
Parallel Algorithm
Engineering

Manuel R. Ciosici
PhD Fellow

based on slides by Kenneth S. Bøgh and Darius Sidlauskaš

Outline
• Background

• Current multicore architectures

• The OpenMP framework

• UMA vs. NUMA and NUMA control

• Examples

–Edsger W. Dijkstra, ACM Turing Lecture 1972

“the major cause is... that the machines have
become several orders of magnitude more

powerful! To put it quite bluntly: as long as there
were no machines, programming was no
problem at all; when we had a few weak
computers, programming became a mild

problem, and now we have gigantic computers,
programming had become an equally gigantic

problem.”

Software crisis

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

A long time ago…

A long time ago…
The 1st Software Crisis

• When: around 60s and 70s

• Problem: large programs written in assembly

• Solution: abstraction and portability via high-level languages like C and FORTRAN

A long time ago…
The 1st Software Crisis

• When: around 60s and 70s

• Problem: large programs written in assembly

• Solution: abstraction and portability via high-level languages like C and FORTRAN

The 2nd Software Crisis

• When: around 80s and 90s

• Problem: building and maintaining large programs written by hundreds of
programmers

• Solution: software as a process (OOP, testing, code reviews, design patterns), better
tools (IDEs, version control, component libraries, etc.)

Recently…

Processor-oblivious programmers:

• A Java program written on PC works on your
phone

• A C program written in 70s still works today and
is faster

• Moore’s law takes care of good speedups

Currently…
Software crisis (again?)

• When: 2005 and ...

• Problem: sequential performance is stuck

• Required solution: continuous and reasonable performance
improvements

• To process large datasets (BIG Data!)

• To support new features

• Without loosing portability and maintainability

22/02/2017, 12.31

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg

curve shows transistor
count doubling every
two years

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004
8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6
AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law
Tr

an
si

st
or

 c
ou

nt

Moore’s law

Uniprocessor performance

SPECint2000

MHz

Overclocking
is not a solution

Overclocking
• Air-water: ~5.0 GHz (possible at home)

is not a solution

Overclocking
• Air-water: ~5.0 GHz (possible at home)

• Phase change: ~6.0 GHz

is not a solution

Overclocking
• Air-water: ~5.0 GHz (possible at home)

• Phase change: ~6.0 GHz

• Liquid helium: 8.794 GHz

• Current world record

• Reached with AMD FX-8350

is not a solution

Let’s parallelise!

Concurrency vs Parallelism
Parallelism

• A condition that arises when at least two threads are executing simultaneously

• A specific case of concurrency

Concurrency

• A condition that exists when at least two threads are making progress.

• A more general form of parallelism

• E.g., concurrent execution via time-slicing in uniprocessors (virtual parallelism)

Distribution

• As above but running simultaneously on different machines (e.g., cloud
computing)

Amdahl’s Law
• Potential program speedup is defined by the

fraction of code that can be parallelised

• Serial components rapidly become performance
limiters as thread count increases

• p – fraction of work that can parallelised

• n – number of processors

Amdahl’s Law

Towards parallel setups
Let’s use transistors for multiple cores

Intel® Core™ i7-2600K Processor

Current commercial
multi-core CPUs

Intel

• Intel® Core™ i7-6950X Processor Extreme Edition 10 cores (20 hw threads), 25 MB cache,
max 3.5 GHz

• Intel® Xeon® Processor E7-8894 v4 24 cores (48 hw threads), 60 MB cache, max 3.4 GHz

• Intel® Xeon Phi™ Processor 7210 64 cores (256 hw threads), 32 MB Cache, max 1.5 GHz

AMD (may be out of date)

• FX-9590: 8 cores, 8 MB Cache, 4.7 GHz

• A10-7850K: 12 cores (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB Cache

• Opteron 6386 SE: 16 cores, 16 MB Cache, 3.5 GHz (x 4-socket conf.)

Oracle

• SPARC M7: 32 cores (hw 256 threads), 64 MB Cache, 4.13 GHz

http://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
http://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2_40-GHz
http://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-1_30-GHz-64-core
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/sparc-m7-processor-ds-2687041.pdf

Parallel processing
Predicted # of cores for stationary systems,

according to ITRS

Even “worse” for GPUs
GTX 780 Ti have 2880 cores @ 0.9Ghz

Even “worse” for GPUs

Floating point operations per second – NVIDIA C Programming Guide version 8 – 27 Feb 2017
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-

general-purpose-parallel-computing

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Even “worse” for GPUs

NVIDIA
GTX 780 Ti

Floating point operations per second – NVIDIA C Programming Guide version 8 – 27 Feb 2017
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-

general-purpose-parallel-computing

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Why
Power considerations

• Consumption, Cooling, Efficiency

DRAM access latency

• Memory wall

Wire delays

• Range of wire in one clock cycle

Diminishing returns of more instruction-level parallelism

• Out-of-order execution, branch prediction, etc.

Power consumption
250 Watt

150 Watt

Single Instruction
Multiple Data (SIMD)

• One SIMD processing unit per core

• Modern compilers automatically use SIMD in simpler
cases (remember the -mavx compiler parameter)

• How to use:

• compiler intrinsics – see https://gcc.gnu.org/
onlinedocs/gcc/Vector-Extensions.html

• libraries – see one example at www.agner.org/
optimize/#vectorclass

https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
http://www.agner.org/optimize/#vectorclass
http://www.agner.org/optimize/#vectorclass

Kinds of parallelism

• Single Instruction Multiple Data (SIMD) – briefly

• Single Instruction Multiple Threads (SIMT) – GPUs -
not covered

• Task Parallelism

Single Instruction
Multiple Data (SIMD)

• Exploits data level parallelism

• Initially introduced in desktop CPUs in order to
speed up media applications

• Available in most desktop CPUs since early late
90s: MMX (64-bit), SSE (128-bit), AVX (256-bit and
512-bit)

• Available in mobile SoCs for a few years now:
NEON instructions (128-bit)

SIMD

SIMD

SIMD

SIMD

Speedup: 4x

Task parallelism
• Multiple threads are executed

in parallel, performing multiple
tasks

• C++11 brings a unified
memory model and native
thread support (read cross
platform)

• See C++ Concurrency in
Action

https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action

The OpenMP Framework
• API for multiprocessing

• Easily applied to parallelise code

• Built for shared memory
processors

• Works cross platform

• See the specifications and
official examples at
www.openmp.org/specifications/

• Using OpenMP – older book, but
great learning resource

http://www.openmp.org/specifications/
https://mitpress.mit.edu/books/using-openmp

General flow control

Directives
• Used to communicate with the compiler

• #pragma directives used to instruct the compiler to
use pragmatic or implementation-dependent
features

• One such feature is OpenMP

• #pragma omp parallel

Useful functions
• Thread-ID: omp_get_thread_num();

• Amount of threads: omp_get_num_threads();

• Set amount of active threads

• omp_set_num_threads(4);

• export OMP_NUM_THREADS=12

Compiling OpenMP
• #include <omp.h>

• Compile with the OpenMP flag

• g++ -fopenmp test.cpp

• Environment variables

• setenv OMP_NUM_THREADS 12

• export OMP_NUM_THREADS=12

When to parallelise
• When you have independent units of work

• When your code is compute bound

• Or your code is not utilising the memory bandwidth

• When you see performance gains in tests :-)

UMA vs NUMA
• All laptops and most desktops are UMA (Uniform

Memory Access) – single CPU

• Most modern servers are NUMA (Non Uniform
Memory Access) – multiple CPUs

• Important to know which you target!

UMA NUMA

4 sockets – 8 CPU setup

NUMA effects

Cache coherence
Ensures consistency between all the caches.

MESIF protocol
• Modified (M): present only in the current cache and dirty. A

write-back to main memory will make it (E).

• Exclusive (E): present only in the current cache and clean.
A read request will make it (S), a write-request will make it
(M).

• Shared (S): may be stored in other caches and clean. May
be changed to (I) at any time.

• Invalid (I): unusable

• Forward (F): a specialised form of the S state
For more on MESI and MESIF see https://www.youtube.com/watch?v=S3kg_zCz_PA

and http://www.realworldtech.com/common-system-interface/5/

https://www.youtube.com/watch?v=S3kg_zCz_PA
http://www.realworldtech.com/common-system-interface/5/

Cache coherence effects
Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem (4 cores)

Commandments
1. Thou shalt not write thy neighbour’s memory

randomly – chunk the data, redistribute, and then
sort/work on your data locally.

2. Thou shalt read thy neighbour’s memory only
sequentially – let the prefetcher hide the remote
access latency.

3. Thou shalt not wait for thy neighbours – don’t use
fine grained latching or locking and avoid
synchronisation points of parallel threads.

Shared memory processors
• Recall the UMA and NUMA architectures

• Both are shared memory processor architectures

UMA NUMA

Problems with NUMA

Problems with NUMA

• We do not know where the data is allocated

Problems with NUMA

• We do not know where the data is allocated

• We do not know on which NUMA node the thread is
running

Problems with NUMA

• We do not know where the data is allocated

• We do not know on which NUMA node the thread is
running

• So, no OpenMP on really parallel machines?

New libraries to the rescue

• We can pin threads to processors

• We can control memory allocations

• Tools

• Numactl

• libnuma

libnuma

• Provides C++ header files

• Can be used to create NUMA awareness in the
code

• A bit like OpenMP, but instead provides methods
for getting NUMA node and allocating memory on
specific NUMA nodes

numactl

• Like libnuma, but controlled from the shell

• Can be used to control existing software without
changing the code

• Very useful when running experiments

numactl (continued)

Extra

• Sometimes getting PAPI to work is difficult

• You can find a nice PAPI wrapper at https://
github.com/sean-chester/papi-wrapper

https://github.com/sean-chester/papi-wrapper
https://github.com/sean-chester/papi-wrapper

Examples

Questions?

