[ADGW11]

[BFMSS07]

[GSSDO8]

Route Planning

e Tabulation e Reach

* Dijkstra * ArcFlags

* Bidirectional * Transit Nodes

e A¥* e Contraction Hierarchies
 Landmarks * Hub-based labelling

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck.

A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks.

Proc. 10th International Symposium on Experimental Algorithms (SEA), LNCS 6630, 2011, 230-241.
Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes.

In Transit to Constant Time Shortest-Path Queries in Road Networks.

Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.
Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks.

Proc. 7th International Workshop on Experimental Algorithms (WEA), LNCS 5038, 2008, 319-333.



Route Planning

Input: Directed weighted graph G
Query(s,t) — find shortest route in Gfromstot

Lot of algorithm engineering work for road networks

Example: US Tigerline, 58 M edges & 24 M vertices

No preprocessing With preprocessing

Fast query time Query Time <> Space trade-off
Variations of Dijksta’s algorithm | Trivial: Distance table O(1) time & O(n?) space
Practice: Try to exploit graph properties




Route Planning — no preprocessing

(non-negative edge weights)

Dijkstra - - - é{' u
®

Build shortest path tree T
Visit vertices in increasing distance to s - %<

Bidirectional Dijkstra

Grow s.p. tree T,fromsand 7, to t
Maintain best so far s—>t distance u
Termination condition: next, +




Dijkstra vs Bidirectional Dijkstra

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf



A* = Goal directed

Input: Weighted graph G with non-negative edges
Query(s,t): Shortest route queries

Idea

Fact

Fact

Ex.1

Ex. 2

Note

Let h(v) be "heights” & define w'(u,v) = w(u,v) + h(v) - h(u)

W (s>vy v, >t) = w(s>vv,>t) + h(t) - h(s)
— G and G’ have identical shortest paths

If w>0 = we can use Dijkstra’s algorithm
If w>0 and h(t)=0 = h(v) lower bound on distance v—>t

v

Planar graphs with L, distance, let h(v) = |t-v|, w(u.v) htv)

= triangle inequality ensures w’ non-negative ) t
u

hiv)=dgv,t) = wi(st)=0
—> Dijkstra’s algorithm would only explore the shortest path

Bidirectional A* = Bidirectional Dijkstra and A* combined




A*

Freight Railroad Network of North America

. |
50°N : = 50°N
40°N 40°N
30°N —
20°N S
10°N o e 1gen

http://en.wikipedia.org/wiki/A* search_algorithm



Landmarks

Select a small number of vertices [ (Landmarks)

For all nodes v store distance vector d(v,/) to all landmarks /=L

Idea In A* algorithm fix one landmark /L, and use h(v) = d(v,/)
(valid by triangle inequality)

t d(t,])

‘\'/.\ d(v, l‘) 0—-»0—»

W’=O d(v /)

Practice: Use more than one landmark to find lower bounds on d(v,t)
Dynamicly increase landmark set during search
Bidirectional A*



Bidirectional A* with Landmarks

st
L

¢
> ’ .
3 .u‘_.-_a@
*
§ STPRIRESG $ e

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf



Reach

For all nodes v store

ReaCh(V) = rnax(s,t) : v on shortest path s>t mm{ d(S,V), d(V,t) }

d(s,v)

e N
t

Idea  Reach(v) defines ball around v.
If both s and 7 outside ball, v is not on shortest path

Query Prune edges (u,v) in Dijkstra, when relaxing (u,v) and
Reach(v) < min{ d(s,u)+w(u,v) , LowerBound(v,t) }

Practice: Approximate Reach for fast preprocessing



Reach(v)

&,

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf



Shortcuts

A directed path u—>v can be shortcut by a new edge

u X
\\ //'
N
-’
\\\~ ”/

Idea: Shortcuts reduce Reach(x) of vertices x along
the shortcut path (s—>t distances are unchanged)




Reach(v) + Shortcuts

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf



Reach(v) + Shortcuts + Landmarks

e

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf



Experiments — Northwest US

PREPROCESSING QUERY
METHOD minutes MB | avgscan maxscan ms
Bidirectional Dijkstra — 28 | 518723 1197607 340.74
Landmarks 4 132 16 276 150 389 12.05
Reaches 1100 34 53 888 106 2388 30.61
Reaches+Shortcuts 17 100 2 804 5877 2.39
Reaches+Shortcuts+Landmarks 21 204 367 1513 0.73

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf




Arc Flags

Partition vertices into k components C,,...,C,.
For all edges e = (u,v) store a bitvector Af_[1..k], where
Af [i] = true < Exist shortest path u—>t where e is first edge and t<C,

Queries Prune edges e where Af_[/] = false and teC,
Preprocessing Expensive !




Transit Node Routing

Q

\)&‘o

Idea All shortest paths s—>t, &
where s and t are i

must cross few possible transit nodes

1. Identify few transit nodes in graph ~/n
2. Compute All-Pair-Shortest-Path matrix for transit nodes
3. For each vertex s find very few transit node distances (US ~10)

Query(s,t)
For all (u,v), transit nodes u and v for s and t respectively,
find d(s,t)=d(s,u)+d(u,v)+d(v,t) using table lookup

Locality filter = table over when to switch to other algorithm

Practice: Combine recursively with Highway Hierarchies



Transit Node Routing

e
Y.

S ==
S AT

-

Figure 1: Finding the optimal travel time between two points (flags) somewhere between Saarbriicken and
Karlsruhe amounts to retrieving the 2 x 4 access nodes (diamonds), performing 16 table lookups between all
pairs of access nodes, and checking that the two disks defining the locality filter do not overlap. Transit nodes
that are not relevant for the depicted query are drawn as small squares.

Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In Transit to Constant Time Shortest-Path Queries in Road Networks.
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.



Highway Hierachies

Each nodes findes H closest nodes
(Neighborhood)

Highway edge (u,v) < exist some shortest
path s—>t containing (u,v), where s¢gH and tgH

Contract & Recurse = Hierarchy

Queries
— Heuristics similar to Reach
— Bidrectional Dijkstra (skipping lower level edges)



Contraction Hierarchies

Order nodes v,,...,v, in increasing order of importance

Repeatedly contract unimportant nodes by adding
shortcuts required by shortest paths

Many heuristics in construction phase

Query: Bidirectional — only go to more important nodes



Hub Labelling

For all nodes v store two lists L{v) and L,(v), such that for all (s,?)
pairs, the shortest path s>t contains a node v, where uelL{s)NL,(t)

Trivially exist; hard part is to limit space usage

S t

LAs

= L)
small { — dls,u) uldu,t)  cmall




Hub Labelling comparison

EUROPE USA

preprocessing space query preprocessing space query

c » method time [h:m)] (GB]  [ns] time [h:m] GB]  [ns]
'@5{ CH [5] 0:13 0.4 93995 0:14 0.5 67 835
£ 5| CHASE [5],_ 0:52 0.6 9034 1:59 0.7 9922
SE HPML [9] A  ~12:00 3.0 9817 ~12:00 5.1 10078
2ol TNR [5] , fles 0:58 3.7 1775 0:47 5.4 1566
Z 2| TNR+AF [5] 2:00 5.7 992 1:22 6.3 838
o[ HL prefix 2:31 + 0:45 5.7 527  2:17 + 0:40 6.4 542
'§§ HL local 2:31 + 0:08 20.1 572  2:17 + 0:07 22.7 627
| HL global 2:31 + 0:14 21.3 276  2:17 + 0:18 25.4 266

Table Lookup

> 11:03 1208 358.7 56

> 22:44 2293 902.1 56

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks.
Symposium on Experimental Algorithms (SEA), Lecture Notes in Computer Science, Volume 6630, 2011, pp 230-241.



