Route Planning

- Tabulation
- Dijkstra
- Bidirectional
- A*
- Landmarks

- Reach
- ArcFlags
- Transit Nodes
- Contraction Hierarchies
- Hub-based labelling

 [ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. Proc. 10th International Symposium on Experimental Algorithms (SEA), LNCS 6630, 2011, 230-241.
[BFMSS07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In Transit to Constant Time Shortest-Path Queries in Road Networks. Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.
[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. Proc. 7th International Workshop on Experimental Algorithms (WEA), LNCS 5038, 2008, 319-333.

Route Planning

Input: Directed weighted graph *G* Query(*s*,*t*) – find shortest route in *G* from *s* to *t*

Lot of algorithm engineering work for road networks Example: US Tigerline, 58 M edges & 24 M vertices

No preprocessing	With preprocessing		
Fast query time	Query Time ↔ Space trade-off		
Variations of Dijksta's algorithm	Trivial: Distance table $O(1)$ time & $O(n^2)$ space		
	Practice: Try to exploit graph properties		

Route Planning – no preprocessing

(non-negative edge weights)

Dijkstra Build shortest path tree *T* Visit vertices in increasing distance to *s*

Bidirectional Dijkstra

Grow s.p. tree T_f from s and T_b to tMaintain best so far $s \rightarrow t$ distance μ Termination condition: $\operatorname{next}_f + \operatorname{next}_b \geq \mu$

Dijkstra vs Bidirectional Dijkstra

$A^* \equiv Goal directed$

Input: Weighted graph *G* with non-negative edges Query(*s*,*t*): Shortest route queries

- Idea Let h(v) be "heights" & define w'(u,v) = w(u,v) + h(v) h(u)
- Fact $w'(s \rightarrow v_1 \cdots v_k \rightarrow t) = w(s \rightarrow v_1 \cdots v_k \rightarrow t) + h(t) h(s)$ $\Rightarrow G \text{ and } G' \text{ have } identical shortest paths}$
- Fact If $w' \ge 0 \Rightarrow$ we can use Dijkstra's algorithm If $w' \ge 0$ and $h(t)=0 \Rightarrow h(v)$ lower bound on distance $v \rightarrow t$
- **Ex. 1** Planar graphs with L_2 distance, let $h(v) = |t-v|_2$ \Rightarrow triangle inequality ensures w' non-negative
- **Ex. 2** $h(v) = d_G(v,t) \implies w'(s,t) = 0$ \Rightarrow Dijkstra's algorithm would only explore the shortest path

w(u,v)

Note Bidirectional $A^* \equiv$ Bidirectional Dijkstra and A^* combined

A*

Landmarks

Select a *small* number of vertices *L* (Landmarks)

For all nodes v store distance vector d(v, l) to all landmarks $l \in L$

Idea In A* algorithm fix one landmark $l \in L$, and use h(v) = d(v, l) (valid by triangle inequality)

Practice: Use more than one landmark to find lower bounds on d(v,t)Dynamicly increase landmark set during search Bidirectional A*

Bidirectional A* with Landmarks

Reach

For all nodes v store

 $\operatorname{Reach}(v) = \max_{(s,t): v \text{ on shortest path } s \to t} \min\{ d(s,v), d(v,t) \}$

Idea Reach(v) defines ball around v.
If both s and t outside ball, v is not on shortest path

Query <u>Prune</u> edges (u,v) in <u>Dijkstra</u>, when relaxing (u,v) and Reach $(v) < \min\{d(s,u)+w(u,v), LowerBound(v,t)\}$

Practice: Approximate Reach for fast preprocessing

Reach(v)

Shortcuts

A directed path $u \rightarrow v$ can be shortcut by a new edge (u, v)

Idea: Shortcuts reduce $\operatorname{Reach}(x)$ of vertices x along the shortcut path ($s \rightarrow t$ distances are unchanged)

Reach(v) + Shortcuts

Reach(v) + Shortcuts + Landmarks

Experiments – Northwest US

	PREPROCESSING		QUERY		
METHOD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra		28	518 723	1197607	340.74
Landmarks	4	132	16 276	150 389	12.05
Reaches	1100	34	53 888	106 288	30.61
Reaches+Shortcuts	17	100	2 804	5 877	2.39
${\sf Reaches}{+}{\sf Shortcuts}{+}{\sf Landmarks}$	21	204	367	1513	0.73

Arc Flags

Partition vertices into k components $C_1, ..., C_k$.

For all edges e = (u, v) store a bitvector $Af_e[1..k]$, where

 $Af_{e}[i] = true \iff Exist shortest path u \rightarrow t where e is first edge and t \in C_{i}$

QueriesPrune edges e where $Af_e[i]$ = false and $t \in C_i$ PreprocessingExpensive !

Transit Node Routing

Idea All shortest paths $s \rightarrow t$, where s and t are far away, must cross few possible transit nodes

- 1. Identify few transit nodes in graph $\sim \sqrt{n}$
- 2. Compute All-Pair-Shortest-Path matrix for transit nodes
- 3. For each vertex *s* find very few transit node distances (US ~10)

Query(*s*,*t*) far away queries

For all (u,v), transit nodes u and v for s and t respectively, find d(s,t)=d(s,u)+d(u,v)+d(v,t) using table lookup

Locality filter = table over when to switch to other algorithm

Practice: Combine recursively with Highway Hierarchies

Transit Node Routing

Figure 1: Finding the optimal travel time between two points (flags) somewhere between Saarbrücken and Karlsruhe amounts to retrieving the 2×4 access nodes (diamonds), performing 16 table lookups between all pairs of access nodes, and checking that the two disks defining the *locality filter* do not overlap. Transit nodes that are not relevant for the depicted query are drawn as small squares.

Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In Transit to Constant Time Shortest-Path Queries in Road Networks. Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

Highway Hierachies

- For each node find *H* closest nodes (Neighborhood)
- **Highway edge** $(u,v) \Leftrightarrow$ exist some shortest path $s \rightarrow$ t containing (u,v), where $s \notin H$ and $t \notin H$
- **Contract & Recurse** ⇒ Hierarchy
- Queries
 - Heuristics similar to Reach
 - Bidrectional Dijkstra (skipping lower level edges)

Contraction Hierarchies

- Order nodes v_1, \dots, v_n in increasing order of importance
- Repeatedly contract unimportant nodes by adding shortcuts required by shortest paths

- Many heuristics in construction phase
- **Query**: Bidirectional only go to more important nodes

Hub Labelling

For all nodes v store two lists $L_f(v)$ and $L_b(v)$, such that for all (s,t) pairs, the shortest path $s \rightarrow t$ contains a node u, where $u \in L_f(s) \cap L_b(t)$

Trivially exist; hard part is to limit space usage

Hub Labelling comparison

		Europe			1	USA	
		preprocessing	space	query	preprocessing	space	query
Transit Contraction node hierarchies	method	time [h:m]	[GB]	[ns]	time [h:m]	[GB]	[ns]
	CH [5]	0:13	0.4	93995	0:14	0.5	67885
	CHASE 5	0:52	0.6	9034	1:59	0.7	9922
	HPML 9	Arc $\approx 12:00$	3.0	9817	$\approx 12:00$	5.1	10078
	TNR 5	flags 0.58	3.7	1775	0:47	5.4	1566
	TNR + AF [5]	2:00	5.7	992	1:22	6.3	888
Hub labelling	HL prefix	2:31 + 0:45	5.7	527	2:17 + 0:40	6.4	542
	HL local	2:31 + 0:08	20.1	572	2:17 + 0:07	22.7	627
	HL global	2:31 + 0:14	21.3	276	2:17 + 0:18	25.4	266
	Table Lookup	> 11:03	1208358.7	56	> 22:44	2293902.1	56

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. Symposium on Experimental Algorithms (SEA), Lecture Notes in Computer Science, Volume 6630, 2011, pp 230-241.