
Darius Sidlauskas, 25/02-2014

1/21

Lecture on Multicores

Darius Sidlauskas
Post-doc

Darius Sidlauskas, 25/02-2014

2/21

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share

 Part 3
 Demo
 War story

Darius Sidlauskas, 25/02-2014

3/61

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share

 Part 3
 Demo
 War story

Darius Sidlauskas, 25/02-2014

5/61

Software crisis

“The major cause of the software crisis is that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers,
programming has become an equally gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture

Darius Sidlauskas, 25/02-2014

6/61

Before..

 The 1st Software Crisis
 When: around '60 and 70'
 Problem: large programs written in assembly
 Solution: abstraction and portability via high-level

languages like C and FORTRAN

 The 2nd Software Crisis
 When: around '80 and '90
 Problem: building and maintaining large programs

written by hundreds of programmers
 Solution: software as a process (OOP, testing, code

reviews, design patterns)
● Also better tools: IDEs, version control, component libraries, etc.

Darius Sidlauskas, 25/02-2014

7/61

Recently..

 Processor-oblivious programmers
 A Java program written on PC works on your phone
 A C program written in '70 still works today and is faster
 Moore’s law takes care of good speedups

Darius Sidlauskas, 25/02-2014

8/61

Currently..

 Software crisis again?
 When: 2005 and ...
 Problem: sequential performance is stuck
 Required solution: continuous and reasonable

performance improvements
● To process large datasets (BIG Data!)
● To support new features
● Without loosing portability and maintainability

Darius Sidlauskas, 25/02-2014

9/61

Moore's law

Darius Sidlauskas, 25/02-2014

10/61

Uniprocessor performance

SPECint2000 [1]

Darius Sidlauskas, 25/02-2014

11/61

Uniprocessor performance (cont.)

SPECfp2000 [1]

Darius Sidlauskas, 25/02-2014

12/61

Uniprocessor performance (cont.)

Clock Frequency [1]

M
H

z

Darius Sidlauskas, 25/02-2014

13/61

Why

 Power considerations
 Consumption
 Cooling
 Efficiency

 DRAM access latency
 Memory wall

 Wire delays
 Range of wire in one clock cycle

 Diminishing returns of more instruction-level
parallelism
 Out-of-order execution, branch prediction, etc.

Darius Sidlauskas, 25/02-2014

14/61

Overclocking [2]

 Air-water: ~5.0 GHz
 Possible at home

 Phase change: ~6.0 GHz
 Liquid helium: 8.794 GHz

 Current world record
 Reached with AMD FX-8350

Darius Sidlauskas, 25/02-2014

15/61

Shift to multicores

 Instead of going faster --> go more parallel!
 Transistors are used now for multiple cores

http://valid.canardpc.com/lpza4n

Darius Sidlauskas, 25/02-2014

16/61

Multi-socket configuration



Darius Sidlauskas, 25/02-2014

17/61

Four-socket configuration



Darius Sidlauskas, 25/02-2014

18/61

Current commercial multicore CPUs

 Intel
 i7-4960X: 6-core (12 threads), 15 MB Cache, max 4.0 GHz
 Xeon E7-8890 v2: 15-core (30 threads), 37.5 MB Cache, max 3.4

GHz (x 8-socket configuration)
 Phi 7120P: 61 cores (244 threads), 30.5 MB Cache, max 1.33 GHz,

max memory BW 352 GB/s

 AMD
 FX-9590: 8-core, 8 MB Cache, 4.7 GHz
 A10-7850K: 12-core (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB C
 Opteron 6386 SE: 16-core, 16 MB Cache, 3.5 GHz (x 4-socket conf.)

 Oracle
 SPARC M6: 12-core (96 threads), 48 MB Cache, 3.6 GHz (x 32-socket

configuration)

Darius Sidlauskas, 25/02-2014

19/61

Concurrency vs. Parallelism

 Parallelism
 A condition that arises when at least two threads are

executing simultaneously
 A specific case of concurrency

 Concurrency:
 A condition that exists when at least two threads are

making progress.
 A more generalized form of parallelism
 E.g., concurrent execution via time-slicing in

uniprocessors (virtual parallelism)

 Distribution:
 As above but running simultaneously on different

machines (e.g., cloud computing)

http://ark.intel.com/products/77779
http://ark.intel.com/products/75258
http://ark.intel.com/products/75799
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/m6-32/overview/index.html

Darius Sidlauskas, 25/02-2014

20/61

Amdhal's law

 Potential program speedup is defined by the fraction
of code that can be parallelized

 Serial components rapidly become performance
limiters as thread count increases
 p – fraction of work that can parallelized
 n – the number of processors

Speedup

Darius Sidlauskas, 25/02-2014

21/61

Amdhal's law
S

pe
ed

up

Number of Processors

Darius Sidlauskas, 25/02-2014

22/61

You've seen this..

 L1 and L2 Cache Sizes

Darius Sidlauskas, 25/02-2014

23/61

NUMA effects [3]

Darius Sidlauskas, 25/02-2014

24/61

Cache coherence

 Ensures the consistency between all the caches.

CPU

CPU

Darius Sidlauskas, 25/02-2014

25/61

MESIF protocol

 Modified (M): present only in the current cache and
dirty. A write-back to main memory will make it (E).

 Exclusive (E): present only in the current cache and
clean. A read request will make it (S), a write-request
will make it (M).

 Shared (S): maybe stored in other caches and clean.
Maybe changed to (I) at any time.

 Invalid (I): unusable
 Forward (F): a specialized form of the S state

Darius Sidlauskas, 25/02-2014

26/61

Cache coherency effects [4]

Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem [3]

Darius Sidlauskas, 25/02-2014

28/61

Does it have effect in practice?

 Processing 1600M tuples on 32-core machine [5]

Darius Sidlauskas, 25/02-2014

29/61

Commandments [5]

 C1: Thou shalt not write thy neighbor’s memory
randomly – chunk the data, redistribute, and then
sort/work on your data locally.

 C2: Thou shalt read thy neighbor’s memory only
sequentially – let the prefetcher hide the remote
access latency.

 C3: Thou shalt not wait for thy neighbors – don’t use
fine grained latching or locking and avoid
synchronization points of parallel threads.

Darius Sidlauskas, 25/02-2014

30/61

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share?

 Part 3
 Demo
 War story

Darius Sidlauskas, 25/02-2014

31/61

Automatic contention detection and
amelioration for data-intensive operations

 A generic framework (similar to Google's
MapReduce) that
 Efficiently parallelizes generic tasks
 Automatically detects contention
 Scales on multi-core CPUs
 Makes programmer's life easier :-)

 Based on
 J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye.

“Automatic contention detection and amelioration for
data-intensive operations.” In SIGMOD 2010.

 Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation
on multicore processors. In DaMoN 2011

Darius Sidlauskas, 25/02-2014

32/61

To Share or not to share

 Independent computation
 Shared-nothing (disjoint processing)
 No coordination (synchronization) overhead
 No contention
 Each thread use only 1/N of CPU resources
 Merge step required

 Shared computation
 Common data structures
 Coordination (synchronization) overhead
 Potential contention
 All threads enjoy all CPU resources
 No merge step required

Darius Sidlauskas, 25/02-2014

33/61

Thread level parallelism

 On-chip coherency enables fine-grain parallelism
 that was previously unprofitable (e.g., on SMPs)

 However, beware:
 Correct parallel code does not mean no contention

bottlenecks (hotspots)
 Naive implementation can lead to huge performance

pitfalls
 Serialization due to shared access
 E.g., many threads attempt to modify the same hash

cell

Darius Sidlauskas, 25/02-2014

34/61

Aggregate computation

 Parallelizing simple DB operation:

SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G

 What happens when values in R.G are highly
skew?

 What happens when number of cores is much
higher than |G|?

 Recall the key question: to share or not to share?

Darius Sidlauskas, 25/02-2014

35/61

Atomic CAS instruction

 Notation: CAS(&L, A, B)
 The meaning:

 Compare the old value in location L with the expected
old value A. If they are the same, then exchange the
new value B with the value in location L.

 Otherwise do not modify the value at location L because
some other thread has changed the value at location L
(since last time A was read). Return the current value of
location L in B.

 After a CAS operation, one can determine
whether the location L was successfully updated
by comparing the contents of A and B.

Darius Sidlauskas, 25/02-2014

36/61

Atomic operations via CAS

 atomic_inc_64(&target) {
 do {
 cur_val = Load(&target);
 new_val = cur_val + 1;
 CAS(&target, cur_val, new_val);
 } while (cur_val != new_val);

}
 atomic_dec_64(&target);
 atomic_add_64(&target, value);
 atomic_mul_64(&target, value);
 ...

Darius Sidlauskas, 25/02-2014

37/61

What is contention then?

 Number of CAS retries

Darius Sidlauskas, 25/02-2014

38/61

Measuring contention (pseudo-code)

 my_atomic_inc_64(&target, &cas_counter) {
 do {
 cur_val = Load(&target);
 new_val = cur_val + 1;
 CAS(&target, cur_val, new_val);
 cas_counter++;
 } while (cur_val != new_val);

}
 my_atomic_dec_64(&target, &cas_counter);
 my_atomic_add_64(&target, value, &cas_counter);
 my_atomic_mul_64(&target, value, &cas_counter);
 ...

Darius Sidlauskas, 25/02-2014

39/61

Measuring contention (assembly code)
 .inline my_atomic_add_64,0! %o1 contains update value

 ldx [%o0], %o4 ! load current sum into %o4;

 ld [%o2], %o5 ! load update­counter into %o5
1:
inc 1, %o5 ! increment update­counter
add %o4, %o1, %o3 ! add value to current sum; put in %o3

 casx [%o0], %o4, %o3 ! compare­and­swap %o3 into memory
! location of sum;
! %o4 contains the value seen

cmp %o4, %o3 ! check if compare­and­swap succeeded
! i.e., if %o4 is equal to %o3

bne,a,pn %xcc, 1b ! if not, retry loop starting at 1:
mov %o3, %o4 ! statement executed even when branch

! taken; %o4 now has a more recent value
! of the current sum and we have to add
! %o1 over again

st %o5, [%o2] ! store the update­counter

 .end

Darius Sidlauskas, 25/02-2014

40/61

Contention management

 Applies only to commutative operations
 I.e., changing the order of the operands does not

change the result
 E.g., aggregation and partitioning

 General idea:
 Perform operation on X and measure contention
 Create extra version of X when contented
 Spread the subsequent accesses among the two copies

of X
 Combine the results at the end

Darius Sidlauskas, 25/02-2014

41/61

Framework

 Requires 4 user-defined template functions
 create­clone: how a new version is created (x = 0)
 combine: how multiple versions are merged (x + x1)
 simple­update: how the new value of a data item is

obtained from the current value and an update (x += v)
 atomic-update: user defined function (next slide)

 Framework takes care
 When to clone
 Which clone is accessed by which thread

Darius Sidlauskas, 25/02-2014

42/61

Example of atomic-update
 bool AggregatorAtomicUpdate(Aggregator *agg,

 const uint64_t value) {
int32_t cas_counter = 0;

my_atomic_inc_64(&agg->count, &cas_counter);
my_atomic_add_64(&agg->sum, value, &cas_counter);
return (3 < cas_counter);

}

 Recall:
SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G

Darius Sidlauskas, 25/02-2014

43/61

Techniques for managing contention

 Main concerns:
 What information to maintain about the current number

of clones?
 How to map threads to clones in a balanced fashion?

 Two broad approaches for managing clones:
 Global
 Local

Darius Sidlauskas, 25/02-2014

44/61

Managing clones globally

 New clones are created in shared address space
 Clone allocation happens in response to a single

contention event (no threshold counters)
 The number of clones is always doubled

 E.g., we can get to 64 clones of a heavy-hitter element
after 6 contention steps

 With few very popular items, each thread might end up
having its own clone (no atomic operations needed
afterwards!)

Darius Sidlauskas, 25/02-2014

45/61

Managing clones locally

 Each thread creates clones in a local table used
by that thread alone

 Table size is kept small
 e.g., smaller than the thread’s share of the L1 data

cache

 When the table is full, new insertions are
accomplished by spilling an existing value into
the global data element

Darius Sidlauskas, 25/02-2014

46/61

Managing clones locally (cont.)

Darius Sidlauskas, 25/02-2014

47/61

Experimental platforms

Darius Sidlauskas, 25/02-2014

48/61

Input data

 Refers to the characteristics of the group-by key in
the input relation

 Synthetically generated distributions (N = 224):
 Uniform
 Sorted (1 1 1 2 3 3 4 5 … N)
 Heavy hitter (50%)
 Repeated-run (1 2 3 … N 1 2 3 … N 1 2 …)
 Zipf (exponent of 0.5)
 Self-similar (80-20 proportion)
 Moving-cluster (locality window)

 During input generation a targeted group-by
cardinality is specified

Darius Sidlauskas, 25/02-2014

49/61

Cache and memory issues

Number of group by values where contention has been detected and at least one
clone constructed

Darius Sidlauskas, 25/02-2014

50/61

Results

Darius Sidlauskas, 25/02-2014

51/61

Results

Darius Sidlauskas, 25/02-2014

52/61

Effects of the local table size

Darius Sidlauskas, 25/02-2014

53/61

Conclusions

 Automatic contention detection
 Effective contention amelioration
 Both proposed schemes (global and local)

mitigate contention
 Global slightly faster
 Local uses less memory

 However
 Works just for commutative operations
 Different architectures favor different approaches

Darius Sidlauskas, 25/02-2014

54/61

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share

 Part 3
 Demo
 War story

Darius Sidlauskas, 25/02-2014

55/61

Demo: false sharing
 Threads operate on

different variables
 But variables reside on

the same cache line

Darius Sidlauskas, 25/02-2014

56/61

Demo: NUMA effects

Darius Sidlauskas, 25/02-2014

57/61

War story

Darius Sidlauskas, 25/02-2014

58/61

Looking for a master thesis topic?

 ACM SIGMOD 2014 Programming Contest
 ACM SIGSPATIAL GIS CUP 2014

Darius Sidlauskas, 25/02-2014

59/61

References
[1] Samuel H. Fuller and Lynette I. Millett, “The Future of Computing Performance:

Game Over or Next Level?” The National Academies Press, 2010. [link]

[2] CPU Overclocking World Records [link]

[3] D. Molka, R. Schöne, D. Hackenberg, & M. S. Müller. “Memory performance and
SPEC OpenMP scalability on quad-socket x86_64 systems.” In ICA3PP, 2011.

[4] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. “Memory performance and
cache coherency effects on an intel nehalem multiprocessor system.” In PACT
2009.

[5] Albutiu, M. C., Kemper, A., & Neumann, T. “Massively parallel sort-merge joins in
main memory multi-core database systems.” In VLDB 2012.

[6] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye. “Automatic contention detection
and amelioration for data-intensive operations.” In SIGMOD 2010.

[7] Y. Ye, K. A. Ross, and N. Vesdapunt. “Scalable aggregation on multicore
processors.” In DaMoN 2011.

Darius Sidlauskas, 25/02-2014

60/61

Thank you

Darius Sidlauskas
Post-doc

Contact: dariuss@madalgo.au.dk

http://www.cs.albany.edu/~sigmod14contest/index.html
http://mypages.iit.edu/~xzhang22/GISCUP2014/

Darius Sidlauskas, 25/02-2014

61/61

All in one [1]

http://orci.research.umich.edu/content/2011/10/2011-Future-of-Computing-Performance-NRC.pdf
http://valid.canardpc.com/records.php

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

