
Parallel Algorithm 
Engineering

Manuel R. Ciosici 
PhD Fellow

based on slides by Kenneth S. Bøgh and Darius Sidlauskaš



Outline
• Background 

• Current multicore architectures 

• The OpenMP framework 

• UMA vs. NUMA and NUMA control 

• Examples



–Edsger W. Dijkstra, ACM Turing Lecture 1972

“the major cause is... that the machines have 
become several orders of magnitude more 

powerful! To put it quite bluntly: as long as there 
were no machines, programming was no 
problem at all; when we had a few weak 
computers, programming became a mild 

problem, and now we have gigantic computers, 
programming had become an equally gigantic 

problem.” 

Software crisis

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
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A long time ago…
The 1st Software Crisis

• When: around 60s and 70s 

• Problem: large programs written in assembly 

• Solution: abstraction and portability via high-level languages like C and FORTRAN 

The 2nd Software Crisis

• When: around 80s and 90s 

• Problem: building and maintaining large programs written by hundreds of 
programmers 

• Solution: software as a process (OOP, testing, code reviews, design patterns), better 
tools (IDEs, version control, component libraries, etc.)



Recently…

Processor-oblivious programmers: 

• A Java program written on PC works on your 
phone 

• A C program written in 70s still works today and 
is faster 

• Moore’s law takes care of good speedups



Currently…
Software crisis (again?)

• When: 2005 and ... 

• Problem: sequential performance is stuck 

• Required solution: continuous and reasonable performance 
improvements 

• To process large datasets (BIG Data!) 

• To support new features 

• Without loosing portability and maintainability
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curve shows transistor
count doubling every
two years
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Uniprocessor performance

SPECint2000

MHz



Overclocking
is not a solution
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Overclocking
• Air-water: ~5.0 GHz (possible at home)

• Phase change: ~6.0 GHz

• Liquid helium: 8.794 GHz 

• Current world record 

• Reached with AMD FX-8350

is not a solution



Let’s parallelise!



Concurrency vs Parallelism
Parallelism

• A condition that arises when at least two threads are executing simultaneously 

• A specific case of concurrency 

Concurrency 

• A condition that exists when at least two threads are making progress.  

• A more general form of parallelism 

• E.g., concurrent execution via time-slicing in uniprocessors (virtual parallelism) 

Distribution 

• As above but running simultaneously on different machines (e.g., cloud 
computing)



Amdahl’s Law
• Potential program speedup is defined by the 

fraction of code that can be parallelised 

• Serial components rapidly become performance 
limiters as thread count increases

• p – fraction of work that can parallelised 

• n – number of processors



Amdahl’s Law



Towards parallel setups
Let’s use transistors for multiple cores

Intel® Core™ i7-2600K Processor



Current commercial  
multi-core CPUs

Intel

• Intel® Core™ i7-6950X Processor Extreme Edition 10 cores (20 hw threads), 25 MB cache, 
max 3.5 GHz 

• Intel® Xeon® Processor E7-8894 v4 24 cores (48 hw threads), 60 MB cache, max 3.4 GHz 

• Intel® Xeon Phi™ Processor 7210 64 cores (256 hw threads), 32 MB Cache, max 1.5 GHz 

AMD (may be out of date) 

• FX-9590: 8 cores, 8 MB Cache, 4.7 GHz 

• A10-7850K: 12 cores (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB Cache 

• Opteron 6386 SE: 16 cores, 16 MB Cache, 3.5 GHz (x 4-socket conf.) 

Oracle 

• SPARC M7: 32 cores (hw 256 threads), 64 MB Cache, 4.13 GHz

http://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
http://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2_40-GHz
http://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-1_30-GHz-64-core
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/sparc-m7-processor-ds-2687041.pdf


Parallel processing
Predicted # of cores for stationary systems,  

according to ITRS



Even “worse” for GPUs
GTX 780 Ti have 2880 cores @ 0.9Ghz



Even “worse” for GPUs

Floating point operations per second – NVIDIA C Programming Guide version 8 – 27 Feb 2017 
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-

general-purpose-parallel-computing 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing


Even “worse” for GPUs

NVIDIA
GTX 780 Ti

Floating point operations per second – NVIDIA C Programming Guide version 8 – 27 Feb 2017 
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-

general-purpose-parallel-computing 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing


Why
Power considerations

• Consumption, Cooling, Efficiency 

DRAM access latency

• Memory wall 

Wire delays

• Range of wire in one clock cycle 

Diminishing returns of more instruction-level parallelism

• Out-of-order execution, branch prediction, etc.



Power consumption
250 Watt

150 Watt



Single Instruction  
Multiple Data (SIMD)

• One SIMD processing unit per core 

• Modern compilers automatically use SIMD in simpler 
cases (remember the -mavx compiler parameter) 

• How to use: 

• compiler intrinsics – see https://gcc.gnu.org/
onlinedocs/gcc/Vector-Extensions.html  

• libraries – see one example at www.agner.org/
optimize/#vectorclass

https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
http://www.agner.org/optimize/#vectorclass
http://www.agner.org/optimize/#vectorclass


Kinds of parallelism

• Single Instruction Multiple Data (SIMD) – briefly 

• Single Instruction Multiple Threads (SIMT) – GPUs - 
not covered 

• Task Parallelism



Single Instruction  
Multiple Data (SIMD)

• Exploits data level parallelism 

• Initially introduced in desktop CPUs in order to 
speed up media applications 

• Available in most desktop CPUs since early late 
90s: MMX (64-bit), SSE (128-bit), AVX (256-bit and 
512-bit) 

• Available in mobile SoCs for a few years now: 
NEON instructions (128-bit)



SIMD



SIMD



SIMD



SIMD

Speedup: 4x



Task parallelism
• Multiple threads are executed 

in parallel, performing multiple 
tasks 

• C++11 brings a unified 
memory model and native 
thread support (read cross 
platform) 

• See C++ Concurrency in 
Action 

https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action


The OpenMP Framework
• API for multiprocessing 

• Easily applied to parallelise code 

• Built for shared memory 
processors 

• Works cross platform 

• See the specifications and 
official examples at 
www.openmp.org/specifications/  

• Using OpenMP – older book, but 
great learning resource

http://www.openmp.org/specifications/
https://mitpress.mit.edu/books/using-openmp


General flow control



Directives
• Used to communicate with the compiler 

• #pragma directives used to instruct the compiler to 
use pragmatic or implementation-dependent 
features 

• One such feature is OpenMP 

• #pragma omp parallel



Useful functions
• Thread-ID: omp_get_thread_num(); 

• Amount of threads: omp_get_num_threads(); 

• Set amount of active threads 

• omp_set_num_threads(4); 

• export OMP_NUM_THREADS=12



Compiling OpenMP
• #include <omp.h> 

• Compile with the OpenMP flag 

• g++ -fopenmp test.cpp 

• Environment variables 

• setenv OMP_NUM_THREADS 12 

• export OMP_NUM_THREADS=12



When to parallelise
• When you have independent units of work  

• When your code is compute bound 

• Or your code is not utilising the memory bandwidth 

• When you see performance gains in tests :-) 



UMA vs NUMA
• All laptops and most desktops are UMA (Uniform 

Memory Access) – single CPU 

• Most modern servers are NUMA (Non Uniform 
Memory Access) – multiple CPUs 

• Important to know which you target!

UMA NUMA



4 sockets – 8 CPU setup



NUMA effects



Cache coherence
Ensures consistency between all the caches.



MESIF protocol
• Modified (M): present only in the current cache and dirty. A 

write-back to main memory will make it (E). 

• Exclusive (E): present only in the current cache and clean. 
A read request will make it (S), a write-request will make it 
(M). 

• Shared (S): may be stored in other caches and clean. May 
be changed to (I) at any time. 

• Invalid (I): unusable 

• Forward (F): a specialised form of the S state
For more on MESI and MESIF see https://www.youtube.com/watch?v=S3kg_zCz_PA 

and http://www.realworldtech.com/common-system-interface/5/

https://www.youtube.com/watch?v=S3kg_zCz_PA
http://www.realworldtech.com/common-system-interface/5/


Cache coherence effects
Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem (4 cores)



Commandments
1. Thou shalt not write thy neighbour’s memory 

randomly – chunk the data, redistribute, and then 
sort/work on your data locally. 

2. Thou shalt read thy neighbour’s memory only 
sequentially – let the prefetcher hide the remote 
access latency. 

3. Thou shalt not wait for thy neighbours – don’t use 
fine grained latching or locking and avoid 
synchronisation points of parallel threads.



Shared memory processors
• Recall the UMA and NUMA architectures 

• Both are shared memory processor architectures 

UMA NUMA



Problems with NUMA



Problems with NUMA

• We do not know where the data is allocated



Problems with NUMA

• We do not know where the data is allocated

• We do not know on which NUMA node the thread is 
running



Problems with NUMA

• We do not know where the data is allocated

• We do not know on which NUMA node the thread is 
running

• So, no OpenMP on really parallel machines?



New libraries to the rescue

• We can pin threads to processors 

• We can control memory allocations 

• Tools 

• Numactl 

• libnuma



libnuma

• Provides C++ header files 

• Can be used to create NUMA awareness in the 
code 

• A bit like OpenMP, but instead provides methods 
for getting NUMA node and allocating memory on 
specific NUMA nodes



numactl

• Like libnuma, but controlled from the shell 

• Can be used to control existing software without 
changing the code 

• Very useful when running experiments



numactl (continued)



Extra

• Sometimes getting PAPI to work is difficult 

• You can find a nice PAPI wrapper at https://
github.com/sean-chester/papi-wrapper 

https://github.com/sean-chester/papi-wrapper
https://github.com/sean-chester/papi-wrapper


Examples



Questions?


