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Software crisis

“The major cause of the software crisis is that the machines have 
become several orders of magnitude more powerful! To put it quite 
bluntly: as long as there were no machines, programming was no 
problem at all; when we had a few weak computers, programming 
became a mild problem, and now we have gigantic computers, 
programming has become an equally gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture
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Before..

 The 1st Software Crisis
 When: around '60 and 70'
 Problem: large programs written in assembly
 Solution: abstraction and portability via high-level 

languages like C and FORTRAN

 The 2nd Software Crisis
 When: around '80 and '90
 Problem: building and maintaining large programs 

written by hundreds of programmers
 Solution: software as a process (OOP, testing, code 

reviews, design patterns)
● Also better tools: IDEs, version control, component libraries, etc.
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Recently..

 Processor-oblivious programmers
 A Java program written on PC works on your phone
 A C program written in '70 still works today and is faster
 Moore’s law takes care of good speedups
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Currently..

 Software crisis again?
 When: 2005 and ...
 Problem: sequential performance is stuck
 Required solution: continuous and reasonable 

performance improvements
● To process large datasets (BIG Data!)
● To support new features
● Without loosing portability and maintainability
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Moore's law
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Uniprocessor performance

SPECint2000 [1]
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Uniprocessor performance (cont.)

SPECfp2000 [1]
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Uniprocessor performance (cont.)

Clock Frequency [1]

M
H

z
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Why

 Power considerations
 Consumption
 Cooling
 Efficiency

 DRAM access latency
 Memory wall

 Wire delays
 Range of wire in one clock cycle

 Diminishing returns of more instruction-level 
parallelism
 Out-of-order execution, branch prediction, etc.
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Overclocking [2]

 Air-water: ~5.0 GHz
 Possible at home

 Phase change: ~6.0 GHz
 Liquid helium: 8.794 GHz

 Current world record
 Reached with AMD FX-8350
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Shift to multicores

 Instead of going faster --> go more parallel!
 Transistors are used now for multiple cores

http://valid.canardpc.com/lpza4n
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Multi-socket configuration


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Four-socket configuration


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Current commercial multicore CPUs

 Intel
 i7-4960X: 6-core (12 threads), 15 MB Cache, max 4.0 GHz
 Xeon E7-8890 v2: 15-core (30 threads), 37.5 MB Cache, max 3.4 

GHz (x 8-socket configuration)
 Phi 7120P: 61 cores (244 threads), 30.5 MB Cache, max 1.33 GHz, 

max memory BW 352 GB/s

 AMD
 FX-9590: 8-core, 8 MB Cache, 4.7 GHz
 A10-7850K: 12-core (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB C
 Opteron 6386 SE: 16-core, 16 MB Cache, 3.5 GHz (x 4-socket conf.)

 Oracle
 SPARC M6: 12-core (96 threads), 48 MB Cache, 3.6 GHz (x 32-socket 

configuration)
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Concurrency vs. Parallelism

 Parallelism
 A condition that arises when at least two threads are 

executing simultaneously
 A specific case of concurrency

 Concurrency: 
 A condition that exists when at least two threads are 

making progress. 
 A more generalized form of parallelism
 E.g., concurrent execution via time-slicing in 

uniprocessors (virtual parallelism)

 Distribution:
 As above but running simultaneously on different 

machines (e.g., cloud computing)

http://ark.intel.com/products/77779
http://ark.intel.com/products/75258
http://ark.intel.com/products/75799
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/m6-32/overview/index.html
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Amdhal's law

 Potential program speedup is defined by the fraction 
of code that can be parallelized

 Serial components rapidly become performance 
limiters as thread count increases
 p – fraction of work that can parallelized
 n – the number of processors

Speedup
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Amdhal's law
S

pe
ed

up

Number of Processors
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You've seen this..

 L1 and L2 Cache Sizes



Darius Sidlauskas, 25/02-2014

23/61

NUMA effects [3]
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Cache coherence

 Ensures the consistency between all the caches.

CPU  

CPU  
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MESIF protocol

 Modified (M): present only in the current cache and 
dirty. A write-back to main memory will make it (E).

 Exclusive (E): present only in the current cache and 
clean. A read request will make it (S), a write-request 
will make it (M).

 Shared (S): maybe stored in other caches and clean. 
Maybe changed to (I) at any time.

 Invalid (I): unusable
 Forward (F): a specialized form of the S state
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Cache coherency effects [4]

Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem [3]
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Does it have effect in practice?

 Processing 1600M tuples on 32-core machine [5]
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Commandments [5]

 C1: Thou shalt not write thy neighbor’s memory 
randomly – chunk the data, redistribute, and then 
sort/work on your data locally.

 C2: Thou shalt read thy neighbor’s memory only 
sequentially – let the prefetcher hide the remote 
access latency.

 C3: Thou shalt not wait for thy neighbors – don’t use 
fine grained latching or locking and avoid 
synchronization points of parallel threads.
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Automatic contention detection and 
amelioration for data-intensive operations

 A generic framework (similar to Google's 
MapReduce) that
 Efficiently parallelizes generic tasks
 Automatically detects contention
 Scales on multi-core CPUs
 Makes programmer's life easier :-)

 Based on
 J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye. 

“Automatic contention detection and amelioration for 
data-intensive operations.” In SIGMOD 2010.

 Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation 
on multicore processors. In DaMoN 2011
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To Share or not to share

 Independent computation
 Shared-nothing (disjoint processing)
 No coordination (synchronization) overhead
 No contention
 Each thread use only 1/N of CPU resources
 Merge step required

 Shared computation
 Common data structures
 Coordination (synchronization) overhead
 Potential contention
 All threads enjoy all CPU resources
 No merge step required
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Thread level parallelism

 On-chip coherency enables fine-grain parallelism
 that was previously unprofitable (e.g., on SMPs)

 However, beware:
 Correct parallel code does not mean no contention  

bottlenecks (hotspots)
 Naive implementation can lead to huge performance 

pitfalls
 Serialization due to shared access
 E.g., many threads attempt to modify the same hash 

cell
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Aggregate computation

 Parallelizing simple DB operation:

SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G

 What happens when values in R.G are highly 
skew?

 What happens when number of cores is much 
higher than |G|?

 Recall the key question: to share or not to share?
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Atomic CAS instruction

 Notation: CAS( &L, A, B )
 The meaning:

 Compare the old value in location L with the expected 
old value A. If they are the same, then exchange the 
new value B with the value in location L.

 Otherwise do not modify the value at location L because 
some other thread has changed the value at location L 
(since last time A was read). Return the current value of 
location L in B.

 After a CAS operation, one can determine 
whether the location L was successfully updated 
by comparing the contents of A and B.
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Atomic operations via CAS

 atomic_inc_64( &target ) {
 do {
 cur_val = Load(&target);
 new_val = cur_val + 1;
 CAS(&target, cur_val, new_val);
 } while (cur_val != new_val);

}
 atomic_dec_64( &target );
 atomic_add_64( &target, value);
 atomic_mul_64( &target, value);
 ...
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What is contention then?

 Number of CAS retries
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Measuring contention (pseudo-code)

 my_atomic_inc_64( &target, &cas_counter ) {
 do {
 cur_val = Load(&target);
 new_val = cur_val + 1;
 CAS(&target, cur_val, new_val);
 cas_counter++;
 } while (cur_val != new_val);

}
 my_atomic_dec_64( &target, &cas_counter );
 my_atomic_add_64( &target, value, &cas_counter);
 my_atomic_mul_64( &target, value, &cas_counter);
 ...
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Measuring contention (assembly code)
 .inline my_atomic_add_64,0! %o1 contains update value

 ldx [%o0], %o4  ! load current sum into %o4;

 ld [%o2], %o5  ! load update­counter into %o5
1:
inc 1, %o5  ! increment update­counter
add %o4, %o1, %o3  ! add value to current sum; put in %o3

 casx [%o0], %o4, %o3  ! compare­and­swap %o3 into memory
! location of sum;
! %o4 contains the value seen

cmp %o4, %o3  ! check if compare­and­swap succeeded
! i.e., if %o4 is equal to %o3

bne,a,pn %xcc, 1b  ! if not, retry loop starting at 1:
mov %o3, %o4  ! statement executed even when branch

! taken; %o4 now has a more recent value
! of the current sum and we have to add
! %o1 over again

st %o5, [%o2]  ! store the update­counter

 .end
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Contention management

 Applies only to commutative operations
 I.e., changing the order of the operands does not 

change the result
 E.g., aggregation and partitioning

 General idea:
 Perform operation on X and measure contention
 Create extra version of X when contented
 Spread the subsequent accesses among the two copies 

of X
 Combine the results at the end
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Framework

 Requires 4 user-defined template functions
 create­clone: how a new version is created (x = 0)
 combine: how multiple versions are merged (x + x1)
 simple­update: how the new value of a data item is 

obtained from the current value and an update (x += v)
 atomic-update: user defined function (next slide)

 Framework takes care
 When to clone
 Which clone is accessed by which thread
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Example of atomic-update
 bool AggregatorAtomicUpdate(Aggregator *agg, 

   const uint64_t value) {
int32_t cas_counter = 0;

my_atomic_inc_64(&agg->count, &cas_counter);
my_atomic_add_64(&agg->sum, value, &cas_counter);
return (3 < cas_counter);

}

 Recall:
SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G
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Techniques for managing contention

 Main concerns:
 What information to maintain about the current number 

of clones?
 How to map threads to clones in a balanced fashion?

 Two broad approaches for managing clones:
 Global
 Local
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Managing clones globally

 New clones are created in shared address space
 Clone allocation happens in response to a single 

contention event (no threshold counters)
 The number of clones is always doubled

 E.g., we can get to 64 clones of a heavy-hitter element 
after 6 contention steps

 With few very popular items, each thread might end up 
having its own clone (no atomic operations needed 
afterwards!)
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Managing clones locally

 Each thread creates clones in a local table used 
by that thread alone

 Table size is kept small
 e.g., smaller than the thread’s share of the L1 data 

cache

 When the table is full, new insertions are 
accomplished by spilling an existing value into 
the global data element
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Managing clones locally (cont.)
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Experimental platforms



Darius Sidlauskas, 25/02-2014

48/61

Input data

 Refers to the characteristics of the group-by key in 
the input relation

 Synthetically generated distributions (N = 224):
 Uniform
 Sorted (1 1 1 2 3 3 4 5 … N )
 Heavy hitter (50%)
 Repeated-run (1 2 3 … N 1 2 3 … N 1 2 … )
 Zipf (exponent of 0.5)
 Self-similar (80-20 proportion)
 Moving-cluster (locality window)

 During input generation a targeted group-by 
cardinality is specified
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Cache and memory issues

Number of group by values where contention has been detected and at least one 
clone constructed
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Results
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Results
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Effects of the local table size
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Conclusions

 Automatic contention detection
 Effective contention amelioration
 Both proposed schemes (global and local) 

mitigate contention
 Global slightly faster
 Local uses less memory

 However
 Works just for commutative operations
 Different architectures favor different approaches
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Demo: false sharing
 Threads operate on 

different variables
 But variables reside on 

the same cache line
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Demo: NUMA effects
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War story
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Looking for a master thesis topic?

 ACM SIGMOD 2014 Programming Contest
 ACM SIGSPATIAL GIS CUP 2014
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All in one [1]
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