
Alcom-FT Technical Report Series
ALCOMFT-TR-01-176

Time-dependent networks as models to a
hievefast exa
t time-table queriesGerth St�lting Brodal� Riko Ja
ob�5th September 2001Abstra
tWe
onsider eÆ
ient algorithms for exa
t time-table queries, i.e. algo-rithms that �nd optimal itineraries. We propose to use time-dependentnetworks as a model and show advantages of this approa
h over spa
e-timenetworks as models.1 Introdu
tionFinding the optimal itinerary for a traveler using publi
 transportation is analgorithmi

hallenge. Using standard algorithms to solve itinerary queries ontimetables of interesting detail and size easily leads to una

eptably slow an-swers, even on modern
omputers. In pra
ti
e this problem is over
ome byusing a heuristi
 solver, that is a solver that qui
kly
omputes results, that arenot guaranteed to be optimal. Our fo
us here is instead to produ
e optimalitineraries.The nature of an optimal itinerary query is that of a shortest path question.The natural approa
h to solve it is to transform the timetable into some weightedgraph (modeling as a spa
e-time graph [PS97, PS98℄), on whi
h a shortest path
orresponds to an optimal itinerary. This seems to be a standard approa
h,taken for example in [SWW99, MHW01℄. In this setting we propose to use as amodel time-dependent graphs instead of weighted graphs. This kind of model is
loser to the time-table itself and allows the algorithm to immediately disregardlarge portions of the time-table.The key idea in a time-dependent network is that the time-delay of a linkdepends on the point in time the link is used. This model is natural in severalother situations, for example data-pa
kets on the Internet or
ars on a roadnetwork. This models the phenomenon, that the delay a link indu
es dependson the path that is used to rea
h this link. In general shortest path questionson su
h networks are hard to answer, but important spe
ial
ases allow for�BRICS (Basi
 Resear
h in Computer S
ien
e, www.bri
s.dk, funded by the Danish Na-tional Resear
h Foundation), Department of Computer S
ien
e, University of Aarhus, NyMunkegade, DK-8000 �Arhus C, Denmark. E-mail: fgerth,rolf,rja
obg�bri
s.dk. Par-tially supported by the IST Programme of the EU under
ontra
t number IST-1999-14186(ALCOM-FT).

fast algorithms. These kind of networks have been
onsidered in the literature,see [OR90, OR91℄ for a survey.In [SWW99℄ the authors address the question, whether it is feasible to
om-pute optimal itineraries for the German railway system. They propose severalheuristi
 running time improvements that allow for suÆ
iently qui
k answers.Our modeling is
ompatible to these heuristi
s, they
an immediately be ap-plied in the time-dependent algorithms as well. We expe
t that our modelingand algorithmi
 approa
h will lead to signi�
ant running time improvementsthat allow for a bigger or more detailed network (in
luding lo
al busses, ex-tending to all of Europe). For our la
k of real world data the analysis of ourapproa
h is a theoreti
al
omparison against [SWW99℄.We also
onsider an extensions of the algorithmi
 problem, that allows torestri
t transfer.Some simple
al
ulation about problem sizes and modern hardware showsthat it
an be feasible to pre
ompute the answers to all possible queries andstore the result on a hard-disk. If the network size allows this, it
an be a viablealternative to an algorithmi
 solution. This should be the
ase if the networkis not too big. Of
ourse this approa
h still needs to �nd fast itinerary in aprepro
essing step.1.1 The algorithmi
 problemAs already stated, we want to be able to produ
e optimal itineraries for pas-sengers. That is, given the time-tables of all trains in the
ountry, we wantto pre-pro
ess this data in a way, that allows us to answer queries fast. We
onsider queries of the form \given that the traveler is at station A at time t,when is the earliest time he
an be at station B, and how
an this be a
hieved?"For simpli
ity we assume that
hanging trains has no indu
ed
osts, i.e. takesno time and
an be done as often as ne
essary.We assume that we have a set T that represents time. We only assumethat we have a total ordering of the elements in T. Sometimes we additionallyassume that ther is an addition operation de�ned over T.A time-table T is a set of train-
onne
tions. It is valid for a
ertain time-period, its (time-)horizon. This is an interval of T. An event is a pair (a; t)where a 2 S for some �nite set S of stations, and t 2 T. A train-
onne
tionis a pair (e1; e2), e1 = (a1; t1) the departure event and e2 = (a2; t2) the arrivalevent. We have that the time of the arrival event is not before the time of thedeparture event, i.e. t1 � t2.An itinerary in T is a sequen
e of events, more pre
isely an alternating se-quen
e of train departure and arrival events e1; e2; : : : ; ek. Two events e2i�1; e2ihave to be
onse
utive departure and arrival events of some train in T , twoevents e2i; e2i+ 1 have to be arrival and departure events at the same station.It will be
ommon that T is not given expli
itly, but for example as thetime-table for one day and the additional information that this day is repeatedthroughout a
ertain period. Note that in a repetitive s
hedule there will beover-night
onne
tions that are not possible if the horizon is restri
ted to oneday.These de�nitions have some severe restri
tions. At a station we
an notdistinguish between
ontinuing in the same train and transfer. We also disallowthe traveler to use any other means of transportation like walking 200 metersfrom one station to another. In Se
tion 5 we will address these issues, allowing1

us to impose restri
tions on the maximum number of transfers or a

ountingfor the time it takes to walk inside the station as part of a transfer.2 Using a spa
e-time networkThe approa
h we des
ribe is straightforward given how we made the algorithmi
problem pre
ise. It is a dire
t transformation of a time-table into a dire
tedweighted graph. Paths in this graph are almost itineraries. To
al
ulate theweights it is important that T allows for addition and subtra
tion.Given a time-table T we
onstru
t the graph G = (V;E) in the followingway: V is the set of all events of T . There is an edge from event e at stationa to the �rst event at station a after e. If the s
hedule is repetitive, this
anbe re
e
ted by having a link from the last event of the day at station a to the�rst event of the day at station a. If a pair of events (e1; e2) is in T , there isa dire
ted edge from e1 to e2. The weight of an edge in the weighted graphmodel is given by the time-di�eren
e of its endpoints, i.e. the traveling time orthe waiting time at a station.This type of model
an be seen as a spa
e-time network as des
ribed in [PS97℄.It is the model used in [SWW99℄ and therefore important for us be
ause we useit for a running time
omparison we will present in Se
tion 4.In [SWW99℄ this model is used and augmented with di�erent heuristi
s thatimprove the running time. These heuristi
s immediately transfer to the time-dependent approa
h, and a
hieve running times that allow exa
t time-tablequeries for the German railway system in a reasonable time. As we
an stri
tlyimprove over this model this do-ability statement remains valid. The detailed
omparison of the two approa
hes is given in Se
tion 4. We have also reason tobelieve that our approa
h s
ales better, so we would expe
t it to be fast enoughon even bigger or more detailed networks, e.g. in
luding lo
al buses and trainas well and/or being pre
ise about
hanging trains.In [SWW99℄ the authors observe that \CPU time looks linear to the numberof nodes (and thereby edges) explored." This statement
an be explained by
a
he behavior. If we assume that the priority queue stays small enough to�t into the CPU-
a
he, whereas the graph is to big for that, we get that theCPU-times are dominated by the
a
he-misses that
orrespond to a

essing thegraph.Be aware that there are some obvious alternatives to this model. For exam-ple, one
ould deviate from the
y
le of edges at one station and expli
itly havean edge if a passenger
an a
tually
hange trains as suggested by a
ombinationof arrival/departure events. This model uses in general a lot more edges, butit allows for a mu
h more detailed modeling. We
ould for example make surethat the walking inside the station a
tually allows the transfer.3 Time-dependent networksIn this se
tion we develop the terminology for time-dependent networks (orgraphs, whi
h is pre
isely the same) and proof the
orre
tness of a fastest pathalgorithm, that works in the situation we have here. We omit a dis
ussion ofthe feasibility of shortest path questions in the more general setting, allowingnegative delays and/or non-monotoni
 fun
tions. In this more involved setting,2

it is important to spe
ify a waiting poli
y. See [OR90, OR91℄ for a dis
ussionof this type of network.The domain of time is again a linearly ordered set T. In this se
tion we donot assume that there is an addition operation de�ned on T. Typi
al examplesfor the set T are the real numbers and the integers, but also �nite sets might beinteresting.A time-dependent network is a dire
ted graph G = (V;E), where everyedge e has an asso
iated link-traversal fun
tion fe:T! T.Let f :T ! T be a fun
tion. If f satis�es f(t) � t for all t, we say thatf has non-negative delay. If for t � t0 we have f(t) � f(t0), we say that f ismonotoni
.In general it is important to be pre
ise about the waiting poli
y for a travelerin su
h a network. This is not an issue here, as we are only interested in short-est/fastest path in the network and en
ode all the ne
essity and possibility towait into the fun
tions. More pre
isely, if we
onsider only monotoni
 fun
tionswaiting never pays o�, the imposed restri
tions on waiting is irrelevant. Themore general setting and the in
uen
e of di�erent waiting poli
ies is dis
ussedin [OR90, OR91℄.Here we use the following simple de�nition of a timed path in G: A sequen
ev1; v2; : : : ; vk 2 V of nodes in G and a sequen
e t1; t2; : : : ; tk 2 T of times form atimed path if e = (vi; vi+1) 2 E is an edge of G and ti+1 = fe(ti). The vertex v1is
alled the departure lo
ation or sour
e of the path, t1 the departure time, vkthe destination and tk the arrival time.The earliest arrival question for a sour
e node s, a destination d, and adeparture time t asks for a timed path p from s to d of whi
h the arrival timeis minimal. Similarly the latest departure question is well de�ned if we �x anupper bound for the arrival time, i.e. we ask for a path that has the latestdeparture time at s under the
onstraint that the arrival time is not after thespe
i�ed arrival time.Assume that we
an (eÆ
iently) evaluate the link-traversal fun
tions of agraph and (eÆ
iently) perform
omparisons of elements in T. Then it is rea-sonable to
onsider a variant of Dijkstra's algorithm to solve the earliest arrivalquestion. It is natural to analyze its running time as a number of fun
tionevaluations,
omparisons and operations of a (
omparison based) priority queueover T.Lemma 3.1 (All earliest arrival paths are simple) Let G be a �nite time-dependent network with monotoni
 and non-negative delay edge traversal fun
-tions. Let p be a timed path in G departing at time t at node s and arrivingat time t0 at node d. Then there exists a simple timed path in G departing attime t at node s and arriving at time t00 at node d su
h that t00 � t0.Corollary 3.2 (Earliest arrival path are well de�ned) Let G be a �nitetime-dependent network with monotoni
 and non-negative delay edge traversalfun
tions. Let s and d be two nodes of G, and a departing time t 2 T. Thenthere exists t0 2 T a
hieving the minimum arrival time at d over all timed pathsfrom s to d.Label setting algorithmLet Q be a priority queue over pairs from V � T, that allows to extra
t a pairwith a minimal element from T, i.e. a priority queue of points in time annotated3

with nodes.1: Stati
 Input: G = (V;E), and for every e 2 E a monotoni
, non-negativedelay link-traversal fun
tion fe:T! T.2: Dynami
 Input: sour
e node s 2 V , destination node d 2 V , departuretime t 2 T3: a[v℄ :=1 for all v 2 V4: a[s℄ := t5: S := ;6: Q := f(s; t)g7: while Q 6= ; do8: (u; t00):= extra
t min(Q)9: S := S [fug10: break while-loop if u = d11: for ea
h edge (u; v) 2 E su
h that v 62 S do12: t0 := fuv(a[u℄)13: if a[v℄ > t0 then14: if a[v℄ =1 then15: insert(Q; v; t0)16: else17: update(Q; v; t0)18: end if19: a[v℄ := t020: pred[v℄ := u21: end if22: end for23: end while24: v := d25: p := (v; a[v℄)26: while v 6= s do27: v := pred[v℄28: p := (v; a[v℄):p29: end while30: Output: pCorre
tness of the algorithmThe above algorithm is
orre
t, really for the same reason as Dijkstra's algorithmis
orre
t for non-negatively weighted graphs. But as we did not �nd a proof of
orre
tness that would immediately apply in our situation, we give a
ompleteproof.De�ne Æ(s; t; u) to be the earliest possible arrival time at node u given thatwe departed at time t at node s, i.e. the minimum over all paths from s to udeparting at time t.The
orre
tness of the algorithm follows from the fa
t that the invarianta[u℄ = Æ(s; t; u) for all nodes u 2 S holds before (and after) every exe
ution ofthe body of the while loop.The way we update the estimates, we maintain the invariant that� pred[�℄ de�nes a tree R in G that is dire
ted towards s� Let p be a path that traverses only edges of R in the reverse dire
tion.4

Then a[�℄ gives the timestamps that form together with p a timed pathdeparting at s at time t. For every node u 2 R su
h a path exists.� a[u℄ � Æ(s; t; u)� For all u 2 S we have a[u℄ = Æ(s; t; u)Now assume that we have e = a[u℄ > Æ(s; t; u) = Æ for some node u 2 S.Without loss of generality we
an assume that u is the �rst (in the exe
utionof the algorithm) su
h node, i.e. that for all other nodes v in S we have a[v℄ =Æ(s; t; v).In this situation let p be some some earliest arrival path from s at time t tou. Let p(v) denote the time path p visits node v. Let y be the �rst vertex ofp that is outside of S and x its prede
essor on p (inside S). By assumption wehave a[x℄ = Æ(s; t; x) and Æ(s; t; x) � p(x) follows as p indu
es a subpath from sto x that departs at time t and arrives at time p(x). When x was inserted intoS the algorithm updated a[y℄, and as no update in
reases an estimate, we havea[y℄ � fxy(Æ(s; t; x)). As fxy is monotoni
, we
an
on
lude that fxy(Æ(s; t; x)) �fxy(p(x)) = p(y). As all link-traversal fun
tions on the remaining path from y tou have non-negative delay, we have p(y) � p(u) = Æ. Putting these inequalitiestogether, we get a[y℄ < a[u℄, whi
h is a
ontradi
tion in the
ase u = y. In allother
ases, the algorithm would have
hosen node y instead of node u as thenext node to add to S, whi
h
ontradi
ts the de�nition of u.This argument also shows that we do not need to
he
k v 2 S at Line 13,be
ause we will never �nd a node inside S where we
an still improve a[u℄. Thisis the only use of the set S. Depending on how expensive it is to evaluate alink-traversal fun
tion, it might or might not pay o� to not maintain the set Sin the algorithm.3.1 Modeling a time-table lookup with a time-dependentnetworkLet T be a time-table. We des
ribe how to
onstru
t a time-dependent networkG = (V;E; f). Then we
hose the set of nodes V to be the set of stationsappearing in T . Let u and v be two stations. De�neCuv = f(t; t0) j ((a; t); (b; t0) 2 Tgthat is for every dire
t
onne
tion from u to v there is a pair of times in Cuv .If Cuv is empty, there is no ar
 from u to v. Otherwise we de�nefuv(t) = minft00 j (t0; t00) 2 Cuv and t � t0g:This fun
tion is monotoni
 and of non-negative delay.Let I be an itinerary. Then we �nd a timed path p in G that is never laterat a
ertain station than I is. The path p is therefore a timed path that doesnot arrive later at the destination than I does.Let p be a timed path in G. By the de�nition of the link traversal fun
-tions we know, that every link traversal of p
orresponds to an entry of T .Con
atenating those entries yields a valid itinerary.All in all we have that we
an answer an itinerary query from s at time tto d on T by solving the earliest arrival problem on G with sour
e s at time tand destination d. 5

4 Implementation issuesThere are several speed-up te
hniques known for Dijkstra's algorithm. Two
lasses of su
h te
hniques are on-the-
y potential and pruning, as for exampleused in [SWW99℄.The most well known potential te
hnique is to modify the value that isused in the priority queue by a lower bound on the remaining path-length tothe destination. If the network is embedded into the plane, this
an be anappropriate multipli
ative of the Eu
lidean distan
e to the destination. Oneway to
onvin
e oneself about the
orre
tness of this method is to think ofmodifying the edge weights of the graph a

ording to some potential, i.e. w0uv =wuv+p(v)�p(u). Adding any potential to a graph does not
hange the relativeweight of paths in the graph { if path p is longer than path q in G, then pathp is also longer than path q on G0, the graph with modi�ed weights. Adding apotential that does not
reate negative weights does not in
uen
e the
orre
tnessof Dijkstra's algorithm. If we
leverly
hoose the potential, we
an improve therunning time of the algorithm signi�
antly. If we by
han
e manage to use theshortest path distan
es to d as the potential p, we get that pre
isely all edgesthat are on some shortest path towards d have weight 0. If the shortest pathhappens to be unique, the algorithm only looks at the nodes on the shortestpath and the outgoing edges from these nodes. This situation is of
ourse notwhat we expe
t to �nd, if we already have the shortest path potential we do noteven need Dijkstra's algorithm to determine shortest paths. But if we have agood,
onservative approximation of su
h a potential we
an hope to signi�
antlyredu
e the part of the graph that is inspe
ted by the algorithm. Of
ourse thisis only useful if this potential
an easily be
omputed. This is for example truefor the Eu
lidean distan
e to the destination.Another, more dire
t way to redu
e the size of the inspe
ted part of thegraph is to remove edges and nodes that are not relevant, i.e. not on a shortestpath for the
urrent s and d. In the extreme, again, we might have pre
omputeda shortest path for all possible
hoi
es of s and d, and stored the resulting path.Now we
an on the
y disregard all the edges that are not on the
urrent path.The algorithm will then only explore the path itself. Again, in this situationthere is no need to run an algorithm anymore. The interesting versions of thismethod are those where we do not need a lot of memory to store the result ofthe pre
omputation, and where evaluating whether a link
an be disregardedis easy. A good example is the pruning te
hnique used in [SWW99℄. There wehave for every edge some geometri
 information for whi
h kind of s and d theedge is relevant.In [SWW99℄ the point is made that a
ombination of these speed-up te
h-niques redu
es the running time of Dijkstra's algorithm in a spa
e-time networkenough to
ompute optimal itineraries on a
omplete German railway time-tableon-line. We observe that these speed-up te
hniques are just as powerful on thetime-dependent network, and that using the time-dependent approa
h
an sig-ni�
antly redu
e the size of the inspe
ted part of the network and by this thesize of the priority queue.In the following we will analyze the running time of di�erent time-table queryalgorithms. This is as a
omparison the spa
e-time graph based algorithm andthen di�erent implementations of the link-traversal fun
tions. The parametersdetermining the running time are 6

� The size of the inspe
ted part of the graph in nodes, this is where thealgorithm annotates with estimates and tree-edges, that is nodes v inLine 19 of the algorithm.� The size of the inspe
ted part of the graph in edges. This are memorya

esses/fun
tion evaluations.� Size of the priority queue� Number of extra
t min operations. This is the number of times we explorea node u, i.e. we have that the node is u in Line 9 of the algorithm.Here we do not
onsider the time the algorithm spends maintaining thepriority queue. There are several results in the literature dis
ussing how toobtain fast priority queues in this
ontext, for example using the fa
t that edgeweights are integers. This kind of priority queue
an be used for the time-dependent networks as well, if we restri
t time to be integers. We note thateven a more substantial
hange to the shortest path algorithm as proposedin [Gol01℄
an easily in
orporated into the time-dependent algorithm.We
onsider the time-table query from s at time t to d. Let t0 be the arrivaltime at d of a fastest itinerary.4.1 The spa
e-time networkThe �rst observation we make is, that we never really update the a[v℄ for anynode v. This is be
ause the node has a time build in, we rea
h it equally faston all possible paths. This
an be exploited to speed up the priority queue.Consider a station a. The algorithm explores all events at a, starting from theearliest arrival time at a up to t0. How many events these a
tually are heavilydepends on the station. But we
an see that for a long itinerary, i.e. for big t0,there is the possibility of futile work: Assume s itself is a busy station that hashourly non-stop
onne
tions to 10
ities. Assume t0 is 4 hours after t. Thenwe usefully explore the events for the 10
onne
tions in the �rst hour after t.But afterwards we
ontinue exploring nodes at s where the updated node onthe other side of the ar
 is already known to be rea
hable (but presumably notyet in Q).The other algorithms avoid these futile exploration steps at some other
ost.This trade-o� is what we are investigating in the following.4.2 General pie
ewise linear fun
tionsIf we take a modular approa
h, we will implement the link-traversal fun
tions
ompletely independent of ea
h other. That is, we will have a pro
edure thatprodu
es the value of fuv(t). This
an easily be a
hieved with log2(k)
ompar-isons if k is the number of
onne
tions from u to v, i.e. k = jCuv j.Now we do not unne
essarily explore nodes, but we might
onsider ar
s thatin the spa
e-time network were not
onsidered, be
ause the departure eventis after t0. Additionally we waste time by doing independent sear
hes for thedi�erent outgoing ar
s.Note that this approa
h
an easily handle large time-horizons when thes
hedule is basi
ally repetitive, but has many ex
eptions arbitrarily spread overthe timetable. The important feature of this situation is that the link-traversal7

fun
tions have a small (in terms of spa
e) representation, that still allows forfast evaluation.4.3 Combining sear
hesTo avoid the repetition of sear
hes in the for-loop of Line 11{22, one
an
ombineall the events into one data-stru
ture. More pre
isely we have at every nodea balan
ed sear
h tree that has as leafs the times of all outgoing events. In aprepro
essing step we annotate these leafs with a list of outgoing events, forevery ar
 the next in time. Then every exploration of one node
osts one binarysear
h plus the update operation on the other side of the ar
s.This approa
h still performs one sear
h per node and uses additional spa
e,at one node we have a multipli
ative blow-up of its out-degree.4.4 Avoiding the spa
e-overheadLet d be the out-degree of the node in the time-dependent network
orrespondingto a. To avoid the spa
e-overhead, we
an put all the outgoing events of astation a into one array A sorted by their departure time. We
an do this in thefollowing way: we pla
e d su
h events (so
alled primary entries), then we leaved empty spa
es, then the next d events and so on. Let t00 be the time of thelast event before some empty spa
es. Then we put for every outgoing dire
tionthe next event into the so far empty entries of A (se
ondary entries). We putall primary entries into one balan
ed sear
h tree.When we explore node a, we �nd the next primary entry of A and s
an thenext 2d entries of A. Then we are sure to have all the next outgoing events inall outgoing dire
tions.This approa
h uses asymptoti
ally the same spa
e as a spa
e-time graph. Itstill performs one sear
h per exploration of a node.4.5 Avoiding the sear
hIf we wat
h the algorithm we see that when we perform an update operation, wehave our hands on an event-pair e of the time-table. In parti
ular we have oneparti
ular arrival time t00 at one parti
ular node a. In addition to e we
an storea pointer into the array of outgoing events at a, namely to the �rst primaryelement after time t00. If we make this pointer part of the data stru
ture storedin the priority queue, there is no need for a sear
h to explore a node.4.6 Avoiding to
onsider
onne
tions that depart after t0There is still one aspe
t in whi
h the spa
e-time graph might be superior to thetime-dependent network approa
h: It will never
onsider a link whose departuretime is after the arrival time t0 at the destination station.We
an also a
hieve this in the time-dependent network. Assume we did notdo the spa
e-saving, that is we have a list of outgoing events for every relevanttime at a node. We slightly
hange this list su
h that it is no longer orderedby the time of the departure event, but by the time of the arrival event onthe other side of the ar
. Instead of inserting all the arrival events of the listinto the priority queue at on
e, we only insert the �rst event and a pointer8

to the next event of the list. Only when we extra
t this �rst event, we insertthe se
ond event of the list and so on. With this we inspe
t less entries of thetime-table than the spa
e-time graph algorithm does, we asymptoti
ally neverperform more work than that algorithm.4.7 Ca
he behaviorEven so the last presented algorithm is the fastest algorithm if we
onsiderasymptoti
 worst-
ase running time on the unit
ost RAM, it might not be thefastest in pra
ti
e. One thing is that the possibility to save
onstant fa
tors inthe running time is hard to foresee and an important fa
tor in a
tual runningtime. More importantly we should also
onsider that the running time on areal ma
hine
an be heavily in
uen
ed by
a
he-faults. In this respe
t the lastalgorithm might not really be a good idea: assuming that the priority queue issmall enough to �t into
a
he, it voluntarily jumps around in memory.The a
tual
a
he behavior seems to be too hard to predi
t to really makea statement about what should be the fastest algorithm without performingexperiments. We leave this with the statement that there should be some pos-sibilities to adapt the above algorithms to a spe
i�

a
he size.Of
ourse there is also the priority queue to be
onsidered in tuning thealgorithm. This might not be an issue if the time-table happens to be su
h,that the priority queue is always very small and the overall running time isdominated by the
a
he misses stemming from a

essing the network.4.8 Con
luding remarks on algorithmsInstead of using an array with primary and se
ondary entries we
an
onsider thelist of next events as a persistent linked list that (in the prepro
essing)
hangesas time progresses. See [DSST86℄ for details on this idea. This
onstru
tiongives the same asymptoti
 behavior. It has the additional advantage that it
aneasily
arried over to the exploration saving idea of Se
tion 4.6.We
an see all the algorithms presented here as some
lever way to on-demand
reate the important part of some spa
e-time graph. Again this is onlya di�erent point of view.Note that we
an solve as well latest departure questions for a given arrivaltime. For this we just invert the dire
tion of time and departing and arrivingin the timetable.All the algorithms presented here
an additionally perform the online net-work pruning te
hniques suggested in [SWW99℄. The theoreti
al analysis
ar-ried out here suggests, that the algorithms presented here should be faster,on realisti
 networks presumably signi�
antly faster, than the expli
it spa
e-time graph algorithm used in [SWW99℄. The statement that these algorithmsare fast enough to produ
e optimal answers for time-tables of interesting size,should therefore
arry over to even bigger (or more detailed) networks, if we usethe algorithms presented here. Of
ourse only experiments with real world data
an give a
on
lusive answer whether or not these statements really hold.
9

5 Extensions5.1 More realisti
 transferThe algorithmi
 problem dis
ussed so far made the unrealisti
 assumption, thattransfer between trains is basi
ally disregarded. It seems, that we do not get amore realisti
 modeling of transfer for free. For a start we try to in
lude sometime for the walking inside the station in the itinerary, extending the network byas little as we
an. We
onsider every platform to be a station of its own right.Then we
onne
t the platforms by walking links, either following the geometryof the station or with a star. The link traversal fun
tions for the walking linkshave
onstant delay, i.e. they are of the form f(t) = t+
 for some
onstant
.(This assumes that we have addition for our set T.)5.2 Limiting the number of transfers in an itineraryThe above modeling of train
hanges
an also be used to
ount the number of
hanges. Without extending the network further we do not
onsider a
hange oftrains, if it does not involve moving from one platform to another. If we wantto be more pre
ise, we
an introdu
e virtual platforms, one for every train-line.Then we do not
apture
hanging of trains within a train line, whi
h is norestri
tion, as it
an always be avoided. Note that we basi
ally return to theexpli
it network if every train has to be
onsidered as a train line of its own.To �nd all Pareto-optimal solutions, i.e. for every bound on the number oftransfers the earliest arrival itinerary, we do the following:First we �nd the fastest path without an upper bound on the number of
hanges. This will have some number k of transfers, and is the solution if thebound on the number of transfers is � k. It is left to �nd the earliest arrivalitinerary under the restri
tion, that we have at most k�1; k�2; : : : ; 0 transfers.We take k
opies (levels) of the original network with the twist that all walkinglinks (i.e. all links that stand for a transfer)
onne
t level i with level i+1. Onthis network we sear
h for a path from s at level 1 to some
opy of node d. Ifwe �nd this, we found the fastest path with at most k � 1 transfers, the level lof the endpoint of the path tells us how many transfers we a
tually have. Notethat it might be that the fastest
onne
tion uses 5 transfers, but insisting on 4transfers is slower than doing only 2 transfers. Then we delete all levels aboveand in
luding l and
ontinue our sear
h to some
opy of d at the remaininglevels. We
ontinue until we found a solution without transfer or we foundthat we
an not rea
h the destination with less then l transfers. In pra
ti
e wemight want to stop this pro
ess as soon as insisting on few transfers results inunreasonably long travel times.5.3 Conne
tion to regular expressionsThe above pro
edure
an be seen as sear
hing for a fastest path under a reg-ular expression
onstrained. If we think of ar
s in the network that stand forusing a train being labeled with t and transfer links being labeled with w, the
onstraining regular expression is (w�t�w�)k. It is easily possible to
omputeearliest arrival questions under general regular expression
onstraints (we onlyneed to
onstru
t a nondeterministi
 �nite automaton and build the
ross prod-u
t with the network). This might be a powerful tool express di�erent kinds of10

restri
tions on the itinerary. See [BJM00℄ for a dis
ussion on the
omplexity ofimposing formal language
onstraints onto (shortest) paths questions.5.4 Con
luding on extensionsThe extensions mentioned here are also appli
able if the time-table is modeledusing a spa
e-time graph. The point we want to make here is that using atime-dependent network as a model a
tually allows for an easy des
ription.Referen
es[BJM00℄ Chris Barrett, Riko Ja
ob, and Madhav Marathe. Formal language
onstrained path problems. SIAM J. Comput., 30(3):809{837, 2000.[DSST86℄ James R. Dris
oll, Neil Sarnak, Daniel D. Sleator, and Robert E.Tarjan. Making data stru
tures persistent. In Pro
eedings of theEighteenth Annual ACM Symposium on Theory of Computing, pages109{121, 1986.[Gol01℄ Andrew V. Goldberg. A simple shortest path algorithm with linearaverage time. In Algorithms - ESA 2001, volume LNCS 2161, pages230{241, 2001.[MHW01℄ Matthias M�uller-Hannemann and Karsten Weihe. Pareto shortestpaths is often feasible in pra
ti
e. In Algorithm Engineering, WAE2001, volume LNCS 2141, pages 185{197, 2001.[OR90℄ Ariel Orda and Raphael Rom. Shortest-path and minimum delayalgorithms in networks with time-dependent edge-length. Journal ofthe ACM, 37(3):607{625, 1990.[OR91℄ Ariel Orda and Raphael Rom. Minimum weight paths in time-dependent networks. Networks: An International Journal, 21, 1991.[PS97℄ Stefano Pallottino and Maria Grazia S
utell�a. Shortest path algo-rithms in transportation models:
lassi
al and innovative aspe
ts.Te
hni
al Report TR-97-06, University of Pisa, 14, 1997.[PS98℄ Stefano Pallottino and Maria Grazia S
utell�a. Shortest path algo-rithms in transportation models:
lassi
al and innovative aspe
ts.In P. Mar
otte and S. Nguyen, editors, Equilibrium and Advan
edTransportation Modelling, pages 245{281. Kluwer A
ademi
 Publish-ers, 1998.[SWW99℄ Frank S
hulz, Dorothea Wagner, and Karsten Weihe. Dijkstra's al-gorithm on-line: An empiri
al
ase study from publi
 railroad trans-port. In Algorithm Engineering, volume LNCS 1668, pages 110{123,1999.
11

