
Route Planning 

• Tabulation 
• Dijkstra  
• Bidirectional 
• A* 
• Landmarks 
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• Reach 
• ArcFlags 
• Transit Nodes 
• Contraction Hierarchies 
• Hub-based labelling 



Route Planning 

Input: Directed weighted graph G 

Query(s,t) – find shortest route in G from s to t 

 

Lot of algorithm engineering work for road networks 

Example: US Tigerline, 58 M edges & 24 M vertices 

No preprocessing With preprocessing 

Fast query time 
Variations of Dijksta’s algorithm 

Query Time ↔ Space trade-off 
Trivial: Distance table  O(1) time & O(n2) space 

Practice: Try to exploit graph properties 



Route Planning – no preprocessing 
(non-negative edge weights) 

Dijkstra 
Build shortest path tree T 

Visit vertices in increasing distance to s 

 

 

Bidirectional Dijkstra 

Grow s.p. tree Tf from s and Tb to t 

Maintain best so far s→t distance μ 

Termination condition: nextf + nextb  μ  
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Dijkstra vs Bidirectional Dijkstra 

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf 



Input: Weighted graph G with non-negative edges 

Query(s,t): Shortest route queries 
 

Idea Let h(v) be ”heights” & define w’(u,v) = w(u,v) + h(v) - h(u) 

Fact w’(s→v1vk→t) = w(s→v1vk→t) + h(t) - h(s) 
   G and G’ have identical shortest paths  

Fact If w’0  we can use Dijkstra’s algorithm 
 If w’0 and h(t)=0  h(v) lower bound on distance v→t 

Ex. 1 Planar graphs with L2 distance, let h(v) = |t-v|2 

   triangle inequality ensures w’ non-negative  

Ex. 2 h(v) = dG(v,t)       w’(s,t) = 0 
   Dijkstra’s algorithm would only explore the shortest path 

Note Bidirectional A*  Bidirectional Dijkstra and A* combined 

A*  Goal directed  
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A* 

http://en.wikipedia.org/wiki/A*_search_algorithm 



Landmarks 

Select a small number of vertices L (Landmarks) 

For all nodes v store distance vector d(v,l) to all landmarks lL 

 

Idea In A* algorithm fix one landmark lL, and use h(v) = d(v,l) 
 (valid by triangle inequality) 

 

 
 

Practice: Use more than one landmark to find lower bounds on d(v,t)
 Dynamicly increase landmark set during search 
 Bidirectional A* 
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Bidirectional A* with Landmarks 

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf 



For all nodes v store 

Reach(v) = max(s,t) : v on shortest path s→t min{ d(s,v), d(v,t) } 

 

 

 

Idea Reach(v) defines ball around v.  
 If both s and t outside ball, v is not on shortest path 

Query Prune edges (u,v) in Dijkstra, when relaxing (u,v) and 

 Reach(v) < min{ d(s,u)+w(u,v) , LowerBound(v,t) }  

 

Practice: Approximate Reach for fast preprocessing 
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Reach(v) 

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf 



A directed path u→v can be shortcut by a new edge (u,v) 

 

 

 

 

 

Idea:   Shortcuts reduce Reach(x) of vertices x along  

the shortcut path (s→t distances are unchanged) 
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http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf 

Reach(v) + Shortcuts 



http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf 

Reach(v) + Shortcuts + Landmarks 



Experiments – Northwest US 

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf 



Partition vertices into k components C1,...,Ck.  

For all edges e = (u,v) store a bitvector Afe[1..k], where 

Afe[i] = true   Exist shortest path u→t where e is first edge and tCi 

 

 

 

 

 

 

 

Queries Prune edges e where Afe[i] = false and tCi 

Preprocessing Expensive ! 

Arc Flags 
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Transit Node Routing 

Idea All shortest paths s→t,  
where s and t are far away,  
must cross few possible transit nodes 

 

1. Identify few transit nodes in graph ~   n 

2. Compute All-Pair-Shortest-Path matrix for transit nodes 

3. For each vertex s find very few transit node distances (US ~10) 

Query(s,t)  far away queries  
For all (u,v), transit nodes u and v for s and t respectively,  
find d(s,t)=d(s,u)+d(u,v)+d(v,t) using table lookup 

Locality filter = table over when to switch to other algorithm 

Practice:  Combine recursively with Highway Hierarchies 
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Transit Node Routing 

 

Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In Transit to Constant Time Shortest-Path Queries in Road Networks.  
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007. 



Highway Hierachies 

• Each nodes findes H closest nodes 
(Neighborhood) 

• Highway edge (u,v)  exist some shortest 
path s→t containing (u,v), where sH and tH 

• Contract & Recurse  Hierarchy 

• Queries 

– Heuristics similar to Reach 

– Bidrectional Dijkstra (skipping lower level edges) 



Contraction Hierarchies 

• Order nodes v1,...,vn in increasing order of importance 

• Repeatedly contract unimportant nodes by adding 
shortcuts required by shortest paths 

 

 

 

• Many heuristics in construction phase 

• Query: Bidirectional – only go to more important nodes 



For all nodes v store two lists Lf(v) and Lb(v), such that for all (s,t) 
pairs, the shortest path s→t contains a node u, where uLf(s)Lb(t) 

 

Trivially exist; hard part is to limit space usage 

Hub Labelling 
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Hub Labelling comparison 

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. 
Symposium on Experimental Algorithms (SEA), Lecture Notes in Computer Science, Volume 6630, 2011, pp 230-241. 
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