
Computatinal Geometry (Fall 2012)

Project 1: Convex Hull Computation

Peyman Afshani

September 24, 2012

Parts (A), (B), and (C) are mandatory. The rest of the project is optional (the optional parts are also
marked with a +). However, you can choose to do all the optional parts instead of part (C).

In this project, you will implement a few convex hull algorithms and will compare their performances.
After implementing each algorithm and making sure that it runs correctly, you must evaluate its performance
on some “test cases”. Each test case is essentially a (large) input set of points in the plane. For this project,
create at least five input sets (test cases). Include one input point set generated uniformly randomly inside
a square, another generated uniformly randomly inside a circle, and one input point set whose points lie on
the curve Y = X2. You are free to pick the other two input sets however you wish.

Run your algorithms on all of your test cases and measure their running times. Separate the running
times into two parts: how much time your algorithm spends reading the input and how long it takes to
compute the convex hull. Set the number of points in your input sets large enough that your algorithm
takes up about 70% of the RAM of the computer. In your report, include all these times as well as the
specifications of the machine you used, number of input points and the number of the convex hull points.

Your implementations should accept an input file of the following format. The i-th line of the input file
will be empty if it is the last line of file. Otherwise, the i-th line will describe the point pi and it will contain
two floating point numbers that represent the x- and y-coordinate of pi, respectively. The numbers are
separated by a single space. We also say pi has label i (for example, the first line of the input file describes
the point p1 which has label 1).

The output of the algorithm should be in the following format. The first line of the file will contain an
integer that is the label of the convex hull point with the smallest x-coordinate. If there are two convex
hull points with the smallest x-coordinate, then the one with the larger y-coordinate should be first. The
following lines should contain the labels of the vertices of the convex hull in the clockwise order (i.e., first
the upper hull vertices should appear in left to right order, then the lower hull vertices from right to left).
Note that all the numbers in the output file are integers.

Sample input file (see Figure 1(a)):

8 1

5 3

1 6

7 4

2 4

3 2

1 7

Sample output file (see Figure 1(b)):

7

4

1

6

3

Part A. Implement and test the incremental convex hull algorithm discussed in the class (the one discussed
in pages 6 and 7 of BKOS). Let’s call this algorithm INC CH.

Part B. Implement and test a divide-and-conquer convex hull algorithm. You can implement the algorithm
discussed in the class or you can come up with your own divide-and-conquer algorithm. Follow the previous

1

6

2

3

45

1

7

(a) The points in the sample input with their labels.

6

2

3

45

1

7

(b) The convex hull points are colored in red and are
marked with larger circles.

input and output conventions. Let’s call this algorithm DC CH.

Hint. In your implementation, you do not need to implement the exact median finding algorithm and
instead you can use the following heuristic: pick five random points and then pick the median among the
five random points.

Part C. Implement the marriage-before-conquest convex hull algorithm. Follow the following pseudocode
for the upper hull construction (use a similar code for the lower hull). Let’s call this algorithm MbC CH.

1. Find the point with median x coordinate pm = (xm, y) and partition the input into two sets P` and
Pr where P` contains all the points with x-coordinate smaller than xm and Pr contains the rest of the
points.

2. Find the “bridge” over the vertical line X = xm (i.e., the upper hull edge that intersects line X = xm).
You need to implement linear programming for this step. Let (xi, yi) and (xj , yj) be the left and right
end points of the bridge.

3. Prune the points that lie under the line segment (xi, yi), (xj , yj) (these will be the points whose x-
coordinates lie between xi and xj .

4. Recursively compute the upper hull of P` and Pr.

Next, add one more pruning step to the above algorithm and call it MbC2 CH. This extra pruning step
is the step 2 in the algorithm below.

1. Find the point with median x coordinate pm = (xm, y) and partition the input into two sets P` and
Pr where P` contains all the points with x-coordinate smaller than xm and Pr contains the rest of the
points.

2. Find the point p` with the smallest x-coordinate (if there are more than one, take the one with the
largest y-coordinate) and the point pr with the largest x-coordinate (if there are more than one, take
the one with the smallest y-coordinate). Note that these can be done at the same time as step 1. Prune
all the points that lie under the line segment p`pr.

3. Find the “bridge” over the vertical line X = xm (i.e., the upper hull edge that intersects line X = xm).
Let (xi, yi) and (xj , yj) be the left and right end points of the bridge.

2

4. Prune the points that lie under the line segment (xi, yi), (xj , yj) (these will be the points whose x-
coordinate lie between xi and xj .

5. Recursively compute the upper hull of P` and Pr.

Part D+. Prove that MbC CH algorithm runs in O(n log h) time where h is the number of points on the
convex hull (hint: look at the recursion tree. Observe that each time you recurse, the number of points
halves).

Part E+. Let x1 < · · · < xh be the x-coordinates of the points on the upper hull and let ni be the number
of input points p = (x, y) such that xi ≤ x < xi+1, 1 ≤ i < h. Show that the upper hull computation in
MbC CH runs in time

O

(
h−1∑
i=1

ni log

(
n

ni

))
.

Part G+. Implement and measure the performance of Chan, Snoeyick and Yap’s convex hull algorithm.
Let’s call this CSY CH. For reference, the rough pseudocode of the upper hull construction in this algorithm
is the following.

UpperHull(P , p`, pr): Here, P is the input point set, p` is the point with the smallest x-coordinate in
P , Pr is the point with the largest x-coordinate in P and the procedure computes the upper hull of P .

1. Prune points below the line segment p`pr.

2. Pair points randomly into bn/2c pairs, (si, ti), 1 ≤ i ≤ bn/2c, in which si has smaller x-coordinate
than ti.

3. Find the pair (sm, tm) with the median slope among the pairs (you can use the median finding heuristic
mentioned in the previous hint).

4. Find the maximal point pm = (xm, ym) in the direction of (sm, tm).

5. Partition P into two sets: P` and Pr in which Pr contains all the points of P with x-coordinate larger
than xm and P` contains the rest.

6. Prune Pr: if Pr contains a pair (si, ti) with slope larger than the median slope, then prune si.

7. Prune P`: if Pr contains a pair (si, ti) with slope smaller than the median slope, then prune ti.

8. Recursively compute the upper hull of Pr and P`.

Part H+. Consider a partition, ∆, of the point set P into k disjoint subsets P1, · · · , Pk and let ni = |Pi|,
1 ≤ i ≤ k. We say that ∆ is “good” if for every i, 1 ≤ i ≤ k, either ni = 1 or Pi can be placed inside a
triangle ti in such a way that ti completely lies below the upper hull of P . Define the “entropy” of ∆ as

H∆ =

k∑
i=1

ni log(n
ni

)

n
.

Prove that for any good partition ∆, the upper hull computation in CSY CH algorithm or MbC2 CH
algorithm runs in O(nH∆) time. Prove that this is not the case for MbC CH algorithm, that is, there exists
a point set P and a good partition ∆ such that nH∆ is asymptotically smaller than the time it takes for
MbC CH algorithm to compute the upper hull of P .

3

