Computational Geometry (Fall 2012) Project 3, part A: Theoretical Questions

Peyman Afshani

November 14, 2012

Question 1: Let H be the set of n lines in the plane. Consider the arrangement A formed by H. Prove that the total complexity of all the unbounded cells is linear.

Question 2: Consider a set P of n points in the plane. We say that a line ℓ is *free* if it is possible to continuously move ℓ into a vertical line without it crossing any points in P during this movement. Prove that given P, it is possible to build a data structure of linear size such that for any given query line ℓ we can decide whether it is free in $O(\log n)$ time.

Question 3: Consider an input set P of n weighted points in the plane, meaning, each point $p_i \in P$ is associated with a real-valued weight $w(p_i)$. Prove that it is possible to build a data structure of linear size such that given a query line ℓ , the point with the largest weight below ℓ can be found in $O(\log n)$ time.

To make it easier to tackle this problem, try to follow the following step by step approach.

- 1. Use duality and clearly state the dual problem.
- 2. For the dual problem, try to find the regions of the plane, r_1, \ldots, r_t , such that the answer throughout each region r_i , $1 \le i \le t$, is the same.
- 3. Show that t = O(n) and then use it to build a data structure that can solve the problem.

Bonus!: Show that the total preprocessing time is $O(n \log n)$.

General hints: Remember to use the duality transformation. When using duality, clearing state what is the dual problem before solving the dual problem.