Parallel Algorithm
—ngineering

Manuel R. Ciosici
PhD Fellow

based on slides by Kenneth S. Bagh and Darius Sidlauskas

Outline

Background
Current multicore architectures
The OpenMP framework

UMA vs. NUMA and NUMA control

Examples

‘the major cause is... t

bec
power
we

computers, programming beca

Software crisis

nat the machines have

ome several orders of magnitude more

ull To put it quite bluntly: as

long as there

'€ N0 machines, programming was no
oroblem at all; when we had a-

‘ew weak

me a mild

problem, and now we have gigantic computers,
programming had become an equally gigantic

problem.”

—Edsger W. Dijkstra, ACM Turing Lecture 1972

https://www.cs.utexas.edu/~EWD/transcriptions/EWD0O3xx/EWD340.html

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

A long time ago...

A long time ago...

The 1st Software Crisis
 When: around 60s and 70s
* Problem: large programs written in assembly

e Solution: abstraction and portability via high-level languages like C and FORTRAN

A long time ago...

The 1st Software Crisis
 When: around 60s and 70s
* Problem: large programs written in assembly

e Solution: abstraction and portability via high-level languages like C and FORTRAN

The 2nd Software Crisis

e When: around 80s and 90s

* Problem: building and maintaining large programs written by hundreds of
programmers

« Solution: software as a process (OOP, testing, code reviews, design patterns), better
tools (IDEs, version control, component libraries, etc.)

Recently...

Processor-oblivious programmers:

* A Java program written on PC works on your
phone

* A C program written in 70s still works today and
s faster

* Moore’'s law takes care of good speedups

Currently...

Software crisis (again?)
* When: 2005 and ...
* Problem: sequential performance is stuck

 Required solution: continuous and reasonable performance
improvements

* To process large datasets (BIG Datal)
* Jo support new features

« Without loosing portability and maintainability

Transistor count

Vioore's law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2,600,000,000+
1,000,000,000

100,000,000

10,000,000

1,000,000+

100,000

10,000

2,300

16-Core SPARC T3

Six-Core Core i
Six-Core Xeon 7400\ @10-Core Xeon Westmere-EX
s 8

/—8-core POWER7
<—Quad-core z196)
+Quad-Core Itanium Tukwila
8-Core Xeon Nehalem-EX
Six-Core Opteron 2400
Core i7 (Quad)

Dual-Core Itanium 2@

AMD K10\

POWERG6®
Itanium 2 with 9MB cache®
AMD

Itanium 2@

Pentium 4

AMD K7
@ AMD Ke-llI

curve shows transistor

count doubling every /AMD K6
two years s ®Pentium Il
y Pentium Il
® AMD K5

Pentium

| | | | |
1971 1980 1990 2000 2011

Uniprocessor performance

10,000 -
MHZz:
| . !
' . ”, i>e e
of o Smng *
. + o 4"
‘e *e +*
.
1,000 Oy
- S 19
RS
. AN
e e® Q%
* 00
¢ o el o
* e T
100 - & 199 .0
e e %o
.
+
PP
* »
.
“*
10
1985 1990 1995 2000 2005 2010

Year of Introduction

SPECint2000

Overclocking

IS not a solution

Overclocking

IS not a solution

e Air-water: ~5.0 GHz (possible at home)

Overclocking

IS not a solution
e Air-water: ~5.0 GHz (possible at home)

* Phase change: ~6.0 GHz

Overclocking

is not a solution
e Air-water: ~5.0 GHz (possible at home)
* Phase change: ~6.0 GHz
* Liquid helium: 8.794 GHz
* Current world record

e Reached with AMD FX-8350

| et’s parallelise!

Concurrency vs Parallelism

Parallelism
e A condition that arises when at least two threads are executing simultaneously
* A specific case of concurrency
Concurrency
e A condition that exists when at least two threads are making progress.
A more general form of parallelism
e E.g., concurrent execution via time-slicing in uniprocessors (virtual parallelism)

Distribution

« As above but running simultaneously on different machines (e.g., cloud
computing)

Amdahl’s Law

* Potential program speedup is defined by the
fraction of code that can be parallelised

* Serial components rapidly become performance
imiters as thread count increases

+
fraction of time to

fraction of time to
complete sequential complete parallel work

work

* p — fraction of work that can parallelised

e N —number of processors

Speedup

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00 A

0.00

Amdahl’s Law

Number of Processors

z/
//
7 Parallel Portion
/ s & 0 Gy
s J & Gy
/ — 0%
/ —) 5 Oy
/ —
//
Y/ -
17//
e ——
N ¥ O VW N Y OV O NY YU N Y o v
— M O ~ 1 — ~N e o) [y [va) O M
v ~ N o o o e M r~ N
— ~N o [ve) V) ~ N
— mM 0

lTowards parallel setups

Let’'s use transistors for multiple cores

System
Agent & ,

. Processor ICae " Lol =TT Bl TR | Rl Memory I
' Graphics 3 |Eacal | Ryl e AL Controller |

including
DMI, Display
and Misc. 1/0

| | " ;Shared L3 Cache**

| Lis .t;»’}xlll_'f;
- - . bo o o ik :

. ‘v'g-' Memory Controller 1/0

Intel® Core™ i7-2600K Processor

Current commercial
multi-core CPUs

* |ntel® ' m
max 3.5 GHz

Edition 10 cores (20 hw threads), 25 MB cache,

* Intel® Xeon® Processor E7-8894 v4 24 cores (48 hw threads), 60 MB cache, max 3.4 GHz

* Intel® Xeon Phi™ Processor 7210 64 cores (256 hw threads), 32 MB Cache, max 1.5 GHz

AMD (may be out of date)
 FX-9590: 8 cores, 8 MB Cache, 4.7 GHz

 A10-7850K: 12 cores (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB Cache

» Opteron 6386 SE: 16 cores, 16 MB Cache, 3.5 GHz (x 4-socket conf.)

Oracle

 SPARC M7: 32 cores (hw 256 threads), 64 MB Cache, 4.13 GHz

http://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
http://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2_40-GHz
http://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-1_30-GHz-64-core
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/sparc-m7-processor-ds-2687041.pdf

Parallel processing

Predicted # of cores for stationary systems,

according to ITRS

#of Components

700

600

500

400

300

200

100

100

&)
-
[t

491

410

289

‘,/‘r/#‘(/’ 249 []
191 |1 T
A/!

121 149
e 100 o [i
37 45 °F

e .0 1.1
__I:I_L-ljl_ljlﬂlﬂl | 1]]] 1 I | 0
S O e NN M = 1D WO M~ 0O) O = Od o =5
o - T = v v = v v v = N Od O O O
o O o o O D o o o o o O o O O O
[I o I N IR N I | Cd O O O O O O NN oM

Max Processing Performance [TFLOPS]

M ymber of Main CPUs

C—MNumber of DPEs —#—Max Processing performance(TFLOPS)

Fven “worse” for GPUSs

GTX 780 Ti have 2880 cores @ 0.9Ghz

Theoretical GFLOP/s

5750
5500
5250
5000
4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500
250
0

Apr-01

Pentium 4

Sep-02 Jan-04 May-05 Oct-06 Feb-08

NVIDIA GPU Single Precision
et NV|DIA GPU Double Precision
s=p==|ntel CPU Double Precision

emgmm|ntel CPU Single Precision

Tesla K40
Tesla K20X

Tesla M2090

Tesla C2050
Tesla C1060
Harpertown

vy Bridge

Woodcrest

Westmere

Bloomfield
Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Floating-Point Operations per Second - Nvidia CUDA C Programming Guide
Version 6.5 - 24/9/2014 - copyright Nvidia Corporation 2014

Fven “worse” for GPUSs

Theoretical GFLOP/s at base clock

11000

10500 —+—NVIDIA GPU Single Precision

10000 —+—NVIDIA GPU Double Precision

9500
F =¢==|ntel CPU Single Precision

5000 _ +—Intel CPU Double Precision
8500
8000 é
7500 +
7000 {
6500 {
6000 %
5500 %
5000 {
4500 é
4000 {
3500 é
3000 {
2500 {
2000 +
1500 %
1000 +

500 +

020;)3 A 2005 ’ ;OO7) 2009’ 2011 2013 2015
Floating point operations per second — NVIDIA C Programming Guide version 8 — 27 Feb 2017
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-
general-purpose-parallel-computing

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Fven “worse” for GPUSs

Theoretical GFLOP/s at base clock
11000 T

10500 —+—NVIDIA GPU Single Precision

10000 —+—NVIDIA GPU Double Precision

9500
F =¢==|ntel CPU Single Precision

9000 -t
4—Intel CPU Double Precision

NVIDIA

8000

o GTX 780 Ti

6500 +
6000
5500
5000 +
4500 +
4000 +
3500
3000 +
2500
2000
1500
1000 +

500 +

020;)3 A 2005 ’ '2007) 2009' 2011 2013 2015
Floating point operations per second — NVIDIA C Programming Guide version 8 — 27 Feb 2017
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-
general-purpose-parallel-computing

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Wny

Power considerations
e Consumption, Cooling, Efficiency
DRAM access latency
« Memory wall
Wire delays
* Range of wire in one clock cycle
Diminishing returns of more instruction-level parallelism

« Qut-of-order execution, branch prediction, etc.

Power consumption

Theoretical GFLOP/s

5750
5500
5250
5000
4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500
250
0

Apr-01

Pentium 4 ™

Sep-02 Jan-04 May-05 Oct-06 Feb-08

250 Watt

NVIDIA GPU Single Precision
est==NVIDIA GPU Double Precision
es=p==|ntel CPU Double Precision

emgum|ntel CPU Single Precision

Tesla K40
Tesla K20X

150 Watt

Tesla M2090

Tesla C2050
Tesla C1060
Harpertown

lvy Bridge

Woodcrest

Westmere

Bloomfield
Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Floating-Point Operations per Second - Nvidia CUDA C Programming Guide
Version 6.5 - 24/9/2014 - copyright Nvidia Corporation 2014

Single Instruction
Multiple Data (SIMD)

* One SIMD processing unit per core

 Modern compilers automatically use SIMD in simpler
cases (remember the -mavx compiler parameter)

* HOw 1O use:

e compiler intrinsics — see https://gcc.gnu.org/
onlinedocs/gcc/Vector-Extensions.html

e |ibraries — see one example at www.agner.org/
optimize/#vectorclass

https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
http://www.agner.org/optimize/#vectorclass
http://www.agner.org/optimize/#vectorclass

Kinds of parallelism

* Single Instruction Multiple Data (SIMD) — briefly

* Single Instruction Multiple Threads (SIMT) — GPUs -
not covered

e JTask Parallelism

Single Instruction
Multiple Data (SIMD)

Exploits data level parallelism

Initially introduced in desktop CPUs in order to
speed up media applications

Avallable in most desktop CPUs since early late
90s: MMX (64-bit), SSE (128-bit), AVX (256-bit and
512-bit)

Available in mobile SoCs for a few years now:
NEON instructions (128-bit)

SIMD

SIMD

or’dinary CPU
one Sz-bit register holds one number
Rl 9 $-
Ra 3 } 2
R3 27 N
8-bit numbers
input | 1 O 2
result | 3 27 ¥

4 loads, 4 multiplies, and 4 saves

Oper’ation Count:

SIMD

one Sz-bit register holds one number

or’dinary CPU

N

Rl 9 $-
Ra 3 >
R 3 27 N
RAM
8-bit numbers
input | 1 O 2
result | 3 27

4 loads, 4 multiplies, and 4 saves

Oper’ation Count:

one 32-bit register acts as four 8-bit registers

SIMD CpU

R1 1 9 2 8 |«
Ra2 3 3 3 3 9 _ o
R3 3 27 6 24 \ST%
RAM
8-bit numbers
input | 1 9 2 S
result | 3 27 6 24 |

Operation Count:

1load, 1 multiply, and 1 save

SIMD

or'dinc\ry CPU

one Sz-bit register holds one number

Ri1 9
Ra 3
R3 27

;

N

ST

RAM

8-bit numbers

input | 1 9 2 3

result | 3 27

Operation Count:
4 loads, 4 multiplies, and 4 saves

one 32-bit register acts as four 8-bit registers

SIMD CpU

R1 1 9 2 8 |«
Ra2 3 3 3 3 9 _ o
R3 3 27 6 24 \ST%
RAM
8-bit numbers
input | 1 9 2 S
result | 3 27 6 24 |

Operation Count:

1load, 1 multiply, and 1 save

Speedup: 4x

Task parallelism

* Multiple threads are executed
in parallel, performing multiple
tasks

* C++11 brings a unified
memory model and native
thread support (read cross
platform)

* See C++ Concurrency in
Action

/l. MANNING

https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action

The OpenMP Framework

* API for multiprocessing
* Easily applied to parallelise code

* Built for shared memory
Processors

» Works cross platform

e See the specifications and
official examples at
Www.openmp.org/specifications/

 PORTABLE SHARED MEMORY PARALI.EL PROGRAMMING

BARBARA CHAPMAN, foreword by

 Using OpenMP — older book, but [
great learning resource

http://www.openmp.org/specifications/
https://mitpress.mit.edu/books/using-openmp

GGeneral flow control

master thread

. .. 2 B ._. : h , ."_’- threads

threads

threads

\ ¥ \
\ f \ J
\ ’ N ’
\ / \ /
\))
I “ | I. “ |

parallel region parallel region parallel region

Directives

Used to communicate with the compiller

#pragma directives used to instruct the compiler to
use pragmatic or implementation-dependent
features

One such feature is OpenMP

#pragma omp parallel

Useful functions

Thread-ID: omp_get_thread_num();

Amount of threads: omp_get_num_threads();
Set amount of active threads

* omp_set_num_threads(4);

e export OMP_NUM_THREADS=12

Compiling OpenMP

* #include <omp.h>
* Compile with the OpenMP tlag
* g++ -fopenmp test.cpp
* Environment variables
* setenv OMP_NUM_THREADS 12

e export OMP_NUM_THREADS=12

When to parallelise

When you have independent units of work
When your code is compute bound
Or your code is not utilising the memory bandwidth

When you see performance gains in tests :-)

UMA vs NUMA

* All laptops and most desktops are UMA (Uniform
Memory Access) — single CPU

* Most modern servers are NUMA (Non Uniform
Memory Access) — multiple CPUs

* |Important to know which you target!

il
UMA

4 sockets — 8 CPU setup

NUMA effects

1E5 1E6 1E7 1ES
data set size [Byte]

® [ocal ® within node & node0 -nodel “ nodel -node2

* nodel - node3 ™ nodel - noded ™ nodel - nodes
¥ nodel - nodeg ¥ nodel - node?

Cache coherence

Ensures consistency between all the caches.

Client

Client

o e
o e

Cache |<-‘

Coherency

Cache

Memory
Resource

MESIF protocol

Modified (M): present only in the current cache and dirty. A
write-back to main memory will make it (E).

Exclusive (E): present only in the current cache and clean.
A read request will make it (S), a write-request will make it
(M).

Shared (S): may be stored in other caches and clean. May
be changed to (l) at any time.

Invalid (1): unusable

Forward (F): a specialised form of the S state

For more on MESI and MESIF see https://www.youtube.com/watch?v=S3kg_zCz_ PA
and http://www.realworldtech.com/common-system-interface/5/

https://www.youtube.com/watch?v=S3kg_zCz_PA
http://www.realworldtech.com/common-system-interface/5/

Latency [ns]

Cache coherence effects

Exclusive cache lines

120
110
100
30
80

; O 4 LL
Ak AIETTYTETNE YT TTANLY
RAAAALSAMALMALLARALARALRAMAARARLAALMARAARQALRAL

4
AAAAsAAsAAAAANARASEY

507
407
307

T
2 0 FYYY Yy yryy ey 77717?'vavvvyvvvryyvvvv?""?"ﬂY

10 _

Ollllllll
1ES 1E6 1E7 1ES
Memory Size [Byte]

’ " CoreQ local ¥ CoreQ - Corel # Core0 - Cored

Latency [ns]

120

1 10 ‘ ‘a m‘utuuaulquﬂwL

100+ + "

Modified cache lines

Ad
mmnunun“‘“

901
801
b Ihnnnnnnnﬂ"”
60

501
401

20 Y

10 lllllllll!llllll’l!ll’l“"

O IRRRARRR
1ES 1E6 1E7 1E8
Memory Size [Byte]

: ' CoreQ local ¥ CoreQ - Corel # CoreQ - Cored

Latency in nsec on 2-socket Intel Nehalem (4 cores)

Commandments

1. Thou shalt not write thy neighlbour's memory
randomly — chunk the data, redistribute, and then
sort/work on your data locally.

2. Thou shalt read thy neighbour's memory only
sequentially — let the prefetcher hide the remote
access latency.

3. Thou shalt not walit for thy neighbours — don't use
fine grained latching or locking and avoid
synchronisation points of parallel threads.

Shared memory processors

e Recall the UMA and NUMA architectures

* Both are shared memory processor architectures

UMA

Problems with NUMA

Problems with NUMA

e \We do not know where the data Is allocated

Problems with NUMA

e \We do not know where the data Is allocated

e \We do not know on which NUMA node the thread iIs
running

Problems with NUMA

e \We do not know where the data Is allocated

e \We do not know on which NUMA node the thread iIs
running

* S0, no OpenMP on really parallel machines”

New libraries to the rescue

* We can pin threads to processors
* We can control memory allocations
* Jools

* Numacti

e |iIbnuma

lbnuma

* Provides C++ header files

e Can be used to create NUMA awareness in the
code

* A bit like OpenMP, but instead provides methods
for getting NUMA node and allocating memory on
specific NUMA nodes

nuMmacti

 Like libnuma, but controlled from the shell

* Can be used to control existing software without
changing the code

* Very useful when running experiments

numact! (continued

Socket affinity -N Execute process on cores of these sockets
--cpunodebind= only

Memory policy -1 No Allocate on current socket; fallback to any
--localalloc argument other if full

Memory policy -i {0,1} Allocate round robin (interleave) on these
--interleave= sockets. No fallback

Memory policy --preferred= {0,1} select Allocate on this socket; fallback to any other

one if full.

Memory policy -m {0,1} Allocate only on this (these} socket(s). No
--membind= fallback.

Core affinity -C {1,2,3,4,5,6 Execute process on this (these) core(s) only
--physcpubind= ,7,8,9,10,1

1,12}

EXxtra

* Sometimes getting PAPI to work is difficult

* You can find a nice PAPI| wrapper at https://
github.com/sean-chester/papi-wrapper

https://github.com/sean-chester/papi-wrapper
https://github.com/sean-chester/papi-wrapper

Examples

Questions?

