Transition system

Definition 1.3.1 A *transition system S* is a pair of the form

$$S = (C, T)$$

where *C* is the set of *configurations* and $T \subseteq C \times C$ is a relation, the *transition relation*.

Algorithms and Data Structures

1

Sequences generated by a transition system

Definition 1.3.3 Let S = (C, T) be a transition system. *S* generates a set of sequences, S(S), defined as follows:

- 1. the finite sequence c_0, c_1, \ldots, c_n (for $n \ge 0$) belongs to $\mathcal{S}(S)$ if
 - (ι) $c_0 \in C$
 - (*u*) for all *i* with $1 \le i \le n$: $(c_{i-1}, c_i) \in T$
- 2. the infinite sequence $c_0, c_1, \ldots, c_n, \ldots$ belongs to $\mathcal{S}(S)$ if
 - (ι) $c_0 \in C$ (ι) for all $i \geq 1$: (c_{i-1}, c_i) $\in T$

Processes generated by a transition system

Definition 1.3.5 Let S = (C, T) be a transition system. The set of *processes generated by S*, written $\mathcal{P}(S)$, is the subset of $\mathcal{S}(S)$ containing

- 1. all infinite sequences of $\mathcal{S}(S)$
- 2. all finite sequences c_0, c_1, \ldots, c_n $(n \ge 0)$ of $\mathcal{S}(S)$ for which it holds that there is no $c \in C$ with $(c_n, c) \in T$.

The final configuration of a finite process is called a *dead configuration*.

Football

Transition system Football Configurations: { $[t, X, a, b] \mid 0 \le t \le 90, X \in \{A, B, R\}, a, b \in \mathbb{N}$ } Configurations: $\{[t, X, a, b] \mid 0 \le t \le 90, X, 0 \le 100, X, 0$

Induction principle

Induction principle Let P(0), P(1), ..., P(n), ... be statements. If a) P(0) is true b) for all $n \ge 0$ it holds that P(n) implies P(n + 1), then P(n) is true for all $n \ge 0$.

Invariance principle

Invariance principle for transition systems Let S = (C, T) be a transition system and let $c_0 \in C$ be a configuration. If I(c) is a statement about the configurations of the system, the following holds. If

a) $I(c_0)$ is true

b) for all $(c, c') \in T$ it holds that I(c) implies I(c')

then I(c) is true for any configuration c that occurs in a sequence starting with c_0 .

Termination principle

Termination principle for transition systems Let S = (C, T) be a transition system and let $\mu : C \to N$ be a function. If for all $(c, c') \in T$ it holds that $\mu(c) > \mu(c')$ then all processes in $\mathcal{P}(S)$ are finite.

Nim

Transition system Nim	
Configu	rations: $\{A, B\} \times \mathbf{N}$
[A, n] D	$> [B, n-2]$ if $n \geq 2$
[A, n] D	$> [B, n-1] \mathbf{if} \ n \geq 1$
[B, n] D	$> [A, n-2]$ if $n \geq 2$
$[B, n]$ \square	> $[A, n-1]$ if $n \ge 1$

Towers of Hanoi

Transition system Hanoi(n)
Configurations:
$$\{[A, B, C] \mid \{A, B, C\} \text{ a partition of } \{1, \dots, n\}\}$$

 $[A, B, C] \triangleright [A \setminus \{r\}, B \cup \{r\}, C]$ if $(r = \min A) \land (r < \min B)$
 $[A, B, C] \triangleright [A \setminus \{r\}, B, C \cup \{r\}]$ if $(r = \min A) \land (r < \min C)$
 $[A, B, C] \triangleright [A \cup \{r\}, B \setminus \{r\}, C]$ if $(r = \min B) \land (r < \min A)$
 $[A, B, C] \triangleright [A, B \setminus \{r\}, C \cup \{r\}]$ if $(r = \min B) \land (r < \min C)$
 $[A, B, C] \triangleright [A \cup \{r\}, B, C \setminus \{r\}]$ if $(r = \min C) \land (r < \min A)$
 $[A, B, C] \triangleright [A \cup \{r\}, B, C \setminus \{r\}]$ if $(r = \min C) \land (r < \min A)$

Algorithms and Data Structures

Chapter 1: Transition Systems

Euclid's algorithm

Transition system EuclidConfigurations: $\{[m, n] \mid m, n \ge 1\}$ $[m, n] \triangleright [m - n, n]$ if m > n $[m, n] \triangleright [m, n - m]$ if m < n

Expressions

```
Transition system ExpressionsConfigurations: \{0, 1, +, E, T, (,)\}^*\alpha E \beta \triangleright \alpha T \beta\alpha E \beta \triangleright \alpha T + E \beta\alpha T \beta \triangleright \alpha 0 \beta\alpha T \beta \triangleright \alpha 1 \beta\alpha T \beta \triangleright \alpha (E) \beta
```

Expressions (context-free)

Transition system ExpressionsConfigurations: $\{0, 1, +, E, T, (,)\}^*$ $E \triangleright T, T + E$ $T \triangleright 0, 1, (E)$

Graph coloring

Red-black tree

Definition 1.5.7 A *red-black tree* is binary search tree in which all internal nodes are colored either red or black, in which the leaves are black, and

Invariant I₂ Each red node has a black parent.

Invariant I_3 There is the same number of black nodes on all paths from the root to a leaf.

Insertion

Illegitimate red node:

X

Invariant I'_2 : Each *legitimate* red node has a black parent.

Algorithms and Data Structures

Chapter 1: Transition Systems

Insertion: transitions 1 and 2

The illegitimate node is the root of the tree:

The illegitimate node has a black father:

Algorithms and Data Structures

Insertion: transitions 3.1 and 3.2

The illegitimate node has a red father and a red uncle:

Algorithms and Data Structures

Chapter 1: Transition Systems

Insertion: transitions 4.1 and 4.2

The illegitimate node has a red father and a black uncle:

Chapter 1: Transition Systems

Illegitimate black node:

Invariant I'_1 The tree satisfies I_1 if we remove the illegitimate node. **Invariant** I'_2 Each red node has a *legitimate* black father.

Algorithms and Data Structures

Chapter 1: Transition Systems

Deletion: transition 1

The illegitimate node is the root:

Deletion: transitions 2 and 3

The illegitimate node has a red father and a red closer nephew:

The illegitimate node has a red father and a black closer nephew:

Algorithms and Data Structures

Chapter 1: Transition Systems

Deletion: transitions 4.1 and 4.2

The illegitimate node has a black father, a black sibling and one red nephew:

Algorithms and Data Structures

Chapter 1: Transition Systems

Deletion: transition 5

The illegitimate node has a black father, a black sibling and two black nephews

Deletion: transition 6

The illegitimate node has a black father and a red sibling:

