Documentatlon testing and debugging

docstring
= defensive programming
= assert
= test driven developement
= assertions
= testing
= unittest
= debugger
= coverage
= static type checking (mypy)

On average, a developer creates 70 bugs per 1000 lines of code
15 bugs per 1,000 lines of code find their way to the customers
Fixing a bug takes 30 times longer than writing a line of code

/5% of a developer’s time is spent on debugging

coralogix.com

https://coralogix.com/blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/

Ensuring good quality code ?

i Development (hopefuuy Usage
: correct
1

|

|

I
I
I

Design phase

i == = — program }:

/ \\success
success

S

Goal

= Develop programs that
work correctly

\ f fail

[Find bug } -

/

runs forever / crash /
incorrect output /
explosion / ...

_ ____________________

= Tools and techniques

What is good code ?

= Readability
* well-structured
* documentation
e comments

 follow some standard structure (easy to recognize, follow PEP8 Style Guide)

= Correctness
e outputs the correct answer on valid input
* eventually stops with an answer on valid input (should not go in infinite loop)

= Reusable...

https://www.python.org/dev/peps/pep-0008/

Why ?

Documentation Testing Debugging
= specification of = Correct = Where is the #!15
functionality implementation ? bug ?
= docstring = Try to predict
« for users of the code behavior on
* modules unknown input ?
* methods = Performance
* classes guarantees ?
" comments
* for readers of the code

”Program testing can be used to show the presence of bugs, but never to show their absence” — Edsger W. Dijkstra

- OSError
+-- BlockingIOError
+-- ChildProcessError
+-- ConnectionError
| +-- BrokenPipeError
| +-—- ConnectionAbortedError
| +—-— ConnectionRefusedError

Built-in exceptions
(class hierarchy)

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit

|
_|__
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
+-——- ReferenceError
+_
|

|
_|__
|

+-—- ConnectionResetError
FileExistsError
FileNotFoundError

+-- Exception +-- InterruptedError
+-- Stoplteration +-- IsADirectoryError
+-- StopAsynclteration +-- NotADirectoryError
+-—- ArithmeticError +-- PermissionError
| +-- FloatingPointError +-- ProcessLookupError
| +-- OverflowError +-- TimeoutError
| +—-—- ZeroDivisionError
+-- AssertionError - RuntimeError
+-- AttributeError +-—- NotImplementedError
+-- BufferError +-- RecursionError
+--— EOFError - SyntaxError
+-—- ImportError +-- IndentationError
| +-- ModuleNotFoundError | +-- TabError
+-- LookupError +-—- SystemError
| +-- IndexError +-- Warning
| +-- KeyError +-- DeprecationWarning
+-- MemoryError +-- PendingDeprecationWarning
+-- NameError +-- RuntimeWarning
| +-- UnboundLocalError +-- SyntaxWarning
+-- TypeError +-- UserWarning
+-- ValueError +-- FutureWarning
| +-- UnicodeError +-- ImportWarning
| +—-- UnicodeDecodeError +-- UnicodeWarning
| +-- UnicodeEncodeError +-- BytesWarning
| +-- UnicodeTranslateError +-- ResourceWarning

docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

Testing for unexpected behaviour ?

infinite-recursionl.py

def f (depth):
f (depth + 1)

infinite recursion
£(0)
Python shell

| RecursionError: maximum recursion depth exceeded

infinite-recursion2.py

def f (depth):
if depth > 100:
print ('runaway recursion???')
raise SystemExit # raise built-in exception
f (depth + 1)

£(0)

Python shell

| runaway recursion???

infinite-recursion3.py

import sys

def f (depth):
if depth > 100:
print ('runaway recursion???')
sys.exit() # system function

f(depth + 1) raises SystemExit

£(0)

Python shell

| runaway recursion???

= |et the program eventually fail
= check and raise exceptions
" checkandcall sys.exit

Catching unexpected behaviour —assert

infinite-recursion4.py

def f (depth):
assert depth <= 100
f (depth + 1)

raise exception if False

£(0)

| File "...\infinite-recursion4d.py", line 2, in £
| assert depth <= 100
| AssertionError

infinite-recursion5.py

def f (depth):
assert depth <= 100,
f (depth + 1)

'runaway recursion???'

£(0)

Python shell

| File "...\infinite-recursion5.py", line 2, in £
| assert depth <= 100, "runaway recursion???"

| AssertionError: runaway recursion???

= keyword assert checks if
boolean expression is true, if not,
raises exception AssertionError

= optional second parameter
passed to the constructor of the
exception

= try to fail fast to discover errors
early — making debugging easier

infinite-recursioné6.py

def f (depth):
if not depth <= 100:
raise AssertionError ('runaway recursion???')
f (depth + 1)

£(0)

Python shell

| File "...\infinite-recursioné6.py", line 3, in £
| raise AssertionError ("runaway recursion???")
| AssertionError: runaway recursion???

https://doi.org/10.1109/MS.2004.1331296

Disabling assert statements

B8 Command Prompr T o x " assert statements are
good to help check

C:\Users\aul2l\Desktop>python -0 infinite-recursion5.py

Traceback (most recent call last): correctness Of program — bUt

File "infinite-recursion5.py", line 5, in <module>
f(e) n slow down program

File "infinite-recursion5.py", line 3, in f Ca p Og d
f(depth + 1)

File "infinite-recursion5.py", line 3, in f

f(depth + 1)

File "infinite- ion5.py", line 3, in f m i i i
lf?deézhl-r:ll? recursiono.py ilne in Invoklng Python Wlth Opt|0n

[Previous line repeated 995 more times] -0 d|Sab|eS a” assertions

RecursionError: maximum recursion depth exceeded .
(by setting debug to
False)

C:\Users\aul21\Desktop>

docs.python.org/3/reference/simple stmts.html#assert

https://docs.python.org/3/reference/simple_stmts.html#assert

First try... (seriously, the bugs were not on purpose)

intsqrt buggy.py

def int sqrt(x):
low = 0
high = x
while low < high - 1:
mid = (low + high) / 2
if mid ** 2 <= x:
low = mid
else:
high = mid
return low

Python shell

> int sqrt(10)

| 3.125 # 3.125 ** 2 = 9.765625

> int sqrt(-10)

| 0 # what should the answer be ?

Let us add a specification...

def int sqrt(x):
''"Compute the integer square root of an integer x.

~

o]0)]
C .
= J Requires x >= 0 is an integer. < Input
4] : . requirements
o | Returns the integer floor (sqrt(x)).
©
) output

guarantees

Python shell

> help (int_sqrt)
| Help on function int sqrt in module = main
|

| int sqrt(x)

| Compute the integer square root of an integer x.
|

|

|

Requires x >= 0 is an integer.
Returns the integer floor (sqrt(x)).

all methods, classes, and
modules can have a
docstring (ideally have)
as a specification

for methods: summarize
purpose in first line,
followed by input
requirements and ouput
guarantees

the docstring is assigned to
the object’s doc
attribute

PEP 257 -- Docstring Conventions

www.python.org/dev/peps/pep-0257/

https://www.python.org/dev/peps/pep-0257/

Let us check input requirements...

= doing explicit checks for

def int sqrt(x):
'''Compute the integer square root of an integer x.

Requires x >= 0 is an integer.
Returns the integer floor(sqgrt(x)).'''

assert isinstance(x, int) check input
assert 0 <= x requirements

Python shell

> int sqrt(-10)

| File "...\int sqgrt.py", line 7, in int sqrt
| assert 0 <= x

| AssertionError

valid input arguments is
part of defensive
programming and helps
spotting errors early

(instead of continuing
using likely wrong
values... resulting in a
final meaningless error)

Let us check if output correct...

def int sqrt(x):
'''Compute the integer square root of an integer x.

Requires x >= 0 is an integer.
Returns the integer floor(sqrt(x)).'''

assert isinstance(x, int)
assert 0 <= x

assert isinstance (result, int) check
assert result ** 2 <= x < (result + 1) **x 2 output
return result

Python shell

> int sqrt(10)

| File "...\int sqrt.py", line 20, in int sqgrt
| assert isinstance(result, int)

| AssertionError

output check identifies the
error

mid = (low + high) / 2

should have been
mid = (low + high) // 2

The output check helps us
to ensure that function
specifications are satisfied
in applications

Let us test some input values...

def int sqrt(x):

assert int sqrt(0) ==
assert int sqrt(l) ==
assert int sqrt(2) ==
assert int sqrt(3) ==
assert int sqrt(4) ==
assert int sqrt(5) == 2

assert int sqrt(200) == 14

R =)

File "...\int sqrt.py",
assert int sqrt(l) ==

assert result ** 2 <=

|
|
|
| File "...\int sqrt.py",
|
| AssertionError

Python shell

Traceback (most recent call last):

line 28, in <module>
1

line 21, in int sqrt
X < (result + 1) **x 2

test identifies
wrong output forx =1

Python shell

Let us check progress of algorithm...
ntsgrtpy

intsqrt.py

low, high = 0, x
while low < high - 1: # low <= floor(sqgrt(x)) < high
assert low ** 2 <= x < high ** 2 check invariant
mid = (low + high) // 2 for loop
if mid ** 2 <= x:
low = mid
else:
high = mid
result = low

Traceback (most recent call last):

File "...\int sqrt.py", line 28, in <module>
assert int sqrt(l) == 1
File "...\int sqrt.py", line 21, in int sqgrt

assert result ** 2 <=

AssertionError

X < (result + 1) **x 2

test identifies
wrong output forx =1

but invariant apparently
correct ???
problem

low == result == 0
high == 1

implies loop never entered

output check identifies the
error
high = x
should have been
high = x + 1

intsqgrt.py

def int sqrt(x):
'''Compute the integer square root of an integer x.

Final program eqizes % 5= 0 4s an integer.

Returns the integer floor(sqrt(x)).'"''

assert isinstance(x, int)
assert 0 <= x

low, high = 0, x + 1

We have used assertions to: while low < high - 1: # low <= floor(sqrt(x)) < high
o i assert low ** 2 <= x < high ** 2
= Test if input arguments / usage is mid = (low + high) // 2
. . . if mid ** 2 <= x:
valid (defensive programming) low = mid
. . else:
= Test if computed result is correct high = mid

result = low

= Testif an internal invariant in the

assert isinstance(result, int)

CompUtation iS satisfied assert result ** 2 <= x < (result + 1) ** 2
= Perform a final test for a set of return result

test cases (should be run assert int sqrt(0) = 0
whenever we change anything in assert int sqrt(l) == 1
. . assert int sqrt(2) == 1
the Implementatlon) assert int sqrt(3) == 1
assert int sqrt(4) == 2
assert int sqrt(5) == 2

assert int sqrt(200) == 14

Which checks would you add to the below code?

binary-search.py

def binary search(x, L):
'''Binary search for x in sorted list L.

Assumes x is an integer, and L a non-decreasing list of integers.

Returns index i, -1 <= i < len(L), where L[i] <= x < L[i+1],
assuming L[-1] = -infty and L[len(L)] = +infty.'"''

low, high = -1, len(L)
while low + 1 < high:
mid = (low + high) // 2
if x < L[mid]:
high = mid
else:
low = mid
result = low

return result

binary-search-assertions.py

def binary search(x, L):
'''Binary search for x in sorted list L.

Assumes x is an integer,

and L a non-decreasing list of integers.

Returns index i,

-1 <= i < len(L),

where L[i] <= x < L[i+1],

assuming L[-1] = -infty and L[len(L)] = +infty.'''
e assert isinstance(x, int)
) assert isinstance (L, list)
E? assert all([isinstance (e, int) for e in L]) . ..
'~ [assert all([L[i] <= L[i + 1] for i in range(len(L) - 1)]) @ inefficient

low, high = -1, len(L)
8— while low + 1 < high: # L[low] <= x < L[high]
(@) {: assert (low == -1 or L[low] <= x) and (high == len(L) or x < L[high])
: mid = (low + high) // 2
> assert isinstance (L[mid], int)
E% { assert (low == -1 or L[low] <= L[mid]) and (high == len(L) or L[mid] <= L[high]i}
= if x < L[mid]:

high = mid
else:
low = mid

result = low
i) assert (isinstance(result, int) and -1 <= result < len(L) and
Ei ((result == -1 and (len(L) == 0 or x < L[0])) or
?5 (result == len(L) - 1 and x >= L[-1]) or
(@) (0 <= result < len(L) - 1 and L[result] <= x < L[result + 1])))

return result

assert binary search(42, []) == -1 7

assert binary search(42, [7]) == 0

assert binary search(7, [42]) == -1

assert binary search(7, [42, 42, 42]) == -1 >~ test cases
assert binary search (42, [7, 7, 7]) ==

assert binary search(42, [7, 7, 7, 56, 81]) ==

assert binary search(8, [1, 3, 5, 7, 9]) ==

@ Verifying if L is a sorted list
of integers can slow down
the program significantly

@ Alternative is to only verify
if the part of L visited is a
sorted subsequence

Testing—how ?

= Run set of test cases
* test all cases in input/output specification (black box testing)
* test all special cases (black box testing)
* set of tests should force all lines of code to be tested (glass box testing)

= Visual test

= Automatic testing
 Systematically / randomly generate input instances

* Create function to validate if output is correct
(hopefully easier than finding the solution)

= Formal verification
* Use computer programs to do formal proofs of correctness, like using Coq

https://coq.inria.fr/

Visual testing — Convex hull computation

Correct Bug !
(not convex)

doctest

Python module

Test instances (pairs of
input and corresponding
output) are written in the
doc strings, formatted as in
an interactive Python
session

binary-search-doctest.py Python shell

def binary search(x, L): | Trying:
'''Binary search for x in sorted list L. | binary search (42, [])
| Expecting:
Examples: | -1
>>> binary search (42, []) | ok
-1 | Trying:
>>> binary search(42, [7]) | binary search (42, [7])
0 | Expecting:
>>> binary_ search (42, [7,7,7,56,81]) | 0
2 | ok
>>> binary search(8, [1,3,5,7,9]) | Trying:
3 | binary search(42, [7,7,7,56,81])
v | Expecting:
| 2
low, high = -1, len(L) | ok
while low + 1 < high: | Trying:
mid = (low + high) // 2 | binary search(8, [1,3,5,7,9])
if x < L[mid]: | Expecting:
high = mid | 3
else: | ok
low = mid | 1 items had no tests:
return low | __main_
| 1 items passed all tests:
import doctest | 4 tests in _ main__ .binary search
doctest. testmod (verbose=True) | 4 tests in 2 items.
| 4 passed and 0 failed.
| Test passed.

docs.python.org/3/library/doctest.html

https://docs.python.org/3/library/doctest.html

binary-search-pytest.py

import pytest

def binary search(x, L):

pytest

= Run all tests stored in
functions prefixed by test
or test prefixed test
methods inside Test

'''Binary search for x in sorted list L.'''

low, high = -1, len(L)
while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:
high = mid
else:
low =
return low

mid

def test binary search():
prefixed test classes assert binary search(42, []) == -1
assert binary search (42, [7]) ==
[plp install pytest assert binary search (42, [7,7,7,56,81]) ==
assert binary search(8, [1,3,5,7,9]) ==
" Runthe pytest program def test_ types():
with pytest.raises (TypeError) :
from d She” __ = binary search(5, ['a', 'b', 'c'])
Shell
> pytest binary-search-pytest.py
| test session starts
| platform win32 -- Python 3.11.2, pytest-7.2.1, pluggy-1.0.0
| plugins: anyio-3.6.2
| collected 2 items
pvtestorg | binary-search-pytest.py .. [100%]
|

2 passed in 0.05s

https://docs.pytest.org/

binary-search-unittest.py

def binary search(x, L):
'''Binary search for x in sorted list L.'''

unittest row, high = 1, len(h

while low + 1 < high:
mid = (low + high) // 2

= Python module if x < L[mid]:
high = mid
= A comprehensive object-oriented elsei _ .

] . ow = mid
test framework, inspired by the return low
corresponding JUnit test framework s e
for Java

class TestBinarySearch (unittest.TestCase) :
def test_search(self):
self.assertEqual (binary search (42, []), -1)
self.assertEqual (binary search (42, [7]), 0)
self.assertEqual (binary search (42, [7,7,7,56,81]), 2)
self.assertEqual (binary search(8, [1,3,5,7,9]), 3)

def test_ types (self):
self.assertRaises (TypeError, binary search, 5, ['a', 'b', 'c'])

unittest.main (verbosity=2)

Python shell

| test_search (_ main__.TestBinarySearch) ... ok

| test_types (__main_ .TestBinarySearch) ... ok

| o e e e e e e e e e e e e R e e e e
| Ran 2 tests in 0.051s

| OK

docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Debugger (IDLE)

= When an exception has stopped the program, you can examine the
state of the variables using Debug > Stack Viewer in the Python shell

| & Python 3.6.4 Shell

Eile Edit Shell Debug
Go to File/Line

Debugger

Stack Viewer

Auto-open Stack Viewer

— O X

Options Window Help
4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)]

credits™ or "license ()" for more information.

\aul2l\Desktop\ipsal8\code\slides\14 testing\intsqgrt buggy.py

>>> int_sqrt (10)

Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
int sqrt(10)
File "C:\Users\aul2l\Desktop\ipsal@8\code\slides\14 testing\intsgrt buggy.py"
line 10, in int sqgrt
agsert isinstance (low, int)
AssertionError
>>> |

Ln: 12 Col: 4

_main__.<module>(...), line 1:

—

(] <locals>

mid =

#-_] <globals>

3.125
3.75
3.125
10

— U

idlelib.run.runcode(...), line 474: exec(code, self.locals)

] _main__.int_sqrt(...), line 10: assert isinstance(low, int)

Stepping through a program (IDLE debugger)

= Debug > Debugger in the Python shell opens Debug Control window
= Right click on a code line in editor to set a “breakpoint” in your code

= Debug Control: Go =2 run until next breakpoint is encountered;
Step = execute one line of code; Over = run function call without details;
Out =2 finish current function call; Quit = Stop program;

N | & Debug Control — O X
I_g intsgrt_buggy.py - C:\Users\au121\Desktop\ipsal.. — O X 5 Sak [Somce
Go | Step | Over| Out | Quit |

File Edit Format Run Options Window Help W Locals I Globals

int sqgrt(x): intsqrt_buggy.py:6: int_sqrt()
low = 0
nigh - x 3 oo T x| [g
_| _ . A : int_sqrt(10)
low < high - 1: File Edit Shell Debug Options Window Help > _main_"int_sqri(), line & if mid ** 2 <= ¢
mid = (low + high) / 2 Go to File/Line 4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.19
if mid ** 2 <= x: : P oo win32 7 7
low = mid Cut Stack Viewer credits™ or "license()" for more informatio
Cop) Auto-open Stack Viewer
high = mid Paste
low Locals
igh 1
Clear Breakpoint low 0
Ln:3 Cok 4 mid 3.0

Ln: & Col 25 . 10

Coverage

" Ensure that your tests cover
the whole code and all
possible branches are taken

" The module coverage can
monitor running your code
and report which lines and
branches were not executed

" plp 1nstall coverage

= Note 100% coverage does
not guarantee that there are
no errors... just fewer

goldbach.py
1 def odd(x) :
2 return x $ 2 == 1
3 def sum of three primes(n):
4 assert odd(n) and n > 5
5 primes = (set(range(2, n + 1)) -
6 set(x for £ in range(2, n + 1)
7 for x in range(2 * £, n + 1, £f)))
8 for x in primes:
9 for y in primes:
10 for z in primes:
11 if n=x+y + z:
12 print(n, 'is the sum of three primes’',
13 return
14 print(n, 'is not the sum of three primes')
15 for n in range(7, 1000, 2):

16

sum of three primes(n)

Shell

coverage run —-branch goldbach.py
7 is the sum of three primes 2 2 3
9 is the sum of three primes 2 2 5

999 is the sum of three primes 3 5 991
coverage report -m goldbach.py
Name Stmts Miss Branch BrPart Cover

xl yl z)

Missing

pypi.org/project/coverage

en.wikipedia.org/wiki/Goldbach’s weak conjecture

https://pypi.org/project/coverage/
https://en.wikipedia.org/wiki/Goldbach%27s_weak_conjecture

coverage html

def

def

for

14 statements

Coverage for goldbach.py: 92%

—
W
-
=
>

1 missing | | 0 excluded | | 1 partial

«prev " index » next coverage.py v6.5.0, created at 2022-10-05 17:23 +0200

odd(x):
return x % 2 ==
sum_of_three_primes(n):
assert odd(n) and n > 5
(set(range(2, n + 1)) -
set(x for f in range(2, n + 1)
for x in range(2 * f, n + 1, f)))
for x in primes:

primes

8~ 14

f i i :
L R line 8 didn't jump to line 14, because the loop on line 8 didn't

for z in primes:
complete

ifn==x+y + z:

print(n, 'is the sum of three primes', x, y, 2z)
return

print(n, 'is not the sum of three primes')

n in range(7, 1001, 2):

sum_of_three_primes(n)

Concluding remarks

= Simple debugging: add print statements

= Test driven development = Strategy for code development, where
tests are written before the code

= Defensive programming = add tests (assertions) to check if
input/arguments are valid according to specification

= When designing tests, ensure coverage
(the set of test cases should make sure all code lines get executed)

= Python testing frameworks: doctest, unittest, pytest, ...

Mypy — a static type checker for Python

Experimental
" Static type checking tries to

analyze a program for potential |print('start')

type errors without executing print(42 + 'abc') # error
print('end')

the program

= Installing: > python mypy-simple.py
plp 1install mypy | start
| TypeError: unsupported operand type (s)
= Running Python will cause an error S
during execution, whereas using >| Eypy_r:ziyizlmp}:jpzrror. Unsuonorted
mypy the error will be found ogzriand I;ypc.alsbyi.:'o;: + ("ir.1t" anzp"str")
without executing the program [operator]

= Standard (and required) in statically

typed languages like Java, C, C++ Ypy-lang.org
PEP 484 - Type Hints

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitnuqf5I7hAhWHAxAIHTJWA-kQFjAAegQIBxAB&url=http://mypy-lang.org/&usg=AOvVaw2bn63UXnfMdWbR3mNQ0dkV
https://www.python.org/dev/peps/pep-0484/

mypy does not spot all error...

mypy-add.py

def add(x, y):
return x + yv # bug: x int and y string
print (add (42, 'abc'))

Shell

> python add.py

| TypeError: unsupported operand type(s) for +: 'int' and 'str'
> mypy add.py

| Success: no issues found in 1 source file

Type hints (PEP 484)

int # type hint

42

'abe' # type error

int = 42 §# type hint

= 'abec' # type error

= 42

= 'abc' # type changed from int to str

= Python allows type hints in
programs

N N K X X X

= Type hints are ignored at run-time

by Python, but useful for static print(x, y, z)

type analysis (e.6. myey)

> python mypy-basic-types.py

| abe abe abc

> mypy mypy-basic-types.py

| mypy-basic-types.py:3: error: Incompatible

variable : type = value types in assignment (expression has type
"str", variable has type "int")

| mypy-basic-types.py:5: error:

| mypy-basic-types.py:7: error:

= Syntax

variable : type

Type hints — functions

def name(variable : type, ...) —> return type:

mypy-function.py Shell

def f(x: int, units: str) -> str: |> python mypy-function.py
return str(x) + ' ' + units | 3 em
| one meter
| 3 cm
| one meter
| {'x': <class 'int'>, 'units': <class 'str'>,
'return': <class 'str'>}

def g(x, units: str) -> str:
return str(x) + ' ' + units

print (£(3, 'em'))

print(f('one', 'meter'))

print(g(3, 'cm')) > mypy mypy-function.py
print(g('one', 'meter')) | mypy-function.py:8: error: Argument 1 to "f£"
print(f. annotations) has incompatible type "str",; expected "int"

" For functions and methods function. annotations isa dictionary with the annotation

= The types become part of the documentation

More type hints... see PEP 484 for even more...

from typing import Mapping, Set, List, Tuple, Union, Optional

error {} dictionary
error 'abc' is not int
error 'a' is not int
error 7 is not str

S : Set = {}

S2 : Set[int] = {1, 2, 'abc'}

D : Mapping[int, int] = {1: 42, 'a': 1}
T : Tuple[int, str] = (42, 7)

L : List[Union[int, str]] = [42, 'a',6 None] error list can only contain int and str
L2 : List[Optional[str]] = ['abc', None, 42] error list can only contain str og None

Shell

> mypy mypy-typing.py

| mypy-typing.py:3: error: Incompatible types in assignment (expression has type "Dict[<nothing>,
<nothing>]", wvariable has type "Set[Any]")

| mypy-typing.py:4: error: Argument 3 to <set> has incompatible type "str"; expected "int"

| mypy-typing.py:5: error: Dict entry 1 has incompatible type "str": "int"; expected "int": "int"

| mypy-typing.py:6: error: Incompatible types in assignment (expression has type "Tuple[int, int]",
variable has type "Tuple[int, str]")

| mypy-typing.py:7: error: List item 2 has incompatible type "None"; expected "Union[int, str]"

| mypy-typing.py:8: error: List item 2 has incompatible type "int"; expected "Optional[str]"

H = H H H

PEP 484 - Type Hints

https://www.python.org/dev/peps/pep-0484/

... the same in Python 3.10

deprecated: from typing import Mapping, Set, List, Tuple, Union, Optional

error {} dictionary
error 'abc' is not int
error 'a' is not int
error 7 is not str

S : set = {}

S2 : set[int] = {1, 2, 'abc'}

D : dict[int, int] = {1: 42, 'a': 1}
T : tuple[int, str] = (42, 7)

L : list[int | str] = [42, 'a',6 None] error list can only contain int and str
L2 : list[str | None] = ['abc', None, 42] error list can only contain str og None

Shell

> mypy mypy-typing-new.py

| mypy-typing-new.py:3: error: Incompatible types in assignment (expression has type "Dict[<nothing>,
<nothing>]", variable has type "Set[Any]")

| mypy-typing-new.py:4: error: Argument 3 to <set> has incompatible type "str"; expected "int"

| mypy-typing-new.py:5: error: Dict entry 1 has incompatible type "str": "int"; expected "int": "int"

| mypy-typing-new.py:6: error: Incompatible types in assignment (expression has type "Tuple[int, int]",
variable has type "Tuple[int, str]")

| mypy-typing-new.py:7: error: List item 2 has incompatible type "None"; expected "Union[int, str]"

| mypy-typing-new.py:8: error: List item 2 has incompatible type "int"; expected "Optional[str]"

£ S

PEP 585 - Type Hinting Generics In Standard Collections (Python 3.9)
PEP 604 — Allow writing union types as X | Y (Python 3.10)

https://www.python.org/dev/peps/pep-0585/
https://peps.python.org/pep-0604/

Specific values

mypy-literal.py

from typing import Literal

print (£"{calc('add', 5, 8) =
print (£"{calc('sub', 5, 8) =
print (f"{calc('mul', 5, 8) =

)
)
)

error

> python.exe mypy-literal.py

| cale('add', 5, 8) = 13
calc('sub', 5, 8) = -3
ValueError: Unknown command 'mul'’

|

|

> mypy.exe .\mypy-literal.py

| mypy-literal.py:11:
expected "Literal['add', 'sub']" [arg-typel

| Found 1 error in 1 file (checked 1 source file)

def calc(cmd: Literal['add', 'sub'], x: int, y: int) -> int:
match cmd:
case 'add': return x + y
case 'sub': return x - y
case _: raise ValueError (f"Unknown command '{cmd}'")

Shell

error: Argument 1 to "calc" has incompatible type "Literal['mul']";

PEP 586 - Literal Types (Python 3.8)

https://peps.python.org/pep-0586/PEP

	Slide 1: Documentation, testing and debugging
	Slide 2
	Slide 3: Ensuring good quality code ?
	Slide 4: What is good code ?
	Slide 5: Why ?
	Slide 6: Built-in exceptions (class hierarchy)
	Slide 7: Testing for unexpected behaviour ?
	Slide 8: Catching unexpected behaviour – assert
	Slide 9: Disabling assert statements
	Slide 10: Example
	Slide 11: First try... (seriously, the bugs were not on purpose)
	Slide 12: Let us add a specification...
	Slide 13: Let us check input requirements...
	Slide 14: Let us check if output correct...
	Slide 15: Let us test some input values...
	Slide 16: Let us check progress of algorithm...
	Slide 17: Final program
	Slide 18: Which checks would you add to the below code?
	Slide 19
	Slide 20: Testing – how ?
	Slide 21: Visual testing – Convex hull computation
	Slide 22: doctest
	Slide 23: pytest
	Slide 24: unittest
	Slide 25: Debugger (IDLE)
	Slide 26: Stepping through a program (IDLE debugger)
	Slide 27: Coverage
	Slide 28: coverage html
	Slide 29: Concluding remarks
	Slide 30: Mypy – a static type checker for Python
	Slide 31: mypy does not spot all error…
	Slide 32: Type hints (PEP 484)
	Slide 33: Type hints – functions
	Slide 34: More type hints... see PEP 484 for even more...
	Slide 35: … the same in Python 3.10
	Slide 36: Specific values

