
I/O efficient External-Memory Diameter Approximation

The accurate approximation

M. Sc. David Veith Goethe-Universität Frankfurt am Main, dveith@cs.uni-frankfurt.de

Diameter Approximation with Breadth-First-Search (BFS)

The diameter D of a graph is bounded by the height H of its BFS-tree as follows:

However in worst case the I/O complexity of BFS is I/Os for sparse graphs.

This is very slow compared to other simple graph algorithms as Spanning Trees which

can be solved in sorting complexity [I/Os] w. h. p.

Double sweep lower bound

Improve the lower bound of the BFS heuristic: Compute a BFS from an arbitrary source

and then compute a second BFS from a vertex with farthest distance to the first source.

In practice the result is often very tight and for some graph classes the exact diameter

can be computed with this heuristic. Nevertheless, for some graph classes the bound

cannot be improved by double sweep lower bound with high probability.

s

s

 =>

s

1 1

2 2 2 2

2 ≤ D ≤ 4

1

s 2

1 1 3 3

2

3 1

4 4 1 s

3 ≤ D ≤ 6

=>

4 ≤ D ≤ 6

)(/ BNO

HDH 2

))((log
B

N

B

N
O

B

M

Parallel Cluster Growing Algorithm

Shrink input with parallel cluster growing algorithm and compute a Single Source Shortest

Path on the condensed Graph. Expected approximation error:

I/O-complexity:

I/O efficient External-Memory Diameter Approximation

The fast approximation – Part I

Results

For input with a small diameter the clustering can be computed fast no matter the size of k.

However, the approximation error is very close to the expected error.

For graphs with larger diameter as Θ() or Θ(n) the approximation result is tight.

However, the condensed Θ()-graph produces a huge set of edges even if the number of

vertices is shrunken to 1% of the original graph. Therefore choose a small value for k.

For graphs with a diameter of Θ(n) the clustering can become slow using a small k.

+ Real world graphs usually have a small diameter

– Not optimal for each graph class with a fixed value for k

Shrink Graph Fits into M?
Compute

IM-SSSP

store edges/ weights in

two files

Preprocessing with

EM-BFS Phase I

Semi-external

SSSP

Approximated

Diameter

…

…

…

…

…

…

…

…

…

…

…

A worst case input

for tall approx. error

M. Sc. David Veith Goethe-Universität Frankfurt am Main, dveith@cs.uni-frankfurt.de

Yes

No

)()/()log()()(BkkNNsortNscankO

)()log(kkO

n

n

I/O efficient External-Memory Diameter Approximation

The fast approximation – Part II

Recursive Cluster Growing

Parallel Cluster Growing has the huge disadvantage that the choice of a reasonable

k depends on the diameter for a fast computation. Otherwise it can be as slow as

EM-BFS or even slower.

We decided to develop a recursive cluster growing. A small k1 is chosen for the first

clustering. The shrunken graph is clustered again until it fits into main memory and

an internal-memory SSSP can be computed. In the last clustering iteration i we have

a simple adaptive rule that ensures the right choice of ki.

For our current input (≤128 GB and M=4GB) two iterations with k1 = 16 sufficed to

execute internal-memory SSSP on the shrunken graph with a speedup of 70 to 85%

compared to EM-BFS.

Approximation error: We found a graph class that has an expected approximation

error of Ω(k4/3-ε) for two iterations. However, a tight bound for all graph classes has

not been proved yet. Nevertheless, the experimental results are viable.

=> 1

2

3

3

1

1

2

Possible shape of the shrunken graph

=>

3

2

Dapproxed = 5
Usually to the result an error correcting factor

is added. In this example it would be 4.

M. Sc. David Veith Goethe-Universität Frankfurt am Main, dveith@cs.uni-frankfurt.de

Current and Future Work

Current work – Dynamic BFS

In 2008 Meyer has published an I/O-efficient algorithm for dynamic BFS. We will

implement this algorithm now to proof that it is viable. An I/O-efficient implementation of

Dynamic BFS is important to answer real time queries in large networks. Such queries

have become an important application for social networks.

Current work – Static BFS

In 2011 one of our master students has developed a hierarchical clustering algorithm

which is able to increase / decrease the number of clusters in scanning complexity.

This is important for the dynamic BFS implementation, too.

Future work – External-memory SSSP implementation

Currently our SSSP implementation is limited in the input size. We need at least one bit

for each vertex in main memory. Furthermore, new heuristics working with hyperbolic

metrics can answer SSSP queries very fast. We plan to analyze if it could be used in

implementation for some new heuristics.

M. Sc. David Veith Goethe-Universität Frankfurt am Main, dveith@cs.uni-frankfurt.de

