
Linear programming
▪ Example Numpy: PageRank

▪ scipy.optimize.linprog

▪ Example linear programming: Maximum flow

PageRank

PageRank - A NumPy / Jupyter / matplotlib example

▪ Google's original search engine ranked webpages using PageRank

▪ View the internet as a graph where nodes
correspond to webpages and directed edges
to links from one webpage to another webpage

▪ Google’s PageRank algorithm was described in
(infolab.stanford.edu/pub/papers/google.pdf,
1998)

http://infolab.stanford.edu/pub/papers/google.pdf

Five different ways to compute
PageRank probabilities

1) Simulate random process manually by rolling dices

2) Simulate random process in Python

3) Computing probabilities using matrix multiplication

4) Repeated matrix squaring

5) Eigenvector for λ = 1

Random surfer model (simplified)

The PageRank of a node (web page) is the fraction
of the time one visits a node by performing an
infinite random traversal of the graph starting
at node 1, and in each step

▪ with probability 1/6 jumps to a random page
(probability 1/6 for each node)

▪ with probability 5/6 follows an outgoing edge
to an adjacent node (selected uniformly)

The above can be simulated by using a dice: Roll a dice. If it shows 6, jump to a random page by
rolling the dice again to figure out which node to jump to. If the dice shows 1-5, follow an outgoing
edge - if two outgoing edges roll the dice again and go to the lower number neighbor if it is odd.

pagerank.ipynb

import numpy as np

Adjacency matrix of the directed graph in the figure

(note that the rows/colums are 0-indexed, whereas in the figure the nodes are 1-indexed)

G = np.array([[0, 1, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0],

[1, 1, 0, 0, 0, 0],

[0, 1, 0, 0, 1, 0],

[0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 0]])

n = G.shape[0] # number of rows in G

degree = np.sum(G, axis=1, keepdims=True) # column vector with row sums = out-degrees

The below code handles sinks, i.e. nodes with outdegree zero (no effect on the graph above)

G = G + (degree == 0) # add edges from sinks to all nodes (uses broadcasting)

degree = np.sum(G, axis=1, keepdims=True)

Adjacency matrix and degree vector

pagerank.ipynb

from random import randint, choice

STEPS = 1000000

adjacency_list[i] is a list of all j where (i, j) is an edge of the graph.

adjacency_list = [[j for j, e in enumerate(row) if e] for row in G]

count = np.zeros(n) # histogram over number of node visits

state = 0 # start at node with index 0

for _ in range(STEPS):

count[state] += 1 # increment count for state

if randint(1, 6) == 6: # original paper uses 15% instead of 1/6

state = randint(0, 5)

else:

state = choice(adjacency_list[state])

print(adjacency_list, count / STEPS, sep='\n')

Python shell

| [[1], [3], [0, 1], [1, 4], [1, 5], [1]]

[0.039365 0.353211 0.02751 0.322593 0.1623 0.095021]

Simulate random walk (random surfer model)

pagerank.ipynb

import matplotlib.pyplot as plt

plt.bar(range(6), count)

plt.title('Random Walk')

plt.xlabel('node')

plt.ylabel('number of visits')

plt.show()

Simulate random walk (random surfer model)

pagerank.ipynb

A = G / degree # Normalize row sums to one. Note that 'degree'

is an n x 1 matrix, whereas G is an n x n matrix.

The elementwise division is repeated for each column of G

print(A)

Python shell

| [[0. 1. 0. 0. 0. 0.]

[0. 0. 0. 1. 0. 0.]

[0.5 0.5 0. 0. 0. 0.]

[0. 0.5 0. 0. 0.5 0.]

[0. 0.5 0. 0. 0. 0.5]

[0. 1. 0. 0. 0. 0.]]

Transition matrix A

Repeated matrix multiplication

We now want to compute the probability p(i)
j to be

in vertex j after i steps. Let p(i) = (p(i)
0, … , p(i)

n−1).

Initially we have p(0) = (1, 0, … , 0).

We compute a matrix M, such that p(i) = Mi ∙ p(0)

(assuming p(0) is a column vector).

If we let 1n denote the n × n matrix with 1 in each
entry, then M can be computed as:

pj
(i+1)

 =
1

6
∙

1

n
+

5

6
෍

k

pk
(i)

∙ Ak,j

p
(i+1)

 =
1

6
∙

1

n
1n +

5

6
AT ∙p

(i)

 M

pagerank.ipynb

ITERATIONS = 20

p_0 = np.zeros((n, 1))

p_0[0, 0] = 1.0

M = 1 / (6 * n) + 5 / 6 * A.T

p = p_0

prob = p # 'prob' will contain each

computed 'p' as a new column

for _ in range(ITERATIONS):

p = M @ p

prob = np.append(prob, p, axis=1)

print(p)

Python shell

| [[0.03935185]

[0.35326184]

[0.02777778]

[0.32230071]

[0.16198059]

[0.09532722]]

pagerank.ipynb

x = range(ITERATIONS + 1)

for node in range(n):

plt.plot(x, prob[node], label=f'node {node}')

plt.xticks(x)

plt.title('Random Surfer Probabilities')

plt.xlabel('Iterations')

plt.ylabel('Probability')

plt.legend()

plt.show()

Rate of
convergence

Repeated squaring
M⋅(⋯(M⋅(M⋅p(0)))⋯) = Mk⋅p(0) = M2log2 k⋅p(0) = (⋯((M2)2)2⋯)2⋅p(0)

pagerank.ipynb

from math import log2

MP = M

for _ in range(1 + int(log2(ITERATIONS))):

MP = MP @ MP

p = MP @ p_0

print(p)

Python shell

| [[0.03935185]

[0.35332637]

[0.02777778]

[0.32221711]

[0.16203446]

[0.09529243]]

log2 k

k multiplications, k power of 2

PageRank : Computing eigenvector for λ = 1

▪ We want to find a vector p, with |p| = 1, where Mp = p,
i.e. an eigenvector p for the eigenvalue λ = 1

pagerank.ipynb

eigenvalues, eigenvectors = np.linalg.eig(M)

idx = eigenvalues.argmax() # find the largest eigenvalue (= 1)

p = np.real(eigenvectors[:, idx]) # .real returns the real part of complex numbers

p /= p.sum() # normalize p to have sum 1

print(p)

Python shell

| [0.03935185 0.3533267 0.02777778 0.32221669 0.16203473 0.09529225]

PageRank : Note on practicality

▪ In practice an explicit matrix for billions of nodes is infeasible, since
the number of entries would be order of 1018

▪ Instead use sparse matrices (in Python modul scipy.sparse) and
stay with repeated multiplication

Linear programming

scipy.optimize.linprog

▪ scipy.optimize.linprog can solve linear programs of the following
form, where one wants to find an n x 1 vector x satisfying:

 dimension

Minimize: cT ∙ x c : n x 1

Subject to: Aub ∙ x ≤ bub Aub : m x n bub : m x 1
Aeq ∙ x = beq Aeq : k x n beq : k x 1

Some other open-source optimization libraries PuLP and Pyomo
For industrial strength linear solvers, use solvers like Cplex or Gurobi (mixed-integer linear programs)

https://coin-or.github.io/pulp/
http://www.pyomo.org/
https://pypi.org/project/cplex/
https://www.gurobi.com/documentation/

Linear programming example

Minimize
 - (3∙x1 + 2∙x2)
Subject to
 2∙x1 + 1∙x2 ≤ 10
 -5∙x1 + -6∙x2 ≤ -4
 -3∙x1 + 7∙x2 = 8

Maximize
 3∙x1 + 2∙x2

Subject to
 2∙x1 + 1∙x2 ≤ 10
 5∙x1 + 6∙x2 ≥ 4
 -3∙x1 + 7∙x2 = 8

֞

linear_programming.py

import numpy as np

from scipy.optimize import linprog

c = np.array([3, 2])

A_ub = np.array([[2, 1],

[-5, -6]]) # multiplied by -1

b_ub = np.array([10, -4])

A_eq = np.array([[-3, 7]])

b_eq = np.array([8])

res = linprog(-c, # maximize = minimize the negated

A_ub=A_ub,

b_ub=b_ub,

A_eq=A_eq,

b_eq=b_eq)

print(res) # res.x is the optimal vector

Python shell

| fun: -16.35294117647059

message: 'Optimization terminated successfully.‘

nit: 3

slack: array([0. , 30.47058824])

status: 0

success: True

x: array([3.64705882, 2.70588235])

Maxmium flow

Solving maximum flow using linear programming

We will use the scipy.optimize.linprog function to solve the maximum flow problem

on the above directed graph. We want to send as much flow from node A to node F.

Edges are numbered 0..8 and each edge has a maximum capacity.

A

B D

C E

F
x0

x1

x2

x5

x4

x3

x6

x8

x7

3

4 1

1

5

1
3

3

1
source sink

Maximize
 x7 + x8

Subject to
 x0 ≤ 4
 x1 ≤ 3
 x2 ≤ 1
 x3 ≤ 1
 x4 ≤ 3
 x5 ≤ 1
 x6 ≤ 3
 x7 ≤ 1
 x8 ≤ 5
 x1 = x4 + x5

 x0 = x2 + x3

 x3 + x5 + x6 = x8

 x2 + x4 = x6 + x7

ca
p

ac
it

y
co

n
st

ra
in

ts
fl

o
w

co

n
se

rv
at

io
n

flow
value

= 2

= 1

= 2
= 1

= 2
= 3

= 4

= 1

= 1

Note: solution not unique

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

▪ x is a vector describing the flow along each edge

▪ c is a vector to add the flow along the edges (7 and 8) to
the sink (F), i.e. a function computing the flow value

▪ Aub and bub is a set of capacity constraints, for each edge
flow ≤ capacity

▪ Aeq and beq is a set of flow conservation constraints, for
each non-source and non-sink
node (B, C, D, E), requiring
that the flow into equals
the flow out of a node

Solving maximum flow using linear programming

Minimize
 - x7 - x8

Subject to
 x0 ≤ 4
 x1 ≤ 3
 x2 ≤ 1
 x3 ≤ 1
 x4 ≤ 3
 x5 ≤ 1
 x6 ≤ 3
 x7 ≤ 1
 x8 ≤ 5

 0 = - x1 + x4 + x5

 0 = - x0 + x2 + x3

 0 = - x3 - x5 - x6 + x8

 0 = - x2 - x4 + x6 + x7

ca
p

ac
it

y
co

n
st

ra
in

ts
fl

o
w

co

n
se

rv
at

io
n

flow
valuecT∙x

Aub∙x ≤ bub

Aeq∙x = beq = 0

I∙x ≤ capacity

֞

maximum-flow.py

import numpy as np

from scipy.optimize import linprog

0 1 2 3 4 5 6 7 8

conservation = np.array([[0,-1, 0, 0, 1, 1, 0, 0, 0], # B

[-1, 0, 1, 1, 0, 0, 0, 0, 0], # C

[0, 0, 0,-1, 0,-1,-1, 0, 1], # D

[0, 0,-1, 0,-1, 0, 1, 1, 0]]) # E

0 1 2 3 4 5 6 7 8

sinks = np.array([0, 0, 0, 0, 0, 0, 0, 1, 1])

0 1 2 3 4 5 6 7 8

capacity = np.array([4, 3, 1, 1, 3, 1, 3, 1, 5])

res = linprog(-sinks,

A_eq=conservation,

b_eq=np.zeros(conservation.shape[0]),

A_ub=np.eye(capacity.size),

b_ub=capacity)

print(res)

Python shell

| fun: -5.0

message: 'Optimization terminated successfully.'

nit: 9

slack: array([2., 0., 0., 0., 1., 0., 1., 0., 1.])

status: 0

success: True

x: array([2., 3., 1., 1., 2., 1., 2., 1., 4.])

the solution found varies
with the scipy version

	Slide 1: Linear programming
	Slide 2: PageRank
	Slide 3: PageRank - A NumPy / Jupyter / matplotlib example
	Slide 4: Five different ways to compute PageRank probabilities
	Slide 5: Random surfer model (simplified)
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10: Transition matrix A
	Slide 11: Repeated matrix multiplication
	Slide 12:
	Slide 13: Repeated squaring
	Slide 14: PageRank : Computing eigenvector for λ = 1
	Slide 15: PageRank : Note on practicality
	Slide 16: Linear programming
	Slide 17: scipy.optimize.linprog
	Slide 18: Linear programming example
	Slide 19: Maxmium flow
	Slide 20
	Slide 21
	Slide 22

