
DOI: 10.1007/s00453-002-0935-z

Algorithmica (2002) 33: 494–510 Algorithmica
© 2002 Springer-Verlag New York Inc.

Optimal Solutions for the Temporal Precedence Problem

G. S. Brodal,1 C. Makris,2 S. Sioutas,2 A. Tsakalidis,2 and K. Tsichlas2

Abstract. In this paper we refer to the Temporal Precedence Problem on Pure Pointer Machines. This
problem asks for the design of a data structure, maintaining a set of stored elements and supporting the
following two operations: insert and precedes. The operation insert(a) introduces a new element a in the
structure, while the operation precedes(a, b) returns true iff element a was inserted before element b temporally.
In [11] a solution was provided to the problem with worst-case time complexity O(log log n) per operation and
O(n log log n) space, where n is the number of elements inserted. It was also demonstrated that the precedes
operation has a lower bound of �(log log n) for the Pure Pointer Machine model of computation. In this
paper we present two simple solutions with linear space and worst-case constant insertion time. In addition,
we describe two algorithms that can handle the precedes(a, b) operation in O(log log d) time, where d is the
temporal distance between the elements a and b.
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1. Introduction. The topic of this paper is the Temporal Precedence problem [11] on
a Pure Pointer Machine (PPM). In a PPM [8], [10]–[12], memory consists of a finite
but extendable collection of nodes, with each node being uniquely identified through
an address and a finite collection of registers. A special address null is used to denote
an invalid address. This special address is the only constant which can be explicitly
assigned to a register. Each register can contain an address while each node consists
of a fixed number of fields, each of which contains only one address. The instructions
permitted by this machine model are: (i) the creation of a new node (returning its address),
(ii) the transfer of addresses between two registers, (iii) the transfer of addresses between
registers and the fields of a node, (iv) conditional jumps, where the only conditions
allowed are true and the equality comparison between two registers. The only possibility
to access a node is by following pointers from previously accessed nodes. A program in
this model of computation consists of a finite numbered sequence of instructions, with
each instruction being uniquely identified by one number and being considered to have
unit cost.

Based on the above description of the computational model used, we can now give a
precise definition of the operations to be performed by the devised data structure:

• insert(a): Create a node in the data structure with address a, representing the new
element. Insert the element pointed to by a into the data structure and return an
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address that is a handle to the element a. How to store this return address is to be
handled by the user of the data structure.

• precedes(a, b): Given two addresses a and b of nodes representing elements stored
in the data structure, return true if the element with handle a was inserted before the
element with handle b. The return value is encoded by an address, such that true is
represented by an address different from null and false is the null address.

The problem is important in two distinct ways. Firstly, it is the first problem that
clearly shows that the PPM is a less powerful computational model than that of a
pointer machine, since in a pointer machine the specific problem can be solved triv-
ially (using time-stamps) with worst-case constant time for each operation, by using
linear space. In [11] a non-constant lower bound on the precedes operation has been
proved and as a consequence it was concluded that a pointer machine is a more pow-
erful computational model than that of a PPM. Secondly, the problem is related to a
very concrete problem that arises in parallel implementations of logic programming
languages. More specifically, in [8] a tight relationship between the And-Parallelism
problem and the problem of time-stamping on pointer machines was presented. In the
And-Parallelism problem, which arises from don’t care non-determinism, given a resol-
vent B1, B2, . . . , Bn multiple subgoals in the resolvent can be concurrently reduced. The
computation can be visualized through a tree, the so-called And-Tree, the root of which
is labeled with the initial goal. If a node contains a conjunction B1, B2, . . . , Bn , then
it will have n children, the i th child of the node is labeled with the body of the clause
used to solve the Bi . The main problem here is to find a way to manage efficiently the
unifiers produced by the concurrent reduction of different subgoals. Two subgoals Bi ,
Bj (1 ≤ i ≤ j ≤ n) in the B1, . . . , Bn resolvent should agree in the bindings of all
the variables (dependent variables in terms of Prolog) that are common to them. In [8]
it was shown how the problem of correct binding and assignment of variables in such
parallel environments can be reduced to the problem of handling a dynamic tree, capable
of growing and shrinking at the leaves and detecting whether the first node is the left-
most leaf in the subtree rooted at the second node. Both operations can be reduced (for
more details see [8]) to the insert and precedes operations of the Temporal Precedence
problem.

The problem is also related to the issue of maintaining order information in a dynamic
list, which was studied by Tsakalidis [13] and Dietz and Sleator [3]. The problem,
which was initially handled by Ranjan et al. [11], is simpler and more fundamental, and
consequently the model used for a finer analysis was the PPM, as opposed to the pointer
machine models with arithmetic capabilities, that were used in the aforementioned works.

The scheme proposed in [11] provides an optimal implementation of the precedes
operation proving an upper and a lower bound. The solution described is based on the
use of balanced distribution trees, whose main property is that the degree of a node at
depth x is equal to the number of nodes at depth x − 1. Recursive restructuring is used
in order to remedy the problem of the large degree of the nodes, which can be up to

√
n.

However, this solution requires O(n log log n) space and the insertion operation is not
optimal, in the sense that it is not performed in worst-case constant time.

In this paper we show that by modifying appropriately the data structure of Ranjan et
al. we can create two structures that can handle insertions in worst-case constant time and
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precedence queries optimally. We also provide two new data structures, using techniques
from the finger search tree literature that achieve time complexity asymptotically equal
to log log d , where d is the temporal distance between the elements that are given as
input in the precedes operation.

The idea behind our first solution is based on the partition of the dynamic ordered
set S into an ordered collection of buckets, each of which has O(log log n) size. In
this way we insert only the representatives of buckets into the structure of [11], in or-
der to reduce both the space and insertion time complexities. The amortized constant
insertion time is made worst-case by spreading the overall insertion (of a representa-
tive) cost over several updates to S. The second solution stems from a close inspection
of the recursive application of the balanced distribution tree in the data structure pre-
sented in [11]. The third and the fourth solutions are based on known techniques used
in finger search trees [2], [4]. Apart from the improvement on the time complexity of
the precedes operation, the solutions are interesting since they show the applicability
of finger tree techniques on trees of large degree, that are structured recursively at all
levels.

We must mention here that the data structures presented exhibit some similarities
with van Emde Boas’ stratified trees [14], [15] implementing priority queues. This
data structure simulates binary searching on the levels of a binary tree by recursive
by applying the same logical organization a number of times. This logical organiza-
tion allows the stratified tree to perform a search operation in O(log log n) time. How-
ever, there are two basic differences between our structures and stratified trees: (i) the
O(log log n) time bound in the stratified trees maintenance operations stem from the
use of the RAM model with uniform time measure, a direct translation of this structure
in the Pure Pointer Machine model will incur a time cost of O(log n), (ii) stratified
trees require an a priori knowledge of n, a requirement that is not a prerequisite for our
structures.

In the following section we give a brief description of the structure proposed in [11] to
handle the Temporal Precedence problem, in Section 3 we describe two data structures
that allow us to achieve optimal time and space bounds, in Sections 4 and 5 we outline
the finger search methods applied on this problem and finally in Section 6 we conclude
with some remarks.

2. An Overview. In this section we recall the construction of [11] for handling the
Temporal Precedence (TP) problem. A straightforward solution is to maintain the inserted
elements in a simple linear linked list. Insertions are allowed to be performed only at
the end of the list (that is, the sequence of insertions uniquely determines the temporal
relations), while the precedes operation requires the traversal of the list, until one of the
two elements is found. The complexity of this operation is linear in the worst case. In a
simple binary tree-based scheme the elements inserted are placed in a binary tree that is
expanded level by level, from left to right. For an arbitrary tree structure we define the
levels of the nodes as follows: the root is at level zero and the children of nodes with
level i are the nodes with level i + 1.

The insertion of an element is performed easily in worst-case constant time by main-
taining a pointer to the last inserted node, a pointer to the last node of the last level that
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is full and a pointer to the first node in the current level. The operation precedes(a, b)

can be implemented using the following idea:
precedes(a, b) should return true iff one of the following three conditions holds:

(i) a is the root and b is not;
(ii) a is immediately to the left of b;

(iii) a′ = parent(a) and b′ = parent(b) exist and precedes(a′, b′) is true.

The time complexity of the precedes operation is logarithmic in the number of ele-
ments n. The next step towards the asymptotic reduction of the time complexity of the
precedes operation is to use a different tree that exhibits better asymptotic time com-
plexities when applied to this problem. This tree is termed the balanced distribution
tree.

In a balanced distribution tree the degree of the nodes at level i is defined to be
d(i) = t (i), where t (i) indicates the number of nodes present at level i . This is required
to hold for i ≥ 1, while d(0) = 2 and t (0) = 1. It is easy to see that we also have
t (i) = t (i − 1)d(i − 1), so putting together the various components, we can solve the
recurrence and obtain, for i ≥ 1, d(i) = t (i) = 22i−1

. One of the merits of this tree is that
its height is O(log log n), where n is the number of elements stored in it. One could allege
that by applying the conditions of the binary tree scheme it would be easy to support
the precedes operation in O(log log n) time. This is not completely true since the third
condition cannot be applied efficiently, because of the non-constant number of nodes
with a common father at the low levels of this tree. For example, two nodes at level i with
the same direct ancestor belong to a collection of 22i−2

elements. Thus, a simple scan
of these elements (as in the binary tree implementation) will result in a time inefficient
implementation of the precedes operation. The organization proposed in [11] faces this
problem by repeating the same kind of tree-structuring in each set of nodes having the
same direct ancestor, and doing this recursively until no more than two nodes share the
same direct ancestor (this is the innermost nesting level). Generally, we refer to a specific
tree-structuring of a set of nodes with a common father as a nesting level. The first nesting
level or innermost nesting level corresponds to the last recursive tree-structuring while
the outermost nesting level corresponds to the tree that stores the entire set of elements.
Thus, inductively, a set of trees corresponding to a nesting level k, structures the elements
stored in a tree at nesting level k + 1. The number of nesting levels is O(log log n) as
shown in [11]. Thus, by making some small modifications to the precedes implementation
we may achieve optimal O(log log n) time complexity for the specific operation.

A final detail concerns the storage requirements for each element in the nested struc-
ture. Since there are a non-constant number of levels and the computational model used
is the PPM, it is not possible to allocate a single memory node to represent each element.
The solution is to keep distinct representations of the trees that are generated. Each ele-
ment is represented by a linear list of nodes with each node representing the appearance
of the element in each nested level. In each level we deal directly with the representatives
of the elements and since we only move through successive levels it is easy to access the
correct representative in constant time.

We now briefly give the implementations of the operations insert and precedes. The
new element is inserted in all nesting levels by constructing a list as the one described



498 G. S. Brodal, C. Makris, S. Sioutas, A. Tsakalidis, and K. Tsichlas

above. The insertion of each node at each nesting level requires the creation and the
modification of a constant number of nodes. The counting abilities needed to detect
when one group of nodes, a level or a tree has been completed can be simulated by
constant time pointer movements (for more details see [11]). Thus, the time complexity
for the insertion of an element is bounded from above by O(log log n). In the precedes
operation we are given two elements to be compared, that is we are given handles to
the first node (outermost nesting level) of the linear list of nodes, corresponding to each
element. Firstly, an initial check is made to verify if one node is immediately to the right
of the other, in which case the answer is obvious. Otherwise, we climb the tree structure
at the outermost level of nesting until we reach two nodes with the same direct ancestor
(call it v). Then we switch to the next level of nesting (the tree structure storing the set
of sons of v) and we apply recursively the same process. By computing a telescoping
sum it is easy to show (see [11]) that the time complexity is O(log log n) while the space
complexity is O(n log log n).

3. Two Linear Space Solutions with Worst-Case Constant Insertion Time. In this
section we describe two data structures for the TP problem. The first structure is based
on the bucketing technique and improves the one described in [11]. The second structure
is based on an observation concerning the structure of the nesting levels. The space
complexity for both structures is linear while the insertion time is constant.

Firstly, observe that a linear list implementation of the TP problem supports fast
insertions but is slow for precedence queries while the balanced distribution tree imple-
mentation supports fast queries but slow updates. The essence of the bucketing method is
to get the best features of two different data structures, designed for the same problem, by
combining them into a two-level data structure. The data to be stored is partitioned into
buckets and the chosen data structure for the representation of each individual bucket is
different from the representation of the top-level data structure, representing the collec-
tion of buckets (for similar applications of this data structuring paradigm see also [6],
[9], and [13].

More specifically, we partition the elements of the stored set into contiguous buckets
of size O(log log n), with each bucket being represented by the linear list scheme and
we store the first element of each bucket in the balanced distribution tree scheme as
its representative. When an item is inserted, it is appended to the tail of the list im-
plementing the last incomplete bucket. If the size of this bucket becomes O(log log n),
then a new bucket is created containing only the newly inserted element. We also spend
O(log log n) time in order to insert this element into the top-level data structure. We
have a total of O(n/log log n) representatives, each of which must be inserted in at most
O(log log(n/log log n)) = O(log log n) nesting levels. Amortizing the O(log log n) in-
sertion cost, over the O(log log n) size of each bucket, we achieve an amortized constant
insertion cost. With the same reasoning as above the total space is linear. We eliminate
the amortization by spreading the time cost for the insertion of the representative over the
next O(log log n) updates in its bucket, that is each insertion in the last bucket triggers the
insertion of the bucket’s representative into a new nesting level. The precedes operation
is similar to that described in [11]. First we check whether the two nodes belong to the
same bucket. If they do, then a linear traversal of the list corresponding to this bucket is
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enough. If the nodes belong to different full buckets, then we proceed by checking the
representatives of the respective buckets in the top-level data structure. If one of the two
query nodes belongs to the bucket under construction we answer the query immediately.
Since the query algorithm does not use any information concerning the incompletely
inserted element it is obvious that the query algorithm is correct and has time complexity
equal to O(log log n).

One last issue we have to consider is that of the size of buckets. The size of the buckets
must be asymptotically equal to O(log log n). However, n is constantly changing and as
a result the size of the buckets must also change accordingly. We remedy this problem
by applying the global rebuilding technique [7]. More specifically, we partition the
dynamic ordered set S, subject to insertions of elements, into an ordered collection
B = {b1, . . . , bl} of buckets such that max bi ≤ min bi+1, ∀i (the max, min and ≤
relations refer to the temporal order of the elements). Due to the fact that we do not have
a priori knowledge of n, the size of the buckets is not fixed. As a result, the size of each
bucket is a function s (̃n), where ñ is the current number of inserted elements.

We use two structures: Old and New and two functions f (n) and s(n) with the
property that s( f (n)) = s(n) + 1. Normally only Old exists, and during the course of
the algorithm only the Old structure is used for querying. Suppose that at some time (time
is defined with respect to update operations) in the Old structure there are n elements
and the bucket size is s(n). We set the size of a bucket equal to s( f (n)) = s(n) + 1 and
a construction procedure is initiated to build a new structure (New) containing all the
elements of Old with the specific bucket size. Meanwhile, insertions and queries are made
in Old and the changes must be reflected in New too. By the time we have inserted n/2
new elements in the Old structure (critical time) we would like New and Old to contain
the same elements. Thus, the construction of New has an atomic operation cost that is
(3n/2)/(n/2) = 3 times faster than the atomic operation handling in Old. At this critical
time we discard the Old structure and the previously labeled New structure becomes Old.
When the number of elements inserted becomes f (n), we initiate another reconstruction
of New by setting the bucket size s( f ( f (n))) = s(n) + 2 and the new critical size
becomes f (n) + f (n)/2. In the general case, when the number of elements inserted
becomes f (i−1)(n) (the composition of the function f i − 1 times) we make the bucket
size s( f (i)(n)) = s(n) + i . We choose as f (n) and s(n) the functions n2 and log log n,
respectively. The sequence of critical points becomes n +n/2, n2 +n2/2, n4 +n4/2, . . .

and the sequence of reconstruction points becomes n, n2, n4, . . . . In this way the current
bucket size is always O(log log ñ).

One problem arising from the above discussion is how to compute the function value
f (i)(n). Due to the fact that the model used is the PPM and any arithmetic operation
is forbidden we cannot compute f (i)(n) immediately (in constant time). Our solution
is to use an auxiliary linked list of n nodes and two pointers. The first one (counter1)
is increased by one in each step (it means that it points to the next node) and when it
reaches the last (nth) node then it comes back to the start and the other one (counter2) is
increased by one whenever counter1 completes a full round. We give the counting process
schematically in Figure 1 where it is shown how to compute the value n2 incrementally
over the time period between ñ = n and ñ = n2. The other reconstruction points
n4, n8, . . . can be computed in the same way. In the nth turn of the pointer counter1,
the pointer counter2 shows the nth node of the linked list and the counting process is
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Fig. 1. Computation of n2.

completed. Note that we could define the functions f (n) and s(n) such that s( f (n)) =
s(n) + c, where f (n) = nc′

, c′ ∈ N and s(n) = log log n (c and c′ are constants
and c = log c′). Thus, we can postpone the initiation of the global rebuilding for a
polynomially large number of insertions. Constant c′ must be a natural number so that
the counting mechanism can be applied (we need c′ pointers in the counting mechanism).

Our result is summarized in the next theorem:

THEOREM 1. There is a data structure for the TP problem that uses linear space,
performs insertions in worst-case constant time and answers precedence queries in
optimal O(log log n) worst-case time.

The data structure described above is complicated in the sense that it uses bucketing
combined with the global rebuilding method. In addition, as in [11], the structure is
recursively defined. We outline a structure that maintains the asymptotic complexities
of the previous structure while at the same time is simple. The simplicity of this solution
lies in the fact that the nesting levels are removed and the data structure consists only
of a balanced distribution tree, where the nodes representing the elements are stored
in the leaves of the structure and the internal nodes are merely subsidiary in the search
process. In addition, bucketing and global rebuilding are not used in order to obtain these
complexities.

The intuition behind this solution emerges by a close inspection of the recursive
definition of the balanced distribution tree, that is a nesting level is identical to a subtree
rooted at the root of the balanced distribution tree at the outermost level. Thus, one would
wonder why not use the existing structure instead of constructing a nesting level. This
observation leads us to the final solution described in this section.

In the new data structure each node has the following fields:

• a pointer to the parent node (pfather),
• a pointer to the right sibling (pr),
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• a pointer (prep) to the representative of this node in the above level (if node v is at
level D we maintain a pointer at an appropriate node at level D − 1). This pointer
simulates the nesting levels.

The algorithm for the precedes operation follows (assume that initially we are given
pointers va and vb to two nodes representing elements a and b, respectively):

(i) Check whether the father pointers point to the same address. If they do then goto
step (ii), else goto step (i) after advancing the pointers va and vb one level upwards
by using the father pointers.

(ii) Advance pointers va and vb one level upwards by using the pointers to the represen-
tative nodes and goto step (i).

Step (ii) corresponds to the traversal of the nesting levels. The time complexity of the
precedes operation is clearly O(log log n) because at every iteration of the algorithm we
traverse at least one level of the tree upwards. Since the balanced distribution tree has
height O(log log n) the complexity follows.

Assume that the balanced distribution tree T has depth D, that is we insert elements
at level D of the tree. Apart from the insertion pointer pins we maintain two traversal
pointers that are needed to update the pointers to the representative nodes. The pointer
pD points to a leaf of the tree at depth D while the pointer pD−1 points to a node at
depth D − 1. The algorithm for the insert operation is given below (in the description to
follow we do not consider the case where the leaf level is full):

(i) Insert a new leaf to the right of the leaf pointed by pins. Update the pfather pointer
of the new node and the pr pointer of the leaf pointed by pins.

(ii) Update the representative pointer of the new leaf to point to the pointer pD−1.
Advance pD−1 to the right sibling (using the pr pointer). If pD−1 is null, then the
group of children of the node at level D −1 is full and thus we initialize pD−1 to the
leftmost node at depth D − 1 (note that this happens only when the leaf capacity
of a node at depth D − 1 is full).

(iii) Advance pD to the right sibling. Insert a copy of the new leaf at depth D + 1 as a
child of the leftmost node at node D. Set the representative node to point to the leaf
pointed by pointer pD . Update the pr pointer.

In step (i) we perform the insertion. In step (ii) we set up the mechanism simulating
the nesting levels of the previous structure. Step (iii) of the algorithm prepares the next
level for the time when the current leaf level becomes full. An example of an insertion is
depicted in Figure 2. The time complexity of the insert operation is worst-case constant
since no iteration or recursion is performed in the algorithm above. Since the time com-
plexity of the insert operation is O(1), the space needed by the data structure will be O(n).
This is true because in constant time an operation may allocate at most constant space.

Our result is summarized in the next theorem:

THEOREM 2. The TP problem can be solved by using the algorithm described above.
Specifically, the operation insert(a) is executed in worst-case constant time while the
operation precedes(a, b) is executed in O(log log n) time. The data structure uses linear
space.
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Fig. 2. A simple instance of the data structure described in Section 3 and the insert operation. The dotted
part of the figure is associated to the part of the data structure that is going to be used when level 3 becomes
full. For simplicity many pointers are not depicted. (a) An instance of the data structure before an insertion.
Only the representative pointers of the last element are shown. Note the position of the pointers pD and pD−1,
where D = 3. (b) An element is inserted. Pointers pD and pD−1 are moved and the representative pointers
are updated appropriately.

4. The Finger Search Method for the TP Problem. In this section we show how a
slight modification of the structure presented in [11] permits the implementation of the
operation precedes(a, b) in O(log log d) time, where d is the temporal distance between
the elements a and b. The distance expresses the time difference between the insertions
of the queried elements. This time complexity for the precedes operation does not violate
the lower bound given in [11] since in the worst case d = n. However, it is a substantial
improvement since it is guaranteed that when the elements queried have f (n) distance,
then the time complexity will be O(log log f (n)). For example, if f (n) = O(1), then the
time complexity of the precedes operation is O(1). Note that the structure of Section 3
or the structure described in [11] does not guarantee such a complexity. The proposed
structure uses O(n log log n) space and the insertion time is O(log log n).

The main properties of the specific approach are the following:

1. The basic data structure used is the balanced distribution tree.
2. The elements are stored, as nodes, in the leaves of the tree and the internal nodes are

merely subsidiary in the search process.
3. The tree is level linked.
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4. For every group of nodes with a common father, we apply the data structure
recursively.

5. Adjacent trees in every nesting level of the data structure are connected with pointers
located at their roots.

The balanced distribution tree is chosen because its height is O(log log n). Property 2
allows us to apply techniques known in the finger search problem. Properties 3 and 5
implement a well-known mechanism [4] that introduces distance in the time complexity
of a given search problem. Property 4 remedies the large degree of the internal nodes of
the balanced distribution tree that can be up to

√
n for the leaf level of the tree. In order

not to waste space we recursively apply the same structure only for the leaves of the
trees. For the internal nodes we use the existing recursive structure of the leaves. This
is possible due to the incremental construction of the nesting levels. See Figure 3 for
an example of such a structure. Next we describe, in detail, the implementation of the
operations precedes and insert.

The operation precedes(a, b) is a two-step procedure (initially we are given pointers
to two nodes, corresponding to elements a and b, at the innermost nesting level of the
leaves):

(i) Check if the two given nodes belong to the same balanced distribution tree in the
current nesting level. This check is easy to perform since each node maintains a

a

a
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16 16 16

Insert

b

4
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Fig. 3. An instance of the data structure described in Section 4. Insertions take place always at the end and all
the recursion levels are appropriately updated (it is not depicted in this example). A paradigm of a precedes
operation is depicted. For simplicity some pointers are omitted. Numbers give the order of each move. First we
move from the node representing element a and then from the node representing b alternately in each move:
(1, 1′) pointers to handles of a and b are given, (2, 2′) check if the nodes belong to the same tree, (3, 3′) go to the
upper recursion level, (4, 4′) check if they belong to the same tree, (5, 5′) go to the upper recursion level, (6, 6′)
check if they belong to the same tree, (7, 7′) go to the father of each leaf, (8, 8′) their fathers coincide, (9, 9′)
go to the appropriate recursion level, at the appropriate leaves, (10, 10′) they belong to the same tree, (11, 11′)
go up to their fathers, (12, 12′) the father of the search path of a is left of that of b and thus a precedes b.
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pointer to the root of the tree that it belongs to. If they do, then go up the tree
alternately until the children of the root are reached, where the answer to the precedes
operation is immediate or until two nodes belonging to the same group of nodes with
a common father are reached. In the latter case follow step (ii).

If the two given nodes belong to adjacent trees, then the answer is immediate,
otherwise go up one nesting level and repeat step (i).

(ii) This step is exactly the same as the algorithm given in [11].

In the first step we traverse the nesting levels from the innermost to the outermost
level, while at the second step we reverse the traversal direction. The above procedure
is depicted in Figure 3.

LEMMA 1. The above implementation of the operation precedes(a, b) has time com-
plexity O(log log d), where d is the temporal distance of the elements a and b.

PROOF. The algorithm begins from the innermost nesting level and goes up until reach-
ing a nesting level where the trees to which the elements belong are either adjacent, and
thus we answer whether a precedes b immediately, or coincide. Constant time is spent
in every nesting level accessed in this step.

First, we must observe that a balanced distribution tree may not be full and as a result
its leaf level is not complete. This does not impose any problems in the time complexity
of the operation since in the worst case we may have a balanced distribution tree for N
elements but the actual number of elements is at least n = O(

√
N ). This aggravates the

time complexity by a small constant.
We must prove that the number of nesting levels visited is O(log log d), since only

constant time is spent in every such level. Assume that we stop the ascension of the
nesting levels at level k. We will show that k = O(log log d). In the kth nesting level
the balanced distribution tree will have a leaf capacity of 22k

(proved by using a simple
induction argument), while at most

√
22k = 22k−1

leaves will share a common father.
The distance between a and b must be at least 22k−1

because otherwise we would have
stopped in a lower nesting level. Indeed, if d < 22k−1

, then in the (k − 1)th nesting
level the two query elements either will be in the same tree or they will be in adjacent
trees, because of the fact that in the (k − 1)th nesting level the balanced distribution
tree will have a leaf capacity of 22k−1

. Therefore, 22k−1 ≤ d ≤ 22k
. Taking the min-

imum distance, we derive d = 22k−1 ⇒ k = log log d + 1 ⇒ k = O(log log d).
Thus, we proved that the number of nesting levels accessed during step (i) is of order
O(log log d).

Assume now that we have found a balanced distribution tree at a specified nesting
level that contains both elements. As we have mentioned above, all trees are level-linked
and what really happens is that we move step-by-step towards the root alternately for
elements a and b. We now try to estimate the time complexity of this part of the algorithm.

Assume that the node (for two nodes we use the level-link pointers and things are the
same) has depth x in this specific tree. The situation is depicted in Figure 4. Assume that
for element a we reached t through y and that for element b we reached t through w.
In addition, assume that y and w are not brothers—if they were we would answer the
precedes operation immediately by using the level pointers. All leaves that belong to the



Optimal Solutions for the Temporal Precedence Problem 505

ba

t

y z w

depth x

depth x+1

Fig. 4. The leaves of the subtree rooted at z determine the minimum number of leaves between nodes y and w.

subtree rooted at z lie between elements a and b. We denote the number of leaves of the
subtree rooted at z by |Tz|.

Let H be the height of the tree and assume that the height and the depth of the tree
are defined such that H = D. If h is the height of node t , then x = H − h, while a node
of depth s has 22s−1

children. From the above we have

|Tz| = 2
∑H−1

i=x
2i = 22H −1−(2x −1) ⇒ |Tz| = 22H −2x

.

It is obvious that the distance between elements a and b will be at least |Tz|. Then

d ≥ 22H −2x ⇒ log d ≥ 2H − 2x

x=H−h⇒ log d ≥ 2H − 2H−h

⇒ 2H−h ≥ 2H − log d

⇒ H − h ≥ log(2H − log d)

⇒ h ≤ H − log(2H − log d).

We distinguish two cases:

1. If 2H ≥ 2 log d , then

log(2H − log d) ≥ log

(
2H

log d

)
− 1 = log 2H − log log d − 1,

(1) ⇒ h ≤ H − log 2H + log log d + 1 ⇒ h ≤ log log d + 1.

2. If log d > 2H−1 ⇒ d > 22H−1
, then the distance between elements a and b is at

least the square root of the total number of elements stored in the specific tree. Thus,
d = O(22H

) and hence h = O(log log d).

In this way we proved that the height reached while traversing a tree is no more than
O(log log d). Therefore, the total time needed for this second phase of step (i) of the
algorithm is O(log log d).

As we mentioned above, step (ii) is exactly the same algorithm introduced in [11].
This algorithm executes operation precedes(a, b) in O(log log n) time. It is easy to see
that when the algorithm arrives at step (ii) the number of elements we handle is of size
O(dε), where ε is a constant such that 1 ≤ ε ≤ 2. Thus, by using these algorithms the
time complexity of this step will be

O(log log(dε)) = O(log(ε log d)) = O(log log d).

Thus, we proved that the time complexity of the specific implementation of the oper-
ation precedes(a, b) is O(log log d).
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At this point we describe the operation insert(a). The insertion must be performed
in the O(log log n) nesting levels of the structure. In addition, insertions are restricted
to take place only at the end of the list due to the assumption that temporal relations are
completely determined by the order of insertions. We will see by the discussion below
that this operation is performed in O(log log n) time.

First, note that insertions take place only at the leaves of the balanced distribution
trees maintained in each nesting level. We always maintain a pointer to the last element
inserted in each tree and thus we can find the insertion point in constant time. The pointer
connecting a node to the same node in the immediately lower nesting level helps us to
traverse the nesting levels in constant time. Thus, the insertion operation is executed in
at most O(log log n) steps.

The problem arising at this point is that of the finite capacity of the leaf level (assume
the depth of the tree is equal to D) in each balanced distribution tree. Although the use
of global rebuilding easily solves this problem we describe below a more efficient way
to do this. That is, as we insert elements we may reach at some time the maximum
capacity of the leaf level at depth D. At this moment we must construct a new tree with
depth D + 1. This is done incrementally. Whenever we insert an element at the tree with
depth D we also insert it as a child of the leftmost leaf of this tree (at depth D + 1).
See Figure 5 for an example of this process. Because the number of children of a node
in such a tree at depth D is equal to the number of nodes at depth D − 1 no additional
counting mechanisms are needed. As a result, by the time level D of the tree is full, level

Fig. 5. A simple instance of the data structure described in Section 4 and the insert operation. The dotted part
of the figure is associated to the part of the data structure that is going to be used when there is no more space
to insert elements at level 3 and as a result a transition to level 4 takes place for the outermost nesting level.
For simplicity many pointers are not depicted. The dotted pointers are not used until a transition takes place.
The structures enclosed by the two rectangles are exactly the same.
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D + 1 will also be ready to accept new insertions (in the example of Figure 5 we refer
to the nesting level 3 with D = 3). The merits of such an incremental implementation
are twofold. First, we do not have to build the whole structure from scratch but we use
the existing structure. Second, during step (ii) of the precedes operation we need to have
the internal nodes structured recursively. This is accomplished straightforwardly since
the pointer structure of the nodes is maintained during the transition of a D-level tree to
a (D + 1)-level tree that takes place when the leaf level is full.

After the transition, a gap will be formed in the nesting levels. That is, before the
transition we had the tree with depth D (at the outermost nesting level) and the nesting
levels consisting of balanced distribution trees of depth at most D−1. After the transition,
the tree at the outermost nesting level has depth D+1 and there is a missing nesting level
corresponding to the recursive structuring of its leaves (the missing level in Figure 5 is the
dotted part of the figure enclosed in a rectangle). We construct this tree incrementally so
as to be ready when the transition takes place. This procedure is in fact an exact copy of
the tree before the transition as shown in Figure 5. During the incremental construction of
this tree we update the pointers of the nodes of depth D +1 to point to the corresponding
nodes of the new tree.

A final detail of the insertion algorithm must be clarified. In the proof of Lemma 1
we implicitly made the assumption that nesting levels and balanced distribution trees
are full. However, this is not the case. The rightmost nesting levels may not be full. This
imposes a problem since the proof technique of Lemma 1 is based on this assumption.
To remove this assumption we virtually construct all nesting levels. That is, when a new
element is inserted and the nesting levels where it should be inserted do not exist, we
construct the appropriate number of nesting levels (a pointer to the previous full nesting
level allows us to count the depth of nesting levels) by creating a virtual root that is
in fact the root of the balanced distribution tree at the appropriate nesting level, when
this tree is full. We then connect the virtual root to the sibling root of a tree at the same
nesting level. We attach to this root the node inserted. Thus, we have all nesting levels
and Lemma 1 applies. During each insertion at each level constant-time work is done on
the respective tree. In this way we can remove the implicit assumption made in the proof
technique of Lemma 1. When the precedes operation involves two elements lying in a
balanced distribution tree, under construction, then no problem is incurred due to the
sequential nature of insertions and the appropriate incremental building of the respective
tree.

The space needed by the data structure presented is equal to O(n log log n) because
each element must be inserted into O(log log n) recursion levels.

Finally, each node has the following fields:

• a pointer to the parent node,
• pointers to the left and right siblings (siblings may be adjacent nodes or roots of

adjacent trees in the same nesting level),
• a pointer to the root of the tree where the node belongs,
• two pointers to the representatives of this node in the adjacent nesting levels.

THEOREM 3. The TP problem can be solved by using the algorithm described above.
Specifically, the operation insert(a) is executed in O(log log n) time while the operation
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precedes(a, b) is executed in O(log log d) time, where d is the temporal distance between
elements a and b. The data structure uses O(n log log n) space.

5. The Final Solution. In this section we describe a data structure that can handle
the precedes operation in O(log log d) time while simultaneously achieving constant
insertion time and linear space.

Firstly, a brief description of the data structure is given. We use a two-level data
structure where the first level consists of an exponential tree similar to that described
in [1]. The root of the exponential tree has degree equal to O(

√
n), where n is the total

number of elements currently stored in the tree, while the subtrees rooted at the children
of the root are exponential trees too. Due to the constrained form of insertions the tree
is easily updated even in the PPM model of computation. The internal nodes of this
tree are structured with one of the data structures described in Section 3. All elements
are stored in the leaves of the exponential tree and the internal nodes are used only as
subsidiary nodes in the execution of the precedes operation. We also use level linking
between adjacent internal nodes:

The precedes operation is executed as follows. First we are given pointers to two
leaf nodes corresponding to the elements we would like to check for their precedence
relation:

(i) Go up the tree alternately for each node until either the nodes currently traversed are
adjacent or until two nodes belonging to the same group of nodes with a common
father are reached. In the latter case follow step (ii).

(ii) This step is exactly the same as one of the algorithms given in Section 3.

If we reach two adjacent nodes, then we can derive their precedence relation in
constant time by using the level pointers. However, if we reach a single node, then no
information can be extracted about the precedence relationship of the given elements.
To resolve this conflict we structure the children of internal nodes with one of the data
structures presented in Section 3. Thus, for a node with x children the data structure of
Section 3 needs O(x) space, O(1) time for insert and O(log log x) time for precedes
queries. This linearity of space with respect to the degree of internal nodes implies that
the total space used by the data structure is linear to the number of elements. Indeed, this
remark follows from the fact that the number of internal nodes, in an exponential tree,
is smaller than the number of its leaves.

We need now to investigate the time complexity of the precedes operation. It is
obvious that when we traverse the exponential tree we need to reach a node or a pair of
adjacent nodes at height at most O(log log d), where d is the distance between the two
input elements. In the latter case where we reach a pair of adjacent nodes we answer
immediately about the temporal relation between the two input elements. However, in
the former case we need to use the secondary structures. Assume that we have reached
a node v at height h in the exponential tree. The degree of the node will be equal to
n1/2H−h+1

(constants are not considered). We would like to give a lower bound on the
distance of the two elements based on the degree of the internal nodes. The argument is
similar to that used in the proof of Lemma 1. When we reach this node v from both leaves
we are sure that the children of v, v′ and v′′, through which the search paths of both
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query elements passed, are non-adjacent (since otherwise we would not have reached
node v). Thus, we are sure that between v′ and v′′ there exists at least one node z. As a
result, the minimum distance between the two input elements is equal to the number of
leaves of the subtree rooted at node z.

Because of the fact that z is at height h − 1 the number of leaves at its subtree will be
equal to

h−1∏
i=1

n1/2H−i+1 = n
∑h−1

i=1
(1/2H−i+1) = n1/2H−h+1 − 1/2H+1 = O(n1/2H−h+1

).

Since the distance between the query elements is at least equal to the number of
leaves in the subtree rooted at z we conclude that d = �(n1/2H−h+1

). Taking into account
that exponential trees have the property that H = O(log log n) (see [1]) we conclude
that h = O(log log d). Thus, we proved that the height of the node(s) reached during
phase (i) of the algorithm is O(log log d) where d is the distance between the query
elements. When the algorithm goes into step (ii) then from the above discussion the
node v reached has degree O(n1/2H−h+1

). However, we also know from the discussion
above that d = �(n1/2H−h+1

) and thus the degree of node v is asymptotically equal to
the distance between the two query elements. The worst-case asymptotic complexity of
the precedes operation follows immediately from the time and space complexities of the
structure described in Section 3.

The main problem with this approach is the implementation of the insert operation.
We must not forget that the PPM has no arithmetic capabilities and as a result we
are compelled to simulate counting by using pointers. Due to the restrictive pattern of
insertions we are able to control the size of the internal nodes of the exponential tree.
We just have to observe that the degree of a node v at height h is the square of the degree
of a node child(v) at height h − 1. Consequently, by using a scheme of two pointers
(see Figure 1) we are able to keep the size constraints of the internal nodes. Assume for
example that we have an exponential tree T of height H whose leaf level is full. The
next insertion will result in the tree T ′ of height H + 1. This implies that O(H) nodes
will be created as a result of a single insertion. Each such node is represented by one of
the structures of Section 3. Since the insert operation of these structures is worst-case
constant, the worst-case time complexity for the data structure described in this section
is O(log log n). However, the amortized cost is easily shown to be O(1) by the properties
of the exponential trees. We can easily make this worst-case by using a stack of deferred
operations like the one described in [5]. Finally, we need to count the quantity H + 1 in
order to determine the number of nodes that must be created. We can easily accomplish
this by using a pointer that traverses the path from the rightmost leaf to the root.

THEOREM 4. The data structure described above can solve the TP problem. Specifi-
cally, the operation insert(a) is executed in O(1) time while operation precedes(a, b) is
executed in O(log log d) time, where d is the temporal distance between elements a and
b. The data structure uses linear space.

6. Conclusion. In this paper we improved the complexity bounds of the TP problem
in the two not optimal remaining axes: insertion time and space. The update operation
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became constant in the worst case and the space linear. Thus, now one can assert that in
the PPM model this fundamental problem became optimal in all axes, such as in space in
precedes and insert operations and that the only operation that has weaker implementation
(in comparison with a pointer machine model with arithmetic capabilities) is the precedes
operation. We also presented two different approaches to this problem that introduced
in the time complexity the temporal distance between the two query elements.
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