
Introduction to Programming
with

Scientific Applications

Gerth Stølting Brodal
Department of Computer Science

Aarhus University

Course evaluation
”The first lecture was intimidating

and overwhelming”

Lecturer

Name Gerth Stølting Brodal

Research Algorithms and Data Structures (Computer Science)

Teaching

2018 - BSc course on Introduction to Programming with Scientific Applications

2003 - BSc course on Introduction to Algorithms and Data Structures

1999 - 17 MSc courses on Computational Geometry, Algorithm Engineering,
Advanced Data Structures, External Memory Algorithms and Data Structures

Python Advanced Beginner

Course description – kursuskatalog.au.dk/en/course/130939/

Introduction to Programming with Scientific Applications

Description of qualifications

After the course the participants will have knowledge of principles and techniques for systematic
construction of programs.

At the end of the course, the participants will be able to:

▪ apply constructions of a common programming language,
▪ develop well-structured programs and perform testing and debugging of these,
▪ explain fundamental programming concepts and basic algorithmic techniques,
▪ apply standard tools for scientific applications,
▪ use the documentation for a programming language and available software packages.

Contents

The course gives an introduction to programming with scientific applications.
Programming concepts and techniques are introduced using the Python programming language.
The programming concepts are illustrated in other programming languages. The following
content is included.

Basic programming constructs: Data types, operators, variables, flow of control, conditionals,
loops, functions, recursion, scope, exceptions. Object orientation: Abstract data types, classes,
inheritance, encapsulation. Basic algorithmic techniques: Sorting, binary search, dynamic
programming. Systematic development of programs: Testing and debugging. File-based
input/output, numerical analysis, functional programming. Scientific computing using standard
packages for Python.

ECTS 10
Hours - weeks - periods

Lectures 2 x 2 hours/week
TA sessions 1 x 3 hours/week
Study café 3 x 1 hour/week

Language of instruction
Danish

Instructor
Gerth Stølting Brodal

Academic prerequisites
(Some) Linear algebra

Exam
5 hour programming
Aid: Computer and Internet, headphones, no AI
7-point grading scale

Prerequisites for examination participation
Submission and approval of 10 mandatory
assignments and submission of
1 implementation project

Notes Grade reflects an overall assessment of
implementation project and written
examination. Project counts 20% and
written exam counts 80%

Question – Primary Education?

a) Mathematics

b) Mathematics-Economics

c) Data Science

d) Chemestry

e) Physics

f) Other Science-Technology

g) Other

Question – Programming languages you know?

+750 listed on en.wikipedia.org/wiki/List_of_programming_languages

Question – Programming experience?

For the programming language you know best (if any) please state you
proficiency level within the language.

a) None

b) Fundamental awareness (basic knowledge)

c) Novice (limited experience)

d) Intermediate (practical application)

e) Advanced (applied theory)

f) Expert (recognized authority)

Some course practicalities
Primary lecture material = slides

Course page on Brightspace and GitHub

gsbrodal.github.io/ipsa

Course text book – optional
John V. Guttag: Introduction to Computation and Programming Using
Python, Third Edition With Application to Computational Modeling
and Understanding Data. Third Edition. 664 pages. MIT Press, 2021.

▪ [Guttag, 2nd Ed., page 8] ”The reader should be forewarned that
this book is by no means a comprehensive introduction to Python”.
3rd Ed. added about 80 pages on introduction to Python.

▪ Covers all basic features of Python enabling you to deal with data
in Chapters 1-10 (212 pages) - remaining chapters are applications

▪ Other resources: Google, stackoverflow, Python.org, YouTube, AIs...

Comparison to a standard text book on the programming
language Python by Cay Horstmann and Rance Necaise:

Topic recursion is covered by Guttag on page 123 (2nd edition
on page 50), Horstmann and Necaise do it on page 611

Some other books on Python

Wiley, 2013
580 pages

O’Reilly, 2013
1684 pages

Wiley, 2016
752 pages

Addison-Wesley, 2015
794 pages

Franklin & Beedle, 2016
552 pages

... numerous online introduction texts/courses/videos on Python

Two Python programs

A Python program

Python shell

> x = 7

> print(x * x)

| 49

▪ 7 is an integer literal – in Python denoted an “int”

▪ x is the name of a variable that can hold some value

▪ = is assigning a value to a variable

▪ * denotes multiplication

▪ print is the name of a built-in function,
here we call print to print the result of 7 * 7

▪ A program consists of a sequence of statements, executed sequentially

Memory

x 7

Question – What is the result of this program?

a) 10

b) 15

c) 25

d) [15, 10]

e) Error

f) Don’t know

Python shell

> x = 3

> y = 5

> x = 2

> print(x * y)
x assigned new value

Memory

old x 3

y 5

new x 2

Another Python program using lists

Python shell

> a = [13, 27, 7, 42]

> print(a)

| [13, 27, 7, 42]

> print(a[2])

| 7

▪ [13, 27, 7, 42] is a list containing four integers

▪ a[2] refers to the entry in the list with index 2
(the first element has index 0, i.e. a[2] is the 3rd element of the list)

▪ Note that print also can print a list

Memory

a

13 a[0]

27 a[1]

7 a[2]

42 a[3]

Question – What is the result of this program?

a) 8

b) 10

c) 12

d) 15

e) Don’t know

Python shell

> a = [3, 5, 7]

> print(a[1] + a[2])

Memory

a

3 a[0]

5 a[1]

7 a[2]

Why Python ?

the next slides will be technical

TIOBE Index January 2025

The TIOBE Programming Community index is an indicator of the popularity of programming languages. The index is updated once a month. The ratings are based on the number of skilled
engineers world-wide, courses and third party vendors. Popular search engines such as Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu are used to calculate the ratings. It is
important to note that the TIOBE index is not about the best programming language or the language in which most lines of code have been written. www.tiobe.com

Python #1
Since

November
2021

Popularity of programming languages

Most Popular Programming Languages 1958 – 2025 (YouTube)

https://www.youtube.com/watch?v=ZTPrbAKmcdo

“Hello World”

Java

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

System.exit(0);

}

}

C++

#include <iostream>

using namespace std;

int main(int argc, char** argv) {

cout << "Hello, World!";

return 0;

}

C

#include <stdio.h>

int main(int argc, char **argv) {

printf("Hello World");

return 0;

}

Python 3

print("Hello world")

Python 2

print "Hello world"

▪ In Java, C, C++ a lot of “{“, “}” and “;”
are needed

▪ Java tends to have a lot of “public...”
details that need to be spelled out

▪ Python is concise

Why Python ?

▪ Short concise code

C index out of bounds

indexing.c

#include <stdio.h>

int main() {

int x = 1;

int A[2] = {2, 3}; // A[0] = 2, A[1] = 3

printf("x = %d, A = {%d, %d}\n", x, A[0], A[1]);

A[3] = 42; // index A[3] out of bounds

printf("x = %d, A = {%d, %d}\n", x, A[0], A[1]);

return 0;

}

Output

$ gcc indexing.c

$./a.exe

x = 1, A = {2, 3}

x = 42, A = {2, 3}

Memory

array
A

2 A[0]

3 A[1]

x 1-42 “A” only has size 2, but
tries to update the 4th entry.

No warning is giving.
Something unexpected

is overridden in memory.
Have fun debugging!

Skipping checking for invalid indexing makes programs faster,
but also requires disciplined programming

(C developed by Dennis Ritchie 1969-73)

Debugging is the process of finding and resolving defects
or problems within a computer program that prevent
correct operation of computer software or a system.

en.wikipedia.org/wiki/Debugging

... and C++ index out of bounds
indexing.cpp

#include <iostream>

int main() {

int x = 1;

int A[2] = {2, 3}; // A[0] = 2, A[1] = 3

std::cout << "x = " << x << ", A = {"

<< A[0] << ", " << A[1] << "}" << std::endl;

A[2] = 42; // index A[2] out of bounds

std::cout << "x = " << x << ", A = {"

<< A[0] << ", " << A[1] << "}" << std::endl;

return 0;

}

Output

$ g++ indexing.cpp

$./a.exe

x = 1, A = {2, 3}

x = 42, A = {2, 3}

Memory

array
A

2 A[0]

3 A[1]

x 1-42

(C++ was developed by Bjarne Stroustrup 1985)

... and C++ vector index out of bounds

indexing.cpp

#include <iostream>

#include <vector>

int main() {

std::vector<int> A = {2, 3}; // A[0] = 2, A[1] = 3

std::vector<int> B = {4, 5}; // B[0] = 4, B[1] = 5

std::cout << "A={" << A[0] << ", " << A[1] << "}, ";

std::cout << "B={" << B[0] << ", " << B[1] << "}" << std::endl;

A[9]=42; // index A[9] out of bounds

std::cout << "A={" << A[0] << ", " << A[1] << "}, ";

std::cout << "B={" << B[0] << ", " << B[1] << "}" << std::endl;

return 0;

}

Output

$ g++ -std=c++11 indexing-vector.cpp

$./a.exe

A={2, 3}, B={4, 5}

A={2, 3}, B={4, 42}

Memory

vector
A

2 A[0]

3 A[1]

vector
B

4 B[0]

5 B[1]-42

... and Java index out of bounds exception

indexing.java

class IndexingTest{

public static void main(String args[]){

int a[] = {20, 21, 22};

a[5] = 42; // index a[5] out of bounds

}

}

Output

$ javac indexing.java

$ java IndexingTest

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 5

at IndexingTest.main(indexing.java:5)

Memory

array
a

20 a[0]

21 a[1]

22 a[2]

Java provides error message when running the program

(Java was developed by James Gosling 1995)

... and Python index out of bounds exception
Memory

array
a

20 a[0]

21 a[1]

22 a[2]

indexing.py

a = [20, 21, 22]

a[5] = 42 # index a[5] out of bounds

Output

$ python indexing.py

Traceback (most recent call last):

File "indexing.py", line 3, in <module>

a[5] = 42

IndexError: list assignment index out of range

Python provides error message when running the program

(Python first release by Guido van Rossum 1991)

indexing.rs

fn main() {

let mut a = [3, 4];

a[2] = 7; // Compile error: this operation will panic at runtime

for i in 2..3 { a[i] = 7 } // Run-time panic: index out of bounds

let b = &mut a;

a[1] = 6; // Compile error: cannot use `a` because it was mutably borrowed

(*b)[0] = 5;

for i in 0..2 { println!("a[{}] = {}", i, a[i]) }

}

Memory safety

▪ C and C++ are flexible but memory unsafe programming languages
• Unintended writes or reads to memory can be exploited by malicious cyber actors

▪ Python, Java, Rust are examples of memory safe languages

▪ Rust aims at achieving the efficiency of C by slightly restricting flexibility

www.rust-lang.org

The White House 2024 | Press Release: “Future Software Should Be Memory Safe” (www.whitehouse.gov)
National Security Agency 2022 | Cybersecurity Information Sheet: Software Memory Safety (media.defense.gov)

Memory

b

3 a[0]

4 a[1]
a

(Rust created by Graydon Hoare 2006)

http://www.rust-lang.org/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

Why Python ?

▪ Short concise code

▪ Index out-of-range exceptions

C++ different ways to print a vector
vector-iterator.cpp

#include <iostream>

#include <vector>

int main() {

// Vector is part of STL (Standard Template Library)

std::vector<int> A = {20, 23, 26};

// "C" indexing - since C++98

for (int i = 0; i < A.size(); i++)

std::cout << A[i] << std::endl;

// iterator - since C++98

for (std::vector<int>::iterator it = A.begin(); it != A.end(); ++it)

std::cout << *it << std:: endl;

// "auto" iterator - since C++11

for (auto it = A.begin(); it != A.end(); ++it)

std::cout << *it << std:: endl;

// Range-based for-loop - since C++11

for (auto e : A)

std::cout << e << std:: endl;

}

elegant

Java - different ways to print a vector
vector-iterator.java

import java.util.Vector;

import java.util.Iterator;

class IteratorTest{

public static void main(String[] args) {

Vector<Integer> a = new Vector<Integer>();

a.add(7);

a.add(42);

// "C" for-loop & get method

for (int i = 0; i < a.size(); i++)

System.out.println(a.get(i));

// iterator

for (Iterator it = a.iterator(); it.hasNext();)

System.out.println(it.next());

// for-each loop – since Java 5

for (Integer e : a)

System.out.println(e);

}

}

elegant

The Python way to print a list

print-list.py

a = [20, 23, 26]

for e in a:

print(e)

Output

$ python print-list.py

20

23

26

Why Python ?

▪ Short concise code

▪ Index out of range exceptions

▪ Elegant for-each loop

$ g++ -std=c++11 print-vector.cpp

cpp-error-message.cpp: In function ‘int main()’:

cpp-error-message.cpp:7:13: error: no match for ‘operator<<’ (operand types are ‘std::ostream {aka std::basic_ostream<char>}’ and ‘std::vector<int>’)

std::cout << A << std::endl;

^

In file included from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/iostream:39:0,

from cpp-error-message.cpp:1:

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:628:5: note: candidate: std::basic_ostream<_CharT, _Traits>& std::operator<<(std::basic_ostream<_CharT, _Traits>&&, const _Tp&) [with _CharT = char; _Traits = std::char_traits<char>; _Tp = std::vector<int>] <near match>

operator<<(basic_ostream<_CharT, _Traits>&& __os, const _Tp& __x)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:628:5: note: conversion of argument 1 would be ill-formed:

cpp-error-message.cpp:7:16: error: cannot bind ‘std::ostream {aka std::basic_ostream<char>}’ lvalue to ‘std::basic_ostream<char>&&’

std::cout << A << std::endl;

^

In file included from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/iostream:39:0,

from cpp-error-message.cpp:1:

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:108:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::basic_ostream<_CharT, _Traits>::__ostream_type& (*)(std::basic_ostream<_CharT, _Traits>::__ostream_type&)) [with _CharT = char; _Traits =

std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(__ostream_type& (*__pf)(__ostream_type&))

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:108:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘std::basic_ostream<char>::__ostream_type& (*)(std::basic_ostream<char>::__ostream_type&) {aka std::basic_ostream<char>& (*)(std::basic_ostream<char>&)}’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:117:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::basic_ostream<_CharT, _Traits>::__ios_type& (*)(std::basic_ostream<_CharT, _Traits>::__ios_type&)) [with _CharT = char; _Traits = std

_Traits>::__ostream_type = std::basic_ostream<char>; std::basic_ostream<_CharT, _Traits>::__ios_type = std::basic_ios<char>]

operator<<(__ios_type& (*__pf)(__ios_type&))

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:117:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘std::basic_ostream<char>::__ios_type& (*)(std::basic_ostream<char>::__ios_type&) {aka std::basic_ios<char>& (*)(std::basic_ios<char>&)}’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:127:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::ios_base& (*)(std::ios_base&)) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type

operator<<(ios_base& (*__pf) (ios_base&))

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:127:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘std::ios_base& (*)(std::ios_base&)’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:166:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long int) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(long __n)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:166:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘long int’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:170:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long unsigned int) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream

operator<<(unsigned long __n)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:170:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘long unsigned int’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:174:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(bool) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(bool __n)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:174:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘bool’

In file included from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:638:0,

from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/iostream:39,

from cpp-error-message.cpp:1:

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/bits/ostream.tcc:91:5: note: candidate: std::basic_ostream<_CharT, _Traits>& std::basic_ostream<_CharT, _Traits>::operator<<(short int) [with _CharT = char; _Traits = std::char_traits<char>]

basic_ostream<_CharT, _Traits>::

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/bits/ostream.tcc:91:5: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘short int’

In file included from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/iostream:39:0,

from cpp-error-message.cpp:1:

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:181:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(short unsigned int) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream

operator<<(unsigned short __n)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:181:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘short unsigned int’

In file included from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:638:0,

from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/iostream:39,

from cpp-error-message.cpp:1:

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/bits/ostream.tcc:105:5: note: candidate: std::basic_ostream<_CharT, _Traits>& std::basic_ostream<_CharT, _Traits>::operator<<(int) [with _CharT = char; _Traits = std::char_traits<char>]

basic_ostream<_CharT, _Traits>::

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/bits/ostream.tcc:105:5: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘int’

In file included from /usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/iostream:39:0,

from cpp-error-message.cpp:1:

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:192:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(unsigned int) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream

operator<<(unsigned int __n)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:192:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘unsigned int’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:201:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long long int) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream

operator<<(long long __n)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:201:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘long long int’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:205:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long long unsigned int) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::

operator<<(unsigned long long __n)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:205:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘long long unsigned int’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:220:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(double) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(double __f)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:220:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘double’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:224:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(float) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>]

operator<<(float __f)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:224:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘float’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:232:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long double) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream

operator<<(long double __f)

^

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:232:7: note: no known conversion for argument 1 from ‘std::vector<int>’ to ‘long double’

/usr/lib/gcc/x86_64-pc-cygwin/5.4.0/include/c++/ostream:245:7: note: candidate: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(const void*) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream

operator<<(const void* __p)

C++ how not to print a vector

print-vector.cpp

#include <iostream>

#include <vector>

int main() {

std::vector<int> A = {2, 3};

std::cout << A << std::endl;

return 0;

}

C++ vectors cannot be printed directly –
mistake results in +200 lines of error messages

Why Python ?

▪ Short concise code

▪ Index out of range exceptions

▪ Elegant for-each loop

▪ Python hopefully better error messages than C++

Memory

2

5

3

Python and garbage collection

garbage.py

a = [2, 5, 3]

a = [7,4]

2

5

3

7

4

a gets new value

garbage, since no
variable contains
this data any longer

▪ Python and e.g. Java, C# and JavaScript have a garbage
collector to automatically recycle garbage

▪ C and C++ garbage collection must be done explicitly
by the program; forgetting to free memory again
results in memory leaks – which can be really hard to
find. Have fun debugging!

▪ Automatic garbage collection increases memory safety

a

a

Why Python ?

▪ Short concise code

▪ Index out of range exceptions

▪ Elegant for-each loop

▪ Python hopefully better error messages than C++

▪ Garbage collection is done automatically

Python performance vs C, C++ and Java
Compute sum 1 + 2 + 3 + ∙∙∙ + n

1 2 3 4 ∙∙∙ n
1
2
3

n

= n2/2 + n/2

1 + 2 + ∙∙∙ + n

add.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

int n = atoi(argv[1]);

int sum = 0;

for (int i = 1; i <= n; i++)

sum += i;

printf("Sum = %d\n", sum);

}

add.cpp

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char *argv[]) {

int n = atoi(argv[1]);

int sum = 0;

for (int i = 1; i <= n; i++)

sum += i;

cout << "Sum = " << sum << endl;

}

add.java

class Add{

public static void main(String args[]){

int n = Integer.parseInt(args[0]);

int sum = 0;

for (int i = 1; i <= n; i++)

sum += i;

System.out.println("Sum = " + sum);

}

}

add.py

import sys

n = int(sys.argv[1])

sum = 0

for i in range(1, n + 1):

sum += i

print("Sum =", sum)

Timing results

Wrong output (overflow)

* -2004260032 instead of 50000005000000

** -243309312 instead of 500000000500000000

- since C, C++, and Java only uses 32 bits to represent integers (and 64 bits for ”long” integers)

n C (gcc 9.2) C++, int (g++ 9.2) C++, long (g++ 9.2) Java (12.0) CPython (3.8.1) PyPy (7.3.0) Numba, int64

107 0.001 sec* 0.001 sec* 0.003 sec 0.006 sec* 1.5 sec 0.27 sec 0.002 sec

109 0.10 sec** 0.10 sec** 0.30 sec 0.40 sec** 145 sec 27 sec 0.2 sec

Bit 6666666666555555555544444444443333333333222222222211111111110000000000

position 9876543210987654321098765432109876543210987654321098765432109876543210

bin(10**9) 111011100110101100101000000000

bin(50000005000000) 1011010111100110001000100010010110101101000000

bin(-2004260032+2**32) 10001000100010010110101101000000

bin(500000000500000000) 11011110000010110110101100111110001011111110110010100000000

bin(-243309312+2**32) 11110001011111110110010100000000

Have fun
debugging!

Try Google: civilization gandhi overflow

Python

https://www.google.dk/search?q=civilization+gandhi+overflow

Timing results

▪ Relative speed

C ≈ C++ > Java >> Python
▪ C, C++, Java need to care about integer overflows – select integer representation carefully

with sufficient number of bits (8, 16, 32, 64, 128)

▪ Python natively works with arbitrary long integers (as memory on your machine allows).
Also possible in Java using the class java.math.BigInteger

▪ Python programs can (sometimes) run faster using PyPy

▪ Number crunching in Python should be delegated to specialized modules (e.g. Numpy,
CPLEX, Numba) – often written in C or C++ and requires selecting right integer representation

n C (gcc 9.2) C++, int (g++ 9.2) C++, long (g++ 9.2) Java (12.0) Python (3.8.1) PyPy (7.3.0) Numba, int64

107 0.001 sec* 0.001 sec* 0.003 sec 0.006 sec* 1.5 sec 0.27 sec 0.002 sec

109 0.10 sec** 0.10 sec** 0.30 sec 0.40 sec** 145 sec 27 sec 0.2 sec

Python

Interpreter vs Compiler

C / C++ program
(.c, .cpp)

Executable code
(.exe)

Compiler
(gcc, g++)

Java program
(.java)

Java Virtual
Machine

(java)

Java bytecode
(.class)

execution execution

Java compiler
(javac)

Python program
(.py)

CPython
interpreter

(python)

execution

Internally generates
Assembly code

.L4:

movl -8(%rbp), %eax

addl %eax, -4(%rbp)

addl $1, -8(%rbp)

.L3:

movl -8(%rbp), %eax

cmpl -12(%rbp), %eax

jle .L4

movl -4(%rbp), %edx

movl -12(%rbp), %eax

movl %edx, %r8d

movl %eax, %edx

leaq .LC1(%rip), %rcx

call printf

movl $0, %eax

addq $48, %rsp

popq %rbp

Internally CPython
generates bytecode
0 LOAD_CONST 1 (0)

2 STORE_FAST 1 (sum)

4 SETUP_LOOP 30 (to 36)

6 LOAD_GLOBAL 0 (range)

8 LOAD_CONST 2 (1)

10 LOAD_FAST 0 (n)

12 LOAD_CONST 2 (1)

14 BINARY_ADD

16 CALL_FUNCTIO 2

18 GET_ITER

20 FOR_ITER 12 (to 34)

22 STORE_FAST 2 (i)

24 LOAD_FAST 1 (sum)

26 LOAD_FAST 2 (i)

28 INPLACE_ADD

30 STORE_FAST 1 (sum)

32 JUMP_ABSOLUT 20

34 POP_BLOCK

36 LOAD_FAST 1 (sum)

38 RETURN_VALUE

Why Python ?

▪ Short concise code
▪ Index out of range exceptions
▪ Elegant for-each loop
▪ Python hopefully better error messages than C++
▪ Garbage collection is done automatically
▪ Exact integer arithmetic (no overflows)
▪ Can delegate number crunching to C, C++, ...

This course
(Scientific)

Applications

Visualization
GPS tracking

Optimization

Machine learning

Programming Languages

C

C++
Java

Haskell

JavaScript

R
MatLab

Rust

Computer Science
Courses

Algorithms and Data Structures

Computability and Logic

Programming Languages

Compilation

Programming
modules/packages/libraries...

NumPy

SciPy
BeautifulSoup

matplotlib

IPython

JupyterDjango

Python

Course overview

1. Introduction to Python 10. Functions as objects 19. Linear programming

2. Python basics / if 11. Object oriented programming 20. Generators, iterators, with

3. Basic operations 12. Class hierarchies 21. Modules and packages

4. Lists / while / for 13. Exceptions and files 22. Working with text

5. Tuples / comprehensions 14. Doc, testing, debugging 23. Relational data

6. Dictionaries and sets 15. Decorators 24. Clustering

7. Functions 16. Dynamic programming 25. Graphical user interfaces (GUI)

8. Recursion 17. Visualization and optimization 26. Java vs Python

9. Recursion and Iteration 18. Multi-dimensional data 27. Final lecture

Basic programming
Advanced / specific python

Libraries & applications

10 handins
1 final project (last 1 month)

History of Python development

▪ Python created by Guido van Rossum in 1989, first release 0.9.0 1991

▪ Python 2 → Python 3 (clean up of Python 2 language)
• Python 2 – version 2.0 released 2000, final version 2.7 released mid-2010

• Python 3 – released 2008, current release 3.13.1

▪ Python 3 is not backward compatible, libraries incompatible

Python 2 Python 3

print 42 print(42)

int = C long (32 bits) int = arbitrary number of digits (= named “long” in Python 2)

7/3 → 2 returns “int” 7/3 → 2.333... returns “float”

range() returns list (memory intensive) range() returns iterator (memory efficient; xrange in Python 2)

100th episode of Talk Python To Me: Python past, present, and future with Guido van Rossum

https://talkpython.fm/episodes/show/100/python-past-present-and-future-with-guido-van-rossum

Python.org

Installing Python

1

2

3

4

IMPORTANT

Running the Python Interpreter from a terminal

▪ Open Command Prompt
(Windows-key + cmd)

▪ Type “python” + return

▪ Start executing
Python statements

▪ To exit shell:
Ctrl-Z + return or
exit() + return

▪ Note: Sometimes “python”
is installed as “python3”

Installing IPython –
A more powerful interactive Python shell

▪ Open Command Prompt

▪ Execute:
pip install ipython

▪ Start IPython
ipython

▪ pip = the Python package
manager

▪ Note: Sometimes “pip” is
installed as “pip3”

Some other usefull packages

▪ Try installing some more Python packages:

pip install numpy linear algebra support (N-dimensional arrays)

pip install scipy numerical integration and optimization

pip install matplotlib 2D and 3D plotting library

pip install pylint Python source code analyzer enforcing a coding standard

Creating a Python program the very basic way

▪ Open Notepad (or TextEdit on Mac)
• write a simple Python program

• save it

▪ Open a command prompt
• go to folder (using cd)

• run the program using
python <program name>.py

... or open IDLE and run program with F5

enable
line numbers
under options

▪ IDLE ships with Python from python.org

▪ Good beginner IDE (Integrated Development Environment)

The Python Ecosystem
▪ Interpreters/compiler

• CPython – reference C implementation from python.org
• PyPy – written in RPython (a subset of Python) – faster than Cpython
• Jython – written in Java and compiles to Java bytecode, runs on the JVM
• IronPython – written in C#, compiles to Microsoft’s Common Language Runtime (CLR) bytecode
• Cython – project translating Python-ish code to C

▪ Shells (IPython, IDLE, Jupyter)

▪ Libraries/modules/packages
• pypi.python.org/pypi (PyPI - the Python Package Index, +500.000 packages)

▪ IDEs (Integrated development environment)
• IDLE comes with Python (docs.python.org/3/library/idle.html)
• Anaconda w. Spyder, IPython (www.anaconda.com/download)
• Canopy (enthought.com/product/canopy)
• Visual Studio Code (code.visualstudio.com)
• Python tools for Visual Studio (github.com/Microsoft/PTVS)
• PyCharm (www.jetbrains.com/pycharm/)
• Emacs (Python mode and ElPy mode)
• Notepad++

▪ Python Style guide (PEP8)
• pylint, pep8, flake8

▪ Python online
• Google colab (colab.research.google.com), repl.it, sagemath.org, …

Try to google ”best ide python”

“Visual Studio Code is used by more than twice as many developers
than its nearest alternative”, Stack overflow survey 2024

Good beginer Python IDE

https://www.google.com/search?q=best+ide+python
https://survey.stackoverflow.co/2024/technology/#1-integrated-development-environment

IDEs and AI assistants

▪ Some IDEs integrate AI assistants
to support code suggestions,
e.g. GitHub Copilot in VS Code

▪ AI assistants increase productivity
if you understand their output

▪ Interacting with an AI assistant
can be a great programming tutor

▪ AI assistants are not allowed at
the exam

Guido van Rossum, inventor of Python, on GitHub Copilot
”I use it every day. It writes a lot of code for me… and usually it is slightly wrong but it still safes me typing.”

Python and the Future of Programming, Guido van Rossum interviewed by Lex Fridman

suggestion

https://github.com/features/copilot
https://code.visualstudio.com/
https://www.youtube.com/watch?v=-DVyjdw4t9I&t=10963s

	Slide 1: Introduction to Programming with Scientific Applications Gerth Stølting Brodal Department of Computer Science Aarhus University
	Slide 2
	Slide 3: Lecturer
	Slide 4: Course description – kursuskatalog.au.dk/en/course/130939/
	Slide 5: Question – Primary Education?
	Slide 6: Question – Programming languages you know?
	Slide 7: Question – Programming experience?
	Slide 8: Some course practicalities Primary lecture material = slides
	Slide 9: Course page on Brightspace and GitHub
	Slide 10: Course text book – optional
	Slide 11: Some other books on Python
	Slide 12: Two Python programs
	Slide 13: A Python program
	Slide 14: Question – What is the result of this program?
	Slide 15: Another Python program using lists
	Slide 16: Question – What is the result of this program?
	Slide 17: Why Python ? the next slides will be technical
	Slide 18: TIOBE Index January 2025
	Slide 19: Popularity of programming languages
	Slide 20: “Hello World”
	Slide 21: Why Python ?
	Slide 22: C index out of bounds
	Slide 23: ... and C++ index out of bounds
	Slide 24: ... and C++ vector index out of bounds
	Slide 25: ... and Java index out of bounds exception
	Slide 26: ... and Python index out of bounds exception
	Slide 27: Memory safety
	Slide 28: Why Python ?
	Slide 29: C++ different ways to print a vector
	Slide 30: Java - different ways to print a vector
	Slide 31: The Python way to print a list
	Slide 32: Why Python ?
	Slide 33: C++ how not to print a vector
	Slide 34: Why Python ?
	Slide 35: Python and garbage collection
	Slide 36: Why Python ?
	Slide 37: Python performance vs C, C++ and Java
	Slide 38: 1 + 2 + ∙∙∙ + n
	Slide 39: Timing results
	Slide 40: Timing results
	Slide 41: Interpreter vs Compiler
	Slide 42: Why Python ?
	Slide 43: This course
	Slide 44: Course overview
	Slide 45: History of Python development
	Slide 46: Python.org
	Slide 47: Installing Python
	Slide 48: Running the Python Interpreter from a terminal
	Slide 49: Installing IPython – A more powerful interactive Python shell
	Slide 50: Some other usefull packages
	Slide 51: Creating a Python program the very basic way
	Slide 52: ... or open IDLE and run program with F5
	Slide 53: The Python Ecosystem
	Slide 54: IDEs and AI assistants

