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Computing the Quartet Distan
e BetweenEvolutionary Trees in Time O(n log2 n)Gerth St�lting Brodal� Rolf Fagerberg�Christian N. S. Pedersen�Abstra
tEvolutionary trees des
ribing the relationship for a set of spe
ies are
entral in evolutionary biology. Comparing evolutionary trees to quantifydi�eren
es arising when estimating trees using di�erent methods or datais a fundamental problem. In this paper we present an algorithm for
omputing the quartet distan
e between two unrooted evolutionary treesof n spe
ies in time O(n log2 n). The previous best algorithm runs in timeO(n2). The quartet distan
e between two unrooted evolutionary trees isthe number of quartet topology di�eren
es between the two trees, wherea quartet topology is the topologi
al subtree indu
ed by four spe
ies.1 Introdu
tionThe evolutionary relationship for a set of spe
ies is 
ommonly des
ribed byan evolutionary tree. This is a rooted tree where the leaves 
orrespond to thespe
ies, and the internal nodes 
orrespond to spe
ialization events, i.e. the pointsin time where the evolution has diverged in di�erent dire
tions. The dire
tionof the evolution is des
ribed by the lo
ation of the root, whi
h 
orresponds tothe most re
ent 
ommon an
estor for all the spe
ies, and the rate of evolutionis des
ribed by assigning lengths to the edges. The true evolutionary tree fora set of spe
ies is rarely known, hen
e estimating it from obtainable informa-tion about the spe
ies, e.g. genomi
 data, is of great interest. The problemof estimating aspe
ts of the true evolutionary tree 
omputationally requires amodel des
ribing how to use the available information about the spe
ies to solvethe problem. Given a model, the problem of estimating 
ertain aspe
ts of thetrue evolutionary tree is often referred to as 
onstru
ting the evolutionary treein that model. Many models and methods for 
onstru
ting evolutionary treeshave been presented, see [10, Chapter 17℄ for an overview.�BRICS (Basi
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An important aspe
t of the true evolutionary tree is the undire
ted treetopology indu
ed when ignoring the lo
ation of root and the length of the edges.Many models and methods are 
on
erned with estimating this important aspe
tof the true evolutionary tree, usually under the further assumption that allinternal nodes have degree three. We say that su
h models and methods are
on
erned with 
onstru
ting the unrooted evolutionary tree of degree three fora set of spe
ies. For the remainder of this paper an evolutionary tree denotesan unrooted evolutionary tree of degree three.Di�erent models and methods often yield di�erent estimates of the evolu-tionary tree for the same set of spe
ies. The same model and method 
an alsogive rise to di�erent evolutionary trees for the same set of spe
ies when appliedto di�erent information about the spe
ies, e.g. di�erent genes. To study su
hdi�eren
es in a systemati
 manner, one must be able to quantify di�eren
esbetween evolutionary trees using well-de�ned and eÆ
ient methods.One approa
h for 
omparing two evolutionary trees is to determine a 
on-sensus tree (or forest) that re
e
ts 
ommon traits of the two trees, e.g. themaximum agreement subtree. Mu
h work has been 
on
erned with developingeÆ
ient methods for 
omputing the maximum agreement subtree of two or moreevolutionary trees, see e.g. [2℄. Another approa
h for 
omparing two evolution-ary trees is to de�ne a distan
e measure between two trees and 
ompare the twotrees by 
omputing the distan
e. Several distan
e measures have been proposed,e.g. the symmetri
 di�eren
e metri
 [12℄, the nearest-neighbor inter
hange met-ri
 [16℄, the subtree transfer distan
e [1℄, the Robinson and Foulds metri
 [13℄,and the quartet metri
 [8℄. Ea
h distan
e measure has di�erent properties andre
e
ts di�erent aspe
ts of biology, e.g. the subtree transfer distan
e is relatedto the number of re
ombinations between the two sets of spe
ies. The quartetmetri
 has several attra
tive properties. Bryant et al. in [5℄ dis
uss the proper-ties of the quartet metri
 and 
on
lude that it does not su�er from drawba
ksof the other distan
e measures. For example, measures based on transformationoperations, e.g. the subtree transfer distan
e, do not distinguish between trans-formations that a�e
t a large number of leaves and transformations that a�e
ta small number of leaves.In this paper we study the quartet metri
. For an evolutionary tree, the quar-tet topology of four spe
ies is the topologi
al subtree indu
ed by these spe
ies.In general, the possible quartet topologies for four spe
ies are the four shownin Fig. 1. Of these, the right-most 
annot o

ur if we assume that all internalnodes have degree three. It is well known that the 
omplete set of quartets isunique for a given tree and that the tree 
an be uniquely re
overed from its setof quartets in polynomial time [6℄. However, if the tree has degree three, then,as observed in [11℄, it 
an be re
overed from its set of quartets in time O(n logn)using methods for 
onstru
ting an evolutionary tree in the experiment model intime O(n logn) as des
ribed in [4, 9, 11℄.Given two evolutionary trees on the same set of n spe
ies, the quartet dis-tan
e between them is the number of quartet topology di�eren
es. Sin
e thereare �n4� di�erent quartets, the quartet distan
e 
an be 
al
ulated in time O(n4)by 
omparing the possible quartets one by one. Steel and Penny in [14℄ present2



an algorithm for 
omputing the quartet distan
e in time O(n3). Bryant et al.in [5℄ present an algorithm that 
omputes the quartet distan
e in time O(n2).In this paper we present an algorithm that 
omputes the quartet distan
e intime O(n log2 n) making it possible to 
ompare mu
h larger evolutionary trees.Our solution is based on two te
hniques: the smaller-half tri
k, also used bymethods for �nding tandem repeats in strings, e.g. [15℄, and a data stru
turerelated to the data stru
ture for dynami
 expression trees 
f. [7℄.The rest of the paper is organized as follows. In Se
t. 2 we introdu
e quar-tets and present our algorithm for 
omputing the quartet distan
e between twounrooted evolutionary trees. In Se
t. 3 we des
ribe a hierar
hi
al de
ompositionof unrooted trees whi
h is an essential part of the data stru
ture used by ouralgorithm. In Se
t. 4 we present the details of our data stru
ture.2 The AlgorithmAs mentioned, we in this paper by evolutionary tree mean an unrooted treewhere all nodes are either leaves (i.e. have degree one) or have degree three,and where the leaves are uniquely labelled by the elements of a set S of spe
ies.Let n denote the size of S.For an evolutionary tree T , the quartet topology of four spe
ies a; b; 
; d isthe topologi
al subtree of T indu
ed by these spe
ies. In general, the possiblequartet topologies for spe
ies a; b; 
; d are the four shown in Fig. 1. Of these,the right-most does not o

ur in our setting, due to the assumption about allinternal nodes having degree tree. Hen
e, the quartet topology is a pairing ofthe four spe
ies into two pairs, de�ned by letting a and b be a pair if among thethree paths in T from a to b, 
, and d, the path to b is the �rst to separate fromthe others.ab 
d a
 bd ad b
 ab 
dFigure 1: The four possible quartet topologies of spe
ies a, b, 
, and d.Given two evolutionary trees T1 and T2 on the same set S of spe
ies, thequartet distan
e between the two trees is the number of four-sets fa; b; 
; dg � S,for whi
h the quartet topologies in T1 and T2 di�er. As there are �n4� di�erentfour-sets in S, the quartet distan
e 
an also be 
al
ulated as �n4� minus thenumber of four-sets for whi
h the quartet topologies in T1 and T2 are identi
al.In this paper, we give an algorithm for �nding this number in O(n log2 n) time.To fa
ilitate the 
ounting of identi
al quartet topologies in the two trees,we view the quartet topology of a four-set fa; b; 
; dg as two oriented quartettopologies given by the two possible orientations of the \middle edge" of thetopology. Figure 2 shows the two oriented quartet topologies arising from oneunoriented quartet topology. 3



ab 
d ! ab 
d- + ab 
d�Figure 2: The two orientations of a quartet topology.Clearly, the number of identi
al oriented quartet topologies between thetrees T1 and T2 is twi
e the number of identi
al unoriented quartet topologies.The goal of our algorithm is to 
ount identi
al oriented quartet topologies. Forbrevity, we in the rest of this paper let the word quartet denote an orientedquartet topology of a four-set.We asso
iate quartets to internal nodes in T1 as follows: Consider the generi
quartet in Fig. 3, where the orientation is from the pair fa; bg to the pair f
; dg.There is a unique node v in T1 where the paths from a and b to 
 (and d) meet.We asso
iate the quartet of Fig. 3 with the node v. This partitions the 2�n4�quartets into n� 2 disjoint sets (as there are n� 2 internal nodes in a tree of nleaves, when all internal nodes have degree three).ab 
d-Figure 3: A generi
 quartet.For an internal node v in T1, let the three subtrees whi
h arise if v and itsthree in
ident edges are removed be denoted by A, B, and C. The number ofquartets asso
iated with v is given by the expression�jAj2 � � jBj � jCj+ �jBj2 � � jCj � jAj+�jCj2 � � jAj � jBj ;where jT j denotes the number of leaves in subtree.The strategy of the algorithm is for ea
h internal node v in T1 to 
ount howmany of the quartets asso
iated with v do also exist in T2. The sum over allnodes in T1 of these 
ounts then gives the required number of identi
al quartetsin T1 and T2.The algorithm will make essential use of the data stru
ture des
ribed inSe
t. 4. The data stru
ture maintains a 
oloring of the elements of S using thethree 
olorsA, B, and C. Given a pointer to an element in the data stru
ture, its
olor 
an be 
hanged in O(logn) time. The 
entral feature of the data stru
tureis the following: Let v be an internal node in T1 with three in
ident subtrees A,B, C, as des
ribed above. Assume that the elements of S whi
h are labels ofleaves in A all have 
olor A, and that the same statement also holds for B and
olor B, and for C and 
olor C. Then the data stru
ture also supports that thenumber of quartets asso
iated with v whi
h also are in T2 
an be returned inO(1) time. When the elements of S are 
olored as just des
ribed, we say thatthey are 
olored a

ording to v. 4



The algorithm starts by rooting T1 at an arbitrary leaf. It then 
al
ulatesthe size of ea
h node in T1 during a postorder traversal starting at the root(where the size of a node denotes the number of leaves below it), storing thisinformation in the nodes. It also 
olors all elements of S by the 
olor C.The algorithm then 
al
ulates the 
ount for the internal nodes in T1 in are
ursive fashion, starting at the single 
hild of the root of T1. To a
hieve the
laimed 
omplexity, the algorithm at a node v will re
urse �rst on its smallest
hild, then on its largest 
hild, and �nally add the 
ount for v to the sum so far.In Fig. 4, the pseudo-
ode for the re
ursive pro
edure, termed Count(v), isshown. The two routines Small(v) and Large(v) return the smallest, respe
-tively the largest, of the two 
hildren of an internal node v in T1. The routineNodeCount(v) is a 
all to the data stru
ture of Se
t. 4, returning the 
ount forthe node v. The routine ColorLeaves(v, X ) 
olors with the 
olor X all elementsin the data stru
ture whi
h are labels of leaves below v in T1. This is done by atraversal of the subtree in T1 rooted at v. By maintaining bi-dire
tional pointersbetween elements of S in the data stru
ture, and the leaves in T1 and T2 whi
hthey label, this takes time O(jvj � logn), where jvj denotes the size of v.Pro
edure Count(v)if v is a leaf then
olor v by the 
olor Areturn 0x = Count(Small(v))ColorLeaves(Small(v), C)y = Count(Large(v))ColorLeaves(Small(v), B)z = NodeCount(v)ColorLeaves(Small(v), A)return x+ y + zFigure 4: The algorithm.Theorem 1 Let T1 and T2 be two unrooted evolutionary trees on the same set Sof spe
ies, and let all internal nodes in the trees have degree three. Then thequartet distan
e between T1 and T2 
an be found in O(n log2 n) time.Proof. We here assume the existen
e of the data stru
ture dis
ussed above. Thisexisten
e is proven in Se
t. 4. We 
laim that the algorithm above maintains thefollowing invariant:
5



1. At the beginning of the exe
ution of an instan
e of Count(v), all elementsin S are 
olored by the 
olor C.2. At the end of the exe
ution of an instan
e of Count(v), all elements in Swhi
h are labels of leaves below v in T1 are 
olored by the 
olor A.The 
laimed invariants follow by indu
tion on the number of 
alls to Count(v).The invariants imply that when a 
all to NodeCount(v) takes pla
e, the 
oloringof the elements in S are as required for the data stru
ture { i.e., the elementslabelling the leaves of the three subtrees of T1 indu
ed by a removal of v are
olored with a di�erent 
olor for ea
h of the three subtrees. Corre
tness of thealgorithm follows.For 
omplexity, note that the work in
urred by an instan
e of Count(v), not
ounting re
ursive 
alls made during this instan
e, is O(1 + x logn), where xdenotes the size of Small(v). Let this work be a

ounted for by 
harging ea
hleaf below Small(v) in T1 (or v itself, if it is a leaf) an amount O(logn) of work.For a given leaf l, this 
harging 
an only happen at nodes v on the path from lto the root where the path goes from Small(v) to v. As the size of v is at leasttwi
e as large as the size of Small(v), this 
an only happen logn times. Hen
e,ea
h leaf is at most 
harged O(log2 n) work in total, and the result follows. 23 Hierar
hi
al De
ompositionAn essential part of the data stru
ture in Se
t. 4, is a hierar
hi
al de
ompositionof the evolutionary tree T2. Given an unrooted tree T where all nodes havedegree at most three, we in the following des
ribe how to obtain a hierar
hi
alde
omposition of T with logarithmi
 height. Our de
omposition is very similarto the de
ompositions used for solving the parallel and dynami
 expression treeevaluation problems [3, 7℄, but in our setting the underlying tree is 
onsideredto be unrooted.We base our hierar
hi
al de
omposition on the notion of 
omponents. Wede�ne a 
omponent C in T to be either1. A single node of T , or2. A 
onne
ted subset of the nodes of T , su
h that at most two nodes in Care 
onne
ted by an edge to nodes in T n C.The external edges of a 
omponent C of T are the edges in T 
onne
ting nodesin C and T n C. The degree of a 
omponent is the number of external edges ofthe 
omponent. By the se
ond 
ondition above, a 
omponent with two or morenodes 
an have degree at most two.A hierar
hi
al de
omposition of an unrooted tree T is a rooted binary tree,in the following denoted H(T ). There is a one-to-one mapping between thenodes of T and the leaves of H(T ). Ea
h node of H(T ) represents a 
omponent6



in T . An internal node v of H(T ) represents the 
omponent in T that is theunion of the two 
omponents represented by the two 
hildren of v. The fourpossible legal types of 
ompositions of adja
ent 
omponents are depi
ted inFig. 5. Nodes represent 
ontra
ted 
omponents and ovals possible 
omponent
ompositions. Types (i), (iii), and (iv) are the 
ases where a 
omponent withone external edge is 
omposed with the adja
ent 
omponents of degree three,two and one respe
tively. Type (ii) is the 
ase where two adja
ent 
omponentswith degree two are 
omposed into a new 
omponent with degree two. Notethat ea
h 
omposition of two 
omponents 
orresponds to a unique edge in thetree T , namely the edge 
onne
ting the two 
omponents.
(i) (ii) (iii) (iv)Figure 5: The four possible types of 
ompositions of 
omponents.Lemma 1 For every unrooted tree with n nodes and all nodes having degree atmost three, there exists a hierar
hi
al de
omposition tree with height O(logn).The de
omposition 
an be 
omputed in time O(n).Proof. Given a tree with n leaves, we will 
onstru
t a hierar
hi
al de
ompositionbottom-up in O(logn) steps. Initially we start with ea
h node in T being a
omponent by itself. Let n denote the 
urrent number of 
omponents, and n1,n2, and n3 the number of 
omponents of degree one, two and three respe
tively,i.e. n = n1+n2+n3 for n � 2. From (i), (iii), and (iv) we have that a 
omponentwith degree one 
an always be 
omposed with its adja
ent 
omponent. Forn � 5, it holds that no degree three node is adja
ent to three 
omponents withdegree one. Hen
e, a 
omposition of type (i), (iii), and (iv) 
an at most 
on
i
twith one other 
omposition involving a 
omponent with degree one. It followsthat for n � 5, at least dn1=2e non
on
i
ting 
ompositions 
an be identi�ed ifwe sele
t 
ompositions of type (i), (iii), and (iv) greedily in time O(n).For n � 2 we have n1 = n3 + 2 and n2 = n � n1 � n3 = n � 2n1 + 2. Forn � 4 ea
h 
omponent with degree two is adja
ent to at least one 
omponentwith degree two or three. Sin
e at most three 
omponents with degree two 
anbe adja
ent to a 
omponent with degree three, the number of 
omponents withdegree two that are adja
ent to a 
omponent also with degree two is at leastn2 � 3n3 = (n � 2n1 + 2) � 3(n1 � 2) = n � 5n1 + 8. Sin
e ea
h 
ompositionof type (ii) 
an at most 
on
i
t with two other 
ompositions of type (ii), itfollows that for n � 4, at least d(n� 5n1 + 8)=4e non
on
i
ting 
ompositions oftype (ii) 
an be identi�ed if we sele
t the 
ompositions greedily in time O(n).7



It follows that for n � 5, we 
an identify maxfdn1=2e; d(n� 5n1 + 8)=4eg �n=14 non
on
i
ting 
ompositions in time O(n). By repeating the above ktimes, at most n(13=14)k 
omponents remain. In parti
ular, after at mostdlog14=13(n=4)e steps, at most four 
omponents remain. By at most three addi-tional 
ompositions we have the �nal hierar
hi
al de
omposition. It follows thatthe height of the hierar
hi
al de
omposition tree is bounded by dlog14=13(n=4)e+3 = O(logn). Sin
e the number of 
omponents de
reases geometri
ally forea
h time we identify a set of non
on
i
ting 
ompositions, the total time be-
omes O(n). 24 Counting Quartets in ComponentsGiven a 
oloring of the elements in S with the 
olors A, B, and C, and given aquartet oriented as in Fig. 3 from the pair fa; bg to the pair f
; dg, we say thatthe quartet is 
ompatible with the 
oloring if a and b have di�erent 
olors, and
 and d both have the remaining 
olor.Let T be an evolutionary tree for S, and let H(T ) be the hierar
hi
al de
om-position tree for T , as de�ned in Se
t. 3. We now des
ribe how to de
orate thenodes of H(T ) with information su
h that the number of quartets of T whi
hare 
ompatible with a given 
oloring of S 
an be returned in 
onstant time.Furthermore, for a given 
oloring, the information 
an be generated in O(n)time, and if one element of S 
hanges 
olor, the information 
an be updated inO(logn) time.For ea
h node of H(T ), we store a tuple (a; b; 
) of integers and a fun
tion F .Re
all that a node in H(T ) represents a 
omponent in T . The integers a, b,and 
 of the tuple are the number of leaves 
ontained in this 
omponent whi
hare 
olored A, B, and C, respe
tively. A 
omponent has k external edges for kbetween zero and three (the 
ase of zero external edges o

urs only at the rootof H(T )). The fun
tion F has three variables for ea
h of the external edges ofthe 
omponent. For a 
omponent with at least one external edge, we numberthese edges arbitrarily from 1 to k and denote the three variables 
orrespondingto edge i by ai, bi, and 
i. If edge i were removed from T , two subtrees of Twould arise, one of them not 
ontaining the 
omponent in question. We 
allthis the subtree indu
ed by the external edge of the 
omponent. The variablesai, bi, and 
i denote the number of leaves from the subtree indu
ed by edge iwhi
h are 
olored A, B, and C, respe
tively. Finally, the fun
tion F states howmany of the quartets asso
iated (in the sense de�ned in Se
t. 2) with nodes inthe 
omponent are 
ompatible with the given 
oloring, seen as a fun
tion of thevariables ai, bi, and 
i, for 1 � i � k. It will turn out that F is a
tually apolynomial of total degree at most four.The root of H(T ) has no external nodes, so the fun
tion F stored thereis a a
tually a 
onstant. Furthermore, the root represents a 
omponent whi
h
omprises the entire tree T . Hen
e, the number of quartets of T whi
h are
ompatible with a given 
oloring of S is part of the information stored at theroot. 8



Lemma 2 The tree H(T ) 
an be de
orated with the information des
ribed abovein time O(n).Proof. The information is found in a bottom up fashion during a traversalof H(T ). We �rst des
ribe how the information for leaves in H(T ), i.e. fornodes representing single node 
omponents, is generated.For a 
omponent 
onsisting of a single leaf 
olored A, B, or C, the tuple
learly is (1; 0; 0), (0; 1; 0), and (0; 0; 1), respe
tively. The fun
tion F is identi-
ally zero, as quartets are only asso
iated with internal nodes of T , not withleaves of T .For a 
omponent 
onsisting of a single degree three node u, the tuple 
learlyis (0; 0; 0), as no leaves of T are 
ontained in the 
omponent. The fun
tion Fshould 
ount the number of quartets whi
h are 
ompatible with the 
oloring andwhi
h are asso
iated with u in T . A quartet oriented from the pair fa; bg to thepair f
; dg ful�lls this requirement exa
tly if 
 and d are 
ontained in the samesubtree indu
ed by an external edge of the 
omponent, and they have the same
olor, and a and b ea
h are in one of the remaining two indu
ed subtrees andea
h have one of the remaining two 
olors. Assuming that 
 and d are in thesubtree indu
ed by edge number one, and have 
olor A, the number of possiblequartets ful�lling this is �a12 � � (b2
3 + b3
2) :Summing over all 3 � 3 = 9 
hoi
es of the indu
ed subtree and 
olor for 
 and d,we get:F (a1; b1; 
1;a2; b2; 
2;a3; b3; 
3)= �a12 � � (b2
3 + b3
2) + �a22 � � (b1
3 + b3
1) + �a32 � � (b2
1 + b1
2)+ �b12 � � (a2
3 + a3
2) + �b22 � � (a1
3 + a3
1) + �b32 � � (a2
1 + a1
2)+ �
12 � � (b2a3 + b3a2) + �
22 � � (b1a3 + b3a1) + �
32 � � (b2a1 + b1a2)We now turn to the generation of the information stored in the internal nodesofH(T ). Consider the 
omponent 
omposition of of two 
omponents C 0 and C 00.Let (a0; b0; 
0) and F 0, and (a00; b00; 
00) and F 00 be the information stored at thenodes representing the 
omponents C 0 and C 00. The information stored at thenode representing the 
omposition C of C 0 and C 00 is (a0+a00; b0+b00; 
0+
00) andF , where F depends on the type of 
omposition. If the 
omponent 
ompositionis of type (ii) we 
onsider the 
ase where the �rst external edge of C 0 and C 00 inthe edge 
onne
ting C 0 and C 00, and the se
ond external edge of C 0 is the �rstexternal edge of C and the se
ond external edge of C 00 is the se
ond externaledge of C. The remaining 
ases of numbering the external edges are obtainedby appropriate permutations of the arguments to F 0 and F 00.F (a1; b1; 
1;a2; b2; 
2)= F 0(a2 + a00; b2 + b00; 
2 + 
00;a1; b1; 
1)+ F 00(a1 + a0; b1 + b0; 
1 + 
0;a2; b2; 
2)9



Component 
ompositions of type (iii) and (iv) are identi
al to type (ii),ex
ept that the de�nition of F is simpler. For type (iii) we have (assuming thatC 00 is the 
omponent of degree one)F (a1; b1; 
1) = F 0(a00; b00; 
00) + F 00(a1 + a0; b1 + b0; 
1 + 
0) ;and for type (iv) we haveF = F 0(a00; b00; 
00) + F 00(a0; b0; 
0) :Note that for type (iv) 
ompositions F is a 
onstant. Finally, we for type (i)
ompositions get the following 
ontribution assuming C 0 has degree one and thetwo external edges of C are the se
ond and third external edge of C 00 respe
tively.F (a1; b1; 
1;a2; b2; 
2)= F 0(a1 + a2 + a00; b1 + b2 + b00; 
1 + 
2 + 
00)+ F 00(a0; b0; 
0;a1; b1; 
1;a2; b2; 
2)By stru
tural indu
tion on the de�nition of the F fun
tion in the 
ontribu-tion of a 
omponent, it follows that F is a polynomial of total degree at mostfour. Polynomials with total degree at most four and at most nine variables
an be stored in 
onstant spa
e by storing the 
oeÆ
ients of the polynomials,and they 
an be manipulated in 
onstant time, e.g. the addition and 
omposi-tion of two polynomials. We 
on
lude that the 
ontribution of a 
omponent C,that is 
omposed of two 
omponents C 0 and C 00, 
an be 
omputed in 
onstanttime, provided that the 
ontribution of C 0 and C 00 are known, i.e. H(T ) 
an bede
orated in O(n) time. 2Lemma 3 The de
oration of H(T ) 
an be updated in O(logn) time when 
hang-ing the 
olor of an element in S.Proof. From the proof of Lemma 2 we know that the de
oration of a node inH(T ) only depends on the de
oration of the 
hildren of the node in H(T ), i.e.the only de
orations that need to be updated in H(T ) while 
hanging the 
olorof an element in S are the an
estors of the leaf in H(T ) 
orresponding to theelement. Sin
e H(T ) has height O(logn) and the de
oration of a node takes
onstant time to 
ompute knowing the de
oration of the 
hildren, it follows thatthe de
oration of H(T ) 
an be updated in time O(logn). 2Lemma 4 When S is 
olored a

ording to a 
hoi
e of v in T1, then the set ofquartets 
ompatible with the 
oloring is exa
tly the quartets asso
iated with v.Proof. Follows from the de�nitions of the 
olors and 
ompatible quartets. 2Corollary 1 If the above 
onstru
tion is done with T2 for T , and the 
oloringof S is a

ording to a 
hoi
e of v in T1, then the quartets in T2 
ompatible withthe 
oloring are exa
tly the quartets whi
h are in both T1 and T2. Furthermore,the number of su
h quartets is exa
tly the value of the 
onstant fun
tion F storedat the root of H(T2). 10
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