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The 1st Software Crisis
 When: around 60s and 70s
* Problem: large programs written in assembly

e Solution: abstraction and portability via high-level languages like C and FORTRAN



A long time ago...

The 1st Software Crisis
 When: around 60s and 70s
* Problem: large programs written in assembly

e Solution: abstraction and portability via high-level languages like C and FORTRAN

The 2nd Software Crisis

e When: around 80s and 90s

* Problem: building and maintaining large programs written by hundreds of
programmers

« Solution: software as a process (OOP, testing, code reviews, design patterns), better
tools (IDEs, version control, component libraries, etc.)



Recently...

Processor-oblivious programmers:

* A Java program written on PC works on your
phone

* A C program written in 70s still works today and
s faster

* Moore’'s law takes care of good speedups



Currently...

Software crisis (again?)
* When: 2005 and ...
* Problem: sequential performance is stuck

 Required solution: continuous and reasonable performance
improvements

* To process large datasets (BIG Datal)
* Jo support new features

« Without loosing portability and maintainability



Transistor count

Vioore's law

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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Uniprocessor performance
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Overclocking
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e Air-water: ~5.0 GHz (possible at home)
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Overclocking

is not a solution
e Air-water: ~5.0 GHz (possible at home)
* Phase change: ~6.0 GHz
* Liquid helium: 8.794 GHz
* Current world record

e Reached with AMD FX-8350



| et’s parallelise!



Concurrency vs Parallelism

Parallelism
e A condition that arises when at least two threads are executing simultaneously
* A specific case of concurrency
Concurrency
e A condition that exists when at least two threads are making progress.
A more general form of parallelism
e E.g., concurrent execution via time-slicing in uniprocessors (virtual parallelism)

Distribution

« As above but running simultaneously on different machines (e.g., cloud
computing)



Amdahl’s Law

* Potential program speedup is defined by the
fraction of code that can be parallelised

* Serial components rapidly become performance
imiters as thread count increases

+
fraction of time to

fraction of time to
complete sequential complete parallel work

work

* p — fraction of work that can parallelised

e N —number of processors



Speedup
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lTowards parallel setups

Let’'s use transistors for multiple cores
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Current commercial
multi-core CPUs

* |ntel® ' m
max 3.5 GHz

Edition 10 cores (20 hw threads), 25 MB cache,

* Intel® Xeon® Processor E7-8894 v4 24 cores (48 hw threads), 60 MB cache, max 3.4 GHz

* Intel® Xeon Phi™ Processor 7210 64 cores (256 hw threads), 32 MB Cache, max 1.5 GHz

AMD (may be out of date)
 FX-9590: 8 cores, 8 MB Cache, 4.7 GHz

 A10-7850K: 12 cores (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB Cache

» Opteron 6386 SE: 16 cores, 16 MB Cache, 3.5 GHz (x 4-socket conf.)

Oracle

 SPARC M7: 32 cores (hw 256 threads), 64 MB Cache, 4.13 GHz


http://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
http://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2_40-GHz
http://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-1_30-GHz-64-core
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/sparc-m7-processor-ds-2687041.pdf

Parallel processing

Predicted # of cores for stationary systems,

according to ITRS
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Fven “worse” for GPUSs

GTX 780 Ti have 2880 cores @ 0.9Ghz

Theoretical GFLOP/s
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Fven “worse” for GPUSs

Theoretical GFLOP/s at base clock
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Wny

Power considerations
e Consumption, Cooling, Efficiency
DRAM access latency
« Memory wall
Wire delays
* Range of wire in one clock cycle
Diminishing returns of more instruction-level parallelism

« Qut-of-order execution, branch prediction, etc.



Power consumption

Theoretical GFLOP/s
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Single Instruction
Multiple Data (SIMD)

* One SIMD processing unit per core

 Modern compilers automatically use SIMD in simpler
cases (remember the -mavx compiler parameter)

* HOw 1O use:

e compiler intrinsics — see https://gcc.gnu.org/
onlinedocs/gcc/Vector-Extensions.html

e |ibraries — see one example at www.agner.org/
optimize/#vectorclass



https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
http://www.agner.org/optimize/#vectorclass
http://www.agner.org/optimize/#vectorclass

Kinds of parallelism

* Single Instruction Multiple Data (SIMD) — briefly

* Single Instruction Multiple Threads (SIMT) — GPUs -
not covered

e JTask Parallelism



Single Instruction
Multiple Data (SIMD)

Exploits data level parallelism

Initially introduced in desktop CPUs in order to
speed up media applications

Avallable in most desktop CPUs since early late
90s: MMX (64-bit), SSE (128-bit), AVX (256-bit and
512-bit)

Available in mobile SoCs for a few years now:
NEON instructions (128-bit)



SIMD



SIMD

or’dinary CPU
one Sz-bit register holds one number
Rl 9 $-
Ra 3 } 2
R3 27 N
8-bit numbers
input | 1 O 2
result | 3 27 ¥

4 loads, 4 multiplies, and 4 saves

Oper’ation Count:



SIMD

one Sz-bit register holds one number

or’dinary CPU

N

Rl 9 $-
Ra 3 >
R 3 27 N
RAM
8-bit numbers
input | 1 O 2
result | 3 27

4 loads, 4 multiplies, and 4 saves

Oper’ation Count:

one 32-bit register acts as four 8-bit registers

SIMD CpU

R1 1 9 2 8 |«
Ra2 3 3 3 3 9 _ o
R3 3 27 6 24 \ST%
RAM
8-bit numbers
input | 1 9 2 S
result | 3 27 6 24 |

Operation Count:

1load, 1 multiply, and 1 save



SIMD

or'dinc\ry CPU

one Sz-bit register holds one number

Ri1 9
Ra 3
R3 27

;

N

ST

RAM

8-bit numbers

input | 1 9 2 3

result | 3 27

Operation Count:
4 loads, 4 multiplies, and 4 saves

one 32-bit register acts as four 8-bit registers

SIMD CpU

R1 1 9 2 8 |«
Ra2 3 3 3 3 9 _ o
R3 3 27 6 24 \ST%
RAM
8-bit numbers
input | 1 9 2 S
result | 3 27 6 24 |

Operation Count:

1load, 1 multiply, and 1 save

Speedup: 4x



Task parallelism

* Multiple threads are executed
in parallel, performing multiple
tasks

* C++11 brings a unified
memory model and native
thread support (read cross
platform)

* See C++ Concurrency in
Action

/l. MANNING



https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://www.manning.com/books/c-plus-plus-concurrency-in-action

The OpenMP Framework

* API for multiprocessing
* Easily applied to parallelise code

* Built for shared memory
Processors

» Works cross platform

e See the specifications and
official examples at
Www.openmp.org/specifications/

 PORTABLE SHARED MEMORY PARALI.EL PROGRAMMING

BARBARA CHAPMAN, foreword by

 Using OpenMP — older book, but [
great learning resource



http://www.openmp.org/specifications/
https://mitpress.mit.edu/books/using-openmp

GGeneral flow control
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Directives

Used to communicate with the compiller

#pragma directives used to instruct the compiler to
use pragmatic or implementation-dependent
features

One such feature is OpenMP

#pragma omp parallel



Useful functions

Thread-ID: omp_get_thread_num();

Amount of threads: omp_get_num_threads();
Set amount of active threads

* omp_set_num_threads(4);

e export OMP_NUM_THREADS=12



Compiling OpenMP

* #include <omp.h>
* Compile with the OpenMP tlag
* g++ -fopenmp test.cpp
* Environment variables
* setenv OMP_NUM_THREADS 12

e export OMP_NUM_THREADS=12



When to parallelise

When you have independent units of work
When your code is compute bound
Or your code is not utilising the memory bandwidth

When you see performance gains in tests :-)



UMA vs NUMA

* All laptops and most desktops are UMA (Uniform
Memory Access) — single CPU

* Most modern servers are NUMA (Non Uniform
Memory Access) — multiple CPUs

* |Important to know which you target!

il
UMA




4 sockets — 8 CPU setup




NUMA effects

1E5 1E6  1E7  1ES
data set size [Byte]
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Cache coherence

Ensures consistency between all the caches.

Client

Client

o e
o e

Cache |<-‘

Coherency

Cache

Memory
Resource




MESIF protocol

Modified (M): present only in the current cache and dirty. A
write-back to main memory will make it (E).

Exclusive (E): present only in the current cache and clean.
A read request will make it (S), a write-request will make it
(M).

Shared (S): may be stored in other caches and clean. May
be changed to (l) at any time.

Invalid (1): unusable

Forward (F): a specialised form of the S state

For more on MESI and MESIF see https://www.youtube.com/watch?v=S3kg_zCz_ PA
and http://www.realworldtech.com/common-system-interface/5/



https://www.youtube.com/watch?v=S3kg_zCz_PA
http://www.realworldtech.com/common-system-interface/5/

Latency [ns]

Cache coherence effects
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Commandments

1. Thou shalt not write thy neighlbour's memory
randomly — chunk the data, redistribute, and then
sort/work on your data locally.

2. Thou shalt read thy neighbour's memory only
sequentially — let the prefetcher hide the remote
access latency.

3. Thou shalt not walit for thy neighbours — don't use
fine grained latching or locking and avoid
synchronisation points of parallel threads.



Shared memory processors

e Recall the UMA and NUMA architectures

* Both are shared memory processor architectures

UMA




Problems with NUMA



Problems with NUMA

e \We do not know where the data Is allocated



Problems with NUMA

e \We do not know where the data Is allocated

e \We do not know on which NUMA node the thread iIs
running



Problems with NUMA

e \We do not know where the data Is allocated

e \We do not know on which NUMA node the thread iIs
running

* S0, no OpenMP on really parallel machines”



New libraries to the rescue

* We can pin threads to processors
* We can control memory allocations
* Jools

* Numacti

e |iIbnuma



lbnuma

* Provides C++ header files

e Can be used to create NUMA awareness in the
code

* A bit like OpenMP, but instead provides methods
for getting NUMA node and allocating memory on
specific NUMA nodes



nuMmacti

 Like libnuma, but controlled from the shell

* Can be used to control existing software without
changing the code

* Very useful when running experiments



numact! (continued

Socket affinity -N Execute process on cores of these sockets
--cpunodebind= only

Memory policy -1 No Allocate on current socket; fallback to any
--localalloc argument other if full

Memory policy -i {0,1} Allocate round robin (interleave) on these
--interleave= sockets. No fallback

Memory policy --preferred= {0,1} select Allocate on this socket; fallback to any other

one if full.

Memory policy -m {0,1} Allocate only on this (these} socket(s). No
--membind= fallback.

Core affinity -C {1,2,3,4,5,6 Execute process on this (these) core(s) only
--physcpubind= ,7,8,9,10,1

1,12}




EXxtra

* Sometimes getting PAPI to work is difficult

* You can find a nice PAPI| wrapper at https://
github.com/sean-chester/papi-wrapper



https://github.com/sean-chester/papi-wrapper
https://github.com/sean-chester/papi-wrapper

Examples



Questions?



