
Darius Sidlauskas, 12/03-2013

1/21

Lecture on Multicores

Darius Sidlauskas
Post-doc

Darius Sidlauskas, 12/3-2013

2/59

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share

 Part 3
 Demo
 War story

Darius Sidlauskas, 12/3-2013

3/59

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share

 Part 3
 Demo
 War story

Darius Sidlauskas, 12/3-2013

5/59

Software crisis

“The major cause of the software crisis is that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers,
programming has become an equally gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture

Darius Sidlauskas, 12/3-2013

6/59

Before..

 The 1st Software Crisis
 When: around '60 and 70'
 Problem: large programs written in assembly
 Solution: abstraction and portability via high-level

languages like C and FORTRAN

 The 2nd Software Crisis
 When: around '80 and '90
 Problem: building and maintaining large programs

written by hundreds of programmers
 Solution: software as a process (OOP, testing, code

reviews, design patterns)
● Also better tools: IDEs, version control, component libraries, etc.

Darius Sidlauskas, 12/3-2013

7/59

Recently..

 Processor-oblivious programmers
 A Java program written on PC works on your phone
 A C program written in '70 still works today and is faster
 Moore’s law takes care of good speedups

Darius Sidlauskas, 12/3-2013

8/59

Currently..

 Software crisis again?
 When: 2005 and ...
 Problem: sequential performance is stuck
 Required solution: continuous and reasonable

performance improvements
● To process large datasets (BIG Data!)
● To support new features
● Without loosing portability and maintainability

Darius Sidlauskas, 12/3-2013

9/59

Moore's law

Darius Sidlauskas, 12/3-2013

10/59

Uniprocessor performance

SPECint2000 [1]

Darius Sidlauskas, 12/3-2013

11/59

Uniprocessor performance (cont.)

SPECfp2000 [1]

Darius Sidlauskas, 12/3-2013

12/59

Uniprocessor performance (cont.)

Clock Frequency [1]

M
H

z

Darius Sidlauskas, 12/3-2013

13/59

Uniprocessor performance (cont.)

Clock Frequency [1]

M
H

z

Darius Sidlauskas, 12/3-2013

14/59

Why

 Power considerations
 Consumption
 Cooling
 Efficiency

 DRAM access latency
 Memory wall

 Wire delays
 Range of wire in one clock cycle

 Diminishing returns of more instruction-level
parallelism
 Out-of-order execution, branch prediction, etc.

Darius Sidlauskas, 12/3-2013

15/59

Overclocking [2]

 Air-water cooling: 4.8 GHz
 Possible at home

 Phase change cooling: 5.89 GHz
 Liquid helium: 8.429 GHz

 Made into Guinness Book of World Records!

Darius Sidlauskas, 12/3-2013

16/59

Shift to multicores

 Instead of going faster --> go more parallel!
 Transistors are used now for multiple cores

Darius Sidlauskas, 12/3-2013

17/59

Multi-socket architecture

Darius Sidlauskas, 12/3-2013

18/59

Current commercial multicore CPUs

 Intel
 i7-3960X: 6-core (12 threads), 15M Cache, max 3.9 GHz
 Xeon E7-8870: 10-core (20 threads), 30M Cache, 2.8 GHz
 Xeon Phi: 60 cores (240 threads), 1.053 GHz, 320 GB/s

memory bandwidth

 AMD
 FX-8350: 8-core, 8M Cache, 4.0 GHz
 Opteron 6274: 16-core, 16M Cache, 2.2 GHz

 Oracle
 SPARC T4: 8-core (64 threads), 4M Cache, 3.0 GHz

 Cell

Darius Sidlauskas, 12/3-2013

19/59

Concurrency vs. Parallelism

 Parallelism
 A condition that arises when at least two threads are

executing simultaneously
 A specific case of concurrency

 Concurrency:
 A condition that exists when at least two threads are

making progress.
 A more generalized form of parallelism
 E.g., concurrent execution via time-slicing in

uniprocessors (virtual parallelism)

 Distribution:
 As above but running simultaneously on different

machines (e.g., cloud computing)

http://ark.intel.com/products/63696
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://shop.amd.com/uk/All/ModelsPerLine/Server/Processor?Line=opteron/opteron6200seriesprocessor
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/overview/index.html?origref=http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1/overview/index.html

Darius Sidlauskas, 12/3-2013

20/59

Amdhal's law

 Potential program speedup is defined by the fraction
of code that can be parallelized

 Serial components rapidly become performance
limiters as thread count increases
 p – fraction of work that can parallelized
 n – the number of processors

Speedup

Darius Sidlauskas, 12/3-2013

21/59

Amdhal's law
S

pe
ed

up

Number of Processors

Darius Sidlauskas, 12/3-2013

22/59

Cache coherence

 Ensures the consistency between all the caches.

CPU

CPU

Darius Sidlauskas, 12/3-2013

23/59

MESIF protocol

 Modified (M): present only in the current cache and
dirty. A write-back to main memory will make it (E).

 Exclusive (E): present only in the current cache and
clean. A read request will make it (S), a write-request
will make it (M).

 Shared (S): maybe stored in other caches and clean.
Maybe changed to (I) at any time.

 Invalid (I): unusable
 Forward (F): a specialized form of the S state

Darius Sidlauskas, 12/3-2013

24/59

You've seen this..

 L1 and L2 Cache Sizes

Darius Sidlauskas, 12/3-2013

25/59

Read latencies on multicores [3]

Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem [3]

Darius Sidlauskas, 12/3-2013

26/59

Read latencies on multicores [3]

Latency in nsec (cycles) on 2-socket Intel Nehalem [3]

Darius Sidlauskas, 12/3-2013

27/59

Does it have effect in practice?

 Processing 1600M tuples on 32-core machine [4]

Darius Sidlauskas, 12/3-2013

28/59

Commandments [4]

 C1: Thou shalt not write thy neighbor’s memory
randomly – chunk the data, redistribute, and then
sort/work on your data locally.

 C2: Thou shalt read thy neighbor’s memory only
sequentially – let the prefetcher hide the remote
access latency.

 C3: Thou shalt not wait for thy neighbors – don’t use
fine grained latching or locking and avoid
synchronization points of parallel threads.

Darius Sidlauskas, 12/3-2013

29/59

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share?

 Part 3
 Demo
 War story

Darius Sidlauskas, 12/3-2013

30/59

Automatic contention detection and
amelioration for data-intensive operations

 A generic framework (similar to Google's
MapReduce) that
 Efficiently parallelizes generic tasks
 Automatically detects contention
 Scales on multicore CPUs
 Makes programmer's life easier :-)

 Based on
 J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye.

“Automatic contention detection and amelioration for
data-intensive operations.” In SIGMOD 2010.

 Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation
on multicore processors. In DaMoN 2011

Darius Sidlauskas, 12/3-2013

31/59

To Share or not to share

 Independent computation
 Shared-nothing (disjoint processing)
 No coordination (synchronization) overhead
 No contention
 Each thread use only 1/N of CPU resources
 Merge step required

 Shared computation
 Common data structures
 Coordination (synchronization) overhead
 Potential contention
 All threads enjoy all CPU resources
 No merge step required

Darius Sidlauskas, 12/3-2013

32/59

Thread level parallelism

 On-chip coherency enables fine-grain parallelism
 that was previously unprofitable (e.g., on SMPs)

 However, beware:
 Correct parallel code does not mean no contention

bottlenecks (hotspots)
 Naive implementation can lead to huge performance

pitfalls
 Serialization due to shared access
 E.g., many threads attempt to modify the same hash

cell

Darius Sidlauskas, 12/3-2013

33/59

Aggregate computation

 Parallelizing simple DB operation:

SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G

 What happens when values in R.G are highly
skew?

 What happens when number of cores is much
higher than |G|?

 Remember a key question: to share or not to
share?

Darius Sidlauskas, 12/3-2013

34/59

Atomic CAS instruction

 Notation: CAS(&L, A, B)
 The meaning:

 Compare the old value in location L with the expected
old value A. If they are the same, then exchange the
new value B with the value in location L.

 Otherwise do not modify the value at location L because
some other thread has changed the value at location L
(since last time A was read). Return the current value of
location L in B.

 After a CAS operation, one can determine
whether the location L was successfully updated
by comparing the contents of A and B.

Darius Sidlauskas, 12/3-2013

35/59

Atomic operations via CAS

 atomic_inc_64(&target) {
 do {
 cur_val = Load(&target);
 new_val = curr + 1;
 ret_val = CAS(&target, cur_val, new_val);
 } while (ret_val != cur_val);

}
 atomic_dec_64(&target);
 atomic_add_64(&target, value);
 atomic_mul_64(&target, value);
 ...

Darius Sidlauskas, 12/3-2013

36/59

What is contention then?

 Number of CAS retries

Darius Sidlauskas, 12/3-2013

37/59

Measuring contention (pseudo-code)

 my_atomic_inc_64(&target, &cas_counter) {
 do {
 cur_val = Load(&target);
 new_val = curr + 1;
 ret_val = CAS(&target, cur_val, new_val);
 cas_counter++;
 } while (ret_val != cur_val);

}
 my_atomic_dec_64(&target, &cas_counter);
 my_atomic_add_64(&target, value, &cas_counter);
 my_atomic_mul_64(&target, value, &cas_counter);
 ...

Darius Sidlauskas, 12/3-2013

38/59

Measuring contention (assembly code)
 .inline my_atomic_add_64,0! %o1 contains update value

 ldx [%o0], %o4 ! load current sum into %o4;

 ld [%o2], %o5 ! load updatecounter into %o5
1:
inc 1, %o5 ! increment updatecounter
add %o4, %o1, %o3 ! add value to current sum; put in %o3

 casx [%o0], %o4, %o3 ! compareandswap %o3 into memory
! location of sum;
! %o4 contains the value seen

cmp %o4, %o3 ! check if compareandswap succeeded
! i.e., if %o4 is equal to %o3

bne,a,pn %xcc, 1b ! if not, retry loop starting at 1:
mov %o3, %o4 ! statement executed even when branch

! taken; %o4 now has a more recent value
! of the current sum and we have to add
! %o1 over again

st %o5, [%o2] ! store the updatecounter

 .end

Darius Sidlauskas, 12/3-2013

39/59

Contention management

 Applies only to commutative operations
 I.e., changing the order of the operands does not

change the result
 E.g., aggregation and partitioning

 General idea:
 Perform operation on X and measure contention
 Create extra version of X when contented
 Spread the subsequent accesses among the two copies

of X
 Combine the results at the end

Darius Sidlauskas, 12/3-2013

40/59

Framework

 Requires 4 user-defined template functions
 createclone: how a new version is created (x = 0)
 combine: how multiple versions are merged (x + x1)
 simpleupdate: how the new value of a data item is

obtained from the current value and an update (x += v)
 atomic-update: user defined function (next slide)

 Framework takes care
 When to clone
 Which clone is accessed by which thread

Darius Sidlauskas, 12/3-2013

41/59

Example of atomic-update
 bool AggregatorAtomicUpdate(Aggregator *agg,

 const uint64_t value) {
int32_t cas_counter = 0;

my_atomic_inc_64(&agg->count, &cas_counter);
my_atomic_add_64(&agg->sum, value, &cas_counter);
return (3 < cas_counter);

}

 Recall:
SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G

Darius Sidlauskas, 12/3-2013

42/59

Techniques for managing contention

 Main concerns:
 What information to maintain about the current number

of clones?
 How to map threads to clones in a balanced fashion?

 Two broad approaches for managing clones:
 Global
 Local

Darius Sidlauskas, 12/3-2013

43/59

Managing clones globally

 New clones are created in shared address space
 Clone allocation happens in response to a single

contention event (no threshold counters)
 The number of clones is always doubled

 E.g., we can get to 64 clones of a heavy-hitter element
after 6 contention steps

 With few very popular items, each thread might end up
having its own clone (no atomic operations needed
afterwards!)

Darius Sidlauskas, 12/3-2013

44/59

Managing clones locally

 Each thread creates clones in a local table used
by that thread alone

 Table size is kept small
 e.g., smaller than the thread’s share of the L1 data

cache

 When the table is full, new insertions are
accomplished by spilling an existing value into
the global data element

Darius Sidlauskas, 12/3-2013

45/59

Managing clones locally (cont.)

Darius Sidlauskas, 12/3-2013

46/59

Experimental platforms

Darius Sidlauskas, 12/3-2013

47/59

Input data

 Refers to the characteristics of the group-by key in
the input relation

 Synthetically generated distributions (N = 224):
 Uniform
 Sorted (1 1 1 2 3 3 4 5 … N)
 Heavy hitter (50%)
 Repeated-run (1 2 3 … N 1 2 3 … N 1 2 …)
 Zipf (exponent of 0.5)
 Self-similar (80-20 proportion)
 Moving-cluster (locality window)

 During input generation a targeted group-by
cardinality is specified

Darius Sidlauskas, 12/3-2013

48/59

Cache and memory issues

Number of group by values where contention has been detected and at least one
clone constructed

Darius Sidlauskas, 12/3-2013

49/59

Results

Darius Sidlauskas, 12/3-2013

50/59

Results

Darius Sidlauskas, 12/3-2013

51/59

Effects of the local table size

Darius Sidlauskas, 12/3-2013

52/59

Conclusions

 Automatic contention detection
 Effective contention amelioration
 Both proposed schemes (global and local)

mitigate contention
 Global slightly faster
 Local uses less memory

 However
 Works just for commutative operations
 Different architectures favor different approaches

Darius Sidlauskas, 12/3-2013

53/59

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share

 Part 3
 Demo
 War story

Darius Sidlauskas, 12/3-2013

54/59

Demo: false sharing
 Threads operate on

different variables
 But variables reside on

the same cache line

Darius Sidlauskas, 12/3-2013

55/59

War story

Darius Sidlauskas, 12/3-2013

56/59

Looking for a master thesis topic?

 ACM SIGMOD 2013 Programming Contest
 ACM SIGSPATIAL GIS 2013

Darius Sidlauskas, 12/3-2013

57/59

References
[1] Samuel H. Fuller and Lynette I. Millett, “The Future of Computing

Performance: Game Over or Next Level?” The National Academies
Press, 2010. [link]

[2] AMD Showcases World’s Fastest CPU [link]

[3] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. “Memory
performance and cache coherency effects on an intel nehalem
multiprocessor system.” In PACT 2009.

[4] Albutiu, M. C., Kemper, A., & Neumann, T. “Massively parallel sort-
merge joins in main memory multi-core database systems.” VLDB 2012.

[5] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye. “Automatic contention
detection and amelioration for data-intensive operations.” In SIGMOD
2010.

[6] Y. Ye, K. A. Ross, and N. Vesdapunt. “Scalable aggregation on multicore
processors.” In DaMoN 2011

http://sigmod.kaust.edu.sa/index.php
http://dmlab.cs.umn.edu/GISCUP2013

Darius Sidlauskas, 12/3-2013

58/59

Thank you

Darius Sidlauskas
Post-doc

Contact: dariuss@madalgo.au.dk

http://orci.research.umich.edu/content/2011/10/2011-Future-of-Computing-Performance-NRC.pdf
http://www.amd.com/us/press-releases/Pages/amd-showcases-worlds-2011sept13.aspx

Darius Sidlauskas, 12/3-2013

59/59

All in one [1]

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

