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Abstract. In this article, we show several results obtained by combining the use of stable distributions
with pseudorandom generators for bounded space. In particular:

—We show that, for any p ∈ (0, 2], one can maintain (using only O(log n/ε2) words of storage) a
sketch C(q) of a point q ∈ ln

p under dynamic updates of its coordinates. The sketch has the property
that, given C(q) and C(s), one can estimate ‖q − s‖p up to a factor of (1+ε) with large probability.
This solves the main open problem of Feigenbaum et al. [1999].

—We show that the aforementioned sketching approach directly translates into an approximate algo-
rithm that, for a fixed linear mapping A, and given x ∈ �n and y ∈ �m , estimates ‖Ax − y‖p in
O(n + m) time, for any p ∈ (0, 2]. This generalizes an earlier algorithm of Wasserman and Blum
[1997] which worked for the case p = 2.

—We obtain another sketch function C ′ which probabilistically embeds ln
1 into a normed space lm

1 .
The embedding guarantees that, if we set m = log(1/δ)O(1/ε), then for any pair of points q, s ∈ ln

1 ,
the distance between q and s does not increase by more than (1 + ε) with constant probability,
and it does not decrease by more than (1 − ε) with probability 1 − δ. This is the only known
dimensionality reduction theorem for the l1 norm. In fact, stronger theorems of this type (i.e., that
guarantee very low probability of expansion as well as of contraction) cannot exist [Brinkman and
Charikar 2003].

—We give an explicit embedding of ln
2 into lnO(log n)

1 with distortion (1 + 1/n�(1)).

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: sketching, dimensionality reduction, embeddings, data streams,
norms

1. Introduction

Stable distributions [Zolotarev 1986] are defined as limits of normalized sums
of independent identically distributed variables. In particular, a stable distribution
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with parameter p has the property that for any three independent random variables
X, Y, Z drawn from that distribution, and any a, b ∈ �, the variables aX + bY and
(|a|p + |b|p)1/p Z are identically distributed. The most well-known example of a
stable distribution is Gaussian (or normal) distribution. However, the class is much
wider; for example, it includes heavy-tailed distributions. Stable distributions have
found numerous applications in many areas. They are particularly useful in local
theory of Banach spaces [Lindenstrauss and Milman], where, for example, they have
been used to show a low-distortion embedding of l p into l1 for p ∈ (1, 2] [Johnson
and Schechtman 1982]. However, prior to this work, few applications to theoretical
computer science have been known.

In this article, we show that the combination of stable distributions and bounded
space pseudorandom generators [Nisan 1990] forms a powerful tool for proving a
variety of algorithmic results. The high-level idea behind this approach is as follows.
Assume that we would like to construct a compact representation of a vector u ∈ ln

p.
It is known (e.g., see Johnson and Schechtman [1982]) that an inner product of u
with a sequence r of n i.i.d. random variables drawn from p-stable distribution
has “magnitude” proportional to ‖u‖p. This implies that the dot product can be
used to recover an approximate value of ‖u‖p. Since the inner product u · r can
be computed in small space, one can use pseudorandom generators to reduce the
number of required truly random bits. This in turn translates into reduction of storage
or dimensionality or other parameters of interest, depending on the application.

In the following, we describe in more detail applications of this technique to
computing with data streams, space-efficient dimensionality reduction in l1 and l2
and explicit embeddings of l2 into l1. Further applications are sketched in Section 6.

1.1. STREAM COMPUTATION. The first problem we address is defined as fol-
lows (see Henzinger et al. [1998], and Muthukrishnan [2003] for a background
on stream computation). Assume that we have an access to a stream S of data,
where each chunk of data is of the form (i, a), where i ∈ [n] = {0 · · · n − 1} and
a ∈ {−M . . . M}. We see the elements of the stream one by one. Our goal is to
approximate (up to the multiplicative factor (1 ± ε)) the l p norm of the stream S,
that is, the quantity L p(S) = ‖V (S)‖p, where

V (S)i =
∑

(i,a)∈S

a.

Estimating the norm of a stream is a fundamental primitive in the growing area of
data stream computation, and is used as a subroutine in many streaming algorithms
(Section 6.2 for examples).statistics of Net-Flow data [Feigenbaum et al. 1999].
An obvious solution to this problem is to maintain a counter ci for each i and
compute the sum of |ci |p’s at the end. Unfortunately, this solution requires �(n)
words of storage.

In their seminal paper, Alon et al. [1996] proposed a randomized scheme for
approximating L2(S) using O(1/ε2) integers, each O(log(n + M))-bits long.
Feigenbaum et al. [1999] proposed a different algorithm for estimating L1(S).
Their algorithm works in a restricted setting where (roughly) for each i , the stream
S contains at most two pairs (i, a). An alternative way to view their result is to
assume two streams, one (Sr ) containing red pairs and another one (Sb) contain-
ing blue pairs; for each i there is at most one pair (i, a) of each color. The goal
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is to compute sketches C(Sr ) and C(Sb) of small size, such that the approximate
value L1(Sr , Sb) = ∑

i | ∑(i,a)∈Sr
a − ∑

(i,a)∈Sb
a| can be quickly evaluated from

C(Sr ) and C(Sb) by applying some function F (see Feigenbaum et al. [1999] for
more details of the model). Computing sketches of normed vectors enables us to
compress the data and speed-up computation, for example, see Indyk et al. [2000]
where this approach was shown to give up to an order of magnitude speed-up
for various data-mining problems; see also Broder et al. [1997], Broder [1998],
and Cohen et al. [2000] (where a somewhat different similarity measure has been
used).

In this article, we propose a unified framework for approximating L p(S) for p ∈
(0, 2] in small space. As indicated earlier, our algorithm proceeds by maintaining a
dot product of the vector V (S) with a vector r of n independent random variables,
each drawn from a p-stable distribution. Since the dot product can be computed
in small space, we can generate the random variables using only small number of
truly random bits. In this way, we make sure that the total storage use is low.

Our algorithm does not have the aforementioned restrictions of Feigenbaum
et al. [1999]; thus, it solves the main open problem from that article. Moreover,
our algorithm maintains only linear combinations of the input values, and therefore
extends also to the sketch model.

We note that the algorithms of Alon et al. [1996] also maintained a dot product
r · V (S). However, in their case, the vector r had entries from {−1, 1} and was
instead drawn from a 4-wise independent family. In this case, the distribution of the
dot product s = V (S) · r is not easy to predict. However, it can be shown [Alon et al.
1996] that the second moment of s is equal to ‖V (S)‖2

2, so L2(S) can be estimated
(roughly) from the median of squares of several dot products. The advantage of
that approach is that 4-wise independent random variables can be generated from
only O(log(n + M)) random bits. The disadvantage is that it is not known how to
generalize their technique to other L p(S)’s for p < 2.

1.2. DIMENSIONALITY REDUCTION. Dimensionality reduction is a technique
that enables to map a set of high-dimensional points into a set of points in low-
dimension, such that both sets have similar “distance properties”. This technique,
especially the result of Johnson and Lindenstrauss [1984] for the l2 norm, found nu-
merous applications in theoretical computer science (cf. Indyk [2001]). We observe
that the aforementioned sketching results can be viewed as low-storage dimension-
ality reduction theorems. Indeed, the streams Sb and Sr can be viewed as points
in n-dimensional space and L p(Sr , Sb) is just the l p distance between the points.
Then, the sketch operator C can be viewed as a mapping of ln

p into the “sketch
space” (say C), such that

—each point in C can be described using only m numbers, where m is “small”

—the value of L p(Sr , Sb) is approximately equal to F(C(Sr ), C(Sb))

Unfortunately, our sketches (as well as the sketches of Alon et al. [1996]) have
the undesirable property that the pair (C, F) is not a normed space. Specifically,
the definition of F involves the median operator; for example, for l1 we have

F((x1, . . . , xm), (y1, . . . , ym)) = median(|x1 − y1|, . . . , |xm − ym |)
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The fact that F is not a norm significantly restricts the applications of the map-
ping C as a dimensionality reduction technique. This is because it prohibits the
usage of a large number of algorithms designed for normed spaces. To overcome
this obstacle we proceed as follows. For l2, we observe that if we modify our algo-
rithm by replacing the median by ‖ · ‖2, then the accuracy of the estimation does
not change (this follows by observing that the dimensionality reduction lemma of
Johnson-Lindenstrauss requires few truly random bits). This gives a small-
space/streaming version of the Johnson-Lindenstrauss lemma.

For l1, the situation is more complicated, since for sketch points
(x1, . . . , xm), (y1, . . . , ym) the expectation E[

∑
i |xi − yi |] is undefined (i.e., is

equal to ∞). Thus, we cannot simply replace the median by ‖ · ‖1. However, we
are able to show that for any γ > 0 there exists a sketch function C which maps
the points into m = �(ln(1/δ)1/(ε−γ ))-dimensional space �m such that for any pair
of points p, q:

—‖C(p) − C(q)‖1 ≥ (1 − ε)‖p − q‖1 with probability at least 1 − δ (i.e., C is
almost noncontractive with high probability)

—‖C(p) −C(q)‖1 ≤ (1 + ε)‖p −q‖1 with probability at least 1 − (1 +γ )/(1 + ε)
(i.e., is almost non-expansive with a constant probability)

Note, that this can be viewed as a “one-sided” analog of Johnson-Lindenstrauss
dimensionality reduction for the l1 norm. The two-sided analog is impossible by
the result of Brinkman and Charikar [2003]. Although we cannot ensure that the
mapping does not expand a fixed pair of points with high probability, the one-sided
guarantee is good enough for several purposes. In particular, consider searching for
the nearest neighbor (say of point q): if the distance from q to its nearest neighbor
p does not expand much, and the distance to any other point p′ does not contract
much, we are still guaranteed to return an approximate nearest neighbor of q (note
that we can ensure this happens with constant probability, which can be amplified
by using multiple data structures).

1.3. DETERMINISTIC EMBEDDINGS OF l2 INTO l1. The study of low-distortion
embeddings between normed spaces is a rich area of study in mathematics. One of
the major results in that area (e.g., see Figiel et al. [1977] and references therein) is
that ln

2 can be embedded into l O(n)
1 with distortion (1+ε) (the O() constant depends

on ε). Unfortunately, none of the many proofs of this theorem is constructive, since
they use probabilistic method to construct the embeddings. To our knowledge, the
only constructive result of this type [Berger 1997; Linial et al. 1994] embeds ln

2 into
l O(n2)
1 with

√
3 distortion.

We provide an explicit embedding of ln
2 into lnO(log n)

1 with distortion (1+1/n�(1)).
By combining the result with the deterministic nearest neighbor algorithm of Indyk
[2000] we obtain a (3 + ε)-approximate deterministic algorithm for the nearest
neighbor search in ln

2 . The algorithm uses preprocessing and storage that is polyno-
mial in the number N of input points and nlog n , and has query time that is polynomial
in nlog n and log N .

2. Preliminaries

2.1. STABLE DISTRIBUTION. A distribution D over � is called p-stable, if there
exists p ≥ 0 such that for any n real numbers a1 . . . an and i.i.d. variables X1 . . . Xn
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variables with distributionD, the random variable
∑

i ai Xi has the same distribution
as the variable (

∑
i |ai |p)1/p X , where X is a random variable with distribution D.

It is known [Zolotarev 1986] that stable distributions exist for any p ∈ (0, 2]. In
particular:

—a Cauchy distribution DC , defined by the density function c(x) = 1
π

1
1+x2 , is

1-stable

—a Gaussian (normal) distribution DG , defined by the density function g(x) =
1√
2π

e−x2/2, is 2-stable

In general, a random variable X from a p-stable distribution can be gener-
ated [Chambers et al. 1976] by taking:

X = sin(p�)

cos1/p �

(
cos(�(1 − p))

− ln r

)(1−p)/p

,

where � is uniform on [−π/2, π/2] and r is uniform on [0, 1].

2.2. PSEUDORANDOM GENERATORS (PRGS). To reduce the randomness needed
to generate a vector of random variables from a stable distribution, we use pseudo-
random generators for bounded space computation [Nisan 1990]. The intuition is
that our algorithms perform only a dot product of the random vector with the vector
V (S), and the dot product can be computed in small space.

As in Nisan [1990], we consider PRGs which fool any Finite State Machine
(FSM) which uses at most O(S) bits of space (or 2O(S) states). Assume that a FSM
Q ∈ space(S) uses at most k chunks of random bits, where each chunk is of length
b. The generator G : {0, 1}m → ({0, 1}b)k expands a “small number” m of “truly
random” bits into kb bits which “look random” for Q. Formally, it is defined as
follows. Let Dt be the uniform distribution over {0, 1}t . For any (discrete) random
variable X let D[X ] be the distribution of X , interpreted as a vector of probabilities.
Let Q(x) denote the state of Q after using the random bits sequence x . Then we
say that G is a PRG with parameter ε > 0 for a class C of FSMs, if for every
Q ∈ C

‖D[Qx∈Dbk (x)] − D[Qx∈Dm (G(x))]‖1 ≤ ε.

FACT 1. [Nisan 1990] There exists a PRG G for space(S) with parameter
ε = 2−O(S) such that:

—G expands O(S log R) bits into O(R) bits
—G requires only O(S) bits of storage (in addition to its random input)
—any length-O(S) chunk of G(x) can be computed using O(log R) arithmetic

operations on O(S)-bit words

2.3. OTHER ASSUMPTIONS AND NOTATION. To simplify expressions we assume
that M ≥ n, and that the number of pairs in the stream S is polynomial in n. Also,
we will assume that the processor can operate on log M-bit words in unit cost. One
can easily modify our upper bounds for the case when either of these assumptions
is not true.
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3. Approximation of the L p Norm of Data Streams

Let S be the data stream sequence containing pairs (i, a), for i ∈ [n] and a ∈
{−M . . . M}. We present the algorithm for calculating L1(S); the extension to p �= 1
is discussed at the end. For simplicity, we focus exclusively on the problem of
estimating L p(S); the algorithms automatically generate the sketches of S as well.

We present our algorithm in three steps. In the first step, we present an algorithm
which approximates L1(S), but suffers from two drawbacks:

(1) It assumes infinite precision of the calculations (i.e., it uses arithmetic opera-
tions on real numbers)

(2) Although it uses only O(1/ε2) words for storage, it performs random (and
multiple) access to as many as �(n) random numbers. Thus a natural imple-
mentation of the algorithm would require �(n) storage.

Despite these limitations, the algorithm will serve well as an illustration of our
main ideas. In the next two steps, we will remove the limitations.

3.1. AN IDEAL ALGORITHM. Let l = c/ε2 log 1/δ for a constant c > 1 specified
later. The algorithm works as follows.

(1) Initialize nl independent random variables X j
i , i ∈ [n], j ∈ [l] drawn from Cauchy distribution;

set S j = 0, for j ∈ [l]

(2) For each new pair (i, a): perform S j = S j + aX j
i for all j ∈ [l]

(3) Return median(|S0|, . . . |Sl−1|)
Let ci = ∑

(i,a)∈S a; if there is no (i, a) ∈ S, we define ci = 0. Thus L1(S) =
C = ∑

i |ci |. The following claim justifies the correctness of the algorithm.

CLAIM 1. Each S j has the same distribution as C X where X has Cauchy
distribution.

PROOF. Follows from the 1-stability of Cauchy distribution.

Therefore, it is sufficient to estimate C from independent samples of C X , that
is, from S0 · · · Sl−1. To this end, we use the following Lemmas.

LEMMA 1. If X has Cauchy distribution, then median(|X |) = 1. Therefore,
median(a|X |) = a, for any a > 0.

PROOF. If X has Cauchy distribution, then the density function of |X | is f (x) =
2
π

1
1+x2 . Therefore, the distribution function of |X | is equal to

F(z) =
∫ z

0
f (x)dx = 2

π
arctan(z).

Since tan(π/4) = 1, we have F(1) = 1/2. Thus median(|X |) = 1.

CLAIM 2. For any distribution D on � with the distribution function F,
take l = c/ε2 log 1/δ independent samples X0 . . . Xl−1 of D; also, let X =
median (X0 . . . Xl−1). Then, for a suitable constant c, we have

Pr[F(X ) ∈ [1/2 − ε, 1/2 + ε]] > 1 − δ.

PROOF. An easy application of Chernoff bound.
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LEMMA 2. Let F be the distribution function of |X | where X has Cauchy dis-
tribution, and let z > 0 be such that F(z) ∈ [1/2 − ε, 1/2 + ε]. Then, if ε is small
enough, we have z ∈ [1 − 4ε, 1 + 4ε].

PROOF. Follows from the fact that F−1(x) = tan(xπ/2) has bounded derivative
around the point 1/2. In particular, (F−1)′(1/2) = π .

Therefore, for a suitable constant c, we have the following theorem.

THEOREM 3. The “ideal” algorithm correctly estimates L1(S) up to the factor
(1 ± ε) with probability at least 1 − δ.

3.2. BOUNDED PRECISION. Now we show how to remove the assumption that
the numbers have infinite precision. Since the numbers in the data stream are integer,
we only need to take care of the random variables X j

i . Specifically, we need to show
that it is sufficient to assume that the random variables can be represented using
O(log(n + M)) bits.

First, we state the following

CLAIM 3. Let f : [0, 1]d → � be a function computed by an algorithm that,
given an input x ∈ [0, 1]d where each coordinate xi is represented using b bits of
precision, computes f (x) with an additive error β > 0, using O(d(b + log(1/β)))
bits of space. In addition, assume that there exists P > 0, such that for all x ∈
[P, 1− P]d the absolute values of the first order partial derivatives of f at x are at
most B. Define a random variable X = f (U ), where U is chosen from the uniform
distribution over [0, 1]d .

There is an algorithm A that for any α > 0 generates a random variable X̃ , such
that there is a joint probability space of X and X̃ so that:

—Pr[|X − X̃ | > α] ≤ 2d(P + α
Bd )

— A uses only O(d[log(1/α + B + d) + b]) random and storage bits

PROOF. Follows from a standard discretization argument. Let s = α
Bd . Impose

a cubic grid on [0, 1]d , where each cell has side length s. Note that the total volume
of cells fully contained in [P, 1 − P]d is at least 1 − 2d(P + s).

We define X̃ = f (Ũ ), where each coordinate of Ũ is chosen uniformly at
random from {0, 1/2b, . . . , 1 − 1/2b}. This corresponds to choosing a random U
from [0, 1]d , and rounding each coordinate down to the nearest multiple of 1/2b. If
the grid cell containing U is fully contained in [P, 1 − P]d , then | f (U ) − f (Ũ )| ≤
Bds = α.

In our case, U ∈ [0, 1], and we have X = f (U ) = tan(πU/2). One can
observe that the derivative of f is bounded by O(1/P2) in the interval [P, 1 −
P]. Thus, for each i, j , we can generate an approximation X̃ j

i to each X j
i using

only O(log(1/P + 1/α) bits, such that for each of them |X̃ j
i − X j

i | ≤ α with
probability 1 − P . It follows that, with probability at least 1 − nl P , for all j we
have

S̃ j =
∑

i

∑
(i,a)∈S

a X̃ j =
∑

i

ci X̃ j
i =

∑
i

ci
(
X j

i ± α
) = S j ± α

∑
i

ci
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Since median(S j ) = ∑
i |ci |,we can set α = ε to ensure that the estimation of

L1(S) is within a factor of (1 ± 2ε) from the true value. We also set P = δ
nl to

ensure that the probability of correct estimation is at least 1 − 2δ. Finally, we need
only O(log(n + 1/δ + 1/ε)) random bits to generate each random variable.

3.3. RANDOMNESS REDUCTION. Consider a fixed S j . From the above, it follows
that the value of S j can be represented using small number of bits; also, we need
only small number of bits to generate each X̃ j

i . Unfortunately, we still need O(n)
memory words to make sure that if we access a specific X̃ j

i several times, its value
is always the same. We avoid this problem in the following way.

LEMMA 3. Consider an algorithm A thats, given a stream S of pairs (i, a),
and a function f : [n] × {0, 1}R × {−M . . . M} → {−M O(1) . . . M O(1)}, does the
following:

—Set O = 0; Initialize length-R chunks R0 . . . RM of independent random bits
—For each new pair (i, a): perform O = O + f (i, Ri , a)
—Output A(S) = O

Assume that the function f (·, ·, ·) is computed by an algorithm using O(C + R)
space and O(T ) time. Then there is an algorithm A′ producing output A′(S), that
uses only O(C + R + log(Mn)) bits of storage and O([C + R + log(Mn)] log(n R))
random bits, such that

Pr[A(S) �= A′(S)] ≤ 1/n

over some joint probability space of randomness of A and A′. Then, the algorithm
A′ uses O(T + log(n R)) arithmetic operations per each pair (i, a).

PROOF. Consider a stream sort(S) in which (i, a) ∈ S appear in the increasing
order of i’s. In this case we do not have to store the chunks Ri , since we can generate
them on the fly. Thus, the algorithm uses only O(log(nM) + C + R) storage and
O(n R) bits of randomness. Therefore, by Fact 1, there exists a PRG which, given
a random seed of size O([C + R + log(Mn)] log(n R)), expands it to a sequence
R′

0 · · · R′
n−1, such that using R′

i ’s instead of Ri ’s results in negligible probability of
error. That is, if A′ is the algorithm using variables R′

i , then

Pr[A(sort(S)) �= A′(sort(S))] ≤ 1/n.

However, since the addition is commutative, we have A(sort(S)) = A(S) and
A′(sort(S)) = A′(S). The lemma follows.

The theorem stating the correctness of the final algorithm for estimating L1(S)
is deferred to the next section.

3.4. COMPUTING L2(S). In this section we describe the modifications for the
case of p = 2. Note that the algorithms given in this section use more space than
the earlier algorithm of Alon et al. [1996]. However, the second algorithm has the
following appealing property: the sketch of the stream S is computed by taking
y = AV (S) where A is an (implicitly defined) matrix, and L2(S) is estimated by
taking ‖y‖2. In other words, the algorithm provides a streaming version of the
dimensionality reduction theorem by Johnson and Lindenstrauss [1984], which has
the benefits as stated in the introduction.
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The first algorithm is obtained by replacing Cauchy distribution by Gaussian
distribution. As before, the final estimator is a median of |S0| · · · |Sl−1|. The dis-
tribution function of the normal distribution is differentiable and has non-zero
derivative around its median, so the analog of Lemma 2 still holds. Moreover, a
random variable having normal distribution can be generated from a pair chosen
uniformly at random from [0, 1]2 using the formula given in Preliminaries. Then,
using elementary analysis, one can verify that Claim 3 holds with B = 1/P O(1).

THEOREM 2. There is an algorithm which for any 0 < ε, δ < 1 estimates L1(S)
or L2(S) up to a factor (1 ± ε) with probability 1 − δ − 1/n and uses

—O(log(Mn/(δε)) log(1/δ)/ε2) bits of random access storage
—O(log(Mn/(δε)) log(n/(δε)) log(1/δ)/ε2) random bits (which can be stored in

a random access storage)
—O(log(n/(δε)) log(1/δ)/ε2) arithmetic operations per pair (i, a)

However, a more elegant approach to estimating L2(S) is to replace the median
operator in the algorithm by ‖ · ‖2. Specifically, the modified algorithm returns
‖(S0, . . . , Sl−1)‖2 as the estimation of L2(S). The correctness of the algorithm
follows by a combination of two facts:

—If we use truly independent normal variables X j
i , then the algorithm is correct

[Indyk and Motwani 1998].
—If the random variables are instead created using Nisan’s generator, the resulting

difference in the probability of correctness is negligible. This can be shown in
the same way as for the median-based algorithm.

This gives us the following streaming version of Johnson-Lindenstrauss lemma:

THEOREM 3. There is an algorithm that for any 0 < ε, δ < 1 constructs an
implicit representation of a k × n matrix A, k = O(log(1/δ)/ε2), such that:

—Given any i = 1 · · · k, j = 1 · · · n, the algorithms returns A[i, j] after performing
O(log n) arithmetic operations.

—The algorithm uses O(log(Mn/(δε)) log(n/(εδ)) log(1/δ)/ε2) bits of space.
—Each entry of A can be represented using O(log(n/(δε)) bits.
—For any fixed vector x ∈ �n, we have

Pr[|‖Ax‖2 − ‖x‖2| > ε‖x‖2] ≤ δ

3.5. COMPUTING L p(S). For general p ∈ (0, 2], the algorithm and analysis
become more involved, mainly due to the fact that no exact formulas are known for
densities and/or distribution functions of general p-stable distribution. However,
one can generate p-stable random variables as in Preliminaries. Therefore, the
algorithm from earlier section can be implemented for general p. As far as the
analysis is concerned, it seems that an analog of Lemma 2 does hold for any
p ∈ (0, 2). Unfortunately, we are not aware of any proof of this fact. Instead, we
show the following lemma.

LEMMA 4. Let F be a c.d.f. of a random variable |Z |, where Z is drawn from a
p-stable distribution. There exist constants c1, c2, c3 > 0, such that for any p and
ε, there exists t ∈ [c1, c2] such that |F−1(t − ε/c3) − F−1(t + ε/c3)| ≤ ε.



316 PIOTR INDYK

PROOF. Let b1, b2 > 0 be constants such that Pr[|Z | ≥ b1] ≤ 1 − b2. Consider
v > 0 such that F(v) = b2. Clearly, we have v ≤ b1. Also, let u > 0 be such
that F(u) = b2/2. Decompose the interval [b2/2, b2] into b1/ε disjoint intervals
of the form [t − ε/(4b1/b2), t + ε/(4b1/b2)]. Assume the lemma does not hold
with constants c1 = b2/2, c2 = b2, c3 = (4b1/b2). This implies that F−1 increases
on each of the intervals by more than ε. But this would imply that F−1(b2) >
b1/ε · ε = b1, which yields a contradiction.

Given the lemma, we can estimate the value of L p(S) by taking the t-quantile
(instead of the median) of variables |S0| · · · |Sl−1|. Note that, unlike for p = 1, 2,
the value of t (and therefore the algorithm) depends on ε > 0. Moreover, we do not
specify a method to compute t given p and ε, although presumably this task can
be accomplished by using numerical approximations of the densities of p-stable
distributions. This means that our algorithm is not uniform.

Other issues are taken care of as for p = 2. We only observe that for general p,
the derivative of F−1 depends on p. However, since we consider p to be a constant,
we suppress the dependence on p in the O(·) notation below.

THEOREM 4. For any p ∈ (0, 2) and any 0 < ε, δ < 1, there is a non-uniform
algorithm that estimates L p(S) up to a factor (1 ± ε) with probability 1 − δ and
uses

—O(log(Mn/(εδ)) log(1/δ)/ε2) bits of random access storage
—O(log(Mn/(εδ))log(n/(εδ)) log(1/δ)/ε2) random bits (which can be stored in a

random access storage)
—O(log(n/(δε))) arithmetic operations per pair (i, a)

The O(·) notation subsumes constants depending on p.

4. Dimensionality Reduction for L1

In this section, we show how to obtain the sketch function C that maps the points into
a normed space lm

1 . We will describe the mapping in terms of dimensionality reduc-
tion of ln

1 ; the adaptation to the stream model can be done as in the previous section.

THEOREM 5. For any 1/2 ≥ ε, δ > 0, and ε > γ > 0, there is a probability
space over linear mappings f : ln

1 → lk
1 , where k = (ln(1/δ))1/(ε−γ )/c(γ ), for a

function c(γ ) > 0 depending only on γ , such that for any pair of points p, q ∈ ln
1 :

—the probability that ‖ f (p) − f (q)‖1 ≤ (1 − ε)‖p − q‖1 is smaller than δ

—the probability that ‖ f (p) − f (q)‖1 ≥ (1 + ε)‖p − q‖1 is smaller than 1+γ

1+ε

Note that the embedding is randomized but asymmetric: the probability that the
expansion is small is only about ε, while the probability that the contraction is small
is 1 − δ. Also, note that the term c(γ ) in the definition of k enables us to assume
that k is “large” compared to any function of γ .

PROOF. We define the random mapping f such that, for j = 1 . . . k the j th
coordinate of f (q) for q = (q1, . . . , qn) is equal to Y j = 	i X j

i qi , where X j
i are

i.i.d random variables having Cauchy distribution. Since f is linear, it is sufficient to
show the above for p = 0 and q such that ‖q‖1 = 1. In this case ‖ f (p) − f (q)‖ =
	 j |	i X j

i qi | = 	 j |Y j |. Since the Cauchy distribution is 1-stable, each Y j has
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a Cauchy distribution. Thus it is sufficient to prove the following fact. For any
sequence Y1 · · · Yk of i.i.d. variables with Cauchy distribution, let Y = 	 j |Y j |.
Show that there exists a threshold T = T (k, γ, ε), such that:

—Pr[Y < (1 − ε)T ] ≤ δ

—Pr[Y > (1 + ε)T ] ≤ 1+γ

1+ε

Our approach is to consider a “truncated” version of the variables Y j . In particular,
for B > 0 and any j = 1 . . . k, let Z B

j be equal to |Y j | if |Y j | ≤ B; we will set
Z B

j = B otherwise.

CLAIM 4. Let P = Pr[Z B
j = B]. Then P ≤ b/B for some constant b > 0.

LEMMA 5. For any B > 0

k ln(B2 + 1)/π ≤ E
[ ∑

j

Z B
j

]
≤ k[ln(B2 + 1)/π + b]

PROOF. We have

E
[ ∑

j

Z B
j

]
=

∑
j

E
[
Z B

j

]

= k
[

(1 − P)
2

π

∫ B

0

x
1 + x2

dx + PB
]

= k[(1 − P)/π · ln(B2 + 1) + PB].

The inequalities follow from Claim 4.

LEMMA 6. For any B > 0

E
[(

Z B
j

)2] ≤ 4/π · B.

PROOF.

E
[(

Z B
j

)2] = 2/π

[∫ B

0

x2

1 + x2
dx +

∫ ∞

B

B2

1 + x2
dx

]
≤ 2/π · [B + B2/B] = 4/π · B.

We will first establish T , which satisfies the second condition. Let U = 1+ε
γ

bk.
By the union bound, we have Pr[∃ j |Y j | ≥ U ] ≤ kb/U = γ

1+ε
. We define T =

E[	 j ZU
j ]. Then

Pr[Y ≥ (1 + ε)T ] ≤ Pr[∃ j |Y j | > U ] + Pr[Y ≥ (1 + ε)T : ∀ j |Y j | ≤ U ]

≤ γ

1 + ε
+ E

[ ∑
j |Y j | : ∀ j |Y j | ≤ U

]
(1 + ε)T

≤ γ

1 + ε
+ E

[ ∑
j ZU

j

]
(1 + ε)T

= 1 + γ

1 + ε
.
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Now we focus on the first condition. Define α = 1−ε
1−γ

, L = Uα. Observe that
1/2 ≤ α < 1. Observe that

E
[ ∑

j

Z L
j

]
≥ k/π · ln(L2 + 1)

≥ k/π · ln(U 2α + 1)
≥ αk/π · ln(U 2 + 1)
≥ α(T − bk),

where the last inequality follows from Lemma 5 and the definition of T . Thus,
T ≤ E[	 j Z L

j ]/α + bk. Set γ ′ = γ /2, and assume that k is “large enough” with
respect to γ ′. We have

Pr

[ ∑
j

|Y j | ≤ (1 − ε)T
]

≤ Pr

[ ∑
j

Z L
j ≤ (1 − ε)T

]

≤ Pr

[ ∑
j

Z L
j ≤ (1 − ε)(E

[ ∑
j

Z L
j

]
/α + bk)

]

= Pr

[ ∑
j

Z L
j ≤ (1 − γ )E

[ ∑
j

Z L
j

]
+ (1 − ε)bk

]

= Pr

[
E

[ ∑
j

Z L
j

]
−

∑
j

Z L
j ≥ γ ′E

[ ∑
j

Z L
j

]

+
(

γ ′E
[ ∑

j

Z L
j

]
− (1 − ε)bk

)]

Observe that, by Lemma 5:

γ ′E
[ ∑

j

Z L
j

]
− (1 − ε)bk ≥ k[γ ′/π · ln(L2 + 1) − b]

≥ k[γ ′/π · ln(U 2α) − b]
≥ k[γ ′/π · ln(bk) − b]

which is positive for k “large enough”. Therefore, we have

Pr

[ ∑
j

|Y j | ≤ (1 − ε)T
]

≤ Pr

[
E

[ ∑
j

Z L
j

]
−

∑
j

Z L
j ≥ γ ′E

[ ∑
j

Z L
j

]]
.
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By using the inequality of Maurer [2003] we get

Pr

[
E

[∑
j

Z L
j

]
−

∑
j

Z L
j ≥ γ ′E

[ ∑
j

Z L
j

]]
≤ exp

(
−γ ′2 E2

[ ∑
j Z L

j

]
2k E

[(
Z L

j

)2]
)

≤ exp

(
−γ ′2(αk/π · ln(U 2 + 1))2

2k · 4/π · L

)

≤ exp

(
− γ ′2(αk/π )2

2k[(1 + ε)bk/γ ]α

)
≤ exp(−c(γ )k1−α)
≤ exp(−c(γ )kε−γ ),

where c(γ ) is a constant dependent on γ .
Thus, setting k = ln(1/δ)1/(ε−γ )/c(γ ) for a proper function c(γ ) ensures that the

first condition of the theorem holds as well.

5. Explicit Embedding of Ln
2 into LnO(log n)

1 with (1 + 1/N O(1)) Distortion

We start from illustrating the embedding by providing an intuitive explicit embed-
ding of ld

2 into l1 with large dimension. To this end, notice that if X1 · · · Xn is a
sequence of i.i.d. random variables with Gaussian distribution, then there exists a
constant C > 0 such that for any q = (q1, . . . , qn) ∈ ln

2 , we have

E

[∣∣∣∣∣
∑

i

qi Xi

∣∣∣∣∣
]

= C‖q‖2,

(this easily follows from 2-stability of Gaussian distribution and properties of a
norm). This is approximately true even if the Gaussian variables are discretized to
be representable using b = O(log n) bits; the details are as in Section 3. Thus, if
we create a matrix A with n columns and (2b)n rows, one for each configuration of
(X1, . . . , Xn), then ‖Aq‖1/(2b)n ≈ C‖q‖2, which is what we need.

To reduce the dimension of the host space, we proceed essentially as in Section
3. The only difference is that this time we are dealing with the expectation instead
of low probability of error (i.e., we have to exclude the case that a small probability
event has a significant contribution to the expectation). To this end, we proceed as
follows. Let X ′

i be i.i.d. variables having the “truncated Gaussian” distribution, that
is, such that:

—if |Xi | ≤ t , then X ′
i = Xi

—if |Xi | > t , then X ′
i = 0

We use t = 2c
√

log n, so Pr[|Xi | > t] ≤ a/nc, for some a > 0. We will relate
E[| ∑i Xi qi |] and E[| ∑i X ′

i qi |] as follows. Let P = Pr[∃i : |Xi | > t]; notice that
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P ≤ a/nc−1, that is, is small. Then we can write

E = E
[∣∣∣∣ ∑

i

Xi qi

∣∣∣∣
]

= (1 − P)E
[∣∣∣∣ ∑

i

Xi qi

∣∣∣∣ : ∀i |Xi | ≤ t
]

+ P E
[∣∣∣∣ ∑

i

Xi qi

∣∣∣∣ : ∃i |Xi | > t
]

= (1 − P)E1 + P E2

and

E ′ = E
[∣∣∣∣ ∑

i

Xi qi

∣∣∣∣
]

= (1 − P)E
[∣∣∣∣ ∑

i

X ′
i qi

∣∣∣∣ : ∀i X ′
i �= 0

]
+ P E

[∣∣∣∣ ∑
i

X ′
i qi

∣∣∣∣ : ∃i X ′
i = 0

]

= (1 − P)E ′
1 + PE′

2

Notice that E1 = E ′
1. Moreover, it is easy to see that E2 = O(nt) and E ′

2 =
O(nt). Thus, E and E ′ differ only by a factor of (1 + 1/n�(1)). The bounded
precision issues are essentially the same as in Section 3, so we skip the details.

THEOREM 6. For any n > 0, there exists an explicitly constructible embedding
of ln

2 into lnO(log n)

1 with distortion (1 + 1/nO(1)).

6. Extensions, Discussion and Open Problems

6.1. APPROXIMATE RESULT CHECKING. The technique of using a random lin-
ear mapping to estimate the norm of a vector has its computer science roots in
(approximate) checking of computation. Consider the following problem: for a
fixed linear mapping A : �n → �m , construct a “checker”, that given x ∈ �n and
y ∈ �m , checks if Ax = y. The check should be preferably done in time O(n), so
that the overhead of checking is low compared to the computation time. The latter
is typically ω(n), for example, it is �(n log n) for Fourier Transform.

A solution to this problem [Freivalds 1979; Wasserman and Blum 1997] can
be obtained as follows. First, observe that for any r ∈ �m we have r T (Ax) =
(r T A)x = sT x . Moreover, if Ax �= y, then for r chosen uniformly at random
from {0, 1}m we have Pr[sT x = r T y] = Pr[r T (Ax − y) = 0] ≤ 1

2 . These two
observations give us a probabilistic checker for Ax = y that runs in O(n) time,
provided we generate the pair (r, s) in advance.

A more refined approximate checker was proposed in Ar et al. [1993], and
Wasserman and Blum [1997]. It not only verifies if Ax = y, but also enables
to estimate the norm of the difference vector Ax − y. In particular, Wasserman
and Blum [1997] observes that (sT x − r T y)2 provides an unbiased estimator of
‖Ax − y‖2

2.
In the context of the aforementioned research, one can easily see that our sketch-

ing algorithms can be directly translated into approximate checkers that work for
any l p norm, p ∈ (0, 2].
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6.2. FURTHER DEVELOPMENTS. Since the earlier version of this article has been
presented at FOCS’00, the techniques introduced in this article have been used in
several other articles. In this section, we briefly discuss those results.

Our algorithms for estimating the l p norms, as well as the use of Nisan’s generator
to reduce the storage needed for the random bits, become a standard tool in the area
of streaming algorithms (cf. Gilbert et al. [2002], Datar et al. [2002], Cormode
et al. [2002a], Thaper et al. [2002], Cormode and Muthukrishnan [2003], Indyk
[2004], and Indyk and Woodruff [2005]; see also the surveys [Cormode 2003;
Muthukrishnan 2003]). In Cormode et al. [2002b] the authors use the algorithms
in a nonstreaming setting to reduce the dimensionality of the data and the running
time needed to compute distances between the vectors.

Stable distributions found use in other algorithmic settings as well. In Datar et al.
[2004], they are used to construct a Locality-Sensitive Hashing scheme that works
directly in l p norms; the earlier scheme of Indyk and Motwani [1998] works only
for Hamming space. In Feigenbaum et al. [2001a, 2001b] (Appendix B.2), it is
showed how to augment our l2 estimation algorithm to construct sketches that are
cryptographically secure. Specifically, the authors use the “memoryless” property
of p-stable distributions: a dot-product of any vector x ∈ �n with a vector of n
independent p-stable random variables is a random variable that depends only on
‖x‖p and not on any other properties of x .

The observation that Nisan’s generator can be used to reduce the randomness
needed for dot product computation has been used in Engebretsen et al. [2002] to
give an efficient derandomization of an approximation algorithm based on semidef-
inite programming. Their algorithm was fairly complex and involved the method
of conditional probabilities in addition to the use of pseudorandom generator. Inde-
pendently, Sivakumar [2002] showed that a similar result (as well as many others)
can be obtained directly, by using a different version of Nisan’s generator [Nisan
1992].

6.3. OPEN PROBLEMS. There are several interesting problems left open by this
article. In particular, we do not know if the use of Nisan’s generator is really
necessary for our purpose. It is plausible that one could use O(1)-wise independent
families of random variables (as in Alon et al. [1996]) to generate random variables
that have “sufficient” stable law properties. If so, then one would be able to reduce
the space used by our algorithm by a logarithmic factor. Even better, this might give
an explicit construction of an embedding of ld

2 into ld O(1)

1 with distortion arbitrarily
close to 1.

In general, closing the gap between probabilistic and explicit constructions
of such embeddings remains an important open problem (cf. Matoušek [2004],
Problem 2.2).
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