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Software crisis

“The major cause of the software crisis is that the machines have 
become several orders of magnitude more powerful! To put it quite 
bluntly: as long as there were no machines, programming was no 
problem at all; when we had a few weak computers, programming 
became a mild problem, and now we have gigantic computers, 
programming has become an equally gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture
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Before..

 The 1st Software Crisis
 When: around '60 and 70'
 Problem: large programs written in assembly
 Solution: abstraction and portability via high-level 

languages like C and FORTRAN

 The 2nd Software Crisis
 When: around '80 and '90
 Problem: building and maintaining large programs 

written by hundreds of programmers
 Solution: software as a process (OOP, testing, code 

reviews, design patterns)
● Also better tools: IDEs, version control, component libraries, etc.
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Recently..

 Processor-oblivious programmers
 A Java program written on PC works on your phone
 A C program written in '70 still works today and is faster
 Moore’s law takes care of good speedups
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Currently..

 Software crisis again?
 When: 2005 and ...
 Problem: sequential performance is stuck
 Required solution: continuous and reasonable 

performance improvements
● To process large datasets (BIG Data!)
● To support new features
● Without loosing portability and maintainability
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Moore's law
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Uniprocessor performance

SPECint2000 [1]
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Uniprocessor performance (cont.)

SPECfp2000 [1]
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Uniprocessor performance (cont.)

Clock Frequency [1]

M
H

z
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Uniprocessor performance (cont.)

Clock Frequency [1]

M
H

z
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Why

 Power considerations
 Consumption
 Cooling
 Efficiency

 DRAM access latency
 Memory wall

 Wire delays
 Range of wire in one clock cycle

 Diminishing returns of more instruction-level 
parallelism
 Out-of-order execution, branch prediction, etc.
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Overclocking [2]

 Air-water cooling: 4.8 GHz
 Possible at home

 Phase change cooling: 5.89 GHz
 Liquid helium: 8.429 GHz

  Made into Guinness Book of World Records!
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Shift to multicores

 Instead of going faster --> go more parallel!
 Transistors are used now for multiple cores
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Multi-socket architecture
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Current commercial multicore CPUs

 Intel
 i7-3960X: 6-core (12 threads), 15M Cache, max 3.9 GHz
 Xeon E7-8870: 10-core (20 threads), 30M Cache, 2.8 GHz
 Xeon Phi: 60 cores (240 threads), 1.053 GHz, 320 GB/s 

memory bandwidth

 AMD
 FX-8350: 8-core, 8M Cache, 4.0 GHz
 Opteron 6274: 16-core, 16M Cache, 2.2 GHz

 Oracle
 SPARC T4: 8-core (64 threads), 4M Cache, 3.0 GHz

 Cell
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Concurrency vs. Parallelism

 Parallelism
 A condition that arises when at least two threads are 

executing simultaneously
 A specific case of concurrency

 Concurrency: 
 A condition that exists when at least two threads are 

making progress. 
 A more generalized form of parallelism
 E.g., concurrent execution via time-slicing in 

uniprocessors (virtual parallelism)

 Distribution:
 As above but running simultaneously on different 

machines (e.g., cloud computing)

http://ark.intel.com/products/63696
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://shop.amd.com/uk/All/ModelsPerLine/Server/Processor?Line=opteron/opteron6200seriesprocessor
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/overview/index.html?origref=http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1/overview/index.html
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Amdhal's law

 Potential program speedup is defined by the fraction 
of code that can be parallelized

 Serial components rapidly become performance 
limiters as thread count increases
 p – fraction of work that can parallelized
 n – the number of processors

Speedup
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Amdhal's law
S
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Cache coherence

 Ensures the consistency between all the caches.

CPU  

CPU  
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MESIF protocol

 Modified (M): present only in the current cache and 
dirty. A write-back to main memory will make it (E).

 Exclusive (E): present only in the current cache and 
clean. A read request will make it (S), a write-request 
will make it (M).

 Shared (S): maybe stored in other caches and clean. 
Maybe changed to (I) at any time.

 Invalid (I): unusable
 Forward (F): a specialized form of the S state
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You've seen this..

 L1 and L2 Cache Sizes
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Read latencies on multicores [3]

Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem [3]
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Read latencies on multicores [3]

Latency in nsec (cycles) on 2-socket Intel Nehalem [3]
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Does it have effect in practice?

 Processing 1600M tuples on 32-core machine [4]
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Commandments [4]

 C1: Thou shalt not write thy neighbor’s memory 
randomly – chunk the data, redistribute, and then 
sort/work on your data locally.

 C2: Thou shalt read thy neighbor’s memory only 
sequentially – let the prefetcher hide the remote 
access latency.

 C3: Thou shalt not wait for thy neighbors – don’t use 
fine grained latching or locking and avoid 
synchronization points of parallel threads.
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Automatic contention detection and 
amelioration for data-intensive operations

 A generic framework (similar to Google's 
MapReduce) that
 Efficiently parallelizes generic tasks
 Automatically detects contention
 Scales on multicore CPUs
 Makes programmer's life easier :-)

 Based on
 J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye. 

“Automatic contention detection and amelioration for 
data-intensive operations.” In SIGMOD 2010.

 Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation 
on multicore processors. In DaMoN 2011
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To Share or not to share

 Independent computation
 Shared-nothing (disjoint processing)
 No coordination (synchronization) overhead
 No contention
 Each thread use only 1/N of CPU resources
 Merge step required

 Shared computation
 Common data structures
 Coordination (synchronization) overhead
 Potential contention
 All threads enjoy all CPU resources
 No merge step required
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Thread level parallelism

 On-chip coherency enables fine-grain parallelism
 that was previously unprofitable (e.g., on SMPs)

 However, beware:
 Correct parallel code does not mean no contention  

bottlenecks (hotspots)
 Naive implementation can lead to huge performance 

pitfalls
 Serialization due to shared access
 E.g., many threads attempt to modify the same hash 

cell
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Aggregate computation

 Parallelizing simple DB operation:

SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G

 What happens when values in R.G are highly 
skew?

 What happens when number of cores is much 
higher than |G|?

 Remember a key question: to share or not to 
share?
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Atomic CAS instruction

 Notation: CAS( &L, A, B )
 The meaning:

 Compare the old value in location L with the expected 
old value A. If they are the same, then exchange the 
new value B with the value in location L.

 Otherwise do not modify the value at location L because 
some other thread has changed the value at location L 
(since last time A was read). Return the current value of 
location L in B.

 After a CAS operation, one can determine 
whether the location L was successfully updated 
by comparing the contents of A and B.
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Atomic operations via CAS

 atomic_inc_64( &target ) {
 do {
 cur_val = Load(&target);
 new_val = curr + 1;
 ret_val = CAS(&target, cur_val, new_val);
 } while (ret_val != cur_val);

}
 atomic_dec_64( &target );
 atomic_add_64( &target, value);
 atomic_mul_64( &target, value);
 ...
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What is contention then?

 Number of CAS retries
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Measuring contention (pseudo-code)

 my_atomic_inc_64( &target, &cas_counter ) {
 do {
 cur_val = Load(&target);
 new_val = curr + 1;
 ret_val = CAS(&target, cur_val, new_val);
 cas_counter++;
 } while (ret_val != cur_val);

}
 my_atomic_dec_64( &target, &cas_counter );
 my_atomic_add_64( &target, value, &cas_counter);
 my_atomic_mul_64( &target, value, &cas_counter);
 ...
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Measuring contention (assembly code)
 .inline my_atomic_add_64,0! %o1 contains update value

 ldx [%o0], %o4  ! load current sum into %o4;

 ld [%o2], %o5  ! load updatecounter into %o5
1:
inc 1, %o5  ! increment updatecounter
add %o4, %o1, %o3  ! add value to current sum; put in %o3

 casx [%o0], %o4, %o3  ! compareandswap %o3 into memory
! location of sum;
! %o4 contains the value seen

cmp %o4, %o3  ! check if compareandswap succeeded
! i.e., if %o4 is equal to %o3

bne,a,pn %xcc, 1b  ! if not, retry loop starting at 1:
mov %o3, %o4  ! statement executed even when branch

! taken; %o4 now has a more recent value
! of the current sum and we have to add
! %o1 over again

st %o5, [%o2]  ! store the updatecounter

 .end
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Contention management

 Applies only to commutative operations
 I.e., changing the order of the operands does not 

change the result
 E.g., aggregation and partitioning

 General idea:
 Perform operation on X and measure contention
 Create extra version of X when contented
 Spread the subsequent accesses among the two copies 

of X
 Combine the results at the end
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Framework

 Requires 4 user-defined template functions
 createclone: how a new version is created (x = 0)
 combine: how multiple versions are merged (x + x1)
 simpleupdate: how the new value of a data item is 

obtained from the current value and an update (x += v)
 atomic-update: user defined function (next slide)

 Framework takes care
 When to clone
 Which clone is accessed by which thread
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Example of atomic-update
 bool AggregatorAtomicUpdate(Aggregator *agg, 

   const uint64_t value) {
int32_t cas_counter = 0;

my_atomic_inc_64(&agg->count, &cas_counter);
my_atomic_add_64(&agg->sum, value, &cas_counter);
return (3 < cas_counter);

}

 Recall:
SELECT R.G, count(*), sum(R.V)
FROM R
GROUP BY R.G
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Techniques for managing contention

 Main concerns:
 What information to maintain about the current number 

of clones?
 How to map threads to clones in a balanced fashion?

 Two broad approaches for managing clones:
 Global
 Local
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Managing clones globally

 New clones are created in shared address space
 Clone allocation happens in response to a single 

contention event (no threshold counters)
 The number of clones is always doubled

 E.g., we can get to 64 clones of a heavy-hitter element 
after 6 contention steps

 With few very popular items, each thread might end up 
having its own clone (no atomic operations needed 
afterwards!)
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Managing clones locally

 Each thread creates clones in a local table used 
by that thread alone

 Table size is kept small
 e.g., smaller than the thread’s share of the L1 data 

cache

 When the table is full, new insertions are 
accomplished by spilling an existing value into 
the global data element
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Managing clones locally (cont.)
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Experimental platforms
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Input data

 Refers to the characteristics of the group-by key in 
the input relation

 Synthetically generated distributions (N = 224):
 Uniform
 Sorted (1 1 1 2 3 3 4 5 … N )
 Heavy hitter (50%)
 Repeated-run (1 2 3 … N 1 2 3 … N 1 2 … )
 Zipf (exponent of 0.5)
 Self-similar (80-20 proportion)
 Moving-cluster (locality window)

 During input generation a targeted group-by 
cardinality is specified



Darius Sidlauskas, 12/3-2013

48/59

Cache and memory issues

Number of group by values where contention has been detected and at least one 
clone constructed
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Results
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Results
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Effects of the local table size
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Conclusions

 Automatic contention detection
 Effective contention amelioration
 Both proposed schemes (global and local) 

mitigate contention
 Global slightly faster
 Local uses less memory

 However
 Works just for commutative operations
 Different architectures favor different approaches



Darius Sidlauskas, 12/3-2013

53/59

Outline

 Part 1
 Background
 Current multicore CPUs

 Part 2
 To share or not to share

 Part 3
 Demo
 War story



Darius Sidlauskas, 12/3-2013

54/59

Demo: false sharing
 Threads operate on 

different variables
 But variables reside on 

the same cache line
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War story
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Looking for a master thesis topic?

 ACM SIGMOD 2013 Programming Contest
 ACM SIGSPATIAL GIS 2013
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All in one [1]


	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

