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Abstract

In this paper, we present lower bounds for permuting and sorting in the cache-oblivious
model. We prove that (1) I/O optimal cache-oblivious comparison based sorting is not
possible without a tall cache assumption, and (2) there does not exist an I/O optimal
cache-oblivious algorithm for permuting, not even in the presence of a tall cache assump-
tion.

Our results for sorting show the existence of an inherent trade-off in the cache-oblivious
model between the strength of the tall cache assumption and the overhead for the case
M ≫ B, and show that Funnelsort and recursive binary mergesort are optimal algorithms
in the sense that they attain this trade-off.
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1 Introduction

Modern computers contain a hierarchy of memory levels, with each level acting as a cache for
the next. Typical components of the memory hierarchy are: registers, level 1 cache, level 2
cache, level 3 cache, main memory, and disk. The time for accessing a level increases for
each new level (most dramatically when going from main memory to disk), making the cost
of a memory access depend highly on what is the current lowest memory level containing the
element accessed.

As a consequence, the memory access pattern of an algorithm has a major influence on
its running time in practice. Since classic asymptotic analysis of algorithms in the RAM
model (depicted in Figure 1) is unable to capture this, a number of more elaborate models for
analysis have been proposed. The most widely used of these is the I/O model introduced by
of Aggarwal and Vitter [2] in 1988, which assumes a memory hierarchy containing two levels,
the lower level having size M and the transfer between the two levels taking place in blocks
of B consecutive elements. This model is illustrated in Figure 2.
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The cost of the computation in the I/O model is the number of blocks transferred between
the two memory levels. The strength of the model is that it captures part of the memory hi-
erarchy (in particular, it adequately models the situation where the memory transfer between
two levels of the memory hierarchy dominates the running time), while being sufficiently sim-
ple to make analysis of algorithms feasible. By now, a large number of results for the I/O
model exists—see the surveys by Arge [3] and Vitter [24].

Among the fundamental facts are that in the I/O model, comparison based sort-
ing takes Θ(SortM,B(N)) I/Os in the worst case, where SortM,B(N) = N

B logM/B
N
B ,

and permuting takes Θ(PermM,B(N)) I/Os in the worst case, where PermM,B(N) =
min{N , SortM,B(N)} [2].

More elaborate models for multi-level memory hierarchies have been proposed ([24, Sec-
tion 2.3] gives an overview), but fewer analyses of algorithms have been done. For these
models, as for the I/O model of Aggarwal and Vitter, algorithms are assumed to know the
characteristics of the memory hierarchy.

Memory

CPU

Figure 1: The RAM model

Block
Memory 1

CPU

Memory 2

Figure 2: The I/O model

Recently, the concept of cache-oblivious algorithms has been introduced by Frigo et al. [18].
In essence, this designates algorithms formulated in the RAM model, but analyzed in the I/O
model for arbitrary block size B and memory size M . I/Os are assumed to be performed
automatically by an offline optimal cache replacement strategy. This seemingly simple change
has significant consequences: since the analysis holds for any block and memory size, it holds
for all levels of a multi-level memory hierarchy (see [18]). In other words, by optimizing
an algorithm to one unknown level of the memory hierarchy, it is optimized to each level
automatically. Thus, the cache-oblivious model in a elegant way combines the simplicity of
the I/O-model with a coverage of the entire memory hierarchy. An additional benefit is that
the characteristics of the memory hierarchy do not need to be known, and do not need to
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be hardwired into the algorithm for the analysis to hold, which increases the portability of
implementations of the algorithm.

Frigo et al. introduced the concept of cache-oblivious algorithms in 1999, and presented
optimal cache-oblivious algorithms for matrix transposition, FFT, and sorting [18], and also
gave a proposal for static search trees [21] with search cost matching that of standard (cache-
aware) B-trees [7]. Since then, quite a number of results for the model have appeared,
including the following: Bender et al. [11] gave a proposal for cache-oblivious dynamic search
trees with search cost matching B-trees. Simpler cache-oblivious search trees with complexi-
ties matching that of [11] were presented in [12, 16, 22], and a variant with worst case bounds
for updates appear in [9]. Cache-oblivious algorithms have been given for problems in com-
putational geometry [1, 9, 14], for scanning dynamic sets [8], for layout of static trees [10],
and for partial persistence [9]. Cache-oblivious priority queues have been developed in [4, 15],
which in turn gives rise to several cache-oblivious graph algorithms [4]. Some of these results,
in particular those involving sorting and algorithms to which sorting reduces, such as priority
queues, are proved under the assumption M ≥ B2, which is also known as the tall cache as-
sumption. In particular, this applies to the Funnelsort algorithm of Frigo et al. [18]. A variant
termed Lazy Funnelsort [14] works under the weaker tall cache assumption M ≥ B1+ε for any
fixed ε > 0, at the cost of a 1/ε factor compared to the optimal sorting bound Θ(SortM,B(N))
for the case M ≫ B1+ε.

In [18], Frigo et al. raised the question of the complexity theoretic relationship between
cache-oblivious algorithms and cache-aware algorithms. Clearly, cache-aware algorithms can
only use caches better than cache-oblivious algorithms, since they have more knowledge about
the system on which they are running. Frigo et al. asked whether there is a separation
between the two classes, i.e. a problem for which the asymptotical I/O complexity for all
cache-oblivious algorithms is worse than for the best cache-aware.

In this paper, we prove such a separation for the two fundamental problems of comparison
based sorting and permuting. Specifically, we prove (1) I/O optimal cache-oblivious compar-
ison based sorting is not possible without a tall cache assumption, and (2) there does not
exist an I/O optimal cache-oblivious algorithm for permuting, not even in the presence of a
tall cache assumption.

At a more detailed level (see Section 3), our results for sorting show the existence of
an inherent trade-off in the cache-oblivious model between the strength of the tall cache
assumption and the overhead for the case M ≫ B, and show that Lazy Funnelsort and
recursive binary mergesort are optimal algorithms in the sense that they attain this trade-off.

Only little previous work has been done on the question. Bilardi and Peserico [13] have
investigated the portability of algorithms in the HRAM-model, where the access to memory
location A[i] takes time f(i) for some non-decreasing function f . Their model of computation
is the CDAG, which is a directed acyclic graph describing the dependencies of the individual
operations of a straight-line program. They give a specific CDAG and two different HRAM
machines for which they prove that any fixed scheduling of the operations of the CDAG will
be sub-optimal by a factor polynomial on N on at least one of the machines.

A basic element of our approach is the transformation of comparison trees, which was
inspired by the work of Arge et al. [5] for the I/O model. Key new features of our proofs are
our definition of a working set, bounds on online searches, and a formal model for comparison
based cache-oblivious sorting.

This paper is organized as follows: In Section 2, we make precise our model of cache-
obliviousness. In Section 3, we state our main theorems and prove implications of them. In
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Section 4, we give the proofs of our main theorems.

2 Definitions

We define a cache-oblivous algorithm to be simply an algorithm formulated in the classic
RAM model, consisting of an CPU with some specified set of basic operations, and a single
level of memory viewed as an array A of cells, as shown in Figure 1.

We will study comparison based sorting in this model. Informally, this corresponds to
restricting the set of operations of the CPU w.r.t. elements to copying elements between
memory locations, and comparing elements in two memory locations. Formally, we define the
concept of RAM-decision-trees, and let that be our model of comparison based cache-oblivious
algorithms.

Definition 1 A RAM-decision-tree is a rooted tree, with a unary root called the start node,
and with the other nodes being of the following types:

• Comparison nodes, which are nodes of degree two, labeled with a pair (i, j) of indices.
Such a node models the comparison A[i] ≤ A[j], with the left subtree corresponding to a
positive outcome.

• Assignment nodes, which are nodes of degree one, labeled with a pair (i, j) of indices.
Such a node models the assignment A[i] := A[j].

• Result nodes, which are nodes of degree zero, labeled with the answer of the computation.

In the case of sorting, the label of a result node is the permutation of the input elements.
We assume that the input elements x0, x1, . . . , xN−1 initially are located in the first locations
of the array (i.e. A[i] = xi for i < N), and that the remaining locations are undetermined (i.e.
A[i] = ⊥ for i ≥ N , where ⊥ is some value which is not allowed to take part in comparisons).
A RAM-decision-tree is said to be a correct sorting algorithm for input size N if for any input
of size N , the root-to-leaf path determined by the input ends in a leaf labeled with the initial
permutation of the input elements. Clearly, a RAM-decision-tree can be transformed into a
standard decision-tree (see e.g. [6]) by keeping track of elements positions, converting indices
for memory cells into indices for elements, and finally removing the assignment nodes. In
short, RAM-decision-trees are a version of decision trees with explicit references to memory
locations (which is necessary to capture I/O issues). By pruning subtrees which cannot be
reached by any input, we may assume that a RAM-decision-tree which is a correct sorting
algorithm has exactly N ! leaves.

In the cache-oblivious model, paging is taking place (even though the algorithm is ignorant
hereof), and the goal is to bound the number of I/Os (page swaps) for any values of B
and M . We now add paging to our model. We assume that the memory A is divided into
contiguous blocks of B memory cells, such that the kth block comprises the memory cells
A[kB], A[kB + 1], . . . , A[(k + 1)B − 1], for 0 ≤ k. The cache has room for M/B = m blocks.

For simplicity, and without loss of generality, we in the model assume that there always
are exactly m blocks in the cache, and that its initial contents is the first m blocks of A. An
I/O is specified by an ordered pair (k, l) of block indices, where block k is currently not in
cache, and block l is currently in cache. The effect of this I/O is to move block k into the
cache and block l out of the cache.
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Definition 2 Given a RAM-decision-tree T , a paging is an annotation of each edge of T with
a sequence (possible of length zero) of I/Os, such that for any decision node or assignment
node v with label (i, j), the two memory locations A[i] and A[j] are in blocks currently residing
in memory.

In the above, the word “currently” has the natural meaning given by interpreting each
root-to-leaf path as a timeline.

Note that our definition of paging captures online paging strategies. This is in contrast
to the original definition of cache-obliviousness [18], where optimal offline paging is assumed
(corresponding to edges having one annotation for each leaf below it in the RAM-decision-
tree). Allowing only online paging strategies is arguably a more realistic definition of the
cache-oblivious model, and does not affect the existing upper bounds, as the proofs of these
still work if the online LRU paging policy is assumed instead of optimal offline paging. How-
ever, if the original definition is preferred, we can convert our results to it at the cost of a
factor two in M and in the I/O bound, by appealing to Sleator and Tarjans classic compet-
itiveness result [23] for LRU-paging. Also note that like [18], we assume the cache is fully
associative.

3 Results

We first consider the problem of comparison based sorting. Below, in Theorem 1 and it
corollaries, we show that cache-oblivious comparison based sorting is not possible without a
tall cache assumption.

We first note that if the Lazy Funnelsort algorithm of [14] is tuned to the tall cache
assumption M ≥ B1+ε, i.e. its parameters are chosen such that the algorithm is I/O-optimal
when M = B1+ε, then it for the case M ≫ B (defined for instance as M ≥ B2) is a factor of
Θ(1/ε) worse than the optimal I/O bound.

Corollary 2 below states that this is best possible. Hence it gives a trade-off for comparison
based sorting which is inherent in the cache-oblivious model—a trade-off between the strength
of the tall cache assumption and the overhead for the case M ≫ B. In particular, Corollary 2
proves that no cache-oblivious algorithm for comparison based sorting can be asymptotically
I/O optimal for all values of M and B.

Corollary3 is a version of Corollary 2 focusing on the two extreme points 1 and M/2
of the possible range of B. It even more directly shows that I/O-optimal cache-oblivious
comparison based sorting without a tall cache assumption does not exist. It also has the
natural interpretation that if we want a cache-oblivious algorithm which is I/O-optimal for
the case B = M/2, then binary mergesort (the recursive version, in order to get M in the
denominator in the log N/M part of its I/O bound) is best possible—any other algorithm will
be the same factor of Θ(log M) worse than the optimal I/O bound for the case M ≫ B.

Theorem 1 (Comparison Based Sorting) Let T be a RAM-decision-tree which is a cor-
rect sorting algorithm for input size N . Let P1 be a paging with block size B1 and memory
size M , and let P2 be a paging with block size B2 and memory size M , where B2 > B1 and
B1 divides B2. If all root-to-leaf paths contain at most t1 I/Os in P1 and at most t2 I/Os in
P2, then the following holds:

8t1B1 + 3t1B1 log
8Mt2
B1t1

≥ N log
N

M
− 1.45N .
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Corollary 1 For any cache-oblivious comparison based sorting algorithm, let ti be an upper
bound on the number of I/Os performed for block size Bi. If for some real number c > 0 we
have

t1 = c · SortM,B1
(N) ,

then

t2 ≥ SortM,B2
(N) ·

log(M/B2)

log(M/B1)
·
cB2

8M
· (M/B1)

1/8c ,

under the conditions 8Mt2
t1B1

≥ 4 and N ≥ 212M .

Proof. By the conditions assumed, we from Theorem 1 get

8t1B1 log
8Mt2
B1t1

≥ N log
N

M
.

Inserting t1 = c N
B1

logM/B1

N
M and manipulating gives

8c log
8Mt2

cN logM/B1

N
M

≥ log
M

B1

t8c
2 (

8M

cN logM/B1

N
M

)8c ≥
M

B1

t2 ≥ (
M

B1
)1/8c ·

cN logM/B1

N
M

8M

By the values of SortM,B1
(N) and SortM,B2

(N), the statement follows. 2

Corollary 2 Let B1 = 1 and B2 = M1/(1+ε) for some ε with 0 < ε < 1/2. For any cache-
oblivious comparison based sorting algorithm, let ti be an upper bound on the number of I/Os
performed for block size Bi. If for real numbers c ≥ 0 and d ≥ 0 we have t1 = c ·SortM,B1

(N)
and t2 = d · SortM,B2

(N), then we must have c > 1/8ε.

Proof. Assume that c ≤ 1/8ε. As t1 and t2 just need to be upper bounds, we may without
loss of generality also assume c ≥ 1 and d ≥ 1. Using M/B2 = M ε/(1+ε), it can be checked
that the condition 8Mt2

t1B1
≥ 4 holds. The inequality from Corollary 1 gives

d ≥
log M/B2

log M/B1
·
cB2

8M
· (M/B1)

1/8c .

Inserting the values of B1 and B2 leads to

8d

c
·

ε

1 + ε
≥ M1/8c−ε/(1+ε) .

The assumption c ≤ 1/8ε implies 1/8c − ε/(1 + ε) > 0, which contradicts the inequality
above for M → ∞ (and N ≥ 212M , as required by Corollary 1), since the left-hand side is a
constant. 2
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Corollary 3 Let B1 = 1 and B2 = M/2. For any cache-oblivious comparison based sorting
algorithm, let ti be an upper bound on the number of I/Os performed for block size Bi. If for
a real number d ≥ 0 we have t2 = d · SortM,B2

(N), then we must have t1 > 1/8 ·N log2 N/M .

Proof. Assume t1 ≤ 1/8 · N log2 N/M = 1/8 · log M · SortM,B1
(N). We note that the proof

of Corollary 1 goes through, even if c is not at constant but a function of B, M , and N .
The assumption above is equivalent to the assumption c ≤ 1/8 · log M (for all B, M , and
N). As t1 and t2 just need to be upper bounds, we may without loss of generality assume
c = 1/8 · log M and d ≥ 1. It can be checked by insertion that the condition 8Mt2

t1B1
≥ 4 holds.

The inequality from Corollary 1 gives

d ≥
log M/B2

log M/B1
·
cB2

8M
· (M/B1)

1/8c .

Inserting the values of B1 and B2 leads to

16d ≥ log M · c · M1/8c .

As M1/ log M = 2, the assumption c = 1/8 · log M contradicts the inequality above for M → ∞
(and N ≥ 212M , as required by Corollary 1), since the left-hand side is a constant. 2

We now turn to the problem of permuting. The following theorem states that for all
possible tall cache assumptions B ≤ M δ, no cache-oblivious permuting algorithm exists with
an I/O bound (even only in the average case sense) matching the worst case bound in the
I/O model

Theorem 2 (Permuting) For all δ > 0, there exists no cache-oblivious algorithm for per-
muting that for all M ≥ 2B and 1 ≤ B ≤ M δ achieves O(PermM,B(N)) I/Os averaged over
all possible permutations of size N .

4 Proofs

4.1 Sorting

In this section, we prove Theorem 1. Let t1 and t2 be upper bounds on the number of I/Os
in P1, respectively P2, on any root-to-leaf path in T . We will put T and its two annotations
P1 and P2 through four transformations.

The first transformation is to normalize P1 and P2. This transformation is done edge by
edge in a top down fashion in T as follows, where i is either 1 or 2: For a given edge e, the
net effect of the sequence σe of I/Os associated with e in Pi is to change k blocks and leave
M/Bi − k blocks unchanged, for some integer k between 0 and M/Bi. We first substitute σe

by the obvious k I/Os giving the same net effect. At most two of these k I/Os move into cache
a block containing an element accessed in the node v (of type comparison or assignment) at
the lower end of e. These we keep at e, and the rest of the k I/Os, we push down, i.e. we
append them to the sequences of I/Os in Pi at each of the (at most two) edges leading from v
to its children (dublicating the I/Os if v is binary). When the normalization process reaches
an edge e above a leaf (i.e. a result node), the I/Os at e in Pi are discarded. Clearly, the
normalization process cannot increase the number of I/Os in Pi on any root-to-leaf path. In
the remainder of this proof, P1 and P2 will refer to the normalized versions.
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The second transformation is to annotate each node v in T with a working set W (v). The
working set is a set of indices of A (i.e. a set of memory locations), and is defined inductively
in a top down fashion as follows: The working set of the root is {0, 1, 2, . . . ,M − 1}, i.e. the
initial contents of the cache. The working set for a node v with parent u is given by

W (v) = (W (u) ∩ Cache2) ∪ Cache1 ,

where Cachei means the memory locations contained in the blocks residing in cache at v,
according to paging Pi. Effectively, the working set tracks the contents of Cache1, except
that indices will not leave the working set if they are still part of Cache2.

The third transformation is done to ensure the following invariants, where the total order
of a set of indices means the total order of the elements currently residing at these memory
locations:

1. The total order of the working set is known.

2. When a block b is read into cache in P2, the total order is known for the parts of b
which are not in the working set.

The transformation involves the substitution of nodes of T with specific RAM-decision-
trees, and the copying of entire subtrees of T to each of the leaves of these added RAM-
decision-trees. The annotation (I/O and working set) of T will be copied along, but the I/O
annotation is not necessarily a valid paging anymore—we allow comparison of elements at
memory locations not known to be in Cachei, and only keep the I/O annotation for counting
purposes.

The transformation proceeds in a top-down fashion. We first establish the invariants
at the root by adding a RAM-decision-tree which will sort the contents of cache and the
(N − M)/B2 blocks of size B2 not in cache, i.e. sort the memory segments A[0 . . . (M − 1)],
A[M . . . (M +B2−1)], A[(M +B2) . . . (M +2B2−1)],. . . , A[(N −B2) . . . (N −1)] individually.
This can be done by a RAM-decision-tree of height M log M + B2 log B2(N − M)/B2 ≤
N log M , using e.g. Mergesort as the sorting algorithm. At each leaf of this tree, we attach a
copy of T . The resulting tree could now be heavily pruned for subtrees which are not reachable
by any input, but for simplicity, we postpone all such pruning until the entire transformation
has been done.

We now continue the top-down transformation of the edges which are copies of edges in
T . For each such edge e = (u, v), with u being the parent of v, we build a RAM-decision-tree
Te, insert it at e’s position, and insert a copy of the subtree rooted at v at each leaf of Te.

To build Te, we first look at the at most two blocks in Cache2 which was put into Cache2

by an I/O on the edge. For such a block b, the set of indices b∩W , i.e. the part of b belonging
to the working set, cannot have gained new members (but can have lost some) since b last
time was in Cache2. This is because W can only gain members due to I/Os from P1, and
by the normalization step, such an I/O is immediately followed by an access to a member of
the block b′ put into Cache1. Since B1 divides B2, b′ is contained in b, and hence b would
have been put into Cache2 at the same time. Let K be the set of indices in b which has been
removed from W since the last time b was in Cache2, and let L be the set of indices in b
which was not in W last time b was in Cache2. By Invariants 1 and 2, the total order of K
and of L is known, so reestablishing Invariant 2 is equivalent to merging two sorted lists of
length |K| and |L|. The top of Te will be an optimal RAM-decision-tree Tb reestablishing
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Invariant 2. As |K| + |L| ≤ B2, this tree has height at most 4|K| + |K| log B2

|K| [20]. If there
is a second such block, we repeat the procedure, inserting another such tree under each leaf
of the current Te.

At the edge e, we now look at the at most two blocks in Cache1 which was put into
Cache1 by an I/O on e. Each of these induces the addition of at most B1 new indices in the
working set. To maintain Invariant 1, we will for each new index i resolve its order among
the elements in the working set. This is done by substituting each leaf of the current Te

by a RAM-decision-tree τi resolving this, and repeating the substitution for each of the new
indices. The RAM-decision-tree τi is chosen to have optimal height among all RAM-decision-
tree resolving this given the partial order induced by the comparisons on the path from the
root of T down to e and further on to the bottom of the current Te (including previously
added τi in the current Te).

The fourth and final transformation is just to convert the tree into a standard decision-
tree by discarding all annotation and all unary nodes, by pruning subtrees which are not
reachable by any input, and by converting references to memory locations into references to
input elements. Clearly, the resulting decision-tree is a sorting algorithm. Among the binary
nodes pruned are the copies of original binary nodes in T . This is because all comparisons are
between two elements of the working set (since Cache1 ⊆ W at all times), and by Invariant 1,
we had resolved the comparison before we reached the binary node.

Thus, the height of the tree is bounded by the sum of the heights of the trees we insert
during transformation three. The first tree inserted had height at most N log M . Any root-
to-leaf path in T contained at most t2 I/Os from P2. Along any such path, at most t1B1

elements are added to W . At the root we have |W | = M , and at a leaf we have |W | ≥ M
(since Cache1 contains M/B1 blocks at all times), so at most t1B1 can leave W along such a
path. To bound the second types of trees inserted, let ki be the value |K| for the ith I/O from
P2 along such a path. The sum of these trees along any root-to-leaf path is then bounded
by
∑t2

i=1(4ki + ki log B2

ki
). By the convexity of the logarithm and

∑t2
i=1 ki ≤ t1B1, this sum is

maximized for ki = t1B1/t2, and is therefore bounded by 4t1B1 + t1B1 log B2t2
B1t1

.
To bound the third type of trees inserted, we along each root-to-leaf path introduce epochs,

defined by starting a new epoch at the first node in T along the path for which m2 = M/B2

I/Os from P2 have taken place since the start of the current epoch. Due to normalization and
the assumption that B1 divides B2, we know that when new members are added to W , the
blocks of size B2 containing the new member must be in Cache2. Hence, if |Cache2 ∩W | = s
at the beginning of an epoch, then at most (M − s) + B2m2 ≤ 2M elements can be added to
W during an epoch. At all times we have W ⊆ Cache1 ∪ Cache2, so taking into account the
contents of Cache1 at the beginning of the epoch, we see that the union of the working sets
at the nodes inside one epoch on a root-to-leaf path is bounded in size by 3M .

We will now bound the heights of the τi trees (for the insertion of i into W ) along a
root-to-leaf path. As said, the size B2 block bi containing i must be present in Cache2 when i
is inserted into W . We will attribute this insertion to the I/O which inserted bi into Cache2.
For a given block b whose lifetime in Cache2 span r epochs, let kb

j be the number of i’s

attributed to b in the j’th of these epochs. We have at most t2 kb
1 values along a root-to-

leaf. For j ≥ 2, we associate each kb
j with the epoch it relates to, and note that each epoch

can have at most m2 such values associated. As there are at most t2/m2 epochs along a
root-to-leaf, the number of i’s along a root-to-leaf can be expressed as the sum of at most
t2 + m2(t2/m2) = 2t2 numbers. This sum, which is the number of elements inserted into W
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along the path, is bounded by t1B1. Each of the i’s counted by a kb
j value comes from a sorted

set (by Invariant 2), but the choice from this set is done in an online fashion, and hence the
introduction of these kb

j elements into the working set cannot be viewed just as merging of
two sorted lists. In Section 4.2, we give an algorithm based on exponential searches which
can be used to bound the heights of the τi trees. We use the bound stated in Lemma 2,
with the set S being the union of the working sets at the nodes inside the epoch on the
root-to-leaf path (although we do not have the total order of this set, we have the total order
of the actual working set inserted into, and the proof of Lemma 2 still gives a bound on the
comparisons done during the exponential searches in our setting). Using |S| + kb

j ≤ 4M , we

by Lemma 2 get the bound
∑2t2

j=1(2kj log 4M
kj

+ 4kj) on the combined height of the τi trees

along a root-to-leaf, for values k1, k2, . . . , k2t2 fulfilling
∑2t2

j=1 kj ≤ t1B1. By the convexity of

the logarithm, this sum is bounded by 4t1B1 + 2t1B1 log 8Mt2
B1t1

.
Adding the bound for the three types of trees inserted during the third transformation,

we get that no root-to-leaf path in the final tree is longer than

N log M + 8t1B1 + 3t1B1 log
8Mt2
B1t1

.

Since the final tree is a decision-tree for a sorting algorithm, at least one leaf must have
depth N log N − 1.45N , by the standard comparison lower bound. This concludes the proof
of Theorem 1.

4.2 Exponential searches

In this section we consider the problem of inserting k elements into a sorted set S containing
n elements x1 < · · · < xn, where k ≤ n. For simplicity, we assume all keys are distinct.
Hwang and Lin [20] described how to optimally merge two sorted lists of length k and n
with O(k log k+n

k ) comparisons and similar time bounds for merging two AVL-trees and two
level-linked (2,4)-trees were achieved in [17, 19].

Here, we consider a variant of the problem where the k elements y1, . . . , yk are given
online (not necessarily in sorted order). When inserting the ith element yi, the elements
y1, . . . , yi−1 must already have been inserted. The algorithm gets the order of y1, . . . , yi for
free; in particular the algorithm can assume to know the currently closest inserted predecessor
y′i = max{yj | 1 ≤ j < i ∧ yj < yi} ∪ {−∞} and successor y′′i = min{yj | 1 ≤ j < i ∧ yj >
yi}∪{∞}. In the following, we consider how exponential searches achieves similar comparison
bounds for the online problem as for the (offline) version considered by Hwang and Lin. The
algorithm is to repeatedly apply exponential searches as described in Lemma 1 such that the
insertion of yi is restricted to [y′i, y

′′
i ] ∩ S.

We first consider a single insertion of y into S. If y partitions S into two sets S1 and S2,
where all elements in S1 are smaller than y and all elements in S2 are larger than y, then an
exponential search uses the following number of comparisons.

Lemma 1 An exponential search splitting a set S into two non-empty sets S1 and S2 can be
done with

2 log min{|S1|, |S2|} + 2

comparisons, provided min{|S1|, |S2|} ≥ 1. Otherwise at most 2 comparisons are performed.
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Proof. First compare y with x⌈n/2⌉ to decide if |S1| ≤ n/2. If |S1| ≤ n/2, then start an
exponential search at x1; otherwise, start a symmetric exponential search at xn. Assume
without loss of generality |S1| ≤ n/2. Compare y with x1, x2, . . . , x2j , . . . for increasing j
until y < x2j . If |S1| = 0 then in total two comparisons have been performed and we are
done. Otherwise 2i ≤ |S1| < 2i+1 and i + 1 comparisons have been performed to find i.
Finally, a binary search is performed among the 2i − 1 elements x2i , . . . , x2i+1−1. Since the
binary search requires i comparisons, the exponential search in total requires 1+ (i+1)+ i =
2(i + 1) = 2⌊log |S1|⌋ + 2 comparisons. 2

Lemma 2 The online insertion of a permutation of k elements into a sorted set S, where
k ≤ |S|, can be done with 2k log |S|+k

k + 4k comparisons.

Proof. We repeatedly apply exponential searches as described in Lemma 1 such that the
insertion of yi is restricted to [y′i, y

′′
i ] ∩ S.

We view the sequence of insertions as creating a partition of S, where the insertion of yi

partitions S ∩ [y′i, y
′′
i ] into S ∩ [y′i, yi] and S ∩ ]yi, y

′′
i ]. The created partitions form a partition

tree, which is a binary tree where each node v is labeled with a subset Sv of S as follows:
The root represents the whole set S, the leaves the final partition, and each internal node the
insertion of an yi such that the node represents the set S ∩ [y′i, y

′′
i ], and the two children the

sets S ∩ [y′i, yi] and S ∩ ]yi, y
′′
i ].

We now analyze the number of comparisons for the k insertions bottom-up on the partition
tree. The cost of a leaf is zero. For an internal node v with children with sets S1 and S2, where
Sv = S1 ∪ S2, we by Lemma 1 has an associated cost of 2 log min{|S1|, |S2|}+ 2 comparisons.
Assuming that each insertion generates two non-empty subsets, we now prove by induction
that the total number of comparisons in the subtree rooted at a node v is at most

2
∑

w∈Lv

log |Sw| − 2 log |Sv| − 4 + 4|Lv | , (1)

where Lv denotes the leaves below v (if v is leaf then Lv = {v}). If v is a leaf, the sum (1) is
zero since v is the only leaf. For an internal v with children v1 and v2, we from the induction
hypothesis get that the total number of comparisons is at most

2
∑

w∈Lv1

log |Sw| − 2 log |Sv1
| − 4 + 4|Lv1

|

+ 2
∑

w∈Lv2

log |Sw| − 2 log |Sv2
| − 4 + 4|Lv2

|

+ 2 log min{|Sv1
|, |Sv2

|} + 2

≤ 2
∑

w∈Lv

log |Sw| − 2 log |Sv| − 4 + 4|Lv| ,

since we have that log |Sv| ≤ log(2max{|Sv1
|, |Sv2

|}) = 1 + log max{|Sv1
|, |Sv2

|} and |Lv| =
|Lv1

|+|Lv2
|. By letting log |Sv| cancel the contribution of one leaf, and exploiting the convexity

of the log function we get that (1) is bounded by 2(|Lv | − 1) log |Sv|
|Lv|−1 − 4 + 4|Lv |. Since the

tree has k + 1 leaves, the total number of comparisons is at most 2k log |S|
k + 4k, assuming

all insertions induce non-empty partitions. If k1 insertions induce empty partitions and k2 =
k− k1 insertions induce non-empty partitions, then the total number of comparisons is 2k1 +
4k2 + 2k2 log |S|

k2
≤ 4k + 2k log |S|+k

k . 2
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4.3 Permutation

In this section we consider lower bound trade-offs for cache-oblivious algorithms for per-
muting. The computational problem is the following: Given an array of N elements and a
permutation, rearrange the elements in the array according to the input permutation. We
assume that the algorithm has complete knowledge about the permutation, implying that the
only computational task is to move the input elements to the given destination cells.

In the RAM model, the problem is trivially solved using O(N) element moves. In the
I/O model, Aggarwal and Vitter [2] showed that the I/O complexity of the problem is
Θ(min{N,Sort(N)}), i.e. an optimal external memory permuting algorithm is to move one
element per I/O or applying an optimal sorting algorithm, depending on what algorithm per-
forms the fewest I/Os. In this section, we prove that a similar I/O bound cannot be achieved
in the cache-oblivious model—not even in the presence of a tall cache assumption.

Our proof uses ideas from the permutation lower bound proof of Aggarwal and Vitter [2]:
The lower bound is achieved by counting how many permutations can at most be achieved
by the I/Os performed so far. In contrast to [2], our analysis is performed with respect to
two different block sizes simultaneously.

Let A be a cache-oblivious algorithm for permuting. Let t1 and t2 denote an upper bound
on the number of I/Os done by two optimal offline I/O strategies for respectively block
sizes B1 and B2, memory size M , and on any input permutation of N elements. We assume
that B1 ≤ B2 and that B1 divides B2. The following lemma states our main lower bound
trade-off between t1 and t2.

Lemma 3 If k = t1B1/t2, then

(B2!)
N/B2

(

(N/B2 + t2)

(

B2

k

)(

2M − B2 + k

k

)

+ (M/B2)

(

B2

k

))2t2

≥ N ! .

Proof. In the following, we for each input permutation transform A into a new permuting
algorithm A′ together with an explicit sequence of I/Os for block size B2 and memory size 2M .
We will use the properties of these A′ algorithms to derive a lower bound trade-off for t1 and
t2.

We first make two simplifying assumptions about A and the optimal I/O strategies per-
formed for block sizes B1 and B2. Similar to Aggarwal and Vitter [2], we can assume that
there exists at most one copy of each element at any time: Whenever an element is copied
to another cell, the old cell is assigned the nil value. To see this assume that the algorithm
maintains several copies of the same element. Since only one copy of an element is part of
the output, we can simply cancel all copying of elements which are not part of the output.

Secondly, for any block size there exists an optimal offline I/O strategy where each block
read is immediately followed by an access to the block read. This follows by delaying the
I/Os of any optimal offline I/O strategy, such that a block is read by an I/O just prior to the
first access to any element of the block. When analyzing the I/O sequences for respectively
block size B1 and B2 simultaneously, we can therefore assume that when a block b1 of size B1

is read into cache in, then the block b2 of size B2 containing b1 will already have been read
into cache when using block size B2.
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For the algorithm A′, the cache will consist of two areas of size M : The first M cells
contain the “large” blocks of size B2 currently swapped in by A if using block size B2, and
the second M cells contain the content of the memory of A when using the “small” block
size B1. The second area will be simulated in M/B2 otherwise not used blocks by A′. Below
we give the details and describe how to ensure that A′ only maintains one copy of each
element.

Whenever a “large” block is read or written by A (when using the offline I/O strategy for
block size B2), we let A′ read or write the same block. Whenever A reads a “small” block s,
A′ moves the contents of s from the ”large” block area to the “small” block area, exploiting
that we can assume that A will have the “large” block in internal memory as discussed above.
Finally, we consider the case where A is evicting a “small” block s. If the “large” block ℓ
containing s is in the “large” area, A′ moves the content of s from the “small” area to the
“large” area. The final case where ℓ is not in the “large” area can be avoided by moving the
eviction of s to just prior to the eviction of ℓ. This is possible since by definition, A can only
access cells that are read into cache; A cannot do any access to ℓ, and therefore also not to s,
in the period between the eviction of ℓ and the eviction of s.

We will guarantee that for a “large” block read by A′, there will at most be moved k
elements between the “large” area and the “small” area before the “large” block is evicted
from cache. This can be guaranteed by evicting a “large” block from cache and immediately
reloading it again whenever k cells have been moved from or to the “large” block. This at most
increases the number of I/Os for A′ from t2 to t2 + t1B1/k = 2t2 I/Os. Finally, we without
loss of generality can assume that A′ only accesses the first N/B2 + t2 memory blocks, since
A′ at most loads t2 blocks from memory.

We will now argue that the number of permutations A′ can generate with t I/Os is bounded
by

(B2!)
N/B2

(

(N/B2 + t2)

(

B2

k

)(

2M − B2 + k

k

)

+ (M/B2)

(

B2

k

))t

. (2)

For a given state of A′, we define the working set to be the cells of the “small” area together
with the subblocks of size B1 of blocks in the “large” area that the algorithm accesses before
the “large” block is evicted again. Since A′ knows the at most k elements of a “large” block
it will access during the block is in cache, we can assume that when A′ loads a block, A′

provides the at most k cells to be included in the working set.
For each t ≥ 0, we will consider a superset St of all possible pairs of 〈permutation,working

set〉 that can be generated with t I/Os (the same permutation can appear several times
with distinct working sets). We require that S0, . . . , S2t2 satisfy that if a permutation is
included together with a given working set, then all permutations which can be reached by
permuting the content internally in the working set and permuting the content internally in
a block of size B2, excluded the working set, is also in the superset. The consequence of this
assumption is that rearranging elements in the working set, either inside the “small” area or
by moving blocks of size B1 between the “small” and the “large” area, cannot introduce new
permutations.

In the initial state, we assume that the cache of A′ is empty, but that all possible internal
permutations of elements in the N/B2 blocks in memory are contained in S0, i.e. |S0| =
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(B2!)
N/B2 .

If the tth I/O is a block read, then there are at most N/B2 + t2 distinct blocks to read.
There are

(B2

k

)

distinct ways to select k cells from the block read to add to the working set.
For a 〈permutation,working set〉 in St−1, all possible permutations of the existing working set
and the k elements are already contained in St−1. The only new permutations to add to St

are the possible ways to interleave the k new elements with the existing working set of size
at most 2M − B2, which is

(2M−B2+k
k

)

. It follows that a block read can at most increase the
number of pairs 〈permutation,working set〉 by a factor

(N/B2 + t2)

(

B2

k

)(

2M − B2 + k

k

)

.

Evicting one of the M/B2 blocks to memory removes at most k cells from the working set
which are contained in the block. Since all permutations of the k elements and of the remaining
B2 − k elements in the block are already contained in St−1, the only new permutations to
add to St are all the possible ways to interleave the k and B2 − k elements with the existing
working set, which is at most

(B2

k

)

. It follows that a block write can at most increase the
number of pairs 〈permutation,working set〉 by a factor

(M/B2)

(

B2

k

)

.

It follows that t I/Os can at most increase the number of permutations by a factor

(N/B2 + t2)

(

B2

k

)(

2M − B2 + k

k

)

+ (M/B2)

(

B2

k

)

.

In total |St|, and therefore the number of possible permutations generated by A′ using t I/Os,
is given by (2). Since A′ can generate all N ! possible permutations using 2t2 I/Os, the lemma
follows. 2

We note that the trade-off in Lemma 3 also holds in the average case where each permuta-
tion is equally likely. Assume t1 and t2 is the average number of I/Os for block size B1 and B2

over a uniform distribution of the input permutations. Then for at least 3
4N ! permutations

there are less than 4t1 I/Os for block size B1, and similarly for 3
4N ! permutations there are

less than 4t2 I/Os for block size B2. We have that for at least 1
2N ! permutations there are

at most 4t1 and 4t2 I/Os, respectively for block size B1 and B2. For the average case we get
the following.

Lemma 4 If k = t1B1/t2, then for the average case

(B2!)
N/B2

(

(N/B2 + 4t2)

(

B2

k

)(

2M − B2 + k

k

)

+ (M/B2)

(

B2

k

))8t2

≥
1

2
N ! .
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We now give the proof of Theorem 2. Proof.[of Theorem 2] For the sake of contra-
diction, assume that there exists a δ > 0 and a cache-oblivious algorithm that performs
O(PermM,B(N)) for all M ≥ 2B and 1 ≤ B ≤ M δ.

Taking the logarithm on both sides of the equation of Lemma 4, and simplifying using
M
B2

≤ N
B2

≤ t2, we get

c1(t2 log t2 + N log M + t1B1 log M) ≥ N log N ,

for some constant c1. Letting B1 = O(1) implies t1 = O(N), and the above inequality can be
reduced to

c2(t2 log t2 + N log M) ≥ N log N ,

for some constant c2. Letting N = M2c2 we get

t2 log t2 ≥
1

2c2
N log N ,

implying that t2 ≥ 1
2c2

M2c2 .

The contradiction follows by letting B2 = M δ, since SortM,Mδ(M2c2) = 2c2−1
1−δ M2c2−δ is

asymptotic smaller than 1
2c2

M2c2 ≤ t2 for increasing M . 2
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