
Alcom-FT Technical Report Series
ALCOMFT-TR-01-130

The Complexity of Constru
ting EvolutionaryTrees Using ExperimentsGerth Stølting Brodal� Rolf Fagerberg�Christian N. S. Pedersen� Anna ÖstlinyAbstra
tWe present tight upper and lower bounds for the problem of 
onstru
t-ing evolutionary trees in the experiment model. We des
ribe an algorithmwhi
h 
onstru
ts an evolutionary tree of n spe
ies in time O(nd logd n) us-ing at most ndd=2e(log2dd=2e�1 n + O(1)) experiments for d > 2, and atmost n(log n+ O(1)) experiments for d = 2, where d is the degree of thetree. This improves the previous best upper bound by a fa
tor �(log d).For d = 2 the previously best algorithm with running time O(n log n)had a bound of 4n log n on the number of experiments. By an expli
itadversary argument, we show an 
(nd logd n) lower bound, mat
hing ourupper bounds and improving the previous best lower bound by a fa
-tor �(logd n). Central to our algorithm is the 
onstru
tion and main-tenan
e of separator trees of small height. We present how to maintainseparator trees with height log n+O(1) under the insertion of new nodesin amortized time O(log n). Part of our dynami
 algorithm is an algorithmfor 
omputing a 
entroid tree in optimal time O(n).Keywords: Evolutionary trees, Experiment model, Separator trees, Centroid tree,Lower bounds
�BRICS (Basi
 Resear
h in Computer S
ien
e, www.bri
s.dk, funded by the Danish Na-tional Resear
h Foundation), Department of Computer S
ien
e, University of Aarhus, NyMunkegade, DK-8000 Århus C, Denmark. E-mail: fgerth,rolf,
stormg�bri
s.dk. Par-tially supported by the IST Programme of the EU under 
ontra
t number IST-1999-14186(ALCOM-FT).yDepartment of Computer S
ien
e, Lund University, Box 118, S-221 00 Lund, Sweden.E-mail: Anna.Ostlin�
s.lth.se. Partially supported by TFR grant 1999-344.1



1 Introdu
tionThe evolutionary relationship for a set of spe
ies is 
ommonly des
ribed by anevolutionary tree, where the leaves 
orrespond to the spe
ies, the root 
orre-sponds to the most re
ent 
ommon an
estor for the spe
ies, and the internalnodes 
orrespond to the points in time where the evolution has diverged in dif-ferent dire
tions. The evolutionary history for a set of spe
ies is rarely known,hen
e estimating the true evolutionary tree for a set of spe
ies from obtainableinformation about the spe
ies is of great interest. Estimating the true evolu-tionary tree 
omputationally requires a model des
ribing how to use availableinformation about spe
ies to estimate aspe
ts of the true evolutionary tree.Given a model, the problem of estimating the true evolutionary tree is oftenreferred to as 
onstru
ting the evolutionary tree in that model.In this paper we study the problem of 
onstru
ting evolutionary trees in theexperiment model proposed by Kannan, Lawler and Warnow in [16℄. In thismodel the information about the spe
ies is obtained by experiments whi
h 
anyield the evolutionary tree for any triplet of spe
ies, 
f. Figure 1. The problem of
onstru
ting an evolutionary tree for a set of n spe
ies in the experiment modelis to 
onstru
t a rooted tree with no unary internal nodes and n leaves labeledwith the spe
ies su
h that the topology of the 
onstru
ted tree is 
onsistentwith all possible experiments involving the spe
ies. Hen
e, the topology of the
onstru
ted tree should be su
h that the indu
ed tree for any three spe
ies isequal to the tree returned by an experiment on those three spe
ies.The relevan
e of the experiment model depends on the possibility of per-forming experiments. A standard way to express phylogeneti
 information is bya distan
e matrix. A distan
e matrix for a set of spe
ies is a matrix where entryMij represents the evolutionary distan
e between spe
ies i and j, measured bysome biologi
al method (see [16℄ for further details). For three spe
ies a, b and
 where Mab < minfMa
;Mb
g it is natural to 
on
lude that the least 
ommonan
estor of a and b is below the least 
ommon an
estor of a and 
, i.e. theout
ome of an experiment on a, b and 
 
an be de
ided by inspe
ting Mab, Ma
and Mb
. The 
onsisten
y of experiments performed by inspe
ting a distan
ematrix depends entirely on the distan
e matrix. Kannan et al. in [16℄ de�ne adistan
e matrix as noisy-ultrametri
 if there exists a rooted evolutionary treesu
h that for all triplets of spe
ies a, b and 
 it holds thatMab < minfMa
;Mb
gif and only if the least 
ommon an
estor of a and b is below the least 
ommonan
estor of a and 
 in the rooted evolutionary tree. Hen
e, if a noisy-ultrametri
distan
e matrix for the set of spe
ies 
an be obtained, it 
an be used to per-form experiments 
onsistently. Another and more dire
t method for performingexperiments is DNA-DNA hybridization as des
ribed by Sibley and Ahlquistin [23℄. In this experimental te
hnique one measures the temperature at whi
hsingle stranded DNA from two di�erent spe
ies bind together. The bindingtemperature is 
orrelated to the evolutionary distan
e, i.e. by measuring thebinding temperatures between DNA strands from three spe
ies one 
an de
idethe out
ome of the experiment by de
iding whi
h pair of the three spe
ies bindtogether at the highest temperature. 2



Kannan et al. introdu
e and study the experiment model in [16℄ under the as-sumption that experiments are �awless in the sense that they do not 
ontradi
tea
h other, i.e. it is always possible to 
onstru
t an evolutionary tree for a setof spe
ies that is 
onsistent with all possible experiments involving the spe
ies.They present algorithms for 
onstru
ting evolutionary trees with bounded aswell as unbounded degree, where the degree of a tree is the maximum numberof 
hildren for an internal node. For 
onstru
ting binary evolutionary trees theypresent three di�erent algorithms with running times O(n logn), O(n log2 n)and O(n2) respe
tively, using 4n logn, n log3=2 n and n logn experiments re-spe
tively, where logn denotes log2 n. For 
onstru
ting an evolutionary tree ofdegree d they present an algorithm with running time O(n2) using O(dn logn)experiments. Finally, for the general 
ase they present an algorithm with run-ning time O(n2) usingO(n2) experiments together with a mat
hing lower bound.Kao, Lingas, and Östlin in [17℄ present a randomized algorithm for 
onstru
tingevolutionary trees of degree d with expe
ted running time O(nd logn log logn).They also prove a lower bound 
(n logn + nd) on the number of experiments.The best algorithm so far for 
onstru
ting evolutionary trees of degree d is dueto Lingas, Olsson, and Östlin, who in [19℄ present an algorithm with runningtime O(nd logn) using the same number of experiments.In this paper we present the �rst tight upper and lower bounds for the prob-lem of 
onstru
ting evolutionary trees of degree d in the experiment model.We present an algorithm whi
h 
onstru
ts an evolutionary tree for n spe
iesin time O(nd logd n) using at most ndd=2e(log2dd=2e�1 n + O(1)) experimentsfor d > 2, and at most n(logn + O(1)) experiments for d = 2, where d is thedegree of the 
onstru
ted tree. The algorithm is a further development of analgorithm from [19℄. Our 
onstru
tion improves the previous best upper boundby a fa
tor �(log d). For d = 2 the previously best algorithm with running timeO(n logn) had a bound of 4n logn on the number of experiments. The improved
onstant fa
tors on the number of experiments are important be
ause experi-ments are likely to be expensive in pra
ti
e, 
f. Kannan et al. [16℄. By an expli
itadversary argument, we show an 
(nd logd n) lower bound, mat
hing our upperbounds and improving the previous best lower bound by a fa
tor �(logd n).Our algorithm also supports the insertion of new spe
ies with a runningtime of O(md logd(n +m)) using at most mdd=2e(log2dd=2e�1(n +m) + O(1))experiments for d > 2, and at most m(log(n+m)+O(1)) experiments for d = 2,where n is the number of spe
ies in the tree to begin with, m is the numberof insertions, and d is the maximum degree of the tree during the sequen
e ofinsertions.Central to our algorithm is the 
onstru
tion and maintenan
e of separatortrees of small height. We refer the reader to Se
tion 2 for a detailed de�nition.The spe
ial 
lass of separator trees we in Se
tion 2 denote 1/2-separator trees 
analso be denoted 
entroid trees, sin
e the separating nodes are then 
entroids. A
entroid of a tree is a node whose removal dis
onne
ts the tree into 
omponentsea
h 
ontaining at most half of the nodes in the tree. Jordan's 
lassi
al resultestablishes that any tree has either one or two 
entroid [15, 14℄. Goldman [12℄and Megiddo et al. [21℄ showed how to 
ompute a 
entroid of a tree in O(n) time.3



Re
ursively lo
ating 
entroids for ea
h resulting 
omponent gives a 
entroid tree.By re
ursive appli
ations of the algorithms from [12, 21℄ it follows that a 
entroidtree 
an be 
onstru
ted in time O(n logn) (see Lemma 1 for further details). InSe
tion 2, Lemma 2, we present an algorithm for 
onstru
ting 
entroid trees,i.e. 1/2-separator trees, with optimal running time O(n). S
hwarz, Smid andSnoeyink [22℄ des
ribe how to 
ompute 1/2-separator trees (in [22℄ denoted 1/2-de
omposition trees) for the 
ase of binary trees in time O(n), by modifying thealgorithm of Guibas, Hershberger, Leven, Sharir and Tarjan [13℄ for 
omputing
entroid de
ompositions (in [13℄, 
entroid refers to a 
entroid edge in a binarytree).In general, separator trees are a relaxation of 
entroid trees where the 
om-ponents resulting from deleting a node are not required to 
ontain at most halfof the nodes. S
hwarz et al. [22℄ showed how to maintain 3/4-separator trees inamortized time O(logn) per insertion for the 
ase of binary trees. The height ofa 3/4-separator tree is bounded by log4=3 n. In Se
tion 2 we show how to main-tain separator trees in amortized logarithmi
 time under the insertion of newnodes, su
h that the height of the separator tree is bounded by logn+O(1). Ourmain result for the dynami
 
ase is summarized in Theorem 2. Inequality (1)is the essential bound required in the analysis of the number of experimentsperformed in our appli
ation to evolutionary trees.The basi
 idea of transforming a tree into a new tree with logarithmi
 heightis a fundamental approa
h used in many algorithms. For designing dynami
 al-gorithms on trees several other general tree transformation te
hniques exist:Frederi
kson's topology trees [10, 11℄, Sleator and Tarjan's dynami
 trees [24℄,and Alstrup et al.'s top trees [1, 2℄. One appli
ation of su
h a tree trans-formation is in Cohen and Tamassia's algorithm for dynami
 expression treeevaluation [7℄. For parallel algorithms on trees related te
hniques exist, e.g. the
entroid de
omposition te
hnique of Megiddo [20℄ and the a

elerated 
entroidde
omposition te
hnique of Cole and Vishkin [8℄ (in [8, 20℄, 
entroid refers tothe 
entroid paths in a tree).The rest of this paper is organized as follows. In Se
tion 2 we de�ne separa-tor trees and des
ribe how to 
onstru
t and e�
iently maintain separator treesof small height. In Se
tion 3 we present our algorithm for 
onstru
ting andmaintaining evolutionary trees. In Se
tion 4 and 5 the lower bound is provedusing an expli
it adversary argument. The adversary strategy used is an exten-sion of an adversary used by Borodin, Guibas, Lyn
h, and Yao [5℄ for proving atrade-o� between the prepro
essing time of a set of elements and membershipqueries, and Brodal, Chaudhuri, and Radhakrishnan [6℄ for proving a trade-o�between the update time of a set of elements and the time for reporting theminimum of the set.2 Separator TreesIn this se
tion we de�ne separator trees and present e�
ient algorithms for their
onstru
ting and maintenan
e. 4



a b 
(a; b; 
) a b 
((a; b); 
) a 
 b((a; 
); b) b 
 a((b; 
); a)Figure 1: The four possible out
omes of an experiment for three spe
ies a, band 
.De�nition 1 Let T be an unrooted tree with n nodes. A separator tree STfor T is a rooted tree on the same set of nodes, de�ned re
ursively as follows:The root of ST is a node u in T , 
alled the separator node. The removal of ufrom T dis
onne
ts T into disjoint trees T1; : : : ; Tk, where k is the number ofedges in
ident to u in T . The 
hildren of u in ST are the roots of separator treesfor T1; : : : ; Tk.Clearly, there are many possible separator trees ST for a given tree T . Anexample is shown in Figure 2.
d 
a e fb g ih e
a b d fgh iFigure 2: A tree T (left) and a separator tree ST for T (right).For later use, we note the following fa
ts for separator trees:Fa
t 1 Let ST be a separator tree for T , and let v be a node in T . If Sv denotesthe subtree of ST rooted at v, then:1. The subgraph Tv indu
ed by the nodes in Sv is a tree, and Sv is a separatortree for Tv.2. For any edge from T with exa
tly one endpoint in Tv, the other endpointis an an
estor of v in ST , and ea
h an
estor of v 
an be the endpoint ofat most one su
h edge.The main point of a separator tree ST is that it may be balan
ed, evenwhen the underlying tree T is not balan
ed for any 
hoi
e of root. The notionof balan
ed separator trees is 
ontained in the following de�nition, where thesize jT j of a tree T denotes the number of nodes in T , and where Ti refers tothe trees T1; : : : ; Tk from De�nition 1. 5



De�nition 2 A separator tree is a t-separator tree, for a threshold t 2 [1=2; 1℄,if jTij � tjT j for ea
h Ti and the separator tree for ea
h Ti is also a t-separatortree.Note that a t-separator tree is also a t0-separator tree for all t0 � t. InSe
tion 2.1 we �rst show how to 
onstru
t 1/2-separator trees in linear time.Su
h a tree has height at most blogn
. We then in Se
tion 2.2 
onsider dynami
separator trees and show how to maintain separators trees with small height inlogarithmi
 time per insertion. A simple algorithm yields height O(logn) anda more involved algorithm improves the height bound to logn+ O(1). Finally,we in Se
tion 2.3 show how to extend the algorithms with a spe
i�
 ordering ofthe 
hildren fa
ilitating the use in Se
tion 3 of separator trees for the e�
ient
onstru
tion and maintenan
e of evolutionary trees in the experiment model.2.1 Constru
ting Separator TreesIn Lemma 1 below we �rst give a simple algorithm for 
onstru
ting 1/2-separatortrees in time O(n logn). In Lemma 2 we then improve the running time of thealgorithm to O(n) by adopting additional data stru
tures.We need the following de�nitions for our algorithms. For a node v in arooted tree T , we de�ne the size of v, denoted jvj, to be the number of nodes inthe subtree rooted at v. We let the heavy-
hild of a node be a 
hild of maximumsize, where ties are broken arbitrarily. The edges to the heavy-
hildren de�ne ade
omposition of T into disjoint heavy-paths. All nodes on a heavy-path, ex
eptthe �rst node, are heavy-
hildren, and the last node is a leaf.Lemma 1 Given a tree T with n nodes, a 1/2-separator tree for T 
an be
onstru
ted in time O(n logn).Proof. We �rst make T a rooted tree by letting an arbitrary node of T be theroot. For all nodes v in T we 
ompute jvj and identify the heavy-paths in Tin one traversal of T in time O(n). We identify the root of the 1/2-separatortree ST as follows: We start at the root r of T and follow the heavy-path from rto the lowest node u where juj � n=2 (possibly u = r), i.e. jvj < n=2 for all
hildren v of u. The node u be
omes the root of ST . By removing u from T , thetree T splits into disjoint trees T1; : : : ; Tk, where ea
h tree Ti has size ni � n=2,sin
e the tree Tj 
ontaining the parent of u has size at most n� juj � n=2. Were
ursively 
ompute 1/2-separator trees for ea
h Ti. The root of ea
h re
ursively
onstru
ted 1/2-separator tree be
omes a 
hild of u in ST .Lo
ating u takes time O(n) sin
e the heavy-path starting at the root of T
ontains at most n nodes. This implies that the 
onstru
tion time is boundedby T (n), where T (n) is given by the re
urren
eT (n) � 
n+ kXi=1 T (ni) ;6



for some positive 
onstant 
, where Pki=1 ni = n � 1 and ni � n=2 for alli = 1; : : : ; k. By indu
tion it follows that T (n) � 
n(logn+ 1). 2The algorithm of Lemma 1 re
omputes the sizes of all nodes and the heavy-paths for ea
h re
ursive 
all. Furthermore it does not exploit that the sizesalong a heavy-path is monotoni
ally de
reasing when sear
hing for the rootof the separator tree. The following lemma shows how to exploit these twoobservations to redu
e the 
onstru
tion time to O(n).Lemma 2 Given a tree T with n nodes, a 1/2-separator tree for T 
an be
onstru
ted in time O(n).Proof. The basi
 algorithm is identi
al to the algorithm des
ribed in the proofof Lemma 1. To improve the sear
h for separator nodes we keep tra
k of theheavy-paths as balan
ed sear
h trees. Ea
h heavy-path is stored in a sear
h treewhere the elements are the nodes on the heavy-path and the keys are the sizesof the nodes. The sear
h trees should support the operations: key, join, split,su

essor, and addpath
ost. Given a pointer to an element, key returns the keyof the element. The operation join 
on
atenates two sear
h trees, provided thatthe keys in one sear
h tree are all smaller than the keys in the other sear
h tree,and split splits a sear
h tree at a parti
ular element. The operation addpath
ostadds the same value to all keys in a sear
h trees. Given a key, su

essor �ndsthe element with the smallest key larger than, or equal to, the given key. Asdes
ribed by Tarjan [25, Chapter 5℄, all these operations 
an be supported intime O(logn), where n is the number of elements in the sear
h tree. Given asorted list, the 
orresponding sear
h tree 
an be 
onstru
ted in linear time.Initially, we make T rooted, 
ompute jvj for all nodes v in T , identify heavy-paths in T , and 
onstru
t a sear
h tree for ea
h heavy path. In total this takestime O(n). At ea
h node whi
h is the head of a heavy-path, we store a link to thesear
h tree storing the heavy-path starting at that node. For ea
h node we storea link to a priority queue whi
h stores the 
hildren of the node, ex
ept the heavy-
hild, with priorities equal to their sizes. The priority queues should supportinsertion of an element with arbitrary priority and deletion of the element withmaximum priority in logarithmi
 time, and 
onstru
tion of a queue in lineartime, as e.g. binary heaps [9, 26℄ do. The total time for 
onstru
ting the initialpriority queues at the nodes is O(n).We �nd the root of the 1=2-separator tree ST using the sear
h tree R storingthe heavy-path starting at the root r of T . We �rst observe that jrj is themaximal key in R, whi
h 
an be found in time O(logn) by the operation key.To �nd the root of ST we perform the query su

essor(jrj=2) on R, whi
h by
onstru
tion lo
ates a node u in T where juj � jrj=2 and all 
hildren v of u havejvj < jrj=2, i.e. u is a valid node for the root of ST . Removing u from T splits Tinto disjoint trees T1; : : : ; Tk, where ea
h subtree Ti has size ni � n=2. SeeFigure 3. We re
ursively 
ompute a 1/2-separator tree for ea
h Ti. The rootof ea
h 
onstru
ted 1/2-separator tree be
omes a 
hild of u in the separatortree ST . 7



� � �T1 Rbot
Rtopr w3z w2w1u

T2 TkFigure 3: The separator node u on the heavy-path R = Rtop [ fug [ Rbot , andthe nodes w1; : : : ; w` where to update the left-to-right order of the 
hildren.To avoid re
omputing the heavy-paths for ea
h of the re
ursive 
alls weupdate the already 
omputed heavy-paths, and 
orresponding sear
h trees, asdes
ribed below in time O(log2 n). This implies that the total 
onstru
tion timeis bounded by O(n + T (n)), whereT (n) � 
(1 + blogn
2) + kXi=1 T (ni) ;for some positive 
onstant 
, where Pki=1 ni = n � 1 and ni � n=2 for alli = 1; : : : ; k. By indu
tion it follows that T (n) � 
n + 
nPblogn
i=0 i2=2i � 7
n,sin
e P1i=0 i2=2i = 6. We 
on
lude that the total 
onstru
tion time is O(n).To update the heavy-paths, we start by splitting the sear
h tree R 
ontain-ing u into three parts, Rtop , u, and Rbot , where Rtop stores the part of theheavy-path above u, and Rbot stores the part of the heavy-path below u. SeeFigure 3. This 
an be done in time O(logn) by applying the split operationtwi
e. By adding a link from the heavy 
hild of u in T , i.e. the node in Rbotwith maximum key, to the sear
h tree Rbot , it follows that for all the Ti treesthat were rooted at the 
hildren of u the heavy-paths are 
orre
tly stored assear
h trees.What remains is to update the sear
h trees storing the heavy-paths in thetree Tj that 
ontains the parent of u from T , i.e. the part of T above u. Firstwe update the keys (i.e. sizes) of all nodes in Rtop by subtra
ting the size of thesubtree of T that was rooted at u, i.e. the key of u. This takes time O(logn)by the addpath
ost operation, and ensures that the keys of all nodes in Tj equaltheir new sizes. What remains is to reorder the sear
h trees for the paths in Tjsu
h that they represent the heavy-paths in Tj , i.e. to identify the new heavy-
hildren of the nodes in Rtop . 8



We de�ne nodes w1; w2; : : : ; w` as follows. Let w1 be the parent of u in T ,and wi+1 the an
estor of wi in Rtop determined by su

essor(2 jwij), wherejwij = key(wi). See Figure 3. Sin
e jwi+1j � 2 jwij and jTj j � n=2, it followsthat jwij � 2i�1 and ` � logn. We now argue that w1; : : : ; w` are the onlynodes in Rtop where the 
hild also in Rtop is no longer a heavy-
hild. Considera node z in Rtop between wi and wi+1. Sin
e jwij < jzj < 2 jwij, it follows thatthe 
hild of z in Rtop is still the heavy 
hild of z in Tj sin
e it has at least sizejwij > jzj=2, i.e. the 
hildren of z are 
orre
tly pla
ed.Now 
onsider wi. Let x be the heaviest 
hild of wi in T and let Q be thepriority queue storing the remaining 
hildren of wi. If Q is empty no updatesare ne
essary at wi. Otherwise let y be the 
hild of wi with maximum key in Q,i.e. the se
ond heaviest 
hild of wi in T . If i = 1, then x = u and y be
omes thenew heavy 
hild of w1. We delete the maximum element y from Q; join Rtopwith the sear
h tree storing the heavy-path starting in y; and let Rtop be theresulting sear
h tree. We 
ontinue re
ursively updating Rtop at wi+1.Otherwise i � 2. If jxj � jyj in Tj , i.e. if jxj is larger than or equal to thekey of y in Q, then x is also the heavy-
hild of wi in Tj . Otherwise, x is not theheavy-
hild of wi in Tj , and we must update the heavy-paths a

ordingly. First,we split Rtop between x and wi, this results in two sear
h trees R0top , storing thenodes on the path from the root to wi, and R00top , storing the heavy-path whi
hstarts at x. We then delete the maximum element y from Q; insert x into Q;and let x have a pointer to R00top . The node y is the new heavy-
hild of wi. Wejoin R0top with the sear
h tree storing the heavy-path starting at y, and let Rtopbe the resulting sear
h tree. We 
ontinue re
ursively updating Rtop at wi+1.It takes time O(logn) to �nd ea
h wi, and at ea
h wi we use time O(logn)to update the heavy 
hild information. Sin
e ` � logn, the total time forreestablishing the heavy-paths is O(log2 n), whi
h 
on
ludes the proof. 22.2 Maintaining Separator TreesIn this se
tion, we �rst dis
uss how to insert new nodes into a tree T and its
orresponding separator tree ST , and then present methods for maintainingbalan
e and height in a separator tree ST during su
h insertions.We allow two types of node insertions in T : Type 1, whi
h is the addition ofa new leaf node 
onne
ted to an existing node in T by a new edge, and Type 2,whi
h is the addition of a new node by breaking an existing edge into two edges.Figure 4 shows a tree before and after one addition of ea
h type, with new nodesin bold.In the separator tree ST for T , we for a Type 1 insertion insert the new nodeas a 
hild of the single node in T to whi
h it is 
onne
ted, and for a Type 2insertion we insert the new node as a 
hild of the deepest node in ST amongthe two nodes in T to whi
h it is 
onne
ted. The two nodes are on the sameroot to leaf path follows from 2. in Fa
t 1 The resulting tree is easily seen to bea separator tree for the updated tree T . Figure 5 shows the insertions into ST
orresponding to the insertions into T shown in Figure 4.9



d 
a e fb g ih ! x d 
a e fv y g ihFigure 4: Insertions into a tree T .e
a b d fgh i ! e
a b d fgh ix yFigure 5: Insertions into ST 
orresponding to Figure 4.The methods we now present for maintaining balan
e and height in sepa-rator trees during insertions of new nodes are based on rebuilding of subtrees,and are inspired by methods of Andersson and Lai des
ribed in [3, 4℄ for main-taining small height in binary sear
h trees. We �rst show how the linear time
onstru
tion algorithm for 1=2-separator trees from Lemma 2 leads to a simplealgorithm for keeping separator trees well balan
ed. The height bound a
hievedby this algorithm is O(logn), using O(logn) amortized time per update. Wethen use a two-layered stru
ture to improve the height bound to logn + O(1)without sa
ri�
ing the time bound. The improved 
onstant fa
tor in the heightbound is signi�
ant for our use of separator trees for maintaining evolutionarytrees in the experiment model, sin
e the number of experiments for an insertionof a new spe
ies will turn out to be proportional to the height of the separatortree. Furthermore, this height bound is within an additive 
onstant of the bestbound possible, as trees exist where any separator tree must have height at leastblogn
, e.g. a tree whi
h is a single path.Statements about amortized 
omplexity for data stru
tures normally assumean initially empty stru
ture�this is a spe
ial 
ase of the statements below.Lemma 3 For any 0 < " < 1=4, a (1=2 + ")-separator tree 
an be maintainedin amortized time O((logn)=") per insertion, provided that the initial tree is a1/2-separator tree.Proof. We let ea
h node v in the separator tree store the size jvj of its subtree(its number of des
endants in the separator tree, in
luding v itself), as well asits depth (the number of edges on the path to the root in the separator tree).During insertions, we update this information along the path to the root, and
he
k for violations of the threshold. If any violating nodes are found, we rebuildthe subtree rooted at the highest node v among these, using Lemma 2, and then10



restore the size and depth information by a traversal of the rebuilt subtree. Letu denote the largest 
hild of v just before the rebuild. We have juj > (1=2+")jvj.Immediately after the last time we did a rebuild involving v, either u was notpresent, or we had jujthen � jvjthen= 2 � jvjnow= 2. As jujnow > (1=2 + ")jvjnow,at least "jvjnow insertions have taken pla
e below v sin
e then. Charging theseinsertions O(1=") ea
h will 
over the O(jvjnow) 
ost for rebuilding the subtreeof v and restoring the information at the nodes. Thus, if an insertion is 
hargedO(1=") for ea
h node on the path from the new node to the root, the 
ost ofall rebuildings are 
overed. Sin
e the height of the separator tree is at mostlog1=(1=2+") n, whi
h is O(logn) by " < 1=4, the stated time bound follows. 2Lemma 4 A � 12 + 13dlog ne�-separator tree 
an be maintained with a height boundof dlogne in amortized time O(log2 n) per insertion, provided that the initial treeis a 1/2-separator tree.Proof. In the method of Lemma 3, we maintain " = 13dlogNe , where N denotes apower of two larger than or equal to n. Initially N = 2dlogne+1, i.e. the smallestpower of two larger than or equal to 2n. Whenever n ex
eeds N , we double N ,whi
h 
auses " to 
hange, and we rebuild the entire separator tree as a new1/2-separator tree by applying the algorithm of Lemma 2. Note that n mustat least be doubled before the �rst rebuild 
an o

ur and between two rebuilds,i.e. we 
an 
harge the pre
eding insertions the 
ost of a rebuldingFor a separator tree with threshold t, the size of a subtree rooted at depth iis at most n � ti. Using the standard inequality (1 + x=y)y � ex, we haven�12 + 13dlogNe�dlogne � n 12dlogne �1 + 23dlogne�dlogne � e2=3 < 2 ;i.e. a subtree rooted at depth dlogne must be a single node. It follows that theheight of a separator tree is at most dlogne.By Lemma 3 the amortized time for insertions is O((log n)=") = O(log2 n),as the amortized 
ost of the global rebuildings is O(1) per insertion by Lemma 2.2In the next theorem, we redu
e the amortized time bound to O(logn).Theorem 1 Let T be an unrooted tree initially 
ontaining n nodes. After O(n)time prepro
essing, a separator tree for T with a height bound of log(n+m) +5
an be maintained during m insertions in time O(m log(n+m)).Proof. We use a two-layered rebalan
ing me
hanism to redu
e the time boundfrom Lemma 4 by a fa
tor of �(logn). The top rebalan
ing s
heme will workon a sample U of the nodes of the underlying tree T . If the nodes in U and allthe edges with whi
h they are in
ident are removed from T , it will break into aset of 
onne
ted 
omponents. We denote these the 
omponents indu
ed by U .We maintain the following invariants on U , where � is a multiple of fourwithin �(logn). 11



1. Ea
h 
omponent indu
ed by U 
ontains less than � nodes.2. Ea
h 
omponent indu
ed by U is 
onne
ted to at most two nodes from U .We view U as a graph by letting two nodes in U be 
onne
ted by an edge ifthey in T are 
onne
ted to the same indu
ed 
omponent, or if they are alreadyneighbors in T . By Invariant 2, ea
h 
omponent is 
onne
ted to either one ortwo nodes in U (unless U is empty, in whi
h 
ase T itself is a single 
omponent).The 
omponents 
onne
ted to only one node in U we denote leaf 
omponents.The 
omponents 
onne
ted to two nodes in U may be asso
iated with the 
orre-sponding edge in U , and we denote these edge 
omponents. Assigning an emptyedge 
omponent to edges in T whi
h 
onne
t two nodes in U , we obtain a one-to-one 
orresponden
e between the edges of U and the edge 
omponents. Usingthis, it is easy to see that sin
e T is a tree, U is also a tree.The separator tree for T will be a separator tree for U where separator treesfor the indu
ed 
omponents are atta
hed as extra 
hildren of the nodes. Theseparator tree for a leaf 
omponent is atta
hed as a 
hild of the single node inU to whi
h it is 
onne
ted in T . The separator tree for an edge 
omponentis atta
hed as a 
hild of the node of largest depth in the separator tree for U ,among the two nodes in U to whi
h it is 
onne
ted in T .We remark that this 
ombined stru
ture really does 
onstitute a separatortree for T : removing the root r of the stru
ture (i.e. the root of the separatortree for U) from T breaks T into pie
es, of whi
h the pie
es 
ontaining no nodesfrom U exa
tly are the leaf 
omponents atta
hed as 
hildren of r, and the pie
es
ontaining nodes from U are in one-to-one 
orresponden
e with the pie
es of Uleft when removing r from U . Continuing re
ursively proves the remark true.We now dis
uss how to update the separator tree for T after an insertioninto T . For a Type 1 insertion, the existing node to whi
h the new node is
onne
ted may belong to U . In this 
ase, the new node will form a new leaf
omponent of size one, whi
h is added to the stru
ture. For all other insertions,an existing (but possibly empty) leaf or edge 
omponent C will grow by exa
tlyone node. After inserting into C, the 
omponent is rebuilt to threshold 1/2 bythe algorithm from Lemma 2. If the number of nodes in C has rea
hed � dueto the insertion, it is now split into 
omponents of size at most �=2 by addingthe root v of the separator tree for C to the sample U . For edge 
omponents,one of the new 
omponents formed by the split may be 
onne
ted to three nodesin U . Spe
i�
ally, this happens if and only if v is not lo
ated on the unique pathin T between the two nodes u1; u2 2 U to whi
h C is 
onne
ted. To maintainInvariant 2, we also add to U the node w lo
ated where the paths from v tou1 and from v to u2 separate. In total, this splits the violating 
omponent intothree or more 
omponents ea
h being 
onne
ted to at most two nodes in U ,reestablishing the invariant.We build a 1=2-separator tree for ea
h of the 
omponents whi
h arise by thein
lusion of w in U , let these 
omponents be 
hildren of w, and let w be thesingle 
hild of v in the separator tree for U .The addition of v and w into U 
onstitutes two insertions into the separatortree for U , below the node of whi
h C was a 
hild. To maintain balan
e in the12



separator tree for U after these insertions, we use the rebalan
ing s
heme fromLemma 4.After a rebuild of a subtree S in the separator tree for U during su
h re-balan
ing, the depth of ea
h node in S may have 
hanged. As said, an edge
omponent in the separator tree for T should be a 
hild of the node of largestdepth in the separator tree for U , among the two nodes in U to whi
h it is
onne
ted (these nodes are an
estors of ea
h other in the separator tree for U ,as follows from Fa
t 1). Therefore, for edge 
omponents 
onne
ted to at leastone node in S we must after the rebuild 
he
k the updated depth informationof these nodes, and 
hange parent of the 
omponent if ne
essary. This is doneby a traversal of S during whi
h we inspe
t all edge 
omponents 
onne
ted tonodes in it. By the one-to-one 
orresponden
e between edge 
omponents andedges of U , the number of 
omponents to inspe
t is equal to the number of edgesin U with at least one endpoint in S. By Fa
t 1, this number is bounded byjSj � 1 plus the depth of the root of S in the separator tree for U . Thus, bythe height bound in Lemma 4, inspe
tion of edge 
omponents will only add anadditive logarithmi
 term to the rebalan
ing 
ost for the separator tree for U ,whi
h therefore remains amortized O(log2 jU j).To maintain the value of �, we rebuild the entire stru
ture whenever n hasdoubled, setting� to 4d(logn)=4e. We now dis
uss how to perform su
h a globalrebuilding in O(n) time. The same algorithm is also used as prepro
essing to
onstru
t the separator tree for the initial tree T . Thus, prepro
essing takesO(n) time.To 
onstru
t the separator tree for some existing tree � , we �rst generatethe sample U and its indu
ed 
omponents. We then use the algorithm fromLemma 2 to 
onstru
t a separator tree for U and for ea
h 
omponent. Finally,we atta
h ea
h leaf 
omponent to the single node from U to whi
h it is 
onne
ted,and atta
h ea
h edge 
omponent as a 
hild of the lowest of the two nodes inU to whi
h it is 
onne
ted. In the 
ase of the prepro
essing, we will need thegenerated U to ful�ll Invariant 1 with a value of �=2 instead of � in order toobtain the stated time bound for the �rst n insertions. We use this value in thedes
ription here.The sample U is generated by a traversal of � using e.g. a depth �rst sear
h,during whi
h we maintain a sample and its indu
ed 
omponents for the partof � traversed so far. The algorithm for this is similar to the insertion pro
eduredes
ribed above, ex
ept that no separator trees are maintained for neither U northe edge and leaf 
omponents. Spe
i�
ally, when a new node v is en
ounteredduring the traversal, we 
onsider the node w from whi
h it was rea
hed. If w isin U , we start a new 
omponent. If not, v is added to the 
omponent of w. Ifthe number of nodes in a 
omponent rea
hes �=2, we split it into 
omponents
ontaining at most �=4 nodes ea
h by adding one of its nodes to U . To lo
atethis node, we use the method des
ribed in the �rst lines of the proof of Lemma 1.If ne
essary, we also split one of the new 
omponents to maintain Invariant 2.When a 
omponent over�ows, at least �=4 nodes have been inserted into itsin
e it was 
reated by a 
omponent split or by the start of a new 
omponent.Hen
e, at most 4n=� over�ows 
an o

ur during the generation of U . As ea
h13



over�ow 
an be handled in time O(�), the generation of U 
an be performed intime O(n). By the time bound from Lemma 2, the entire separator tree for �
an be 
onstru
ted in O(n) time. This 
on
ludes our des
ription of the globalrebuilding of the stru
ture.We now analyze the time for m insertions in the separator tree. Clearly, weonly need to 
onsider the 
ase m < n, as the rebalan
ing s
heme is reset bya global rebuild ea
h time n has doubled, and as ea
h su
h rebuild ex
ept theinitial 
onstru
tion amounts toO(1) amortized work per insertion. The insertioninto an indu
ed 
omponent and the rebuilding of its separator tree by Lemma 2takes O(�) = O(logn) time, in
luding any splitting of the 
omponent due toover�ow. Ea
h over�owing 
omponent gives rise to at most two insertions intothe separator tree for U . When a 
omponent is 
reated by a 
omponent split orby the start of a new 
omponent, it 
ontains at most �=2 nodes. The size of the
omponents after the 
onstru
tion of the initial separator tree is also boundedby �=2. Hen
e, after m insertions, at most 2m=� over�ows of 
omponents
an have o

urred. Ea
h over�ow gives rise to at most two insertions into theseparator tree for U , ea
h of whi
h 
osts O(log2 jU j) = O(log2 n). The total
ost of these insertions is then O((m log2 n)=�) = O(m logn). The stated timebound follows.To prove the stated height bound, note that in the initial tree, U 
ontains atmost 8n=� nodes. At most 2m=� over�ows of 
omponents have o

urred duringinsertions, ea
h of whi
h inserts at most two more nodes into U . Hen
e, the sizeof U is bounded by 8(n+m)=�. By Lemma 4, the height of the separator treefor U is most log(8(n +m)=�) + 1 = log(n +m) + 4 � log�. By Invariant 1,the height of the separator trees for the indu
ed 
omponents is at most log�,as these are 1=2-separator trees. Adding one to the height to a

ount for theedges 
onne
ting the root of the separator trees for 
omponents to nodes in theseparator tree for U gives the stated height bound. 22.3 Ordered Separator TreesWe now extend the separator trees maintained by the algorithm from Theorem 1with a spe
i�
 ordering of the 
hildren, fa
ilitating our use of separator treesin Se
tion 3 for �nding insertion points for new spe
ies in evolutionary trees.The basi
 idea is to speed up the sear
h in the separator tree by 
onsidering the
hildren of the nodes in de
reasing size-order. This ensures a larger redu
tionof subtree size in the 
ase that many 
hildren have to be 
onsidered before thesubtree to pro
eed the sear
h in is found.The below lemma shows that size order 
an be assumed after a rebuild of aseparator tree.Lemma 5 A separator tree of size n 
an be pro
essed in time O(n) su
h that
hildren of nodes are sorted in de
reasing size-order.Proof. We �rst traverse the separator tree in linear time and 
ompute the sizeof all nodes. Sin
e the sizes are bounded by n, a list of all nodes 
an be sorted in14



de
reasing size order in linear time using bu
ket-sort [18℄. By s
anning throughthe sorted list of nodes in in
reasing size order making the nodes visited the �rst
hild of their respe
tive parents, we in linear time update the order of 
hildrenat ea
h node in the separator tree su
h that they are sorted in de
reasing size-order. 2However, for the two layered stru
ture from Theorem 1, further details areneeded to a
hieve the following.Theorem 2 Let T be an unrooted tree initially 
ontaining n nodes. After O(n)time prepro
essing, an ordered separator tree for T 
an in time O(m log(n+m))be maintained during m insertions in a way su
h that the height is bounded bylog(n+m) + 5 and su
h that for any path (v1; v2; : : : ; v`) from the root v1 to anode v` in the separator tree, it holds thatYdi�2 2 � Ydi>2 di < 16d(n+m) ; (1)where di is the number whi
h vi+1 has in the ordering of the 
hildren of vi,for 1 � i < `, and d is maxfd1; : : : ; d`�1g.Proof. The proof is by an extension of the 
onstru
tion from Theorem 1, andfamiliarity with the proof of this theorem is assumed here.We extend the 
onstru
tion by an ordering of the 
hildren of the nodes ofthe separator tree as follows. For a node v in U , the 
hildren whi
h belong to Uwill be �rst in the ordering, followed by the the 
hildren not in U . Furthermore,the 
hildren belonging to U will be in de
reasing order in terms of the size oftheir subtrees in the separator tree for U (whi
h is not the same as the size oftheir subtrees in the entire separator tree for T ). For a node v in U , we do notde�ne any parti
ular order among the 
hildren not in U . For a node v not in U ,the 
hildren (none of whi
h 
an be in U), will be in de
reasing order in termsof the size of their subtree in the separator tree for the indu
ed 
omponent inwhi
h they are 
ontained.The above ordering must be maintained during insertions and rebalan
ingof the stru
ture. Whenever an insertion o

urs in an indu
ed 
omponent, it is
ompletely rebuilt by the algorithm from Lemma 2. This algorithm is also usedas the fundamental operation in the rebalan
ing of the separator tree for U .After an invo
ation of this algorithm, the order order 
an be restored withouta�e
ting the time bound, by Lemma 5. When an insertion into U o

urs due tothe splitting of a 
omponent, the ordering may have to 
hange among 
hildrenof nodes on the path from the insertion point to the root in the separator tree forU . With a proper linked list representation of the 
hildren of a node in groupsof 
hildren with equal size, this 
an be done in 
onstant time per node on thepath, as the size of only one 
hild per node 
hanges, and the in
rease in sizeis only one. Thus, this takes time proportional to the height of the separatortree of U . All in all, the ordering 
an be maintained without a�e
ting the timebound from Theorem 1. The height bound also follows from Theorem 1.15



To prove the last 
laim of the lemma, i.e. inequality (1), note that a path(v1; v2; : : : ; v`) will �rst pass through nodes from U , then through nodes from asingle indu
ed 
omponent. Let vj be the last node from U on the path.We �rst 
onsider the part (v1; v2; : : : ; vj) of the path lying within the separa-tor tree for U . This separator tree by Lemma 4 has a threshold of 12 + 13dlog jUje .For di � 2, a des
ent into the di'th 
hild must redu
e by a fa
tor of at least di thenumber of nodes in the 
urrent subtree of the separator tree for U . For di = 1,we 
an only 
laim a fa
tor given by the threshold of the separator tree. Sin
ethis part of the path ends at the latest when there is a single node left in thesubtree of the separator tree for U , we have the following for this part of thepath: 1 � jU j � �12 + 13dlog jU je�k � Ydi�2i<j 1di ;where k = jfi < j j di = 1gj. From Lemma 4 the height of the separator treefor U is bounded by dlog jU je. Using this and the inequality (1 + x=y)y � ex,we get�12 + 13dlog jU je�k � 12k � �1 + 23dlog jU je�dlog jUje � 12k � e2=3 < 22k :Re
alling that jU j � 8(n+m)=�, we get1 < 16(n+m)=� � 12k � Ydi�2i<j 1di : (2)The part (vj+1; : : : ; v`) of the path lies within a separator tree for an indu
ed
omponent, whi
h has a threshold of exa
tly 1=2. By a similar but simplerargument, we get 1 � � � 12k0 � Ydi�2i>j 1di ; (3)where k0 = jfi > j j di = 1gj.At vj , the ordering of the 
hildren not in U is arbitrary, and the measure ofsize in the above argument 
hanges, hen
e the above argument is not valid. Byde�nition we have the inequality dj � d : (4)Multiplying left sides and right sides in the inequalities (2), (3) and (4), andrearranging the result proves (1). 216



a b 
 d e f gi j hFigure 6: The three possible 
hanges to an evolutionary tree when inserting anew spe
ies i, j or h.3 Algorithm for Constru
ting and MaintainingEvolutionary TreesIn this se
tion we des
ribe an algorithm for 
onstru
ting an evolutionary tree Tin the experiment model for a set of n spe
ies in time O(nd logd n), where dis the degree of the tree. Note that d is not known by the algorithm in ad-van
e. The algorithm is a further development of an algorithm by Lingas et al.in [19℄. Our algorithm also supports the insertion of new spe
ies with runningtime O(md logd(n+m)) using at most mdd=2e(log2dd=2e�1(n+m) + O(1)) ex-periments for d > 2, and at most m(log(n+m) +O(1)) experiments for d = 2,where n is the number of spe
ies in the tree to begin with, m is the numberof insertions, and d is the maximum degree of the tree during the sequen
e ofinsertions.The 
onstru
tion algorithm inserts one spe
ies at the time into the tree intime O(d logd n) until all n spe
ies have been inserted. Figure 6 shows thethree possible 
hanges to an evolutionary tree when inserting a new spe
ies: (i)The new spe
ies is a leaf below an existing node; (j) the spe
ies 
auses a newroot to be 
reated; (h) an existing edge is split by 
reating a new internal node.The sear
h for the insertion point of a new spe
ies a is guided by a separatortree ST for the internal nodes of the evolutionary tree T for the spe
ies insertedso far. The sear
h starts at the root of ST . In a manner to be des
ribed below,we de
ide by experiments whi
h subtree, rooted at a 
hild of the root in ST , thesear
h should 
ontinue in. This is repeated re
ursively until the 
orre
t insertionpoint in T for a is found. We keep links between 
orresponding nodes in STand T for swit
hing between the two trees. To fa
ilitate the experiments, we forea
h internal node in T maintain a pointer to an arbitrary leaf in its subtree.When inserting a new internal node in T this pointer is set to point to the newleaf whi
h 
aused the insertion of the node.We say that the insertion point of a is in
ident to a node v, if1. a should be inserted dire
tly below v, or2. a should split an edge whi
h is in
ident to v by 
reating a new internalnode on the edge and make a a leaf below the new node, or17



3. if v is the root of T , a new root of T should be 
reated with a and v asits two 
hildren.The invariant for the sear
h is the following. Assume we have rea
hed node vin the separator tree for the internal nodes in T , and let Sv be the internal nodesof T whi
h are 
ontained in the subtree of ST rooted at v (in
luding v). Thenthe insertion point of the new spe
ies a is in
ident to a node in Sv.Let v be the node in ST for whi
h we want to de
ide if the insertion pointfor the new spe
ies a is in the subtree above v in T ; if it is in a subtree rootedat a 
hild of v in T ; or if a should be inserted as a new 
hild of v. We denote byu1; : : : ; uk the 
hildren of v in T , where u1; : : : ; uk0 are nodes in distin
t subtreesT1; : : : ; Tk0 below v in ST , whereas uk0+1; : : : ; uk are leaves in T or are nodesabove v in ST . The order of the subtrees T1; : : : ; Tk0 below v in ST is givenby the ordered separator tree ST and determines the order of u1; : : : ; uk0 . Theremaining 
hildren uk0+1; : : : ; uk of v may appear in any order.We perform at most dk=2e experiments at v. The i'th experiment is onthe spe
ies a, b and 
, where b and 
 are leaves in T below u2i�1 and u2irespe
tively. The leaves b and 
 
an be lo
ated using the pointers stored at u2i�1and u2i. Note that the least 
ommon an
estor of b and 
 in T is v. If k is oddthen the spe
ies b and 
 in the dk=2e'th experiment is 
hosen as leaves in Tbelow uk and u1 respe
tively, and note that the two leaves are distin
t be
ausek � 2 by de�nition. There are four possible out
omes of the i'th experiment
orresponding to Figure 1:1. (a; b; 
) implies that the insertion point for a is in
ident to a des
endentof uj , where b and 
 are not des
endents of uj , or a is a new leaf below v.2. ((a; b); 
) implies that the insertion point for a is in
ident to a des
endentof u2i�1, sin
e the least 
ommon an
estor of a and b is below v in T .3. ((a; 
); b) is symmetri
 to the above 
ase and the insertion point of a isin
ident to a des
endent of u2i (u1 for the dk=2e'th experiment if k odd).4. ((b; 
); a) implies that the insertion point of a is in the subtree above v,sin
e the least 
ommon an
estor of a and b is above v. If v is the presentroot of T , a new root should be 
reated with 
hildren a and v.We perform experiments for in
reasing i until we get an out
ome di�eren
efrom Case 1, or until we have performed all dk=2e experiments all with out
ome
f. Case 1. In the latter 
ase spe
ies a should be inserted dire
tly below v in T asa new 
hild. In the former 
ase, when the out
ome of an experiment is di�erentfrom Case 1, we know in whi
h subtree adja
ent to v in T the insertion pointfor spe
ies a is lo
ated. If there is no 
orresponding subtree below v in ST , thenwe have identi�ed the edge in
ident to v in T whi
h the insertion of spe
ies ashould split. Otherwise we 
ontinue re
ursively sear
hing for the insertion pointfor spe
ies a at the 
hild of v in ST whi
h roots the separator tree for thesubtree adja
ent to v whi
h has been identi�ed to 
ontain the insertion pointfor a. When the insertion point for spe
ies a is found, we insert one leaf and atmost one internal node into T , and ST is updated a

ording to Theorem 2.18



Lemma 6 Given an evolutionary tree T for n spe
ies with degree d, and a sepa-rator tree ST for T a

ording to Theorem 2, then a new spe
ies a 
an be insertedinto T and ST in amortized time O(d logd n) using at most dd=2e(log2dd=2e�1 n+O(1)) experiments for d > 2, and at most logn+O(1) experiments for d = 2.Proof. Let v1; : : : ; v` be the nodes in ST (and T ) visited by the algorithm whileinserting spe
ies a, where v1 is the root of ST and vj+1 is a 
hild of vj in ST .De�ne di by vi+1 being the di'th 
hild of vi in ST , for 1 � i < `.For d = 2 we perform exa
tly one experiment at ea
h vi. The total number ofexperiments is thus bounded by the height of the separator tree. By Theorem 2it follows that the number of experiments is bounded by logn + O(1). In thefollowing we 
onsider the 
ase where d � 3.For i < `, let xi denote the number of experiments performed at node vi. Wehave xi � dd=2e and di � 2xi � 1, sin
e ea
h experiment 
onsiders two 
hildrenof vi in T and the �rst experiment also identi�es if a should be inserted into thesubtree above vi. At v` we perform at most dd=2e experiments.For d1; : : : ; d`�1 we from Theorem 2 have the 
onstraintQdi�2 2 �Qdi>2 di �16dn, sin
e jST j � n� 1. To prove the stated bound on the worst 
ase numberof experiments we must maximize Pì=0 xi under the above 
onstraints. Wehave log(16dn) � Xdi�2 1 + Xdi>2 log di� Xxi=1 1 + Xxi>1 log di� Xxi=1xi + Xxi>1xi 1xi log(2xi � 1)� 1dd=2e log(2dd=2e � 1) `�1Xi=1 xi ;where the se
ond inequality holds sin
e xi > 1 implies di � 3. The last inequal-ity holds sin
e for f(x) = 1x log(2x � 1) we have 1 > f(2) > f(3) and f(x) isde
reasing for x � 3, i.e. f(x) is minimized when x is maximized.We 
on
lude thatP`�1i=1 xi � dd=2e log2dd=2e�1(16dn), i.e. for the total num-ber of experiments we havePì=1 xi � dd=2e(log2dd=2e�1(16dn) + 1).The time needed for the insertion is proportional to the number of experi-ments performed plus the time to update ST . By Theorem 2 the total time isthus O(d logd n). 2From Lemma 6 and Theorem 2 we get the following bounds for 
onstru
tingand maintaining an evolutionary tree under the insertion of new spe
ies in theexperiment model.Theorem 3 After O(n) prepro
essing time an evolutionary tree T for n spe
ies
an be maintained under m insertions in time O(dm logd(n+m)) using at most19



mdd=2e(log2dd=2e�1(n+m)+O(1)) experiments for d > 2, and at mostm(log(n+m) + O(1)) experiments for d = 2, where d is the maximum degree of the treeduring the sequen
e of insertions.4 Adversary for Constru
ting Evolutionary TreesTo prove a lower bound on the number of experiments required for 
onstru
tingan evolutionary tree of n spe
ies with degree at most d, we des
ribe an adversarystrategy for de
iding the out
ome of experiments. The adversary is required togive 
onsistent answers, i.e. the reported out
ome of an experiment is not allowedto 
ontradi
t the out
ome of previously performed experiments. A 
onstru
tionalgorithm is able to 
onstru
t an unambiguous evolutionary tree based on theperformed experiments when the adversary is not able to answer any additionalexperiments in su
h a way that it 
ontradi
ts the 
onstru
ted evolutionary tree.The role of the adversary is to for
e any 
onstru
tion algorithm to performprovably many experiments in order to 
onstru
t an unambiguous evolutionarytree.To implement the adversary strategy for de
iding the out
ome of experimentsin a 
onsistent way, the adversary maintains a rooted in�nite d-ary tree, D,where ea
h of the n spe
ies are stored at one of the nodes, allowing nodesto store several spe
ies. Initially all n spe
ies are stored at the root. Forea
h experiment performed, the adversary 
an move the spe
ies downwards byperforming a sequen
e of moves, where ea
h move shifts a spe
ies from the nodeit is 
urrently stored at to a 
hild of the node.By de
iding the out
ome of experiments, the adversary reveals informationabout the evolutionary relationships between the spe
ies to the 
onstru
tionalgorithm performing the experiments. The distribution of the n spe
ies on Drepresents the information revealed by the adversary (together with the for-bidden and 
on�i
ting lists introdu
ed below). The evolutionary tree T to beestablished by the 
onstru
tion algorithm will be a 
onne
ted subset of nodesof D in
luding the root. Initially, when all spe
ies are stored at the root, the
onstru
tion algorithm has no information about the evolutionary relationships.The evolutionary relationships revealed to the 
onstru
tion algorithm by the
urrent distribution of the spe
ies on D 
orresponds to the tree formed by thepaths from the root of D to the nodes storing at least one spe
ies. More pre-
isely, the 
orresponden
e between the �nal evolutionary tree T and the 
urrentdistribution of the spe
ies on D is that if v is a leaf of T labeled a then spe
ies ais stored at some node on the path in D from the root to the node v.Our obje
tive is to prove that if an algorithm 
omputes T , then the n spe
ieson average must have been moved 
(logd n) levels down by the adversary, andthat the number of moves by the adversary is a fra
tion O(1=d) of the numberof experiments performed. These two fa
ts imply the 
(nd logd n) lower boundon the number of experiments required.To 
ontrol its strategy for moving spe
ies on D, the adversary maintainsfor ea
h spe
ies a a forbidden list F(a) of nodes and a 
on�i
ting list C(a) of20



spe
ies. If a is stored at node v, then F(a) is a subset of the 
hildren 
1; : : : ; 
dof v, and C(a) is a subset of the other spe
ies stored at v. If 
i 2 F(a), then a isnot allowed to be moved to 
hild 
i, and if b 2 C(a) then a and b must be movedto two distin
t 
hildren of v. It will be an invariant that b 2 C(a) if and only ifa 2 C(b). Initially all forbidden and 
on�i
ting lists are empty. The adversarymaintains the forbidden and 
on�i
ting lists su
h that the size of the forbiddenand 
on�i
ting lists of a spe
ies a is bounded by the invariantjF(a)j+ jC(a)j � d� 2 : (5)The adversary uses the sum jF(a)j+jC(a)j to de
ide when to move a spe
ies aone level down in D. Whenever the invariant (5) be
omes violated be
ausejF(a)j+ jC(a)j = d�1, for a spe
ies a stored at a node v, the adversary moves ato a 
hild 
i =2 F(a) of v. Sin
e jF(a)j � d � 1, su
h a 
i =2 F(a) is guaranteedto exist. When moving a from v to 
i, the adversary updates the forbidden and
on�i
ting lists as follows: For all b 2 C(a), a is deleted from C(b) and 
i isinserted into F(b). If 
i was already in F(b), the sum jF(b)j+ jC(b)j de
reases byone, if 
i was not in F(b) the sum remains un
hanged. Finally, F(a) and C(a)are assigned the empty set.For two spe
ies a and b, we de�ne their least 
ommon an
estor, LCA(a; b),to be the least 
ommon an
estor of the two nodes storing a and b in D. Wedenote LCA(a; b) as �xed if it 
annot be 
hanged by future moves of a and bby the adversary. If LCA(a; b) is �xed then the least 
ommon an
estor of thetwo spe
ies a and b in T is the node LCA(a; b). If a is stored at node va and bis stored at node vb, it follows that LCA(a; b) is �xed if and only if one of thefollowing four 
onditions is satis�ed.1. va = LCA(a; b) = vb and a 2 C(b) (and b 2 C(a)).2. va 6= LCA(a; b) = vb and 
i 2 F(b), where 
i is the 
hild of vb su
h thatthe subtree rooted at 
i 
ontains va.3. va = LCA(a; b) 6= vb and 
i 2 F(a), where 
i is the 
hild of va su
h thatthe subtree rooted at 
i 
ontains vb.4. va 6= LCA(a; b) 6= vb.In Case 1, spe
ies a and b are stored at the same node and 
annot be movedto the same 
hild be
ause a 2 C(b), i.e. LCA(a; b) is �xed as the node whi
h
urrently stores a and b. Cases 2 and 3 are symmetri
. In Case 2, spe
ies ais stored at a des
endant of a 
hild 
i of the node storing b, and b 
annotbe moved to 
i be
ause 
i 2 F(b), i.e. LCA(a; b) is �xed as the node whi
h
urrently stores b. Finally, in Case 4, spe
ies a and b are stored at nodes indisjoint subtrees, i.e. LCA(a; b) is already �xed.The operation Fix(a; b) ensures that LCA(a; b) is �xed as follows:1. If va = LCA(a; b) = vb and a =2 C(b) then insert a into C(b) and insert binto C(a). 21



2. If va 6= LCA(a; b) = vb and 
i =2 F(b), where 
i is the 
hild of vb su
h thatthe subtree rooted at 
i 
ontains va, then insert 
i into F(b).3. If va = LCA(a; b) 6= vb and 
i =2 F(a), where 
i is the 
hild of va su
h thatthe subtree rooted at 
i 
ontains vb, then insert 
i into F(a).Otherwise Fix(a; b) does nothing. If performing Fix(a; b) in
reases jF(a)j su
hthat jF(a)j + jC(a)j = d � 1, then a is moved one level down as des
ribedabove. Similarly, if jF(b)j+ jC(b)j = d�1 then b is moved one level down. Afterperforming Fix(a; b) we thus have that jF(a)j+jC(a)j � d�2 and jF(b)j+jC(b)j �d� 2, whi
h ensures that the invariant (5) is not violated.When the 
onstru
tion algorithm performs an experiment on three spe
iesa, b and 
, the adversary de
ides the out
ome of the experiment based on the
urrent distribution of the spe
ies on D and the 
ontent of the 
on�i
ting andforbidden lists. To ensure the 
onsisten
y of future answers, the adversary �rst�x the least 
ommon an
estors of a, b and 
 by applying the operation Fixthree times: Fix(a; b), Fix(a; 
) and Fix(b; 
). After having �xed LCA(a; b),LCA(a; 
), and LCA(b; 
), the adversary de
ides the out
ome of the experimentby examining LCA(a; b), LCA(a; 
), and LCA(b; 
) in D as des
ribed below.The four 
ases 
orrespond to the four possible out
omes of an experiment 
f.Figure 1.1. If LCA(a; b) = LCA(b; 
) = LCA(a; 
) then return (a; b; 
).2. If LCA(a; b) 6= LCA(b; 
) = LCA(a; 
) then return ((a; b); 
).3. If LCA(a; 
) 6= LCA(a; b) = LCA(b; 
) then return ((a; 
); b).4. If LCA(b; 
) 6= LCA(a; b) = LCA(a; 
) then return ((b; 
); a).5 Lower Bound AnalysisWe will argue that the above adversary strategy for
es any 
onstru
tion algo-rithm to perform at least 
(nd logd n) experiments before being able to 
on
ludeunambiguously the evolutionary relationships between the n spe
ies.Theorem 4 Constru
ting an evolutionary tree of n spe
ies requires 
(nd logd n)experiments, where d is the degree of the 
onstru
ted tree.Proof. We �rst observe that an appli
ation of Fix(a; b) at most in
reases thesize of the two 
on�i
ting lists, C(a) and C(b), by one, or the size of one ofthe forbidden list, F(a) or F(b), by one. If performing Fix(a; b) in
reases thesum jF(a)j + jC(a)j to d � 1, then spe
ies a is moved one level down in Dand F(a) and C(a) are emptied, whi
h 
auses the overall sum of the sizes offorbidden and 
on�i
ting lists to de
rease by d � 1. This implies that a totalof k Fix operations, starting with the initial 
on�guration where all 
on�i
tingand forbidden lists are empty, 
an 
ause at most 2k=(d � 1) moves. Sin
e an22



experiment involves three Fix operations, we 
an bound the total number ofmoves during m experiments by 6m=(d� 1).Now 
onsider the 
on�guration, i.e. the distribution of spe
ies and the 
on-tent of 
on�i
ting and forbidden lists, when the 
onstru
tion algorithm 
om-puting the evolutionary tree terminates. Some spe
ies may have nonemptyforbidden lists or 
on�i
ting lists. By for
ing one additional move on ea
h ofthese spe
ies as des
ribed in Se
tion 4, we 
an guarantee that all forbidden and
on�i
ting lists are empty. At most n additional moves must be performed.Let T 0 be the tree formed by the paths in D from the root to the nodesstoring at least one spe
ies. We �rst argue that all internal nodes of T 0 have atleast two 
hildren. If a spe
ies has been moved to a 
hild of a node, then theforbidden list or 
on�i
ting list of the spe
ies was nonempty. If the forbiddenlist was nonempty, then ea
h of the forbidden subtrees already 
ontained atleast one spe
ies, and if the 
on�i
ting list was nonempty there was at least onespe
ies on the same node that was required to be moved to another subtree, atthe latest by the n additional moves. It follows that if a spe
ies has been movedto a 
hild of a node then at least one spe
ies has been moved to another 
hildof the node, implying that T 0 has no node with only one 
hild.We next argue that all n spe
ies are stored at the leaves of T 0 and that ea
hleaf of T 0 stores either one or two spe
ies. If there is a non-leaf node in T 0 thatstill 
ontains a spe
ies, then this spe
ies 
an be moved to at least two 
hildrenalready storing at least one spe
ies in the respe
tive subtrees, implying that theadversary 
an for
e at least two distin
t evolutionary trees whi
h are 
onsistentwith the answers returned. This is a 
ontradi
tion. It follows that all spe
iesare stored at leaves of T 0. If a leaf of T 0 stores three or more spe
ies, then anexperiment on three of these spe
ies 
an generate di�erent evolutionary trees,whi
h again is a 
ontradi
tion. We 
on
lude that ea
h leaf of T 0 stores exa
tlyone or two spe
ies, and all internal nodes of T 0 store no spe
ies. It followsthat T 0 has at least n=2 leaves.For a tree with k leaves and degree d, the sum of the depths of the leaves is atleast k logd k. Sin
e ea
h leaf of T 0 stores at most two spe
ies, the n spe
ies 
anbe partitioned into two disjoint sets of size dn=2e and bn=2
 su
h that in ea
hset all spe
ies are on distin
t leaves of T 0. The sum of the depths of all spe
ies isthus at least dn=2e logddn=2e+ bn=2
 logdbn=2
 � n logd(n=2). Sin
e the depthof a spe
ies in D is equal to the number of times the spe
ies has been moved onelevel down in D, and sin
e m experiments generate at most 6m=(d� 1) movesand we perform at most n additional moves, we get the inequalityn logd(n=2) � 6m=(d� 1) + n ;from whi
h the lower bound m � (d� 1)n(logd(n=2)� 1)=6 follows. 2Referen
es[1℄ S. Alstrup, J. Holm, K. de Li
htenberg, and M. Thorup. Minimizing di-ameters of dynami
 trees. In Pro
. 24th Int. Colloquium on Automata,23



Languages and Programming (ICALP), volume 1256 of Le
ture Notes inComputer S
ien
e, pages 270�280. Springer-Verlag, 1997.[2℄ S. Alstrup, J. Holm, and M. Thorup. Maintaining 
enter and median indynami
 trees. In Pro
. 7th S
andinavian Workshop on Algorithm Theory(SWAT), volume 1851 of Le
ture Notes in Computer S
ien
e, pages 46�56.Springer-Verlag, 2000.[3℄ A. Andersson. Improving partial rebuilding by using simple balan
e 
riteria.In Pro
. 1st Workshop on Algorithms and Data Stru
tures (WADS), volume382 of Le
ture Notes in Computer S
ien
e, pages 393�402. Springer-Verlag,1989.[4℄ A. Andersson and T. W. Lai. Fast updating of well-balan
ed trees. In Pro
.2nd S
andinavian Workshop on Algorithm Theory (SWAT), volume 447 ofLe
ture Notes in Computer S
ien
e, pages 111�121. Springer-Verlag, 1990.[5℄ A. Borodin, L. J. Guibas, N. A. Lyn
h, and A. C. Yao. E�
ient sear
hingusing partial ordering. Information Pro
essing Letters, 12:71�75, 1981.[6℄ G. S. Brodal, S. Chaudhuri, and J. Radhakrishnan. The randomized
omplexity of maintaining the minimum. Nordi
 Journal of Computing,Sele
ted Papers of the 5th S
andinavian Workshop on Algorithm Theory(SWAT), 3(4):337�351, 1996.[7℄ R. F. Cohen and R. Tamassia. Dynami
 expression trees. Algorithmi
a,13(3):245�265, 1995.[8℄ R. Cole and U. Vishkin. The a

elerated 
entroid de
omposition te
h-nique for optimal parallel tree evaluation in logarithmi
 time. Algorithmi
a,3:329�346, 1988.[9℄ R. W. Floyd. Algorithm 245: Treesort3. Communi
ations of the ACM,7(12):701, 1964.[10℄ G. N. Frederi
kson. Data stru
tures for on-line updating of minimum span-ning trees, with appli
ations. SIAM J. Comput., 14(4):781�798, 1985.[11℄ G. N. Frederi
kson. Ambivalent data stru
tures for dynami
 2-edge-
onne
tivity and k smallest spanning trees. SIAM J. Comput., 26(2):484�538, 1997.[12℄ A. J. Goldman. Optimal 
enter lo
ation in simple networks. TransportationS
i., 5:212�221, 1971.[13℄ L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Lineartime algorithms for visibility and shortest path problems inside triangulatedsimple polygons. Algorithmi
a, 2:209�233, 1987.[14℄ F. Harary. Graph Theory. Addison-Wesley, Mass., 1969.24



[15℄ C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math., 70:185�190, 1869.[16℄ S. K. Kannan, E. L. Lawler, and T. J. Warnow. Determining the evolu-tionary tree using experiments. Journal of Algorithms, 21:26�50, 1996.[17℄ M. Y. Kao, A. Lingas, and A. Östlin. Balan
ed randomized tree splittingwith appli
ations to evolutionary tree 
onstru
tions. In Pro
. 16th An-nual Symposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS), vol-ume 1563 of Le
ture Notes in Computer S
ien
e, pages 184�196. Springer-Verlag, 1999.[18℄ D. E. Knuth. Sorting and Sear
hing, volume 3 of The Art of ComputerProgramming. Addison�Wesley, third edition, 1998.[19℄ A. Lingas, H. Olsson, and A. Östlin. E�
ient merging, 
onstru
tion, andmaintenan
e of evolutionary trees. In Pro
. 26th Int. Colloquium on Au-tomata, Languages and Programming (ICALP), volume 1644 of Le
tureNotes in Computer S
ien
e, pages 544�553. Springer-Verlag, 1999.[20℄ N. Megiddo. Applying parallel 
omputation algorithms in the design ofserial algorithms. J. ACM, 30(4):852�865, 1983.[21℄ N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An O(n log2 n)algorithm for the kth longest path in a tree with appli
ations to lo
ationproblems. SIAM J. Comput., 10(2):328�337, 1981.[22℄ C. S
hwarz, M. Smid, and J. Snoeyink. An optimal algorithm for the on-line
losest pair problem. Algorithmi
a, 12(1):18�29, 1994.[23℄ C. G. Sibley and J. E. Ahlquist. Phylogeny and 
lassi�
ation of birds basedon the data of DNA-DNA-hybridization. Current Ornithology, 1:245�292,1983.[24℄ D. D. Sleator and R. E. Tarjan. A data stru
ture for dynami
 trees. J. Com-put. Syst. S
i., 26(3):362�391, 1983.[25℄ R. E. Tarjan. Data Stru
tures and Network Algortihms. So
iety for Indus-trial and Applied Matehmati
s, Philadelphia, Pennsylvania, 1983.[26℄ J. W. J. Williams. Algorithm 232: Heapsort. Communi
ations of the ACM,7(6):347�348, 1964.
25


