the subtree
rooted at v and height is the maximal number of edges on any root-to-leaf path. For locally-
balanced binary trees, Lemma 2 below holds. This property is essential for the use of the extended
smaller-half trick in the final algorithm in Section 6.
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Lemma 2 The union of k root-to-leaf paths in a c-locally-balanced rooted binary tree with n leaves
contains at most k(3 + 4c) + 2ck log n

k nodes.

Proof. Let T be a c-locally-balanced binary tree with n leaves, and N(n, k, c) be the maximal
number of edges in the union of k root-to-leaf paths in such a tree. We first give an upper bound
on the number of edges which lead to exactly one of the k leaves. The edges constitute a set of k
paths P1, . . . , Pk, such that each path starts at some internal node and leads to exactly one of the
k leaves. If (ui, vi) is the first edge in a path Pi, then Pi is the only path containing edges from the
subtree rooted at vi, and we have |Pi| ≤ 1 + h(vi) ≤ 1 + c + c log |vi|, where h(vi) and |vi| are the
height and size of the subtree rooted at vi, and |Pi| is the number of edges in Pi. Since the subtrees
rooted at v1, . . . , vk are disjoint, we have |v1|+ · · · + |vk| ≤ n, so by the convexity of the logarithm
we get the following bound on the number of edges leading to exactly one leaf.

k
∑

i=1

|Pi| ≤
k
∑

i=1

(1 + c + c log |vi|) = k + ck + c
k
∑

i=1

log |vi| ≤ k + ck + ck log
n

k
.

The edges leading to at least two of the k leaves constitute a subtree T ′ of T with at most ⌊k/2⌋
leaves, since a leaf of T ′ is an internal node v of T where both the edges to the children of v lead
to exactly one of the k leaves. Hence, T ′ is contained in the union of at most ⌊k/2⌋ of the paths
P1, . . . , Pk, and we get the recurrence

N(n, k, c) ≤ k + ck + ck log
n

k
+ N(n, ⌊k/2⌋, c) ,

with N(n, 1, c) = c + c log n. Using the fact that 2x + x log n
x is increasing in x for 0 < x ≤ n, we

by induction get N(n, k, c) ≤ 2k + 4ck + 2ck log n
k . As a path with t edges contains t + 1 nodes, the

union of the k paths contains at most k(3 + 4c) + 2ck log n
k nodes. 2

We now describe how to construct locally-balanced hierarchical decomposition trees in linear
time.

Lemma 3 For any unrooted tree T with n nodes of degree at most three, a (1/ log 18
17 )-locally-

balanced hierarchical decomposition tree H(T ) can be computed in time O(n).

Proof. Given an unrooted tree with n nodes, we construct a hierarchical decomposition tree bottom-
up in O(log n) rounds. Each round performs a number of compositions of types (i)–(iv), and hence
produces a new set of components which forms a tree with nodes of degree at most three. This tree
is the basis for the next round. Before the first round, each node in T is a component by itself. In
each round, we by a traversal of the tree greedily select an arbitrary maximal set of non-overlapping
compositions, using time linear in the size of the tree, i.e. in the number of remaining components.
Since one of the compositions (i), (iii), and (iv) can always be applied if there are at least two
components left, this algorithm will eventually terminate with a single component representing the
entire tree.

Let v be a node in the constructed hierarchical decomposition tree, and let m be the number
of nodes of T in the component C represented by v. We will argue that the height of the subtree
rooted at v is O(log m) by arguing that the construction of C has been done in O(log m) rounds.
If m = 1, the height is zero. If m = 2, there are three cases: If C has no external edges then
type (iv) has been applied, if C has one external edge then type (iii) has been applied, and if C
has two external edges then types (i) or (ii) has been applied. In either case, the height is one.
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So assume m ≥ 3. Let t denote the number of external edges of C, and let m1, m2, and m3

denote the number of nodes contained in C that are of degree one, two, and three in T . For a tree
with nodes of degree at most three, the number of degree three nodes is exactly two less than the
number of degree one nodes. In particular, this holds for a tree consisting of the nodes and edges
inside C, plus the t external edges each terminated by a degree one node. This implies the relation
m3 = m1 + t − 2. As t ≤ 2, we have m3 ≤ m1.

There are m−1 edges inside C, as C constitute a tree. Of these, the only edges not corresponding
to legal compositions are edges connecting a node of degree three with a node of degree two or
three. There are at most 3m3 such edges. The number of possible compositions is therefore at
least m − 1 − 3m3 ≥ m − 1− 3m1. In the case m1 < m/6, this bound is larger than 3m/6 − 1. As
m ≥ 3, this is at least m/6. Otherwise, we have the case m1 ≥ m/6. Since m ≥ 3, there are always
m1 possible compositions of types (i) and (iii). In both cases, there are at least m/6 possible
compositions on edges in C. Since each possible composition can be in conflict with at most two
other possible compositions (cf. Figure 5), any maximal set of non-conflicting compositions chosen
in the first round of the construction algorithm contains at least m/18 edges in C.

The analysis above also applies to subsequent rounds, except that it should use values m′
1, m′

2,
m′

3, and m′ denoting the current number of components within C of degree one, two, and three,
and their sum, respectively. The construction of component C starts with m components corre-
sponding to single nodes. After k rounds, at most m(17/18)k components remain. In particular,
one component remains after at most ⌈log18/17 m⌉ steps, so the height of the subtree rooted at v is

bounded by ⌈log18/17 m⌉ ≤ (1/ log 18
17 )(1 + log m).

Finally, consider the time it takes to construct the hierarchical decomposition tree, i.e. the
time it takes to construct the component represented by the root in the hierarchical decomposition
tree. Let n be the number of nodes in this component. The construction of this component
takes ⌈log18/17 n⌉ rounds, where each round takes time proportional to the number of components
remaining. Initially, there are n components corresponding to single nodes. Since the number of
components decreases geometrically in each round, the total time becomes O(n). 2

In the following lemma, we are not concerned with the balance of hierarchical decompositions,
but rather with how they can be used to contract the nodes of a tree while leaving a designated
set of leaves untouched.

Lemma 4 Let T be an unrooted tree with n nodes of degree at most three, and let k ≥ 0 leaves be
marked as non-contractible. In O(n) time a hierarchical decomposition of T into at most 4k + 1
components can be computed such that each marked leaf is a component by itself.

Proof. We construct the decomposition by repeatedly applying valid compositions (cf. Figure 5)
on an initial set of components consisting of the n nodes of T . Since each valid composition
corresponds to an edge of T , this algorithm takes O(n) time if we maintain a queue of edges
corresponding to valid compositions. Consider a situation where the algorithm stops, i.e. where
there are no more edges corresponding to valid compositions. We must argue that there are at most
4k + 1 components. Let n1, n2, and n3 be the number of components of degree one, two, and three
respectively. If n3 = 0, the tree is a path and we have k ≤ n1 ≤ 2. The number of edges where we
cannot apply a decomposition is at most k, so the number of components is at most k +1 ≤ 4k +1.
If n3 ≥ 1, we argue as follows. If n1 > k, then at least one leaf is contractible, and a composition of
type (i) or (iii) can by applied. So the only components of degree one are the k marked leaves, and
we have n1 = k and n3 = n1 − 2 = k − 2. The only edges not corresponding to valid compositions
are edges incident to a marked leaf, or edges incident to a component of degree three (cf. the proof
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Figure 7: A component in the hierarchical decomposition with two external edges. The component
corresponds to the marked node in the hierarchical decomposition tree to the right. This node
is decorated with information (0, 1, 1) and F (a1, b1, c1,a2, b2, c2), where ai, bi, and ci denote the
number of elements in leaves from the subtree induced by external edge i which are colored A, B,
and C, respectively. In the figure, (a1, b1, c1,a2, b2, c2) = (1, 1, 0, 2, 0, 0). F states, as a function of
the variables ai, bi, and ci, the number of the quartets which are both associated with nodes in the
component and are compatible with the given coloring. For the highlighted component these are
the quartets ab·ef , ac·ef , ae·bc, and af ·bc. In total there are four quartets that are both associated
with nodes in the component and are compatible with the given coloring, i.e. F (1, 1, 0, 2, 0, 0) = 4.

of Lemma 3), i.e. at most k + 3n3 = 4k − 6 edges do not represent valid compositions. As the
components form a tree, the number of components is at most 4k − 5 ≤ 4k + 1. 2

4 Counting Quartets in Components

Let T be an evolutionary tree and H(T ) be a hierarchical decomposition tree for T . We now
describe how to decorate the nodes of H(T ) with information such that the number of quartets
of T which are compatible with a given coloring of S can be returned in constant time. Furthermore,
for a given coloring, the decoration can be generated in O(n) time, and if k elements of S change
color, the decoration can be updated in time O(k + k log n

k ).
For each node of H(T ), we store a tuple (a, b, c) of integers and a function F . Recall that a

node in H(T ) represents a component in T . The integers a, b, and c of the tuple are the number of
elements at the leaves of T contained in this component which are colored A, B, and C, respectively.
A component has k external edges for k between zero and three (the case of zero external edges
occurs only at the root of H(T )). The function F has three variables for each of the external
edges of the component. For a component with k ≥ 1 external edges, we number these edges
arbitrarily from 1 to k and denote the three variables corresponding to edge i by ai, bi, and ci. If
an external edge was removed from T , two subtrees of T would arise, where one does not contain
the component in question. We call this subtree the subtree induced by the external edge. The
variables ai, bi, and ci denote the number of elements in leaves from the subtree induced by edge i
which are colored A, B, and C, respectively. Finally, F states, as a function of the variables ai,
bi, and ci, for 1 ≤ i ≤ k, the number of the quartets which are both associated (as defined in
Section 2) with nodes in the component and are compatible with the given coloring. It will turn
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out that F is actually a polynomial of total degree at most four (the total degree of a monomial is
the sum of the powers of its variables, and the total degree of a polynomial is the maximum of this
over its monomials—for example, the total degree of x3y3 + x4z is six). Figure 7 gives an example
of the described decoration.

The root of H(T ) represents a component which comprises the entire tree T . This component
has no external nodes, so the function F stored there is a constant. Hence, the number of quartets
of T which are compatible with a given coloring of S is part of the information stored at the root
of H(T ).

Lemma 5 The tree H(T ) can be decorated with the information described above in time O(n).

Proof. The information is computed in a bottom up fashion during a traversal of H(T ). We first
describe how the information for leaves in H(T ) is generated, i.e. for nodes representing single node
components. Recall that a node in T is either a leaf and has degree one, or is an internal node and
has degree three.

For a component consisting of a single leaf with an element colored A, B, or C, the tuple is
(1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. The function F is identically zero, as quartets are only
associated with internal nodes of T , not with leaves of T .

For a component consisting of a single degree three node u, the tuple is (0, 0, 0), as no leaves
of T are contained in the component. The function F should count the number of quartets which
are both compatible with the coloring and associated with u in T . A quartet ab · cd fulfills this
requirement precisely when c and d are contained in one of the three subtrees induced by the
external edges of the component, and they have the same color, and a and b each are in one of the
remaining two induced subtrees and each have one of the remaining two colors. For the case that
c and d are in the subtree induced by edge number one and have color A, the number of quartets
fulfilling this is

(

a1

2

)

· (b2c3 + b3c2) .

Summing over all 3 · 3 = 9 choices of the induced subtree and color for c and d, we get:

F (a1, b1, c1,a2, b2, c2,a3, b3, c3)

=
(a1

2

)

· (b2c3 + b3c2) +
(a2

2

)

· (b1c3 + b3c1) +
(a3

2

)

· (b2c1 + b1c2)

+
(b1

2

)

· (a2c3 + a3c2) +
(b2

2

)

· (a1c3 + a3c1) +
(b3

2

)

· (a2c1 + a1c2)

+
(1

2

)

· (b2a3 + b3a2) +
(2

2

)

· (b1a3 + b3a1) +
(3

2

)

· (b2a1 + b1a2)

We now turn to the generation of the information stored in the internal nodes of H(T ). Consider
the composition of two components C ′ and C ′′. Let (a′, b′, c′) and F ′, and (a′′, b′′, c′′) and F ′′ be the
information stored at the nodes representing the components C ′ and C ′′. The information stored
at the node representing the composition C of C ′ and C ′′ is (a′ +a′′, b′ + b′′, c′ + c′′) and F , where F
depends on the type of composition. If the component composition is of type (ii), we consider the
case where the numbering of external edges of components is such that the first external edge of C ′

and C ′′ is the edge connecting C ′ and C ′′, and the second external edge of C ′ is the first external
edge of C, and the second external edge of C ′′ is the second external edge of C. The remaining
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cases of numbering of external edges are obtained by appropriate changes of the arguments to F ′

and F ′′.
F (a1, b1, c1,a2, b2, c2)

= F ′(a2 + a′′, b2 + b′′, c2 + c′′,a1, b1, c1)

+ F ′′(a1 + a′, b1 + b′, c1 + c′,a2, b2, c2)

Component compositions of type (iii) and (iv) are identical to type (ii), except that the defi-
nition of F is simpler. For type (iii) we have (assuming that C ′′ is the component of degree one)

F (a1, b1, c1) = F ′(a′′, b′′, c′′,a1, b1, c1) + F ′′(a1 + a′, b1 + b′, c1 + c′) ,

and for type (iv) we have
F = F ′(a′′, b′′, c′′) + F ′′(a′, b′, c′) .

Note that for type (iv) compositions, F is a constant. Finally, we for type (i) compositions get the
following expression for F , assuming C ′ has degree one and the first and second external edges of
C are the second and third external edges of C ′′, respectively.

F (a1, b1, c1,a2, b2, c2)

= F ′(a1 + a2 + a′′, b1 + b2 + b′′, c1 + c2 + c′′)

+ F ′′(a′, b′, c′,a1, b1, c1,a2, b2, c2)

Note that the function F for a component consisting of a single node is a polynomial with at
most nine variables and total degree at most four. By structural induction on the definition of the
F functions, the same is seen to hold for all components. Polynomials with at most nine variables
and total degree at most four can be stored in constant space by storing the coefficients, and they
can be manipulated in constant time, e.g. when adding or composing two polynomials. Actually,
it can be shown that except for components of degree three, the polynomials have at most six
variables and total degree at most three1. As all components of degree three have an F of a fixed
form, the space required to store the polynomials is less than implied by the bound stated above.

We conclude that for a component C which is the composition of two components C ′ and C ′′,
the information to be stored at C can be computed in constant time, provided that the information
stored at C ′ and C ′′ is known. It follows that H(T ) can be decorated in time O(n). 2

Lemma 6 The decoration of H(T ) can be updated in O(k + k log n
k ) time when the color of k

elements in S changes.

Proof. From the proof of Lemma 5 we know that the decoration of a node in H(T ) only depends
on the decoration of the children of the node in H(T ), i.e. the only decorations that need to be
updated in H(T ) while changing the color of an element in S are the decorations of the ancestors
of the leaf in H(T ) corresponding to the element. The decoration of a node takes constant time to
compute knowing the decoration of the children. Since H(T ) is a (1/ log 18

17)-locally balanced tree,
we from Lemma 2 have that at most O(k + k log n

k ) nodes should be updated. We first mark the

1For instance, the exact format of components with two external edges with variables (a1, b1, c1) and (a2, b2, c2) can
by structural induction be shown to be F (a1, b1, c1, a2, b2, c2) = (k0 +k1a1 +k2b1 +k3c1 +k4a2 +k5b2 +k6c2 +k7a

2
1 +

k8b
2
1+k9c

2
1+k10a

2
2+k11b

2
2+k12c

2
2+k13a1a2+k14b1b2+k15c1c2+k16a1b2+k17a1c2+k18b1a2+k19b1c2+k20c1a2+k21c1b2+

k22a
2
1b2 +k23a

2
1c2 +k24b

2
1a2+k25b

2
1c2+k26c

2
1a2+k27c

2
1b2+k28a1b

2
2+k29a1c

2
2+k30b1a

2
2+k31b1c

2
2 +k32c1a

2
2+k33c1b

2
2)/2,

where k0, k1, . . . , k33 are integer coefficients.
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Procedure Count(v)
if v is a leaf then

color v by the color C
return 0

else

ColorLeaves(Small(v), B)
x = NodeCount(v)
ColorLeaves(Small(v), C)
y = Count(Large(v))
ColorLeaves(Small(v), A)
z = Count(Small(v))
return x + y + z

Figure 8: The basic algorithm.

nodes to be updated bottom-up from each leaf until we find the first already marked node. The
decorations of the marked nodes are then updated bottom-up by a traversal of the marked nodes,
simultaneously with removing the marks again. In total, we spend time proportional to the number
of nodes to be updated. 2

5 The Basic Algorithm

In this section, we give an algorithm with running time O(n log2 n). The algorithm starts by
rooting T1 at an arbitrary leaf. It then calculates the size |v| of each node v in T1 during a
postorder traversal starting at the root, where |v| denotes the number of leaves below v, and stores
this information in the nodes. It also colors all elements of S by the color A, except for the root
which is colored C, and builds H(T2) with decoration based on this coloring. The algorithm then
recursively calculates the sum described in Section 2 of counts for all internal nodes of T1, starting
at the single child of the root of T1. To achieve the claimed complexity, the algorithm at a node v
will make a recursive call first on its larger child, then on its smaller child, and finally add the count
for v to the sum calculated so far.

In Figure 8 the algorithm is described in pseudo-code as a recursive procedure Count(v). A call
to Count(v) returns the sum of the counts for v and the internal nodes of T1 below v. Initially,
it is called with v set to the single child of the root of T1. The routines Small(v) and Large(v)
return the child of v having smallest and largest size respectively. The routine NodeCount(v) is a
call to the data structure of Section 4, which returns the count for the node v by looking at the
current information at the root of H(T2). The routine ColorLeaves(v, X ) colors by the color X all
elements in the data structure which are labels of leaves below v in T1. This is done by a traversal
of the subtree in T1 rooted at v. By maintaining bi-directional pointers between elements of S in
the data structure and the leaves in T1 and T2 which they label, this can be done in the time stated
in Lemma 6 with k equal to |v|. See Figure 9 for an illustration of the data structures used by the
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Figure 9: The data structures used by the basic algorithm are the hierarchical decomposition tree
H(T2) decorated with information as described in Section 4, and the tree T1 rooted at an arbitrary
leaf. Pointers are maintained between elements of S in H(T2) and nodes of degree one in T1.

basic algorithm.

Theorem 1 Let T1 and T2 be two unrooted evolutionary trees on the same set S of species, and
let all internal nodes in the trees have degree three. Then the quartet distance between T1 and T2

can be found in time O(n log2 n).

Proof. By induction on time, it follows that the algorithm above maintains the invariants:

1. At the beginning of the execution of an instance of Count(v), all elements in S which are
labels of leaves below v in T1 are colored A, and all other elements in S are colored C.

2. At the end of the execution of an instance of Count(v), all elements in S are colored C.

The invariants imply that when a call to NodeCount(v) takes place, labels of leaves in the subtree
of Small(v) are labeled by the color B, labels of leaves in the subtree of Large(v) are labeled by
the color A, and the remaining elements are labeled by the color C. In other words, the elements of
S are colored according to v. From the discussion in Section 2, we have that the quartet distance
equals

(n
4

)

minus half the value computed by the algorithm above.
For complexity, note that the work incurred by an instance of Count(v), not counting recursive

calls made during this instance, is O(log n · |Small(v)|), by the logarithmic height of H(T2). Let
this work be accounted for by charging each leaf below Small(v) in T1 (or v itself, if it is a leaf)
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an amount of O(log n) work. For a given leaf, this charging can only happen at nodes v on the
path from the leaf to the root where the path goes from Small(v) to v. As the size of v is at least
twice as large as the size of Small(v), this can only happen log n times. Hence, each leaf is at most
charged O(log2 n) work in total, and the result follows. 2

6 The Improved Algorithm

In the analysis of our basic algorithm in the previous section, we made use of the fact that if each
node v in a binary tree with n leaves supplies a term c · |Small(v)|, then the sum over all nodes in
the tree is O(cn log n). In the literature, this is often referred to as the “smaller-half trick”. We
used it with c = log n.

In this section, we improve the above algorithm to an algorithm with running time O(n log n).
The improvement comes from changes in the algorithm which will allow us to use an “extended
smaller-half trick”. This stronger result is hinted at in [14, Exercise 35] and formulated in Lemma 7
below. As usual, a full binary tree is a tree where each internal node has two children.

Lemma 7 Let T be a full binary tree with n leaves. If cv = |Small(v)| log(|v|/|Small(v)|) for every
internal node v, and cv = 0 for every leaf v, then

∑

v∈T

cv ≤ n log n .

Proof. The proof is by induction on the size of T . If |T | = 1, the lemma holds vacuously. Now
assume inductively that the upper bound holds for all trees with at most n − 1 leaves. Consider a
tree with n leaves where the number of leaves in the subtrees rooted at the two children of the root
are k and n− k where 0 < k ≤ n/2. According to the induction hypothesis the sum over all nodes
in these two subtrees is bounded by respectively k log k and (n − k) log(n − k). The entire sum is
thus bounded by:

k log(n/k) + k log k + (n − k) log(n − k) = k log n + (n − k) log(n − k)

< k log n + (n − k) log n

= n log n ,

which proves the lemma. 2

The improvement of the basic algorithm is based on the following observation: In a recursive
call to Count(v), only the leaves below v in T1 can be colored with a color different from C,
i.e. if |v| is small then most components in H(T2) only contain nodes colored C. By contracting
such components in T2 into single nodes, we by Lemma 4 can obtain a contracted version of T2

with at most 4|v| + 1 nodes. We use this observation to construct an improved algorithm which
works with contracted versions of T2. By contracting T2 whenever a constant fraction of the leaves
has been colored C, namely when |T2| > 5|v|, we can guarantee that |T2| = O(|v|) when recursively
invoking our improved algorithm, instead of |T2| = n as in the basic algorithm. By Lemma 6,
this implies that updating the colors of Small(v) by the three ColorLeaves operations takes time
O(|Small(v)| · log(|v|/|Small(v)|)). Assuming that this dominates the work incurred by an instance
of our improved algorithm, a total running time of O(n log n) is implied by Lemma 7.
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Procedure FastCount(v, T )
local var T ′

if v is a leaf then

color v by the color C
return 0

else

ColorLeaves(Small(v), B, T )
x = NodeCount(v)
T ′ = Contract(B, Extract(Small(v), T ))
ColorLeaves(Small(v), C, T )
if |T | > 5 |Large(v)| then

T = Contract(A, T )
y = FastCount(Large(v), T )
ColorLeaves(Small(v), A, T ′)
z = FastCount(Small(v), T ′)
return x + y + z

Figure 10: The extended algorithm.

To avoid the problem of reversing the contractions of T2 made along one path in the recursion
tree when another path is later taken, we make copies of T2 during the recursion. An input param-
eter to the recursive procedure is therefore a compressed copy T of T2, along with an associated
hierarchical decomposition tree H(T ). In the initial call, we have T = T2.

In Figure 10, our improved algorithm is described as a recursive procedure FastCount(v, T ).
In the pseudo-code, T refers to the tree T as well as its associated data structure. A similar
remark applies to the copy T ′. The differences between FastCount(v, T ) and Count(v) are the two
applications of the routine Contract and the single application of the routine Extract.

The routine Contract(X , U) applies the algorithm described in the proof of Lemma 4 to the
tree U , with the term non-contractible taken to mean the leaves in U colored X . It uses the
decomposition resulting from this algorithm as a new tree by taking the components as the new
nodes, and the edges between the components as the new edges. The (a, b, c) and F information
of the components is inherited by the new nodes. Finally it builds the data structure for this
contracted tree using Lemma 3. By Lemma 3 and Lemma 4, the running time of Contract(X , U)
is O(|U |).

The routine Extract(Small(v), T ) uses the data structure of T to extract a copy of T at the
point in the algorithm where all leaves below Small(v) are colored B, all leaves in Large(v) are
colored A, and the remaining leaves are colored C. In the copy, all leaves below Small(v) remain
colored B and all other leaves are colored C, i.e. the color of leaves below Large(v) has been changed
from A to C. We give the details of Extract below. The routine Contract is applied to the copy,
and the resulting contracted copy T ′ of T is used for the subsequent recursive call on Small(v).

Just as in the basic algorithm, to perform ColorLeaves we need pointers between leaves in T1

and elements of S in H(T ). However, in the extended algorithm of Figure 10, the first two calls
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to ColorLeaves work on T , while the last call works on T ′. As part of the construction of T ′,
we therefore make a list where each element points to a leaf below Small(v) in T1 and to the
corresponding element of S in T ′. Just before the third call to ColorLeaves, we traverse this list
and update the actual pointers in leaves below Small(v) in T1 to point to nodes of T ′ instead of T .
For brevity, this is not shown in Figure 10.

We now give the details of Extract(Small(v), T ). As described in Section 3, the data structure
of T is the binary tree structure H(T ). To extract the copy from T , we mark all internal nodes in
H(T ) on paths from the leaves of color B to the root by marking bottom-up from each leaf until we
find the first already marked node. We then traverse the marked part of the data structure, and
identify the subtrees that would arise if the marked nodes were removed. In H(T ), internal nodes
correspond to edges in T , and subtrees correspond to components of T of degree one, two, or three.
Hence, the subtrees that would remain after removal of the marked nodes are components of T of
degree one, two, or three. For each of these components, we create a new node for the extracted
tree with the same degree as the component in T it corresponds to. These steps are illustrated as
part of Figure 11, which gives an example of the construction of T ′.

To be able to consider all leaves in the components as being colored C, we extend the definition
of the data structure in Section 4 such that each component also stores a function FC defined
equivalently to the function F , except that it assumes all leaves in the component to be colored C.
If a component before the extraction stores a tuple (a, b, c) and functions F and FC , then the
corresponding node in the extracted tree stores the tuple (0, 0, a + b + c) and the functions FC

and FC . We connect two new nodes v and u by an edge if an outgoing edge of the component
corresponding to v is the same edge as an outgoing edge of the component corresponding to u.
Note that the edges in any T will be a subset of the edges in the original evolutionary tree T2 (as
Extract and Contract maintain this invariant). If the 2n − 3 edges of the original T2 are labeled
with the integers 1, . . . , 2n − 3, we can therefore connect the nodes in time proportional to the
number of nodes by using the labels of outgoing edges as indexes into an array and connecting
nodes ending up in the same entry.

In total, by Lemma 2, the extraction takes time O(|Small(v)| · log(|T |/|Small(v)|)). When
we perform the operation Extract(Small(v), T ) on an instance of FastCount(v, T ), we have
enforced |T | = O(|v|), and therefore Extract(Small(v), T ) is performed within the same time
bound O(|Small(v)| · log(|v|/|Small(v)|)) as the three ColorLeaves operations. The extracted tree
has O(|Small(v)| · log(|v|/|Small(v)|)) nodes. By applying the linear time routine Contract to the
extracted tree, we get an equivalent tree T ′ of size at most 4|Small(v)| + 1.

Theorem 2 Let T1 and T2 be two unrooted evolutionary trees on the same set S of species, and
let all internal nodes in the trees have degree three. The quartet distance between T1 and T2 can be
found in time O(n log n) and space O(n).

Proof. The extended algorithm FastCount(v, T ) obeys the same invariants about the coloring as
stated in the proof of Theorem 1. The correctness of FastCount(v, T ) thus follows from the correct-
ness of Count(v). For time complexity, we have already observed that the three ColorLeaves opera-
tions and the single Extract operation can be performed in time O(|Small(v)|·log(|v|/|Small(v)|)),
which by Lemma 7 (with T1 for T ) amounts to time O(n log n) in total during the entire recursion
of the topmost call to FastCount(v, T2).

We now consider the time spent contracting T . We perform the T = Contract(A, T ) operation
whenever |T | > 5 |Large(v)|. Since all leaves in Large(v) are colored A when we contract, the size
of the contracted T is at most 4 |Large(v)| + 1 by Lemma 4. Hence, the size of T is reduced by
a factor 4/5. This implies that the sequence of contractions applied to any specific copy of the

15



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

H(T )

b

c

bd

c

a

dcb

f e f

bd

c
T1

e

a

T (= T2)

B AC A A

a c d f e B

Extract(Small(v), T )

B

B
T ′

{a, d, e, f}

{a}

A
{e, f}

B

Large(v)Small(v)

v

B

C

B

A

AA

b

B

Figure 11: The construction of T ′ in the extended algorithm. The particular case shown is from
the first call to FastCount, where T is identical to T2. The nodes with crosses in H(T ) are the
roots of subtrees identified during Extract(Small(v), T ). The nodes labeled with sets of species
represent contracted components of T , and these components are shown with dashed lines.
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data structure results in a sequence of data structures of geometrically decreasing sizes. Since a
contraction takes time O(|T |), the total time spent on contracting a copy is linear in its initial size,
i.e. it is dominated by the time for constructing the copy by the Extract routine.

For space complexity, we observe that the space consumption is O(n) unless the copied trees
consume too much space. However, we observe that on any path in the recursion, i.e. path in T1,
the sizes of the T ′ trees created at each node v in T1 in the recursion has size O(|Small(v)|) which
is bounded by the size of the subtree in T1 rooted at the child of v not in the recursion path (either
Small(v) or Large(v)). This implies that the extracted trees consume space O(n) in total. 2
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