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1 IntrodutionThe evolutionary relationship for a set of speies is ommonly desribed by anevolutionary tree, where the leaves orrespond to the speies, the root orre-sponds to the most reent ommon anestor for the speies, and the internalnodes orrespond to the points in time where the evolution has diverged in dif-ferent diretions. The evolutionary history for a set of speies is rarely known,hene estimating the true evolutionary tree for a set of speies from obtainableinformation about the speies is of great interest. Estimating the true evolu-tionary tree omputationally requires a model desribing how to use availableinformation about speies to estimate aspets of the true evolutionary tree.Given a model, the problem of estimating the true evolutionary tree is oftenreferred to as onstruting the evolutionary tree in that model.In this paper we study the problem of onstruting evolutionary trees in theexperiment model proposed by Kannan, Lawler and Warnow in [16℄. In thismodel the information about the speies is obtained by experiments whih anyield the evolutionary tree for any triplet of speies, f. Figure 1. The problem ofonstruting an evolutionary tree for a set of n speies in the experiment modelis to onstrut a rooted tree with no unary internal nodes and n leaves labeledwith the speies suh that the topology of the onstruted tree is onsistentwith all possible experiments involving the speies. Hene, the topology of theonstruted tree should be suh that the indued tree for any three speies isequal to the tree returned by an experiment on those three speies.The relevane of the experiment model depends on the possibility of per-forming experiments. A standard way to express phylogeneti information is bya distane matrix. A distane matrix for a set of speies is a matrix where entryMij represents the evolutionary distane between speies i and j, measured bysome biologial method (see [16℄ for further details). For three speies a, b and where Mab < minfMa;Mbg it is natural to onlude that the least ommonanestor of a and b is below the least ommon anestor of a and , i.e. theoutome of an experiment on a, b and  an be deided by inspeting Mab, Maand Mb. The onsisteny of experiments performed by inspeting a distanematrix depends entirely on the distane matrix. Kannan et al. in [16℄ de�ne adistane matrix as noisy-ultrametri if there exists a rooted evolutionary treesuh that for all triplets of speies a, b and  it holds thatMab < minfMa;Mbgif and only if the least ommon anestor of a and b is below the least ommonanestor of a and  in the rooted evolutionary tree. Hene, if a noisy-ultrametridistane matrix for the set of speies an be obtained, it an be used to per-form experiments onsistently. Another and more diret method for performingexperiments is DNA-DNA hybridization as desribed by Sibley and Ahlquistin [23℄. In this experimental tehnique one measures the temperature at whihsingle stranded DNA from two di�erent speies bind together. The bindingtemperature is orrelated to the evolutionary distane, i.e. by measuring thebinding temperatures between DNA strands from three speies one an deidethe outome of the experiment by deiding whih pair of the three speies bindtogether at the highest temperature. 2



Kannan et al. introdue and study the experiment model in [16℄ under the as-sumption that experiments are �awless in the sense that they do not ontraditeah other, i.e. it is always possible to onstrut an evolutionary tree for a setof speies that is onsistent with all possible experiments involving the speies.They present algorithms for onstruting evolutionary trees with bounded aswell as unbounded degree, where the degree of a tree is the maximum numberof hildren for an internal node. For onstruting binary evolutionary trees theypresent three di�erent algorithms with running times O(n logn), O(n log2 n)and O(n2) respetively, using 4n logn, n log3=2 n and n logn experiments re-spetively, where logn denotes log2 n. For onstruting an evolutionary tree ofdegree d they present an algorithm with running time O(n2) using O(dn logn)experiments. Finally, for the general ase they present an algorithm with run-ning time O(n2) usingO(n2) experiments together with a mathing lower bound.Kao, Lingas, and Östlin in [17℄ present a randomized algorithm for onstrutingevolutionary trees of degree d with expeted running time O(nd logn log logn).They also prove a lower bound 
(n logn + nd) on the number of experiments.The best algorithm so far for onstruting evolutionary trees of degree d is dueto Lingas, Olsson, and Östlin, who in [19℄ present an algorithm with runningtime O(nd logn) using the same number of experiments.In this paper we present the �rst tight upper and lower bounds for the prob-lem of onstruting evolutionary trees of degree d in the experiment model.We present an algorithm whih onstruts an evolutionary tree for n speiesin time O(nd logd n) using at most ndd=2e(log2dd=2e�1 n + O(1)) experimentsfor d > 2, and at most n(logn + O(1)) experiments for d = 2, where d is thedegree of the onstruted tree. The algorithm is a further development of analgorithm from [19℄. Our onstrution improves the previous best upper boundby a fator �(log d). For d = 2 the previously best algorithm with running timeO(n logn) had a bound of 4n logn on the number of experiments. The improvedonstant fators on the number of experiments are important beause experi-ments are likely to be expensive in pratie, f. Kannan et al. [16℄. By an expliitadversary argument, we show an 
(nd logd n) lower bound, mathing our upperbounds and improving the previous best lower bound by a fator �(logd n).Our algorithm also supports the insertion of new speies with a runningtime of O(md logd(n +m)) using at most mdd=2e(log2dd=2e�1(n +m) + O(1))experiments for d > 2, and at most m(log(n+m)+O(1)) experiments for d = 2,where n is the number of speies in the tree to begin with, m is the numberof insertions, and d is the maximum degree of the tree during the sequene ofinsertions.Central to our algorithm is the onstrution and maintenane of separatortrees of small height. We refer the reader to Setion 2 for a detailed de�nition.The speial lass of separator trees we in Setion 2 denote 1/2-separator trees analso be denoted entroid trees, sine the separating nodes are then entroids. Aentroid of a tree is a node whose removal disonnets the tree into omponentseah ontaining at most half of the nodes in the tree. Jordan's lassial resultestablishes that any tree has either one or two entroid [15, 14℄. Goldman [12℄and Megiddo et al. [21℄ showed how to ompute a entroid of a tree in O(n) time.3



Reursively loating entroids for eah resulting omponent gives a entroid tree.By reursive appliations of the algorithms from [12, 21℄ it follows that a entroidtree an be onstruted in time O(n logn) (see Lemma 1 for further details). InSetion 2, Lemma 2, we present an algorithm for onstruting entroid trees,i.e. 1/2-separator trees, with optimal running time O(n). Shwarz, Smid andSnoeyink [22℄ desribe how to ompute 1/2-separator trees (in [22℄ denoted 1/2-deomposition trees) for the ase of binary trees in time O(n), by modifying thealgorithm of Guibas, Hershberger, Leven, Sharir and Tarjan [13℄ for omputingentroid deompositions (in [13℄, entroid refers to a entroid edge in a binarytree).In general, separator trees are a relaxation of entroid trees where the om-ponents resulting from deleting a node are not required to ontain at most halfof the nodes. Shwarz et al. [22℄ showed how to maintain 3/4-separator trees inamortized time O(logn) per insertion for the ase of binary trees. The height ofa 3/4-separator tree is bounded by log4=3 n. In Setion 2 we show how to main-tain separator trees in amortized logarithmi time under the insertion of newnodes, suh that the height of the separator tree is bounded by logn+O(1). Ourmain result for the dynami ase is summarized in Theorem 2. Inequality (1)is the essential bound required in the analysis of the number of experimentsperformed in our appliation to evolutionary trees.The basi idea of transforming a tree into a new tree with logarithmi heightis a fundamental approah used in many algorithms. For designing dynami al-gorithms on trees several other general tree transformation tehniques exist:Frederikson's topology trees [10, 11℄, Sleator and Tarjan's dynami trees [24℄,and Alstrup et al.'s top trees [1, 2℄. One appliation of suh a tree trans-formation is in Cohen and Tamassia's algorithm for dynami expression treeevaluation [7℄. For parallel algorithms on trees related tehniques exist, e.g. theentroid deomposition tehnique of Megiddo [20℄ and the aelerated entroiddeomposition tehnique of Cole and Vishkin [8℄ (in [8, 20℄, entroid refers tothe entroid paths in a tree).The rest of this paper is organized as follows. In Setion 2 we de�ne separa-tor trees and desribe how to onstrut and e�iently maintain separator treesof small height. In Setion 3 we present our algorithm for onstruting andmaintaining evolutionary trees. In Setion 4 and 5 the lower bound is provedusing an expliit adversary argument. The adversary strategy used is an exten-sion of an adversary used by Borodin, Guibas, Lynh, and Yao [5℄ for proving atrade-o� between the preproessing time of a set of elements and membershipqueries, and Brodal, Chaudhuri, and Radhakrishnan [6℄ for proving a trade-o�between the update time of a set of elements and the time for reporting theminimum of the set.2 Separator TreesIn this setion we de�ne separator trees and present e�ient algorithms for theironstruting and maintenane. 4



a b (a; b; ) a b ((a; b); ) a  b((a; ); b) b  a((b; ); a)Figure 1: The four possible outomes of an experiment for three speies a, band .De�nition 1 Let T be an unrooted tree with n nodes. A separator tree STfor T is a rooted tree on the same set of nodes, de�ned reursively as follows:The root of ST is a node u in T , alled the separator node. The removal of ufrom T disonnets T into disjoint trees T1; : : : ; Tk, where k is the number ofedges inident to u in T . The hildren of u in ST are the roots of separator treesfor T1; : : : ; Tk.Clearly, there are many possible separator trees ST for a given tree T . Anexample is shown in Figure 2.
d a e fb g ih ea b d fgh iFigure 2: A tree T (left) and a separator tree ST for T (right).For later use, we note the following fats for separator trees:Fat 1 Let ST be a separator tree for T , and let v be a node in T . If Sv denotesthe subtree of ST rooted at v, then:1. The subgraph Tv indued by the nodes in Sv is a tree, and Sv is a separatortree for Tv.2. For any edge from T with exatly one endpoint in Tv, the other endpointis an anestor of v in ST , and eah anestor of v an be the endpoint ofat most one suh edge.The main point of a separator tree ST is that it may be balaned, evenwhen the underlying tree T is not balaned for any hoie of root. The notionof balaned separator trees is ontained in the following de�nition, where thesize jT j of a tree T denotes the number of nodes in T , and where Ti refers tothe trees T1; : : : ; Tk from De�nition 1. 5



De�nition 2 A separator tree is a t-separator tree, for a threshold t 2 [1=2; 1℄,if jTij � tjT j for eah Ti and the separator tree for eah Ti is also a t-separatortree.Note that a t-separator tree is also a t0-separator tree for all t0 � t. InSetion 2.1 we �rst show how to onstrut 1/2-separator trees in linear time.Suh a tree has height at most blogn. We then in Setion 2.2 onsider dynamiseparator trees and show how to maintain separators trees with small height inlogarithmi time per insertion. A simple algorithm yields height O(logn) anda more involved algorithm improves the height bound to logn+ O(1). Finally,we in Setion 2.3 show how to extend the algorithms with a spei� ordering ofthe hildren failitating the use in Setion 3 of separator trees for the e�ientonstrution and maintenane of evolutionary trees in the experiment model.2.1 Construting Separator TreesIn Lemma 1 below we �rst give a simple algorithm for onstruting 1/2-separatortrees in time O(n logn). In Lemma 2 we then improve the running time of thealgorithm to O(n) by adopting additional data strutures.We need the following de�nitions for our algorithms. For a node v in arooted tree T , we de�ne the size of v, denoted jvj, to be the number of nodes inthe subtree rooted at v. We let the heavy-hild of a node be a hild of maximumsize, where ties are broken arbitrarily. The edges to the heavy-hildren de�ne adeomposition of T into disjoint heavy-paths. All nodes on a heavy-path, exeptthe �rst node, are heavy-hildren, and the last node is a leaf.Lemma 1 Given a tree T with n nodes, a 1/2-separator tree for T an beonstruted in time O(n logn).Proof. We �rst make T a rooted tree by letting an arbitrary node of T be theroot. For all nodes v in T we ompute jvj and identify the heavy-paths in Tin one traversal of T in time O(n). We identify the root of the 1/2-separatortree ST as follows: We start at the root r of T and follow the heavy-path from rto the lowest node u where juj � n=2 (possibly u = r), i.e. jvj < n=2 for allhildren v of u. The node u beomes the root of ST . By removing u from T , thetree T splits into disjoint trees T1; : : : ; Tk, where eah tree Ti has size ni � n=2,sine the tree Tj ontaining the parent of u has size at most n� juj � n=2. Wereursively ompute 1/2-separator trees for eah Ti. The root of eah reursivelyonstruted 1/2-separator tree beomes a hild of u in ST .Loating u takes time O(n) sine the heavy-path starting at the root of Tontains at most n nodes. This implies that the onstrution time is boundedby T (n), where T (n) is given by the reurreneT (n) � n+ kXi=1 T (ni) ;6



for some positive onstant , where Pki=1 ni = n � 1 and ni � n=2 for alli = 1; : : : ; k. By indution it follows that T (n) � n(logn+ 1). 2The algorithm of Lemma 1 reomputes the sizes of all nodes and the heavy-paths for eah reursive all. Furthermore it does not exploit that the sizesalong a heavy-path is monotonially dereasing when searhing for the rootof the separator tree. The following lemma shows how to exploit these twoobservations to redue the onstrution time to O(n).Lemma 2 Given a tree T with n nodes, a 1/2-separator tree for T an beonstruted in time O(n).Proof. The basi algorithm is idential to the algorithm desribed in the proofof Lemma 1. To improve the searh for separator nodes we keep trak of theheavy-paths as balaned searh trees. Eah heavy-path is stored in a searh treewhere the elements are the nodes on the heavy-path and the keys are the sizesof the nodes. The searh trees should support the operations: key, join, split,suessor, and addpathost. Given a pointer to an element, key returns the keyof the element. The operation join onatenates two searh trees, provided thatthe keys in one searh tree are all smaller than the keys in the other searh tree,and split splits a searh tree at a partiular element. The operation addpathostadds the same value to all keys in a searh trees. Given a key, suessor �ndsthe element with the smallest key larger than, or equal to, the given key. Asdesribed by Tarjan [25, Chapter 5℄, all these operations an be supported intime O(logn), where n is the number of elements in the searh tree. Given asorted list, the orresponding searh tree an be onstruted in linear time.Initially, we make T rooted, ompute jvj for all nodes v in T , identify heavy-paths in T , and onstrut a searh tree for eah heavy path. In total this takestime O(n). At eah node whih is the head of a heavy-path, we store a link to thesearh tree storing the heavy-path starting at that node. For eah node we storea link to a priority queue whih stores the hildren of the node, exept the heavy-hild, with priorities equal to their sizes. The priority queues should supportinsertion of an element with arbitrary priority and deletion of the element withmaximum priority in logarithmi time, and onstrution of a queue in lineartime, as e.g. binary heaps [9, 26℄ do. The total time for onstruting the initialpriority queues at the nodes is O(n).We �nd the root of the 1=2-separator tree ST using the searh tree R storingthe heavy-path starting at the root r of T . We �rst observe that jrj is themaximal key in R, whih an be found in time O(logn) by the operation key.To �nd the root of ST we perform the query suessor(jrj=2) on R, whih byonstrution loates a node u in T where juj � jrj=2 and all hildren v of u havejvj < jrj=2, i.e. u is a valid node for the root of ST . Removing u from T splits Tinto disjoint trees T1; : : : ; Tk, where eah subtree Ti has size ni � n=2. SeeFigure 3. We reursively ompute a 1/2-separator tree for eah Ti. The rootof eah onstruted 1/2-separator tree beomes a hild of u in the separatortree ST . 7



� � �T1 Rbot
Rtopr w3z w2w1u

T2 TkFigure 3: The separator node u on the heavy-path R = Rtop [ fug [ Rbot , andthe nodes w1; : : : ; w` where to update the left-to-right order of the hildren.To avoid reomputing the heavy-paths for eah of the reursive alls weupdate the already omputed heavy-paths, and orresponding searh trees, asdesribed below in time O(log2 n). This implies that the total onstrution timeis bounded by O(n + T (n)), whereT (n) � (1 + blogn2) + kXi=1 T (ni) ;for some positive onstant , where Pki=1 ni = n � 1 and ni � n=2 for alli = 1; : : : ; k. By indution it follows that T (n) � n + nPblogni=0 i2=2i � 7n,sine P1i=0 i2=2i = 6. We onlude that the total onstrution time is O(n).To update the heavy-paths, we start by splitting the searh tree R ontain-ing u into three parts, Rtop , u, and Rbot , where Rtop stores the part of theheavy-path above u, and Rbot stores the part of the heavy-path below u. SeeFigure 3. This an be done in time O(logn) by applying the split operationtwie. By adding a link from the heavy hild of u in T , i.e. the node in Rbotwith maximum key, to the searh tree Rbot , it follows that for all the Ti treesthat were rooted at the hildren of u the heavy-paths are orretly stored assearh trees.What remains is to update the searh trees storing the heavy-paths in thetree Tj that ontains the parent of u from T , i.e. the part of T above u. Firstwe update the keys (i.e. sizes) of all nodes in Rtop by subtrating the size of thesubtree of T that was rooted at u, i.e. the key of u. This takes time O(logn)by the addpathost operation, and ensures that the keys of all nodes in Tj equaltheir new sizes. What remains is to reorder the searh trees for the paths in Tjsuh that they represent the heavy-paths in Tj , i.e. to identify the new heavy-hildren of the nodes in Rtop . 8



We de�ne nodes w1; w2; : : : ; w` as follows. Let w1 be the parent of u in T ,and wi+1 the anestor of wi in Rtop determined by suessor(2 jwij), wherejwij = key(wi). See Figure 3. Sine jwi+1j � 2 jwij and jTj j � n=2, it followsthat jwij � 2i�1 and ` � logn. We now argue that w1; : : : ; w` are the onlynodes in Rtop where the hild also in Rtop is no longer a heavy-hild. Considera node z in Rtop between wi and wi+1. Sine jwij < jzj < 2 jwij, it follows thatthe hild of z in Rtop is still the heavy hild of z in Tj sine it has at least sizejwij > jzj=2, i.e. the hildren of z are orretly plaed.Now onsider wi. Let x be the heaviest hild of wi in T and let Q be thepriority queue storing the remaining hildren of wi. If Q is empty no updatesare neessary at wi. Otherwise let y be the hild of wi with maximum key in Q,i.e. the seond heaviest hild of wi in T . If i = 1, then x = u and y beomes thenew heavy hild of w1. We delete the maximum element y from Q; join Rtopwith the searh tree storing the heavy-path starting in y; and let Rtop be theresulting searh tree. We ontinue reursively updating Rtop at wi+1.Otherwise i � 2. If jxj � jyj in Tj , i.e. if jxj is larger than or equal to thekey of y in Q, then x is also the heavy-hild of wi in Tj . Otherwise, x is not theheavy-hild of wi in Tj , and we must update the heavy-paths aordingly. First,we split Rtop between x and wi, this results in two searh trees R0top , storing thenodes on the path from the root to wi, and R00top , storing the heavy-path whihstarts at x. We then delete the maximum element y from Q; insert x into Q;and let x have a pointer to R00top . The node y is the new heavy-hild of wi. Wejoin R0top with the searh tree storing the heavy-path starting at y, and let Rtopbe the resulting searh tree. We ontinue reursively updating Rtop at wi+1.It takes time O(logn) to �nd eah wi, and at eah wi we use time O(logn)to update the heavy hild information. Sine ` � logn, the total time forreestablishing the heavy-paths is O(log2 n), whih onludes the proof. 22.2 Maintaining Separator TreesIn this setion, we �rst disuss how to insert new nodes into a tree T and itsorresponding separator tree ST , and then present methods for maintainingbalane and height in a separator tree ST during suh insertions.We allow two types of node insertions in T : Type 1, whih is the addition ofa new leaf node onneted to an existing node in T by a new edge, and Type 2,whih is the addition of a new node by breaking an existing edge into two edges.Figure 4 shows a tree before and after one addition of eah type, with new nodesin bold.In the separator tree ST for T , we for a Type 1 insertion insert the new nodeas a hild of the single node in T to whih it is onneted, and for a Type 2insertion we insert the new node as a hild of the deepest node in ST amongthe two nodes in T to whih it is onneted. The two nodes are on the sameroot to leaf path follows from 2. in Fat 1 The resulting tree is easily seen to bea separator tree for the updated tree T . Figure 5 shows the insertions into STorresponding to the insertions into T shown in Figure 4.9



d a e fb g ih ! x d a e fv y g ihFigure 4: Insertions into a tree T .ea b d fgh i ! ea b d fgh ix yFigure 5: Insertions into ST orresponding to Figure 4.The methods we now present for maintaining balane and height in sepa-rator trees during insertions of new nodes are based on rebuilding of subtrees,and are inspired by methods of Andersson and Lai desribed in [3, 4℄ for main-taining small height in binary searh trees. We �rst show how the linear timeonstrution algorithm for 1=2-separator trees from Lemma 2 leads to a simplealgorithm for keeping separator trees well balaned. The height bound ahievedby this algorithm is O(logn), using O(logn) amortized time per update. Wethen use a two-layered struture to improve the height bound to logn + O(1)without sari�ing the time bound. The improved onstant fator in the heightbound is signi�ant for our use of separator trees for maintaining evolutionarytrees in the experiment model, sine the number of experiments for an insertionof a new speies will turn out to be proportional to the height of the separatortree. Furthermore, this height bound is within an additive onstant of the bestbound possible, as trees exist where any separator tree must have height at leastblogn, e.g. a tree whih is a single path.Statements about amortized omplexity for data strutures normally assumean initially empty struture�this is a speial ase of the statements below.Lemma 3 For any 0 < " < 1=4, a (1=2 + ")-separator tree an be maintainedin amortized time O((logn)=") per insertion, provided that the initial tree is a1/2-separator tree.Proof. We let eah node v in the separator tree store the size jvj of its subtree(its number of desendants in the separator tree, inluding v itself), as well asits depth (the number of edges on the path to the root in the separator tree).During insertions, we update this information along the path to the root, andhek for violations of the threshold. If any violating nodes are found, we rebuildthe subtree rooted at the highest node v among these, using Lemma 2, and then10



restore the size and depth information by a traversal of the rebuilt subtree. Letu denote the largest hild of v just before the rebuild. We have juj > (1=2+")jvj.Immediately after the last time we did a rebuild involving v, either u was notpresent, or we had jujthen � jvjthen= 2 � jvjnow= 2. As jujnow > (1=2 + ")jvjnow,at least "jvjnow insertions have taken plae below v sine then. Charging theseinsertions O(1=") eah will over the O(jvjnow) ost for rebuilding the subtreeof v and restoring the information at the nodes. Thus, if an insertion is hargedO(1=") for eah node on the path from the new node to the root, the ost ofall rebuildings are overed. Sine the height of the separator tree is at mostlog1=(1=2+") n, whih is O(logn) by " < 1=4, the stated time bound follows. 2Lemma 4 A � 12 + 13dlog ne�-separator tree an be maintained with a height boundof dlogne in amortized time O(log2 n) per insertion, provided that the initial treeis a 1/2-separator tree.Proof. In the method of Lemma 3, we maintain " = 13dlogNe , where N denotes apower of two larger than or equal to n. Initially N = 2dlogne+1, i.e. the smallestpower of two larger than or equal to 2n. Whenever n exeeds N , we double N ,whih auses " to hange, and we rebuild the entire separator tree as a new1/2-separator tree by applying the algorithm of Lemma 2. Note that n mustat least be doubled before the �rst rebuild an our and between two rebuilds,i.e. we an harge the preeding insertions the ost of a rebuldingFor a separator tree with threshold t, the size of a subtree rooted at depth iis at most n � ti. Using the standard inequality (1 + x=y)y � ex, we haven�12 + 13dlogNe�dlogne � n 12dlogne �1 + 23dlogne�dlogne � e2=3 < 2 ;i.e. a subtree rooted at depth dlogne must be a single node. It follows that theheight of a separator tree is at most dlogne.By Lemma 3 the amortized time for insertions is O((log n)=") = O(log2 n),as the amortized ost of the global rebuildings is O(1) per insertion by Lemma 2.2In the next theorem, we redue the amortized time bound to O(logn).Theorem 1 Let T be an unrooted tree initially ontaining n nodes. After O(n)time preproessing, a separator tree for T with a height bound of log(n+m) +5an be maintained during m insertions in time O(m log(n+m)).Proof. We use a two-layered rebalaning mehanism to redue the time boundfrom Lemma 4 by a fator of �(logn). The top rebalaning sheme will workon a sample U of the nodes of the underlying tree T . If the nodes in U and allthe edges with whih they are inident are removed from T , it will break into aset of onneted omponents. We denote these the omponents indued by U .We maintain the following invariants on U , where � is a multiple of fourwithin �(logn). 11



1. Eah omponent indued by U ontains less than � nodes.2. Eah omponent indued by U is onneted to at most two nodes from U .We view U as a graph by letting two nodes in U be onneted by an edge ifthey in T are onneted to the same indued omponent, or if they are alreadyneighbors in T . By Invariant 2, eah omponent is onneted to either one ortwo nodes in U (unless U is empty, in whih ase T itself is a single omponent).The omponents onneted to only one node in U we denote leaf omponents.The omponents onneted to two nodes in U may be assoiated with the orre-sponding edge in U , and we denote these edge omponents. Assigning an emptyedge omponent to edges in T whih onnet two nodes in U , we obtain a one-to-one orrespondene between the edges of U and the edge omponents. Usingthis, it is easy to see that sine T is a tree, U is also a tree.The separator tree for T will be a separator tree for U where separator treesfor the indued omponents are attahed as extra hildren of the nodes. Theseparator tree for a leaf omponent is attahed as a hild of the single node inU to whih it is onneted in T . The separator tree for an edge omponentis attahed as a hild of the node of largest depth in the separator tree for U ,among the two nodes in U to whih it is onneted in T .We remark that this ombined struture really does onstitute a separatortree for T : removing the root r of the struture (i.e. the root of the separatortree for U) from T breaks T into piees, of whih the piees ontaining no nodesfrom U exatly are the leaf omponents attahed as hildren of r, and the pieesontaining nodes from U are in one-to-one orrespondene with the piees of Uleft when removing r from U . Continuing reursively proves the remark true.We now disuss how to update the separator tree for T after an insertioninto T . For a Type 1 insertion, the existing node to whih the new node isonneted may belong to U . In this ase, the new node will form a new leafomponent of size one, whih is added to the struture. For all other insertions,an existing (but possibly empty) leaf or edge omponent C will grow by exatlyone node. After inserting into C, the omponent is rebuilt to threshold 1/2 bythe algorithm from Lemma 2. If the number of nodes in C has reahed � dueto the insertion, it is now split into omponents of size at most �=2 by addingthe root v of the separator tree for C to the sample U . For edge omponents,one of the new omponents formed by the split may be onneted to three nodesin U . Spei�ally, this happens if and only if v is not loated on the unique pathin T between the two nodes u1; u2 2 U to whih C is onneted. To maintainInvariant 2, we also add to U the node w loated where the paths from v tou1 and from v to u2 separate. In total, this splits the violating omponent intothree or more omponents eah being onneted to at most two nodes in U ,reestablishing the invariant.We build a 1=2-separator tree for eah of the omponents whih arise by theinlusion of w in U , let these omponents be hildren of w, and let w be thesingle hild of v in the separator tree for U .The addition of v and w into U onstitutes two insertions into the separatortree for U , below the node of whih C was a hild. To maintain balane in the12



separator tree for U after these insertions, we use the rebalaning sheme fromLemma 4.After a rebuild of a subtree S in the separator tree for U during suh re-balaning, the depth of eah node in S may have hanged. As said, an edgeomponent in the separator tree for T should be a hild of the node of largestdepth in the separator tree for U , among the two nodes in U to whih it isonneted (these nodes are anestors of eah other in the separator tree for U ,as follows from Fat 1). Therefore, for edge omponents onneted to at leastone node in S we must after the rebuild hek the updated depth informationof these nodes, and hange parent of the omponent if neessary. This is doneby a traversal of S during whih we inspet all edge omponents onneted tonodes in it. By the one-to-one orrespondene between edge omponents andedges of U , the number of omponents to inspet is equal to the number of edgesin U with at least one endpoint in S. By Fat 1, this number is bounded byjSj � 1 plus the depth of the root of S in the separator tree for U . Thus, bythe height bound in Lemma 4, inspetion of edge omponents will only add anadditive logarithmi term to the rebalaning ost for the separator tree for U ,whih therefore remains amortized O(log2 jU j).To maintain the value of �, we rebuild the entire struture whenever n hasdoubled, setting� to 4d(logn)=4e. We now disuss how to perform suh a globalrebuilding in O(n) time. The same algorithm is also used as preproessing toonstrut the separator tree for the initial tree T . Thus, preproessing takesO(n) time.To onstrut the separator tree for some existing tree � , we �rst generatethe sample U and its indued omponents. We then use the algorithm fromLemma 2 to onstrut a separator tree for U and for eah omponent. Finally,we attah eah leaf omponent to the single node from U to whih it is onneted,and attah eah edge omponent as a hild of the lowest of the two nodes inU to whih it is onneted. In the ase of the preproessing, we will need thegenerated U to ful�ll Invariant 1 with a value of �=2 instead of � in order toobtain the stated time bound for the �rst n insertions. We use this value in thedesription here.The sample U is generated by a traversal of � using e.g. a depth �rst searh,during whih we maintain a sample and its indued omponents for the partof � traversed so far. The algorithm for this is similar to the insertion proeduredesribed above, exept that no separator trees are maintained for neither U northe edge and leaf omponents. Spei�ally, when a new node v is enounteredduring the traversal, we onsider the node w from whih it was reahed. If w isin U , we start a new omponent. If not, v is added to the omponent of w. Ifthe number of nodes in a omponent reahes �=2, we split it into omponentsontaining at most �=4 nodes eah by adding one of its nodes to U . To loatethis node, we use the method desribed in the �rst lines of the proof of Lemma 1.If neessary, we also split one of the new omponents to maintain Invariant 2.When a omponent over�ows, at least �=4 nodes have been inserted into itsine it was reated by a omponent split or by the start of a new omponent.Hene, at most 4n=� over�ows an our during the generation of U . As eah13



over�ow an be handled in time O(�), the generation of U an be performed intime O(n). By the time bound from Lemma 2, the entire separator tree for �an be onstruted in O(n) time. This onludes our desription of the globalrebuilding of the struture.We now analyze the time for m insertions in the separator tree. Clearly, weonly need to onsider the ase m < n, as the rebalaning sheme is reset bya global rebuild eah time n has doubled, and as eah suh rebuild exept theinitial onstrution amounts toO(1) amortized work per insertion. The insertioninto an indued omponent and the rebuilding of its separator tree by Lemma 2takes O(�) = O(logn) time, inluding any splitting of the omponent due toover�ow. Eah over�owing omponent gives rise to at most two insertions intothe separator tree for U . When a omponent is reated by a omponent split orby the start of a new omponent, it ontains at most �=2 nodes. The size of theomponents after the onstrution of the initial separator tree is also boundedby �=2. Hene, after m insertions, at most 2m=� over�ows of omponentsan have ourred. Eah over�ow gives rise to at most two insertions into theseparator tree for U , eah of whih osts O(log2 jU j) = O(log2 n). The totalost of these insertions is then O((m log2 n)=�) = O(m logn). The stated timebound follows.To prove the stated height bound, note that in the initial tree, U ontains atmost 8n=� nodes. At most 2m=� over�ows of omponents have ourred duringinsertions, eah of whih inserts at most two more nodes into U . Hene, the sizeof U is bounded by 8(n+m)=�. By Lemma 4, the height of the separator treefor U is most log(8(n +m)=�) + 1 = log(n +m) + 4 � log�. By Invariant 1,the height of the separator trees for the indued omponents is at most log�,as these are 1=2-separator trees. Adding one to the height to aount for theedges onneting the root of the separator trees for omponents to nodes in theseparator tree for U gives the stated height bound. 22.3 Ordered Separator TreesWe now extend the separator trees maintained by the algorithm from Theorem 1with a spei� ordering of the hildren, failitating our use of separator treesin Setion 3 for �nding insertion points for new speies in evolutionary trees.The basi idea is to speed up the searh in the separator tree by onsidering thehildren of the nodes in dereasing size-order. This ensures a larger redutionof subtree size in the ase that many hildren have to be onsidered before thesubtree to proeed the searh in is found.The below lemma shows that size order an be assumed after a rebuild of aseparator tree.Lemma 5 A separator tree of size n an be proessed in time O(n) suh thathildren of nodes are sorted in dereasing size-order.Proof. We �rst traverse the separator tree in linear time and ompute the sizeof all nodes. Sine the sizes are bounded by n, a list of all nodes an be sorted in14



dereasing size order in linear time using buket-sort [18℄. By sanning throughthe sorted list of nodes in inreasing size order making the nodes visited the �rsthild of their respetive parents, we in linear time update the order of hildrenat eah node in the separator tree suh that they are sorted in dereasing size-order. 2However, for the two layered struture from Theorem 1, further details areneeded to ahieve the following.Theorem 2 Let T be an unrooted tree initially ontaining n nodes. After O(n)time preproessing, an ordered separator tree for T an in time O(m log(n+m))be maintained during m insertions in a way suh that the height is bounded bylog(n+m) + 5 and suh that for any path (v1; v2; : : : ; v`) from the root v1 to anode v` in the separator tree, it holds thatYdi�2 2 � Ydi>2 di < 16d(n+m) ; (1)where di is the number whih vi+1 has in the ordering of the hildren of vi,for 1 � i < `, and d is maxfd1; : : : ; d`�1g.Proof. The proof is by an extension of the onstrution from Theorem 1, andfamiliarity with the proof of this theorem is assumed here.We extend the onstrution by an ordering of the hildren of the nodes ofthe separator tree as follows. For a node v in U , the hildren whih belong to Uwill be �rst in the ordering, followed by the the hildren not in U . Furthermore,the hildren belonging to U will be in dereasing order in terms of the size oftheir subtrees in the separator tree for U (whih is not the same as the size oftheir subtrees in the entire separator tree for T ). For a node v in U , we do notde�ne any partiular order among the hildren not in U . For a node v not in U ,the hildren (none of whih an be in U), will be in dereasing order in termsof the size of their subtree in the separator tree for the indued omponent inwhih they are ontained.The above ordering must be maintained during insertions and rebalaningof the struture. Whenever an insertion ours in an indued omponent, it isompletely rebuilt by the algorithm from Lemma 2. This algorithm is also usedas the fundamental operation in the rebalaning of the separator tree for U .After an invoation of this algorithm, the order order an be restored withouta�eting the time bound, by Lemma 5. When an insertion into U ours due tothe splitting of a omponent, the ordering may have to hange among hildrenof nodes on the path from the insertion point to the root in the separator tree forU . With a proper linked list representation of the hildren of a node in groupsof hildren with equal size, this an be done in onstant time per node on thepath, as the size of only one hild per node hanges, and the inrease in sizeis only one. Thus, this takes time proportional to the height of the separatortree of U . All in all, the ordering an be maintained without a�eting the timebound from Theorem 1. The height bound also follows from Theorem 1.15



To prove the last laim of the lemma, i.e. inequality (1), note that a path(v1; v2; : : : ; v`) will �rst pass through nodes from U , then through nodes from asingle indued omponent. Let vj be the last node from U on the path.We �rst onsider the part (v1; v2; : : : ; vj) of the path lying within the separa-tor tree for U . This separator tree by Lemma 4 has a threshold of 12 + 13dlog jUje .For di � 2, a desent into the di'th hild must redue by a fator of at least di thenumber of nodes in the urrent subtree of the separator tree for U . For di = 1,we an only laim a fator given by the threshold of the separator tree. Sinethis part of the path ends at the latest when there is a single node left in thesubtree of the separator tree for U , we have the following for this part of thepath: 1 � jU j � �12 + 13dlog jU je�k � Ydi�2i<j 1di ;where k = jfi < j j di = 1gj. From Lemma 4 the height of the separator treefor U is bounded by dlog jU je. Using this and the inequality (1 + x=y)y � ex,we get�12 + 13dlog jU je�k � 12k � �1 + 23dlog jU je�dlog jUje � 12k � e2=3 < 22k :Realling that jU j � 8(n+m)=�, we get1 < 16(n+m)=� � 12k � Ydi�2i<j 1di : (2)The part (vj+1; : : : ; v`) of the path lies within a separator tree for an induedomponent, whih has a threshold of exatly 1=2. By a similar but simplerargument, we get 1 � � � 12k0 � Ydi�2i>j 1di ; (3)where k0 = jfi > j j di = 1gj.At vj , the ordering of the hildren not in U is arbitrary, and the measure ofsize in the above argument hanges, hene the above argument is not valid. Byde�nition we have the inequality dj � d : (4)Multiplying left sides and right sides in the inequalities (2), (3) and (4), andrearranging the result proves (1). 216



a b  d e f gi j hFigure 6: The three possible hanges to an evolutionary tree when inserting anew speies i, j or h.3 Algorithm for Construting and MaintainingEvolutionary TreesIn this setion we desribe an algorithm for onstruting an evolutionary tree Tin the experiment model for a set of n speies in time O(nd logd n), where dis the degree of the tree. Note that d is not known by the algorithm in ad-vane. The algorithm is a further development of an algorithm by Lingas et al.in [19℄. Our algorithm also supports the insertion of new speies with runningtime O(md logd(n+m)) using at most mdd=2e(log2dd=2e�1(n+m) + O(1)) ex-periments for d > 2, and at most m(log(n+m) +O(1)) experiments for d = 2,where n is the number of speies in the tree to begin with, m is the numberof insertions, and d is the maximum degree of the tree during the sequene ofinsertions.The onstrution algorithm inserts one speies at the time into the tree intime O(d logd n) until all n speies have been inserted. Figure 6 shows thethree possible hanges to an evolutionary tree when inserting a new speies: (i)The new speies is a leaf below an existing node; (j) the speies auses a newroot to be reated; (h) an existing edge is split by reating a new internal node.The searh for the insertion point of a new speies a is guided by a separatortree ST for the internal nodes of the evolutionary tree T for the speies insertedso far. The searh starts at the root of ST . In a manner to be desribed below,we deide by experiments whih subtree, rooted at a hild of the root in ST , thesearh should ontinue in. This is repeated reursively until the orret insertionpoint in T for a is found. We keep links between orresponding nodes in STand T for swithing between the two trees. To failitate the experiments, we foreah internal node in T maintain a pointer to an arbitrary leaf in its subtree.When inserting a new internal node in T this pointer is set to point to the newleaf whih aused the insertion of the node.We say that the insertion point of a is inident to a node v, if1. a should be inserted diretly below v, or2. a should split an edge whih is inident to v by reating a new internalnode on the edge and make a a leaf below the new node, or17



3. if v is the root of T , a new root of T should be reated with a and v asits two hildren.The invariant for the searh is the following. Assume we have reahed node vin the separator tree for the internal nodes in T , and let Sv be the internal nodesof T whih are ontained in the subtree of ST rooted at v (inluding v). Thenthe insertion point of the new speies a is inident to a node in Sv.Let v be the node in ST for whih we want to deide if the insertion pointfor the new speies a is in the subtree above v in T ; if it is in a subtree rootedat a hild of v in T ; or if a should be inserted as a new hild of v. We denote byu1; : : : ; uk the hildren of v in T , where u1; : : : ; uk0 are nodes in distint subtreesT1; : : : ; Tk0 below v in ST , whereas uk0+1; : : : ; uk are leaves in T or are nodesabove v in ST . The order of the subtrees T1; : : : ; Tk0 below v in ST is givenby the ordered separator tree ST and determines the order of u1; : : : ; uk0 . Theremaining hildren uk0+1; : : : ; uk of v may appear in any order.We perform at most dk=2e experiments at v. The i'th experiment is onthe speies a, b and , where b and  are leaves in T below u2i�1 and u2irespetively. The leaves b and  an be loated using the pointers stored at u2i�1and u2i. Note that the least ommon anestor of b and  in T is v. If k is oddthen the speies b and  in the dk=2e'th experiment is hosen as leaves in Tbelow uk and u1 respetively, and note that the two leaves are distint beausek � 2 by de�nition. There are four possible outomes of the i'th experimentorresponding to Figure 1:1. (a; b; ) implies that the insertion point for a is inident to a desendentof uj , where b and  are not desendents of uj , or a is a new leaf below v.2. ((a; b); ) implies that the insertion point for a is inident to a desendentof u2i�1, sine the least ommon anestor of a and b is below v in T .3. ((a; ); b) is symmetri to the above ase and the insertion point of a isinident to a desendent of u2i (u1 for the dk=2e'th experiment if k odd).4. ((b; ); a) implies that the insertion point of a is in the subtree above v,sine the least ommon anestor of a and b is above v. If v is the presentroot of T , a new root should be reated with hildren a and v.We perform experiments for inreasing i until we get an outome di�erenefrom Case 1, or until we have performed all dk=2e experiments all with outomef. Case 1. In the latter ase speies a should be inserted diretly below v in T asa new hild. In the former ase, when the outome of an experiment is di�erentfrom Case 1, we know in whih subtree adjaent to v in T the insertion pointfor speies a is loated. If there is no orresponding subtree below v in ST , thenwe have identi�ed the edge inident to v in T whih the insertion of speies ashould split. Otherwise we ontinue reursively searhing for the insertion pointfor speies a at the hild of v in ST whih roots the separator tree for thesubtree adjaent to v whih has been identi�ed to ontain the insertion pointfor a. When the insertion point for speies a is found, we insert one leaf and atmost one internal node into T , and ST is updated aording to Theorem 2.18



Lemma 6 Given an evolutionary tree T for n speies with degree d, and a sepa-rator tree ST for T aording to Theorem 2, then a new speies a an be insertedinto T and ST in amortized time O(d logd n) using at most dd=2e(log2dd=2e�1 n+O(1)) experiments for d > 2, and at most logn+O(1) experiments for d = 2.Proof. Let v1; : : : ; v` be the nodes in ST (and T ) visited by the algorithm whileinserting speies a, where v1 is the root of ST and vj+1 is a hild of vj in ST .De�ne di by vi+1 being the di'th hild of vi in ST , for 1 � i < `.For d = 2 we perform exatly one experiment at eah vi. The total number ofexperiments is thus bounded by the height of the separator tree. By Theorem 2it follows that the number of experiments is bounded by logn + O(1). In thefollowing we onsider the ase where d � 3.For i < `, let xi denote the number of experiments performed at node vi. Wehave xi � dd=2e and di � 2xi � 1, sine eah experiment onsiders two hildrenof vi in T and the �rst experiment also identi�es if a should be inserted into thesubtree above vi. At v` we perform at most dd=2e experiments.For d1; : : : ; d`�1 we from Theorem 2 have the onstraintQdi�2 2 �Qdi>2 di �16dn, sine jST j � n� 1. To prove the stated bound on the worst ase numberof experiments we must maximize Pì=0 xi under the above onstraints. Wehave log(16dn) � Xdi�2 1 + Xdi>2 log di� Xxi=1 1 + Xxi>1 log di� Xxi=1xi + Xxi>1xi 1xi log(2xi � 1)� 1dd=2e log(2dd=2e � 1) `�1Xi=1 xi ;where the seond inequality holds sine xi > 1 implies di � 3. The last inequal-ity holds sine for f(x) = 1x log(2x � 1) we have 1 > f(2) > f(3) and f(x) isdereasing for x � 3, i.e. f(x) is minimized when x is maximized.We onlude thatP`�1i=1 xi � dd=2e log2dd=2e�1(16dn), i.e. for the total num-ber of experiments we havePì=1 xi � dd=2e(log2dd=2e�1(16dn) + 1).The time needed for the insertion is proportional to the number of experi-ments performed plus the time to update ST . By Theorem 2 the total time isthus O(d logd n). 2From Lemma 6 and Theorem 2 we get the following bounds for onstrutingand maintaining an evolutionary tree under the insertion of new speies in theexperiment model.Theorem 3 After O(n) preproessing time an evolutionary tree T for n speiesan be maintained under m insertions in time O(dm logd(n+m)) using at most19



mdd=2e(log2dd=2e�1(n+m)+O(1)) experiments for d > 2, and at mostm(log(n+m) + O(1)) experiments for d = 2, where d is the maximum degree of the treeduring the sequene of insertions.4 Adversary for Construting Evolutionary TreesTo prove a lower bound on the number of experiments required for onstrutingan evolutionary tree of n speies with degree at most d, we desribe an adversarystrategy for deiding the outome of experiments. The adversary is required togive onsistent answers, i.e. the reported outome of an experiment is not allowedto ontradit the outome of previously performed experiments. A onstrutionalgorithm is able to onstrut an unambiguous evolutionary tree based on theperformed experiments when the adversary is not able to answer any additionalexperiments in suh a way that it ontradits the onstruted evolutionary tree.The role of the adversary is to fore any onstrution algorithm to performprovably many experiments in order to onstrut an unambiguous evolutionarytree.To implement the adversary strategy for deiding the outome of experimentsin a onsistent way, the adversary maintains a rooted in�nite d-ary tree, D,where eah of the n speies are stored at one of the nodes, allowing nodesto store several speies. Initially all n speies are stored at the root. Foreah experiment performed, the adversary an move the speies downwards byperforming a sequene of moves, where eah move shifts a speies from the nodeit is urrently stored at to a hild of the node.By deiding the outome of experiments, the adversary reveals informationabout the evolutionary relationships between the speies to the onstrutionalgorithm performing the experiments. The distribution of the n speies on Drepresents the information revealed by the adversary (together with the for-bidden and on�iting lists introdued below). The evolutionary tree T to beestablished by the onstrution algorithm will be a onneted subset of nodesof D inluding the root. Initially, when all speies are stored at the root, theonstrution algorithm has no information about the evolutionary relationships.The evolutionary relationships revealed to the onstrution algorithm by theurrent distribution of the speies on D orresponds to the tree formed by thepaths from the root of D to the nodes storing at least one speies. More pre-isely, the orrespondene between the �nal evolutionary tree T and the urrentdistribution of the speies on D is that if v is a leaf of T labeled a then speies ais stored at some node on the path in D from the root to the node v.Our objetive is to prove that if an algorithm omputes T , then the n speieson average must have been moved 
(logd n) levels down by the adversary, andthat the number of moves by the adversary is a fration O(1=d) of the numberof experiments performed. These two fats imply the 
(nd logd n) lower boundon the number of experiments required.To ontrol its strategy for moving speies on D, the adversary maintainsfor eah speies a a forbidden list F(a) of nodes and a on�iting list C(a) of20



speies. If a is stored at node v, then F(a) is a subset of the hildren 1; : : : ; dof v, and C(a) is a subset of the other speies stored at v. If i 2 F(a), then a isnot allowed to be moved to hild i, and if b 2 C(a) then a and b must be movedto two distint hildren of v. It will be an invariant that b 2 C(a) if and only ifa 2 C(b). Initially all forbidden and on�iting lists are empty. The adversarymaintains the forbidden and on�iting lists suh that the size of the forbiddenand on�iting lists of a speies a is bounded by the invariantjF(a)j+ jC(a)j � d� 2 : (5)The adversary uses the sum jF(a)j+jC(a)j to deide when to move a speies aone level down in D. Whenever the invariant (5) beomes violated beausejF(a)j+ jC(a)j = d�1, for a speies a stored at a node v, the adversary moves ato a hild i =2 F(a) of v. Sine jF(a)j � d � 1, suh a i =2 F(a) is guaranteedto exist. When moving a from v to i, the adversary updates the forbidden andon�iting lists as follows: For all b 2 C(a), a is deleted from C(b) and i isinserted into F(b). If i was already in F(b), the sum jF(b)j+ jC(b)j dereases byone, if i was not in F(b) the sum remains unhanged. Finally, F(a) and C(a)are assigned the empty set.For two speies a and b, we de�ne their least ommon anestor, LCA(a; b),to be the least ommon anestor of the two nodes storing a and b in D. Wedenote LCA(a; b) as �xed if it annot be hanged by future moves of a and bby the adversary. If LCA(a; b) is �xed then the least ommon anestor of thetwo speies a and b in T is the node LCA(a; b). If a is stored at node va and bis stored at node vb, it follows that LCA(a; b) is �xed if and only if one of thefollowing four onditions is satis�ed.1. va = LCA(a; b) = vb and a 2 C(b) (and b 2 C(a)).2. va 6= LCA(a; b) = vb and i 2 F(b), where i is the hild of vb suh thatthe subtree rooted at i ontains va.3. va = LCA(a; b) 6= vb and i 2 F(a), where i is the hild of va suh thatthe subtree rooted at i ontains vb.4. va 6= LCA(a; b) 6= vb.In Case 1, speies a and b are stored at the same node and annot be movedto the same hild beause a 2 C(b), i.e. LCA(a; b) is �xed as the node whihurrently stores a and b. Cases 2 and 3 are symmetri. In Case 2, speies ais stored at a desendant of a hild i of the node storing b, and b annotbe moved to i beause i 2 F(b), i.e. LCA(a; b) is �xed as the node whihurrently stores b. Finally, in Case 4, speies a and b are stored at nodes indisjoint subtrees, i.e. LCA(a; b) is already �xed.The operation Fix(a; b) ensures that LCA(a; b) is �xed as follows:1. If va = LCA(a; b) = vb and a =2 C(b) then insert a into C(b) and insert binto C(a). 21



2. If va 6= LCA(a; b) = vb and i =2 F(b), where i is the hild of vb suh thatthe subtree rooted at i ontains va, then insert i into F(b).3. If va = LCA(a; b) 6= vb and i =2 F(a), where i is the hild of va suh thatthe subtree rooted at i ontains vb, then insert i into F(a).Otherwise Fix(a; b) does nothing. If performing Fix(a; b) inreases jF(a)j suhthat jF(a)j + jC(a)j = d � 1, then a is moved one level down as desribedabove. Similarly, if jF(b)j+ jC(b)j = d�1 then b is moved one level down. Afterperforming Fix(a; b) we thus have that jF(a)j+jC(a)j � d�2 and jF(b)j+jC(b)j �d� 2, whih ensures that the invariant (5) is not violated.When the onstrution algorithm performs an experiment on three speiesa, b and , the adversary deides the outome of the experiment based on theurrent distribution of the speies on D and the ontent of the on�iting andforbidden lists. To ensure the onsisteny of future answers, the adversary �rst�x the least ommon anestors of a, b and  by applying the operation Fixthree times: Fix(a; b), Fix(a; ) and Fix(b; ). After having �xed LCA(a; b),LCA(a; ), and LCA(b; ), the adversary deides the outome of the experimentby examining LCA(a; b), LCA(a; ), and LCA(b; ) in D as desribed below.The four ases orrespond to the four possible outomes of an experiment f.Figure 1.1. If LCA(a; b) = LCA(b; ) = LCA(a; ) then return (a; b; ).2. If LCA(a; b) 6= LCA(b; ) = LCA(a; ) then return ((a; b); ).3. If LCA(a; ) 6= LCA(a; b) = LCA(b; ) then return ((a; ); b).4. If LCA(b; ) 6= LCA(a; b) = LCA(a; ) then return ((b; ); a).5 Lower Bound AnalysisWe will argue that the above adversary strategy fores any onstrution algo-rithm to perform at least 
(nd logd n) experiments before being able to onludeunambiguously the evolutionary relationships between the n speies.Theorem 4 Construting an evolutionary tree of n speies requires 
(nd logd n)experiments, where d is the degree of the onstruted tree.Proof. We �rst observe that an appliation of Fix(a; b) at most inreases thesize of the two on�iting lists, C(a) and C(b), by one, or the size of one ofthe forbidden list, F(a) or F(b), by one. If performing Fix(a; b) inreases thesum jF(a)j + jC(a)j to d � 1, then speies a is moved one level down in Dand F(a) and C(a) are emptied, whih auses the overall sum of the sizes offorbidden and on�iting lists to derease by d � 1. This implies that a totalof k Fix operations, starting with the initial on�guration where all on�itingand forbidden lists are empty, an ause at most 2k=(d � 1) moves. Sine an22



experiment involves three Fix operations, we an bound the total number ofmoves during m experiments by 6m=(d� 1).Now onsider the on�guration, i.e. the distribution of speies and the on-tent of on�iting and forbidden lists, when the onstrution algorithm om-puting the evolutionary tree terminates. Some speies may have nonemptyforbidden lists or on�iting lists. By foring one additional move on eah ofthese speies as desribed in Setion 4, we an guarantee that all forbidden andon�iting lists are empty. At most n additional moves must be performed.Let T 0 be the tree formed by the paths in D from the root to the nodesstoring at least one speies. We �rst argue that all internal nodes of T 0 have atleast two hildren. If a speies has been moved to a hild of a node, then theforbidden list or on�iting list of the speies was nonempty. If the forbiddenlist was nonempty, then eah of the forbidden subtrees already ontained atleast one speies, and if the on�iting list was nonempty there was at least onespeies on the same node that was required to be moved to another subtree, atthe latest by the n additional moves. It follows that if a speies has been movedto a hild of a node then at least one speies has been moved to another hildof the node, implying that T 0 has no node with only one hild.We next argue that all n speies are stored at the leaves of T 0 and that eahleaf of T 0 stores either one or two speies. If there is a non-leaf node in T 0 thatstill ontains a speies, then this speies an be moved to at least two hildrenalready storing at least one speies in the respetive subtrees, implying that theadversary an fore at least two distint evolutionary trees whih are onsistentwith the answers returned. This is a ontradition. It follows that all speiesare stored at leaves of T 0. If a leaf of T 0 stores three or more speies, then anexperiment on three of these speies an generate di�erent evolutionary trees,whih again is a ontradition. We onlude that eah leaf of T 0 stores exatlyone or two speies, and all internal nodes of T 0 store no speies. It followsthat T 0 has at least n=2 leaves.For a tree with k leaves and degree d, the sum of the depths of the leaves is atleast k logd k. Sine eah leaf of T 0 stores at most two speies, the n speies anbe partitioned into two disjoint sets of size dn=2e and bn=2 suh that in eahset all speies are on distint leaves of T 0. The sum of the depths of all speies isthus at least dn=2e logddn=2e+ bn=2 logdbn=2 � n logd(n=2). Sine the depthof a speies in D is equal to the number of times the speies has been moved onelevel down in D, and sine m experiments generate at most 6m=(d� 1) movesand we perform at most n additional moves, we get the inequalityn logd(n=2) � 6m=(d� 1) + n ;from whih the lower bound m � (d� 1)n(logd(n=2)� 1)=6 follows. 2Referenes[1℄ S. Alstrup, J. Holm, K. de Lihtenberg, and M. Thorup. Minimizing di-ameters of dynami trees. In Pro. 24th Int. Colloquium on Automata,23
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