
Alcom-FT Technical Report Series
ALCOMFT-TR-01-176

Time-dependent networks as models to ahievefast exat time-table queriesGerth St�lting Brodal� Riko Jaob�5th September 2001AbstratWe onsider eÆient algorithms for exat time-table queries, i.e. algo-rithms that �nd optimal itineraries. We propose to use time-dependentnetworks as a model and show advantages of this approah over spae-timenetworks as models.1 IntrodutionFinding the optimal itinerary for a traveler using publi transportation is analgorithmi hallenge. Using standard algorithms to solve itinerary queries ontimetables of interesting detail and size easily leads to unaeptably slow an-swers, even on modern omputers. In pratie this problem is overome byusing a heuristi solver, that is a solver that quikly omputes results, that arenot guaranteed to be optimal. Our fous here is instead to produe optimalitineraries.The nature of an optimal itinerary query is that of a shortest path question.The natural approah to solve it is to transform the timetable into some weightedgraph (modeling as a spae-time graph [PS97, PS98℄), on whih a shortest pathorresponds to an optimal itinerary. This seems to be a standard approah,taken for example in [SWW99, MHW01℄. In this setting we propose to use as amodel time-dependent graphs instead of weighted graphs. This kind of model isloser to the time-table itself and allows the algorithm to immediately disregardlarge portions of the time-table.The key idea in a time-dependent network is that the time-delay of a linkdepends on the point in time the link is used. This model is natural in severalother situations, for example data-pakets on the Internet or ars on a roadnetwork. This models the phenomenon, that the delay a link indues dependson the path that is used to reah this link. In general shortest path questionson suh networks are hard to answer, but important speial ases allow for�BRICS (Basi Researh in Computer Siene, www.bris.dk, funded by the Danish Na-tional Researh Foundation), Department of Computer Siene, University of Aarhus, NyMunkegade, DK-8000 �Arhus C, Denmark. E-mail: fgerth,rolf,rjaobg�bris.dk. Par-tially supported by the IST Programme of the EU under ontrat number IST-1999-14186(ALCOM-FT).

fast algorithms. These kind of networks have been onsidered in the literature,see [OR90, OR91℄ for a survey.In [SWW99℄ the authors address the question, whether it is feasible to om-pute optimal itineraries for the German railway system. They propose severalheuristi running time improvements that allow for suÆiently quik answers.Our modeling is ompatible to these heuristis, they an immediately be ap-plied in the time-dependent algorithms as well. We expet that our modelingand algorithmi approah will lead to signi�ant running time improvementsthat allow for a bigger or more detailed network (inluding loal busses, ex-tending to all of Europe). For our lak of real world data the analysis of ourapproah is a theoretial omparison against [SWW99℄.We also onsider an extensions of the algorithmi problem, that allows torestrit transfer.Some simple alulation about problem sizes and modern hardware showsthat it an be feasible to preompute the answers to all possible queries andstore the result on a hard-disk. If the network size allows this, it an be a viablealternative to an algorithmi solution. This should be the ase if the networkis not too big. Of ourse this approah still needs to �nd fast itinerary in apreproessing step.1.1 The algorithmi problemAs already stated, we want to be able to produe optimal itineraries for pas-sengers. That is, given the time-tables of all trains in the ountry, we wantto pre-proess this data in a way, that allows us to answer queries fast. Weonsider queries of the form \given that the traveler is at station A at time t,when is the earliest time he an be at station B, and how an this be ahieved?"For simpliity we assume that hanging trains has no indued osts, i.e. takesno time and an be done as often as neessary.We assume that we have a set T that represents time. We only assumethat we have a total ordering of the elements in T. Sometimes we additionallyassume that ther is an addition operation de�ned over T.A time-table T is a set of train-onnetions. It is valid for a ertain time-period, its (time-)horizon. This is an interval of T. An event is a pair (a; t)where a 2 S for some �nite set S of stations, and t 2 T. A train-onnetionis a pair (e1; e2), e1 = (a1; t1) the departure event and e2 = (a2; t2) the arrivalevent. We have that the time of the arrival event is not before the time of thedeparture event, i.e. t1 � t2.An itinerary in T is a sequene of events, more preisely an alternating se-quene of train departure and arrival events e1; e2; : : : ; ek. Two events e2i�1; e2ihave to be onseutive departure and arrival events of some train in T , twoevents e2i; e2i+ 1 have to be arrival and departure events at the same station.It will be ommon that T is not given expliitly, but for example as thetime-table for one day and the additional information that this day is repeatedthroughout a ertain period. Note that in a repetitive shedule there will beover-night onnetions that are not possible if the horizon is restrited to oneday.These de�nitions have some severe restritions. At a station we an notdistinguish between ontinuing in the same train and transfer. We also disallowthe traveler to use any other means of transportation like walking 200 metersfrom one station to another. In Setion 5 we will address these issues, allowing1

us to impose restritions on the maximum number of transfers or aountingfor the time it takes to walk inside the station as part of a transfer.2 Using a spae-time networkThe approah we desribe is straightforward given how we made the algorithmiproblem preise. It is a diret transformation of a time-table into a diretedweighted graph. Paths in this graph are almost itineraries. To alulate theweights it is important that T allows for addition and subtration.Given a time-table T we onstrut the graph G = (V;E) in the followingway: V is the set of all events of T . There is an edge from event e at stationa to the �rst event at station a after e. If the shedule is repetitive, this anbe reeted by having a link from the last event of the day at station a to the�rst event of the day at station a. If a pair of events (e1; e2) is in T , there isa direted edge from e1 to e2. The weight of an edge in the weighted graphmodel is given by the time-di�erene of its endpoints, i.e. the traveling time orthe waiting time at a station.This type of model an be seen as a spae-time network as desribed in [PS97℄.It is the model used in [SWW99℄ and therefore important for us beause we useit for a running time omparison we will present in Setion 4.In [SWW99℄ this model is used and augmented with di�erent heuristis thatimprove the running time. These heuristis immediately transfer to the time-dependent approah, and ahieve running times that allow exat time-tablequeries for the German railway system in a reasonable time. As we an stritlyimprove over this model this do-ability statement remains valid. The detailedomparison of the two approahes is given in Setion 4. We have also reason tobelieve that our approah sales better, so we would expet it to be fast enoughon even bigger or more detailed networks, e.g. inluding loal buses and trainas well and/or being preise about hanging trains.In [SWW99℄ the authors observe that \CPU time looks linear to the numberof nodes (and thereby edges) explored." This statement an be explained byahe behavior. If we assume that the priority queue stays small enough to�t into the CPU-ahe, whereas the graph is to big for that, we get that theCPU-times are dominated by the ahe-misses that orrespond to aessing thegraph.Be aware that there are some obvious alternatives to this model. For exam-ple, one ould deviate from the yle of edges at one station and expliitly havean edge if a passenger an atually hange trains as suggested by a ombinationof arrival/departure events. This model uses in general a lot more edges, butit allows for a muh more detailed modeling. We ould for example make surethat the walking inside the station atually allows the transfer.3 Time-dependent networksIn this setion we develop the terminology for time-dependent networks (orgraphs, whih is preisely the same) and proof the orretness of a fastest pathalgorithm, that works in the situation we have here. We omit a disussion ofthe feasibility of shortest path questions in the more general setting, allowingnegative delays and/or non-monotoni funtions. In this more involved setting,2

it is important to speify a waiting poliy. See [OR90, OR91℄ for a disussionof this type of network.The domain of time is again a linearly ordered set T. In this setion we donot assume that there is an addition operation de�ned on T. Typial examplesfor the set T are the real numbers and the integers, but also �nite sets might beinteresting.A time-dependent network is a direted graph G = (V;E), where everyedge e has an assoiated link-traversal funtion fe:T! T.Let f :T ! T be a funtion. If f satis�es f(t) � t for all t, we say thatf has non-negative delay. If for t � t0 we have f(t) � f(t0), we say that f ismonotoni.In general it is important to be preise about the waiting poliy for a travelerin suh a network. This is not an issue here, as we are only interested in short-est/fastest path in the network and enode all the neessity and possibility towait into the funtions. More preisely, if we onsider only monotoni funtionswaiting never pays o�, the imposed restritions on waiting is irrelevant. Themore general setting and the inuene of di�erent waiting poliies is disussedin [OR90, OR91℄.Here we use the following simple de�nition of a timed path in G: A sequenev1; v2; : : : ; vk 2 V of nodes in G and a sequene t1; t2; : : : ; tk 2 T of times form atimed path if e = (vi; vi+1) 2 E is an edge of G and ti+1 = fe(ti). The vertex v1is alled the departure loation or soure of the path, t1 the departure time, vkthe destination and tk the arrival time.The earliest arrival question for a soure node s, a destination d, and adeparture time t asks for a timed path p from s to d of whih the arrival timeis minimal. Similarly the latest departure question is well de�ned if we �x anupper bound for the arrival time, i.e. we ask for a path that has the latestdeparture time at s under the onstraint that the arrival time is not after thespei�ed arrival time.Assume that we an (eÆiently) evaluate the link-traversal funtions of agraph and (eÆiently) perform omparisons of elements in T. Then it is rea-sonable to onsider a variant of Dijkstra's algorithm to solve the earliest arrivalquestion. It is natural to analyze its running time as a number of funtionevaluations, omparisons and operations of a (omparison based) priority queueover T.Lemma 3.1 (All earliest arrival paths are simple) Let G be a �nite time-dependent network with monotoni and non-negative delay edge traversal fun-tions. Let p be a timed path in G departing at time t at node s and arrivingat time t0 at node d. Then there exists a simple timed path in G departing attime t at node s and arriving at time t00 at node d suh that t00 � t0.Corollary 3.2 (Earliest arrival path are well de�ned) Let G be a �nitetime-dependent network with monotoni and non-negative delay edge traversalfuntions. Let s and d be two nodes of G, and a departing time t 2 T. Thenthere exists t0 2 T ahieving the minimum arrival time at d over all timed pathsfrom s to d.Label setting algorithmLet Q be a priority queue over pairs from V � T, that allows to extrat a pairwith a minimal element from T, i.e. a priority queue of points in time annotated3

with nodes.1: Stati Input: G = (V;E), and for every e 2 E a monotoni, non-negativedelay link-traversal funtion fe:T! T.2: Dynami Input: soure node s 2 V , destination node d 2 V , departuretime t 2 T3: a[v℄ :=1 for all v 2 V4: a[s℄ := t5: S := ;6: Q := f(s; t)g7: while Q 6= ; do8: (u; t00):= extrat min(Q)9: S := S [fug10: break while-loop if u = d11: for eah edge (u; v) 2 E suh that v 62 S do12: t0 := fuv(a[u℄)13: if a[v℄ > t0 then14: if a[v℄ =1 then15: insert(Q; v; t0)16: else17: update(Q; v; t0)18: end if19: a[v℄ := t020: pred[v℄ := u21: end if22: end for23: end while24: v := d25: p := (v; a[v℄)26: while v 6= s do27: v := pred[v℄28: p := (v; a[v℄):p29: end while30: Output: pCorretness of the algorithmThe above algorithm is orret, really for the same reason as Dijkstra's algorithmis orret for non-negatively weighted graphs. But as we did not �nd a proof oforretness that would immediately apply in our situation, we give a ompleteproof.De�ne Æ(s; t; u) to be the earliest possible arrival time at node u given thatwe departed at time t at node s, i.e. the minimum over all paths from s to udeparting at time t.The orretness of the algorithm follows from the fat that the invarianta[u℄ = Æ(s; t; u) for all nodes u 2 S holds before (and after) every exeution ofthe body of the while loop.The way we update the estimates, we maintain the invariant that� pred[�℄ de�nes a tree R in G that is direted towards s� Let p be a path that traverses only edges of R in the reverse diretion.4

Then a[�℄ gives the timestamps that form together with p a timed pathdeparting at s at time t. For every node u 2 R suh a path exists.� a[u℄ � Æ(s; t; u)� For all u 2 S we have a[u℄ = Æ(s; t; u)Now assume that we have e = a[u℄ > Æ(s; t; u) = Æ for some node u 2 S.Without loss of generality we an assume that u is the �rst (in the exeutionof the algorithm) suh node, i.e. that for all other nodes v in S we have a[v℄ =Æ(s; t; v).In this situation let p be some some earliest arrival path from s at time t tou. Let p(v) denote the time path p visits node v. Let y be the �rst vertex ofp that is outside of S and x its predeessor on p (inside S). By assumption wehave a[x℄ = Æ(s; t; x) and Æ(s; t; x) � p(x) follows as p indues a subpath from sto x that departs at time t and arrives at time p(x). When x was inserted intoS the algorithm updated a[y℄, and as no update inreases an estimate, we havea[y℄ � fxy(Æ(s; t; x)). As fxy is monotoni, we an onlude that fxy(Æ(s; t; x)) �fxy(p(x)) = p(y). As all link-traversal funtions on the remaining path from y tou have non-negative delay, we have p(y) � p(u) = Æ. Putting these inequalitiestogether, we get a[y℄ < a[u℄, whih is a ontradition in the ase u = y. In allother ases, the algorithm would have hosen node y instead of node u as thenext node to add to S, whih ontradits the de�nition of u.This argument also shows that we do not need to hek v 2 S at Line 13,beause we will never �nd a node inside S where we an still improve a[u℄. Thisis the only use of the set S. Depending on how expensive it is to evaluate alink-traversal funtion, it might or might not pay o� to not maintain the set Sin the algorithm.3.1 Modeling a time-table lookup with a time-dependentnetworkLet T be a time-table. We desribe how to onstrut a time-dependent networkG = (V;E; f). Then we hose the set of nodes V to be the set of stationsappearing in T . Let u and v be two stations. De�neCuv = f(t; t0) j ((a; t); (b; t0) 2 Tgthat is for every diret onnetion from u to v there is a pair of times in Cuv .If Cuv is empty, there is no ar from u to v. Otherwise we de�nefuv(t) = minft00 j (t0; t00) 2 Cuv and t � t0g:This funtion is monotoni and of non-negative delay.Let I be an itinerary. Then we �nd a timed path p in G that is never laterat a ertain station than I is. The path p is therefore a timed path that doesnot arrive later at the destination than I does.Let p be a timed path in G. By the de�nition of the link traversal fun-tions we know, that every link traversal of p orresponds to an entry of T .Conatenating those entries yields a valid itinerary.All in all we have that we an answer an itinerary query from s at time tto d on T by solving the earliest arrival problem on G with soure s at time tand destination d. 5

4 Implementation issuesThere are several speed-up tehniques known for Dijkstra's algorithm. Twolasses of suh tehniques are on-the-y potential and pruning, as for exampleused in [SWW99℄.The most well known potential tehnique is to modify the value that isused in the priority queue by a lower bound on the remaining path-length tothe destination. If the network is embedded into the plane, this an be anappropriate multipliative of the Eulidean distane to the destination. Oneway to onvine oneself about the orretness of this method is to think ofmodifying the edge weights of the graph aording to some potential, i.e. w0uv =wuv+p(v)�p(u). Adding any potential to a graph does not hange the relativeweight of paths in the graph { if path p is longer than path q in G, then pathp is also longer than path q on G0, the graph with modi�ed weights. Adding apotential that does not reate negative weights does not inuene the orretnessof Dijkstra's algorithm. If we leverly hoose the potential, we an improve therunning time of the algorithm signi�antly. If we by hane manage to use theshortest path distanes to d as the potential p, we get that preisely all edgesthat are on some shortest path towards d have weight 0. If the shortest pathhappens to be unique, the algorithm only looks at the nodes on the shortestpath and the outgoing edges from these nodes. This situation is of ourse notwhat we expet to �nd, if we already have the shortest path potential we do noteven need Dijkstra's algorithm to determine shortest paths. But if we have agood, onservative approximation of suh a potential we an hope to signi�antlyredue the part of the graph that is inspeted by the algorithm. Of ourse thisis only useful if this potential an easily be omputed. This is for example truefor the Eulidean distane to the destination.Another, more diret way to redue the size of the inspeted part of thegraph is to remove edges and nodes that are not relevant, i.e. not on a shortestpath for the urrent s and d. In the extreme, again, we might have preomputeda shortest path for all possible hoies of s and d, and stored the resulting path.Now we an on the y disregard all the edges that are not on the urrent path.The algorithm will then only explore the path itself. Again, in this situationthere is no need to run an algorithm anymore. The interesting versions of thismethod are those where we do not need a lot of memory to store the result ofthe preomputation, and where evaluating whether a link an be disregardedis easy. A good example is the pruning tehnique used in [SWW99℄. There wehave for every edge some geometri information for whih kind of s and d theedge is relevant.In [SWW99℄ the point is made that a ombination of these speed-up teh-niques redues the running time of Dijkstra's algorithm in a spae-time networkenough to ompute optimal itineraries on a omplete German railway time-tableon-line. We observe that these speed-up tehniques are just as powerful on thetime-dependent network, and that using the time-dependent approah an sig-ni�antly redue the size of the inspeted part of the network and by this thesize of the priority queue.In the following we will analyze the running time of di�erent time-table queryalgorithms. This is as a omparison the spae-time graph based algorithm andthen di�erent implementations of the link-traversal funtions. The parametersdetermining the running time are 6

� The size of the inspeted part of the graph in nodes, this is where thealgorithm annotates with estimates and tree-edges, that is nodes v inLine 19 of the algorithm.� The size of the inspeted part of the graph in edges. This are memoryaesses/funtion evaluations.� Size of the priority queue� Number of extrat min operations. This is the number of times we explorea node u, i.e. we have that the node is u in Line 9 of the algorithm.Here we do not onsider the time the algorithm spends maintaining thepriority queue. There are several results in the literature disussing how toobtain fast priority queues in this ontext, for example using the fat that edgeweights are integers. This kind of priority queue an be used for the time-dependent networks as well, if we restrit time to be integers. We note thateven a more substantial hange to the shortest path algorithm as proposedin [Gol01℄ an easily inorporated into the time-dependent algorithm.We onsider the time-table query from s at time t to d. Let t0 be the arrivaltime at d of a fastest itinerary.4.1 The spae-time networkThe �rst observation we make is, that we never really update the a[v℄ for anynode v. This is beause the node has a time build in, we reah it equally faston all possible paths. This an be exploited to speed up the priority queue.Consider a station a. The algorithm explores all events at a, starting from theearliest arrival time at a up to t0. How many events these atually are heavilydepends on the station. But we an see that for a long itinerary, i.e. for big t0,there is the possibility of futile work: Assume s itself is a busy station that hashourly non-stop onnetions to 10 ities. Assume t0 is 4 hours after t. Thenwe usefully explore the events for the 10 onnetions in the �rst hour after t.But afterwards we ontinue exploring nodes at s where the updated node onthe other side of the ar is already known to be reahable (but presumably notyet in Q).The other algorithms avoid these futile exploration steps at some other ost.This trade-o� is what we are investigating in the following.4.2 General pieewise linear funtionsIf we take a modular approah, we will implement the link-traversal funtionsompletely independent of eah other. That is, we will have a proedure thatprodues the value of fuv(t). This an easily be ahieved with log2(k) ompar-isons if k is the number of onnetions from u to v, i.e. k = jCuv j.Now we do not unneessarily explore nodes, but we might onsider ars thatin the spae-time network were not onsidered, beause the departure eventis after t0. Additionally we waste time by doing independent searhes for thedi�erent outgoing ars.Note that this approah an easily handle large time-horizons when theshedule is basially repetitive, but has many exeptions arbitrarily spread overthe timetable. The important feature of this situation is that the link-traversal7

funtions have a small (in terms of spae) representation, that still allows forfast evaluation.4.3 Combining searhesTo avoid the repetition of searhes in the for-loop of Line 11{22, one an ombineall the events into one data-struture. More preisely we have at every nodea balaned searh tree that has as leafs the times of all outgoing events. In apreproessing step we annotate these leafs with a list of outgoing events, forevery ar the next in time. Then every exploration of one node osts one binarysearh plus the update operation on the other side of the ars.This approah still performs one searh per node and uses additional spae,at one node we have a multipliative blow-up of its out-degree.4.4 Avoiding the spae-overheadLet d be the out-degree of the node in the time-dependent network orrespondingto a. To avoid the spae-overhead, we an put all the outgoing events of astation a into one array A sorted by their departure time. We an do this in thefollowing way: we plae d suh events (so alled primary entries), then we leaved empty spaes, then the next d events and so on. Let t00 be the time of thelast event before some empty spaes. Then we put for every outgoing diretionthe next event into the so far empty entries of A (seondary entries). We putall primary entries into one balaned searh tree.When we explore node a, we �nd the next primary entry of A and san thenext 2d entries of A. Then we are sure to have all the next outgoing events inall outgoing diretions.This approah uses asymptotially the same spae as a spae-time graph. Itstill performs one searh per exploration of a node.4.5 Avoiding the searhIf we wath the algorithm we see that when we perform an update operation, wehave our hands on an event-pair e of the time-table. In partiular we have onepartiular arrival time t00 at one partiular node a. In addition to e we an storea pointer into the array of outgoing events at a, namely to the �rst primaryelement after time t00. If we make this pointer part of the data struture storedin the priority queue, there is no need for a searh to explore a node.4.6 Avoiding to onsider onnetions that depart after t0There is still one aspet in whih the spae-time graph might be superior to thetime-dependent network approah: It will never onsider a link whose departuretime is after the arrival time t0 at the destination station.We an also ahieve this in the time-dependent network. Assume we did notdo the spae-saving, that is we have a list of outgoing events for every relevanttime at a node. We slightly hange this list suh that it is no longer orderedby the time of the departure event, but by the time of the arrival event onthe other side of the ar. Instead of inserting all the arrival events of the listinto the priority queue at one, we only insert the �rst event and a pointer8

to the next event of the list. Only when we extrat this �rst event, we insertthe seond event of the list and so on. With this we inspet less entries of thetime-table than the spae-time graph algorithm does, we asymptotially neverperform more work than that algorithm.4.7 Cahe behaviorEven so the last presented algorithm is the fastest algorithm if we onsiderasymptoti worst-ase running time on the unit ost RAM, it might not be thefastest in pratie. One thing is that the possibility to save onstant fators inthe running time is hard to foresee and an important fator in atual runningtime. More importantly we should also onsider that the running time on areal mahine an be heavily inuened by ahe-faults. In this respet the lastalgorithm might not really be a good idea: assuming that the priority queue issmall enough to �t into ahe, it voluntarily jumps around in memory.The atual ahe behavior seems to be too hard to predit to really makea statement about what should be the fastest algorithm without performingexperiments. We leave this with the statement that there should be some pos-sibilities to adapt the above algorithms to a spei� ahe size.Of ourse there is also the priority queue to be onsidered in tuning thealgorithm. This might not be an issue if the time-table happens to be suh,that the priority queue is always very small and the overall running time isdominated by the ahe misses stemming from aessing the network.4.8 Conluding remarks on algorithmsInstead of using an array with primary and seondary entries we an onsider thelist of next events as a persistent linked list that (in the preproessing) hangesas time progresses. See [DSST86℄ for details on this idea. This onstrutiongives the same asymptoti behavior. It has the additional advantage that it aneasily arried over to the exploration saving idea of Setion 4.6.We an see all the algorithms presented here as some lever way to on-demand reate the important part of some spae-time graph. Again this is onlya di�erent point of view.Note that we an solve as well latest departure questions for a given arrivaltime. For this we just invert the diretion of time and departing and arrivingin the timetable.All the algorithms presented here an additionally perform the online net-work pruning tehniques suggested in [SWW99℄. The theoretial analysis ar-ried out here suggests, that the algorithms presented here should be faster,on realisti networks presumably signi�antly faster, than the expliit spae-time graph algorithm used in [SWW99℄. The statement that these algorithmsare fast enough to produe optimal answers for time-tables of interesting size,should therefore arry over to even bigger (or more detailed) networks, if we usethe algorithms presented here. Of ourse only experiments with real world dataan give a onlusive answer whether or not these statements really hold.
9

5 Extensions5.1 More realisti transferThe algorithmi problem disussed so far made the unrealisti assumption, thattransfer between trains is basially disregarded. It seems, that we do not get amore realisti modeling of transfer for free. For a start we try to inlude sometime for the walking inside the station in the itinerary, extending the network byas little as we an. We onsider every platform to be a station of its own right.Then we onnet the platforms by walking links, either following the geometryof the station or with a star. The link traversal funtions for the walking linkshave onstant delay, i.e. they are of the form f(t) = t+ for some onstant .(This assumes that we have addition for our set T.)5.2 Limiting the number of transfers in an itineraryThe above modeling of train hanges an also be used to ount the number ofhanges. Without extending the network further we do not onsider a hange oftrains, if it does not involve moving from one platform to another. If we wantto be more preise, we an introdue virtual platforms, one for every train-line.Then we do not apture hanging of trains within a train line, whih is norestrition, as it an always be avoided. Note that we basially return to theexpliit network if every train has to be onsidered as a train line of its own.To �nd all Pareto-optimal solutions, i.e. for every bound on the number oftransfers the earliest arrival itinerary, we do the following:First we �nd the fastest path without an upper bound on the number ofhanges. This will have some number k of transfers, and is the solution if thebound on the number of transfers is � k. It is left to �nd the earliest arrivalitinerary under the restrition, that we have at most k�1; k�2; : : : ; 0 transfers.We take k opies (levels) of the original network with the twist that all walkinglinks (i.e. all links that stand for a transfer) onnet level i with level i+1. Onthis network we searh for a path from s at level 1 to some opy of node d. Ifwe �nd this, we found the fastest path with at most k � 1 transfers, the level lof the endpoint of the path tells us how many transfers we atually have. Notethat it might be that the fastest onnetion uses 5 transfers, but insisting on 4transfers is slower than doing only 2 transfers. Then we delete all levels aboveand inluding l and ontinue our searh to some opy of d at the remaininglevels. We ontinue until we found a solution without transfer or we foundthat we an not reah the destination with less then l transfers. In pratie wemight want to stop this proess as soon as insisting on few transfers results inunreasonably long travel times.5.3 Connetion to regular expressionsThe above proedure an be seen as searhing for a fastest path under a reg-ular expression onstrained. If we think of ars in the network that stand forusing a train being labeled with t and transfer links being labeled with w, theonstraining regular expression is (w�t�w�)k. It is easily possible to omputeearliest arrival questions under general regular expression onstraints (we onlyneed to onstrut a nondeterministi �nite automaton and build the ross prod-ut with the network). This might be a powerful tool express di�erent kinds of10

restritions on the itinerary. See [BJM00℄ for a disussion on the omplexity ofimposing formal language onstraints onto (shortest) paths questions.5.4 Conluding on extensionsThe extensions mentioned here are also appliable if the time-table is modeledusing a spae-time graph. The point we want to make here is that using atime-dependent network as a model atually allows for an easy desription.Referenes[BJM00℄ Chris Barrett, Riko Jaob, and Madhav Marathe. Formal languageonstrained path problems. SIAM J. Comput., 30(3):809{837, 2000.[DSST86℄ James R. Drisoll, Neil Sarnak, Daniel D. Sleator, and Robert E.Tarjan. Making data strutures persistent. In Proeedings of theEighteenth Annual ACM Symposium on Theory of Computing, pages109{121, 1986.[Gol01℄ Andrew V. Goldberg. A simple shortest path algorithm with linearaverage time. In Algorithms - ESA 2001, volume LNCS 2161, pages230{241, 2001.[MHW01℄ Matthias M�uller-Hannemann and Karsten Weihe. Pareto shortestpaths is often feasible in pratie. In Algorithm Engineering, WAE2001, volume LNCS 2141, pages 185{197, 2001.[OR90℄ Ariel Orda and Raphael Rom. Shortest-path and minimum delayalgorithms in networks with time-dependent edge-length. Journal ofthe ACM, 37(3):607{625, 1990.[OR91℄ Ariel Orda and Raphael Rom. Minimum weight paths in time-dependent networks. Networks: An International Journal, 21, 1991.[PS97℄ Stefano Pallottino and Maria Grazia Sutell�a. Shortest path algo-rithms in transportation models: lassial and innovative aspets.Tehnial Report TR-97-06, University of Pisa, 14, 1997.[PS98℄ Stefano Pallottino and Maria Grazia Sutell�a. Shortest path algo-rithms in transportation models: lassial and innovative aspets.In P. Marotte and S. Nguyen, editors, Equilibrium and AdvanedTransportation Modelling, pages 245{281. Kluwer Aademi Publish-ers, 1998.[SWW99℄ Frank Shulz, Dorothea Wagner, and Karsten Weihe. Dijkstra's al-gorithm on-line: An empirial ase study from publi railroad trans-port. In Algorithm Engineering, volume LNCS 1668, pages 110{123,1999.
11

