
Route Planning

• Tabulation
• Dijkstra
• Bidirectional
• A*
• Landmarks

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck.
A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks.
Proc. 10th International Symposium on Experimental Algorithms (SEA), LNCS 6630, 2011, 230-241.

[BFMSS07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes.
In Transit to Constant Time Shortest-Path Queries in Road Networks.
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
 Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks.
 Proc. 7th International Workshop on Experimental Algorithms (WEA), LNCS 5038, 2008, 319-333.

• Reach
• ArcFlags
• Transit Nodes
• Contraction Hierarchies
• Hub-based labelling

Route Planning

Input: Directed weighted graph G

Query(s,t) – find shortest route in G from s to t

Lot of algorithm engineering work for road networks

Example: US Tigerline, 58 M edges & 24 M vertices

No preprocessing With preprocessing

Fast query time
Variations of Dijksta’s algorithm

Query Time ↔ Space trade-off
Trivial: Distance table O(1) time & O(n2) space

Practice: Try to exploit graph properties

Route Planning – no preprocessing
(non-negative edge weights)

Dijkstra
Build shortest path tree T

Visit vertices in increasing distance to s

Bidirectional Dijkstra

Grow s.p. tree Tf from s and Tb to t

Maintain best so far s→t distance μ

Termination condition: nextf + nextb  μ

T
s

t

u G

Tf

s
t

G

Tb

u

Dijkstra vs Bidirectional Dijkstra

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

Input: Weighted graph G with non-negative edges

Query(s,t): Shortest route queries

Idea Let h(v) be ”heights” & define w’(u,v) = w(u,v) + h(v) - h(u)

Fact w’(s→v1vk→t) = w(s→v1vk→t) + h(t) - h(s)
  G and G’ have identical shortest paths

Fact If w’0  we can use Dijkstra’s algorithm
 If w’0 and h(t)=0  h(v) lower bound on distance v→t

Ex. 1 Planar graphs with L2 distance, let h(v) = |t-v|2

  triangle inequality ensures w’ non-negative

Ex. 2 h(v) = dG(v,t)  w’(s,t) = 0
  Dijkstra’s algorithm would only explore the shortest path

Note Bidirectional A*  Bidirectional Dijkstra and A* combined

A*  Goal directed

t

v

u
h(u)

h(v)
w(u,v)

A*

http://en.wikipedia.org/wiki/A*_search_algorithm

Landmarks

Select a small number of vertices L (Landmarks)

For all nodes v store distance vector d(v,l) to all landmarks lL

Idea In A* algorithm fix one landmark lL, and use h(v) = d(v,l)
 (valid by triangle inequality)

Practice: Use more than one landmark to find lower bounds on d(v,t)
 Dynamicly increase landmark set during search
 Bidirectional A*

s

l

t
v

d(t,l)

d(v,l)

d(v,t)

w’=0

Bidirectional A* with Landmarks

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

For all nodes v store

Reach(v) = max(s,t) : v on shortest path s→t min{ d(s,v), d(v,t) }

Idea Reach(v) defines ball around v.
 If both s and t outside ball, v is not on shortest path

Query Prune edges (u,v) in Dijkstra, when relaxing (u,v) and

 Reach(v) < min{ d(s,u)+w(u,v) , LowerBound(v,t) }

Practice: Approximate Reach for fast preprocessing

Reach

s t

v
d(s,v)

d(v,t)

Reach(v)

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

A directed path u→v can be shortcut by a new edge (u,v)

Idea: Shortcuts reduce Reach(x) of vertices x along

the shortcut path (s→t distances are unchanged)

Shortcuts

shortcut

u
v

x
s t

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

Reach(v) + Shortcuts

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

Reach(v) + Shortcuts + Landmarks

Experiments – Northwest US

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

Partition vertices into k components C1,...,Ck.

For all edges e = (u,v) store a bitvector Afe[1..k], where

Afe[i] = true  Exist shortest path u→t where e is first edge and tCi

Queries Prune edges e where Afe[i] = false and tCi

Preprocessing Expensive !

Arc Flags

C4

C2

C3

Ci

G C1

u

v

t

Ck

e

Transit Node Routing

Idea All shortest paths s→t,
where s and t are far away,
must cross few possible transit nodes

1. Identify few transit nodes in graph ~ n

2. Compute All-Pair-Shortest-Path matrix for transit nodes

3. For each vertex s find very few transit node distances (US ~10)

Query(s,t) far away queries
For all (u,v), transit nodes u and v for s and t respectively,
find d(s,t)=d(s,u)+d(u,v)+d(v,t) using table lookup

Locality filter = table over when to switch to other algorithm

Practice: Combine recursively with Highway Hierarchies

t s

u v

Transit Node Routing

Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In Transit to Constant Time Shortest-Path Queries in Road Networks.
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

Highway Hierachies

• Each nodes findes H closest nodes
(Neighborhood)

• Highway edge (u,v)  exist some shortest
path s→t containing (u,v), where sH and tH

• Contract & Recurse  Hierarchy

• Queries

– Heuristics similar to Reach

– Bidrectional Dijkstra (skipping lower level edges)

Contraction Hierarchies

• Order nodes v1,...,vn in increasing order of importance

• Repeatedly contract unimportant nodes by adding
shortcuts required by shortest paths

• Many heuristics in construction phase

• Query: Bidirectional – only go to more important nodes

For all nodes v store two lists Lf(v) and Lb(v), such that for all (s,t)
pairs, the shortest path s→t contains a node u, where uLf(s)Lb(t)

Trivially exist; hard part is to limit space usage

Hub Labelling

s t

u

Lf(s)

u d(s,u)

Lb(t)

u d(u,t) small small

Hub Labelling comparison

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks.
Symposium on Experimental Algorithms (SEA), Lecture Notes in Computer Science, Volume 6630, 2011, pp 230-241.

H
u

b

la
b

el
lin

g
Tr

an
si

t
n

o
d

e
C

o
n

tr
ac

ti
o

n

h
ie

ra
rc

h
ie

s

Arc
flags

