Linear programming

- Example Numpy: PageRank
- scipy.optimize.linprog
- Example linear programming: Maximum flow

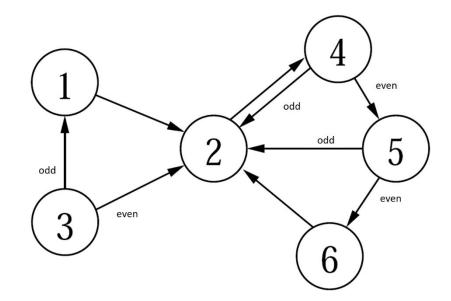
PageRank - A NumPy / Jupyter / matplotlib example

- Google's original search engine ranked webpages using PageRank
- View the internet as a graph where nodes correspond to webpages and directed edges to links from one webpage to another webpage
- Google's PageRank algorithm was described in (ilpubs.stanford.edu:8090/361/, 1998)

The Anatomy of a Large-Scale Hypertextual Web Search Engine

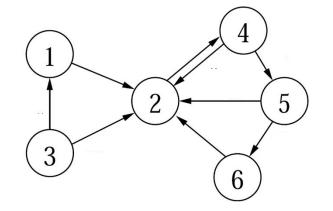
Sergey Brin and Lawrence Page

Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu



Five different ways to compute PageRank probabilities

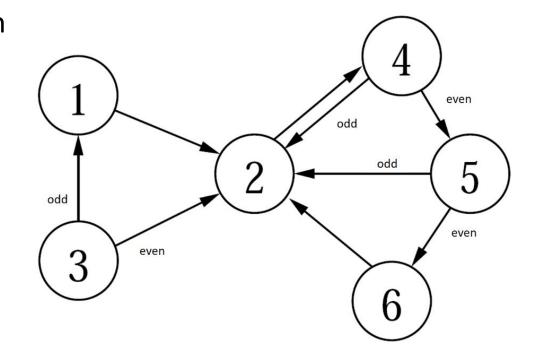
- 1) Simulate random process manually by rolling dices
- 2) Simulate random process in Python
- 3) Computing probabilities using matrix multiplication
- 4) Repeated matrix squaring
- **5)** Eigenvector for $\lambda = 1$



Random surfer model (simplified)

The PageRank of a node (web page) is the fraction of the time one visits a node by performing an *infinite random traversal* of the graph starting at node 1, and in each step

- with probability 1/6 jumps to a random page (probability 1/6 for each node)
- with probability 5/6 follows an outgoing edge to an adjacent node (selected uniformly)



The above can be simulated by using a dice: Roll a *dice*. If it shows 6, jump to a random page by rolling the dice again to figure out which node to jump to. If the dice shows 1-5, follow an outgoing edge - if two outgoing edges roll the dice again and go to the lower number neighbor if it is odd.

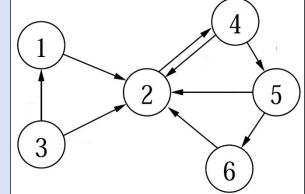
Adjacency matrix and degree vector

pagerank.ipynb

import numpy as np

Adjacency matrix of the directed graph in the figure # (note that the rows/colums are 0-indexed, whereas in the figure the nodes are 1-indexed)

G = np.array([[0, 1, 0, 0, 0, 0],[0, 0, 0, 1, 0, 0],[1, 1, 0, 0, 0, 0],[0, 1, 0, 0, 1, 0],[0, 1, 0, 0, 0, 1],[0, 1, 0, 0, 0, 0]])



n = G.shape[0] # number of rows in G
degree = np.sum(G, axis=1, keepdims=True) # column vector with row sums = out-degrees

The below code handles sinks, i.e. nodes with outdegree zero (no effect on the graph above)

G = G + (degree == 0) # add edges from sinks to all nodes (uses broadcasting)
degree = np.sum(G, axis=1, keepdims=True)

Simulate random walk (random surfer model)

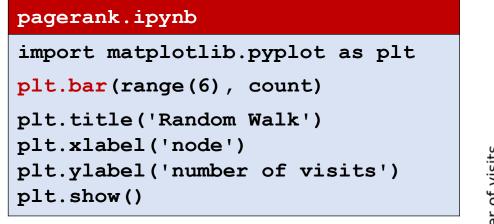
pagerank.ipynb

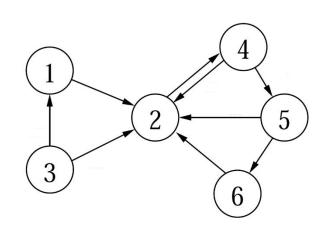
```
from random import randint, choice
STEPS = 1000000
# adjacency list[i] is a list of all j where (i, j) is an edge of the graph.
adjacency list = [[j for j, e in enumerate(row) if e] for row in G]
count = np.zeros(n)  # histogram over number of node visits
state = 0
                          # start at node with index 0
for in range(STEPS):
   count[state] += 1  # increment count for state
   if randint(1, 6) == 6: # original paper uses 15% instead of 1/6
       state = randint(0, 5)
   else:
       state = choice(adjacency list[state])
print(adjacency list, count / STEPS, sep='\n')
                                                                                2
Python shell
  [[1], [3], [0, 1], [1, 4], [1, 5], [1]]
  [0.039365 0.353211 0.02751 0.322593 0.1623
                                               0.0950211
```

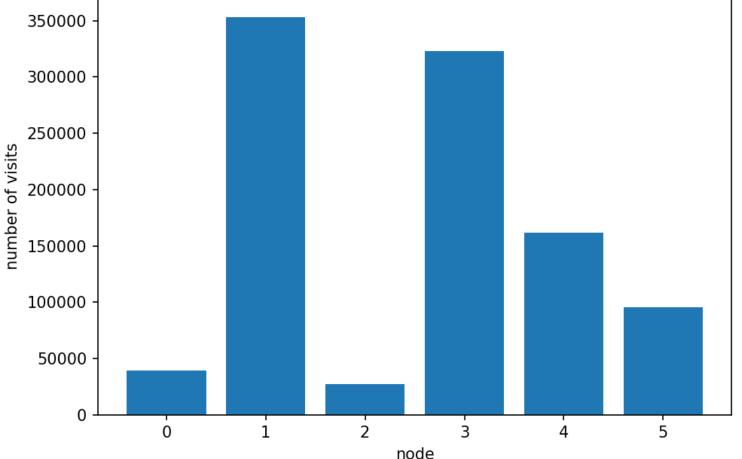
5

6

Simulate random walk (random surfer model)







Random Walk

Transition matrix A

pagerank.ipynb	
A = G / degree	<pre># Normalize row sums to one. Note that 'degree' # is an n x 1 matrix, whereas G is an n x n matrix. # The elementwise division is repeated for each column of G</pre>
print(A)	
Python shell	
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3 6

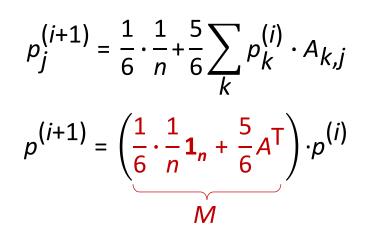
Repeated matrix multiplication

We now want to compute the probability $p_{j}^{(i)}$ to be in vertex *j* after *i* steps. Let $p^{(i)} = (p_{0}^{(i)}, \dots, p_{n-1}^{(i)})$.

Initially we have $p^{(0)} = (1, 0, ..., 0)$.

We compute a matrix M, such that $p^{(i)} = M^i \cdot p^{(0)}$ (assuming $p^{(0)}$ is a column vector).

If we let $\mathbf{1}_n$ denote the $n \times n$ matrix with 1 in each entry, then M can be computed as:



pagerank.ipynb

```
ITERATIONS = 20
p 0 = np.zeros((n, 1))
p 0[0, 0] = 1.0
M = 1 / (6 * n) + 5 / 6 * A.T
p = p 0
prob = p # 'prob' will contain each
          # computed 'p' as a new column
for in range(ITERATIONS):
   p = M @ p
   prob = np.append(prob, p, axis=1)
print(p)
Python shell
  [[0.03935185]
```

 [[0.03935185]

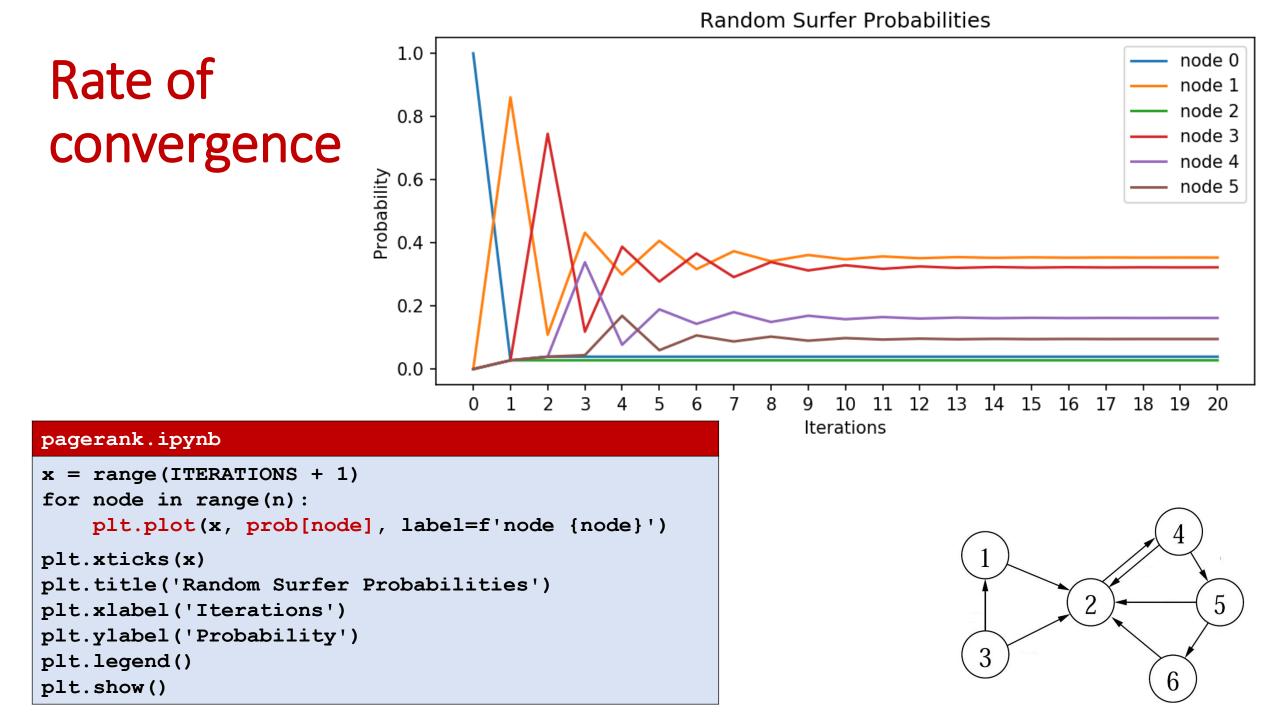
 [0.35326184]

 [0.02777778]

 [0.32230071]

 [0.16198059]

 [0.09532722]]



Repeated squaring $\mathcal{M} \cdot (\cdots (\mathcal{M} \cdot (\mathcal{M} \cdot p^{(0)})) \cdots) = \mathcal{M}^k \cdot p^{(0)} = \mathcal{M}^{2^{\log_2 k}} \cdot p^{(0)} = (\cdots ((\mathcal{M}^2)^2)^2 \cdots)^2 \cdot p^{(0)}$

k multiplications, k power of 2

pagerank.ipynb		
from math import $log2$ MP = M		
<pre>MP = M for _ in range(1 + int(log2(ITERATIONS))): MP = MP @ MP p = MP @ p_0 print(p)</pre>		
Python shell		
<pre>[[0.03935185] [0.35332637] [0.02777778] [0.32221711] [0.16203446] [0.09529243]]</pre>		

PageRank : Computing eigenvector for $\lambda = 1$

We want to find a vector p, with |p| = 1, where Mp = p,
 i.e. an *eigenvector* p for the eigenvalue λ = 1

pagerank.ipynb			
<pre>eigenvalues, eigenvectors = np.linalg.eig(M)</pre>			
<pre>idx = eigenvalues.argmax() p = np.real(eigenvectors[:, idx]) p /= p.sum() print(p)</pre>	<pre># find the largest eigenvalue (= 1) # .real returns the real part of complex numbers # normalize p to have sum 1</pre>		
Python shell			
[0.03935185 0.3533267 0.02777778 0.32221669 0.16203473 0.09529225]			

PageRank : Note on practicality

- In practice an explicit matrix for billions of nodes is infeasible, since the number of entries would be order of 10¹⁸
- Instead use sparse matrices (in Python modul scipy.sparse) and stay with repeated multiplication

Linear programming

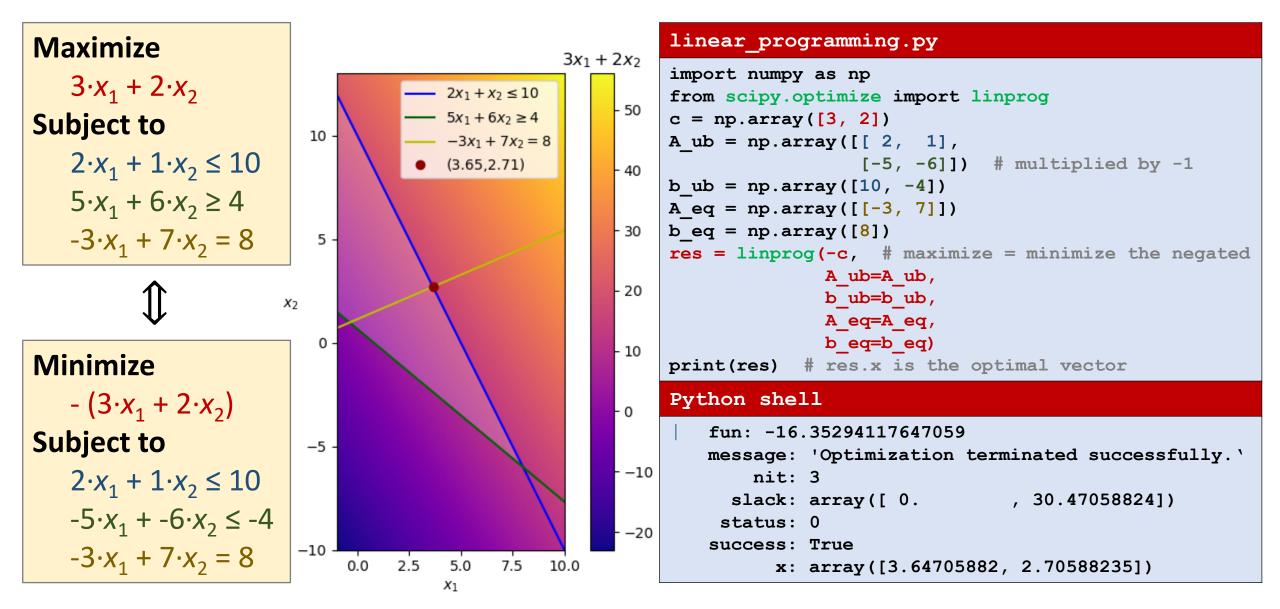
scipy.optimize.linprog

 scipy.optimize.linprog can solve *linear programs* of the following form, where one wants to find an n x 1 vector x satisfying:

Minimize: $c^{\mathsf{T}} \cdot x$ $\underline{dimension}$ Subject to: $A_{ub} \cdot x \leq b_{ub}$ $A_{ub} : m \times n$ $b_{ub} : m \times 1$ $A_{eq} \cdot x = b_{eq}$ $A_{eq} : k \times n$ $b_{eq} : k \times 1$

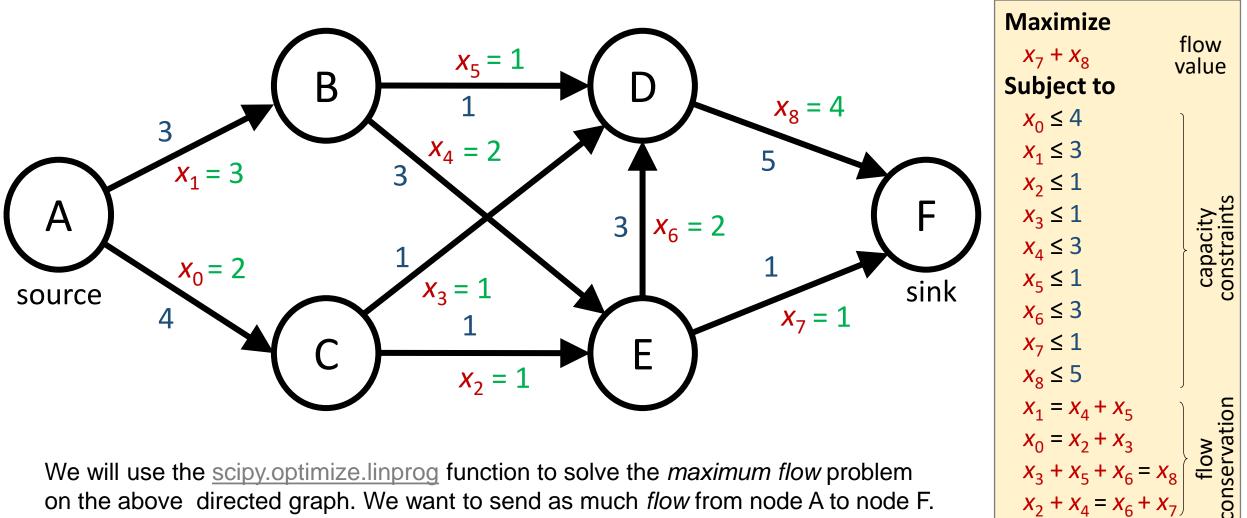
Some other open-source optimization libraries <u>PuLP</u> and <u>Pyomo</u> For industrial strength linear solvers, use solvers like <u>Cplex</u> or <u>Gurobi</u>

Linear programming example



Maxmium flow

Solving maximum flow using linear programming



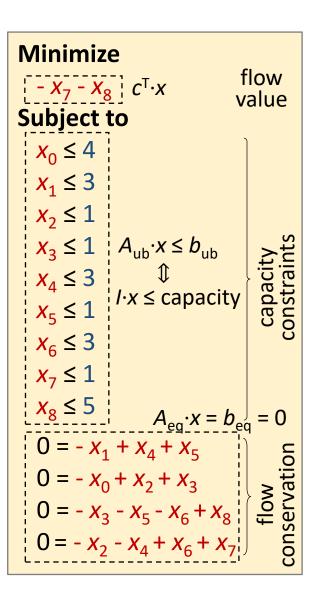
We will use the <u>scipy.optimize.linprog</u> function to solve the *maximum flow* problem on the above directed graph. We want to send as much flow from node A to node F. Edges are numbered 0..8 and each edge has a maximum *capacity*.

Note: solution not unique

 $x_2 + x_4 = x_6 + x_7$

Solving maximum flow using linear programming

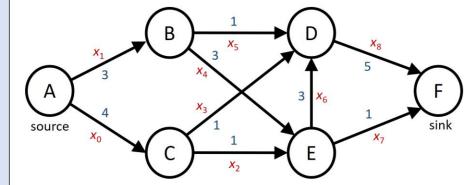
- x is a vector describing the flow along each edge
- *c* is a vector to add the flow along the edges (7 and 8) to the sink (F), i.e. a function computing *the flow value*
- A_{ub} and b_{ub} is a set of *capacity constraints*, for each edge flow ≤ capacity
- A_{eq} and b_{eq} is a set of *flow conservation* constraints, for each non-source and non-sink node (B, C, D, E), requiring that the flow into equals the flow out of a node



maximum-flow.py

```
import numpy as np
from scipy.optimize import linprog
                             0 1 2 3 4 5 6 7 8
#
conservation = np.array([[ 0, -1, 0, 0, 1, 1, 0, 0, 0], # B
                          [-1, 0, 1, 1, 0, 0, 0, 0, 0], # C
                          [0, 0, 0, -1, 0, -1, -1, 0, 1], \# D
                           [0, 0, -1, 0, -1, 0, 1, 1, 0]]) # E
#
                   0 1 2 3 4 5 6 7 8
sinks = np.array([0, 0, 0, 0, 0, 0, 0, 1, 1])
                      0 1 2 3 4 5 6 7 8
#
capacity = np.array([4, 3, 1, 1, 3, 1, 3, 1, 5])
res = linprog(-sinks,
              A eq=conservation,
              b eq=np.zeros(conservation.shape[0]),
              A ub=np.eye(capacity.size),
                                                          Python shell
              b ub=capacity)
                                                                fun: -5.0
                                                             message: 'Optimization terminated successfully.'
                                                                nit: 9
print(res)
                                                              slack: array([2., 0., 0., 0., 1., 0., 1., 0., 1.])
                                                             status: 0
                               the solution found varies
                                                             success: True
```

with the scipy version



→ x: array([2., 3., 1., 1., 2., 1., 2., 1., 4.])