
Evaluating a Polynomial

Kasper Green Larsen

August 30, 2017

1 Fast Evaluation of a Polynomial

In this short note, we take a look at evaluating polynomials. A degree n polynomial P (over the real numbers
R) is given by n+ 1 coefficients αn, αn−1, . . . , α1, α0 ∈ R. The evaluation of P at a point x ∈ R is simply:

P (x) = αnx
n + αn−1x

n−1 + · · ·+ α1x+ α0.

We will see two almost identical ways of evaluating P , but with dramatically different amounts of work to
be done.

Naive. The first and most obvious solution is to simply evaluate each term αix
i in the sum individually

and then sum them up. In pseudo code, this could look something like this:

1. S ← 0

2. For i = 0, . . . , n:

(a) B ← 1.

(b) For d = 1, . . . , i:

i. B ← B · x.

(c) S ← S + αi ·B.

3. Return S.

Let us say a few words about the algorithm above. The variable S represents the sum of the terms αix
i.

The variable i represents which term αix
i we are about to evaluate. The inner-loop in steps (a) and (b)

computes xi and stores it as the variable B. Step (c) multiplies xi with αi and adds it to the sum.
How fast is the above algorithm? Let us take a look at how many times the “inner-most” instruction

B ← B · x is executed. It is executed exactly:

n∑
i=0

i∑
d=1

1

times. Notice the direct translation of a for-loop into a sum. This sum equals:

n∑
i=0

i∑
d=1

1 =

n∑
i=0

i

=

n∑
i=1

i

The sum of all integers from 1 to n is a well-known quantity, and equals n(n + 1)/2. This is n2/2 + n/2.
The amount of work is thus roughly quadratic in the degree of the polynomial.

1



Re-Using Previous Work. We will now see how to speed up the evaluation significantly. Examining the
naive algorithm, we see that we are computing xi from skratch each time, even though we just computed
xi−1 in the previous iteration. Since xi = x · xi−1 we might as well exploit that we have computed xi−1. A
new algorithm implementing this idea is shown here:

1. S ← 0

2. B ← 1

3. For i = 0, . . . , n:

(a) S ← S + αi ·B.

(b) B ← B · x.

4. Return S.

As before, the idea is that B will represent Bi. For the first time we enter the for-loop with i = 0, we indeed
have B = 1 = x0. Once we’ve added the contribution of αix

i to the sum, we update B such that it is ready
for the next iteration.

How much work are we performing this time? The loop has two steps (a) and (b), so the work is
proportional to:

n∑
i=0

2 = 2(n+ 1).

So amount of work went from something quadratic in n to linear in n. Let us see how much that matters in
practice. Assume we have modern computer that can execute about 1 billion instructions per second. The
following table shows for how long we have to wait for the computer to finish evaluating a polynomial P of
degree n for various values of n:

Degree n: 102 104 106 108

Naive (n2/2 + n/2 work): 5 microseconds 50 milliseconds 8 minutes 2 months
Re-use (2(n+ 1) work): 0.1 microseconds 20 microseconds 2 milliseconds 0.2 seconds

Table 1: Time for a modern computer to evaluate a polynomial of degree n using the two different approaches.
The time is computed as time=(work/109) seconds. Recall that 1 microsecond is 1/106 seconds and 1
millisecond is 1/103 seconds.

Observe that as the input size (degree) n grows, the difference becomes more and more apparent. Once
the input size reaches 108, we are talking a difference of less than one second compared to two months!

2


