Object oriented programming

= classes, objects
" self
= construction

" encapsulation

Object Oriented Programming

" Programming paradigm, other paradigms are e.g.
* functional programming where the focus is on functions, lambda’s and higher
order functions, and

* imperative programming focusing on sequences of statements changing the
state of the program

= Core concepts are objects, methods and classes,
 allowing one to construct abstract data types, i.e. user defined types
* objects have states

* methods manipulate objects, defining the interface of the object to the rest
of the program

= OO supported by many programming languages, including Python

https://en.wikipedia.org/wiki/List_of_object-oriented_programming_languages

Object Oriented Programming - History

(selected programming languages)

Mid 1960’s Simula 67

(Ole-Johan Dahl and Kristen Nygaard, Norsk Regnesentral Oslo)
Introduced classes, objects, virtual procedures

1970’s Smalltalk (Alan Kay, Dan Ingalls, Adele Goldberg, Xerox PARC)

Object-oriented programming, fully dynamic system
(opposed to the static nature of Simula 67)

1985 Eiffel (Bertrand Meyer, Eiffel Software)
Focus on software quality, capturing the full software cycle
1985 C++ (Bjarne Stroustrup [MSc Aarhus 1975], AT&T Bell Labs)
1995 Java (James Gosling, Sun)
2000 C# (Anders Hejlsberg (studied at DTU) et al., Microsoft) | .‘
1991 Python (Guido van Rossum) yte Magazine,

August 1981

Multi-paradigm programming language, fully dynamic system

Note: Java, C++, Python, C# are among Top 5 on TIOBE March 2024 index of
popular languages (only non OO language among Top 5 was C)

https://archive.org/details/byte-magazine-1981-08
https://archive.org/details/byte-magazine-1981-08

Design Patterns (not part of this course)
reoccuring patterns in software design

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Mlissides

EAR O e

Foreword by Grady Booch

8

The Classic book 1994
(C++ cookbook)

A
v
>
o
—
4
7
A
<
v
<
ol
=
@)
-
b
w
wv
-
O
zZ
>
O
1_",
T <
A
=
7
(9]
w
m
bl
m
w

OREILLY*

Head First :
Design Pattern

A Brain-Friendly Guide

2 = Learn why everything
e | k n 0w about

llllllllllll

Eric Freeman & Elisabeth Robson
with Kathy Sierra & Bert Bates

A very alternative book 2004
(Java, very visual)

TIMELY.

% PRACTICAL. REUABLE.

Second Edition

A Catalog

of Reusable P 2
Design Patterns SN2
Illustrated
with UML

Mark Grand

Java cookbook 2003

DESIGN PATTERNS
EXPLAINED

nnnnnnnnnnnnn

CHAPMAN & HALL/CRC
TEXTBOOKS IN COMPUTING

RELIABLE
SOFTWARE

Using Patterns and
Agile Development

Java textbook 2004 Java textbook 2010

...and many more books on the topic of Design Patterns, also with Python

Some known classes, objects, and methods

int 0 -7 42 1234567 ._add__(x),.__eq_ (x),._str_() >| 22+ 7 # + calls .__add_ (7)
str "' abc' '12_a' disdigit(), .lower(), .__len__() > (5)._add (7) # eq. to 5 + 7
1 [T i B | | 12
list [[1,2,3] ['a",'b",'c'l .append(x), .clear(), .__mul__(x) > (7)._eq_ (1) # eq. to 7 ==
. . . . - . | True
dict {'foo': 42, 'bar' : 5} keys(), .get(), . __getitem__(x) e R ——
NoneType None .__str_ () | 'abed'
> 'abcde'. len ()
. len () called by len(...)
| 5
Example: > ['x', 'y'l._mul__(2)
=, 'y, 'k, 'y
The function str (ob7j) calls the methods > {'foo' : 42}. getitem ('foo')
obj. str ()orobj. repr (),if e e e bee
obj. str doesnot exist. > None. str () # used by str(...)
: | '"None'
print calls str. > 'abe'. str_ (), 'abe'. repr ()
| ('abc', "'abc'")

Classes and Objects

class
<
methods

—

objects
(instances)

class student DD
(type) name = 'Donald Duck' data
'107" attributes

id =
class Student

set name (name)

Set_id(StUdent_id) — name = 'Mickey Mouse'

get name () id = '243"
get_id () \

. . name = 'Scrooge McDuck'
creating instances id = '777"

of class Student

using constructor

Student () docs.python.org/3/tutorial/classes.html

https://docs.python.org/3/tutorial/classes.html

Using the Student class
student.py

student DD = Student() | Donald Duck has id 107
student MM Student () | Mickey Mouse has id 243
student SM = Student() | Scrooge McDuck has id 777

student DD.set name ('Donald Duck')

tudent DD.set id('107'
student DD.set_id() Call constructor for class
student MM.set name ('Mickey Mouse') . Student. Each call returns

student MM.set id('243') Y .
student SM.set name ('Scrooge McDuck') a new Student ObJeCt-

student SM.set id('777"')

J H_/
al

/

Call class methods to set

students = [student DD, student MM, student SM] data attributes
for student in students:
int (student.get ,
praf (?h:seli’d,ge _name () } L cCallclass methods to read
student.get id()) data attributes

class Student

class definitions start
with the keyword
class

often called mutator
methods, since they
change the state of
an object

often called accessor
methods, since they
only read the state of
an object

<

<

name of class

rclass Student:
''"'Documentation of class'''

def set name(self, name):
self.name = name

def
self.id = student_id

def get name (self):
return self.name

def get id(self):

/‘ return self.id

set id(self, student id):

docstring containing
documentation for class

d

the first argument to all class methods is
a reference to the object called upon,
and by convention the first argument
should be named self.

-

use self . to access an attribute of

an object or class method (attribute
reference)

/

class method definitions start with keyword def
(like normal function definitions)

Note In other OO programming languages
the explicit reference to self is not required
(in Java and C++ self is the keyword this)

When are object attributes initialized ?

Python shell

> x = Student()

> x.set name ("Gladstone Gander")
> x.get name ()

| 'Gladstone Gander'

> x.get _id() ‘Aﬁk

| AttributeError: 'Student' object has no attribute 'id'

= Default behaviour of a class is that instances are created with no
attributes defined, but has access to the attributes / methods of the class

" |nthe previous class Student both the name and id attributes were
first created when set by set name and set 1id, respectively

Class constructionand init

= When an object is created using class name () it’s initializer
metod init iscalled.

" To initialize objects to contain default values, (re)define this function.

student.py

class Student:
def init (self):
self.name = None

self.id = None

. previous method definitions ...

Question — What is printed ?

) 1
> class C:
def init (self): b) 2
self.v =0
def f (self): C) 3
self.v = self.v + 1 d) 4
return self.v
> x = C() e) 5

> print(x.£() + x.£())

f) Don’t know

init _ with arguments

= When creating objects using class name (args) the initializer
methodiscalledas init (args)

= To initialize objects to contain default values, (re)define this function
to do the appropriate initialization

student.py Python shell

class Student: > p = Student('Pluto')
def init (self, name=None, student id=None): > print(p.get name())
self.name = name | Pluto
self.id = student id > print(p.get id())
| None
. previous method definitions ...

Are accessor and mutator methods necessary ?

No - but good programming style

class Pair:
""" jnvariant: the_sum = a+ b """

- def init (self, a, b):

self.a = a

Python shell

S
0
) o <
> p = Pair (3, 5) + self . b = Db
> p.sum() § L self.the sum = self.a + self.b
| 8 " def set a(self, a):
> p.set_a(4) selE a=a
> p.sum() S DU
9 5) self.the sum = self.a + self.b
-}
> p.a # access object attribute g | def set b(self, b):
| 4 self.b =D
> p.b = 0 # update object attribute S | self.the sum = self.a + self.b
> p.sum() 0 def sum(self):
) # the sum not updated @ { return self.the sum

Converting objects to str

= To be able to convert an object to a string using str (object),
define the method str

= str ise.g.usedbyprint

Student constructor.py
class Student:
def str (self):

return f£"Student('{self.name}', '{self.id}')"
. previous method definitions

Python shell
> print(student DD) # without str

| < _main_.Student object at 0x03AB6B90>
> print(student DD) # with str

| Student ('Donald Duck', '107')

= To define an order on objects, define

Defining order on instances of a class (sorting)

the “<“ operator by defining

1t

When ”<” is defined a list L. of
students can be sorted using
sorted (L) and L.sort ()

student.py

class Student:
def 1t (self, other):
return self.id < other.id

. previous method definitions ...

Python shell

> student DD < student MM

| True

> [x.id for x in students]

| ['243', '107', '777']

> [x.1d for x in sorted(students)]
| ['107', '243', '777']

Nothing is private in Python

= Python does not support hiding
information inside objects

= Recommendation is to start
attributes with underscore, if these
should be used only locally inside a
class, i.e. be considered "private”

" PEP8: “Use one leading underscore
only for non-public methods and
instance variables”

private attributes.py

class My Class:
def set xy(self, x, y):
self. x X
self. y V4

def get sum(self):
return self. x + self. y

obj = My Class()
obj.set xy (3, 5)

print('Sum =', obj.get sum())
print(' x =', obj. x)

Python shell

| Sum = 8

C++ private, public

C++ vs Python

1.

2.
3.
4

d

argument types
return types
vold = NoneType

private /public
access specifier

types of data attributes

data attributes must
be defined in class

object creation
no self in class methods

private attributes.cpp

#include <iostream>

class My Class ({
private:(®

®int x, y;®
public:(®

X a;
V4 b
};
@ int get sum() {
return x + y;

};

};

main () {

@ My Class obj;
obj.set xy(3, 5);

}

using namespace std;

cout << "x = " << obj

@)

@3dvoid set xy(int a, int b) {

<< endl ;

cout << "Sum = " << obf .get sum() << endl;
/\

Q\ invalid reference

: :
Java private, public Rt

@ private i@t X, Yy, o

Java vs Python @ public void set xy(int a, int b) {
= ; = b;
1. argument types } e
@

2 return types @® public int get sum() { return x + y; };
3. void=NoneType };
4 private/public class private attributes ({

access specifier public static void main(String args[]) {

@ My Class obj = new My Class();

Y

types of data attributes

6. data attributes must
be defined in class

7. object creation }
8. no selfinclass methods |}

obj.set xy (3, 5);
System.out.println("Sum = " + obj.get sum());
System.out.println("x = " + obj@;

invalid reference /

Name mangling (partial privacy)

name mangeling.py

class MySecretBox:
def init (self, secret):
self. secret = secret

Python handles references to class
attributes inside a class definition with at
least two leading underscores and at most
one trailing underscore in a special way:
__attributeis textually replaced by
classname attribute

Note that [Guttag, p. 200] states “that
attribute is not visible outside the class” —
which only is partially correct (see example)

Python shell

> x = MySecretBox(42)
> print(x. secret)
| AttributeError: 'MySecretBox'
object has no attribute
' secret'
> print(x. MySecretBox secret)
| 42

Class attributes

class

class Student

[| next id = 3 student DD

set name (name) T I}sz ?2 | Donald Duck } dat§
set id(student id) 1d = attributes

object

class
attributes

get name ()
get 1d()

" obj.attribute first searches the objects attributes to find a match, if
no match, continuous to search the attributes of the class

= Assignmentsto obj.attribute are always to the objects attribute
(possibly creating the attribute)

= (Class attributes can be accesed directly as class.attribute
(orobj. class .attribute)

Class data attribute

= next id isaclass attribute
= Accessed using Student.next id

" The lookup @ can be replaced with
self.next id, since only the class
has this attribute, looking up in the
object will be propagated to a lookup
in the class attributes

" |nthe update @ itis crucial that we
update the class attribute, since
otherwise the incremented value will
be assigned as an object attribute

(What will the result be?)

student auto_id.py

class Student:
next id = 1 # class attribute
def init (self, name):
self.name = name
self.id = str(Student.next id)
@ Student.next id += 1
def get name (self):
return self.name
def get id(self):
return self.id

students = [Student('Scrooge McDuck'),
Student ('Donald Duck'),
Student ('Mickey Mouse')]
for student in students:
print (student.get name(),
"has student id",
student.get id())

Python shell

| Scrooge McDuck has student id 1
| Donald Duck has student id 2
| Mickey Mouse has student id 3

Question —What does obj .get () return?

Python shell

> class MyClass: a) L.

= 2
" @ b) 5
def get(self):

self.x = self.x + 1 C) 6

return MyClass.x + self.x d) UnboundLocalError

> obj = MyClass|()
> print (obj.get())
| 2

e) Don’t know

Class data attribute example (in Python)

class _attributes.py

class My Class:
x =1 # class attribute

def inc(self):
My Class.x = self.x + 1

objl = My Class()
obj2 = My Class()
objl.inc()
obj2.inc()

print (objl.x, obj2.x)
Python shell
| 3 3

Note that My Class.x and self.x refer to the same class attribute

(since self.x has never been assigned a value)

dict , name and class

Python shell

> MM = Student ('Mickey Mouse')

> MM. dict # objects attributes
| {'name': 'Mickey Mouse',6 'id': '1l'}
> MM. class # objects class (reference to object of type class)
| <class ' _main__.Student'>
> Student. name # class name (string)
| 'Student'
> Student. dict # class attributes
| mappingproxy ({
' module ': ' main ', # module where class defined
'next id': 2, # class data attriute
' init ': <function Student. init at 0x000002831344CD30>, # class method
'get name': <function Student.get name at 0x000002831344CE50>, # class method
'get_id': <function Student.get id at 0x000002831344CEE0>, # class method
' dict ': <attribute ' dict ' of 'Student' objects>, # attributes of class
' weakref ': <attribute ' weakref ' of 'Student' objects>, # (for garbage collecting)
' doc__ ': None # docstring

})

Java static

= |nJava class attributes,
i.e. attribute values
shared by all instances,
are labeled static

= Python allows both class
and instance attributes
with the same name —in
Java at most one of them
can exist

. /

inc () \A obj2
[

static_attributes. java

class My Class {
public static int x = 1;
public void inc() { x += 1; };

}

class static attributes {
public static void main(String args|[]) {

My Class objl = new My Class();

My Class obj2 = new My Class();
objl.inc() ;

obj2.inc() ;
System.out.println(objl.x) ;
System.out.println(obj2.x) ;

}
}

Java output

| 3
| 3

C++ static

= |n C++ class attributes,
i.e. attribute values
shared by all instances,
are labeled static

= |SO C++ forbids in-class
initialization of non-const
static member

= Python allows both class
and instance attributes
with the same name —in
C++ at most one of them

can exist
///'
inc () \A

static_attributes.cpp

#include <iostream>
using namespace std;

class My Class {

public:
static int x; // "= 1" is not allowed
void inc() { x += 1; };

};

int My Class::x = 1; // class initialization

int main () {
My Class objl;
My Class obj2;
objl.inc() ;
obj2.inc() ;
cout << objl.x << endl;
cout << obj2.x << endl;

}

C++ output

| 3
| 3

Constants

= A simple usage of class data attributes is to store a set of constants
(but there is nothing preventing anyone to chance these values)

Python shell

> class Color:

RED = "££0000"
GREEN = "00f££f00"
BLUE = "OOOOff"

> Color.RED
| '££0000"

PEP8 Style Guide for Python Code (some quotes)

= (Class names should norma

lly use the CapWords convention.

= Always use self for the first argument to instance methods.

= Use one leading underscore only for non-public methods and

instance variables.

= For simple public data attributes, it is best to expose just the
attribute name, without complicated accessor/mutator methods.

= Always decide whether ac
(collectively "attributes") s
If in doubt, choose non-pu

ass's methods and instance variables
hould be public or non-public.

olic; it's easier to make it public later than

to make a public attribute non-public.

www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/

Some methods many classes have

Method Description

eq (self, other)

Used to test if two elements are equal
Two elements where __eq__is true must have equal __hash___

str (self)

Used by str and print

__repr (self)

Used by repr, e.g. for printing to the IDE shell
(usually something that is a valid Python expression for eval ())

len (self)

Length (integer) of object, e.g. lists, strings, tuples, sets, dictionaries

doc

The docstring of the class

__hash (self)

Returns hash value (integer) of object
Dictionary keys and set values must have a __hash___ method

1t (self, other)

Comparison (less than, <) used by sorted and sort ()

init (self,...)

Class initializer

Overloading operators: www.python-course.eu/python3 magic methods.php

https://www.python-course.eu/python3_magic_methods.php

	Slide 1: Object oriented programming
	Slide 2: Object Oriented Programming
	Slide 3: Object Oriented Programming - History (selected programming languages)
	Slide 4: Design Patterns (not part of this course) reoccuring patterns in software design
	Slide 5: Some known classes, objects, and methods
	Slide 6: Classes and Objects
	Slide 7: Using the Student class
	Slide 8: class Student
	Slide 9: When are object attributes initialized ?
	Slide 10: Class construction and __init__
	Slide 11: Question – What is printed ?
	Slide 12: __init__ with arguments
	Slide 13: Are accessor and mutator methods necessary ?
	Slide 14: Converting objects to str
	Slide 15: Defining order on instances of a class (sorting)
	Slide 16: Nothing is private in Python
	Slide 17: C++ private, public
	Slide 18: Java private, public
	Slide 19: Name mangling (partial privacy)
	Slide 20: Class attributes
	Slide 21: Class data attribute
	Slide 22: Question – What does obj.get() return ?
	Slide 23: Class data attribute example (in Python)
	Slide 24: __dict__, __name__ and __class__
	Slide 25: Java static
	Slide 26: C++ static
	Slide 27: Constants
	Slide 28: PEP8 Style Guide for Python Code (some quotes)
	Slide 29: Some methods many classes have

