
Algorithms for Massive Terrains and Graphs
Svend Christian Svendsen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Algorithms for Massive Terrains and Graphs

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Svend Christian Svendsen

July 29, 2021

Abstract

In this thesis, we describe several results for handling massive terrain models.
Due to advances in remote sensing technology, it has become possible to acquire
terrain data with high precision and speed. As a consequence of collecting
and processing such data, highly detailed terrain models have become readily
available with several applications for terrain analysis, such as modeling the
flow of water on the surface of the terrain. Analyzing the flow of water enables
the prediction of flooding during extreme weather events with heavy rain. In
order to obtain a realistic and precise result of the analysis, it is crucial to use
a sufficient level of detail in the model. However, highly detailed models can be
orders of magnitude larger than the main memory of a computer and can be
very difficult to analyze with traditional tools. This has lead to the development
of I/O-efficient algorithms that process large models by keeping only a fraction
of the data in main memory. By carefully designing I/O-efficient algorithms
that minimize the number of accesses to disk, one can obtain tools that can
process massive amounts of data efficiently, even on commodity hardware.

We first present a software framework that enables efficient implementation
of I/O-efficient algorithms by providing a set of tools for easy modularization of
code with low run-time overhead. We then present algorithms for the problem
of estimating the rate at which water flows on the surface of the terrain during
heavy rain. For each point on the terrain model, our algorithm computes a
function that describes how much water flows over the point at any given time.
Furthermore, we describe how this can be used to model the geometry of rivers
flowing on the terrain. We then present an algorithm for efficiently dividing
a large terrain into smaller regions such that the boundaries between regions
are small. As an example of why such an algorithm is useful, we show how
it enables us to efficiently model flow accumulation on the terrain model by
scanning over the smaller regions.

Finally, we present a machine learning-based solution that efficiently detects
hydrological corrections on a terrain. Hydrological corrections are modifications
made on terrain models to accurately model the flow of water. This includes
the identification and removal of bridges that impede the flow of water on the
terrain model by forming false hydrological barriers. We demonstrate that our
solution results in a highly accurate list of modifications on a given terrain.

i

Resumé

I denne afhandling beskriver vi adskillige algoritmer til håndtering af enorme
terrænmodeller. Grundet udviklingen i fjernmålingsteknologi er det blevet
muligt at indsamle terrændata med stor præcision og hastighed. Indsamling og
behandling af dette data har resulteret i at meget detaljerede terrænmodeller
er blevet let tilgængelige med adskillige anvendelser inden for terrænanalyse,
så som modellering af vandstrømning på terrænoverflader. Analysering af
vandstrømning gør det muligt at forudse oversvømmelse under ekstreme vejr-
fænomener med voldsom regn. For at opnå en realistisk og præcis analyse er
det afgørende at anvende en terrænmodel med en tilstrækkelig detaljeringsgrad.
En model med stor detaljeringsgrad kan dog være mange størrelsesordener
større end den interne hukommelse af en computer og være svær at analysere
med traditionelle værktøjer. Dette har ført til udviklingen af I/O-effektive
algoritmer, der håndterer store modeller ved kun at opbevare en brøkdel af
modellen i intern hukommelse. Ved omhyggeligt at udlede sådanne I/O-effektive
algoritmer der tilgår harddisken minimalt, kan man opnå værktøjer der kan
håndtere massive mængder data effektivt.

Vi præsenterer først et software framework der muliggør effektiv imple-
mentering af modulære I/O-effektive algoritmer med lille overhead. Dernæst
beskriver vi algoritmer til at estimere mængden af vand der strømmer på
overfladen af et terræn under voldsom regn. For hvert punkt på terrænet bereg-
ner vores algoritme en funktion der beskriver hvor meget vand der strømmer
henover punktet på et givent tidspunkt. Derudover beskriver vi hvordan dette
kan bruges til at modellere geometrien af floder på terrænet. Vi præsenterer
dernæst en algoritme til at effektivt opdele et terræn i mindre regioner således
at grænsen mellem regionerne er lille. Vi demonstrerer at dette gør det muligt
effektivt at modellere flow accumulation ved at behandle regionerne én ad
gangen.

Til sidst præsenterer vi en algoritme, baseret på machine learning, til
effektivt at detektere hydrologiske tilpasninger på et terræn. Hydrologiske
tilpasninger er modifikationer til en terrænmodel, der resulterer i en mere
nøjagtig modellering af vandstrømning på modellen. Dette inkluderer iden-
tifikation og fjernelse af broer der blokerer for vandstrømning, da de danner
forkerte hydrologiske barrierer i modellen. Vi demonstrerer at vores løsning
resulterer i en særdeles præcis liste af tilpasninger på en given terrænmodel.

iii

Acknowledgments

I am immensely grateful and owe my thanks to the many people who have
helped me during this journey. A special thanks to my two advisors Lars Arge
and Gerth Stølting Brodal. Lars hired me as a student programmer eight years
ago when I was starting my studies. His passion for research and his drive to
make everything I/O-efficient helped spark my interest in research. Through
Lars’ deep insight, guidance, and red pen, I was introduced to many fascinating
topics and the world of research. I am extremely thankful for Gerth offering
to advise me after Lars passed away. His support during a very tough and
difficult part of my studies has been invaluable.

In the fall of 2019, I visited Duke University where I was hosted by
Pankaj K. Agarwal. I wish to thank Pankaj and his student Aaron Lowe
for fruitful discussions and for welcoming me into your group.

A big thanks to the people at SCALGO for providing help on many practical
issues and bringing up new ideas for research. I wish to particularly thank
Mathias Rav and Jakob Truelsen for being a tremendous help.

Thanks to the community in the algorithms group and at the Department
of Computer Science. I would especially like to thank Casper Freksen, who has
been my office mate for most of my Ph.D. It has been great to have someone
who understands and shares the struggles, frustrations, and joys experienced
during a Ph.D.

A very special thanks to my parents and my sister for their love and support.
You have always nurtured my curiosity and listened to my frustrations. Finally,
special thanks to my friends and Århus Judo Klub for helping me take my
mind off academia and beating me up on a weekly basis.

Svend Christian Svendsen,
Aarhus, July 29, 2021.

v

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction 3
1.1 Outline of Thesis . 5

2 Survey of Important Results 7
2.1 External Memory Algorithms 7
2.2 Terrain Definitions . 10
2.3 Flow Model Definitions . 16
2.4 Terrain Analysis Algorithms . 18
2.5 External Memory Algorithms in Practice 25
2.6 Our Contributions . 27

II Publications 31

3 External Memory Pipelining Made Easy With TPIE 33
3.1 Introduction . 34
3.2 An Example Problem . 38
3.3 TPIE Pipelining . 48

4 Practical I/O-Efficient Multiway Separators 55
4.1 Introduction . 56
4.2 Preliminaries . 58
4.3 Multiway Separator Algorithm for k -ply Systems 61
4.4 Applications to Delaunay Triangulations and Terrain 67

vii

viii CONTENTS

4.5 Experiments . 68
4.6 Appendix: Proof of Constant VC dimension 71
4.7 Appendix: Bound on the Total Number of Boundary Balls . . . 71
4.8 Appendix: Experimental Evaluation of Separator Size 72
4.9 Appendix: Algorithm with Larger Sample 74

5 1D and 2D Flow Routing on a Terrain 79
5.1 Introduction . 79
5.2 Preliminaries & Models . 84
5.3 Terrain-flow Query . 88
5.4 I/O-Efficient Algorithms . 96
5.5 Vertex-Flow Query . 101
5.6 Extracting 2D Flow Networks 105
5.7 Experiments . 114
5.8 Conclusion . 124

6 Learning to Find Hydrological Corrections 127
6.1 Introduction . 127
6.2 The Data . 132
6.3 Segmenting Tiles with Neural Networks 133
6.4 Complete Algorithm . 135
6.5 Experiments and Results . 142
6.6 Conclusion and Future Work 146

Bibliography 147

Part I

Overview

1

Chapter 1

Introduction

Advances in technology have made it possible to acquire massive amounts of
data with high precision and speed. The availability of such data provides many
new opportunities for both scientific and commercial use. However, due to the
sheer volume of data, processing and analyzing it can be extremely difficult
and require the development of specialized tools. A particularly interesting
example is the collection and analysis of terrain data. Traditionally, terrain
data have been collected manually by land surveyors in the field. This process
is both time-consuming and expensive. However, due to advances in remote
sensing technologies such as Light Detection and Ranging (LiDAR), highly
detailed terrain data can be collected in a much faster and more precise process.
An example is the Danish Elevation Model which has been made publicly
available by the Danish Agency for Data Supply and Efficiency [50]. The model
is collected using an aircraft equipped with LiDAR sensors that measure the
distance between the aircraft and the surface. This technique produces a highly
detailed point cloud that describes the elevation of points on the terrain. The
resulting data set has an average density of 4.5 points per square meter with
a vertical error of only 5 centimeters. The point cloud of Denmark proper
contains 415 billion points in total.

The terrain impacts numerous areas of our lives, and therefore accurate
elevation models have a wide area of applications. An example of this is
modeling how water flows on the surface of a terrain. During extreme weather
events with heavy rain, water might exceed the capacity of sewer and drainage
systems. In this case, water starts to collect on the surface of the terrain and
accumulate in depressions. Being able to predict where water accumulates
on the terrain is extremely important, as it enables emergency personnel and
property owners to mitigate damage from flooding. The rate at which water
accumulates in a depression on the terrain depends on several aspects. Initially,
the fill rate depends on the volume of the depression and the amount of rain
falling on the upstream area. The upstream area of a depression is the area from
which water flows into a depression. However, once a depression becomes full,

3

4 CHAPTER 1. INTRODUCTION

Figure 1.1: A flash flood event where rain falls on part of a terrain which causes
depressions to fill and spill into adjacent depressions.

the water will start spilling into an adjacent depression, effectively increasing
the size of the upstream area of the depression into which it spills. This can
lead to a large and sudden increase in the rate at which a depression fills, also
known as a flash flood event. See Figure 1.1 for illustration.

In order to predict flash flood events, one can use data from previous
flooding events combined with forecasts on future extreme weather events.
However, the paths in which water flows can change significantly with new
construction projects such as bridges and highways. Thus, in order to efficiently
mitigate flooding, one must be able to predict the impact of such projects
before construction begins. By using a digital elevation model of the terrain,
one can compute such predictions. However, to obtain realistic results, it is
crucial that the model has a sufficient level of detail. If the model is not detailed
enough, hydrological barriers and waterways might be missing from the model,
leading to inaccurate predictions. Furthermore, the elevation model must be
large enough to cover the entire upstream area of the area of interest. Thus,
using models that cover a smaller area might not be sufficient.

When processing such an elevation model on a computer, the model is
first moved to internal memory before computation can happen on the data.
On modern hardware, the external memory is orders of magnitude slower
than internal memory. Therefore, in order to speed up the computation, the
hardware performs so-called block accesses that transfers data from and to
external memory in blocks of consecutive data elements. The transfer of a
block between the hard disk and internal memory is also known as an I/O
operation. When working with highly detailed elevation models, the size of the
data can be orders of magnitude larger than what fits in the internal memory of
commodity hardware. This leads to many traditional algorithms encountering
the problem of thrashing where the internal memory is full and blocks are
frequently moved from and to external memory. This causes the performance
of the algorithm to collapse. In order to prevent thrashing, algorithms can be
engineered to keep only a small fraction of the data in internal memory and

1.1. OUTLINE OF THESIS 5

minimize the number of I/O operations performed. In order to make the most
use of a block, it is important to store data on the hard disk such that related
elements are not spread out. That is, elements that are accessed at the same
time by the algorithm must be laid out consecutively such that they can be
read using a single I/O operation. By doing this, the algorithm can minimize
the number of I/O operations performed by making the most out of each block.
Such algorithms are called I/O-efficient algorithms.

1.1 Outline of Thesis

In this thesis, we develop algorithms for massive terrain data. The thesis is
divided into two parts. In Part I, we provide a survey of relevant preliminaries
within the research area and describe how our results contribute to the research
area. Part II consists of publications as follows:

Chapter 3
External Memory Pipelining Made Easy With TPIE [19]
Lars Arge, Mathias Rav, Svend C. Svendsen, and Jakob Truelsen.
2017 IEEE International Conference on Big Data, Big Data 2017

Chapter 4
Practical I/O-Efficient Multiway Separators [94]
Svend C. Svendsen.
Manuscript

Chapter 5
1D and 2D Flow Routing on a Terrain [16]
Lars Arge, Aaron Lowe, Svend C. Svendsen, and Pankaj K. Agarwal.
Invited to ACM Transactions on Spatial Algorithms and Systems “Best
Papers Special Issue of the ACM SIGSPATIAL 2020”

Chapter 6
Learning to Find Hydrological Corrections [14]
Lars Arge, Allan Grønlund, Svend C. Svendsen, and Jonas Tranberg.
Proc. of the 27th ACM International Conference on Advances in Geo-
graphic Information Systems, SIGSPATIAL 2019

Chapters 3 and 6 use the full arXiv versions of the papers [15, 20]. Additionally,
we remark that a conference version of Chapter 5 has already been published [79].
The papers are included in their entirety with changes only to formatting,
typesetting, and minor typos. The author of this thesis has contributed
significantly to all papers. Finally, in accordance with the rules of the Graduate
School of Natural Sciences, we inform the reader that Chapter 3 and Chapter 6
were also used in the progress report for the qualifying examination of the
author.

6 CHAPTER 1. INTRODUCTION

In Chapter 3, we present a software framework for the implementation of
I/O-efficient algorithms and data structures. This framework streamlines the
implementation of I/O-efficient algorithms by enabling re-use and modular-
ization of code. Furthermore, we provide implementations of commonly used
data structures and algorithms. In Chapter 4, we present a practical algorithm
for computing a division of a planar graph into regions such that each region
fits in the internal memory of a computer. Furthermore, we show how this
construction can be applied to the problem of efficiently modeling the flow of
water on a terrain. In Chapter 5, we present a model for computing functions
that estimate the amount of water that flows on points of the terrain. For each
point on the terrain model, our algorithm computes the rate at which water
flows over the point at any given time. We present both internal and external
memory algorithms for this problem. Furthermore, we present a model for
modeling the geometry of streams formed on the terrain during heavy rain
events. In Chapter 6, we consider the problem of identifying hydrological cor-
rections on a terrain. Loosely stated, a hydrological correction is a modification
performed on the terrain which ensures that the flow of water is not impeded by
a false hydrological barrier. This includes the removal of bridges and culverts
which otherwise appear as dams in the data since elevation models, such as
the Danish Elevation Model [50], are recorded from a Bird’s-eye view. The
identification of hydrological corrections has traditionally been performed by
hand which is both an expensive and slow process. We present a machine
learning-based solution that automatically and accurately detects and extracts
the hydrological corrections of the terrain. The solution detects most of the
manually labelled corrections and an additional number of corrections missing
from our input data.

Chapter 2

Survey of Important Results

In this chapter, we provide a survey on I/O-efficient algorithms and terrain
analysis. Additionally, we detail the contributions of the thesis. The chapter is
structured as follows. In Section 2.1, we describe the I/O model of computation
and several fundamental results within the model. In Section 2.2, we formally
state the mathematical definitions used when describing algorithmic problems on
terrain. We proceed in Section 2.3 by defining several models used for modeling
the flow of water on the surface of a terrain. Section 2.4 surveys algorithmic
problems and results related to terrain analysis and modeling the flow of water
on a terrain. Finally, in Section 2.5, we describe the implementation of I/O-
efficient algorithms, and in Section 2.6, we summarize the contributions of this
thesis.

2.1 External Memory Algorithms

In theoretical computer science, it is important to accurately model the perfor-
mance of algorithms. This is typically done by stating a model of computation
that describes an abstraction with certain assumptions on how data is accessed.
A widely used example of this is the RAM model which assumes that data is
stored in an infinitely large internal memory that supports random access. That
is, the time it takes to access a data element in internal memory is constant
and does not depend on the location of the data element. The model supports
operations on any data element in one time step. We define the performance of
an algorithm as the computation time which is the total number of time steps
used. This results in a model that strikes a good balance between simplicity
and results that are applicable in practice.

In practice, computers do not have an infinitely large internal memory
since internal memory can be quite expensive. Instead, modern hardware
have a small amount of fast internal memory combined with a large but slow
external memory, e.g. a hard disk or solid-state drive (SSD). Additionally,
modern hardware have multiple levels of cache between the central processing

7

8 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

CPU
Internal Memory External Memory

(Disk)(RAM)

L1 Cache

L2 Cache

L3 Cache

Figure 2.1: Illustration of the memory hierarchy of modern hardware when
ignoring parallelism.

CPU

Internal Memory External Memory

(Disk)(RAM)

Block I/ORandom Access

Capacity: M Capacity: ∞
Size: B

Figure 2.2: Illustration of the memory hierarchy in the I/O model.

unit (CPU) and the internal memory. See Figure 2.1 for an illustration of a
memory hierarchy consisting of several levels of cache and memory. When
performing computation on a data element, the computer retrieves the element
from external memory into internal memory and cache. The movement of data
from and to external memory can be quite slow and can become a bottleneck
of the computation on very large data sets. In order to counter this problem,
the movement of data from and to external memory is done in large blocks of
consecutive data elements. Therefore, when working with large data sets, it
is important to use a model of computation that represents the movement of
blocks such that algorithms can be engineered to minimize this. Motivated by
this, Aggarwal and Vitter introduced the I/O model of computation [6]. In the
I/O model, the computer is equipped with a simplified memory hierarchy that
has an infinitely large external memory and an internal memory of bounded
size M . The data is initially stored consecutively on external memory and
consists of N elements in total. In order to perform computation on a data
element, it must first be transferred into internal memory. Data is transferred
from and to external memory in blocks of B consecutive elements. We refer
to this operation as an I/O. See Figure 2.2 for an illustration of the memory
hierarchy in the I/O model. The performance of an algorithm in the I/O model
is the total number of I/Os performed. Algorithms that minimize the number
of I/Os performed are called I/O-efficient algorithms or external memory
algorithms.

2.1.1 Sorting and Permutation

Since the introduction of the I/O model, results have been presented for many
fundamental problems [11, 99]. It immediately follows from the model that

2.1. EXTERNAL MEMORY ALGORITHMS 9

N consecutive elements can be read from external memory using Scan(N) =
O(N/B) I/Os by fetching blocks of B consecutive elements at a time. Aggarwal
and Vitter [6] presented tight lower and upper bounds for the fundamental
problems of sorting and permuting N elements. They presented an algorithm
that sorts N consecutive elements using Sort(N) = Θ

(
N
B logM/B(N/B)

)
I/Os

and proved the matching lower bound by assuming the comparison model for
data elements in internal memory. Similarly, they showed that permuting N
elements stored consecutively on external memory requries Θ(min(N, Sort(N)))
I/Os. In the RAM model, N elements can be permuted in O(N) time by
trivially swapping elements. Thus, it seems that the techniques and solutions
applied in the RAM model do not trivially extend to the I/O model. We now
proceed to describe techniques commonly used to solve fundamental graph
problems.

2.1.2 Time-Forward Processing

A fundamental technique often used in the I/O model is the time-forward
processing technique introduced by Chiang et al. [42]. In Section 2.4.5, we will
describe an example of the time-forward processing technique. For now, we
state various results obtained using the technique. Chiang et al. used the time-
forward processing technique to solve the circuit evaluation problem, in which
we are given a boolean circuit represented as an acyclic directed graph. We
assume that the graph is topologically ordered and that each node represents
a function to be evaluated on the values of the incoming edges of the node.
Chiang et al. showed that the functions of all nodes can be evaluated using
O(Sort(N)) I/Os if

√
M/2B log(M/2B) ≥ 2 log(2N/M). The assumption on

M/B is due to the I/O-efficient priority queue that Chiang et al. relies on in
their result. This assumption was removed by Arge [10] when he introduced
the buffer tree. The buffer tree is an I/O-efficient priority queue that supports
N insertions and deletions using O(Sort(N)) I/Os with no assumptions on the
size of M .

Another priority queue implementation was described by Brodal et al. [37].
Their result supportsB consecutive operations using at mostO

(
logM/B(N/M)

)
I/Os. Additionally, insertion and deletion operations perform O(log2(N))
comparisons in internal memory. This result improves upon the buffer tree by
stating non-amortized worst-case guarantees and by bounding the number of
comparisons performed in internal memory.

2.1.3 List Ranking

Chiang et al. [42] presented an I/O-efficient solution to the list-ranking prob-
lem. In the list-ranking problem, we are given a linked list where each node
contains a pointer to its successor in the list. The objective is to compute
the distance from each node to the end of the list. Chiang et al. presented

10 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

an algorithmic framework that solves the problem using O(Sort(N)) I/Os if√
M/2B log(M/2B) ≥ 2 log(2N/M). When combined with the buffer tree

by Arge [10], we obtain an optimal O(Sort(N)) I/O solution without the as-
sumption on M/B. Furthermore, Chiang et al. [42] demonstrated how the
list-ranking problem can be applied to other graph-theoretic problems such as
computing depth-first search numberings and finding least common ancestors
in trees.

2.1.4 Multiway Separators

Given a planar graph with N vertices and a parameter r, a multiway planar
separator divides the graph into O(N/r) regions (not necessarily disjoint) of size
at most r. We say that each region consists of two types of vertices: boundary
vertices and internal vertices. An internal vertex is a vertex that is in only
one region and is adjacent only to vertices in the same region. A boundary
vertex is adjacent to vertices in more than one region and can be contained in
multiple regions. Since the graph is planar, it can be shown that a multiway
planar separator always exists such that each region contains O(

√
r) boundary

vertices [53]. It follows that the total number of boundary vertices is O
(
N/
√
r
)
.

Maheshwari et al. [80] presented an algorithm for I/O-efficiently computing a
multiway planar separator that divides a planar separator into N/M regions
using O(Sort(N)) I/Os. The concept of multiway separators is extremely
useful and can be used to solve many fundamental planar graph problems
in the I/O model, such as breadth-first search, single-source shortest paths,
depth-first search, strong connectivity, and topological sorting [26, 29]. Arge
et al. [28] furthered the study of multiway planar separators by presenting an
algorithm that uses O(Sort(N)) I/Os and O(N logN) time in internal memory.
Additionally, Arge et al. [28] showed that their result can be used to derive
algorithms for finding single-source shortest paths, topological sorting, and
finding strongly connected components using O(Sort(N)) I/Os and O(N logN)
internal memory computation time. Maheshwari et al. [80] did not provide any
bounds on internal memory computation time for their results.

2.2 Terrain Definitions

In order to precisely describe computational problems on terrain models, we
state a more formal definition of what a terrain is and how water flows on
the terrain. In this section, we state two commonly used definitions of terrain.
These precise definitions are often omitted from publications due to page
constraints. Thus, this section is intended to serve as a general introduction to
the area of terrain analysis. The definitions in this section loosely follow those
of [17, 23, 77].

The terrain models used in this thesis are digital elevation models (DEMs)
that describe the height of each point on the surface of the terrain. A digital

2.2. TERRAIN DEFINITIONS 11

(a) An example of a grid DEM. (b) A section of a triangulated irregular
network DEM.

Figure 2.3: Two digital elevation models representing the surface of a section
of terrain.

elevation model is given by a mesh M ⊆ R2 along with a height function
h : M → R that assigns a height to each point on M. Given M and h, the
terrain Σ = (M, h) is defined as Σ =

{
(x, y, z) ∈ R3 | (x, y) ∈M, h(x, y) = z

}
.

There are two types of terrain commonly used in publications; triangulated
irregular networks and grid digital elevation models. A triangulated irregular
network DEM (TIN DEM) represents the surface as a triangulated continuous
surface such that the height of a point in each triangular face is defined by
linear interpolation on the vertices of the face. A grid DEM represents the
terrain as a rectangular area subdivided into square cells such that the height
of each square cell is a constant function. See Figure 2.3 for illustration. We
proceed by describing each type of digital elevation model in more detail.

2.2.1 Triangulated Irregular Network DEM

In the context of a triangulated irregular network (TIN), we let M be a
triangulation of a set of vertices V in the plane. Often, a Delaunay triangulation
of the vertices are used. A Delaunay triangulation is a triangulation such that
no vertex of a triangle is contained in the interior of a circumcircle of any
triangle in the triangulation.

In each face of M, the height function h : M→ R is restricted to be a linear
interpolation of the height of the corners. The triangulation may contain a
vertex v∞ at infinity such that each edge (u, v∞) is a ray from u [77]. In this
case, the triangles in M incident to v∞ are unbounded and we let h approach
∞ at v∞. It follows that Σ = (M, h) is a continous surface in R3.

12 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

Critical Vertices

Given a terrain and a vertex v ∈ V, we say a vertex u is adjacent to v or
a neighbor of v if there is an edge (v, u) of M. Throughout this section, we
assume that two adjacent vertices v and u in M satisfy h(v) 6= h(u). In
latter sections, we discuss how to avoid this assumption. We say that an
adjacent vertex u is an upslope neighbor of v if h(u) > h(v). Correspondingly,
u is a downslope neighbor of v if h(u) < h(v). It follows that all adjacent
vertices of a vertex v will be either downslope or upslope. If a vertex v has
no downslope neighbors, then v is a minimum. Correspondingly, if v has no
upslope neighbors, then v is a maximum. Mimima and maxima are also referred
to as sinks and peaks, respectively. We say that a vertex v is a saddle if v
has a sequence of four neighbors u1, u2, u3, u4 in clockwise order such that
max

(
h(u1), h(u3)

)
< h(v) < min

(
h(u2), h(u4)

)
. A vertex that is either a sink,

a peak, or a saddle is called a critical vertex.

Contours and Depressions

Given a height `, the `-level set of h is the set h=` =
{
x ∈ M | h(x) = `

}
.

Correspondingly the `-sublevel set of h is the set h<` =
{
x ∈ M | h(x) < `

}
.

The connected components of h=l are called contours at height ` and the
connected components of h<l are called depressions at height `. We observe
that the boundary of a depression β in h<` is formed by one or more contours
from h=`. Furthermore, a contour is not a simple polygonal cycle if it contains
a saddle vertex.

Given a vertex v ∈M with height `, we say that a depression βv of h<` is
delimited by v if v lies on the boundary of βv. We say that a depression β is
maximal if every depression β′ ⊃ β contains strictly more sinks than β. Note
that each maximal depression is delimited by a saddle. If two depressions β1

and β2 are delimited by a saddle v, then v is a negative saddle and β1 and
β2 are sibling depressions. A maximal depression containing only one sink is
called an elementary depression. See Figure 2.4 for illustration. The volume of
a depression β in h<` is

Vol(β) =

∫
β

(
`− h(x)

)
dx .

Merge Tree

Suppose we sweep a horizontal plane from −∞ to ∞ over a given terrain Σ.
As the height ` of the plane changes, so do the depressions in the `-sublevel
set h<`. The depressions change continuously, however, depressions appear and
disappear only at certain critical vertices. Observe that whenever the sweep
plane crosses a sink, a new elementary depression is added to h<`. Whenever

2.2. TERRAIN DEFINITIONS 13

u1 u2
u3 u4

w
β1 β2

β4β3

v1

v2

v3

Figure 2.4: Illustration of the depressions of a terrain viewed from the side. The
vertices u1, u2, u3, u4 are sinks and the vertices v1, v2, v3 are negative saddles.
The depression β1 is a (non-maximal) elementary depression delimited by w
and β2 is maximal elementary depression delimited by v1. Depressions β3 and
β4 are maximal sibling depressions delimited by v2.

the sweep plane crosses a peak, a hole in a depression is removed. Finally,
when the sweep plane crosses a negative saddle, two or more sibling depressions
are merged. The merge tree T of Σ is a data structure used to track these
changes. The leaves of T correspond to the sinks of Σ, and the internal nodes
correspond to the negative saddles of Σ. Each edge (u, v) of T corresponds to
the maximal depression βu delimited by u that contains v. See Figure 2.5 an
illustration. For simplicity, we assume T is a binary tree. That is, we assume
each negative saddle delimits at most two depressions. Such negative saddles
are called simple. Non-simple saddles can be unfolded into simple saddles as
described by Edelsbrunner et al. [49].

The extended merge tree is obtained by mapping each vertex v ∈ V to the
edge of T corresponding to the smallest maximal depression containing v. For
each edge of T we store the list of mapped vertices in non-decreasing order of
height. The extended merge tree is also referred to as the augmented merge
tree.

2.2.2 Grid DEM

Terrains can also be represented using a grid digital elevation model (grid DEM),
also known as a raster DEM. A grid DEM is represented by a rectangular
area subdivided into N square cells of equal size. This representation has the
advantage of being very simple and often leads to elegant and efficient algorithms.
Furthermore, the model can be stored and transferred quite efficiently due to
the grid structure. However, triangulated irregular networks might be preferred
for terrains when collected terrain data is highly non-uniform and non-grid-like.
We proceed by stating relevant definitions on grid terrains. These definitions
are analog to those of the TIN digital elevation model and many follow from

14 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

α1 β1 α3 β3

β2α2

(a) Bird’s-eye view showing how the depressions of a terrain are nested.

u1

α1 β1

α2

α3 β3

β2

u1 u2 u3 u4

v3v1

v2

u2
u3 u4

β4

α1 β1 α3 β3

β2α2

v1

v2

v3

(b) The merge tree of a terrain. The leaves of the merge tree correspond to sinks u1,
u2, u3, and u4. The internal vertices of the merge tree correspond to negative saddle
vertices v1, v2, and v3. Observe how each edge in the merge tree corresponds to a
maximal depression.

Figure 2.5: The depressions and merge tree of a terrain.

2.2. TERRAIN DEFINITIONS 15

the TIN definitions.
Given a grid M, we restrict the height function h : M→ R to be constant

in the face of each cell. It follows that the terrain formed by a grid DEM,
denoted Σ = (M, h), does not form a continuous surface unlike that of a TIN
DEM. We say that two cells are adjacent or neighbors if the boundaries of the
two cells have non-empty intersection. That is, cells that share a corner point
or an edge are adjacent to each other. Let V denote the centers of the cells of
M. We define the adjacency graph GΣ to be the graph with vertices V, where
two vertices are connected if the corresponding cells are adjacent.

Critical Cells

We say that a cell u is a downslope neighbor of v if u and v are adjacent and
h(u) < h(v). Correspondingly, u is an upslope neighbor of v if h(u) > h(v).
As we did for TIN DEMs, we assume that no two adjacent cells have the
same height. A cell v is a peak or maximum if it has no upslope neighbors.
Correspondingly, v is a sink or minimum if it has no downslope neighbors.

Depressions

Depressions on grid terrain have a similar definition to those of TIN terrains,
however, one needs to be careful due to the non-continuity of the surface. The
`-sublevel set of h is the set h<` =

{
v ∈ V | h(v) < `

}
. The depressions at

height ` are defined to be the connected components of h<`. A cell v delimites
a depression β at height h(v) if v is adjacent to a cell in β. A negative saddle
is a cell that is adjacent to two or more depressions. Letting A denote the area
of each cell, the volume of a depression β at height ` is defined as

Vol(β) = A ·
∑
v∈β

(
`− h(v)

)
.

Merge Tree

The merge tree T of a grid DEM follows the definition of the merge tree for a
TIN DEM. The leaves of T correspond to the sink cells of Σ, and the internal
nodes correspond to the negative saddle cells of Σ. Each edge (u, v) of T
corresponds to the maximal depression βu delimited by u that contains v. We
assume that T is a binary tree. That is, each negative saddle is a simple saddle
that delimits at most two depressions.

Converting from grid to triangulated irregular network

A natural question that arises is whether one can convert between grid DEMs
and TIN DEMs while preserving the topological properties of the terrain.
Observe that the adjacency graph GΣ of a grid terrain Σ may not be planar

16 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

due to the inclusion of all diagonal edges. Hence, we remove edges from the
adjacency graph to convert a grid DEM to a TIN DEM. Given the planar
embedding of GΣ, let e1 = (u, v) and e2 = (w, t) be two edges that cross. The
adjacency graph is mapped to a planar graph by removing either e1 or e2 for
all such pairs. Furthermore, note that this forms a Delaunay triangulation.
Thus, this creates a mapping from grid DEMs to TIN DEMs. We let the mid
point height h̄(e) of an edge e = (u, v) denote the value h(u)+h(v)

2 . Let the
lower edge triangulation denote the embedding where we for each crossing pair
of diagonals e1 and e2 remove the diagonal with the largest midpoint height.
If two diagonals have the same midpoint height, we arbitrarily remove either
e1 or e2. Arge et al. [18] showed that the TIN DEM formed by the lower
edge triangulation has the same sinks, negative saddles, and merge tree as the
corresponding grid DEM.

2.3 Flow Model Definitions

Having described what a terrain is, we proceed by describing how the flow of
water and flooding can be modeled on terrain. When the amount of water on the
terrain exceeds what can be absorbed by the soil and sewer systems, water starts
accumulating in depressions of the terrain. The fill rate of a terrain depends
on several factors, such as the volume of the depression, the rate at which
rain falls, and the area from which rain flows into the depression. Whenever a
depression becomes full, it will start spilling into the sibling depression, thus,
increasing the fill rate of the sibling depression. We refer to such rain events as
flash flood events. In this section, we formally state how the flow of water is
modeled on terrain. For simplicity, we only describe the model for TIN DEMs,
however, the model can be adapted to grid DEMs using the definitions stated
in Section 2.2.2.

The problem of modeling the flow of water on a terrain has been studied
extensively in the GIS community. When modeling water flow, it is important
to use models that are simple enough to be computationally efficient but still
maintain a sufficient level of detail. Liu et al. [75] described the surface flow
model in which water flows on the surface of the terrain with infinite velocity
without being absorbed by the terrain. At each point x on the surface of Σ,
water flows according to a flow direction of x which is selected as the direction
of steepest descent. In the case of flat areas or ties, one needs to carefully
handle ties ensuring that the flow directions do not form cycles.

A simpler model is the edge flow model in which water is restricted to flow
on only on the vertices and edges of the terrain [22, 78]. For very large terrains,
this assumption provides a good approximation since the input triangles tend
to be small compared to the total area. We proceed by stating definitions and
results for the edge flow model.

2.3. FLOW MODEL DEFINITIONS 17

2.3.1 Flow Graph

In the edge flow model, we assume water flows along the edges of the terrain.
To determine the direction in which water flows, we introduce the flow graph
FG which is a directed acyclic graph. The vertices of the FG are in one-to-
one correspondence to the vertices of the terrain. Each vertex of FG has
outgoing edges corresponding to the direction in which water flows from the
vertex. Water collects in sinks that all have no outgoing edges. Two commonly
used variants of this model are the single-flow direction (SFD) model and the
multiflow direction (MFD) model. In the single-flow direction model, each
vertex v has at most one outgoing edge to a neighbor u of v. Typically the
outgoing edge is selected to be the edge with the lowest direction, where u
is selected to minimize h(u), or the steepest direction, where u is selected to
minimize

(
h(v)− h(u)

)
/|v − u|.

In the multiflow direction model, each vertex contains edges to all downslope
neighbors. For each vertex v we define λ(v, u) to be the proportion of the water
arriving at v that flows along the edge (v, u) to u. Note that

∑
u λ(v, u) = 1

for a vertex v. The value of λ(v, u) is typically selected based on the heights of
v and u [77].

2.3.2 Rain Distribution

When modeling rainfall, we let R : V→ R≥0 denote a rain distribution which is
a distribution describing the rate at which rain falls on each vertex of the terrain.
That is, for a vertex v, R(v) units of rain fall on v in one time unit. Since R is
a distribution, it follows

∑
vR(v) = 1 and, for all vertices v, R(v) ≥ 0. Let

|R| denote the number of vertices with non-zero rainfall in R. For many of the
algorithms presented in the next section, R is simply the uniform distribution.
However, as we will describe below, some results achieve a significant speed-up
by preprocessing the terrain to answer queries for varying rain distributions.
Furthermore, for queries where |R| � N , some algorithms achieve a significant
speed-up by visiting only vertices with non-zero rainfall or by preprocessing
the terrain to efficiently answer queries for varying rain distributions.

2.3.3 Depression Filling Model

Liu et al. [75] presented a depression filling model that formalizes the filling
and spilling of depressions. In this model, rains falls on the vertices of the
terrain Σ according to a rain distribution R, flows on Σ according to the flow
directions, accumulating in the maximal depressions of Σ. When the amount
of rain accumulated in a maximal depression β is equal to Vol(β), β becomes
full and water will start spilling from β. Let v be the vertex delimiting β
and let β be the sibling depression of β′. Assume that β′ is not already full.
In this case, the water that falls into β spills over the saddle v into β′, thus,
increasing the rate at which β′ fills. We refer to such an event as a spill event.

18 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

In the single-flow direction model, we let the secondary flow direction of the
negative saddle vertex v be the flow direction of v into β′ after β has filled. In
the multiflow direction model, we update λ by setting the λ(v, u) = 0 for all
vertices u in β depression. We then reweigh λ(v, u) such that

∑
u λ(v, u) = 1.

This process results in a sequence of spill events, where each event corresponds
to a depression becoming full and spilling into the neighboring depression.

2.4 Terrain Analysis Algorithms

In this section, we provide a survey of algorithmic results for terrain analysis
and the modeling of water flow on a terrain. We focus on the research area
of I/O-efficiently modeling flooding from rainfall and the problems directly
related to this. However, there is also prior work focusing on modelling floods
from sea-level rise [18, 23] and river-rise [8].

2.4.1 TIN DEM Construction

When terrain data is collected, it is typically represented as a point cloud such
that each point denotes a point on the surface of the terrain. Given a point cloud,
we can use it construct the grid DEM and TIN DEM which were described in
Section 2.2. A TIN DEM can be constructed by projecting the point cloud onto
the plane, computing a Delaunay triangulation of the projected points, and
lifting the triangulation back up to R3. The problem of computing Delaunay
triangulations has been studied extensively in computational geometry, and
several algorithms have been presented. The algorithms are typically based
on the sweep-line or divide-and-conquer paradigms [30]. In the RAM model,
Guibas et al. [59] presented a randomized incremental algorithm with expected
O(N logN) running time, whereN is the number of vertices in the triangulation.
An extension of the Delaunay triangulation is the so-called constrained Delaunay
triangulation in which the triangulation is constrained to contain a given set
of edges. This problem is particularly interesting in the context of TIN DEM
construction since the constraint edges can be used to represent features on
the terrain such as roads and rivers. In the RAM model, constrained Delaunay
triangulations can be computed in O(N logN) time [41].

Results for computing Delaunay triangulations have also been presented in
the I/O model. Goodrich et al. [58] showed that the Delaunay triangulation
can be computed using expected O(Sort(N)) I/Os. Agarwal et al. [2] presented
an expected O(Sort(N)) I/Os algorithm for computing constrained Delaunay
triangulations.

2.4.2 Grid DEM Construction

There are two approaches commonly used to constructing grid DEMs from
point clouds. For the first approach, a TIN DEM is computed based on the

2.4. TERRAIN ANALYSIS ALGORITHMS 19

point cloud. The TIN DEM is then converted to grid DEM by interpolating the
height of each grid cell from the corner points of the triangle in which the center
point of the grid cell is contained. Isenburg et al. [66] proposed an algorithm
that computes the TIN and converts it to a grid DEM by sweeping over the
point cloud. The second method for computing grid DEMs is to compute
the height of each grid cell in the grid DEM directly from the point cloud
by interpolating the heights of the nearest points. The heights are typically
interpolated by inverse distance or using a piecewise polynomial function [1].
Agarwal et al. [1] presented an I/O-efficient algorithm for computing such
interpolations by recursively computing a quadtree on the input points.

2.4.3 Merge Tree

Carr et al. [39] presented an O(N logN) time algorithm for computing the
merge tree of a TIN DEM in the RAM model. Furthermore, using O(N)
preprocessing time, the merge tree can be augmented such that for a point
x ∈ M, the volume of the depression βx delimited by x can be computed
using O(logN) time [39]. Additionally, they showed that each vertex v can
be augmented with a pointer to the smallest maximal depression containing
v in O(N logN) time. In the I/O model, Agarwal et al. [3] presented an
O(Sort(N)) algorithm for computing the merge tree of a TIN DEM. Arge et
al. [21] extended the algorithm by Carr et al. [39] to obtain an algorithm for
computing the merge tree and the volumes of all maximal depressions using
O(Sort(N)) I/Os. Furthermore, Arge et al. [22] extended this to compute the
volume of βv and the smallest maximal depression containing v for all vertices
on the terrain. We remark that the above algorithms can be adapted to grid
DEMs using the observations in Section 2.2.2.

2.4.4 Flow Routing

In Section 2.3.1, we described how to assign flow directions based on the
assumption that no two adjacent vertices and cells have equal height in the
input DEM. However, this assumption might not hold on real-world data and,
thus, we need to ensure flow directions are chosen such that the flow graph
is acyclic. This is addressed in the flow routing problem in which we assign
flow directions to vertices and cells in flat areas of the terrain. We proceed by
describing the problem and algorithms for grid DEMs, however, the algorithms
described can be adapted to TIN DEMs [44].

In the flow routing problem, we define a flat area to be two or more adjacent
cells with equal height. We distinguish between two types of flat areas: plateaux
and reservoirs. A plateau is a flat area for which there is an adjacent cell with
a lower height. A reservoir is a flat area for which all adjacent cells have greater
height. We remark that reservoirs are also referred to as sinks in literature,
however, this is not to be confused with sink vertices. The objective of the flow

20 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

(a) Flow directions of all cells

1 1 1 1 1 1

1 3 6 3 2 1

1 2 11 19 26 1

1 8 1 1 2 28

1 4 1 1 3 29

1 1 1 1 5 30

(b) Flow accumulation of all cells

Figure 2.6: Computing the flow accumulation of a grid DEM.

routing problem is to compute an acyclic flow graph FG such that each vertex
in a plateau has a path to a vertex with lower height and that each reservoir
has exactly one vertex with no outgoing edges. Arge et al. [13] presented an
algorithm for a variant of the flow routing on grid DEMs where flow directions
are computed for a terrain with all reservoirs filled. That is, the reservoirs are
raised to the height of the lowest adjacent cell, thus, turning reservoirs into
plateaux. Arge et al. [13] described how this problem can be solved using a
breadth-first-search style algorithm that uses O(Sort(N)) I/Os. Furthermore,
their algorithm also computes a rank rank(v) for each cell v such that a cell
u is before v in the topological ordering of FG if and only if h(u) > h(v) or
rank(u) < rank(v). The algorithm can be adapted to compute flow directions
and ranks without first filling the terrain.

2.4.5 Flow Accumulation

The motivation for Arge et al. [13] to study flow routing was to further extend
their work on the flow accumulation problem [86] on grid DEMs under the single-
flow direction model. In the flow accumulation problem, we are given a grid
DEM, the flow direction for each cell on the terrain, and a rain distribution R.
For each cell v, we initially assign R(v) units of water to v. Water is distributed
by pushing it along the flow directions of each cell until all water is at the sinks
of the terrain. The flow accumulation of a cell v is the accumulated amount
of water that is pushed through v during this process. Cells with high flow
accumulation correspond to areas with a large flow of water and can be used
to approximately identify river networks on the terrain. See Figure 2.6 for an
example.

An I/O-efficient algorithm for the computation of flow accumulation was
presented by Arge et al. [25]. We proceed by describing the algorithm in more
detail to demonstrate the application of the time-forward processing technique

2.4. TERRAIN ANALYSIS ALGORITHMS 21

to terrain processing. First, observe that the flow accumulation f(v) of a cell v
is defined recursively as follows:

f(v) = R(v) +
∑

(u,v)∈FG

f(u) . (2.1)

The algorithm exploits this observation by visiting the cells of the terrain
in topological order and forwarding values computed at each node using a
priority queue. In order to do so, we compute flow directions using the flow
routing algorithm by Arge et al. [13] and sort the cells lexicographically by
(h(v), rank(v)). In other words, we sort the cells of the terrain according to
their topological ordering. We scan the sorted list of cells and visit each cell
while maintaining an I/O-efficient priority queue containing elements such that
the following invariants are satisfied:

1. If there is a cell u that has been visited and a cell v that has not been
visited where (u, v) ∈ FG then (v, f(u)) is contained in the priority queue.

2. If there is a cell v that has not been visited, then
(
v,R(v)

)
is contained

in the priority queue.

Furthermore, the elements (v, ·) in the queue are keyed on (h(v), rank(v)).
The algorithm proceeds as follows: Initially, for each cell v, add

(
v,R(v)

)
to

the priority queue. Scan the sorted list of cells and, for each cell v, delete
elements (v, ·) from the priority queue and use (2.1) to compute the flow
accumulation of v. If there is an edge (v, w) ∈ FG, insert (w, f(v)) into the
priority queue. We observe that the invariants are maintained at each step. It
follows that the algorithm computes the flow accumulation of each cell. Using
an I/O-efficient priority queue [10] and sorting algorithm [6], we observe that
the algorithm uses O(Sort(N)) I/Os, where N is the number of cells in the
terrain. Note that this algorithm can be adapted to TIN DEMs. Furthermore,
the concept of flow accumulation can be adapted to the multiflow direction
model by multiplying the flow along each outgoing edge (v, w) by λ(v, w).

Haverkort et al. [62] presented an algorithm for computing flow accumulation
on grid terrains using O(Scan(N)) I/Os under the assumption that the grid is
stored in row-by-row order and M ≥ cB2, where c > 0 is a constant. Instead
of relying on an I/O-efficient priority queue, their algorithms partition the
grid into memory-sized regions and uses the partitioning to compute the flow
accumulation of all cells.

2.4.6 Watershed

Additionally, Arge et al. [13] considered the watershed problem on a grid based
terrain in the single-flow direction model. In the single-flow direction model, we
observe that water in a cell v flows to exactly one sink on the terrain. Hence,
for each sink u on the terrain, we define the watershed of u to be the cells on

22 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

`

Figure 2.7: A terrain where maximal depressions with height less than ` are
filled.

the terrain for which there is a path in FG to u. It follows that a cell belongs to
exactly one watershed. Arge et al. [13] described an O(Sort(N)) time-forward
processing based algorithm for computing all watersheds of a grid terrain.

2.4.7 Partial Flooding

The computation of flow accumulation and watersheds provides only a rough
model of terrain flooding. In practice, water does not disappear at sinks but
accumulates in depressions and starts spilling whenever depressions are filled.
In order to more accurately model flow, one can preprocess the terrain by
partial flooding. Let the height of a depression be the difference in elevation
between the sink of the depression and the negative saddle delimiting the
depression. When partially flooding a terrain, maximal depressions smaller
than a given geometric measure, such as height or volume, are filled. That is,
all cells within a depression βv are raised to the height of the saddle vertex v
delimiting βv. Thus, when computing flow accumulation and watersheds on
a partially flooded terrain, water will not be trapped by smaller depressions
which results in a more realistic model for extracting river networks. Agarwal
et al. [3] presented an O(Sort(N)) algorithm for partially flooding a TIN terrain
such that depression with height less than ` are removed. See Figure 2.7 for
illustration. Arge et al. [21] further extended this to remove depressions based
on the volumes and areas of depressions.

Partially filling a terrain is particularly useful for real-world data which
can contain spurious depressions that are created as a result of noise in the
input data. By partially flooding the terrain, we not only remove spurious
depressions but also significantly reduce the size of the merge tree. For example,
when spurious depressions smaller than 1 m3 are filled in the Danish Elevation
Model [50], the total number of sinks is approximately 30 million. Whereas
the unfilled terrain has 10.5 billion sinks. As shown in the next section,
this can lead to an improvement in performance for several terrain flooding

2.4. TERRAIN ANALYSIS ALGORITHMS 23

algorithms [17, 22, 77].

2.4.8 Terrain Flooding

The motivation for partially flooding the terrain is to avoid water collecting
and being trapped in spurious depressions when computing flow accumulation
and watersheds. However, this solution fails to model how water accumulates
in large depressions. Whenever a large depression fills, the rain which falls in
that depression will start spilling into the sibling depression, thus, increasing
the fill rate of the sibling. It follows that the fill rate of a depression depends
not only on the rain falling directly in the depression but also on the water
spilling into the depression. In this section, we describe various computational
problems where the filling of depressions is modelled using the depression filling
model by Liu et al. [75] (Section 2.3.3).

We first consider the terrain flood-time problem. Given a rain distribu-
tion R, we say that it rains R(v) units of water on vertex v per unit of time.
When solving the terrain flood-time problem, we compute the flood-time of
all vertices v on the terrain. That is, we compute the time at which v is
submerged by water. Liu et al. [75] presented an internal memory algorithm
for solving the terrain flood-time problem on TIN DEMs in the SFD model
in time O(N logN). They state their result given a uniform rain distribution,
however, the algorithm can be adapted to arbritary given rain distributions.

Rav et al. [89] presented an internal memory algorithm for constructing
a linear size data structure that can answer vertex flood-time queries on TIN
DEMs in the SFD model. Given a rain distribution R and a vertex v, determine
at which time v is flooded. Their data structure can answer such queries in
time O(|R|+Q logN), where Q is the number of tributaries of v. A tributary
of v is a depression that spills into a depression containing v when full. We
note that Q is at most the height of the merge tree.

Arge et al. [22] presented an I/O-efficient algorithm for the terrain flood-
time problem on TIN DEMs in the SFD model by extending the algorithm
by Liu et al. [75]. Their algorithm solves the flood-time problem using
O
(

Sort(X) log(X/M) + Sort(N)
)
I/Os, where X is the number of sinks in the

terrain and M is the size of the internal memory. Their algorithm is conceptu-
ally very complex and is not tested in practice. However, when X = O(M),
the algorithm can be simplified greatly and the number of I/Os becomes
O(Sort(N)).

Arge et al. [17] presented I/O-efficient algorithms for the terrain flood-
event problem for grid DEMs in the SFD model; Given a rain distribution R,
determine which vertices of the terrain are flooded at a fixed time t. Note
that solving the terrain flood-time problem also solves the terrain flood-event
problem. In other words, the flood-time problem is conceptually harder. Arge et
al. [17] presented an I/O-efficient algorithm that uses O(Sort(N) + Scan(H ·X)
I/Os, where X is the number of sinks in the terrain and H is the height of

24 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

the merge tree. Their result can be adapted to TIN DEMs without increasing
the number of I/Os performed. Additionally, they describe how to modify
their algorithm to use O(Sort(N)) I/Os provided H = O(M). Furthermore,
provided a constant number of rows of the grid DEM fit in memory, they show
how to solve the terrain flood-event problem using O(Scan(N) + Sort(X)) I/Os
after using O(Sort(N)) I/Os of preprocessing. When X = O(M), the number
of I/Os can be further reduced to O(Scan(N)). That is, most of the work of
the algorithm can be handled in a preprocessing step independent of a specific
rain distribution.

The solutions for terrain flooding stated above can not trivially be adapted
to the MFD model. The various algorithms stated for the SFD model rely on
the property that the water spilling from a depression follows a path into exactly
one other depression. However, in the MFD model this property does not hold
since the water spilling from a saddle spreads over several paths and may spill
into more than one depression. Recently, Lowe et al. [77] presented internal
memory algorithms for TIN DEMs in the MFD model. First, they presented
an O(N logN) algorithm for solving the terrain flood-event problem. Secondly,
they presented an O(N logN + NX)-time internal memory algorithm for
preprocessing the terrain into a data structure for answering vertex flood-event
queries: given a rain distribution R, determine whether a vertex v is flooded
at a given time t. The data structure can answer queries in O(|R|K + K2)
time, where K is the number of maximal depressions containing v. Finally,
they presented an algorithm for answering vertex flood time queries. Assuming
two K ×K matrices can be multiplied in time O(Kω) for some constant ω ≥ 2,
they show how vertex flood time queries can be answered in O(NK + Kω)
time, where K is the number of maximal depressions containing v.

2.4.9 Hydrological Correction Identification

In order to realistically model water flow on terrain, a series of modifications
need to be made on the terrain. We previously discussed how errors in the
input data can result in spurious sinks that trap water when computing flow
accumulation and watersheds. Another common issue with input data is that
bridges and culverts under roads are not realistically modeled by grid and
TIN DEMs. Since the data is recorded from a bird’s-eye view, bridges and
culverts impede the flow of water in the digital elevation model even though
they are not true hydrological barriers. Therefore, we consider the problem
of identifying hydrological corrections, which we loosely define to be a set of
modification of the terrain that ensures that the flow of water is not impeded
by bridges and culverts on the terrain. The effect of hydrological corrections is
illustrated in Figure 2.8. A hydrological correction can be represented by a set
of cells that are to be corrected by lowering their elevation to the minimum
elevation of the cells adjacent to cells in the set.

Traditionally, hydrological corrections are identified by hand. An example

2.5. EXTERNAL MEMORY ALGORITHMS IN PRACTICE 25

(a) Flooded terrain without
hydrological corrections.

(b) Hydrological corrections
identified.

(c) Flooded terrain with hy-
drological corrections.

Figure 2.8: Illustrating the effect of hydrological corrections on terrain flood-
ing [15]. Water is impeded by bridges when hydrological corrections are not
included.

of this is the list of hydrological corrections [57] created by the Danish Agency
of Supply and Efficiency. This data set is a detailed and publicly available list
of hydrological corrections for the Danish elevation model [50], which contains
bridges and culverts. The list is maintained by the municipalities of Denmark
and is updated mostly manually using local knowledge and human input.
Typically, corrections are identified by manually inspecting aerial photos near
intersections between road and river networks. This might result in errors in the
data set when the road and river data are not aligned with the elevation model
or when a hydrological correction is not near a road or river. Furthermore,
the process of creating and maintaining such a data set is quite laborious and
requires manual input when the elevation model is updated.

More recently, Carlson et al. [38] approached the problem algorithmically
using feature engineering and machine learning to automatically detect bridges
in a grid elevation model. In order to detect corrections, they manually
engineered various features based on the elevation model of a terrain and
applied the AdaBoost [55] algorithm to train a classifier on the features. The
feature engineering used by Carlson et al. [38] is based on various edge detectors
computed on the elevation model. Furthermore, Carlson et al. [38] computed a
partial filling of the terrain to detect smaller depression which might be caused
by bridges and culverts in the terrain. This results in a total of 510 features
for each cell in the terrain which they use to train an AdaBoost classifier [55]
to predict whether a cell is part of a bridge or not. After having trained their
classifier on manually labeled data, they describe how to correct bridges by
grouping cells identified as bridges and lowering the elevation of cells in each
group.

2.5 External Memory Algorithms in Practice

We have so far discussed the design and analysis of I/O-efficient in only a
theoretical context. However, since terrain analysis is heavily motivated by

26 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

practical applications, it is valuable to discuss the issues encountered when
implementing and evaluating terrain algorithms in practice. Typically when
implementing internal memory algorithms, the many low-level details have
been hidden by the operating system and low-level libraries. Instead of directly
accessing the RAM of the computer, the programmer accesses a virtual memory
where addresses are mapped to physical memory by the operating system.
This way, the operating system can transparently swap elements in and out
of memory, and the programmer can use the virtual memory as if it were of
infinite size. Furthermore, the different cache layers are transparently managed
by the operating system. Whenever an element is accessed, the element will be
read from cache and not RAM directly. If an element is not loaded into the
cache, the operating system will transparently load the element and subsequent
elements into the cache. This helps the programmer in reaping the benefits of
the high-speed cache without having to explicitly manage each layer of cache.
However, when implementing I/O-efficient algorithms, the internal memory
size and block size are often parameters in the algorithms themselves and need
to be explicitly provided. Thus, in order to write the implementation, the
programmer needs to be aware of these parameters.

One approach to hiding these parameters is the cache-oblivious model.
In this model, the algorithms are not provided the block size and size of
internal memory. This has the benefit that optimal cache-oblivious algorithms
are asymptotically efficient for all sizes of cache. That is, a cache-oblivious
algorithm that minimizes the number of I/Os will do so for all levels of the
memory hierarchy and not just the internal memory. However, cache-oblivious
algorithms tend to be slower in practice despite being asymptotically optimal.
For example, Brodal et al. [36] compared an implementation of the cache-
oblivious Lazy Funnelsort to the I/O-efficient multiway merge sort implemented
in the TPIE software library [85]. In their experiments, they show that the
I/O-efficient multiway merge sort clearly outperforms the cache-oblivious Lazy
Funnelsort implementation. The authors suggest that this might be due to
optimizations implemented in the TPIE library that are difficult to transfer to
the cache-oblivious setting.

To simplify the implementation of I/O-efficient algorithms, the concept of
pipelining can be used. Pipelining is the concept of composing an I/O-efficient
algorithm as an acyclic directed graph where data elements are pushed through
the graph. We refer to a node of the graph as a component. For example,
the time-forward based flow accumulation algorithm (Section 2.4.5) consists
of a component that sorts the data followed by a component that streams
through the sorted elements while maintaining a priority queue. There are
currently two major software libraries for the implementation of I/O-efficient
algorithms in this manner: the Standard Template Library for Extra Large Data
Sets (STXXL) [46] and the Templated Portable I/O Environment (TPIE) [19].
In this section, we will briefly discuss the features of the libraries. This is
followed by a more detailed discussion in Chapter 3. When implementing

2.6. OUR CONTRIBUTIONS 27

pipelined algorithms, one needs to be careful not to introduce large overhead
when streaming data from one component to the next. A naive implementation
would let each component read its input data from disk and write its output
back to disk. However, by letting components directly pass the data elements
to the next component through a method call, we avoid this unnecessary disk
operation. Both TPIE and STTXL provide robust and efficient frameworks
for the implementation of such components. Furthermore, both frameworks
enable modularity and reusability of components without introducing additional
run-time overhead.

While most programming languages include robust and comprehensive
standard libraries for internal memory algorithms, implementations of I/O-
efficient algorithms are typically not included in standard libraries. Besides
providing the framework for implementing modular pipeline components, both
TPIE and STXXL provide well-engineered and robust implementations of
fundamental I/O-efficient algorithms and data structures such as sorting and
priority queues. Additionally, both TPIE and STXXL provide an interface for
handling file streams which support the reading and writing of O(B) elements
using O(1) I/Os. By providing such an interface, the programmer avoids
manually keeping track of block boundaries and writes. Furthermore, both
libraries also support compression of blocks to disk as well as asynchronous file
operations that enable overlapping between I/O and computation.

Danner et al. [44] presented the TerraSTREAM project that computes flow
accumulation and watersheds on a given point cloud. The project consists
of four main stages: construction of a DEM, partial flooding of the DEM,
computing flow accumulation, and construction of a watershed hierarchy, which
represents how the watersheds of the DEM are nested. The stages are based
on the I/O-efficient algorithms described in the previous sections, however, the
project represents TIN and grid DEMs as a unified graph. This approach eases
the implementation of subsequent stages since only one implementation needs
to be maintained. However, as demonstrated by Haverkort et al. [62], having a
unified representation is not always ideal since the structure of grid DEMs can
be used to speed up computation for problems such as flow accumulation.

2.6 Our Contributions

In this thesis, we present several algorithmic results for the computation of
flood risk on a terrain. Furthermore, we evaluate the results experimentally
and present a software framework that enables modular and maintainable
implementation of I/O-efficient algorithms.

First, in Chapter 3, we present an extension to the TPIE software library
that provides functionality for the implementation of pipelined I/O-efficient
algorithms. The extension consists of a framework that promotes and sim-
plifies the implementation of pipelined algorithms while minimizing the I/O

28 CHAPTER 2. SURVEY OF IMPORTANT RESULTS

overhead of the implementation. Although pipelining is also provided by li-
braries such as STXXL [46], the underlying philosophy of the TPIE pipelining
framework is different since TPIE aims to hide the characteristics of the under-
lying hardware and tedious details of the implementation. Furthermore, TPIE
simplifies memory management and progress tracking by automatically manag-
ing application-wide memory limits and progress. Although hand-optimizing
such details may provide a slightly larger I/O-throughput by tailoring the
implementation to specific hardware, these abstractions greatly simplify imple-
mentation and improve portability and re-useable of pipelining components.
The TPIE pipelining library is used heavily in both scientific and commercial
applications [12, 27].

In Chapter 4, we revisit the problem of I/O-efficiently computing multiway
separators for planar graphs. We present a simple sampling-based algorithm
that divides a planar graph into regions when given the Koebe-embedding of
the graph. A Koebe-embedding of a planar graph is a set of disks in the plane
with disjoint interiors such that each disk corresponds to a vertex in the graph,
and two disks are adjacent if and only if the corresponding disks are adjacent.
Additionally, we provide guarantees on the number of boundary vertices of
the division under certain assumptions on the size of the internal memory.
There are currently no known algorithms for computing Koebe-embeddings
I/O-efficiently. Therefore, we describe how to generalize our result to Delaunay
triangulations. This generalization may result in a high number of boundary
vertices in the worst-case. However, we evaluate our algorithm on the Danish
elevation model and show that the number of boundary vertices remains small
in practice. Furthermore, we adapt the grid-based flow accumulation algorithm
by Haverkort et al. [62] to a TIN DEM using multiway separators and show that
an implementation of the algorithm performs well in practice when compared
to the time-forward based algorithm by Arge et al. [25].

In Chapter 5, we study a number of problems related to modeling the
flow of water on a TIN DEM in the multiflow direction model. Given a rain
distribution R and a TIN DEM Σ, compute how much water is flowing over
the vertices of the terrain as a function of time. This problem differs from
the flow accumulation problem since we model how water accumulates in
depressions. That is, the amount of water flowing over a vertex changes over
time as depressions spill. Additionally, our results can be adapted to solve
the terrain flood-time and terrain flood-event problems. First, we study the
terrain flow-query problem in the multiflow direction model, where we a given
a rain distribution R and compute the flow rate over time for all vertices
of Σ. We provide efficient algorithms in both the RAM model and the I/O
model. Furthermore, when adapted to solve the terrain flood-time problem,
our algorithms achieve a better worst-case bound than previous best known
results [77]. Additionally, our results are the first I/O-efficient results presented
in the multiflow direction model. We also provide internal memory algorithms
for the vertex-flow query problem in the single-flow direction model. Given a

2.6. OUR CONTRIBUTIONS 29

rain distribution R, a TIN Σ, and a query vertex v, compute how much water
flows over v as a function of time. Finally, in reality, the flow of water is not
restricted to edges but form a 2D channel of rivers on the terrain. That is,
the cross-section of a channel of water is not a point but a polygon. Given a
path P in Σ and the rate at which water flows along edges of P , we present a
model for determining the geometry of a 2D channel from P using the empirical
Manning’s equation [81]. Furthermore, we present an efficient memory for
computing the channel in internal memory.

Finally, in Chapter 6, we revisit the problem of automatically identifying
hydrological corrections for a terrain. The Danish Agency for Supply and
Efficiency provides a list of corrections that accompanies the Danish elevation
model [51]. However, this list is produced semi-manually using a slow and
expensive process. Furthermore, many corrections are missing from the list,
and the included corrections are of varying quality. We propose a machine
learning-based approach to identifying hydrological corrections on a grid DEM.
In order to identify corrections, we train a convolutional neural network using
the elevation model and the manually labeled list of corrections produced by
the Danish Agency for Supply and Efficiency [51]. Our trained model detects
most of the corrections in the manually labeled list and quite a few corrections
not included in the original list. Furthermore, we describe how to output the
geometry of each correction such that identified corrections can be used to
modify the terrain for realistic flow modeling.

Part II

Publications

31

Chapter 3

External Memory Pipelining
Made Easy With TPIE

Abstract

When handling large datasets that exceed the capacity of the main
memory, movement of data between main memory and external memory
(disk), rather than actual (CPU) computation time, is often the bottleneck
in the computation. Since data is moved between disk and main memory
in large contiguous blocks, this has led to the development of a large
number of I/O-efficient algorithms that minimize the number of such
block movements. However, actually implementing these algorithms can
be somewhat of a challenge since operating systems do not give complete
control over movement of blocks and management of main memory.

TPIE is one of two major libraries that have been developed to
support I/O-efficient algorithm implementations. It relies heavily on
the fact that most I/O-efficient algorithms are naturally composed of
components that stream through one or more lists of data items, while
producing one or more such output lists, or components that sort such
lists. Thus TPIE provides an interface where list stream processing and
sorting can be implemented in a simple and modular way without having
to worry about memory management or block movement. However, if
care is not taken, such streaming-based implementations can lead to
practically inefficient algorithms since lists of data items are typically
written to (and read from) disk between components.

In this paper we present a major extension of the TPIE library
that includes a pipelining framework that allows for practically efficient
streaming-based implementations while minimizing I/O-overhead between
streaming components. The framework pipelines streaming components to
avoid I/Os between components, that is, it processes several components
simultaneously while passing output from one component directly to
the input of the next component in main memory. TPIE automatically
determines which components to pipeline and performs the required
main memory management, and the extension also includes support for
parallelization of internal memory computation and progress tracking

33

34 CHAPTER 3. EXTERNAL MEMORY PIPELINING

across an entire application. Thus TPIE supports efficient streaming-
based implementations of I/O-efficient algorithms in a simple, modular
and maintainable way. The extended library has already been used to
evaluate I/O-efficient algorithms in the research literature, and is heavily
used in I/O-efficient commercial terrain processing applications by the
Danish startup SCALGO.

3.1 Introduction

When handling large datasets that exceed the capacity of the main memory,
movement of data between main memory and external memory (disk), rather
than actual (CPU) computation time, is often the bottleneck in the computation.
The reason for this is that disk access is orders of magnitude slower than internal
memory access. Thus, since data is moved between disk and main memory
in large contiguous blocks, it is often more important to design algorithms
that minimize block movement than computation time when handling massive
data. This has led to the development of a large number of I/O-efficient
algorithms in the I/O-model by Aggarwal and Vitter [6]. In this model, the
computer is equipped with a two-level memory hierarchy consisting of an
internal memory capable of holding M data items, and an external memory
of conceptually unlimited size. All computation has to happen on data in
internal memory, and data is transferred between internal and external memory
in blocks of B consecutive data items. Such a transfer is called an I/O-
operation or I/O, and the cost of an algorithm is the number of I/Os it
performs. The number of I/Os required to read or write N items from disk
is Scan(N) = dN/Be, while the number of I/Os required to sort N items is
Θ(Sort(N)) = Θ((N/B) logM/B(N/B)) [6].

While many I/O-efficient algorithms have been developed in the I/O-model
of computation, actually implementing these algorithms can be somewhat of a
challenge since operating systems do not give complete control over movement
of blocks and management of main memory. However, two major libraries TPIE
[85] and STXXL [46] have been developed to support I/O-efficient algorithm
implementations. It turns out that most I/O-efficient algorithms are naturally
composed of components that stream through one or more lists of data items,
while producing one or more such output lists, or components that sort such lists.
TPIE in particular uses this to provide an interface where list stream processing
and sorting can be implemented in a simple and modular way, without having
to worry about memory management or block movement. However, if care
is not taken, such a streaming-based implementation can lead to practically
inefficient algorithms since lists of data items are typically written to (and read
from) disk between components. In implementations consisting of many small
(but I/O-efficient) components, the I/Os incurred when writing and reading
such lists can easily comprise more than half of the total number of I/Os.
While this may not be a problem when considering asymptotic theoretical

3.1. INTRODUCTION 35

performance, it is unacceptable in practice when the total execution time is
measured in hours or days.

In this paper we present a major extension of the TPIE library that includes
a pipelining framework that allows for practically efficient streaming-based im-
plementations while minimizing I/O-overhead between streaming components.
The framework pipelines streaming components to avoid I/Os between compo-
nents, that is, it processes several components simultaneously while passing
output from one component directly to the input of the next component in main
memory. TPIE automatically determines which components to pipeline and
performs the required main memory management, and the extension also in-
cludes support for parallelization of internal memory computation and progress
tracking across an entire application. Thus TPIE supports efficient streaming-
based implementations of I/O-efficient algorithms, and TPIE applications are
naturally implemented as reusable components, thereby reducing programming
time and code duplication.

3.1.1 Previous Work

As mentioned, two major software libraries support I/O-efficient algorithm
implementations for big data analysis, namely TPIE [85] and STXXL [46]. They
are both C++ software libraries, and as opposed to many of the frameworks that
have emerged for supporting big data analysis in the last decade, such as e.g.
MapReduce [45], Spark [101], and Flink [9], they mainly support single-host
implementations. One reason for this is that the libraries, in particular TPIE,
are designed to support implementations on standard commodity hardware.
Another reason is that no efficient distributed algorithms are known for many
of the problems for which I/O-efficient algorithms have been studied and
implemented; we refer to surveys [11, 99] and descriptions of implementations
(e.g. [7, 12, 27, 47, 82]) for references. Thus in this paper we also focus on
single-host implementations. However, is should be mentioned that in the
context of distributed programming, pipelining has recently been studied with
the Thrill framework [35].

Although both are libraries for implementation of I/O-efficient algorithms,
the overall philosophies of TPIE and STXXL are somewhat different. The
philosophy of TPIE (the Templated Portable I/O Environment) is to provide
a high-level interface that allows for easy translation of abstract I/O-efficient
algorithm descriptions into code that is portable across computational platforms
and not unnecessarily complex. Thus building on the fact that most I/O-efficient
algorithms are composed of streaming components, TPIE provides a generic
stream interface that hides how blocked I/O is performed and instead provides
methods for processing one data item at a time. TPIE also provides internal
memory management, where memory allocations are automatically counted
towards an application-wide memory limit, and where an application can at
any point determine the currently available main memory. Thus applications

36 CHAPTER 3. EXTERNAL MEMORY PIPELINING

do not have to explicitly keep track of available memory, which often simplifies
implementations considerably. For example, in the TPIE built-in streaming-
based implementation of the I/O-optimal O(Sort(N)) external multi-way merge-
sort, the number of sorted streams that can be merged I/O-efficiently (without
being swapped out by the operating system) depends on the available main
memory, where care has to be taken to ensure that the memory used to hold
blocks of items for each used stream is counted towards the amount of available
memory; the TPIE memory management allows for determining the number
of streams to merge without explicitly keeping track of available memory and
memory used for blocked I/O. Overall, TPIE is designed to remove focus
from the tedious details of creating I/O-efficient applications and allows for
implementations that are efficient on all hardware platforms with minimal
configuration.

The philosophy of STXXL (Standard Template library for XXL data sets)
on the other hand is to achieve maximum I/O-throughput by reducing I/O-
overhead as much as possible, e.g. by exposing the characteristics of the
hardware to the application programmer. Thus, to avoid any overhead induced
by the operating system, STXXL allows the user to configure separate disks
for use with applications outside of the file system of the operating system.
In fact, STXXL project programmers recommend that a separate disk is set
aside for STXXL applications. STXXL also explicitly supports parallel disks.
Like TPIE, STXXL supports streaming-based implementations and includes
various basic streaming components such as sorting, but unlike TPIE it actually
contains support for pipelining of streaming components. However, STXXL
expects the application programmer to explicitly define which components
to pipeline and explicitly manage main memory. Thus, the programmer e.g.
has to specify how much memory each streaming component in a pipelined
application should use. A separate (not officially released) branch of STXXL
contains support for utilizing multi-core processors for the internal-memory
work of pipelined applications [34]. Overall, STXXL is designed such that an
application can be tailored to the available hardware, and with the proper
configuration an STXXL application can achieve close to full utilization of the
available I/O bandwidth.

3.1.2 Our Results

In this paper we present a major extension of the TPIE library that includes
a pipelining framework that allows for practically efficient streaming-based
implementations while minimizing I/O-overhead between streaming components.
The extension also includes support for progress tracking across an entire
application, and for parallelization of internal memory computation.

Like STXXL, the TPIE pipelining framework saves I/Os by passing in-
termediate results between streaming components directly in main memory.
However, TPIE pipelining is the first framework to provide automatic pipeline

3.1. INTRODUCTION 37

and memory management, and thus combining the best of the TPIE and
STXXL streaming philosophies. The framework is component-centric in that
the memory requirement of each streaming component is specified locally by the
component developer. The automatic pipeline and memory management then
means that at runtime TPIE will automatically determine which components
to pipeline, and distribute memory among multiple components of a large
application in a way that automatically uses all the main memory available to
the application. Thus, unlike in STXXL, a TPIE programmer e.g. does not
have to consider how the memory use of the individual components has to be
adjusted when they are combined into an application. While such adjustments
along with adjustments of the grouping of components into pipelines can be
done manually for small projects, it can be very cumbersome for large-scale
professional software projects involving many programmers, where modification
of a component to use more memory can very easily lead to memory over-usage
problems (if the memory use of other components are not adjusted accord-
ingly). Thus the TPIE component-centric approach simplifies the application
development process, promotes modularity and supports maintainability.

Since I/O-efficient applications are typically long-running processes that
take hours or days to complete, it is important that an application is able
to provide a progress bar that gives a precise estimate of the progress of its
execution. To be able to do so in a simple way, the TPIE extension also takes
a component-centric approach. Like for memory use, a component developer
can in a simple way include support for information about the progress of the
component, and TPIE automatically combines information from all components
and thus supports a single progress bar that advances from 0% to 100% at a
constant pace. Thus, again the use of a component-centric approach promotes
modularity.

Especially after minimizing I/O, the use of multi-core parallelization can
often help to bring down the running time of massive data applications. Thus
the TPIE extension includes easy support for such parallelization by allowing
the application programmer to wrap a part of a pipeline in a parallelization
directive that will trivially parallelize it across all CPU cores. For instance,
when forming sorted runs in multi-way merge sort, the internal memory sorting
algorithm in TPIE automatically uses all the available CPU cores.

Overall, the major TPIE library extension presented in this paper supports
efficient streaming-based implementations of I/O-efficient algorithm in a sim-
ple, modular and maintainable way, and I/O-efficient algorithms can thus be
composed and adapted in commercial and research applications while deal-
ing systematically with important aspects, such as memory management and
progress tracking, that are not intrinsic to the algorithmically optimal solution.
The extended library has already been used to evaluate I/O-efficient algorithms
in the research literature (e.g. [12, 27]) and is heavily used in I/O-efficient

38 CHAPTER 3. EXTERNAL MEMORY PIPELINING

commercial terrain processing applications by the Danish startup SCALGO1.
The extension is integrated into the official TPIE project that is available on
GitHub as free and open-source software2.

The rest of the paper is structured as follows. In Section 3.2, we motivate
pipelining with a concrete algorithm based on scanning and sorting. After this
motivation, we in Section 3.3 present in full generality how to use the TPIE
extension and briefly discuss its implementation.

3.2 An Example Problem

In this section we present an example of a typical sub-problem in an I/O-
efficient application. We show that the problem benefits from a pipelined
implementation; by implementing every sub-problem in a bigger data processing
application (such as the real-world example in Figure 3.1) using pipelining,
more than half of the I/Os can be saved.

3.2.1 The Raster Transformation Problem

In geographic information systems (GIS), a terrain is often represented as a
raster of heights with each cell indicating the height of the terrain in a certain
point. Since the Earth is spherical and a raster is flat, it is not possible to map
the entire surface of the Earth continuously to a raster. However, if only a
particular region, country or continent needs to be represented, it is possible
to project the chosen region to a plane in a way that roughly maintains the
geodesic distances and areas. When several rasters must be processed together
they must be in the same projection.

We call the problem of transforming a raster from one projection to an-
other the raster transformation problem. Essentially, the problem consists of
projecting each cell of the raster from the source projection plane to the unit
sphere, and from the unit sphere to the target projection plane. These two
steps can be represented by a function f : Z2 → Z2 that maps each cell of the
target raster projection to the corresponding cell of the source raster projection.
Thus, in the raster transformation problem we are given an input raster A of
size W ×H (that is a W by H matrix of numbers) stored in row-major order,
and we want to produce an output raster B of size W ′ × H ′ in row-major
order, such that the value of a cell (x, y) in B is copied from the value of a cell
(x′, y′) = f(x, y) in A. Below we for convenience let N = WH = W ′H ′ be the
number of cells in both the input and output raster.

The raster transformation problem can easily be solved in optimal O(N)
time simply by for each cell (x, y) in B reading the corresponding input value at
f(x, y) in A. However, this solution might be very I/O-inefficient. For example,

1SCALGO: Scalable Algorithmics. https://scalgo.com
2TPIE: Templated Portable I/O Environment. http://madalgo.au.dk/tpie

https://scalgo.com
http://madalgo.au.dk/tpie

3.2. AN EXAMPLE PROBLEM 39

RasterSink (0)

Point to raster (1)

Sort | Write sorted output (2)

Join sink (9)

Split source (86) Split source (103)

Join source (13)

Sort | Write sorted output (24)

Elevation Sink (14)

Convert wid with edge (15)

MultibandPullSourceConvertor (16)

MultibandRasterPullSource (17)

Raster source (18)

Tree sink (19)

Tree builder (20)

Output factory (21)

Tree builder (23)

Tree sink (22)

Tree sink (27)

Btree node extender (28)

Tree builder (29)

Tree Node to Item (30)

Build r-tree back (31)

Buffer (35)

Sort | Write sorted output (39)Fetching items (62)

Read (32)

Join sink (33)

Saddle Max Flow Sink (36)

Point to raster (37)

Accumulator (38)

Build r-tree front (42)

Fork (43)

Compact event (45)

Write sorted output (50)

Vertex Map (48)

Compute time (49)

Convert node (61)

Join sink (52)

Query structure item (53)

Fork (54)

To Point3 (60)

Queue Id Sink (55)

Point to raster (56)

Sort | Write sorted output (57)

Key datastructure producer (65)

Merger (75)

Fork (66)

Fetching items (84)

Operation extender (67)

Write sorted output (96)

kd-tree builder back (69)

kd-tree builder front (70)

Raster pull source (71) Raster pull source (72) Forwarder (73)

Raster source (74)

Raster pull source (77) Forwarder (78)

Raster source (79)

Simulator back (81)

Simulator front (82)

Pull source (83)

Watershed size computer (85)

Write (87)

Sort | Write sorted output (88)

Extended edge extractor (91)

MultibandPullSourceConvertor (92)

MultibandRasterPullSource (93)

Raster pull source (94)Pull source (95)

Sort | Write sorted output (98)

Key computer (101)

Forwarder (102)

Figure 3.1: Pipelined components in a real TPIE application developed by
SCALGO. Dashed lines represent phase ordering dependencies resulting from
blocking edges in the flow graph.

40 CHAPTER 3. EXTERNAL MEMORY PIPELINING

Make S1

Make S2

Output

B

1:

3:

5:

Reads Writes

2N

2N

2N

N

N

2N

N

2N

N

2:

4:

Sort S1

Sort S2

7N 7N

(a)

Make S1

Make S2

Output

B

1:

3:

5:

Reads Writes

N

2:

4:

Sort S1

Sort S2

3N 3N

N N

2N N

(b)

Figure 3.2: Raster transformation algorithm. (a) The algorithm without
pipelining, requiring 7N reads and writes (assuming use of merge-sort using
just one merge step). (b) The algorithm with pipelining, requiring just 3N
reads and writes.

if f represents matrix transposition where f(x, y) = (y, x), then each access
to A requires a new block to be read (assuming W,H ≥ M

B), and thus the
solution performs Θ(N) I/Os in the worst case. For matrix transposition in
particular, only Θ(Sort(N)) I/Os are required [6]. In fact, in general the raster
transformation problem can be solved in O(Sort(N)) I/Os using a simple five
step streaming algorithm (refer to Figure 3.2a): First a stream S1 is constructed
containing for each cell (x, y) of B an item consisting of a pair (f(x, y), (x, y)).
Next S1 is sorted such that f(x, y) appear in the same row-major order used
to store A. In the third step, A and S1 are then scanned simultaneously to
construct a stream S2 containing an item (x, y, v) for each pair (f(x, y), (x, y))
in S1 where v is the value of A at position f(x, y). Then S2 is sorted into the
row-major order used to store B. In the fifth and final step, S2 is scanned and
for each entry (x, y, v) the value v is output to B[x, y]. Since the algorithm
performs a constant number of scanning and sorting steps it uses O(Sort(N))
I/Os and can easily be implemented using the streaming support of either
TPIE or STXXL. Refer to Figure 3.3 for a TPIE code example.

As discussed in the introduction, streaming-based implementations of even
simple I/O-efficient algorithms, as the raster transformation algorithm above,
might not be practically efficient because items are written to disk between
steps. To illustrate this, we will analyze the exact number of items read and
written by the above algorithm. For simplicity, we assume that N elements
can be sorted using 2N reads and 2N writes, which is a practically realistic
assumption if external merge-sort is used. Recall that external merge-sort
works by first scanning through the N input elements and sorting M elements
at a time in internal memory to produce N

M sorted runs. This requires N reads
and N writes. Next the sorted runs are merged together M

B at a time (using a
block of internal memory for each run) to produce N

M /
M
B longer sorted runs,

3.2. AN EXAMPLE PROBLEM 41

1 struct vec2 { int x, y; };
2 vec2 f(vec2 a) { return {a.y, a.x}; } // Here, f is matrix transposition
3 bool operator<(vec2 a, vec2 b) { return (a.y != b.y) ? (a.y < b.y) : (a.x < b.x); }
4 struct map_point { vec2 from, to; };
5 bool operator<(map_point a, map_point b) { return a.from < b.from; }
6 struct value_point { vec2 point; float value; };
7 bool operator<(value_point a, value_point b) { return a.point < b.point; }
8
9 // Sort the input points into the order in which they appear in the output.
10 tpie::file_stream<map_point> stream1; stream1.open();
11 for (int y = 0; y < outputysize; ++y)
12 for (int x = 0; x < outputxsize; ++x) {
13 map_point p = { f({x, y}), {x, y} };
14 if (0 <= p.from.x && p.from.x < xsize && 0 <= p.from.y && p.from.y < ysize)
15 stream1.write(p);
16 }
17 // Sort the input points in row-major order, so we can scan them simultaneously with A.
18 tpie::sort(stream1);
19 // Scan input raster and input point stream, filling the input points with values.
20 stream1.seek(0); // Seek to beginning of stream
21 tpie::file_stream<value_point> stream2; stream2.open();
22 tpie::array<float> row1(xsize);
23 for (int y = 0; y < ysize; ++y) {
24 input.read_next_row(&row1);
25 while (stream1.can_read() && stream1.peek().from.y == y) {
26 map_point p = stream1.read();
27 stream2.write(value_point{ p.to, row1[p.from.x] });
28 }
29 }
30 stream1.close();
31 // Sort the filled input points into output order.
32 tpie::sort(stream2);
33 // Write the output points to a raster.
34 stream2.seek(0); // Seek to beginning of stream
35 tpie::array<float> row2(outputxsize);
36 for (int y = 0; y < outputysize; ++y) {
37 for (int x = 0; x < outputxsize; ++x) row2[x] = nodata;
38 while(stream2.can_read() && stream2.peek().point.y == y) {
39 value_point p = stream2.read();
40 row2[p.point.x] = p.value;
41 }
42 output.write_next_row(&row2);
43 }
44 stream2.close();

Figure 3.3: Raster Transformation Using TPIE Without Pipelining

42 CHAPTER 3. EXTERNAL MEMORY PIPELINING

again using N reads and N writes. The merging process is repeated until a
single sorted output is obtained. However, in practice (where N , M and M

B
are on the order of 1012, 109 and 103, respectively) N

M /
M
B < 1 so only a single

merging step is required. Using this, we can easily realize that the above raster
transformation algorithm requires 7N reads and 7N writes without pipelining
(refer again to Figure 3.2a): Generating the stream S1 in the first step requires
N writes, and sorting it in the second step requires 2N reads and 2N writes.
Reading A and S1 simultaneously in the third step to produce S2 requires 2N
reads and N writes. Again, sorting S2 in the fourth step requires 2N reads
and writes, and finally, reading S2 and writing B in the fifth step requires
N reads and writes. However, by modifying the five steps of the algorithm
so that the intermediate result of one step is immediately used by the next
step (if possible) without storing the intermediate result on disk, that is, by
using pipelining, we can reduce the number of reads and writes to 3N each.
More precisely, we can save N writes and N reads of S1 between step one
and two by immediately producing the initial sorted runs of step two while
performing step one. Similarly, we can save the N writes and N reads of S1

between step two and three by performing step three (scanning S1 and A)
simultaneously with merging the sorted runs. Note that apart from the write
and read between the run formation and merging in step two, we in this way
avoid writing S1 altogether. In a similar way, we can avoid writing S2 and
save N reads and N writes by also producing the initial sorted run of step four
while performing step 3, as well as N reads and N writes by performing step
five simultaneously with merging of the sorted runs in step 4. Altogether, we
save 4N reads and 4N writes, that is, over half of the I/Os. Although this does
not change the asymptotic I/O-complexity of the algorithm, it translates into
a running time reduction of 22 hours if we assume an input size N of 1 TB
and a disk read/write speed of 100 MB/s.

Note that the pipelining process described above conceptually transforms
the five-step algorithm into a three-phase algorithm as indicated in Figure 3.2b,
where e.g. the second phase consists of the merging part of the step two
sorting, step three, and the run formation part of the step four sorting. One
could of course implement the algorithm by implementing these three phases
directly, that is, by implementing several special versions of external merge-
sort (or rather, special run formation, merging, and merging-run formation
implementations). However, this would not only be cumbersome, but also
unacceptable from a software engineering point of view. Instead, direct support
of pipelining where the five-step algorithm is automatically pipelined would
be desirable. However, such a pipelining would require system support for
identification of phases and careful memory management. For example, the
merge and run formation parts of phase two of the three-phase algorithm would
normally both require all of the main memory, so the memory somehow needs
to be divided between the two parts. As described below, this is handled
somewhat differently in STXXL and the new TPIE extension.

3.2. AN EXAMPLE PROBLEM 43

1 void transform(raster_input & in, raster_output & out, size_t mem_available) {
2 // In phase 1, the single sorter can use all the available memory.
3 const size_t phase1_sort_memory = mem_available;
4 // In phase 2, the two sorters receive each half the available memory,
5 // excluding the memory used to store a single block from the input.
6 const size_t phase2_sort_memory = (mem_available − in.buffer_size()) / 2;
7 // In phase 3, there is a single sorter and an output buffer.
8 const size_t phase3_sort_memory = mem_available − out.buffer_size();
9 GenerateOutputPoints out_points(out.dimensions());
10 typedef TransformPoints<GenerateOutputPoints> TransformOutputPoints;
11 TransformOutputPoints point_pairs(std::move(out_points), in.dimensions());
12 typedef stxxl::stream::runs_creator<TransformOutputPoints, input_yorder> rc_t;
13 rc_t rc(std::move(point_pairs), input_yorder(), phase1_sort_memory);
14 typedef stxxl::stream::runs_merger<rc_t::sorted_runs_t, input_yorder> rm_t;
15 // The following call to rc.result() executes the first phase.
16 rm_t rm(rc.result(), input_yorder(), phase2_sort_memory);
17 RasterReader in_raster_reader(in);
18 typedef PointFiller<rm_t, RasterReader> FillOutputPoints;
19 FillOutputPoints filler(std::move(rm), std::move(in_raster_reader));
20 typedef stxxl::stream::runs_creator<FillOutputPoints, point::yorder> rc2_t;
21 rc2_t rc2(std::move(filler), point::yorder(), phase2_sort_memory);
22 typedef stxxl::stream::runs_merger<rc2_t::sorted_runs_t, point::yorder> rm2_t;
23 // The following call to rc2.result() executes the second phase.
24 rm2_t rm2(rc2.result(), point::yorder(), phase3_sort_memory);
25 // The following call to write_raster() executes the third phase.
26 write_raster(std::move(rm2), out);
27 }

Figure 3.4: Raster transformation using the STXXL streaming layer.

3.2.2 STXXL Implementation

When implementing the raster transformation algorithm with pipelining using
the STXXL streaming layer, the five steps of the algorithm are implemented
individually as is natural from a software engineering point of view; we call
each such individual part of a pipeline a component. However, since STXXL
does not handle memory management, the implementation that combines the
components then has to identify the three phases of the algorithm explicitly
and compute how much memory is allocated to each of the components of a
phase. Refer to Figure 3.4 for STXXL code that implements this, that is, the
main code that implements the five step algorithm in three phases (excluding
the code for the individual components). The code illustrates how three phases
are explicitly identified and memory allocated. For example, in phase two the
memory available for the two sorting components (merging of step two and run
formation of step four) is computed by setting aside a buffer of size B of the
available main memory for reading the input, and then share the remaining
memory between the two sorting components. Concretely, the computation is

44 CHAPTER 3. EXTERNAL MEMORY PIPELINING

performed with the statement: sort_memory = (memory_available − block_size) / 2.
While identifying phases and allocating memory in this way is easy in our
simple example algorithm, it is more difficult in larger applications such as
the example given in Figure 3.1. Especially if more than one programmer is
working on the application it is difficult and error-prone to distribute memory
correctly.

Apart from the complexity that the need for phase identification and
memory allocation adds to pipelined STXXL code, there are also some C++

syntax issues that add to the code complexity. More precisely, the C++ syntax
used is quite verbose, since for technical reasons names of the components
often need to be repeated. The reason is that STXXL combines pipelining
components using a C++ feature known as template instantiation that allows for
the compiler to inline function calls between different components of the pipeline.
For performance reasons, this is necessary when many small components are
pipelined. However, the template instantiation syntax is not well-suited for use
in large pipelined applications.

As an example, consider the C++ statement typedef TransformPoints<Generate-
OutputPoints> TransformOutputPoints; in the STXXL implementation of the raster
transformation algorithm. In this statement, the C++ language typedef statement
is used to declare TransformOutputPoints to be a type alias for the TransformPoints
component instantiated with the GenerateOutputPoints component. Such a type
alias is needed for each component of the pipeline, and only when all the type
aliases have been defined the individual component objects can be declared and
constructed. In this way, the pipeline has to be defined both in terms of type
aliases nested within each other and as actual component objects combined
together.

3.2.3 TPIE Implementation Using Pipelining

As in the case of pipelined STXXL, in the implementation of the five step raster
transformation algorithm using the extended TPIE library with pipelining, the
components of the pipeline are implemented individually. However unlike in
the STXXL implementation, the combination of the components becomes very
simple, since TPIE is component-centric and automatically identifies phases
and performs memory management. To illustrate this, a diagram showing the
eight components used to implement the five steps is given in Figure 3.6a along
with the pipelining code in Figure 3.6b. Note how the code in Figure 3.6b
lines 3-12 naturally corresponds to the pipeline in Figure 3.6a. Note also that
the reading and writing of rasters are handled by two special components to
separate the handling of specific raster formats from the algorithm, and how
the two sorting components are implemented using two different built-in TPIE
sorting components defined in lines 3 and 4 on Figure 3.6b. The reason two
different sorter implementations are used (and that the pipeline is defined
in two statements defining p1 and p2, respectively) is that the output from

3.2. AN EXAMPLE PROBLEM 45

1 template <typename dest_t>
2 struct GenerateOutputPoints : public tpie::pipelining::node {
3 GenerateOutputPoints(dest_t d): dest(std::move(d)) {}
4 virtual void propagate() override {
5 dimensions = fetch<rastersize_t>("outputsize");
6 set_steps(dimensions.width ∗ dimensions.height);
7 }
8 virtual void go() override {
9 for (int y = 0; y < dimensions.height; y++)
10 for (int x = 0; x < dimensions.width; x++)
11 { step(); dest.push(point(x, y)); }
12 }
13 rastersize_t dimensions; dest_t dest;
14 };
15 typedef tp::pipe_begin<tp::factory<GenerateOutputPoints>>

16 generate_output_points;

Figure 3.5: generate_output_points component used in the TPIE raster transfor-
mation algorithm.

the component sorting S1 has to be read by the component constructing S2

simultaneously with the output from the component reading the input raster
A. Thus, the component constructing S2 has to control when data is received
from the sorting component, which is done through pull-based streaming. This
functionality is implemented with a TPIE so-called passive sorter with an
input and an output part defined in line 3. On the other hand, the component
sorting S2 is a more traditional pipelined component that uses push-based
streaming, where input data is received from preceding component (in this
case the component constructing S2) when ready, and output data in turn
pushed to the subsequent component. It is defined with an ordinary TPIE
sorter in line 4. As an example of a component implementation, the code
implementing the component generate_output_points is given in Figure 3.5. The
component contains a method propagate() that is called by TPIE when setting
up the pipeline, and a method go() that is called by TPIE to execute the actual
component. The component also uses push-based streaming, and it pushes
each produced element to the next component by calling the push() method of
that component. The details of how the push and pull mechanisms work will
be discussed in Section 3.3, where the full TPIE pipelining framework and its
implementation is described. Below we highlight some of the other framework
features that are used in the raster transformation example.

Memory management As mentioned, TPIE automatically manages mem-
ory and divides available memory among components in a pipeline. Thus
in the pipeline definition in Figure 3.6b there is no code at all dealing with
memory distribution. Often many components use only a small amount of static

46 CHAPTER 3. EXTERNAL MEMORY PIPELINING

generate output points

compute transformation

sort S1

read raster

construct S2

sort S2

construct output

︷︸︸
︷

Step 1

Step 2

Step 3

Step 4

Step 5

write raster

push

push

push

push

push

push

pull

(a)

1 void transform(raster_input & A, raster_output & B,
2 tpie::progress_indicator_base & pi) {
3 auto sort_S1 = tpie::pipelining::passive_sorter<projected_point>();
4 auto sort_S2 = tpie::pipelining::sort(point::yorder());
5 tpie::pipelining::pipeline p1 = generate_output_points()
6 | tpie::pipelining::parallel(compute_transformation())
7 | sort_S1.input();
8 tpie::pipelining::pipeline p2 = read_raster(A)
9 | construct_S2(sort_S1.output())
10 | sort_S2
11 | construct_output()
12 | write_raster(B);
13 p1.forward("inputsize", A.dimensions());
14 p1.forward("outputsize", B.dimensions());
15 uint64_t n = A.cell_count() + B.cell_count();
16 p1(n, pi, TPIE_FSI); // Execute the pipeline
17 }

(b)

Figure 3.6: Raster transformation algorithm. (a) Pipeline illustrated as compo-
nents. (b) TPIE code implementing the pipeline.

3.2. AN EXAMPLE PROBLEM 47

memory, whereas components such as sorting require dynamically allocated
memory depending on the amount of available memory. In the latter case the
component has to specify its minimum and maximum memory requirements
in its implementation. In the example component shown in Figure 3.5 no
requirement is specified since only static memory is used.

Metadata Often many components in a pipeline need some sort of metadata
about the items that are being streamed between components. In the example,
certain components need to use the dimensions of the input and output rasters.
While such metadata can of course be passed as parameters to the individual
components in the pipeline definition, doing so makes the definition needlessly
cluttered. Instead, TPIE provides a general facility for passing metadata
between pipeline components. Thus, in Figure 3.6b lines 13-14, the pipeline
definition uses forward() to pass the dimensions of the input and output rasters
to the components that need them. The individual components can then obtain
the metadata using fetch(), such as when the component generate_output_points
in Figure 3.5 line 5 retrieves the dimensions of the output raster.

Progress reporting In the example, the TPIE support for progress reporting
(e.g. as a progress bar) is also used. As with memory requirements, the code
required to supply progress information is not part of the code in Figure 3.6b
where the pipeline is defined, but rather part of the implementation of the
individual component. Thus, the component in Figure 3.5 provides the needed
information by using set_steps() in line 6 in the propagate() method to define how
many items it will produce, and then calling a progress stepping function in
line 11 in the go() method for each item that it produces. When executing the
pipeline in line 16 of Figure 3.6b the argument pi is a reference to a progress
indicator object that tells TPIE how to display progress. To provide accurate
progress estimations, TPIE actually uses statistical information about progress
of previous runs of the code. To store information about runs, the problem’s
instance size n, computed in line 15, as well as a symbol TPIE_FSI used to
identify the application being executed, are also passed to the TPIE framework
when executing the pipeline in line 16.

Parallelism The example takes advantage of TPIE support for multi-core
CPU parallelism in two ways. First, in the TPIE built-in implementation of
multi-way merge-sort, the initial run-formation phase is automatically par-
allelized. Second, by wrapping the component compute_transformation in the
directive tpie::pipelining::parallel(. . .) in line 6, TPIE automatically distributes
this part of the computation among all available CPU cores.

48 CHAPTER 3. EXTERNAL MEMORY PIPELINING

3.3 TPIE Pipelining

In this section we describe the TPIE pipelining framework in more detail. First
in Section 3.3.1 we describe how to use the framework, and then in Section 3.3.2
we discuss some aspects of the implementation of the framework.

3.3.1 Pipelining Use

In this section we first describe how a TPIE pipeline consisting of a number of
components can be modeled using a so-called flow graph, and how this graph
can be used to identify pipeline phases. Then we describe how components
are implemented. Finally, we describe how a TPIE pipeline is constructed and
executed.

Flow graph and phase identification As described in Section 3.2.3, a
TPIE pipeline consists of a number of components that push data to or pull
data from other components. We distinguish between two types of components,
namely regular components that produce output as the input is processed,
and blocking components that have to process all input before producing any
output. Blocking components consist of two sub-components, namely an input
and an output sub-component, where the input sub-component processes all
input before the output sub-component is invoked to produce the output; the
input sub-component might store intermediate results on disk. Merge-sorting
is an example of a blocking component; the input sub-component naturally
corresponds to the initial run formation step and the output sub-component to
the merging step. Blocking components introduce the need for pipeline phases
that are executed independently, since the input and output sub-components
cannot be executed simultaneously. In the raster transformation algorithm in
Section 3.2, the three phases are exactly needed due to the two blocking sorting
components.

A pipeline can conveniently be represented by a directed acyclic flow graph,
with regular nodes corresponding to regular components and input nodes and
output nodes corresponding to the sub-components of blocking components.
Regular nodes are connected with other regular nodes and input and output
nodes by edges directed along the streaming direction and labeled as push
edges or pull edges in a natural way; note that a node cannot have both an
outgoing push and an outgoing pull edge. Each input node is also connected
with a directed blocking edge to the corresponding output node. To be able to
automatically determine the phases of a pipeline, TPIE requires that the flow
graph corresponding to the pipeline has two particular properties: First, if all
blocking edges are removed, then no input and output nodes corresponding
to the same blocking component should be in the same connected component.
Second, if all push and pull edges are contracted, then the graph should be
acyclic. The first property means that the connected components directly

3.3. TPIE PIPELINING 49

identify the pipeline phases that need to be executed independently. When
each such connected component is contracted, each directed edge (u, v) in the
resulting graph indicates that the phase corresponding to u needs to be executed
before the phase corresponding to v. Thus the second property ensures that
there exists a valid (topological) order in which to execute the components.

While the second flow graph property above has to be fulfilled for any
pipelined program to be valid, the first property only has to be fulfilled if
we require that the program is constructed such that all but blocking com-
ponents can be pipelined, that is, that streaming items are only written to
disk by blocking components. For example, consider the small pipeline shown
on the right, where component u pushes to both a sorter and to a compo-
nent w, which in turn pulls output from the sorter. In this case, u, w and

u

sort

w

push

pull

push

the input and output nodes of the sorter are all in the same connected
component in the phase graph without blocking edges. However,
it is obviously not possible to pipeline all the components in one
phase. In particular, it is not possible to pipeline u and w, since
the output from the sorter used in w is not available at the same
time as the output from u also used in w. To remedy this prob-
lem, and make the flow graph fulfill the second property, a simple blocking
component that delays the stream of items from u to w, by writing them
temporarily to disk, can be inserted between u and w in the pipeline (such
that the example has two phases). To support this, TPIE not only contains
a built-in sorting blocking component, but also blocking components that
delay and reverse a stream. Each of these components come in an active and a
passive variant. In the active variant both the input and output sub-components
use push-based streaming, and in the passive variant the input sub-component
is push-based and the output sub-component pull-based.

Component implementation The interface of each component in a TPIE
pipeline must have certain methods; sub-components are essentially like regular
components, so when we refer to components below we mean regular components
and sub-components.

Methods push(), pull(), and can_pull() are used to stream data items between
components. Consider a component corresponding to a node u in the flow
graph that produces data that is processed by a component corresponding to a
node v in the graph, that is, where there is an edge (u, v). With a slight abuse
of notation, we use u and v to refer to the two components. If the edge is a
push edge we say that v is a destination of u, and then v must implement a
push() method and u must push each item in the stream to v by calling the
method v.push(). If on the other hand the edge is a pull edge we say that u is a
source of v, and then u must implement a pull() method and v must pull each
item from u by calling the method u.pull(); u must also implement the method
can_pull() to return true if there is more data to pull and false otherwise.

50 CHAPTER 3. EXTERNAL MEMORY PIPELINING

A component u that is neither the destination or the source of any other
component must implement a go() method that repeatedly pushes or pulls data
until there is no more data to process. This is because data is neither pushed
to or pulled from u by other components calling u.push() or u.pull(). Thus the
go() method is used to start the execution of a phase.

Each component u must implement (possibly empty) begin() and end()
methods that are called before and after the stream processing of the phase
containing u, respectively. These methods can for example be used to allocate
and deallocate memory used by u, or set up data structures needed by u.
Component u is also allowed to push items to its destinations and pull items
from its sources in begin() and end(). This is e.g. useful when buffers need to
be filled up at the beginning or emptied at the end of a phase.

Each component u must also implement a (possibly empty) propagate()
method that is also called before any stream processing in the phase containing
u and used to pass metadata between components. Inside the propagate()
method u may use the forward function to pass key-value pairs to components
v that can be reached from u in the flow graph. It may use the fetch function
to retrieve named metadata from other components. Often metadata includes
information about input and output data size, and if TPIE should provide
progress reporting, at least one component u in each phase should provide
progress information by calling the function set_steps(n) inside the propagate()
method to indicate the number of items n that it will process, and then call
the step() function once for each item that is processed. Often u is a node with
no incoming push or pull edges in the flow graph, that is, the node that creates
streaming data.

Finally, a component u that requires dynamically allocated memory to
perform its stream processing needs to indicate this to TPIE by calling the
functions set_minimum_memory(au) and set_maximum_memory(bu) in its class con-
structor to request between au and bu bytes of memory, where bu = ∞ is
used to indicate that the component requests as much memory as possible.
After TPIE has distributed memory, u can then obtain information about
how much memory it was assigned between au and bu by calling the function
get_available_memory() in the begin() method.

Pipeline construction and execution After defining the pipelining com-
ponents, a pipeline is constructed by stringing together components using
the so-called pipe operator as in the expression p = generate_output_points() |
compute_transformation() | sort_S1.input().memory(2) where three components
generate_output_points(), compute_transformation() and the input sub-component of
sort_S1 are pipelined. For each component, as for the sort_S1.input() component
in the example, one can set a memory priority using memory() to indicate to
TPIE how important it is to allocate memory to the component; by default the
priority is one, and a priority of k means that if several components all request

3.3. TPIE PIPELINING 51

as much memory as possible using set_maximum_memory(∞) then a component
with priority k will receive k times the amount of memory as one with priority
one.

To execute the pipeline one simply calls the object p. TPIE then builds
the flow graph and computes connected components to identify phases, and
then contracts the components and topologically sorts the graph to find the
order in which to execute the phases. After this TPIE executes each phase in
turn. To execute a phase, TPIE first distributes memory to each component
in the phase based on the memory requests and priorities, and then it calls
the methods propagate(), begin(), go() and end() on the components in a specific
order based on the flow graph. First, propagate() is called on the components in
the phase in topological order to allow each component to call forward(), fetch()
and set_steps(). The topological order is used since a component u has to be
able to pass metadata to components reachable from u in the flow graph. Next
begin() is called on all components in the order obtained by topologically sorting
the flow graph where all push edges have been reversed; this topological order
exists as the graph is acyclic, since a node in the flow graph cannot have both
an outgoing push and an outgoing pull edge. This particular topological order
is used since for a push edge (u, v), u should be able to push to v in u.begin(), so
u.begin() should be called after v.begin(); similarly, if (u, v) is a pull edge, then
v.begin() must be called after u.begin() is called. After this initialization, the
main streaming part of the phase is executed by calling the go() method on the
appropriate component. Finally, at the end of the phase end() is called on the
components in reverse order of the begin() order, that is, in reverse topological
order.

3.3.2 Pipelining Implementation

Above we have already discussed how TPIE identifies and executes phases
of a pipeline, and due to space constraints we cannot describe the entire
implementation of TPIE pipelining in detail. In this section we therefore briefly
discuss a few aspects of the implementation not described above. The interested
reader is also referred to the technical documentation of TPIE [97].

Memory management As mentioned, TPIE distributes memory to compo-
nents in a phase based on the minimum au and maximum bu memory require-
ments, along with the memory priority cu of each component u in the phase.
Component u is assignedMu(λ) = max{au,min{bu, λcu}} bytes of memory, for
a value of λ such that the total assigned memory M(λ) =

∑
uMu(λ) is smaller

than the available memory. This way memory is distributed proportionally
to the memory priorities unless this gives an amount of memory outside the
[au, bu] interval. Since M(λ) is a non-decreasing function of λ, TPIE can use
binary search to find λ. Refer to Figure 3.7 for an example.

52 CHAPTER 3. EXTERNAL MEMORY PIPELINING

Node Minimum Maximum Priority Assigned
v av bv cv Mv(λ)

A 4 12 5 10
B 1 7 3 6
C 8 ∞ 3 8
D 7 12 7 12

0 1 2 3
λ

M
(λ

)
D

A

C

B

M

Figure 3.7: Memory assignment for four nodes where λ = 2, M(λ) = 36.
Nodes A and B are assigned λ times their priority, whereas nodes C and D
are assigned their minimum and maximum memory, respectively.

Progress reporting TPIE also supports progress reporting for a pipeline.
To ensure that a progress bar shown to the user progresses from 0% to 100% at
a constant pace, TPIE maintains an execution time database with information
about how large a fraction of the execution time was spent in each phase in
the execution of the pipeline that processed the largest instance size. In order
to distinguish between different pipelines in the execution time database, each
pipeline execution carries the preprocessor macro TPIE_FSI as an argument,
which is expanded by the compiler into a string that uniquely identifies the
location in the code where the pipeline is defined. In this way, TPIE can store
information about multiple pipelines in the execution time database.

Automatic parallelization Automatic multi-core CPU parallelism is sup-
ported in TPIE by applying the tpie::pipelining::parallel(. . .) directive to a push-
based pipeline component. In this case, the processing of the component is
distributed among the available CPU cores by instantiating a copy of the com-
ponent for each core and passing items to these components in a round-robin
fashion as they arrive. To amortize the overhead of thread synchronization,
items are passed to components in batches of 2048 items at a time.

Function inlining To minimize the computational overhead of the many
push() and pull() function calls required when executing a pipeline, TPIE is
designed to allow the compiler to inline the processing of several consecutive
pipelining components into one function. As in STXXL, this is achieved using
template instantiations in C++. Thus, if u pushes to v in the pipeline, then
when u is compiled the type of v is known to the compiler so the implementation

3.3. TPIE PIPELINING 53

of v.push() can be inlined into u. However unlike STXXL, TPIE is designed to
hide the resulting complex type definitions from the pipeline definition, and
instead of using recursive template instantiations the pipe operator can be
used to define a TPIE pipeline. This is very convenient when building large
pipelined applications.

Chapter 4

Practical I/O-Efficient Multiway
Separators

Abstract

We revisit the fundamental problem of I/O-efficiently computing
r-way separators on planar graphs. An r-way separator divides a planar
graph with N vertices into O(r) regions of size O(N/r) and O(

√
Nr)

boundary vertices in total, where boundary vertices are vertices that
are adjacent to more than one region. Such separators are used in I/O-
efficient solutions to many fundamental problems on planar graphs such
as breadth-first search, finding single-source shortest paths, topological
sorting, and finding strongly connected components. Our main result is an
I/O-efficient sampling-based algorithm that, given a Koebe-embedding of
a graph with N vertices and a parameter r, computes an r-way separator
for the graph under certain assumptions on the size of internal memory.
Computing a Koebe-embedding of a planar graph is difficult in practice
and no known I/O-efficient algorithm currently exists. Therefore, we show
how our algorithm can be generalized and applied directly to Delaunay
triangulations without relying on a Koebe-embedding. This adaptation
can produce many boundary vertices in the worst-case, however, to our
knowledge our result is the first to be implemented in practice due to
the many non-trivial and complex techniques used in previous results.
Furthermore, we show that our algorithm performs well on real-world
data and that the number of boundary vertices is small in practice.

Motivated by applications in geometric information systems, we show
how our algorithm for Delaunay triangulations can be applied to compute
the flow accumulation over a terrain, which models how much water
flows over the vertices of a terrain. When given an r-way separator, our
implementation of the algorithm outperforms traditional sweep-line-based
algorithms on the publicly available digital elevation model of Denmark.

55

56 CHAPTER 4. MULTIWAY SEPARATORS

4.1 Introduction

In this paper, we revisit the fundamental problem of computing r-way separators
by presenting I/O-efficient algorithms and demonstrating how our results can
be applied to I/O-efficiently compute flow accumulation on a terrain. We
implement and evaluate our algorithms on real-world terrain data.

The r-way separator is a generalization of the planar separator theorem by
Lipton et al. [74]. The planar separator theorem states that a planar graph with
N vertices can be partitioned into two unconnected sets each of size at most
(2/3)N by removing O

(√
N
)
vertices from the graph. Lipton and Tarjan [74]

showed that such a partitioning can be computed in linear time in classical
models of computation. Frederickson et al. [53] described how the planar
separator theorem can be generalized to the concept of an r-way separator :
Given a parameter r, an r-way separator is a division of the vertices of the graph
into O(r) non-disjoint regions such that each vertex of the graph is contained in
at least one region. A region contains two types of vertices: boundary vertices
and interior vertices. An interior vertex is contained in exactly one region and
is adjacent only to vertices in that region. A boundary vertex is shared among
at least two regions and is adjacent to vertices in multiple regions. Each region
contains O(N/r) vertices in total of which O(

√
N/r) are boundary vertices. It

follows that the total number of boundary vertices is O(
√
Nr).

The concept of r-way separators is particularly interesting when handling
planar graphs that exceed the capacity of the main memory since the compu-
tation of such separators can be used to divide the graph into memory-sized
regions. In this situation, data is written and read in large blocks to disk, so it
is important to design algorithms that minimize the movement of such blocks.
This has led to the development of the so-called I/O model by Aggarwal and
Vitter [6]. In this model, the computer is equipped with a two-level memory
hierarchy consisting of an internal memory capable of holding M data items
and an external memory of unlimited size. All computation has to happen on
data in internal memory. Data is transferred between internal and external
memory in blocks of B consecutive data items. Such a transfer is referred to
as an I/O-operation or an I/O. The cost of an algorithm is the number of I/Os
it performs. The number of I/Os required to read N consecutive items from
disk is Scan(N) = O(N/B) and the number of I/Os required to sort N items
is Sort(N) = Θ

(
(N/B) logM/B(N/B)

)
[6]. For all realistic values of N , M and

B we have Scan(N) < Sort(N)� N . Maheshwari et al. [80] showed that an
r-way separator can be computed in O(Sort(N)) I/Os. This algorithm results in
solutions to fundamental graph problems, such as breadth-first search, finding
single-source shortest paths, topological sorting, and finding strongly connected
components, that uses O(Sort(N)) I/Os [26, 29]. Later, Arge et al. [28] pre-
sented an I/O-efficient r-way separator algorithm that uses O(Sort(N)) I/Os
and O(N logN) internal memory computation time. Furthermore, they showed
that this result can be used to derive algorithms for finding single-source short-

4.1. INTRODUCTION 57

est paths, topological sorting, and finding strongly connected components using
O(Sort(N)) I/Os and O(N logN) internal memory computation time. This
improves upon the result by Maheshwari et al. by upper bounding the internal
memory computation time used.

To our knowledge, no algorithms for I/O-efficiently computing multiway
separators have been implemented in practice yet due to the many non-trivial
and complex techniques used to derive them. Therefore, we consider the
problem of computing r-way planar separators when given a Koebe-embedding
of the graph. A Koebe-embedding of a planar graph is a set of disks in the plane
with disjoint interiors where the center of each disk corresponds to a vertex in
the graph and two disks are tangent if and only if the corresponding vertices
in the graph are adjacent. Miller et al. [84] showed that a Koebe-embedding
can be used to partition the corresponding graph into two unconnected parts
each of size at most (3/4)N by removing O

(√
N
)
vertices from the graph. In

this paper, we present a simple I/O-efficient algorithm that computes an r-way
separator for a planar graph when given a Koebe-embedding of the graph and
having certain assumptions on the size of internal memory.

To our knowledge, the computation of Koebe-embeddings is not trivial
and no I/O-efficient algorithms have been presented. Bannister et al. [32]
showed that computing exact Koebe-embedding requires computing the roots
of polynomials of unbounded degree. Thus, the focus of the current state-
of-the-art algorithms is to numerically approximate the Koebe-embedding.
Orick et al. [87] presented an algorithm that approximates a Koebe-embedding
by alternating between adjusting radii and positions of vertices. Empirical
results show that the algorithm runs in approximately linear time, however, no
theoretical worst-case bounds are given. Recently, Dong et al. [48] presented
an algorithm based on convex optimization that computes an approximate
Koebe-embedding in near-linear worst-case time. To our knowledge, these
algorithms do not trivially extend to the I/O model.

Motivated by applications in geometric information systems, we show that
our algorithm can be adapted to Delaunay triangulation without having to
first compute a Koebe-embedding. Delaunay triangulations can be computed
using O(Sort(N)) I/Os [2] and are widely used to convert terrain point clouds
into so-called triangulated irregular networks which represent a terrain as a
triangulated surface. A triangulated irregular network (TIN) is computed
by projecting the terrain point cloud in R3 onto the xy-plane, computing
the Delaunay triangulation of the projected points, and lifting the Delaunay
triangulation back to R3. This adaptation can result in Ω(N) boundary vertices
in the worst case [83]. However, we test our algorithm on the publicly available
digital elevation model of Denmark [50] and show that the algorithm results in
a small number of boundary vertices in practice.

Finally, we describe how r-way separators can be used to compute the flow
accumulation over a terrain, which models the flow of water over a terrain
represented as a TIN. We consider a variant of the flow accumulation problem,

58 CHAPTER 4. MULTIWAY SEPARATORS

where we are given a rain distribution function R that fits in internal memory
and assigns R(v) ≥ 0 units of water to each vertex v. The water in each vertex
v is then distributed by pushing water to a neighboring vertex according to
a given flow direction of v. The flow accumulation of a vertex v is the total
amount of water that flows through v. This problem is traditionally solved
in the I/O-model using O(Sort(N)) I/Os by a sweep-line algorithm where the
flow is propagated using a priority queue during a downward sweep of the
terrain [62]. In this paper, we adapt the grid terrain algorithm by Haverkort et
al. [62] to speed up the computation of flow accumulation over a TIN when given
an r-way separator of the terrain. Furthermore, we show that this algorithm
performs well in practice and outperforms the traditional sweep-line algorithm
on the digital elevation model of Denmark when given an r-way separator of
the terrain.

4.2 Preliminaries

In this section, we state several preliminary definitions and introduce a more
general definition of the r-way separator.

4.2.1 k-ply Neighborhood Systems

We begin by presenting a more formal definition of a Koebe-embedding and then
introduce the more general k-ply neighborhood system. This generalization
will be used later when applying our result to Delaunay triangulations. The
definitions in this section follow Miller et al. [84]. Let a disk packing be a set of
disks {B1, . . . , BN} in the plane that have disjoint interiors. Koebe [68] showed
that every planar graph can be embedded as a disk packing such that the
center of each disk corresponds to a vertex in the planar graph and two disks
are tangent if and only if there is an edge connecting the two corresponding
vertices in the graph. We refer to this as a Koebe-embedding of the planar
graph. Note that a partitioning of a Koebe-embedding into disjoint subsets
implies a partitioning of the vertices of the graph. Miller et al. [84] used this
idea to describe how a Koebe-embedding of a planar graph can be used to
compute a planar separator. In order to describe this result, we first introduce
the more general k-ply neighborhood system:

Definition 1 (k-ply neighborhood system). A k-ply neighborhood system in
d dimensions is a set Γ = {B1, . . . , Bn} of closed balls in Rd such that no point
in Rd is in the interior of more than k of the balls.

In the following sections, we introduce the notion of a separator for k-ply
neighborhood systems in Rd for general k. Observe that a disk packing is a
1-ply neighborhood system and, thus, this separator will also be applicable to
Koebe-embeddings.

4.2. PRELIMINARIES 59

We now state the planar separator result by Miller et al. [84]. A d-
dimensional sphere h partitions a k-neighborhood system Γ in Rd into three
subsets: the set Γ(h>) of all balls of Γ contained in the exterior of h, the
set Γ(h<) of all balls of Γ contained in the interior of h, and the set Γ(h=) of
all balls of Γ that intersect the boundary of h. Correspondingly, we define the
subsets Γ(h≤) = Γ(h<) ∪ Γ(h=) and Γ(h≥) = Γ(h>) ∪ Γ(h=).

Theorem 4.1 (Sphere Separator [84]). Suppose Γ is a k-ply neighborhood
system in Rd with size |Γ|. Then there exists a sphere h in Rd such that

|Γ(h<)|, |Γ(h>)| ≤ d+ 1

d+ 2
· |Γ| ,

|Γ(h=)| = O
(
k1/d · |Γ|1−1/d

)
.

Additionally, Miller et al. [84] presented a sampling-based algorithm for
approximately computing sphere separators. We state their result with two
additional properties that follow from their original proof; first, we state the
result when applied to a subset Υ ⊆ Γ. Note that Υ does not have to be a
proper subset. Secondly, we state the number of I/Os used.

Theorem 4.2 (Randomized Separator Algorithm [84]). Suppose Γ is a k-ply
neighborhood system in Rd, Υ ⊆ Γ is a subset of Γ. Then for any constant ε > 0
we can compute a sphere h such that with probability at least 1/2

|Υ(h<)|, |Υ(h>)| ≤
(
d+ 1

d+ 2
+ ε

)
|Υ| ,

|Γ(h=)| = O
(
k1/d · |Γ|1−1/d

)
.

Furthermore, the algorithm uses O(Scan(|Υ| · d) + c2) I/Os, where c2 is a
constant depending only on ε and d.

We remark that the randomization in the algorithm is over random numbers
chosen by the algorithm independent of the input. Therefore, the algorithm can
be used to find a sphere satisfying the inequalities by applying the algorithm
an expected constant number of times [84]. When describing our algorithm,
we will use Theorem 4.2 as a black box and refer to the resulting sphere as a
sphere separator.

4.2.2 Multiway Separator

We now present a generalization of the sphere separator result by Miller et
al. [84]. Given a k-ply neighborhood system Γ in Rd and a parameter r ≤ |Γ|/k,
an r-way division of Γ is a division of Γ into O(r) non-disjoint regions such
that each ball in Γ is contained in at least one region. A region contains two
types of balls: boundary balls and interior balls. An interior ball is contained
in exactly one region and has non-empty intersection only with balls contained

60 CHAPTER 4. MULTIWAY SEPARATORS

in the same region. A boundary ball is shared among at least two regions
and has non-empty intersection with balls in multiple regions. Each region
contains O(|Γ|/r) balls in total which are stored consecutively on disk. An
r-way separator is an r-way division where each region contains O

(√
k|Γ|/r

)
boundary balls. It follows that the total number of boundary balls of an r-way
separator is O

(√
k|Γ|r

)
. We use the term multiway separator and multiway

division whenever r is clear from the context.

4.2.3 Range Spaces, VC dimensions, and Samples

The main result of this paper is obtained by computing a multiway separator
on a sample of a given k-ply neighborhood system. In order to prove cor-
rectness of our algorithm, we show that the result generalizes to the entire
neighborhood system with at least constant probability. This proof relies on
the concepts of Vapnik–Chervonenkis dimension (VC dimension) [60] and rela-
tive ε-approximations [61]. Here, we will provide a quick summary of various
definitions and theorems. For a more in-depth introduction to VC-dimension,
we refer to Har-Peled et al. [60].

Definition 2 (Range Space). A range space is a pair (X ,H), where X is the
ground set (finite or infinite) and H is a (finite or infinite) family of subsets of
X . The elements of H are referred to as classifiers.

Definition 3 (VC Dimension). Let S = (X ,H) be a range space. Given
Y ⊆ X , let the intersection of Y and H be defined as

Y ∩H = {h ∩ Y | h ∈ H} .
If Y ∩H contains all subsets of Y , then we say that Y is shattered by H. The
VC Dimension of S, denoted by dimVC(S), is the maximum cardinality of a
shattered subset of X :

dimVC(S) = max
{
|Y |

∣∣ Y ⊆ X ∧ |Y ∩H| = 2|Y |
}
.

If there are arbitrarily large shattered subsets, then dimVC(S) =∞.

Lemma 4.1 (VC Dimension of Halfspaces [60, Chapter 5]). Let S = (X ,Hhalfspace)
be the range space where X = Rd and Hhalfspace is the set of halfspaces in Rd.
Then S has VC dimension d+ 1.

Lemma 4.2 (Mixing of Range Spaces [60, Chapter 5]). Let S1 = (X ,H1), . . . , Sk =
(X ,Hk) be k range spaces which share the same ground set X and all have VC
dimension at most ξ. Consider the sets of classifiers H∩ and H∪, where

H∩ = {h1 ∩ · · · ∩ hk | h1 ∈ H1, . . . , hk ∈ Hk} ,
H∪ = {h1 ∪ · · · ∪ hk | h1 ∈ H1, . . . , hk ∈ Hk} .

Then the range spaces S∩ = (X ,H∩) and S∪ = (X ,H∪) have VC dimension
O(ξk log k).

4.3. MULTIWAY SEPARATOR ALGORITHM FOR K-PLY SYSTEMS 61

Definition 4 (Measure). Let S = (X ,H) be a range space, and let X ⊆ X be
a finite subset of X . The measure of a classifier h ∈ H in X is the quantity

X̄(h) =
|h ∩X|
|X| .

Definition 5 (Relative Approximation). Let S = (X ,H) be a range space,
and let X ⊆ X be a finite subset of X . For given parameters 0 < p, ε < 1, a
subset Y ⊆ X is a relative (p, ε)-approximation for (X,S) if, for each h ∈ H,
we have

(1− ε)X̄(h) ≤ Ȳ (h) ≤ (1 + ε)X̄(h) if X̄(h) ≥ p .
X̄(h)− εp ≤ Ȳ (h) ≤ X̄(h) + εp if X̄(h) < p .

Lemma 4.3 (Relative Approximation Sampling [61]). Let S = (X ,H) be a
range space with VC dimension ξ, and let X ⊆ X be a finite subset of X .
Given parameters 0 < p, ε, q < 1, a random sample Y ⊆ X of size at least

c

ε2p

(
ξ log

1

p
+ log

1

q

)
,

for an appropriate constant c, is a relative (p, ε)-approximation for (X,S) with
probability at least 1− q.

4.3 Multiway Separator Algorithm for k-ply
Neighborhood Systems

In this section, we state our main result for I/O-efficiently computing an r-way
separator of a k-ply neighborhood system Γ. The algorithm can be applied to
k-ply neighborhood systems in Rd for any dimensions d > 2, however, we prove
correctness only for d = 2.

We begin by presenting an algorithm that computes an r-way division of Γ
under the assumption that k ≤ log M

B log log M
B . Given a k-ply neighborhood

system Γ in the plane and a parameter r, we let r̂ = min(r, bM/Bc) and
compute an r-way division by recursively computing r̂-way divisions until Γ is
divided into regions of size O(|Γ|/r). In order to compute an r̂-way division
on Γ, we sample a subset Υ ⊆ Γ of sufficiently large size. By recursively
computing sphere separators using Theorem 4.2, we can compute an r̂-way
separator for Υ. Let H denote the sphere separators that are computed during
the recursion. We refer to H as a separator tree. We prove that with at least
constant probability we obtain an r-way division by recursively applying the
sphere separators of H on Γ. It follows that we obtain an r̂-way division for Γ by
repeating this sampling-based algorithm an expected constant number of times.
This result provides guarantees on the number of boundary balls in the sample
Υ, however, we do not prove bounds for the total number of boundary balls in

62 CHAPTER 4. MULTIWAY SEPARATORS

the r-way division of Γ. We expect the number of boundary balls to be small
and confirm so by experimental evaluation in later sections. Additionally, by
increasing the sample size and slightly modifying the algorithm, one can remove
the assumption on k and prove that the result is an r-way separator for Γ.
This results in an I/O-efficient algorithm for computing r-way separators when
log3 M

B log log M
B log |Γ|k = O

(√
Mk

)
. In other words, we provide guarantees on

the number of boundary balls by assuming M is sufficiently large.
The rest of this section is structured as follows: in Section 4.3.1, given

r̂ ≤M/B, we describe how to sample Υ, recursively apply Theorem 4.2, and
prove that the result can be used to divide Γ into regions of size O(|Γ|/r̂)
with at least constant probability. In Section 4.3.2, we bound the number of
regions to O(r̂) and the total number of boundary balls in Υ to O(

√
k|Γ|r̂). In

Section 4.3.3, we bound the number of boundary balls in each region of Υ to
O(
√
k|Γ|/r̂). Finally, in Section 4.3.4, we bound the expected number of I/Os

used and state the final algorithm.

4.3.1 Recursively Computing Separators

In this subsection, we describe how to sample Υ, recursively apply Theorem 4.2,
and prove that the result can be used to divide Γ into regions of size O(|Γ|/r̂)
with at least constant probability, where r̂ ≤M/B and assuming k ≤ |Υ|/r̂.

First, sample Υ ⊆ Γ of size at least c0 · r̂ log2 r̂ log log r̂, where c0 > 0 is a
constant we choose later. Letting l = O(log r̂), we recursively compute sphere
separators on Υ for at most l levels; let Υi ⊆ Υ denote the balls of Υ that
occur in a node i of the recursion. In the root of the recursion, we let Υi = Υ.
At each node of the recursion, we compute a sphere separator h such that
Υi(h≤) and Υi(h≥) are smaller than Υi by at least a constant factor. For now,
assume that such a sphere separator h is obtained. We then recurse on the
two subproblems Υi(h≤) and Υi(h≥). The recursion is continued until the
problem size is at most c · (|Υ|/r̂), where c > 0 is a sufficiently large constant.
The separator tree H is then formed from the sphere separators by letting the
nodes in H correspond to the recursively computed sphere separators.

We proceed by describing how to compute a sphere separator h in a node i
of the recursion. Using Theorem 4.2 and setting ε = 1

12 , we compute a sphere
separator h that with probability at least 1/2 satisfies

|Υi(h<)|, |Υi(h>)| ≤ 10

12
· |Υi| , (4.1)

|Υi(h=)| ≤ c1

√
k|Υi| , (4.2)

where c1 > 0 is a constant. Note that this uses O(Scan(|Υi|)) I/Os. We apply
Theorem 4.2 an expected constant number of times until a separator h that
satisfies (4.2) and (4.1) is obtained. Since we divide Υ into regions of size
at most c · |Υ|/r̂, it follows that |Υ|/r̂ ≤ |Υi|/c. Using the assumption that

4.3. MULTIWAY SEPARATOR ALGORITHM FOR K-PLY SYSTEMS 63

k ≤ |Υ|/r̂ and that (4.2) holds, we upper bound |Υi(h=)| as follows:

|Υi(h=)| ≤ c1

√
k|Υi| ≤ c1

√
|Υ|
r̂
|Υi| ≤ c1

√
|Υi|2
c
≤ c1√

c
|Υi| . (4.3)

Thus, for
√
c ≥ 12 · c1, it follows from (4.3) that |Υi(h=)| ≤ 1

12 |Υi|. Combining
this with (4.1), we obtain a separator h that satisfies

|Υi(h≥)|, |Υi(h≤)| ≤ 11

12
|Υi| . (4.4)

Thus, the problem size becomes smaller by a constant factor and we can
recursively compute separators h until Υ is divided into regions of size at
most c · |Υ|/r̂. This requires at most l = O(log r) levels of recursion.

We proceed by showing that Γ is divided into regions of size O(|Γ|/r̂) when Γ
is divided recursively using the sphere separators of H. We proceed introducing
the following two lemmas:

Lemma 4.4. Let C be the set of all circles in the plane and let D be the set
of all disks in the plane. Let H≤ be the set of classifiers defined as H≤ =
{D(h≤) | h ∈ C}. Correspondingly, we define H≥. The range spaces (D,H≤)
and (D,H≥) have constant VC dimension.

The proof of Lemma 4.4 is included in Appendix 4.6.

Lemma 4.5. Let Hl be the set of classifiers defined as

Hl =
{
h1 ∩ · · · ∩ hl | h1, . . . , hl ∈ (H≤ ∪H≥)

}
.

The range space (D,Hl) has VC dimension O(l log l).

Proof. Observe that any finite subset Y ⊂ D shattered in the range space
(D,H≤ ∪ H≥) can also be shattered in the range space (D,H∪), where
H∪ = {h1 ∪ h2 | h1 ∈ H≤, h2 ∈ H≥}. Thus the VC-dimension of (D,H≤ ∪H≤)
is upper bounded by the VC-dimension of (D,H∪). The proof now follows
from Lemma 4.4 and Lemma 4.2.

Observe that the separator tree H defines a set of regions such that each
region is defined by the intersection of at most l classifiers in the set (H≤∪H≥)
corresponding to the sphere separators in a path from the root to a leaf in H.
Thus, a region can be defined by a classifier in Hl. Furthermore, each region
contains at most c · (|Υ|/r̂) balls of Υ. It now follows from Lemma 4.5 and
Lemma 4.3, that by sampling Υ with size at least c0 · r̂ log2 r̂ log log r̂, Υ is a
relative (1/r̂, ε)-approximation of Γ in the range space (D,Hl) with at least
constant probability. The constant c0 > 0 is chosen according to Lemma 4.5
and Lemma 4.3. Thus, with at least constant probability, the regions of Γ
contains at most O

(|Γ|
|Υ|c · (|Υ|/r̂)

)
= O(|Γ|/r̂) balls.

64 CHAPTER 4. MULTIWAY SEPARATORS

4.3.2 Bounding the Total Number of Boundary Balls

In the previous subsection, we bounded the size of each region. However, the
number of regions may be large, since boundary balls occur in multiple regions.
Recall that in a node i of the recursion we obtain a sphere separator h such
that the number of intersected balls is |Υi(h=)| ≤ c1

√
k|Υi|. We proceed to

upper bound the total number of boundary balls by bounding the total number
of intersected balls during the recursion. We show how to bound the total
number of intersections in Υ by O

(√
k|Υ|r̂

)
.

In Section 4.3.1, we argued that the recursion on Υ produces regions of
size at most a = c |Υ|r̂ , where c > 0 is a constant. Furthermore, it follows
from (4.4) that the size of the smallest region is at least (1/12) · a. Similar to
Frederickson [53], we let b(|Υ|) denote the number of intersections of balls in Υ
during the recursion. At each node i of the recursion, Υi is divided into two
regions Υi(h≤) and Υi(h≥) by the sphere separator h. Recall that h is selected
such that Υi(h≤) ≤ β|Υi|, where (1/12) ≤ β ≤ (11/12). Furthermore, it follows
from (4.2) that Υi(h≥) ≤ (1− β) · |Υi|+ c1

√
k|Υi|. We upper bound b(|Υi|)

as follows:

b(|Υi|) ≤
{
b (β|Υi|) + b

(
(1− β) · |Υi|+ c1

√
k|Υi|

)
+ c1

√
k|Υi| if |Υi| > a

0 if 1
12 · a ≤ |Υi| ≤ a

It can be shown by induction in the size of Υi that b(|Υi|) = O
(√

k|Υi|r̂
)
. The

proof of this is included in Appendix 4.7. Using the assumption k ≤ |Υ|/r̂, it
follows that the number of regions in Υ and Γ isO

(
|Υ|+b(|Υ|)
(1/12)·a

)
= O

(
|Υ|
a

)
= O(r̂).

Thus, the separator tree H can be used to divide Γ into O(r̂) regions of
size O(|Γ|/r̂) by recursively applying the sphere separators of H to Γ

4.3.3 Reducing the Number of Boundary Balls in a Region

In order to obtain an r-way separator for Υ from an r-way division of Υ, we
reduce the number of boundary balls in each region. Let bi be the number of
boundary balls in a region Ri of Υ. Letting c2 > 0 be a constant, we describe
how to ensure bi ≤ c2 ·

√
k|Υ|/r̂ for each region Ri. We do this by adapting

the technique described by Arge et al. [28, Section 3.3]. It follows from the
previous subsection that

∑
bi = O

(√
k|Υ|r̂

)
. Let g denote the total number of

regions which contain more than c2

√
k|Υ|/r̂ boundary balls. For each region

Ri where bi > c2

√
k|Υ|/r̂, we recursively apply Theorem 4.2 on the boundary

balls of Ri. In other words, we recursively compute sphere separators h that
divide Ri into regions Ri(h≤) and Ri(h≥) with at most (10/12) · bi + c3

√
k|Ri|

boundary balls each, where c3 > 0 is a constant. Recall that |Ri| ≤ c |Υ|r̂ , where
c > 0 is a constant. It follows that for sufficiently large c2, the region is divided
into two regions such that the number of boundary balls in each is (11/12) · bi.
We recurse until the number of boundary balls is at most c2

√
k|Υ|/r̂. Observe,

4.3. MULTIWAY SEPARATOR ALGORITHM FOR K-PLY SYSTEMS 65

that the total number of sphere separators required to divide all g regions is

O

(∑ bi

c2

√
k|Υ|/r̂

)
= O

(√
k|Υ|r̂

c2

√
k|Υ|/r̂

)
= O(r̂) .

Thus, the total number of regions will be increased by only O(r̂). Furthermore,
since each sphere separator adds O(

√
k|Υ|/r̂) new boundary balls, the total

number of boundary balls remains O(
√
k|Υ|r̂). Each separator can be computed

using expected O(Scan(|Υ|/r̂)) I/Os and, thus, we can reduce the number of
boundary balls in each region by using an additional O(Scan(|Υ|)) I/Os. Thus,
the algorithm results in an r̂-way separator for Υ.

4.3.4 Bounding the Total I/O-Complexity

We now bound the total I/O-complexity of the algorithm described. Let H
be the separator tree computed during the O(log r̂) levels of the recursion.
Recall, at each node i of the recursion we compute a sphere separator h using
Theorem 4.2 using expected Scan(|Υi|) I/Os. Thus, the expected number of
I/Os used in a level of recursion isO

(
Scan(|Υ|+b(|Υ|))

)
. Using the upper bound

on b(|Γ|) and the assumption k ≤ |Υ|/r̂, we conclude that the total number
of I/Os used during the O(log r̂) levels of recursion is O

(
Scan(|Υ|) log r̂

)
. The

results can now be stated in the following lemma:

Lemma 4.6. Given a k-ply neighborhood system Γ in the plane, a parame-
ter r̂ ≤M/B, and a random sample Υ such that |Υ| ≥ c0 · r̂ log2 r̂ log log r̂ and
k ≤ |Υ|/r̂, where c0 is a constant. Then an r̂-way separator H for Υ can be
computed using expected O

(
Scan(|Υ|) log r̂

)
I/Os. Furthermore, with at least

constant probability H produces an r̂-way division of Γ when applied to Γ.

In order to compute the r̂-way division of Γ, we apply Lemma 4.6 to obtain
a separator tree H such that the sphere separators of H can be used to divide
Γ into O(r̂) regions of size O(|Γ|/r̂) with at least constant probability. Note
that since r̂ = bM/Bc, the number of leaves in H is O(M/B). We partition H
into a constant number of subtrees such that each subtree Ĥ fits in memory
along with one block per leaf of Ĥ. We now divide Γ by recursing over the
subtrees using O(Scan(|Γ|)) I/Os in total. We repeat the above an expected
constant number of times until an r̂-way division of Γ is obtained.

We proceed by bounding the number of I/Os used by Lemma 4.6 to
O(Scan(Γ)). We use a sample of size c0

M
B log2 M

B log log M
B and assume |Γ| >

M
B log3 M

B log log M
B . Under this assumption, the expected number of I/Os is

bounded as follows:

Scan(|Υ|) log r̂ = O

(
r̂ log3 r̂ log log r̂

B

)
= O

(
M

B2
log3 M

B
log log

M

B

)
= O

(|Γ|
B

)
= O

(
Scan(|Γ|)

)
.

66 CHAPTER 4. MULTIWAY SEPARATORS

Next, consider the case when |Γ| ≤ M
B log3 M

B log log M
B . We observe that it is

sufficient to divide Γ into regions of size O(M), since regions of size O(M) can
be divided further by directly applying Theorem 4.2 on the regions. That is,
each region of size O(M) fits in memory after a constant number of applications
of Theorem 4.2, so directly applying Theorem 4.2 uses O(Scan(|Γ|)) additional
I/Os. Thus, using Lemma 4.6, we compute a separator tree H such that H
can be used to divide Γ into O(r̄) regions of size O(M) with at least constant
probability, where

r̄ =
1

B
log3 M

B
log log

M

B
.

It follows that a sample Ῡ of size O(polylog(M/B)) = O(M) is sufficient.
Similar to before, we repeat the sampling and separator computation until
an r̄-way division of Γ is found. This uses expected O(Scan(|Γ|)) I/Os since
the problem size fits in internal memory after a constant number of levels of
recursion.

Lemma 4.7. Given a k-ply neighborhood system Γ in the plane and a param-
eter r̂ ≤M/B such that k ≤ log2 M

B log log M
B , an r̂-way division of Γ can be

computed using expected O
(

Scan(|Γ|)
)
I/Os.

We now present the final algorithm for computing an r-way division for
Γ and general r. This algorithm follows immediately from Lemma 4.7. Let
r̂ = min(r, bM/Bc) and recursively apply Lemma 4.7 for O(logM/B(r)) levels
of recursion. This uses a total of O

(
Scan(|Γ|) logM/B(r)

)
I/Os.

Theorem 4.3. Given a k-ply neighborhood system Γ in the plane, an r-way
division of Γ can be computed using expected O

(
Scan(|Γ|) logM/B(r)

)
I/Os,

assuming k ≤ log2 M
B log log M

B .

Furthermore, this implies an algorithm for Koebe-embeddings, since Koebe-
embeddings are 1-ply neighborhood systems.

Theorem 4.4. Given a planar graph G and a Koebe-embedding Γ of G, an
r-way division of G can be computed using expected O

(
Scan(|Γ|) logM/B(r)

)
I/Os.

Note that the above results in an r-way division, but does not provide any
bounds on the number of boundary balls when dividing Γ. In Appendix 4.9,
we argue that the number of boundary balls in Γ can be bounded by increasing
the sample size. The result is stated in the theorem below.

Theorem 4.5. Given a k-ply neighborhood system Γ in the plane, an r-way
separator of Γ can be computed using expected O

(
Scan(|Γ|) logM/B(r)

)
I/Os,

assuming k ≤ |Γ|/r and

log3 M

B
log log

M

B
log
|Γ|
k

= O
(√

Mk
)
.

4.4. APPLICATIONS TO DELAUNAY TRIANGULATIONS AND
TERRAIN 67

4.4 Applications to Delaunay Triangulations and
Terrain

Motivated by applications in geographic information systems, we turn our
attention to Delaunay triangulations. Delaunay triangulations are often used in
practice to compute TINs from point clouds and can be computed I/O-efficiently
using O(Sort(N)) I/Os [2]. In the previous section, we described how an r-way
separator for a planar graph G can be computed I/O-efficiently, when given
a Koebe-embedding of G and having certain assumptions on the size of the
internal memory. However, to our knowledge, there are no known I/O-efficient
algorithms for the computation of Koebe-embeddings. Therefore, we describe
how to adapt our algorithm to compute separators for triangulations without
computing a Koebe-embedding. This adaptation can also be applied to any
triangulation in the plane and, thus, any planar graph since a planar graph G
can be triangulated by trivially adding edges until every face of G is a triangle.

Observe that the circumcircles of a triangulation G in the plane form a k-ply
neighborhood system Γ in the plane. However, k is Ω(|G|) in the worst-case
since many circumcircles may overlap in one point. Miller et al. [83] showed that
the circumcircles of a Delaunay triangulation form a k-ply neighborhood with
at most constant k when the largest ratio of the circum-radius to the length of
the smallest edge over all triangles is at most constant. Therefore, we describe
how to adapt our algorithm to circumcircles of a Delaunay triangulation. We
compute an r-way division H for Γ and use H to divide G by mapping each
region Ri of H to a region R̂i as follows: Let the boundary vertices of R̂i be
the vertices that are contained in a triangle whose circumcircle is a boundary
ball of Ri. The internal vertices of R̂i are the vertices which are contained only
in triangles whose circumcircles are internal balls of region Ri.

We see that the number of vertices in R̂i is O(|Ri|), where |Ri| is the
number of circumcircles of Ri. Furthermore, the number of boundary vertices
in R̂i regions is at most a constant factor larger than the number of boundary
circumcircles of Ri.

It follows that we can also divide a TIN into regions by applying the above
construction to the Delaunay triangulation used to construct the TIN. This
approach allows for division-based algorithms on TINs. Haverkort et al. [62]
showed that a separator of a grid graph can be used to I/O-efficiently compute
the flow accumulation of a terrain. Their results can be applied to TINs and
r-way divisions:

Lemma 4.8 (Division-Based Flow Accumulation [62]). Let Σ be a TIN and let
V denote the vertices of the TIN. Given a rain distribution R : V→ R+ and
an r-way division of Σ such that each region fits in internal memory along with

68 CHAPTER 4. MULTIWAY SEPARATORS

the rain distribution. Letting bi denote the number of boundary vertices in a
region Ri of the r-way division, the flow accumulation over Σ can be computed
using O(Scan(|V|) + Sort(

∑
bi)) I/Os

The flow accumulation over a TIN can also be computed using an algorithm
that performs a top-down sweep of the terrain [62]. The result is stated in the
following lemma:

Lemma 4.9 (Sweep-Based Flow Accumulation [62]). Let Σ be a TIN and let
V denote the vertices of the TIN. Given a rain distribution R : V→ R+ that
fits in internal memory, the flow accumulation of Σ can be computed using
O(Sort(|V|)) I/Os.

4.5 Experiments

In this section, we present the experiments we have conducted on real terrain
data to demonstrate the efficiency of our algorithms. We have implemented and
tested the r-way division algorithm for Delaunay triangulations as described in
Section 4.4 and Theorem 4.3. Furthermore, we have implemented and tested
the two flow accumulation algorithms stated in Lemma 4.8 and Lemma 4.9.
The algorithms have been implemented in C++ and make heavy use of the
TPIE library [19] which provides implementations of fundamental I/O-efficient
algorithms such as sorting and priority queues. The experiments were run on
an Intel i7-3770 CPU with 32 GB of RAM and 28 TB of storage running Linux.
Each program was assigned 25 GB of memory during testing.

For our tests, we used the Danish Elevation Model published by the Danish
Agency for Data Supply and Efficiency [50]. The model consists of a highly
detailed point cloud collected using LiDAR technology. Each point in the model
is labeled as ground, vegetation, a building rooftop, and others. There is an
average of 4.5 points per square meter, however, this varies for each area of the
terrain since non-reflective surfaces, such as certain types of vegetation, can
result in large holes in the point cloud. In this paper, we focus on modeling
the flow of water and, thus, we filtered out points not labeled as ground or
building points. We constructed a TIN from the resulting point cloud using a
Delaunay triangulation.

We have implemented Theorem 4.2 to compute sphere separators as de-
scribed by Miller et al. [84] and Clarkson et al. [43]. Whenever we sample
sphere separators on input G, we discard a separator h if it does not satisfy
that |G(h≤)| ≥ 1/4 · |G| and |G(h≥)| ≥ 1/4 · |G|, where |G| is the number of
triangles in G, |G(h≤)| is the number of triangles inside or intersecting h, and
|G(h≥)| is the number of triangles outside or intersecting h. We note that this
differs from previous sections, where we computed the separator based on the
circumcircles. However, since the number of intersected circumcircles upper
bounds the number of intersected triangles, the previous proofs still apply to

4.5. EXPERIMENTS 69

this adaptation. Furthermore, this simplifies the algorithm by avoiding the
computation of circumcircles. In order to examine the size of |G(h=)|, we
sampled a large number of sphere separators on various areas of the terrain
and computed the number of intersected triangles. The results are shown in
Appendix 4.8 and demonstrate that |G(h=)| is small in practice.

Next, we assessed our r-way division algorithm (Theorem 4.3) and the
flow accumulation algorithms described in Lemma 4.8 and Lemma 4.9. We
evaluated our implementation on a TIN representing a 3500 km2 area around
Herning, Denmark. The TIN is represented as a list of triangles, such that each
vertex of a triangle is annotated with its coordinates, an index, and the flow
direction of the vertex. The flow directions have been computed by selecting
the neighboring vertex with minimum height. This resulted in a TIN with
23.3 billion points and a total size of 6.2 TB. In order to measure the I/O
throughput of the system, we implemented a simple program that reads the
entire TIN and observed that the program took 2 hours and 56 minutes to run
on the TIN.

We computed a multiway division on the input such that our implementation
of division-based flow accumulation (Lemma 4.8) can fit each region in memory.
The division was saved to disk by representing each region as a file containing
a list of triangles. Each triangle is annotated with the same information as
the input as well as a boolean variable indicating whether the triangle is a
boundary triangle or not. This resulted in a division with 131 regions and only
9 394 816 boundary vertices in total. Furthermore,

∑
bi = 17 257 717, where bi

is the number of boundary vertices in region Ri. Thus, we see that the number
of boundary vertices is very small in practice despite having no theoretical
bounds for this algorithm. The computation of this multiway division took
19 hours and 23 minutes. We implemented a program that reads the output
division and writes a dummy division with the same number of regions and the
same number of triangles in each region. This program took 3 hours and 16
minutes to read the division and 8 hours and 12 minutes to write the dummy
division. In other words, we see that a large proportion of the running time is
due to computation in internal memory.

Having computed the division, we applied it to compute the flow accumu-
lation over the TIN using the division-based algorithm (Lemma 4.8). In our
implementation, we used the uniform rain distribution that distributes one unit
of water on each vertex. In this setup, our implementation of division-based
flow accumulation took 13 hours and 59 minutes when given the division as
input. We compared this to an implementation of Lemma 4.9 which took 20
hours and 18 minutes when running on the same input TIN. Thus, we see a
significant improvement in running time when the terrain has been prepro-
cessed by computing the multiway division. In other words, our approach
improves performance when computing flow accumulation for different rain
distributions on the same TIN. However, the division-based approach is slower
when computing the flow accumulation for only a single rain distribution, and

70 CHAPTER 4. MULTIWAY SEPARATORS

the time spent preprocessing is included.

4.6. APPENDIX: PROOF OF CONSTANT VC DIMENSION 71

4.6 Appendix: Proof of Constant VC dimension

In this section, we present the proof of Lemma 4.4.

Proof. We begin by proving that the VC dimension of (D,H≥) is constant.
Let h≥ ∈ H≥ denote a classifier corresponding to the separator sphere h with
center (xh, yh) and radius rh. Let d ∈ D be a disk in the plane with center
(xd, yd) and radius rd. We can express d ∈ D(h≥) as follows:

d ∈ D(h≥)⇔
√

(xh − xd)2 + (yh − yd)2 ≥ rh − rd
⇔ rd ≥ rh ∨ (xh − xd)2 + (yh − yd)2 ≥ (rh − rd)2 .

We now map d to R7 by mapping the monomials xidy
j
dr
k
d to variables zi as

follows:

〈
z1, z2, z3, z4, z5, z6, z7

〉
=
〈
xd, yd, xdyd, x

2
d, y

2
d, rd, r

2
d

〉
.

Assume there is a finite subset Y ⊂ D that is shattered by H≥. It follows that
Y maps to a subset Ŷ ⊂ R7 where |Y | = |Ŷ | and Ŷ is shattered by H∪ =
{h1 ∪ h2 | h1, h2 ∈ Hhalfspace}, where Hhalfspace is the set of all halfspaces in R7.
Thus, the VC dimension of (D,H≥) is at most the VC dimension of (R7,H∪).
It follows from Lemma 4.1 and Lemma 4.2 that the VC dimension of (D,H≥) is
constant. The VC dimension of (D,H≤) can be bounded correspondingly.

4.7 Appendix: Bound on the Total Number of
Boundary Balls

In this section, we provide an upper bound for the function b(|Υi|) introduced
in Section 4.3.2. Recall the definition of b(|Υi|):

b(|Υi|) ≤
{
b (β|Υi|) + b

(
(1− β) · |Υi|+ c1

√
k|Υi|

)
+ c1

√
k|Υi| if |Υi| > a

0 if 1
12 · a ≤ |Υi| ≤ a

We proceed to show that b(|Υi|) ≤ c4|Υi|
√
k√

a
− c5

√
k|Υi|, where c5 = 5 · (c1 +

1/100) and c4 = c5 ·
√

12. We prove this by induction in the size of Υi. Letting
|Υi| ≥ 1

12 · a, it follows that
c4|Υi|

√
k√

a
− c5

√
k|Υi| ≥ 0 since c5 ≤ c4

√
1/12. This

proves the base case. We proceed with proving the induction step using the

72 CHAPTER 4. MULTIWAY SEPARATORS

induction hypothesis:

b(|Υi|) ≤ b
(
β|Υi|

)
+ b
(

(1− β) · |Υi|+ c1

√
k|Υi|

)
+ c1

√
k|Υi|

≤
c4

(
|Υi|+ c1

√
k|Υi|

)√
k

√
a

− c5

√
|Υi|kβ − c5

√
|Υi|k(1− β) + c1

√
k|Υi|

≤ c4|Υi|
√
k√

a
−
√
k|Υi|

(
c5

√
β + c5

√
1− β − c1 −

c4c1

√
k√

a

)

≤ c4|Υi|
√
k√

a
− c5

√
k|Υi|

(√
β +

√
1− β − c1

c5
− c4c1

√
k

c5
√
a

)
.

Recall the assumption that k ≤ |Υ|/r̂ and that a = c |Υ|r̂ . It follows that k/a ≤
1/c. Furthermore, since (1/12) ≤ β ≤ (11/12) it follows that

√
β+
√

1− β ≥ 6
5 .

We now rewrite as follows:

b(|Υi|) ≤
c4|Υi|

√
k√

a
− c5

√
k|Υi|

(
6

5
− c1

c5
− c4c1

√
k/a

c5

)

≤ c4|Υi|
√
k√

a
− c5

√
k|Υi|

(
6

5
− c1 + c4c1

√
1/c

c5

)
.

Recall that the recursion produces regions of size at most a = c |Υ|r̂ , where c > 0
is a constant. By inserting c5 = 5 · (c1 + 1/100) and setting c sufficiently large
such that c4c1

√
1/c ≤ 1/100, we obtain

b(|Υi|) ≤
c4|Υi|

√
k√

a
− c5

√
k|Υi|

(
6

5
− c1 + 1

100

5 · (c1 + 1
100)

)

=
c4|Υi|

√
k√

a
− c5

√
k|Υi| .

This completes the proof by induction. Thus, the total number of intersections
when recursing Υ is at most b(|Υi|) ≤ c4|Υi|

√
k√

a
= O

(√
k|Υi|r̂

)
.

4.8 Appendix: Experimental Evaluation of
Separator Size

In this section, we examine the number of intersections when computing sphere
separators on a terrain represented as a TIN. As previously described in
Section 4.5, we have implemented Theorem 4.2 as described by Miller et al. [84]
and Clarkson et al. [43]. We apply the implementation to various areas of a
TIN constructed from the Danish Elevation model including only ground and
building points. Let G denote the input TIN and let |G| denote the number of

4.8. EXP. EVALUATION OF SEPARATOR SIZE 73

triangles in G. For each area we sample 250 sphere separators such that each
sphere separator h satisfies |G(h≤)| ≥ 1/4 · |G| and |G(h≥)| ≥ 1/4 · |G|, where
|G| is the number of triangles in G, |G(h≤)| is the number of triangles inside or
intersecting h, and |G(h≥)| is the number of triangles outside or intersecting h.

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Number of Intersected Triangles

0

10

20

30

40

50

Nu
m

be
r o

f S
ep

ar
at

or
s

Mean: 1.98 sqrt(n)

(a) Copenhagen (City)

1.6 1.8 2.0 2.2 2.4 2.6 2.8
Number of Intersected Triangles

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f S
ep

ar
at

or
s

Mean: 1.92 sqrt(n)

(b) Fjeldstervang (Fields)

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Number of Intersected Triangles

0

5

10

15

20

25

30

35

Nu
m

be
r o

f S
ep

ar
at

or
s

Mean: 1.89 sqrt(n)

(c) Gammel Rye (Forest)

Figure 4.1: Evaluating the number of intersected triangles on various types of
terrain. Each area is 10 km by 10 km

Copenhagen (city) Fjeldstervang (fields) Gammel Rye (forest)
Total points 1 737 352 542 1 016 877 728 1 380 507 284
Ground 1 003 915 809 (57.78%) 726 748 491 (71.47 %) 514 504 787 (37.27 %)
Building 193 699 578 (11.15%) 6 462 467 (0.64 %) 8 164 875 (0.59 %)
Low veg. 17 072 550 (0.98%) 28 417 823 (2.79 %) 23 066 640 (1.67 %)
Medium veg. 93 116 564 (5.35%) 41 787 026 (4.11 %) 66 254 550 (4.80 %)
High veg. 379 489 187 (21.84%) 210 080 703 (20.66 %) 735 216 819 (53.26 %)
Water 3 619 895 (0.21%) 1 746 674 (0.17 %) 29 697 070 (2.15 %)

Table 4.1: Description of point cloud labels for tiles of size 10 km by 10 km.
The most frequent point labels have been included.

We first examine how the separator size changes when the type of terrain
changes. For this, we examine three different 10 km by 10 km tiles of the
terrain. The first tile is an area from the city of Copenhagen which has a high
frequency of building points. The second tile is an area centered on the town of
Gammel Rye which has a high frequency of points labeled as high vegetation.
Finally, the third tile is centered on the town of Fjeldstervang which has a high
frequency of ground points describing agricultural fields. We have described
the distribution of point labels in Table 4.1. For each tile, we have plotted a
histogram describing the number of intersections of sphere separators. This is
shown in Figure 4.1. We compute the mean number of intersections for each
area and normalize the result by dividing by the square root of the number of
points. We observe that the mean number of intersections is between 1.89

√
n

and 1.98
√
n for the tiles tested. Thus, in the examined areas, the number of

intersections is on average c
√
n for a small constant c.

Next, we examine how the number of intersections changes as the total

74 CHAPTER 4. MULTIWAY SEPARATORS

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
Number of Intersected Triangles

0

5

10

15

20

25

30

35
Nu

m
be

r o
f S

ep
ar

at
or

s
Mean: 1.84 sqrt(n)

(a) A 100 km2 tile.

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Number of Intersected Triangles

0

5

10

15

20

25

30

Nu
m

be
r o

f S
ep

ar
at

or
s

Mean: 1.96 sqrt(n)

(b) A 400 km2 tile.

1.4 1.6 1.8 2.0 2.2 2.4 2.6
Number of Intersected Triangles

0

5

10

15

20

25

30

Nu
m

be
r o

f S
ep

ar
at

or
s

Mean: 1.84 sqrt(n)

(c) A 900 km2 tile.

Figure 4.2: Evaluating the number of intersected triangles when increasing
total area.

100 km2 Tile 400 km2 Tile 900 km2 Tile
Total points / 100 km2 11 841 409 10 088 500 10 120 894
Ground / 100 km2 6 733 499 (56.86%) 6 713 922 (66.55%) 6 681 457 (66.02%)
Building / 100 km2 114 970 (0.97%) 202 454 (2.01%) 124 327 (1.23%)
Low veg. / 100 km2 293 570 (2.48%) 188 550 (1.87%) 204 808 (2.02%)
Medium veg. / 100 km2 547 759 (4.63%) 428 343 (4.25%) 418 139 (4.13%)
High veg. / 100 km2 4 103 293 (34.65%) 2 493 932 (24.72%) 2 645 132 (26.14%)
Water / 100 km2 19 731 (0.17%) 30 524 (0.30%) 25 666 (0.25%)

Table 4.2: Description of point cloud labels for increasing tile sizes. The most
frequent point labels have been included.

area increases. For this, we have conducted an experiment where we create
3 tiles of increasing sizes near the city of Herning. When creating the tiles,
we attempted to keep the number of ground and building points per 100 km2

constant. However, it is very difficult to keep them constant in practice due to
the nature of the data. Therefore, we expect that this will affect the number
of intersections to some extend. The distribution of point labels is described
in Table 4.2. The number of intersections for each tile is shown in Figure 4.2.
As expected, we see a varying number of intersections between tiles. However,
we note that the normalized number of intersections remains small for all the
tested tile sizes.

4.9 Appendix: Algorithm with Larger Sample

In this section, we modify the algorithm described in Section 4.3 by increasing
the size of the sample Υ and choosing sphere separators h in a slightly different
way. By doing this, we can relax the assumption on k to k ≤ |Γ|/r̂ and provide
bounds on the number of boundary balls in Γ.

Define the set of classifiers H= as H= = {D(h=) | h ∈ C}. It follows from
Lemma 4.2 and Lemma 4.4 that the range space (D,H=) have constant VC
dimension. Furthermore, we modify the definition of Hl to include H= as

4.9. APPENDIX: ALGORITHM WITH LARGER SAMPLE 75

follows:

Hl =
{
h1 ∩ · · · ∩ hl | h1, . . . , hl ∈ (H≤ ∪H≥ ∪H=)

}
.

Using the same argument as the proof of Lemma 4.5, we see that the VC-
dimension of (D,Hl) is O(l log l).

Recall that the algorithm described in Section 4.3.1 forms a separator tree H
by recursively computing sphere separators h on Υ. The proof of the algorithm
relied on the assumption that Υ is sampled such that Υ is a (1/r̂, ε)-relative
approximation of Γ, where ε > 0 is a constant. This allowed us to argue about
the size of the regions of Γ within an error of O(|Γ|/r̂). However, we now wish to
argue that the number of boundary balls in a region is O(

√
k|Γ|/r̂), which can

be much smaller than |Γ|/r̂. Therefore, we let p =
(√

k|Γ|/r̂
)
/|Γ| =

√
k/(|Γ|r̂).

Assume that Υ is a (p, ε)-relative approximation of Γ in the range space (D,Hl).
Furthermore, we relax the assumption on k to k ≤ |Γ|/r̂.

We modify the recursion of Section 4.3.1 as follows: Recall that we divide
Υ into regions of size at most c · |Υ|/r̂. Let Υi ⊆ Υ and Γi ⊆ Γ denote the balls
in a node i of the recursion. We use Theorem 4.2 to obtain a sphere separator
h that with probability at least 1/2 satisfies

|Υi(h<)|, |Υi(h>)| ≤ 10

12
· |Υi| , (4.5)

|Γi(h=)| ≤ c1

√
k|Γi| , (4.6)

where c1 > 0 is a constant. Note that this uses expected Scan(|Υi|) I/Os. We
use (4.6) and the assumption that Υ is a (p, ε)-relative approximation to obtain
the following:

|Υi(h=)| ≤ (1 + ε)
|Υ|
|Γ| · c1

√
k|Γi|

≤ (1 + ε)
|Υ|
|Γ| · c1

√
(1 + ε)

|Γ|
|Υ| · k|Υi|

= c2

√
|Υ|
|Γ| · k|Υi| , (4.7)

where c2 > 0 is a constant. Similar to before, we sample an expected constant
number of separators h, until (4.5) and (4.7) are satisfied. Note that the
assumption k ≤ |Γ|/r̂ implies k |Υ||Γ| ≤

|Υ|
r̂ . Recalling that |Υi| ≥ a = c |Υ|r̂ , we

rewrite as follows:

|Υi(h=)| ≤ c2

√
|Υ|
r̂
|Υi| ≤ c2

√
|Υi|2
c
≤ c2√

c
|Υi| . (4.8)

Thus, for sufficiently large c > 0, (4.5) and (4.8) implies |Υi(h≤)| ≤ 11
12 |Υi|

and |Υi(h≥)| ≤ 11
12 |Υi|. In other words, the problem size becomes smaller by a

76 CHAPTER 4. MULTIWAY SEPARATORS

constant factor and we can recursively compute separators h until Υ is divided
into regions of size at most c · |Υ|/r̂.

Recall that in Section 4.3.1, we argued that |Υi(h=)| = O
(√

k|Υi|
)
. It

follows that the above modification results in the number of intersections of
Υi being smaller by a factor Θ

(√
|Υ|/|Γ|

)
. By inserting this into the proofs

described in Section 4.3.2 and Section 4.3.3, we obtain that Υ is divided into
O(r̂) regions of size O(|Υ|/r̂) such that each region has O

(√
|Υ|
|Γ| · k|Υ|/r̂

)
boundary balls. Furthermore, since Υ is a (p, ε)-relative approximation of Γ,
we see that Γ is divided into O(r̂) regions of size O(|Γ|/r̂) such that each region
has O

(√
k|Γ|/r̂

)
boundary balls. It follows that the total number of boundary

balls O
(√

k|Γ|r̂
)
.

In the description above, we assumed that that Υ is a (p, ε)-relative ap-
proximation of Γ. However, if this is not the case, it might not be possible to
obtain a classifier satisfying (4.7). To ensure that the algorithm terminates in
this case, we let m = O(log r̂) and sample at most m sphere separators in each
node of the recursion. We terminate if no separator satisfying (4.5) and (4.7)
is found. Recall that in the case where Υ is (p, ε)-relative approximation, a
sampled sphere separator h satisfies (4.5) and (4.7) with probability at least
1/2. Thus, for a fixed node we fail to obtain a separator h with probability
2−m since the randomness in each sphere separator is independent. Since the
number of nodes in the separator tree is O(r̂), at least one node in the tree will
fail with probability at most O(r̂) · 2−m. Thus, all nodes succeed with at least
constant probability by setting m = c4 · log r̂ for sufficiently large c4 > 0.

We have now shown that, when given a (p, ε)-relative approximation of
Γ, we can compute a separator tree H that results in an r̂-way separator for
Γ when applied to Υ. Given such a separator tree H, we can compute an
r̂-way separator of Γ by recursively dividing the balls of Γ using H as described
in Section 4.3.4. Note that this uses O(Scan(|Γ|)) I/Os. We now bound the
expected total number of I/Os used when computing H. Following the same
line of the argumentation as in Section 4.3, the expected number of I/Os used
in a level of the recursion is O(Scan(|Υ|) log r̂). Note the additional log-factor
that results from the case where Υ is not a (p, ε)-relative approximation of Γ.
Thus, the expected number of I/Os used in all O(log r̂) levels of the recursion is
O(Scan(|Υ|) log2 r̂). It follows from Lemma 4.3, that we obtain a (p, ε)-relative
approximation Υ of Γ with at least constant probability by sampling Υ of size

|Υ| = O

(√
|Γ|r̂
k

log r̂ log log r̂ log

√
|Γ|r̂
k

)
= O

(√
|Γ|r̂
k

log r̂ log log r̂ log
|Γ|
k

)
Observe that this is significantly larger than the sample size described in
Section 4.3.

Note that we can assume r̂ ≤ |Γ|/M , since this will be sufficient to divide Γ
into regions of size O(M). This follows from the observation that regions of size
O(M) fit in memory after a constant number of applications of Theorem 4.2.

4.9. APPENDIX: ALGORITHM WITH LARGER SAMPLE 77

Thus, they can be further divided using O(Scan(|Γ|)) I/Os in total. We now
obtain the following:

Scan(|Υ|) log2 r̂ = O

(√
|Γ|
B

√
r̂

k
log3 r̂ log log r̂ log

|Γ|
k

)

= O

(√
|Γ|
B

√
|Γ|
Mk

log3 r̂ log log r̂ log
|Γ|
k

)

= O

(
|Γ|
B
· log3 r̂ log log r̂ log |Γ|k√

Mk

)
.

Recall that we wish to bound the expected total number of I/Os to O(Scan(|Γ|))
and that r̂ ≤M/B. We now obtain the following lemma:

Lemma 4.10. Given a k-ply neighborhood system Γ in the plane and a
parameter r̂ ≤M/B, an r̂-way separator of Γ can be computed using expected
O
(

Scan(|Γ|)
)
I/Os, assuming k ≤ |Γ|/r̂ and

log3 r̂ log log r̂ log
|Γ|
k

= O
(√

Mk
)
.

Given a parameter r > 0, it follows that we can compute an r-way separator
by recursively applying Lemma 4.10 for O(logM/B(r)) levels. This proves
Theorem 4.5.

Chapter 5

1D and 2D Flow Routing on a
Terrain

Abstract

An important problem in terrain analysis is modeling how water flows
across a terrain creating floods by forming channels and filling depressions.
In this paper we study a number of flow-query related problems: given
a terrain Σ, represented as a triangulated xy-monotone surface with n
vertices, and a rain distribution R which may vary over time, determine
how much water is flowing over a given vertex or edge as a function of
time. We develop internal-memory as well as I/O-efficient algorithms for
flow queries. This paper contains four main algorithmic results:

(i) An internal-memory algorithm for answering terrain-flow queries:
preprocess Σ into a linear-size data structure so that given a rain distri-
bution R, the flow-rate functions of all vertices and edges of Σ can be
reported quickly.

(ii) I/O-efficient algorithms for answering terrain-flow queries.
(iii) An internal-memory algorithm for answering vertex-flow queries:

preprocess Σ into a linear-size data structure so that given a rain distribu-
tion R, the flow-rate function of a vertex under the single-flow direction
(SFD) model can be computed quickly.

(iv) An efficient algorithm that given a path P in Σ and flow rate
along P, computes the two-dimensional channel along which water flows.

Additionally we implement a version of the terrain-flow query and
2D channel algorithms, and examine a number of queries on real terrains.

5.1 Introduction

Tribute to Lars Arge: The last three authors of the paper dedicate this
paper to the memory of our friend and colleague Lars Arge who passed away
on December 23, 2020. A giant in the field of applied algorithms and data
structures, he worked extensively on external-memory algorithms for terrain

79

80 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

modeling and analysis and made several seminal contributions to this area.
This paper is on a topic, namely hydrological analysis on terrains, that was
dear to Lars and that was deeply influenced by his work.

An important problem in terrain analysis is modeling how water flows across
a terrain and creates floods by forming channels and filling up depressions.
The rate at which a depression fills up during a rainfall depends not only on
the shape of the depression and the size of its watershed (i.e., the area of the
terrain that contributes water to the depression) but also on other depressions
that are filling up. Water falling on the watershed of a filled depression flows
to a neighboring depression, effectively making the watershed of the latter
larger and filling it up faster. Modeling how depressions fill and how water
spills into other depressions during a flash flood event is therefore an important
computational problem.

Besides determining which areas of a terrain become flooded and when they
become flooded, determining the 2D channels (rivers) along which water flows
across the terrain is also important. The flow queries we study can also be
used to answer related flood-risk queries. We assume we are given a terrain
Σ, represented as a triangulated xy-monotone surface with n vertices. As in
earlier papers, [22, 77, 89] we assume that water flows along the edges of Σ.
Two models of water flow along edges have been proposed: (i) a simple and
more widely used model called the single flow-direction (SFD) model in which
water from a vertex flows along one of its downward edges, and (ii) a more
accurate but more complex model called the multiflow-direction (MFD) model
in which water at a vertex splits and flows along all of its downward edges. See
Figure 5.1. We consider both of these models and study the following three
problems in this paper:

• Terrain-flow query : given a rain distribution (possibly varying with time),
compute as a function of time the flow rate (of water) for all vertices and
edges of Σ.

• Vertex-flow query : given a rain distribution and a query vertex q of Σ,
compute the flow rate of q under the single flow-direction (SFD) model.

• 2D flow network : Given a 1D flow network, represented as a set of edges
along with their flow values, compute 2D channels along which water
flows.

Finally, as high-resolution terrain data sets are becoming easily available,
their size easily exceeds the size of main memory of a standard computer, so
movement of data between main memory and external memory (such as disk)
becomes the bottleneck in computations. We use the I/O-model with one
disk by Aggarwal and Vitter [6]: the computer is equipped with a two-level
memory hierarchy consisting of an internal memory, which is capable of holding
m data items, and an external memory of unlimited size. All computation

5.1. INTRODUCTION 81

(a) SFD (b) MFD

Figure 5.1: Rain falls in the marked square according to (a) single-flow direction
(SFD) and (b) multiflow direction (MFD) models.

happens on data in internal memory. Data is transferred between internal
and external memory in blocks of b consecutive data items. Such a transfer
is referred to as an I/O-operation or an I/O. The cost of an algorithm is the
number of I/Os it performs. The number of I/Os required to read n items
from disk is Scan(n) = O(n/b). The number of I/Os required to sort n items
is Sort(n) = Θ

(
(n/b) logm/b(n/b)

)
[6]. For all realistic values of n, m, and b

we have Scan(n) < Sort(n)� n.

Related work. Due to its importance, the problem of modeling how water
flows on a terrain has been studied extensively, and many approaches have been
taken to address this problem. One approach focuses on accurately simulating
fluid dynamics using non-linear partial differential equations such as the Navier-
Stokes equations. These equations have no closed-form solutions and are usually
solved using numerical methods. They often account for additional factors,
such as the effects of different terrain types and drainage networks. While these
models tend to be more accurate, they are computationally expensive and do
not scale to large terrains. Bates and De Roo [33] developed one such model for
simulating flooding on digital elevation models (DEMs) using two flow models
for different regions of the terrain: the first handles flow within rivers and the
second models flow of water as it spreads over floodplains. While there has
been some research into refining the representation of channels, such as Wood
et al. [100], often the channel geometry is assumed to be a simple model (e.g.
rectangular or trapezoidal.)

Water-flow modeling on a terrain also has been studied in the GIS commu-
nity. These approaches use simpler models, which are computationally efficient
and suitable for large datasets. Although some early work, e.g. [75], allowed
water to flow in the interior of faces, recent work assumes that water flows
along the edges of the terrain. This assumption is a good approximation for

82 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

high-resolution data sets, where the size of input triangles is small. The SFD
and MFD models described above are used to model the water flow locally at
a vertex, see e.g. [22, 77, 78, 89].

Arge et al. [24] described an I/O-efficient algorithm for the flow-accumulation
problem in the SFD model, which asks how much water flows over each point
in a terrain assuming the terrain has only one sink at infinity and water falls
uniformly on the terrain. Their algorithm performs a total of O(Sort(n)) I/Os.
The flow-accumulation model only provides a rough solution to flow modeling,
since it assumes that either the terrain does not have any local minima or that
they have been filled in advance.

In order to accurately model flow, it is necessary to compute times at which
depressions fill and simulate how water spills from one depression into others.
Arge et al. [22] proposed the first I/O-efficient algorithm that computes the
fill times of all maximal depressions in O(Sort(ρ) log(ρ/m) + Sort(n)) I/Os,
where ρ is the number of depressions in the terrain and m is the size of the
internal memory. If ρ = O(m), the algorithm can be simplified and requires
only O(Sort(n)) I/Os.

Arge et al. [17] described an I/O-efficient algorithm that can answer terrain-
flood queries: Given a rain distribution R, determine which points on the
terrain become flooded if a total volume ψ of rain falls. The algorithm answers
queries using O(Sort(n) + Scan(χρ)) I/Os, where χ is the height of the merge
tree of the terrain. Assuming χ < m, the number of I/Os can be further
bounded to O(Sort(n)). Furthermore, assuming ρ < m, the algorithm can be
modified to answer a query in O(Scan(n)) I/Os after O(Sort(n)) preprocessing.

Lowe and Agarwal [77] presented efficient algorithms for several flood queries
on a terrain under the multiflow-direction (MFD) model. They presented an
O(n log n)-time algorithm to answer terrain-flood queries. They also showed
that a terrain Σ can be preprocessed in O(n log n + nρ)-time into a data
structure that can answer point-flood queries: given a rain distribution R, a
volume of rain ψ, and a point q ∈ Σ, determine whether q will be flooded. The
query time is O(|R|bq+b2q) time, where bq is the number of maximal depressions
that contain the query point q; bq = Ω(n) in the worst case. Finally, they
presented an algorithm to determine when a query point q gets flooded. To
our knowledge, no I/O-efficient algorithms are known for these flooding queries
under the MFD model.

Our results. Unlike [77], which focused on water accumulation or flooding,
this paper focuses on computing how water flows along each edge of a terrain
as a function of time. It contains four main algorithmic results.

(i) We present (in Section 5.3) an O(n log n)-time algorithm for preprocess-
ing Σ into a linear-size data structure for answering terrain-flow queries: for a
rain distribution R, it can compute the flow rate of all vertices in O(|φ| log |φ|)
time, where |φ| is the total complexity of nonzero flow-rate functions. In the
worst case |φ| = Θ(n(χ + k)), where χ, as above, is the height of the merge

5.1. INTRODUCTION 83

tree of Σ, and k is the number of times the rain distribution changes. However
|φ| is much smaller in practice. An immediate corollary of our result is that a
flood-time query (i.e. given R and a point q ∈ Σ, when does q become flooded)
can be answered in the same time, which is a significant improvement over the
result in [77].

(ii) We present (in Section 5.4) two I/O-efficient algorithms for terrain-flow
queries. We first preprocess Σ using O(Sort(n)) I/Os and O(n log n) internal
computation time. The first algorithm assumes ρ(χ+ k) = O(m), where χ, k
and ρ are as above, and answers a terrain-flow query in O(Scan(n) + Sort(|φ|))
I/Os and O((χ+ k)(n+ ρ log ρ) + |φ| log |φ|) internal computation time. The
second algorithm assumes ρ = O(m) and answers a terrain-flow query in
O(Sort((χ+k)n log n)) I/Os and O((χ+k)n log n log(kn)) internal computation
time. We additionally note that since the terrain-flow query is more general
than the terrain-flood query, these algorithms also yield I/O-efficient algorithms
for the terrain-flood and flood-time queries under the MFD model studied
in [77].

(iii) Under the SFD model, we can build, in O(n log n) time, a linear-size
data structure that given a vertex q and rain distribution R computes φq in
O(|R|+ |B|k log n) time, where |R| is the complexity of the rain distribution,
|B| is the number of tributaries of q in which rain is falling, and k is the number
of times the rain distribution changes. (See Section 5.5.)

(iv) We present an algorithm that given a 1D flow, represented as a
path along the edges of Σ and the flow values on these edges, computes,
in O(|C| log |C|) time, a 2D channel C along which water flows, where |C| is the
number of “wetted” faces at least partially covered by the water in the channel
(Section 5.6.) We do so using Manning’s equation [81], a widely used empirical
formula relating flow-rate of water in an open channel to the geometry of the
channel. When computing the 2D flow network we assume a real RAM model
of computation in which the zeros of a polynomial can be computed in O(1)
time; see [5]. We note that previous work computing the 2D channel assumes
the cross section of each channel to have a simple geometry (e.g. rectangular
or trapezoidal) [33]. In contrast, we do not make any such assumption.

Finally, we have implemented our terrain-flow-query and 2D channel al-
gorithms, and we report a number of empirical results on real terrains in
Section 5.7 to demonstrate the efficacy and efficiency of our algorithms.

We note that this paper is an expanded version of a paper first appearing
in the ACM SIGSPATIAL conference [79]. Here we give a new, simpler
internal memory algorithm for terrain-flow queries, which is also faster in some
cases. We also expand upon the 2D channel algorithm and give methods for
relaxing certain assumptions made in [79]. Finally, in this version we have
implemented the terrain-flow and 2D channel algorithms and included a number
of experimental results.

84 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

maximum

minimum
(sink)

saddle

regular

Figure 5.2: An example terrain with its critical vertices marked with colored
hollow circles, and regular vertices marked with filled circles.

5.2 Preliminaries & Models

In this section, we give a number of preliminary definitions and describe the
flooding model. Most of the text here closely follows [77, 89].

5.2.1 Geometric preliminaries

Terrains. Let M be a triangulation of R2, and let V be the set of vertices of
M; set n = |V|. We assume that V contains a vertex v∞ at infinity and that
each edge (u, v∞) is a ray emanating from u; the triangles in M incident to
v∞ are unbounded. Let h : M→ R be a height function. We assume that the
restriction of h to each triangle of M is a linear map, that h approaches +∞
at v∞, and that the heights of all vertices are distinct. Given M and h, the
graph of h, called a terrain and denoted by Σ = (M, h), is an xy-monotone
triangulated surface whose triangulation is induced by M.
Critical vertices. There is a natural cyclic order on the neighbor vertices of a
vertex v of M, and each such vertex is either an upslope or downslope neighbor.
If v has no downslope (resp. upslope) neighbor, then v is a minimum (resp.
maximum). We also refer to a minimum as a sink. If v has four neighbors
w1, w2, w3, w4 in clockwise order such that max(h(w1), h(w3)) < h(v) <
min(h(w2), h(w4)) then v is a saddle vertex. See Figure 5.2.
Level sets, contours, depressions. Given ` ∈ R, the `-sublevel set of h
is the set h<` = {x ∈ R2 | h(x) < `}, and the `-level set of h is the set
h=` = {x ∈ R2 | h(x) = `}. Each connected component of h<` is called a
depression, and each connected component of h=` is called a contour. Note
that the boundary of a depression is not necessarily simply connected, as a
saddle may cause a hole to appear in a depression.

5.2. PRELIMINARIES & MODELS 85

E1
E2

E3
D1 D2 D3 D4

U2 V2

D1 D2 D3 D4

E1 E3
E2

U1 V1 U3 V3

U1 V1 U3 V3

V2U2

(a) (b)

Figure 5.3: An example terrain with saddle vertices v1-v3. Each saddle vi
delimits two maximal depressions αi and βi. (a) Terrain seen from above. Sinks
are marked with a square and saddles are marked with a cross. (b) Terrain
seen from the side.

For a point x ∈M, a depression βx of h<` is said to be delimited by the point
x if x lies on the boundary of β, which implies that h(x) = `. A depression β is
maximal if every depression containing β contains (strictly) more sinks than β.
A maximal depression that contains exactly one sink is called an elementary
depression. Each maximal depression is delimited by a saddle, and a saddle
that delimits more than one maximal depression is called a negative saddle.
For a maximal depression β, let Sd(β) denote the saddle delimiting β, and let
Sk(β) denote the set of sinks in β. The volume of a depression β of h<` is

Vol(β) =

∫
β
(`− h(v))dv. (5.1)

Merge tree. The maximal depressions of a terrain form a hierarchy that is
easily represented using a rooted tree called the merge tree [39, 69] and denoted
by T. Suppose we sweep a horizontal plane from −∞ to ∞. As we vary `,
the depressions in h<` vary continuously, but their structure changes only at
sinks and negative saddles. If we increase `, then a new depression appears
at a sink, and two depressions merge at a negative saddle. The merge tree T
of Σ is a tree that tracks these changes. Its leaves are the sinks of Σ, and its
internal nodes are the negative saddles of Σ. The edges of T are in one-to-one
correspondence with the maximal depressions of Σ, that is, we associate each
edge e = (u, v) with the maximal depression βe delimited by u and containing
v. We regard each edge e = (u, v) of T with a 1D line segment (h(u), h(v)) then
the point ξ at height ` corresponds to a depression Dξ of h<` that contains
the maximal depression delimited by v, and all points of ∂Dξ contract to ξ.
Hence, each point of M can be mapped to a point of T. See Figure 5.3 for an
example. We assume that T has an edge from the root of T extending to +∞,
corresponding to the depression that extends to ∞. For simplicity, we assume

86 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

that T is binary, that is, each negative saddle delimits exactly two depressions.
Non-simple saddles can be unfolded into a number of simple saddles [49].

Let u be a negative saddle, let (u, v1) and (u, v2) be two down edges in T
from u, and let (w, u) be the up edge from u. We call the depression associated
with (u, v2) (resp. with (w, u)) as the sibling (resp. parent) (depression) of
that associated with (u, v1).

T can be computed in O(n log n) time [39], and it can be preprocessed in
O(n) additional time so that for a point x ∈ R2, Vol(βx), the volume of the
depression delimited by x can be computed in O(log n) time [39]. In the I/O
model, T and the volumes of all maximal depressions can be computed using
O(Sort(n)) I/Os [21]. This algorithm can be extended to compute Vol(βx) and
the smallest maximal depression containing x for all vertices x ∈ Σ [22].

A refinement of T in which we map each vertex v of M to an edge of T and
store the sequence of vertices mapped to each edge in increasing order of their
heights is called the extended merge tree. It can be computed in the same time
as T. We will be mostly working with the extended merge tree. With a slight
abuse of notation, we use T to denote both merge and extended merge trees of
Σ.

5.2.2 Flooding model

We now describe the flooding model, which is the same as in [77], and define
flow-rate functions.

Flow graph and flow functions. We transform M into a directed acyclic
graph M, referred to as the flow graph, by directing each edge (u, v) of M from
u to v if h(u) > h(v), and from v to u otherwise, i.e., each edge is directed in
the downward direction. We say a vertex v is upstream (resp. downstream) of
w if there is a path of edges with non-zero flow from v to w (resp. from w to
v.) For each (directed) edge (u, v), we define the local flow λ(u, v, t) to be the
portion of water arriving at u that flows along the edge (u, v) to v at time t.
By definition, for any u ∈ V,

∑
(u,v)∈M λ(u, v, t) = 1.

The value of λ(u, v, t) is, in general, based on relative heights of the downs-
lope neighbors of u. If u is not a negative saddle vertex, then λ(u, v, t) remains
the same for all t, so we will often drop t and write λ(u, v) to denote λ(u, v, t).
If u is a negative saddle, then λ(u, v) changes when one of the depressions
delimited by u fills up as no water flows from u to that depression; see below
for further discussion.

Rain distribution. Let R(v, t) : V × R → R≥0 denote a rain distribution,
that is, for each vertex v ∈ V, R(v, t) indicates the rate at which rain is
falling on v at time t. We assume that for each v, R(v, ·) is a piecewise-
constant function of time, with the function changing at discrete time values
{t0 = 0, t1, . . . , tk}, and for all v and t ≥ tk, R(v, t) = 0. For a depression β,

5.2. PRELIMINARIES & MODELS 87

we define R(β, t) =
∑

v∈β R(v, t). For i ≤ k, let |Ri| denote the number of
vertices for which R(v, ti) ≥ 0, and let |R| = ∑k

i=1 |Ri| . In practice |Ri| � n.
Fill and spill rates. For a maximal depression β, we define the fill rate
Fβ : R≥0 → R≥0 as the rate at which water is arriving in the depression β
as a function of time. That is, the rate at which rain is falling directly in β
plus the rate at which other depressions are spilling water into β. Similarly,
we define the spill rate Sβ : R≥0 → R≥0 as the rate (as a function of time) at
which water spills from β through the saddle that delimits β. If the rain rate
is piecewise constant, then so are fill and spill rates.
Flow rate. Next, we define flow rates φe and φv for edges e and vertices v of
M, which is the amount of water flowing through e and v, respectively, at time
t. For an edge (u, v) ∈M, φ(u,v)(t) is the fraction of water from u that passes
along (u, v) as a function of time. That is,

φ(u,v)(t) = λ(u, v, t)φu(t). (5.2)

The flow rate φv of a non-saddle vertex v is the sum of the flow rates along
incoming edges to v plus the rain on v. That is,

φv(t) = R(v, t) +
∑

(u,v)∈M
φ(u,v)(t). (5.3)

Letting τv be the time at which a vertex v becomes flooded, φv(t) and
φ(u,v)(t) for any v ∈M are undefined for t ≥ τv. That is to say, when a vertex
is flooded, the flow-rate function is undefined.

Let v be a negative saddle delimiting two depressions α and β. Until one
of α or β is filled, φv is defined using (5.3). Without loss of generality, assume
that depression α fills first, say at time τα, and water starts spilling from α to
β through v. The spill rate Sα specifies the rate at which water spills from α
to β. It is tempting to simply add Sα to (5.3) to define the flow rate of v for
t > τα, but it double counts the amount of water that was flowing from v to
depression α. For t < τα, φv is defined as in (5.3). For t ≥ τα, φv is defined as,

φv(t) =

(
R(v, t) +

∑
(u,v)∈M

φ(u,v)(t)

)∑
w∈β

λ(v, w, 0) + Sα(t). (5.4)

Finally for t ≥ τα and for any w ∈ β,

λ(v, w, t) =
λ(v, w, 0)∑
z∈β λ(v, z, 0)

. (5.5)

The model can be extended in a straightforward manner if v delimits more
than two depressions. Since we assume the rain distribution to be piecewise
constant, flow rates are also piecewise linear.

We conclude this resection by remarking that we denote a piecewise-constant
function f as a sequence (δ1, t1), (δ2, t2), · · · , where 0 < t1 < t2 < · · · with the
interpretation that f(0) = 0 and f(t) = f(ti) + δi for t ∈ (ti, ti+1].

88 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

5.3 Terrain-flow Query

In this section, we describe an output-sensitive internal-memory algorithm that,
given a terrain Σ and rain distribution R = (M, h), computes the flow-rate
functions φv(t) and φe(t) for all vertices and edges v, e ∈M. Note that φ(u,v) for
an edge is completely determined by φu using (5.2), so we focus on computing
the flow-rate functions of vertices. The flow rates of edges can be computed at
the end using (5.2).

The overall algorithm is a sweep-line algorithm, each of whose step performs
another sweep. At the top level, it sweeps along the time axis. At time t, it has
computed the flow rates of all vertices and edges for the time interval [0, t]. The
flow rates change at discrete time instances, which we refer to as events. (There
will be additional events, see below.) The algorithm stops at each event and
sweeps the terrain Σ in the (−z)-direction to update the flow rates of relevant
vertices and edges. We first describe the top-level sweep, then describe how
each event is processed, and finally analyze the running time of the algorithm.

5.3.1 The top-level sweep

We call a vertex v dry if its flow rate is 0 for all t, and wet otherwise. We call
v flooded if the depression delimited by v is under water. Initially no vertex
is flooded, but as rain water accumulates, some vertices start getting flooded.
Both dry and wet vertices may get flooded. The algorithm maintains the set
W of wet vertices and their flow rates. Recall that once a vertex is flooded, its
flow rate is undefined.

We call a maximal depression β active if its fill rate is positive, all of its
children depressions are flooded, and either β or one of its sibling depressions
is not flooded. The algorithm maintains the set D of active depressions. Recall
each maximal depression is associated with an edge e of T. We store a bit be
with each edge e of T and set it to 1 if the corresponding depression βe is active
and 0 otherwise. We also store a bit bv with each node v of T, which is set to 1
if v is flooded. For each β ∈ D, it maintains:

1. the current fill and spill rates of β, denoted by Fβ and Sβ , respectively,

2. the set Wβ of wet vertices in β,

3. the water level in β; this information is maintained in a lazy manner as
described below.

The flow rates of vertices and the set of active depressions change when the
rain distribution changes or a depression becomes full. We refer to the former
as a rain event and the latter as a depression event. More precisely,

• Rain event. A rain event at time tξ is defined by a triple (tξ, X, δ), where
X ⊂ V is the set of vertices at which rain fall changes at time tξ, and
δ : X → R describes the change in the rain at the vertex x ∈ X.

5.3. TERRAIN-FLOW QUERY 89

• Depression event. A depression event at time tξ is specified by a pair
(tξ, β) where β is a maximal depression that gets filled at time tξ.

The algorithm processes these events in order, updates the flow rates, the
set of active depressions, and the set of wet vertices at each event; and detects
and updates future events. The algorithm maintains the following two data
structures to perform the sweep efficiently:

• Time-event priority queue QT : It stores the events detected so far. The
time of an event is used as its key. The data structure supports the
following four operations:

– DeleteMin(): Delete and return the event with the smallest key.

– Insert(ξ)/Delete(ξ): insert or delete an event ξ.

– Decrease key(ξ, t): Decrease the event time of an event ξ from
its current value tξ to t; it assumes that tξ ≥ t.

• Union-find data structure K: It maintains the set of wet vertices in each
active depression and supports the following three operations:

– Create(x, β): add a new vertex x to an active depression β.

– Union(βx, βy, βz): merge two active depressions βx and βy and refer
to the new depression as βz (which may be the same as βx or βy.)

– Find(x): return the active depression that contains the wet vertex
x; if x does not lie in any active depression then return the maximal
depression that contains x.

The algorithm maintains the invariant that each event ξ with event-time tξ
is stored in the priority queue QT immediately before tξ with the correct key
tξ. That is, if a depression β becomes full at time τβ, we will have the event
(τβ, β) in the event queue by the time we have processed the last event with
time before τβ

Initially, φv(0) = 0 for all v ∈ V, D = ∅, and W = ∅. We initialize QT
with all rain events, which are given as part of the input. At each step, the
algorithm extracts the next event from QT using the DeleteMin procedure.
It processes each event as described below:
Handling a depression event. Suppose an active depression β has become
full at time τβ . Let u be the saddle delimiting β. If all of the sibling depressions
of β are full, β and all of its sibling depressions become inactive and the parent
depression β′ of β becomes active. We reset the bits of β and its sibling bits to
0, and the bit of β′ to 1. We set the bit of u to 1 to indicate u is now flooded.
Next, we merge the sets Wξ where ξ is β or its sibling depression into a single
set and name it Wβ′ (using the union-find data structure K.) We also add
the wet vertices that lie in β′ but not in any of its children depressions (i.e.

90 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

(a)

(b)

τ̂β′τβ

Fβ′

τβ

Fβ

φu

τβ

δ(u, τβ) φv

τβ

δ(v, τβ)

β

α

u
β

u

β α

β′

u

α

β′

u
β

v

α

Figure 5.4: The two types of depression events when a depression β, delimited
by u, becomes full at time τβ, with α (resp. β′) being the sibling (resp.
parent) depression of β. Shown immediately before and after processing; edges
corresponding to active depressions are marked bold in red and the water level
in active depressions shaded blue. (a) If α is already full, α and β become
inactive and β′ becomes active, with Fβ′ = Fβ at τβ . (b) If α is not yet full, we
increase the flow rate at the saddle u accordingly; β remains active. Flow-rates
of some downstream vertices of u also increase and at time τβ , and some empty
depressions may receive water, becoming active at τβ (e.g. α).

the vertices that map to the edge of T corresponding to β′) to Wβ′ . We set
Fβ′ = Fβ and Sβ′ = 0. Based on the current fill rate Fβ′ we estimate the time
τ̂β′ when β′ will become full and add the depression event (τ̂β′ , β

′) to QT .

Next, consider the case when one of the sibling depressions of β is not full.
In this case the water from β spills to its sibling depressions through the saddle
u. We set Sβ = Fβ. We increase the flow rate φu at time te as described in
(5.4) and update the local-flow rate of downslope neighbors of u. Let δu be
the increase in the flow rate at u. Since this affects the flow rate at vertices
reachable from u in the flow graph, we update their flow rates by calling the
second-level sweep algorithm described in the next subsection, which sweeps Σ
downward starting from u.

Handling a rain event. Let X be the set of vertices where rainfall has
changed at time t0, and let δ : X → R be the change in the rate. We use the
second-level sweep algorithm to update the flow functions and the set of active
depressions.

5.3. TERRAIN-FLOW QUERY 91

5.3.2 Second-level sweep

We are given a set X ⊂ V of vertices and the change in rain on X by δ : X → R
at time tcurr. The goal is to update the flow rate at all the affected vertices.
The algorithm sweeps in the (−z)-direction and while at z = z0 maintains a set
of pairs (x, δx), where x ∈ V and δx ∈ R, such that x is not flooded, h(x) < z0,
and the change in flow rate at x through direct rainfall or through the incoming
edges whose upslope neighbors have height at least z0 is δx. These pairs are
stored in a vertex-event priority queue QV , with heights of the vertices as the
key. It supports the following operations:

• DeleteMax(): Delete and return the pair with the maximum key value.

• Insert(x)/Delete(x): Insert or delete a pair (x, δx).

• UpdateFlow(x, γ): If (x, δx) is already stored in QV , update it to
(x, δx + γ). If x is not in QV then insert (x, γ) into QV .

This algorithm relies on the following two procedures:

• IsFlooded(x): Given a vertex x, determine whether x is flooded: using
the extended merge tree T, we retrieve the edge e = (u, v) ∈ T, with
h(u) > h(v), that contains x. if bu = 1 then x is flooded, and if bv = 0
then x is not flooded, so assume that bu = 0 and bv = 1, in which case
the depression βe is active. Let (he, τe) be the previous recording of water
level at e. Using the current fill rate Fβe and scanning the vertices of
βe starting from height he, we compute the new water level he at time
te and update the recording of water level at e. If he ≥ h(x), then x is
flooded otherwise it is not flooded.

• FloodedVertex(x, δ): Given a vertex x ∈M that is already flooded,
process the δ change in water reaching x as follows. using Find(x), it
computes the active depression β that contains x. It sets the fill rate
Fβ = Fβ + δ. If β is not flooded (i.e. bβ = 0) then we recompute the time
τβ when β will become full, based on the new fill rate— this requires
computing the current water level in β (as in the above procedure) and
computing the volume of β that is not full (using the information stored
in extended merge tree). If δ > 0, then the value of the fill time of β has
decreased and we use the DecreaseKey(β, τβ) to update the estimated
time of the depression event for β in the priority queue QT . If δ < 0, we
delete β from QT and insert it with the new key τβ. In this case, the
procedure does not return any vertex.

If β is already flooded then we update its spill rate Sβ = Sβ + δ. Let u
be the saddle delimiting β. We call the procedure UpdateFlow(u, δ)
and add δ to the flow rate of u.

92 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

Fα

τ̂α′τβ

Fα

τ̂α′τ̂ατβ

(a) (b)

(c)(d)

u

β

w

v

α

x′

γ

z z

z z

v′

v′

v′

v′

x

γ

u

β

w

v

α

x′x

u

β

w

v

α

x′

γ

u

β

w

v

α

x′

γ

x x

θ θ

θ θy y

y y

Figure 5.5: Several steps of a second-level sweep. T is shown with the water level
of each depression at τβ marked in blue. To the left we show Fα immediately
before and after the second level sweep is performed. As we proceed, the
vertices in QV at each step are marked in red. (a) First, β becomes full and
spills from the saddle u; the downslope neighbor z is not flooded, its flow
is updated and is added it to the priority queue. (b) Updating downslope
neighbor of z: a downslope neighbor, v, is flooded. so Fγ (the fill rate of γ) is
updated accordingly, and saddle w is added to QV ; downslopoe neighbor v′ is
updated and added to QV . (c) As we continue the sweep, we find x′ is flooded
and contained in the active depression α. As α is not yet full, when we update
the fill rate Fα, we also compute the new estimated time τ̂α when α becomes
full, and update the corresponding depression event in QT . (d) When we look
at the downslope neighbor of x, we find y is a minimum and not yet flooded.
We label y as flooded, the depression θ containing it becomes active, and we
add a corresponding event to QT .

With these two procedures at hand, we are now ready to describe the second-
level sweep. We initialize QV as follows. Given X, δ → R, for each x ∈ X, we
first call IsFlooded(x) to determine whether x is flooded. If the answer is no,
we insert (x, δ(x)) into QV . Otherwise we call FloodedVertex(x, δ(x)).

We repeat the following steps until QV is empty (see Figure 5.5):

1. Retrieve the highest vertex from QV using DeleteMax. Let (v, δv) be
the pair.

2. We add the pair (tcurr, δv) to φv.

5.3. TERRAIN-FLOW QUERY 93

3. For each downslope neighbor u of v with λ(u, v, tcurr) > 0, we do the
following:

a) We call the procedure IsFlooded(v).

b) If v is not flooded, we call UpdateFlow(v, λ(u, v, tcurr), δv) and
add the pair to QV (e.g. Figure 5.5(b) and (c).)

i. If v is a minimum, we label v flooded by setting bv = 1 in T
and add the depression containing v to D (e.g. vertex y in
Figure 5.5(d).)

c) If u is flooded, we call the procedure FloodedVertex(v, λ(u, v, tcurr), δv)
(e.g. vertices v and x in Figure 5.5(c) and (d).)

This completes the description of the second-level sweep. We make a few
remarks:

Remarks. (i) During a single run of the second-level sweep, the fill time
of a depression may be updated multiple times because of different flooded
vertices. Instead of updating QT each time, we can maintain a buffer that
stores all active depressions whose spill times are being updated. Every time
FloodedVertex procedure updates the fill time of a depression β, we update
it in the buffer. When the second-level sweep terminates for the current event,
we scan the buffer and update QT . Although this modification does not improve
the worst-case running time of the algorithm, it improves the running time in
practice when QT is large.

(ii) We have assumed that no two vertices have the same height but this
assumption does not hold for many real data sets, especially for urban areas.
If the input has a flat region we handle it as follows: we treat the plateau as a
single node in the merge tree. Water which reaches the plateau will flow to all
downslope neighbors of any vertex in the plateau.

(iii) We assume that each maximal depression is delimited by a unique
saddle, but some data sets have degeneracies and a maximal depression may be
determined by multiple saddles. In this case, the water spills through all these
saddles if the neighboring depressions are not full. A user can specify weight
to each such saddle to describe what proportion of water spills through each of
them. For simplicity, we set the weight of all such saddles to be the same.

(iv) The real data sets contain many tiny depressions, which lead to flow
rates being “noisy”— the flow rate has many breakpoints with very small
increase in the flow rate. We can reduce the noise by hydrologically conditioning
the terrain in the preprocessing step, e.g. pre-flooding tiny depressions; see
Section 5.7 for a discussion of hydrologically conditioning methods.

94 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

5.3.3 Implementation of data structures

Priority queues. The time-event priority queue is implemented as a Fibonacci
heap [54]. It performs DecreaseKey and Insert operations in constant time,
and DeleteMin operations in O(log n) time where n is the number of elements
in the heap.

There are two possible implementations for the vertex-event priority queue
QV . The first is a Fibonacci heap. The second implementation uses the fact
that the heights of the vertices are known ahead of time. We can associate each
vertex with an integer value in the range [1, n] corresponding to its position in
the sorted list of all vertices. Thorup [96] proposed a priority queue to store
a set of integers in the range [1, n], which requires O(log log n) time for each
DeleteMin operation, along with constant time Insert and DecreaseKey
operations. If there are |Vτ | vertices with non-zero change in flow-rate at time
τ , each DeleteMin operation while using the Fibonacci heap takes O(log |Vτ |)
time. While |Vτ | is not known a priori, we can use the Fibonacci heap until
|Vτ | = log log n, and at that point build the integer priority queue and use it
for the rest of the sweep.

Union-find data structure. We now describe how to build and maintain the
data structure K, so that if a vertex is flooded, we can determine the largest
maximal depression which is flooded and contains it (i.e. the active depression.)
Each maximal depression will store an associated set of wet verticesWβ . When
we call Create(x, β), we add x to the set Wβ .

To support Union and Find, we use a union-find data structure on the
maximal depressions. Each maximal depression starts as its own set. When
a depression β becomes active, we take the union of the set corresponding
to β and the sets of its children. Finally update the representative of this
union to the saddle delimiting β. To find the maximal flooded depression
containing a flooded query vertex v, we first find the maximal depression β
corresponding to the edge of T that contains v. Then Find(β) returns the
desired depression. While the general case of union-find takes super-linear time,
Gabow and Tarjan [56] show that if the sets correspond to nodes in a tree and
we restrict the operations to unions of nodes with their parents in the tree,
union find operations can be performed in amortized constant time. We can
see that the operations we perform fall under this restriction by associating
each maximal depression β with the highest vertex in the merge tree contained
in β (i.e. if β is delimited by a saddle v, it is represented by the child of of v in
the merge tree which is contained in β.) We only take the union of β with the
sets corresponding to its children, so it satisfies the restriction.

5.3.4 Analysis of the algorithm

The correctness of the algorithm is straightforward. It is easy to verify that the
initial estimate of an event time in QT is correct after the predecessor event of

5.3. TERRAIN-FLOW QUERY 95

the event in question has been processed. Similarly we can show that when a
pair (v, δv) is removed from the priority queue QV , δv is the correct value of
the change in φv at that time.

Next, we analyze the running time of the algorithm. First, we examine the
time spent performing operations operations on QT and handling time-events
outside of the second-level sweep. If |ξ| time-events are processed, we spend
O(|ξ| log |ξ|) total time performing DeleteMin operations to remove the time-
events as we process them. We must update an event’s time whenever the
fill-rate of an active depression changes. There are two possible cases where
this will occur.

The first case is when we are processing a depression event. The fill-rates of
depressions must be increasing in this case, so each update can be performed
with a DecreaseKey operation, which takes constant time. We update the
fill-time of a depression whenever the flow rate of an edge (u, v) changes where
v is flooded (i.e. water is flowing into a partially flooded active depression),
and the new fill-time can be computed in constant time. All together, the total
time spent updating QT when handling depression events is O(|φ|).

The second case is when we are processing rain events, where the fill-time
of depressions may increase. If so, we need to first delete the event and then
reinsert it with the new time, which takes O(log |ξ|)-time. In the worse case,
we may need to update O(|ξ|) events at each of the k rain events, so the total
time spent processing them will be O(k|ξ| log |ξ|).

In either case, when processing a time event, we must also update the set of
active depressions. If all sibling depressions are already flooded, we also merge
the sets Wξ of wet vertices and update the fill-time of the newly active parent
depression. The bit representing if a depression is active will only change twice,
when it first becomes active and when it becomes inactive as its parent becomes
the active depression. Therefore updating the active status of each depression
can be done in amortized constant time. As described, merging the sets using
the data structure K is also amortized constant.

Now we will examine the time spent performing the second-level sweeps. For
each change in a vertex flow-rate function, we call DeleteMax and Update-
Flow once. Letting |Vmax| = maxτ Vτ , these operations will take a total of
O(|φ| log min (log n, |Vmax|)) time. We can perform each IsFlooded operation
in constant time, and it will be called once for each corresponding change in
edge flow-rate functions. Therefore the total time spent performing IsFlooded
operations will be O(|φ|). Finally, each FloodedVertex operation, with the
exception of the time spent updating QT which we accounted for above, can
performed in constant time, utilizing the constant time Find operation on the
data structure K.

Therefore the total time spent performing the second-level sweeps, not
including the time spent updating QT , is O(|φ| log min (log n, |Vmax|). As
argued above the time spent in updating QT is O(|φ|+ k|ξ| log |ξ|). Putting
this all together, we have the following:

96 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

Theorem 5.1. Given a triangulation M of R2 with n vertices and a height func-
tion h : M→ R that is linear on each face of M, a data structure of size O(n)
can be constructed in O(n log n) time so that for a (time varying) rain distribu-
tion R, a terrain-flow query can be answered in O(|φ|(log(min(log n, |Vmax|)) +
k|ξ| log |ξ|) time, where |φ| is the total complexity of all non-zero flow-rate
functions, |Vmax| is the maximum number of flow-rate functions changing at
any given time, |ξ| is the number of events, and k is the number of times the
rain distribution changes.

Remark. We note that whenever the fill time of a depression increases, it also
corresponds to a change in flow-rate of an edge. Therefore we can also say the
total time spent processing updates to QT of this type is O(|φ| log |ξ|). Noting
that |ξ| = O(|φ|) and |Vmax| = O(|φ|), we have the simpler, if less precise bound
on running-time of O(|φ| log |φ|).

5.4 I/O-Efficient Algorithms

In this section, we describe two I/O-efficient algorithms that given a terrain
Σ = (M, h) and a rain distribution R determine the flow-rate φ(u,v)(t) for all
edges (u, v) ∈M.

In the preprocessing step of both algorithms, we compute the merge tree T of
Σ and label each node in T according to its in-order traversal as described in [77].
Furthermore, we compute Vol(βv) for each vertex v ∈ Σ and augment each
edge (u, v) ∈M with the index of the smallest maximal depression containing
v. This can be computed in O(Sort(n)) I/Os using the algorithm described by
Arge et al. [21].

The internal memory terrain-flow algorithm described in the previous section
does not trivially extend to the I/O-model since each time event is handled by
sweeping only the relevant vertices of M. It is difficult to implement this sweep
I/O-efficiently because we do not have random access to disk in the I/O-model.
Instead of extending the previously described algorithm, the algorithms perform
a single upward sweep of the merge tree T followed by a downward sweep of M.
By sorting the vertices of M in an I/O-efficient priority queue, we can trivially
sweep the terrain by scanning through the list of vertices in their descending
height order. We use the I/O-efficient priority queue by Brodal [37] which
performs n insertations and deletions using O(Sort(n)) I/Os and O(n log n)
internal memory computation time.

In the first algorithm, we assume that (χ+k)ρ = O(m), where χ is the height
of the merge tree T, k is the number of times at which the rain distribution
changes, and ρ is the number of sinks in M. Under this assumption, we can
explicitly store the fill-rates of all maximal depressions in internal memory. For
the second algorithm, we relax the assumption to ρ = O(m) at the cost of a
greater number of I/Os. For both algorithms, we store the merge tree T in
internal memory.

5.4. I/O-EFFICIENT ALGORITHMS 97

5.4.1 Computing flow-rates I/O-efficiently

We now describe our first I/O-efficient algorithm. Given a rain distribution
R, the algorithm begins by performing an upward sweep of the merge tree
T. During the sweep it computes R(α, ·) for each depression α delimited by a
vertex of T as follows: First assign R(v, ·) for each vertex with nonzero rainfall
to the smallest maximal depression containing v and then perform an upward
sweep on T, maintaining the sum of rainfall functions at each vertex of T. This
upward sweep can be trivially implemented in O(Scan(n) + Sort(|R|)) I/Os
and O(n+ |R| log |R|) internal computation time by storing T and the sums of
rainfall functions in memory.

Next, we perform a downward sweep. To describe the sweep, we introduce
the following notation: For a height ` and a maximal depression α, let E`(α)
denote the set of edges (u, v) ∈ M where h(v) < ` ≤ h(u) and v ∈ α. Let
Vα be the subset of vertices for which α is the smallest maximal depression
containing them. We define the subset Ê`(α) = {(u, v) ∈ E`(α) | v ∈ Vα}.

We process vertices of M in descending height order. When the sweep plane
is at height `, we maintain the following information:

1. for each depression α in the sublevel set h<`, maintain the fill-rate Fα,

2. for each maximal depression β lying below the sweep plane (i.e. the height
of the saddle delimiting β is at most `), maintain Φ̂β =

∑
(u,v)∈Ê`(β) φ(u,v),

and

3. for each edge (u, v) crossing the sweep plane, we maintain the flow-rate
φ(u,v) in an I/O-efficient priority queue Q keyed on the height of vertex
v.

Note that Fα depends only on the sinks contained in α, so it changes only
at negative saddles. Furthermore, we initialize Q by inserting the functions
R(v, ·) for each vertex v with R(v, ·) > 0. Whenever we process a vertex v,
we remove functions φ(u,v) from Q, compute φv, and for all outgoing edges
(v, w) ∈M we propagate the flow-rate φ(v,w) along the edge (v, w) and insert
φ(v,w) into Q. The fill-rates Fα, which are maintained for each depression α
in the sublevel set h`, and the functions Φ̂β, which are maintained for each
depression β lying below the sweep plane, can be stored in memory since we
assume ρ(χ+k) = O(m). We now describe in detail how to process each vertex
v as we encounter it in our sweep.
Non-negative-saddle vertex. If v is a non-negative-saddle vertex lying in a
depression αi, we first compute φv using (5.3); note that φ(u,v) for all incoming
edges to v has been computed and can be removed from the front of the priority
queue Q. Additionally, using Fαi(t) along with Vol(βv), we determine if or when
v becomes flooded and update φv accordingly. Let α be the smallest maximal
depression containing v, i.e., v ⊂ Vα. We set Φ̂α = Φ̂α −

∑
(u,v) φ(u,v). Next,

98 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

for each edge (v, w) ∈M where λ(v, w, t) > 0 we compute the flow-rate φ(v,w)

using (5.2) and push the result onto the priority queue Q. Let β be the smallest
maximal depression containing w, i.e., w ∈ Vβ . We set Φ̂β = Φ̂β +φ(v,w). Note,
that each edge flow-rate is added to only one function and the complexity of
each function is O(k + χ), where k is the number of times the rain distribution
changes and χ is the height of the merge tree of the terrain. Furthermore, for
each incoming edge to v with non-zero flow, we perform one deletion from the
priority queue Q. Correspondingly, for each outgoing edge with non-zero flow,
we perform one insertion into Q. Thus, letting |φ| be the total complexity of the
flow-rate functions, we spend O(n(χ+k)+ |φ| log |φ|) internal computation time
and O(Scan(n) + Sort(|φ|)) I/Os processing the non-negative-saddle vertices.

Negative-saddle vertex. Let v be a negative saddle delimiting two depres-
sions α and β. As discussed in Section 5.2.2, computing φv is more involved—
it depends on which of α or β fills first and when. We first compute the
pseudo-flow-rate function, φ′v, using (5.3) and note that φ′v(t) = φv(t) for
t ≤ min(τα, τβ), i.e., until one of α or β becomes full. We also compute
φ′(v,w) for all edges (v, w) ∈ M using (5.2). Let ξ be the maximal depression
such that w ∈ Vξ. Then we update Φ̂ξ as above. Next, we compute the
pseudo-fill-rates F ′α(t) and F ′β(t) as follows: F ′α = R(α, ·) +

∑
αi⊆α Φ̂αi and

F ′β = R(β, ·) +
∑

βi⊆β Φ̂βi , where the sum is taken over all maximal depres-
sions αi (resp. βi) that lie in α (resp. β), i.e., the edge corresponding to αi
(resp. βi) lie in the subtree below the edge corresponding to α (resp. β). See
Figure 5.6 for an example. Note that F ′α(t) = Fα(t) and F ′β(t) = Fβ(t) for
t ≤ min {τa, τb}. Next, using F ′α, F ′β and Vol(α),Vol(β), we compute which of
α and β fills first. If neither of them becomes full, φ′v, φ′(v,w), F

′
α and F ′β are

correct flow and fill-rate functions for all values of t and we are done. So assume
that one of them, say, α, becomes full first. We truncate these functions at τα.
Sα(t) = F ′α(t) for t > τα. We now compute φv(t) for t > τα, using (5.4), and
φ(v,w)(t), for t > τα, using (5.2), (5.4) and (5.5). Note that φ(v,w), for w ∈ α,
is not defined for t > τα.

Finally, we propagate the flow-rates on the outgoing edges by pushing
φ(v,w) = λ(v, w, ·) ·φv to Q for all vertices w, where λ(v, w, ·) > 0. Furthermore,
for each outgoing edge (v, w) we update Φ̂ξ for the maximal depression ξ with
w ∈ Vξ.

Again, each non-zero edge flow-rate is forwarded only once using Q. Thus,
we spend O(|φ| log |φ|) internal memory computation time and O(Sort(|φ|))
I/Os updating flow-rates in Q. Computing the fill-rates at saddle vertices does
not require any additional I/Os, since we maintain R(β, ·) and Φ̂β in internal
memory for each maximal depression β lying below the sweep plane. However,
in order to reduce the total internal memory computation time used, we speed
up the computation of the fill-rates F ′α and F ′β in internal memory; recall that
when computing the fill-rate F ′α (resp. F ′α) we sum over Φ̂αi (resp. Φ̂βi) for

5.4. I/O-EFFICIENT ALGORITHMS 99

v

α1

α2 α3

α5α4

β1

β4

β2 β3

β5

α1

α3

α2

α4 α5

β1

β2 β3

β4
β5

(a) (b)

Figure 5.6: An example terrain where the sweep plane is at negative-saddle
vertex v delimiting depressions α and β. (a) Merge tree with red and blue
edges crossing the sweep line into α and β respectively. (b) Contour of the
terrain with the corresponding edges drawn.

each maximal depression αi (resp. βi) contained in α (resp. β). Thus, explicitly
computing F ′α (resp. F ′β) requires O(|α|(χ+ k)) (resp. O(|β|(χ+ k))) internal
computation time, where |α| (resp. |β|) is the number of maximal depressions
contained in α (resp. β). Recall that βv is the depression delimited by v. Since
Fβv = F ′α + F ′β , it suffices to compute only one of the fill-rates F ′α and F ′β . We
compute the fill-rate for the depression which contains the fewest number of
maximal depressions. This can trivially be implemented by storing the sizes of
each subtree in the merge tree T. Letting T (βv) be the total internal memory
computation time used to compute fill-rates for all saddles contained in βv, we
can bound T (βv) using the following recursion:

T (βv) = O ((χ+ k) min(|α|, |β|)) + T (α) + T (β) . (5.6)

Noting that α and β are disjoint, it follows that |α|+ |β| ≤ |βv|. Using this, the
recurrence solves to T (βv) = O((χ+ k)|βv| log |βv|). Thus, we can compute all
fill-rates in time O((χ+ k)ρ log ρ). The total internal computation time used
at saddle vertices is thus O((χ+ k)ρ log ρ+ |φ| log |φ|) and the total number of
I/Os used at saddle vertices is O(Scan(ρ) + Sort(|φ|)).

Theorem 5.2. Given a triangulation of M with n vertices, a height function
h : M → R which is linear on each face of M and a rain distribution R,
a terrain-flow query can be answered in O(Scan(n) + Sort(|φ|)) I/Os and
O((χ+ k)(n+ ρ log ρ) + |φ| log |φ|) internal computation time O(Sort(n)) using
preprocessing assuming ρ(χ+ k) = O(m), where |φ| is the total complexity of
all flow-rate functions which we return, χ is the height of the merge tree, k is

100 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

the number of times at which the rain distribution changes, ρ is the number of
sinks in M, and m is the size of internal memory.

5.4.2 Assuming smaller internal memory

We now extend the algorithm to relax the assumption on the size of the internal
memory from ρ(χ+ k) = O(m) to ρ = O(m), at the cost of a log factor in the
number of I/Os. We use the same framework as described previously. However,
we do not store fill-rates Fα in memory for each depression α in the sublevel
set h`. Furthermore, we do not maintain the functions Φ̂β for each maximal
depression β lying below the sweep plane. Instead, we use the priority queue
Q to forward fill-rates as well as the edge flow-rates used to compute fill-rates
at negative saddle vertices.
Forwarding fill-rates. Let v be a non-negative-saddle vertex, and let α be
the maximal depression such that v ∈ Vα. Let u be the vertex visited after v
in the downward sweep, such that u ∈ Vα. When performing the sweep, we
forward Fα from v to u using Q. We note that we can augment v with the
height of u using Sort(n) I/Os in preprocessing, and thus we can forward Fα to
u during the sweep. Furthermore, for each negative saddle vertex v delimiting
depressions α and β, we forward Fα and Fβ to the first vertices visited in α
and β, respectively.
Computing fill-rates at negative saddles. Let v be a negative saddle vertex
with height ` that delimits two depressions α and β. During the execution of
the sweep, we compute the fill-rates of depressions α and β. We recall that the
pseudo-fill-rate of α can be computed as follows:

F ′α = R(v, ·) +
∑

(u,v)∈E`(α)

φ(u,v) . (5.7)

We note that R(v, ·) and the flow-rates used to compute this sum could be
forwarded using Q. However, that would lead to forwarding Θ(nχ) functions
in the worst-case. Recall that Fβv is forwarded to v using Q. Furthermore,
since Fβv = F ′α +F ′β , it suffices to compute either F ′α or F ′β , whichever requires
the fewest flow-rates to be forwarded. The number of flow-rates that need to
be forwarded to compute F ′α (resp. F ′β), can be precomputed by counting the
number of edges crossing the boundaries of α (resp. β). This precomputation
step can trivially be implemented by performing a scan of the vertices using
O(Scan(n)) I/Os and O(ρ) memory. We, therefore, preprocess for which
depressions we compute fill-rates and forward only the flow-rates required for
computing those.

We now bound the number of edges forwarded using a similar recurrence
as previously; let |α| denote the total number of edges with at least one vertex
contained in the depression α and note that |α| ≥ |E`(α)|. Letting T (βv) be
the total number of flow-rates summed to compute the fill-rates for all saddles

5.5. VERTEX-FLOW QUERY 101

contained in βv,

T (βv) = O
(

min(|α|, |β|)
)

+ T (α) + T (β) . (5.8)

Noting that the set of edges with vertices in the two maximal depressions α and
β are disjoint, it follows that |a|+ |β| ≤ |βv|. Using this, the recurrence solves to
T (βv) = O(|βv| log |βv|), and we thus need to forward only a total of O(n log n)
flow-rate functions using the priority queue. Since the complexity of each flow-
rate function is bounded by O(χ+k), we spend a total of O(Sort((χ+k)n log n))
I/Os and O((χ+ k)n log n log(kn)) internal computation forwarding edges and
computing fill-rates.

Theorem 5.3. Given a triangulation of M with n vertices, a height function
h : M → R which is linear on each face of M and a rain distribution R,
a terrain-flow query can be answered in O(Sort((χ + k)n log n)) I/Os and
O((χ + k)n log n log(kn)) internal computation time assuming ρ = O(m),
where χ is the height of the merge tree, k is the number of times at which the
rain distribution changes, ρ is the number of sinks in M, and m is the size of
internal memory.

5.5 Vertex-Flow Query

The terrain-flow query computes the flow-rate for every vertex and edge, so one
could answer vertex-flow queries by computing the terrain-flow query and then
returning φq(t) for the query vertex q ∈M. While in practice the query time
can be improved, the worst-case running time under the MFD model remains
the same as for the terrain-flow query. Under the SFD model, we can improve
the running time significantly, building on the fast algorithm for the flood-time
query under SFD by Rav et al. [89], along with a linear-size data structure
supporting constant-time reachability queries in planar directed graphs given
by Holm et al. [64].

The key idea of the algorithm is that under the SFD model, when water
falls on a vertex or spills from a negative saddle, the water flows along a single
path to some sink in the terrain. Thus, if we can find vertices and negative
saddles from which water follows a path containing q in the flow graph, i.e.,
upstream vertices of q, then φq will be the sum of water falling directly on or
spilling from these sources. Before describing the algorithm, we introduce a
few definitions.

Any given point q ∈M is contained in a sequence of maximal depressions
α1 ⊃ · · · ⊃ αk 3 q. Each αi is delimited by a saddle vi and has a corresponding
sibling depression βi. These saddles form a path in T from q to the root. We
refer to the maximal depressions β1, . . . , βk−1 as the tributaries of q and denote
them by Bq. See Figure 5.7(b). In the SFD model, all upstream vertices of q
must be ancestors in the merge tree. Therefore the only depressions that can

102 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

(a)

q

p
r βq

β5

(b)

β1

β2

βq

q

β1

β2

β3

β5

β4

k
`
m

n
p

j

i

r
β4

β3

j

i

k

` m

n

(c)

β1

β2

β4

β5

βq

β3

Figure 5.7: (a) An example terrain, with sinks marked as boxes, and saddles
delimiting tributaries of q with open circles. The path in the flow graph from
labeled vertices marked blue, and vertices upstream of q marked red. (b) The
merge tree with q-tributaries β1, · · · , β5 and arrows pointing from each saddle
to the sink they flow to when βi is full. (c) The tributary tree Tq rooted at βq
with each vertex denoting a tributary of q

spill and have water reach q are the tributaries. Further, for the purposes of
computing the flow rate at q, the behavior inside each tributary is irrelevant.
The relevant information is when the tributaries become full, and where the
water spills to when they do.

For any point q ∈ M, we define the tributary tree Tq as follows. Tq is a
directed graph with nodes corresponding to the tributaries of q plus βq, the
smallest maximal depression containing q. There is an edge (βi, βj) in Tq if
water spills from the saddle vi to a sink in βj when βi becomes full. Water
spills to exactly one sink under the SFD model, so Tq is a tree rooted at βq.
See Figure 5.7(c).

The set of q-tributaries and Tq are independent of the rain distribution.
Given the set of tributaries the rain distribution initially falls in B, to efficiently
compute the vertex-flow query we also make use of the following. Given a
tributary tree Tq and a set B of tributaries, we say the compressed tributary
tree T̂q(B) is the subtree of Tq formed by the paths in Tq from each βi ∈ B to
the root in Tq, with degree 2 nodes that are not in B removed. Each node Π in
T̂q(B) corresponds to a path in Tq starting at a node with degree greater than
2 or in B, and all other nodes in the path consist of degree-2 nodes that are
not in B. We define the volume Πi to be the sum of volumes of the tributaries
in the path of Tq corresponding to Πi. See Figure 5.8.

We present an O(n log n)-time algorithm for preprocessing Σ into a linear-
size data structure that can answer an vertex-flow query for a given rain

5.5. VERTEX-FLOW QUERY 103

(a) (b)

βq

Π1 Π2 Π3 Π4

Π5 Π6

βq

Π6Π5

Π2Π1

Π4Π3

Figure 5.8: (a) the tributary tree Tq rooted at βq with each vertex denoting a
tributary of q, rain initially falls in the tributaries marked as squares. (b) the
compressed tributary tree for the given rain distribution. Each node Πi stores
the volume of all tributaries in the compressed path.

distribution R and query vertex q. The query takes O(|R|+ |B|k log n) time,
where |B| is the number of q-tributaries with non-zero initial rainfall.

We note, that one could use the vertex query to compute the flow rate of
an edge as well. Given a query edge (q, r) ∈M and a rain distribution R, we
begin by assuming that water flows from q to r. Since water only flows from
each vertex to one neighbor in the SFD model, if this were not the case then
we would immediately have that φ(q,r) = 0. Hence, φ(q,r) = φq, so the edge-flow
query is equal to the vertex-flow query.
Vertex-flow query algorithm. With these definitions in hand, we are ready
to describe the algorithm. It begins by building Tq. Refer to Figure 5.8 for an
example. As we have noted, water will reach q in one of two cases: rain falls on
a vertex v and follows a path that reaches q, or water spills from a tributary of
q and reaches q.

Consider first the case when rain falls only on a single point p con-
tained in some tributary βi1 . Take the path in Tq from βi1 to the root βq,
(βi1 , βi2 , · · · , βik , βq). For each depression βij , let Volj denote the depression
volume of βij and let τj be the fill-time of βij . The fill-time τk, when βik begins
spilling into βq, will be when the volume of rain falling on p equals

∑k
j=1 Volj .

Moreover, we have

Fβq(t) = Sβik (t) =

{
0 t < τk,

Fβi1 (t) t ≥ τk.

Therefore, instead of computing the fill and spill rates for each tributary
along the path, we can compress all the tributaries in this path and treat it as
if it were a single depression. Then to answer the query, check whether there is
a path in the flow graph from the saddle delimiting βik to the query vertex q. If
yes, then φq(t) = Sβik (t). If no, then water reaches q only when it gets flooded,
so while it is defined φq(t) = 0. In either case, we have that Fβq(t) = Sβik (t),
so we can also determine the time τβq at which q becomes flooded, after which
φq is undefined. For simplicity, in the general case, we assume we first compute

104 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

the flood-time of q using the algorithm in Rav et al. [89]. While that algorithm
only considers fixed rain distributions, a straightforward generalization leads
to a version that computes the flood-time for a rain distribution that changes
at k times in O(|R|+ |B|k log n) time where |R| is the complexity of the rain
distribution and |B| is the number of tributaries that rain falls directly in.

Now consider the general case where rain falls on many vertices. There
are two types of upstream vertices of q that can contribute to φq: upstream
vertices on which rain directly falls, and upstream vertices that are saddles
delimiting a tributary βi into βq. In the latter case we will say the tributary βi
is upstream of q, as when it becomes full the water spilling from it follows a
path in the flow graph to q. Note that only children of βq in Tq can possibly be
upstream tributaries of q. We then compute φq as a sum of flow-rate functions
on these upstream vertices: namely the rainfall functions on vertices that are
upstream of q, and the spill-rates of upstream tributaries of q (e.g. the red
vertices in Figure 5.7).

We begin by computing the initial fill-rate of each tributary in which rain
falls directly. For each vertex v from which rain flows to a sink contained in βq,
check whether v is upstream of q. If so, add the rainfall on v to the sum. In
either case, add the rainfall on v to the fill-rate of βq. If rain falls in multiple
tributaries that have disjoint paths in Tq to βq (excluding the root βq), we can
simply perform the single-point rain algorithm multiple times for each path and
add to the sum each spill-rate of depressions that reach q . However two paths
may merge at a tributary γ before reaching βu. (e.g. Π3 and Π4 in Figure 5.8.)
Here, we can compute Fγ as the sum of spill-rates of its children tributaries,
and recurse, treating γ as a new single-point source. Cases where more than
two paths merge at a single vertex can be handled in a similar manner. Letting
B be the set of tributaries with non-zero fill-rate at t = 0, the tributaries where
paths merge will be non-leaf nodes in the compressed tributary tree T̂q(B).

Now it remains to show how we can implement this algorithm efficiently.
There are two main operations needed. First, we must compute the fill and
spill-rates of the q-tributaries. Then we must determine which saddles and
vertices are upstream of q. To facilitate the former, we build the data structure
in [89], which given a set of m vertices on which it is raining, letting B be the set
of tributaries that rain initially flows to, it can return, in O(m+ |B| log n)-time,
the compressed tributary tree T̂q(B)1. We omit the details here, but note the
key idea that allows these queries to be performed efficiently. Two tributary
trees Tq and Tp will differ if p and q lie on different edges of T. However the set
of tributary trees for all vertices have a high degree of overlap— for two vertices
p and q, all tributaries delimited by saddles above lca(p, q) in T will be the
same. This overlap allows us to preprocess T so that compressed tributary trees
can be queried efficiently. Then with the compressed tributary tree, rooted at
βq, with each node being a path of tributaries, we process the nodes from the

1In [89] this process is referred to as the (B, z)-subtree operation.

5.6. EXTRACTING 2D FLOW NETWORKS 105

leaves towards the root, computing the fill and spill-rates of each compressed
set of tributaries.

Computing the initial fill-rates takes O(|R|) time. As in [89] we represent
each fill-rate as a sequence of pairs, (t, δ), of times t at which the fill-rate
changes by δ. By storing these fill-rate functions as a Fibonacci heap, keyed
on time, we can compute the sum of two spill-rate functions in constant time
by simply merging the two heaps. Computing a spill-rate function consists
of removing a prefix of the spill-rate functions. Each removal corresponds
to a delete-min operation which takes O(log n)-time, and we begin with |B|
fill-rate functions each with complexity k. Since we only perform removals,
the complexity of the spill-rate function of a depression can never increase
compared to the complexity of the fill-rate function. Therefore we can compute
the spill-rate functions of all compressed paths in O(|B|k log |B|k)-time.

To compute which saddles and vertices water are upstream of q, we build
the data structure for planar reachability queries as part of the preprocessing
step, as described in [64], on the flow graph. This data structure is linear in
size and given a pair of vertices p and q returns in constant time if q is reachable
in a graph from p. Water will reach q from a vertex p (i.e. q is downstream of
p) if and only if there is a path from p to q in the flow graph. Thus for each of
the O(|R|) vertices on which it is raining we can simply perform a constant
time query of the data structure to see if the rain at these vertices flows directly
over q. Similarly, when we compute the spill-rate function of each tributary, we
can also query the data structure to see if the water spills over q. Performing
these queries will take a total of O(|R|+ |B|) time.

Theorem 5.4. Given a triangulation M with n vertices and a height function
h : M→ R which is linear on each face of M, a data structure of size O(n) can
be constructed in O(n log n) time so that for a (time varying) rain distribution
R and a vertex q a vertex-flow query can be answered in O(|R|+ |B|k log n),
where |R| is the complexity of the rain distribution, |B| is the number of
tributaries in which rain is falling directly, and k is the number of times at
which the rain distribution changes.

5.6 Extracting 2D Flow Networks

So far we have assumed that water flows along the edges of Σ and computed
the flow rate of water along these edges. But in reality, the water flows along
2D channels forming a 2D network of rivers. We first describe a model for
determining the 2D channels given a flow along a path of M, and then present
an efficient algorithm for computing these channels.

106 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

Figure 5.9: A 2D channel from a 1D network using Manning’s equation. The
1D network is given in dark blue and cross sections in purple. The figure is
generated using SCALGO software [91].

λ(z) ρ(z)

x̂

Lx Rx

f↑5,x(z)f1

f2

f3

f4

f5

f6

f7

f8

e1

e2
e3
e4 e5

e6
e7

e8
e9x `x

(a) (b)

Figure 5.10: (a) Σ with sweep line `x. (b) Σx with water at height z. The
wetted perimeter is marked in red.

5.6.1 Model for 2D channels

We assume that we are given a path P along the edges of M. For each edge e of
P, let φe ∈ R≥0 be the flow value along e. Unlike previous sections, we assume
that φe does not vary with time, but it may vary with the edges of P. The
goal is to compute a 2D channel C := C(P, φ) along which water flows.2 See
Figure 5.9. The channel C is defined by its left and right banks. More precisely,
P is parameterized as P : I → R2 where I = [x0, x1] is an interval. For every
x ∈ I, we define Lb(x),Rb(x) ∈ R2 as the left and right bank, respectively,
of C at x, and ∆(x) = h(Lb(x)) = h(Rb(x)). The locus of points Lb(x) (resp.
Rb(x)), for x ∈ I, traces a curve Lb (resp. Rb), which is the left (resp. right)
bank of C. Here we assume that each of Lb and Rb is a non-intersecting curve;
if either of them is self-intersecting, then C has to be defined more carefully.

2Intuitively, P and flow values can be constructed from the edge flow-rate computed by
the algorithms described in Sections 3 and 4, by fixing a time and thresholding the flow rates.

5.6. EXTRACTING 2D FLOW NETWORKS 107

We overlay M with Lb and Rb. C is the portion of this overlay between Lb
and Rb. The complexity of C, denoted by |C|, is the number of vertices in C.

To estimate Lb(x) and Rb(x), we use Manning’s equation [81], a widely
used empirical formula relating the channel geometry and flow rate, as follows.
Let x be a point on an edge e ∈ M with flow value φe. Let `x be the line in
the xy-plane passing through x and normal to e, and let Πx = `x × R be the
vertical plane containing `x. Let Σx = Σ ∩ Πx be the cross-section of Σ in
Πx, which we refer to as the profile of Σ at x. Σx is a polygonal chain whose
vertices (resp. edges) are the intersection points of edges (resp. faces) of Σ
with Π. See Figure 5.10. Let x̂ = (x, h(x)) be the vertex on Σx corresponding
to the point x ∈ e, i.e. x̂ is vertically above x.

We divide Σx into two polygonal rays Lx, Rx at the vertex x̂, with Lx (resp.
Rx) lying to the left (resp. right) of P. For a height z ≥ h(x), let λ(z) (resp.
ρ(z)) be the first point on Lx (resp. Rx) at height z as we walk along Lx (resp.
Rx) starting from x̂. Let Ax(z) denote the area of the polygon formed by the
segment λx(z)ρx(z) and the portion of Σx between λx(z) and ρx(z), and let
Px(z), called the wetted perimeter, denote the arc length of Σx between λx(z)
and ρx(z). If the water has height z at x, then Manning’s equation [81] states
that the flow rate at x is

φx(z) =
Ax(z)5/3σ

1/2
e

µePx(z)2/3
, (5.9)

where σe is the slope in the z-direction of the edge of Σ corresponding to e,
and µe is Manning’s roughness coefficient. We assume that we are given the
value of µe, which depends on the material of the terrain at e (e.g. concrete,
dirt, light brush, etc.). Manning’s equation is typically used to compute the flow
rate φx(z) of rivers given a measurement of the river depth and approximate
channel geometry. Here instead we solve an inverse problem: given the flow rate
φx at x, determine the depth and width of the river at x. Let ∆(x) be the value
of z for which φx(z) = φe. We set Lb(x) = λ(∆(x)) and Rb(x) = ρ(∆(x)), i.e.,
the river bank points on Σ corresponding to x; Let Cx = Σx[Lb(x),Rb(x)] be
the profile of the channel at x. See Figure 5.10.

We first describe how we compute ∆(x) for a fixed x and then describe how
to track Lb and Rb as we vary x. For simplicity, we make the following two
assumptions:

(A1) Cx is unimodal for all x ∈ I;

(A2) the point x̂ is the unique minimum of Cx;

(A3) Lb and Rb are simple curves.

In Section 5.6.4, we discuss how to relax these assumptions.

108 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

5.6.2 Computing ∆(x)

Recall that we assume Cx to be unimodal with x̂ as its unique minimum.
Without loss of generality, assume that the edge e containing x is parallel to
the x-axis, so Πx is parallel to the yz-plane. We raise the value of z starting
from h(x) and stopping at the height of vertices of Σx until we find a vertex
v̂ = (v, h(v)) such that φx(h(v)) ≥ φe. We now know the edges of Lx and Rx
that contain Lb(x) and Rb(x), so we can then compute the points themselves
on those edges.

Next, we describe the procedure in more detail. Let f1,x, f2,x, · · · be the
sequence of edges of Rx, ordered from left to right, and let ei−1,x, ei,x be the
endpoints of fi,x; e0,x = x. Recall that each edge fi,x is the intersection of a face
fi of Σ with the vertical plane Πx, and each endpoint ej,x is ej ∩Πx for some
edge ej of Σ. For each edge fi,x, let f

↑
i,x be the semi-infinite trapezoid formed

by the edge fi,x and the vertical rays in the (+z)-direction from the endpoints
ei−1,x, ei,x of fi,x. For a value z0 ∈ R, we define the trapezoid f↑i,x(z0) to be
the intersection of f↑i,x with the halfspace z ≤ z0; f

↑
i,x(z0) may be empty, or it

may be a triangle; see Figure 5.10b. We define Ai,x(z) to be the area of f↑i,x(z)

and Pi,x(z) to be the length of the bottom edge of f↑i,x(z), which is a portion
of the edge fi,x. Let ei,x = (x, ai(x), bi(x)) denote the coordinates of ei,x as
a function of x, and set wi(x) = ai(x)− ai−1(x) and hi(x) = bi(x)− bi−1(x).
Then Ai,x can be written as

Ai,x(z) =

0 z < bi−1(x),
(z−bi−1(x))2wi(x)

2hi(x) bi−1(x) < z < bi(x),

wi(x)(1
2hi(x) + (z − bi(x)) bi(x) < z.

(5.10)

Similarly Pi,x can be expressed as

Pi,x(z) =

0 z < bi−1(x),

‖fi(x)‖ (z−bi−1(x))
hi(x) bi−1(x) < z < bi(x),

‖fi(x)‖ bi(x) < z.

(5.11)

We note that Pi,x (resp. Ai,x) is a piecewise-linear (resp. piecewise-
quadratic) function of z for a fixed x. We can define Fj,x(z), Pj,x(z) and
Aj,x(z) for the edges fj,x of Lx as well. We can now express Px and Ax as:

Px(z) =
∑
i

Pi,x(z) and Ax(z) =
∑
i

Ai,x(z), (5.12)

where the summation is taken over all edges of Σx that contain a point of
height at most z. Px and Ax are also piecewise-linear and piecewise-quadratic
functions respectively.

5.6. EXTRACTING 2D FLOW NETWORKS 109

Let z0 < z1 < z2 < · · · be the heights of vertices of Σx. Px(z0) = Ax(z0) = 0.
Assuming Pi,x(zi−1), Ai,x(zi−1) have been computed, Pi,x(zi), Ai,x(zi) can be
computed in O(1) time using (5.10)–(5.12).

Let zk be the first value for which φx(zk) ≥ φe. Since Pi,x(z) (resp. Ai,x(z))
is a linear (resp. quadratic) function for z ∈ (zk−1, zk), the value of ∆(x) ∈
(zk−1, zk] can be computed in O(1) time by plugging these functional forms in
(5.9), assuming the roots of a constant-degree polynomial can be computed in
O(1) time. Let fL,x (resp. fR,x) be the edge of Lx (resp. Rx) at which the
vertical sweep stopped. Then Lb(x) (resp. Rb(x)) is the point on fL,x (resp.
fR,x) of height ∆(x) and can be computed in O(1) time. The total time spent
by the procedure is O(|Cx|). Hence, we obtain the following.

Lemma 5.1. For a given point x ∈ P, ∆(x), Lb(x) and Rb(x) can be computed
in O(|Cx|) time.

5.6.3 Computing the channel

We now describe our algorithm for computing the channel C assuming (A1) and
(A2) hold. Recall that for any x ∈ I, the vertices of Cx are intersection points
of the edges of Σ with the plane Πx. Let Γx = 〈γ1, · · · , γu〉 denote the sequence
of these edges, which implicitly define Cx. We refer to Γx as the combinatorial
structure of Cx. We compute C by varying x continuously from x0 to x1 and
maintaining Cx. As x varies, Cx changes continuously, i.e., each vertex of Cx
traces a curve, but the combinatorial structure Γx changes only at discrete
values of x, called the events. The algorithm works by sweeping the line `x
along P, stopping at events as we traverse P. As long as x lies on the same
edge of P, `x simply translates. At vertices of P, where the sweep line `x shifts
from one edge to the next one in P, the algorithm continues by rotating `x to
make it normal to the next edge. We first describe how we sweep along an edge
of P and then we describe how we sweep through a vertex of P.
Edges. Fix an edge e ∈ P. Without loss of generality, assume that e is
parameterized as e : [0, 1]→ R2. As we sweep along e and vary x, the left and
right banks Lb,Rb trace curves that lie inside fixed faces of Σ and the remaining
vertices of Cx trace the corresponding edges of Σ. The algorithm encounters
the following two types of events at which Γx changes (see Figure 5.11):

1. the sweep line reaches an endpoint of an edge (u′, v′) of Γx that is a
vertex of Σ, (Figure 5.11a) or

2. Lb or Rb intersects an edge e′ (bounding the face containing it) of Σ
(Figure 5.11b).

The first event results in one or more edges in Cx shrinking to the point v′,
and one or more new edges starting at v′. The second event results in either the
addition and/or removal of an extremal edge in Cx (and thus insertion/deletion

110 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

f1

f3

f2 `

u′

v′

(a)

f1

`
f3

p1

p3
f2

p2
Lb

u

v

(b)

Figure 5.11: Two types of events in each: (a) ` reaches the endpoint of the
edge (u′, v′), (b) Lb, is marked in red, intersects the edge (u, v) of Σ.

of an edge in Γx) depending on whether the height of the channel is increasing
or decreasing. (For instance, in Figure 5.11b, Cx gains an edge at each of p1

and p2, but loses an edge at p3.) We store the events in a priority queue Q.
The first type of events are easy to detect, as they correspond to the vertices

of Σ. The second type are more challenging, and we detect them as follows.
By maintaining functions representing the area and wetted perimeter of Cx
as a bivariate function of x and z (using (5.10)-(5.12)) and using Manning’s
equation we can express ∆ as a function of x. We then compute when ∆(x)
reaches the top or bottom boundary of the face containing Lb (resp. Rb). This
step reduces to computing the zeros of a constant degree polynomial, which
we recall we are assuming can be done in O(1) time. These time instances
correspond to the second type of event.

Initially Q contains the event corresponding to the first endpoint of e at
x = 0. Additionally compute ∆(0), Lb(0) and Rb(0) using Lemma 5.1. In
doing so, we compute the functions A(x, z) and P (x, z) which we store. Recall
that A(x, z) and P (x, z) are sum of piecewise functions, one for each face in
the profile. We store these functions in a data structure which supports adding
or deleting the function for a face from A(x, z) and P (x, z). We can perform
these operations in O(log n) time per insertion/deletion of a term in A(x, z)
and P (x, z) by storing the terms in a height balanced tree.

Next we process the events in order, by removing the first event from the
priority queue Q. If it is the first type of event corresponding to a vertex v of
Σ, we remove from Γ the edges of Σ that end at v and insert into Γ the edges
of Σ that start at v. We add the other endpoints of the new edges to Q as new
events. We also remove from A(x, z) and P (x, z) the terms corresponding to
the old edges and add terms corresponding to the new edges. For example, in
Figure 5.11a, we would remove the functions corresponding to f1, and add the
functions corresponding to f2. If an edge of the face of Σ containing Lb or Rb
changes, we also update the second type of events in Q as discussed above.

If the event corresponds to Lb or Rb reaching an edge of the terrain, either
add the new face it crosses into and/or remove the face it crosses out of. We
update Γ as well as Q. We also update A(x, z) and P (x, z) accordingly. At p2

Lb crosses into f3, so we add the corresponding functions for this face. At p3

5.6. EXTRACTING 2D FLOW NETWORKS 111

(a) (b)

e1
p2

v

`1

`2

p1

e2

e1
p2

v

`1

`2

p1`′1

`′2

e2

v′

Figure 5.12: (a) The river profiles C(u,v) and C(v,w). (b) Rotating from `′0 to `′1,
we get Cv delimited in purple.

Lb crosses out of f3, so we delete the corresponding functions for this face.
We continue this process until we reach the event corresponding to x = 1,

when the endpoint of e is reached. Let |Ce| be the number of total faces
contained in the channel from C(0) to C(1). The curves Lb and Rb intersect
an edge of Σ only a constant number of times. Therefore the total number of
events is O(|Ce|), giving a total running time to sweep an edge of O(|Ce| log |Ce|).
Vertex. Let e1 and e2 be two consecutive edges of P with v as their common
endpoint. Using the above algorithm, we can compute the channels Ce1 and Ce2 .
Since P is not C1-continuous at v, Ce1 and Ce2 do not meet at the vertex v, i.e.,
left and right banks are not continuous curves at v (Figure 5.12a). Suppose
P makes a left turn at v. Let `1 be the line normal to e1 at v and `2 be the
line normal to e2 at v. A simple way to connect the left and right banks of the
two channels is to rotate a line from `1 to `2 at v and maintain the left and
right banks in the same manner as we did when we translated the line along
an edge. But the difficulty with this approach is that the right bank becomes
a self-intersecting curve as it traces “backwards” (Figure 5.12a). Instead, we
process v as follows:

Let p1 (resp. p2) be the intersection point between `1 at v and the right
bank of Ce2 (resp. `2 with the riverbank of Ce1) at v. We assume that pi lies
on ei and on the same side of `i as ei, for i = 1, 2. Then let `′1 (resp. `′2) be
the line parallel to `1 at p2 (resp. `2 at p1), and v′ be the intersection point of
`′1 and `′2. We rotate a line at v′ from `′1 to `′2 and maintain the left and right
banks. This will connect the two banks of Ce1 and Ce2 ; see Figure 5.12b.

In a similar manner in which we swept along an edge, let Cv′,θ be the profile
of v′ with a line ` at angle θ. As we rotate the sweep line, we change the flow rate
linearly from φe1 to φe2 . We will similarly maintain A(θ, z), P (θ, z) as a sum of
functions on each face in the channel. Additionally when computing Manning’s
equation, as we rotate we will linearly interpolate between slope values as well
as the roughness coefficients for the two edges. The main difference is now
for each face fi of Σ, hi(θ, z) and wi(θ, z) are not linear functions in θ as it
was when we swept along an edge. However, we can still compute the events
corresponding to the riverbank(s) crossing edges of faces assuming that the

112 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

zeroes of corresponding functions can be computed in O(1) time. Letting |Cv|
denote the total number of faces in the channel obtained by sweeping at v, the
total time spent is O|Cv| log |Cv|). Putting everything together, we obtain the
following:

Theorem 5.5. Given a triangulation M with n vertices, a height function
h : M → R which is linear on each face of M a path P in M, such that
assumption (A1) and (A2) hold, and a flow rate for each edge in P, we can
compute the 2D flow network in time O(|C| log |C|) where |C| is the total number
of faces in the channel obtained by sweeping along the edges and vertices of P.

5.6.4 Extensions

We will now show how to modify the algorithm when assumptions (A1) and
(A2) do not hold, or when the 1D flow network is a forest instead of a simple
path.
Relaxing assumption (A2). If (A2) does not hold but a local minimum lies
near P, we can retract P to the minimum so that it satisfies (A2). However,
this approach does not work when water is flowing over a 2D surface, and not
along a channel, e.g., over a peak of a mountain or a plateau; see Figure 5.13b.
In this case Manning’s equation is not the right framework to compute the
2D channels. Instead one has to use a model that distributes water on a 2D
surface. There has been some work on computing a 1D network of water from
flow on flat areas [44], and these models need to be extended.

(a) (b)

Figure 5.13: Rain falls at the point marked in green down a mountainside. (a)
The flow-rate function on vertices when water flows according to MFD model,
with red indicating higher flow and orange less. (b) A 2D channel computed
using Manning’s equation; the 1D path is obained by computing water flow
using the SFD model.

Relaxing assumption (A1). When (A1) does not hold, i.e. some cross-
section Cx of the channel is not unimodal. Cx contains a local maximum in the

5.6. EXTRACTING 2D FLOW NETWORKS 113

(a) (b)

u

v

x
w

z

x̂

fi

ei

e′

Figure 5.14: (a) A channel profile Σx with local maxima y. If the flow in the
primary channel on the right causes the channel height to exceed h(y), excess
spills to the secondary channel on the left. (b) When two rivers merge, we
recompute the extent of the channel for the region where their channels overlap.
This region is highligted red, with the new sweep direction, detrmined by an
weighted average of the sweep directions of the two rivers, shown as a blue
arrow. The 2D channel is then taken to be the union of the initial 2D channels
along with the newly computed channel.

profile. In this case, water flows over the ridge into a secondary channel. See
Figure 5.14a.3 We must now account for the decrease of the flow-rate in the
primary channel as well as determining the height of water in the secondary
channel. Our algorithm can be extended to handle this case by identifying the
next local minima and treating it as a spill event. We omit the details from
this version.

Forest 1D network. When the 1D flow network is a forest, we must consider
how the channels corresponding to two different paths interact (Figure 5.9). If
we assume the flow network is derived using a SFD model, that is, two rivers
may merge together but they do not split, then here is an approach to handle
multiple paths. We also assume for simplicity that only 2 rivers will touch in a
given face of M.

We begin by partitioning the forest into a set of paths. Whenever two
downslope edges (u,w) and (v, w) in the forest merge at a common vertex w,
the path with greater flow rate continues on. On this set of partitioned paths,
we use the single channel algorithm, described above, to compute an initial 2D
flow network. Next we determine the set of faces of M that the 2D channel
from two paths intersects, see Figure 5.14b. For each such face, we find the
region where the 2D channels overlap. In this region, take the flow rate to be
the sum of the flow rates of the two paths. The flow direction is taken to be
the weighted average of the flow direction of the two paths. We compute the
2D channel using Manning’s equation, as we did in the 1D channel, with this
new flow rate and direction.

3Here |Cx| contains all faces between the leftmost and rightmost river banks, i.e., all
edges marked red.

114 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

(a) (b) (c)

Figure 5.15: A rendering of the three data sets used: (a) the Indiana dataset,
(b) the Philadelhpia dataset and (c) the Norway dataset.

5.7 Experiments

In this section we present the experiments we have conducted on real terrains
to demonstrate the efficacy and efficiency of our algorithms.

We have implemented the terrain-flow algorithm, described in Section 5.3,
in C++, along with a simpler version of the 2D channel algorithm, described
below. We ran the experiments on a Dell R730 with 2 Intel Xenon ®,E5-2640
v4 2.4GHz 25M Cache and 256 GB RAM running Linux.Since we use grid
DEMs, every vertex has constant degree, so the flow-rate functions of edges
will be very similar to those of vertices. We therefore focus on the flow rates of
vertices.
Data sets. We study the performance of our algorithm on three publicly
available grid DEMs:

(i) The Indiana dataset, (Figure 5.15a), a 0.89 mi2 model of an area 0.5 mi
northeast of Holland, Indiana, USA, extracted from the publicly available 5 ft
resolution DEM of Indiana [65]. The dataset consists of 106 grid vertices, and
the terrain is relatively flat.

(ii) The Philadelphia dataset, (Figure 5.15b), a 225 km2 model of an urban
area in the northwest area of Philadelphia, extracted from the publicly available
3 m resolution DEM of Pennsylvania[88]. The dataset consists of 2.5 × 107

vertices.
(iii) The Norway dataset, (Figure 5.15c), a 10000 km2 model of a moun-

tainous region located in the Jotunheimen National Park, Norway, exacted
from the publicly available 10 m resolution DEM of Norway [31]. The dataset
consists of 108 vertices.

5.7.1 Terrain-flow queries

When performing the terrain-flow queries, as the water spreads out over the
terrain it is common that a large number of vertices have an exceedingly
small amount water flowing over them. As these small flows do not cause

5.7. EXPERIMENTS 115

any depressions to become filled and do not contribute meaningfully, in our
implementation we apply a thresholding and treat a change in flow-rate of less
than 10−4 times smaller than the initial flow rate of any vertex.

Complexity of flow functions. For the first set of tests, we considered
queries over each dataset, varying the location and size of |R|. In each we
considered the rain distribution to be rain falling uniformly over squares of side
length 10, 100, and 1000 vertices in the DEM. For each dataset we chose 12
points that denote the top left point of the query square over which rain falls.
For the queries on the Philadelphia and Norway datasets, we examined the
flow-rate queries at each point with each of the three side lengths for a total
of 36 queries on each. For the Indiana dataset, we do the same except that a
square of side length 1000 encompasses the entire Indiana dataset. Therefore
we only have one query for the largest rain region, for a total of 25 queries
on the Indiana dataset. Note that holding the rain region constant, as the
total volume of rain that falls increases (by either increasing the rain rate or
duration) more depressions will begin to fill and spill, which in turn increases
the output complexity. With this in mind, for each of the three datasets, we
fixed the total volume of rain that falls over all queries, so the rate of rain
falling over vertices in each query to be the same regardless of the region size.
That is as the rain region increases in size, we decrease the amount it rains on
each vertex in the region. However, since the scales of the datasets differ, we
use a different total volume of rain for each.

For the Philadelphia and Norway datasets, we considered the rate to be
falling at 2cm/s over the largest square (9 km2 and 100 km2 respectively) for a
duration of one hour, and scaled the rate accordingly on the smaller regions so
the total rain-rate was equal, corresponding to a total rainfall of 6.48× 108m3

and 7.2× 109m3. For the Indiana dataset we considered rainfall to be falling
uniformly for one hour, scaled over each query so that total rainfall in each was
1.27× 107m3.

Figures 5.16 and 5.17 show an example output of one such query on
Philadelphia and Norway respectively, with the flow-rates at one second and
one hour after the rain starts. Flooded regions are marked in blue. On the
Philadelphia dataset we show a zoomed-in portion of the affected region. Water
flows from the rain region towards the Schuylkill river. It then flows along
this channel until it reaches the boundary of the dataset and begins filling the
depression corresponding to the river. At one second, only small patches of the
river are flooded, which correspond to very shallow depressions. At one hour
more of the river is flooded, but we omit these features to highlight the region
over which it is raining. On the Norway dataset water falls over a region in the
west and flows downstream along a valley until reaching the boundary on the
east. This valley begins filling with water. For t = 1 second only small patches
are flooded corresponding to very shallow depressions. For t = 1 hour enough
rain has fallen to fill up a significant portion of the valley. Smaller depressions

116 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

(a) t = 1 second (b) t = 1 hour

Figure 5.16: An example query on Philadelphia at 1 second and 1 hour: rain is
falling inside the square; flow rate is shown in orange and red, with darker red
indicating a higher flow rate; flooded regions are shown in blue.

(a) t = 1 second

(b) t = 1 hour

Figure 5.17: An example query on Norway, at 1 second and 1 hour: rain
is falling in the west; flow rate is shown in orange and red, with darker red
indicating a higher flow rate; flooded regions are shown in blue.

are filled along the way as water traverses to the boundary. The total volume
of water is large enough to fill these depressions and reach a local minima near
the boundary. As time progresses, more depressions become full, often flooding
regions corresponding to the valleys or rivers the water flowed along.

Figure 5.18 shows the distribution of the number of changes in the (non-
zero) flow-rate functions over the queries. We see that for all sizes of |R| the

5.7. EXPERIMENTS 117

most common size of |φv| is 1, having a single step. That is, most vertices with
non-zero flow rate only have their flow rate increase once when water begins
flowing over them, and then the rate stays constant until the rainfall ends.
This intuitively makes sense, as for the flow-rate to change multiple times at
a vertex, there must be multiple upstream saddles that delimit depressions
becoming full. As the region size increases, the size of the output increase
as well. Table 5.1 gives the total output complexity for each type of query,
with the single 1000× 1000 query on the Indiana dataset multiplied by 12, so
that each represents 12 queries. As the rain falls over a larger initial region,
despite being the same total volume of water, it can reach more vertices in
the terrain. Additionally, the region over which it is raining has more complex
flow-functions (e.g. there are more depressions filling initially which can spill
and contribute the to flow rate of downstream regions.) For each dataset,
as the region size increases, the maximum complexity of flow-rate functions
increases, as does the number of functions with higher complexities. This also
corresponds to an increase in the total output complexity.

|R| = 10× 10 |R| = 100× 100 |R| = 1000× 1000

In
di
an

a

20 21 22 23 24

|φv |

103

105

20 22 24 26

|φv |

104

20 22 24 26 28

|φv |

103

105

P
hi
la
de
lp
hi
a

20 21 22 23 24 25

|φv |

104

106

20 22 24 26

|φv |

105

20 22 24 26 28 210

|φv |

104

106

N
or
w
ay

20 22 24 26

|φv |

102

104

20 22 24 26

|φv |

102

104

20 22 24 26 28

|φv |

104

106

Figure 5.18: Distribution of the complexity of vertex flow rates over queries
on Indiana, Philadelphia, and Norway with varying sizes of |R|. Both axes are
shown in log scale.

Figure 5.19 shows the distribution of the step sizes of the flow-rate functions
(i.e. the changes |δv,t|.) In the Indiana and Philadelphia datasets, particularly

118 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

10× 10 100× 100 1000× 1000

Indiana 3.5×105 1.0×106 6.4×107

Philadelphia 2.0×106 3.8×106 1.1×108

Norway 9.8×105 1.6×106 3.0×107

Table 5.1: Total output complexity |φ| for each type of query.

in the smallest region of size 10× 10 is a noticeable peak at the upper range
of the change in flow-rates. This is primarily due to queries where the initial
rain-fall mostly flows in a single direction, so the initial change in the flow-rate
functions at time zero of all downstream vertices will be roughly equal to
the total rate at which rain is falling. On these datasets, when the region
increases to 100× 100, there is a second peak of smaller step sizes. This most
likely corresponds to lower depressions becoming full and spilling mainly in
one direction. This is similar to queries on the smaller rain regions, but now
more water goes in different directions. At the largest size, we note that the
query on the Indiana dataset contains the entire terrain, while the Philadelphia
dataset does not. For the Norway dataset, the water tends to quickly spread
out more with few vertices containing near the total rainfall. The dataset is
very mountainous, and one would expect water on hillsides to spread out quite
a bit.

Hydrological conditioning. Terrain data often contains many small depres-
sions, in part due to noise in the measurement of heights, which add noise to
flow rates. It is therefore desirable to perform some hydrological conditioning
to the raw input data of the terrain. One conditioning step is to remove small
depressions by flooding them using topological persistence, as in [21, 44]. We
perform the thresholding based on the volume persistence. Roughly speaking,
this means given a threshold volume δ, we remove all depressions with a vol-
ume less than δ by pre-marking them as “flooded” in the preprocessing step.
See [21, 44] for a more precise discussion of the procedure.

While we can use this simplification as described, and treat the small
depressions as already having been flooded, this can change the resulting
output if the removed depressions represented actual (albeit small) depressions
in the terrain. Consider if there were many small divots which were all flooded
inside a depression, the sum of the extra water within all of these may be
enough to noticeably impact the water level in the depression. So we also
consider a slight variation of our flow-query algorithm when we simplify the
terrain. We initially treat the pre-flooded depressions as if they were flooded
(e.g. when water flows into one of these depressions, it increases the spill-rate
at the corresponding saddle.) However, when the sibling depression of one
of these pre-flooded depressions becomes flooded (i.e. the parent depression
becomes active) we subtract the volume of the pre-flooded depression from the

5.7. EXPERIMENTS 119

|R| = 10× 10 |R| = 100× 100 |R| = 1000× 1000

In
di
an

a

10−4 10−1 102

|δv,t|

0

2

×105

10−6 10−2 102

|δv,t|

0

1

2

×105

10−9 10−5 10−1 103

|δv,t|

0.0

0.5

1.0

×106

P
hi
la
de

lp
hi
a

10−4 10−1 102 105

|δv,t|

0.0

2.5

5.0

×105

10−6 10−2 102

|δv,t|

0.0

2.5

5.0

×105

10−8 10−4 100 104

|δv,t|

0

1

2

×107

N
or
w
ay

10−1 102 105

|δv,t|

0

1

2

×105

10−3 101 105

|δv,t|

0

2

×105

10−6 10−2 102 106

|δv,t|

0

5

×106

Figure 5.19: Distribution of step size of flow-rate functions (m3/s) over Indiana,
Philadelphia, and Norway with varying sizes |R|.

volume of rain in this new active depression. In essence, we loan water to the
small depression in the preprocessing step, but reclaim the loaned water when
the parent depression begins filling. See Figure 5.20 for an example. If we do
not reclaim the water, the flooded portion in the north extends further. But if
we do reclaim the water, the flooded portion is almost identical to the flood
query on the original terrain, without removing small depressions.

We ran 10 flow-terrain queries on each dataset. Each query was run with
5 levels of simplification, removing depressions with volume 0, 0.1, 1, 10 and
100 m3. For each, we considered rain falling over a square with side length 100,
with the rain falling uniformly at a rate equal to that in the previous queries.
We used the version of the algorithm that reclaims pre-flooded water. Table 5.2
shows how many depressions and total volume of rain that is pre-flooded at
each threshold. For the Norway dataset the resolution is 10 m, with a height
resolution of of 10 cm, so the smallest non-zero depression volume is 10 m3.
Therefore for the resulting tests, we only show the results using a threshold of
0, 10 and 100 m3, as there are no depressions with volume less than 10m3 to

120 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

(a) (b) (c)

Figure 5.20: A terrain flow query on the Indiana dataset; (a) and (b) with
depressions with persistence volume less than 100m3 removed. (a) Pre-flooded
water is treated as extra rainfall. (b) Pre-flooded water is reclaimed when a
parent depression becomes active. (c) The same terrain flow query with no
depressions removed.

be removed. Indiana and Philadelphia datasets show a diminishing number of
depressions being removed as the threshold increases. Figure 5.22 shows the
distribution of the complexity of the flow-rate functions for all the vertices with
non-zero flow rate in the outputs. For each datasets, the number of depressions
with large complexity decreases as we increase the threshold. Figure 5.21 shows
the distribution of the step sizes in the flow rate functions as we increase the
threshold. For each dataset, while there is an overall decrease in complexity,
there is a significantly large decrease in the number of smaller step sizes. This
reduction corresponds to tiny depressions which are no longer filling and spilling
very small amounts of water because of hydrological conditioning.

While increasing the threshold decreases the overall output complexity and
noise in the regions flooded, we want to balance this with the removal of real
features. Figure 5.23 shows the flooded regions of a query on the Indiana
dataset at three levels of thresholding, with depressions with volume 0, 10 and
100 m3 removed respectively. We only mark a depression with volume below
the threshold as flooded if its sibling depressions are also flooded to avoid
marking all small depressions as flooded even where there is not water around
them. They also correspond to pre-flooded depressions that we have begun
reclaiming water from. There are several small depressions marked as flooded
when we do not perform any thresholding. They are removed and not marked
as flooded when we begin pre-flooding small depressions. However, pre-flooding
depressions with volume 100m3 also removes some small pools. So some care is
needed when performing hydrological conditioning to remove the noisy small
depressions while preserving actual features of the terrain.

5.7. EXPERIMENTS 121

10−7 10−4 10−1 102

|δv,,t|

0

1

2

×105

0 m3

0.1 m3

1 m3

10 m3

100 m3

(a) Indiana

10−610−3 100 103

|δv,,t|

0.0

2.5

5.0

×105

0 m3

0.1 m3

1 m3

10 m3

100 m3

(b) Philadelphia

10−3 100 103 106

|δv,,t|

0

1

2

×105

0 m3

10 m3

100 m3

(c) Norway

Figure 5.21: Distribution of the step sizes of vertex flow rates in 10 queries
on the Indiana, Philadelphia, and Norway data sets with varying sizes of
depressions pruned from the terrain.

Threshold (m3) 0.1 1 10 100

Indiana # Depressions 1.75×104 2.23×104 2.29×104 2.30×104

Volume 4.27×102 1.70×103 3.15×103 6.23×103

Philadelphia # Depressions 3.70×103 2.17×104 4.01×104 4.65×104

Volume 3.37×102 9.23×103 7.31×104 2.40×105

Norway # Depressions 0 0 6.08×103 1.71×104

Volume 0 0 6.08×104 5.40×105

Table 5.2: Number and sum volume of depressions with volume less than
thresholds.

Running time. The time to preprocess the Indiana, Philadelphia and Norway
datasets was 2, 62 and 295 seconds, respectively. Figure 5.24 shows the
running times of the queries with varying region size plotted against the output
complexity |φ|. For all sets of queries the running time is roughly linear in the
size of the output. Interestingly, queries on the Philadelphia dataset had the
largest output complexity.

122 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

20 21 22 23 24 25 26

|φv |

102

103

104

105

0 m3

0.1 m3

1 m3

10 m3

100 m3

(a) Indiana

20 21 22 23 24 25 26

|φv |

102

104

106

0 m3

0.1 m3

1 m3

10 m3

100 m3

(b) Philadelphia

20 21 22 23 24 25 26

|φv |

102

104

0 m3

10 m3

100 m3

(c) Norway

Figure 5.22: Distribution of complexity of vertex flow rates over vertices in 10
queries on the Indiana, Philadelphia, and Norway data sets with varying sizes
of depressions pruned from the terrain.

Figure 5.23: The same terrain flow query on the Indiana dataset with depressions
with persistence volume less than 0, 10 and 100 m3 pre-flooded.

105 106 107

|φ|

10−1

100

101

T
im

e
(s

)

Norway

Philadelphia

Indiana

Figure 5.24: Running time of terrain flow queries against the output complexity
of the flow-rate functions.

5.7. EXPERIMENTS 123

(a) (b) (c)

Figure 5.25: (a) the terrain flow query on Indiana with rain falling at the green
point. (b) the 2D channel produced, taking the path to be the SFD flow from
the green point, the smoothed SFD flow is marked in yellow, with the minima
of each cross section marked in red. (c) the 2D channel overlayed on the results
of the terrain flow query.

5.7.2 2D channel queries

To compute the 2D channel queries, we used a modified version of the algorithm
described in Section 5.6 to avoid computing roots of polynomials. Instead
of sweeping along the path and computing the boundary analytically, we
discretized the path and computed the boundary of the channel at these
discrete points. To this end, we first computed the path of water flowing under
the SFD flow model, and fixed a flow rate. We then simplified the curve as
described in [4], choosing a threshold ε and finding a subset of points along
the polygonal curve that is ε-close to the original curve. Then at each point in
this simplified curve, we determine the boundaries in a similar manner as in
Section 5.6.2.

Figure 5.25 shows the resulting 2D channel query on the Indiana dataset.
We also show the corresponding terrain-flow query, as well as an overlay of the
two. The channel terminates where the path reaches a local minima. Note
that the 2D channel is wider than the wetted region in the terrain flow query.
Additionally if we were to increase or decrease the flow-rate the wetted region
would stay the same, while the 2D channel would widen or narrow accordingly.
This flow is along a valley of the terrain, so use of Manning’s equation to
compute the extent of the channel is appropriate.

Figure 5.26 shows the resulting 2D channel query on the Norway dataset.
We also show the corresponding terrain-flow query, as well as an overlay of
the two. We see here that Manning’s equation is not the right framework
for modeling the 2D flow on a locally concave or flat region, such as along a
mountainside or plateau. Following the water down, we see two regions where
the bank expands suddenly. This is due to the cross-section being flatter at
those points. As we go down further, we see also that the path of steepest
descent is no longer in line with the local minima of the cross section, marked
in red.

124 CHAPTER 5. 1D AND 2D FLOW ROUTING ON A TERRAIN

(a) (b) (c)

Figure 5.26: (a) the terrain flow query on Norway with rain falling at the green
point. (b) the 2D channel produced, taking the path to be the SFD flow from
the green point, the smoothed SFD flow is marked in yellow, with the minima
of each cross section marked in red. (c) the 2D channel overlayed on the results
of the terrain flow query.

5.8 Conclusion

In this paper we presented algorithms for a number of flow-routing problems:
We developed fast internal-memory as well as I/O-efficient algorithms for the
terrain-flow query problem. Next, we presented a faster algorithm for computing
the flow rate of only one vertex, after some preprocessing. Finally, given a
flow path along the edges of Σ, we proposed an algorithm to determine the 2D
channel along which water flows; our algorithm does not make any assumption
about the geometry of the channel.

We conclude by mentioning a few directions for future work.

• While we consider the flow rate as a function of time, it only changes when
the rain distribution changes or a spill event occurs. That is, the effects
of such events are propagated to all reachable vertices instantaneously.
While this assumption is reasonable for local effects and flash floods when
a large volume of rain falls over a short duration, an interesting question
is to make the model more general and account for the time it takes water
to flow over the terrain.

• The model of extracting 2D channels leaves a number of open questions.
For instance, if the 1D flow network is a forest then channels along
different paths will interact. We give a heuristic for how to merge these
channels, but a more systematic approach is needed. Another interesting
question is how we construct a realistic 1D flow network from the edge
flow functions.

• Can the simple geometric models used in this paper be combined with
machine-learning techniques more accurately predict flood risk by incor-
porating historical flooding and river data. There has been some existing
work on using machine learning to compute flood risk, e.g. [40, 76, 95],

5.8. CONCLUSION 125

but they typically focus on the height of water in rivers directly, and
generally do not use simulations of the water flow.

Chapter 6

Learning to Find Hydrological
Corrections

Abstract

High resolution Digital Elevation models, such as the (Big) grid
terrain model of Denmark with more than 200 billion measurements,
is a basic requirement for water flow modelling and flood risk analysis.
However, a large number of modifications often need to be made to even
very accurate terrain models, such as the Danish model, before they can
be used in realistic flow modeling. These modifications include removal of
bridges, which otherwise will act as dams in flow modeling, and inclusion
of culverts that transport water underneath roads. In fact, the danish
model is accompanied by a detailed set of hydrological corrections for the
digital elevation model. However, producing these hydrological corrections
is a very slow an expensive process, since it is to a large extent done
manually and often with local input. This also means that corrections
can be of varying quality. In this paper we propose a new algorithmic
approach based on machine learning and convolutional neural networks
for automatically detecting hydrological corrections for such large terrain
data. Our model is able to detect most hydrological corrections known for
the danish model and quite a few more that should have been included
in the original list.

6.1 Introduction

High resolution Digital Elevation models, such as the grid terrain model of
Denmark with more than 200 billion measurements available as part of the
government’s basic data program by the Agency for Data Supply and Efficiency
(SDFE) [52], is a basic requirement for several terrain based applications like
water flow modeling and flood risk analysis. However, a large number of
modifications often need to be made to even very accurate terrain models, such
as the Danish model, before they can be used in realistic flow modeling. These

127

128 CHAPTER 6. HYDROLOGICAL CORRECTIONS

modifications include removal of bridges, which otherwise will act as dams in
flow modeling, and inclusion of culverts that transport water underneath roads.
For this reason SDFE distribute a detailed set of hydrological corrections for
the Denmark model. However, producing these corrections is a very slow and
expensive process, since it is to a large extent done manually. This also means
that these corrections are of varying quality. Moreover, there are terrain models
for many countries that does not come with an official list of hydrological
corrections hindering realistic applications of important hydrological analyses.

The most prominent application of terrain data is probably analyzing the
risk of flooding, and the importance of this has only increased by efforts to
mitigate the consequences of climate changes. Thus the high costs associated
with extreme weather events occurring in densely populated areas has spurred
an increased effort into developing new hydrological models and methods for
analyzing how water flows across terrains in the case of heavy rain and increased
sea levels. Consider a classic simulation of how water flows across a terrain
in the event of rain fall. The result of a rain fall may be estimated by first
adding some water to all (or subset of) the cells of the terrain model, and
then simulating what happens as water flows down hill as follows: In each step
water is moved from a one cell to a neighboring cell of lower height, usually
the lowest neighboring cell. The simulation considers the cells in order of their
height, with the highest cell considered first. In this process each cell may
be annotated with the amount of water passing through it. This annotation
of the cells is known as flow accumulation [44, 86] and is used reveal river
networks and water ways by extracting the cells with high annotation. The
cells that cannot get rid of the water reveal which depressions in the terrain
that are flooded [44, 98]. For such a water flow simulation to produce useful
and realistic results, the directions that water flow in the simulation has to
(approximately) match how water flows over the surface in real life. However,
a bridge recorded in the digital elevation model breaks this condition, because
in real life the water would pass below it, while in the simulation this path is
blocked. Hence, obstacles like a bridge that makes the water flow in a wrong
direction in the simulation needs to be handled.

We loosely define a hydrological correction as any connected set of cells
in the digital elevation model that relative to the surrounding cells has large
heights, thus blocking the flow of water in the simulation, where in real life
water would actually flow through these cells. A simple requirement for dealing
with the problems created by hydrological corrections is to know where they
are. For this reason, lists of hydrological corrections to digital elevation models
are sometimes maintained together with the elevation model, and this list can
be used to update the digital elevation model before any computations are
performed. This can for instance be done by cutting the hydrological correction
from the elevation model, replacing the heights of the cells comprising the
hydrological correction with interpolated heights of the cells of the flow path the
hydrological correction blocks. In Figure 6.1, a set of hydrological corrections

6.1. INTRODUCTION 129

(a) Flash flood simulation
without hydrological correc-
tions.

(b) Hydrological correc-
tions.

(c) Flash flood simulation
with hydrological correc-
tions.

Figure 6.1: Visualization of flow accumulation with and without considering
hydrological corrections. Notice how water accumulates between bridges and
on the high way instead of flowing away when hydrological corrections are not
considered.

and the results of flash flood simulation [92] with and without considering these
hydrological corrections are shown. This figure clearly shows that running
analysis that do not consider hydrological corrections returns poor results.

Compiling a list of hydrological corrections is usually a manual process.
In particular, the list of hydrological corrections for Denmark was made in
a manual process where a group of people manually inspected orthophotos
and digital elevation data, focusing primarily on intersections between road
and river networks. Such an approach has several issues. First of all manual
labor is slow, expensive, imprecise, and very often inconsistent since deciding
whether something is in fact a hydrological correction is hard to pin down
exactly. Furthermore, the manual process needs to be applied again every time
the underlying data is changed, which happens continuously. In Denmark the
full terrain model is completely updated every five years, each year updating
one fifth of the model. Finally, intersections between road and river networks
does not contain all hydrological corrections. For instance, trenches connected
with pipes, small streams with small bridges, and tunnels cannot be found this
way.

Problem Formulation The goal is to create an algorithm that automat-
ically locates hydrological corrections in a digital elevation model, and thus
automating and improving on the process above. The algorithm takes as input
a digital elevation model, along with other supporting information, such as
location of roads and rivers, and the output of water flow algorithms, and
outputs a list of potential hydrological corrections including their positions
and shapes. We note that we do not really care about very large hydrological
corrections (like large bridges) since a list of these is readily available and easy
to discover.

130 CHAPTER 6. HYDROLOGICAL CORRECTIONS

RelatedWork Carlson and Danner [38] used feature engineering and machine
learning for automated detection of bridge-like objects. The approach they
took was to manually design local feature maps around each cell in an elevation
model and then applying the AdaBoost [55] machine learning algorithm on
these features for a cell, trying to predict whether each cell is a part of a
hydrological correction. The output of this is then processed by another
algorithm that tries to locate the hydrological corrections by grouping areas
with many cells predicted as hydrological corrections. The prediction of whether
a given cell is part of hydrological correction or not, is based on five kinds of
precomputed features. Carlsen and Danner create four local feature maps from
the digital elevation model: the first feature is the raw height data, and the
next tree features are output of different edge detectors, each based on a 3 x
3 neighborhood around the given cell. The final feature is a global feature,
called a fill map, that is made from a water flow simulation of the entire area
in consideration. From each of these feature maps, Carlson and Danner extract
102 features like min, max, mean, avg which totals 510 features per cell. The
data used in [38] has approximately 6 million cells of 20 feet x 20 feet or 40
feet x 40 feet resolution. To get labeled data, they manually tagged 600 cells
of the digital elevation model, 400 negative and 200 positive.

Our Approach Our approach for detecting hydrological corrections along
with their position and shape is based on convolutional neural networks. The
main ingredient in our algorithm is a convolutional neural network architec-
ture [71] for supervised learning, heavily inspired by convolutional neural
networks for image segmentation. Since terrains have high spatial locality, we
believe convolutional neural nets that are designed for exactly this situation
are the best available tool for the problem, alleviating the need for manually
designing features. While the hand designed features designed by Carlson and
Danner [38] may to some extent resemble the low level features a convolutional
network automatically generate on the same data, convolutional networks are
almost always better at learning useful discriminative features from data with
spatial locality than people are at designing them.

The convolutional neural net we employ is designed to solve the problem on
a fixed size tile. More formally, our tile neural network algorithm takes as input
a fixed size tile, potentially with several layers of features, and outputs a new
tile of the same size, mapping each cell of the input to the probability of whether
this cell is a part of a hydrological correction. The prediction for each cell is
based on the entire tile, allowing the neural network to learn to take advantage
of any relevant features within a large area around each cell. Compared to
the 3 x 3 cell neighborhood considered in [38], the neighborhoods we consider
are orders of magnitude larger, even when we take into consideration that
the cell size in the data we consider is an order of magnitude smaller. The
data set of tiles for training the network is initially constructed from the list

6.1. INTRODUCTION 131

of hydrological corrections maintained by SDFE, such that each hydrological
correction is contained in at least one tile in the training data. We train a
neural network to predict bit maps of the same size as the input tile, where
the bits set in the bit map carve out the hydrological corrections contained in
the tile.

We solve the full problem of locating all hydrological corrections in an
digital elevation model with the tile algorithm as follows: We scan the digital
elevation model, splitting it into overlapping fixed size tiles and apply the
tile algorithm on these overlapping tiles of the input. The output from the
algorithm for these tiles is then combined and used to list all the hydrological
corrections and their shapes.

The data set we use are orders of magnitude larger than the data set
considered in [38], containing approximately 200 hundred billion cells at a
resolution of 0.4 meters by 0.4 meters and the list of hydrological corrections
from SDFE just shy of 150 000 hydrological corrections. Hence, the results
presented are incomparable to the results achieved by Carlson and Danner [38].
Also, since convolutional nets are considered the state of the art for most image
recognition tasks, we have not compared our approach to theirs.

Our Results For the tile problem where the task is to predict the cells
that are part of a hydrological correction within the tile, all variations of our
algorithm obtain an area under ROC curve (AUC) score between 0.95 and
0.97. The AUC score of an algorithm is equal to the probability it will will
rank a randomly chosen cell that is part of a hydrological correction higher
than a randomly chosen cell that is not. We note that the bounding boxes
of hydrological corrections in the official list maintained by SDFE has non-
negligible variation both in terms of size and position when compared with the
the digital elevation model and it is not possible to get perfect accuracy. With
this in mind we believe our results for the tile problem are very good.

For the more general problem of listing all hydrological corrections in an
arbitrary sized digital elevation model, we measure how well our algorithm
detects the known hydrological corrections. However, we do not have a notion
of true negative for this problem, as we do not output where there is not
a hydrological correction. This means that we cannot compute an AUC
score for this problem. Since an algorithm can propose an excessive amount
of hydrological corrections it is important to consider both precision: the
number of hydrological corrections found divided by the number of hydrological
corrections suggested and recall: the number of hydrological corrections found
divided by the number of hydrological corrections. Computing the precision
and recall statistics is not completely trivial. We need to check if the shape of
the hydrological correction output by our algorithm is close to the bounding
box of a true hydrological correction. This is complicated by the fact that
positions and sizes of ground truth hydrological corrections are noisy, and

132 CHAPTER 6. HYDROLOGICAL CORRECTIONS

there may be several hydrological corrections that are close to a proposed
hydrological correction. For our applications recall is more important than
precision, and we mainly trade off the two in favor of recall. All our algorithm
variants achieve high recall, but the cost of this is quite low precision. This
may make our results seems less impressive than we believe they are. There
are hydrological corrections in the official list that are almost impossible to
detect from the data we have. More importantly, after having analyzed a large
number of the false positives, it is clear to us that many of the false positive
output by our algorithm are in fact actual hydrological corrections that are
just not part of the official list maintained by SDFE. It is clear to us that the
precision of our algorithm is much higher than the tests on the official lists of
hydrological corrections suggests, and is in fact a very good algorithm for the
problem. Our algorithm has already been included in the commercial product
SCALGO Live [93] where it is being used to detect hydrological corrections in
Sweden that does not have an official list of hydrological corrections available.

Paper Outline In Section 6.2, we describe the data we use in more detail.
In Section 6.3, we give a short description of the previous work that is the
basis for our neural net architecture. In Section 6.4, we describe the neural
net architecture we use for segmenting a tile into the cells that are part of
hydrological corrections and cells that are not. We then describe in detail how
we use this neural net algorithm that work for fixed size tiles to detect and
output hydrological corrections for the entire digital elevation model.

In Section 6.5, we show the results of our experiments including several
actual hydrological corrections output by our algorithm that are not a part of
the list of hydrological corrections maintained by SDFE.

6.2 The Data

In this section we give descriptions of the data and how we construct our initial
data set of tiles for the tile algorithm. The main data source we consider is the
danish digital elevation model which is made and maintained by The Danish
Agency for Data Supply and Efficiency. The digital elevation model is freely
available and may be downloaded from [52]. The resolution of the model is
0.4 meters, meaning the digital elevation model contains a tiling of Denmark
with 0.4m× 0.4m cells each supplied with the height of that cell. This gives
a model off approximately 200 billions cells, including parts of ocean which
are not relevant for our task. Besides the digital elevation model, we have
extracted road and river network grids from Denmark that we appropriately
align with the digital elevation model. Finally, we have made flood computation
maps that are also aligned with the digital elevation model. All these we may
consider as extra layers of features.

6.3. SEGMENTING TILES WITH NEURAL NETWORKS 133

Hydrological Correction Types The Danish Agency for Data Supply and
Efficiency also makes and maintains a list of hydrological corrections of different
types for Denmark. There are several different kind of hydrological corrections
each with different characteristics. See [51] for the official information on
hydrological corrections for the digital elevation model for Denmark including
a few examples. The list of hydrological corrections also includes underground
pipes that do not leave any marks on the digital elevation models. These are not
possible to locate from the data available and we do not consider them. The list
of these pipes are generated from a separate database that holds the information
about such constructed pipe networks. The hydrological corrections we consider
has two types that are named Horse Shoes and Lines respectively. There are
approximately 22 000 Horse Shoe hydrological corrections, and 125 000 Line
hydrological corrections in the list for the Denmark model.

Horse Shoes are hydrological corrections formed by three line segments
connected as three sides of a rectangle which resembles the shape of a horse
shoe. The Horse Show allow (or disallow) water flowing through an obstacle. A
hydrological correction denoted as a line is represented as a single line segment
that allow water to flow between the end points. In the data these lines can
sometimes be connected into a poly line that lead the water from one end to the
other. Such a poly line may be interpreted as one large hydrological correction
instead of several small ones but that makes no difference for our purpose, since
our algorithm tries to predict all the cells comprising a hydrological correction
in the digital elevation model. We preprocess the hydrological corrections and
keep only the Horse Shoe and Line corrections that take up more than one cell.
Inspecting the hydrological corrections in the list compiled by SDFE, it is clear
that the size and position relative to the actual corrections one can deduce
from the digital elevation model is varying a great deal. It would of course
have been more helpful for us if the true bounding box of every hydrological
correction was available, but this is the data that we have. There also seems
to be Line corrections that are sitting on top of completely flat areas, leaving
no mark on the digital elevation model, and these essentially acts a noise for
our model. They may actually be indicating an underground pipe, which we
would prefer to remove from the data set, but we cannot deduce it from the
information contained in the list of hydrological corrections. We note that the
size of the individual hydrological corrections vary greatly, from less than one
meter to the hydrological correction for the Great Belt Bridge which is close to
7000 meters. The distribution of hydrological correction lengths is shown in
Figure 6.2.

6.3 Segmenting Tiles with Neural Networks

Image classification and segmentation algorithms using convolutional neural net-
works introduced in [71] for optical character recognition systems has flourished

134 CHAPTER 6. HYDROLOGICAL CORRECTIONS

Figure 6.2: Distribution of hydrological corrections lengths.

greatly since the breakthrough paper by Krizhevsky, Sutskever and Hinton [70]
that presented a convolutional neural net that outperformed all previous so-
lutions on the famed ImageNet data set by a large margin. Convolutional
networks are now the gold standard for several image recognition tasks including
image segmentation where the task is to assign the pixels in an image into
groups that comprise the relevant different object shown in the image.

As explained in the introduction the goal of our tile algorithm is to segment
a tile into the cells that are part of a hydrological correction and the cells
that are not. The very similar and more general problem of predicting pixel
level segmentation maps from input images is a well studied problem in the
Deep Learning Computer vision field, with a wide range of different models,
having different trade-offs. On a high level, the main challenge, when moving
from an object detection model (is there a dog in the image), to a pixel level
segmentation model (return the pixels that comprise the dog), is the large class
imbalance that stem from the fact that most objects only take up a small part
of the input image, and the issue of integrating both high level information
about the overall presence of an object and low level information about the
precise geometric form of the object.

Techniques that tackle the first problem generally fall into two categories.
First, there are methods that try to separate the problem into two subproblems:
1) constructing an algorithm that searches the input image for candidate
locations for objects and 2) predicting pixel maps from crops of the image
at these locations, making the problem significantly more class balanced for
the second task [63]. Secondly, there are methods that try to modify the loss
functions to suppress the contribution from pixels that are not part of any
object [73].

For the second problem, the integration of both high and low level infor-

6.4. COMPLETE ALGORITHM 135

mation about objects, is typically handled through the creation of a feature
pyramid. We can separate the feature pyramid network in two processes.
First, the encoder which increase the channel dimension while decreasing the
width and height for increasing layers. Second, the decoder which follow up
with a decreasing channel dimension and increasing width and height, with
concatenated features from the encoder layers. See Figure 6.3 for a depiction
of this process. The hope is that the upsampled features will contain high level
information about the presence of objects, while the concatenated channels from
previous layers will contain precise information about possible edges of objects.
Examples of this is found in U-Net [90] and Feature Pyramid Networks [72].

Our solution borrows ideas from all of these; We use the U-Net network
architecture [90], the focal loss to suppress the contribution from low loss
pixels from [73] and postprocess crops from candidate locations as in Mask
R-CNN [63].

6.4 Complete Algorithm

In this section we describe our complete algorithm for detecting hydrological
corrections in an arbitrary sized region in detail. We start by explaining how
we solve the same problem on fixed sizes tiles and then explain how to use this
tile algorithm to analyze an entire region. Our algorithm works even if the
only feature layer we have is the digital elevation model. Adding more features
is straight forward by adding extra layers to the input data aligned with the
digital elevation model.

6.4.1 Tile Algorithm

Here we describe our algorithm for locating hydrological corrections in fixed size
tiles. This algorithm is a convolutional neural network inspired by convolutional
neural networks for image segmentation as described in Section 6.3.

A Data Sets for cell prediction on tiles In order to train our neural
network to locate the hydrological corrections in a tile we need a data set
D = {(x1, y1), . . . , (xn, yn)} which we initially construct as follows. Each
feature tile xi is a fixed size tile with potentially several feature layers always
including a layer with elevation data from the digital elevation model. The
corresponding ground truth element yi is a tile with one layer of the same size
as the feature tile, encoding all the cells within the tile that are a part of a
hydrological correction. This encoding is simply a bit mask, where a cell is
given the value one if that cell is a part of a hydrological correction, and zero
otherwise. We will refer to such a ground truth tile as a label mask.

For a given region of the digital elevation model to learn from we create
a data set of tiles as follows. For every hydrological correction contained in

136 CHAPTER 6. HYDROLOGICAL CORRECTIONS

Figure 6.3: The model. Arrows represent operations, blocks represent data. We
use an encoder for each input feature type, as depicted by the model subfigure.
For example, when using only the elevation map as input feature, the vector
feature encodings (red blocks) aren’t present. The flow of data is as follows.
First the input feature encodings are produced (grey blocks), though a series of
operations, each of these decreasing the width and height of the features by a
factor 2, while increasing the channel count by a factor 2. These are then used
as input to the decoder indicated by the yellow/red blocks. The horizontal
UpConv operation then integrate lateral information from the encoder(s) along
with more global information from the decoder, each of these increasing width
and height by a factor 2, while decreasing the channel count by a factor 2.
Lastly the channel count is reduced to 1 though a single ResNet block and a
sigmoid elementwise operation, producing Y , representing the probability that
a pixel is part of a correction.

the region we construct a feature tile and a corresponding label mask with
the hydrological correction placed at the center. The feature tile consists
of 752× 752 cells from the digital elevation model which we downsample to
376×376 cells of size 0.8×0.8 meters. This is done simply to save computation
time. Tests have shown that it has no effect on the quality of our algorithm
and speeds up our algorithms considerably. The same upsampling is performed
on any extra feature layers included. This means that the tiles we consider are
squares of approximately 300 by 300 meters. We note that the size of our tiles
is so large that we can fit all hydrological corrections of interest. For a given
data tile centered around a hydrological correction, we create a the label mask
as follows. We start from the all zero tile of the same size as the feature tile and
write one in each cell that intersect any of the hydrological corrections in the
list of known hydrological corrections for the region, including the hydrological
correction at the center of the tile. For the Horse Shoe hydrological corrections
this is done by writing a one in each tile cell intersecting the rectangle defined
by the Horse Shoe. The Line hydrological corrections are handled the same

6.4. COMPLETE ALGORITHM 137

way by adding a small width to the line segment making into a thin rectangle
which is then processed like a Horse Shoe.

The Loss Function The goal of the training algorithm is to learn a function
f that maps the input tiles xi to the corresponding labels masks yi, such that
f(xi) ≈ yi. See Figure 6.3 for a full specification of the neural net architecture
we employ, which as mentioned earlier is heavily inspired by ideas from image
segmentation and computer vision. The parameters of the neural net is fit by
minimizing the sum of cross entropy loss between between the cells of predicted
masks, f(x) and the label mask y. We use the focal loss function [73] and a
special weight map to counter-act the effect of class imbalance in the label
masks the algorithm tries to predict. The weight map exist to address two
concerns that are important for the quality of the final output of our algorithm:

• On average, only about 1 percent of the cells in a label mask are part
of a hydrological correction and set to one. The rest are zeros. If the
contribution to the loss from each cell that is part of a hydrological
corrections is not higher than the loss associated to the zero valued cells
that does not, the learned function becomes heavily biased towards not
predicting cells to be part of hydrological corrections.

• Predicting the label of cells close to a hydrological correction correctly is
much more important than getting all the vast amount of easily predicted
cells far from a hydrological correction correct. Especially cells at the edge
of the hydrological correction are important since down-stream processes
vectorize hydrological corrections based on the contour of the prediction
maps.

• Since hydrological corrections are varying in size, the contribution of large
corrections to the loss is much higher than that of small hydrological
corrections if each hydrological correction cell is penalized equally. If this
is not handled the learning algorithm puts all emphasis on learning the
large hydrological corrections and essentially ignores the small.

These concerns give rise to the following definition of the weight-map for
scaling the loss to help the neural network focus on the most important areas
of the input and to ensure that the algorithm learns to detect hydrological
corrections of any size. The weight map W for a data point (x, y) is directly
computed from the label mask y as follows.

W =
1√
wh

+ E +B + L,

138 CHAPTER 6. HYDROLOGICAL CORRECTIONS

Figure 6.4: An example of the weight matrix of a single data point.

where w and h is respectively the width and the height of the tile counted in
cells,

E = L ∗ Ekernel, B = E ∗Bkernel (6.1)

Lij =

{
0 if yij = 0

1
number of cells in correction otherwise

Ekernel =
−1

8 −1
8 −1

8
−1

8 1 −1
8

−1
8 −1

8 −1
8

, Bkernel =

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

where ∗ is the convolutional operator. Note that cells that are neither part of a
hydrological correction nor close to one are weighed as 1/

√
wh. See Figure 6.4,

for an example of the weight matrix.
The loss for the neural network on a predicted tile is the weighed sum of

the losses over the cells of the tile, where the weights are specified by the weight
map derived from the label mask. More formally, let ŷ be the output mask
predicted by the neural network on data point x with label mask y, and let
L be the weight map induced by y. Finally let ` be the focal loss function
from [73]. Then the loss of the network is defined as∑

i,j

Wi,j` (ŷi,j , yi,j)

Training stage Our learning algorithm follows the standard practice in image
segmentation tasks to boost the number of samples and adding robustness to
the learned function, by for each data point xi considered we first extract a
random crop from the feature tile, and then at randomly decide whether to flip
the crop on both the horizontal and vertical axis. The same transformation is
done on the label mask to predict, and this transformed data point and label
mask is then used for training.

6.4. COMPLETE ALGORITHM 139

Figure 6.5: Prediction pipeline. (a) Tiles are extracted from the input rectangle
in a strided fashion, such that each tile overlap other tiles 50 percent. (b) Cell-
level probability of hydrological correction membership is predicted for each
tile using our trained model for the tile problem defined in Section 6.4.1.
(c) Each tile is then weighed through a monotone window function such that
center pixels are weighted 1 and corner pixels are weighted 0. (d) Tiles are
added to a probability map of the same size as the input, creating a cell-level
probability map of the entire input rectangle. Weighing the tiles with a window
function ensure independence of the actual tiling of the region. (e) As the
probability map is filled, a different crop (red rectangle), independent of the
tiling in (a), is extracted and polygons containing possible corrections are
extracted using contours at a fixed threshold. (f) Each possible correction is
evaluated and filtered according to different heuristics. In the above example a
correction is filtered because the median probability within the polygon is too
low. (g) Finally, polygons are converted to horse shoe shapes and added to the
output.

6.4.2 Algorithm For General Region

While we were very successful at recognizing hydrological corrections in the tiles,
as we show in Section 6.5, this does not solve the actual problem posed. Here
we describe how our algorithm finds hydrological corrections in an arbitrary
sized region given the algorithm we just described for fixed sized tiles. First,
we cannot just tile the region arbitrarily into fixed size tiles, since that may
split hydrological corrections in several pieces, making recognition of them
impossible. Such a tiling may also cause an algorithm to report the same
hydrological correction several times. Finally, there may be several hydrological
corrections in one tile which complicates things further.

Without loss of generality we assume the input region to analyze is a,
potentially very large, rectangle M including the necessary feature layers that
corresponds with the features used in the tile neural network algorithm as
described above. The basic idea is to use the tile algorithm on overlapping tiles
to generate a new estimated probability map P , a rectangle of the same size
of M , where each cell is associated with the probability of being a part of a

140 CHAPTER 6. HYDROLOGICAL CORRECTIONS

hydrological correction, exactly as we did in the tile algorithm. This large map
P of probabilities is then processed by searching for areas of high probability
and then applying several heuristics to determine if each area found this way is
indeed a hydrological correction. Finally, if a hydrological correction has been
found, we create a best fit Horse Shoe hydrological correction and add to the
set of hydrological corrections that is output at the very end. The full process
is visualized and described in more detail in Figure 6.5.

Formally our algorithm works as follows.

Creating Probability Map First we process the input M in a overlap-add
fashion, extracting fixed sized crops that fit with the tile algorithm using a
stride of s (we sample tiles, s cells apart), creating a set of fixed size tiles that
we input into the tile algorithm and save into a list of predicted tiles Xi,j :

Xij = nnet
(
Mi:(i+2s),j:(j+2s)

)
i = {0, s, 2s, . . . , h− 2s}
j = {0, s, 2s, . . . , w − 2s} ,

where nnet is the neural net we created for the tile problem, and w, h is the
width and the height of the input rectangle M .

The tile predictions are then inserted in prediction map P as follows

Pi:(i+2s),j:(j+2s)+ = H �Xij , P ∈ Rh×w ,

where H = hhT , hi = 1
2 cos

(
πi
s

)
is a scaling map that ensures that mainly

the predictions for the cells around the center of the tiles are added to the
probability map, the further a cell is from the center from the center the
more it is scaled down, and � is element-wise multiplication. This finishes the
construction of the map of probabilities P .

Extracting Hydrological Corrections From Probability Map To find
the actual hydrological corrections and their shapes we start by creating a
contour map on P , using a fixed threshold. Each contour polygon in this
contour map represent a possible hydrological correction. We then filter these
candidates using the following heuristics designed from manual inspection.

• Very small and very large contours are dropped, as most of them are false
positives.

• Contours with small variance in the elevation data are dropped, as these
are mostly false positives. They may also have negligent negative effect
on water flow simulations.

• The median pixel probability is used as a threshold to control the tradeoff
between precision and recall.

6.4. COMPLETE ALGORITHM 141

Outputting Horse Shoes Next step is to modify the shape of the contour
polygons that the algorithm has decided constitute a hydrological correction. A
given polygon found by our algorithm, describing a hydrological correction, is
processed as follows. First we increase the size of the polygon by lowering the
probability threshold used in the contour map to gain slightly more context to
work with. Then we extract a crop C from the digital elevation model around
the polygon. The cell heights in this tile of elevation data is then mapped to a
probability distribution based on their heights with the lowest values getting
the highest probabilities. We transform the elevation values in the crop C by
negating the values, translating them such that the min height is zero and then
normalizing by dividing each height value by the sum of heights.

We then sample points from this distribution and fit a Gaussian mixture
model with two components to extract the two depressions that the hydrological
correction is connecting. This is achieved by picking the mean of the components
µ1, µ2 output by by the algorithm as the centers of the two depressions The
line between µ1 and µ2 form the skeleton of the connection, while the width is
extended in perpendicular direction to the line until it intersect the contour
polygon. This give us the resulting horseshoe.

6.4.3 Bootstrapping our algorithm

As described above, the distribution of zeros and ones in the label masks the
neural network for the tile problem must learn to predict, is highly unbalanced.
This problem increases significantly when we need to predict hydrological
corrections on the entire region considered. In this case the ratio of cells that
are part of hydrological corrections is extremely small, much much smaller than
in the training data set. The weight map and the focal loss we use to counter
this problem help, however with the neural network learned on the initial data
set the full algorithm is not able get high recall without predicting relatively
many false positives. To counter this, we analyze the output of the first run of
the complete algorithm, and sample new important tiles to learn from for the
tile problem. This is achieved by creating tiles centered around false positives,
where the predictions of the tile algorithm is close to the decision boundary
we use to determine the contour map for the full algorithm. From manual
inspection, the false positives far from the decision boundary tend to be actual
corrections, revealing incompleteness in the set of manually created corrections.
Including these as false positives in our tile algorithm would then make our
algorithm worse. With these extra tiles defined we simply restart the training
with the new data set, creating a new tile prediction neural network algorithm.
We show the results for both in the next section.

142 CHAPTER 6. HYDROLOGICAL CORRECTIONS

6.5 Experiments and Results

In this section we describe our experiments. For training and evaluating our
algorithm we use data from the island of Funen, which we have separated along
the north-south axis in 2 splits. The training split, which comprise 70 percent
of the total area and validation split which comprise 20 percent of the total
area1. Funen has 9000 corrections, split in 5758 Lines and 3299 Horse Shoes.
From these splits of Funen, we generate the following data sets:

bl Baseline experiment using only the digital elevation model and training
only on tiles centered at the hydrological correction.

bs Bootstrap version of the baseline experiment (Section 6.4.3), with extra
tiles centered at locations where the median probability of predicted
polygons, using a trained baseline model, is within the range .435− .45.
We call these extra locations bootstrapped locations.

ff Like bs but with flash flood features [92]. These features may help the
model since flash flood simulations accumulate water at the edge of a
correction.

vv Like bs but with tiles rasterizing road and river vectors as extra layers
of features. This is expected to help as most intersections between rivers
and roads are hydrological corrections.

bs_wz Like bs with extra ground truth tiles from the island of Zealand. Zealand
has 26651 extra hydrological corrections to consider.

vv_wz Like vv with extra ground truth tiles from the island of Zealand. Zealand
has 26651 extra hydrological corrections to consider.

The neural network is implemented in Tensorflow, and training on all experi-
ments is done using the ADAM [67] optimizer with a learning rate of .0001.
We use a batch size of 32 and train on each data set for 50 epochs. After each
epoch, the model is evaluated on the validation set of tiles and the model is
saved if the cost has improved.

6.5.1 Results

We report results for both the tile algorithm and for the algorithm that detects
hydrological corrections for an entire input region. For the tile algorithm, the
validation set of tiles we consider is generated the same way as the training
set just for a different region. This means tiles centered around a hydrological
correction and tiles centered at the bootstrapped locations, except for bs, that

1We set aside the last 10 percent as a test set if we decide to do hyperparameter
optimization as future work.

6.5. EXPERIMENTS AND RESULTS 143

AUC mP recall
bl 0.969 0.2231 0.9126
bs 0.9692 0.3056 0.853
ff 0.9542 0.3603 0.7845
vv 0.977 0.5126 0.7482
vv_wz 0.9761 0.3012 0.8498
bs_wz 0.9663 0.2624 0.8626

Table 6.1: Results for the different data sets. AUC is the area under ROC curve
on the validation set of tiles that are generated the same way as the training set.
mP is the average precision of the centroids of the generated polygons within
the validation split of Funen, evaluated at a set of thresholds weighted by the
change in recall, eg: mP =

∑
n

[
(Recalln − Recalln−1)/Precisionn

]
. Recall

is the maximal possible recall in the validation region by our full algorithm.
That is, how many ground truth corrections are close to a proposed correction,
when including all the proposed corrections from prediction pipeline.

only contain tiles centered at hydrological corrections. This validation score
can be evaluated fast, since the area of the tiles is much smaller than the entire
region. The quality of the tile algorithm for predicting which cells in a tile is
part of a hydrological correction is evaluated using the area under ROC curve
(AUC) score. Reporting pure accuracy is uninformative because of the large
class imbalance.

For the full problem of locating hydrological corrections in an entire region,
it is not possible to use AUC since the pipeline can propose any number
of corrections and “true negatives” are not well defined. Instead we report
precision: the ratio between the amount of proposed hydrological corrections
close (center-distance < 25 meters) to a true correction (true positive), and all
the proposed corrections (true positive + false positive), and recall : the ratio
between the amount of proposed hydrological corrections close (center-distance
< 25 meters) to a true correction (true positive), and the amount of hydrological
corrections in the validation region (true positive + false negative). Notice
that, in image segmentation tasks, one would usually apply mean intersection
over union (mIoU) to determine if a proposed region corresponds to the ground
truth shape, but as most of our ground truth hydrological corrections are line
shaped, and therefore don’t have a well defined area, we use distance to center
instead.

The distinction between these two problems is important. We note that
while we are ultimately only interested in the performance on the entire region,
it is impractical to train on the entire region by including an excessive amount
of extra tiles without any hydrological corrections. That would also add
significantly to the label imbalance problem discussed in Section 6.4.

Detecting hydrological corrections on an entire region is a significantly

144 CHAPTER 6. HYDROLOGICAL CORRECTIONS

Figure 6.6: An example actual corrections not in the ground truth set. The
purple lines are hydrological corrections from the official list of hydrological
corrections and the green polygons are hydrological corrections proposed by
our algorithm.

harder problem than predicting pixel probabilities on tiles, since hydrological
corrections are very rare and the distribution of non-correction locations is
suspected to be complex. As mentioned earlier, we try to handle this problem,
by including non-correction tiles in the training and validation set, whose
centers have median probability close to the decision boundary. Perhaps
surprisingly, we do not sample false positive locations which have median
probability above .45, since, manual inspection reveal that many such false
positive locations, are in fact true positives. See Figure 6.6 for an example
with several false positives that are actually true positives. Including these
as non-correction tiles in the bootstrapping, would only degrade performance.
Predicting hydrological corrections on the region of Funen takes between 30
minutes and an hour, depending on the number of predicted hydrological
corrections, on a dual NVIDIA 1080ti GPU’s and a Intel Xeon E5-1650 CPU.
Training the neural network for the tile algorithm takes approximately six hours
when only considering tiles from Funen.

The discrepancy between the problem of predicting cells in the validation
tiles and predicting shapes of corrections on the entire region is shown in

6.5. EXPERIMENTS AND RESULTS 145

Figure 6.7: Precision/Recall curves. The precision and recall trade off is
determined by the median pixel probability within each proposed polygon.

Table 6.1, where all experiments show good performance on the validation
tiles; all within 0.95− 0.97 AUC. But we also see, that the performance on the
validation tiles, does not necessarily translate to good performance on the entire
region. For example, the vv experiment has the best AUC (0.977), but, when
using this model in the prediction pipeline, it proposes too few hydrological
corrections, resulting in lowest recall of all experiments. On the other hand,
the baseline experiment actually have the best recall of all the experiments,
but not very good precision. To gain better understanding of this relationship
we show the different trade-off curves in Figure 6.7 for the full algorithm based
on the neural network trained on the different data sets.

Inspecting Figure 6.7, it not clear that any model is ultimately better, since
they all trade maximal recall for precision. One exception is vv_wz which
achieves the same maximal recall as both bs experiments while maintaining a
much better precision. Its also clear that including the bootstrapped locations
improve precision significantly.

146 CHAPTER 6. HYDROLOGICAL CORRECTIONS

6.6 Conclusion and Future Work

In this paper we have described a new approach for detecting hydrological
corrections that automates and improves the existing manual process. Our
algorithms find almost all known hydrological corrections, and finds many more
that should have been included in the list. The many missing hydrological
corrections from the list maintained by SDFE is a problem both in terms of
reporting how well an algorithm actually works but it is also a significant issue
because the labels the algorithm learn from become noisy. As mentioned above,
another issue with the official data is that the exact position and shape of
the hydrological corrections in the list vary greatly when compared with the
underlying digital elevation model. This makes both tile problem and the full
problem harder. From our experiments our algorithm for the tile problem
seems to be fairly robust to this problem. An industrial strength version of
our algorithm have been implemented and incorporated into the commercial
product of SCALGO Live [93]. This algorithm uses only digital elevation model
which is often the only data available. Our algorithm is currently only used for
Sweden that does not have any official list of known hydrological corrections.
To help our algorithm we have acquired 1500 hydrological corrections from
three different Swedish cities and added to the hydrological corrections from
Denmark to train on. We use the bootstrapped version of our algorithm which
gives the best tradeoff between precision and recall. The Swedish model has
a resolution of 2m× 2m and it took 3 days on a standard, single GPU work
station to run our full algorithm on the entire country.

There are several avenues to explore for further improvement of our algo-
rithm mainly to improve precision. We believe the most promising strategy
is to improve the quality of the list of hydrological corrections since this will
help all parts of the process, from the learning algorithm, to reporting more
truthful precision and recall statistics. The latter is very important since it
is hard to improve on our algorithm when the measure we use to compare
algorithms is noisy. For this reason we are currently running a project where
different experts and end users in the field are shown the false positives output
by our algorithm and then has to decide by manual inspection whether the
false positive is actually a hydrological correction or not.

Bibliography

[1] P. K. Agarwal, L. Arge, and A. Danner. From Point Cloud to Grid
DEM: A Scalable Approach, pages 771–788. Springer, 2006. doi:10.
1007/3-540-35589-8_48. 19

[2] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient construction of con-
strained Delaunay triangulations. In Algorithms - ESA 2005, 13th Annual
European Symposium, Proceedings, volume 3669 of Lecture Notes in Com-
puter Science, pages 355–366. Springer, 2005. doi:10.1007/11561071_
33. 18, 57, 67

[3] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and
its applications to terrain analysis. ACM Transactions on Algorithms,
7(1):11:1–11:21, December 2010. doi:10.1145/1868237.1868249. 19,
22

[4] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang. Near-linear
time approximation algorithms for curve simplification. Algorithmica,
42(3):203–219, May 2005. doi:10.1007/s00453-005-1165-y. 123

[5] P. K. Agarwal, J. Matousek, and M. Sharir. On range searching with
semialgebraic sets. II. SIAM Journal on Computing, 42(6):2039–2062,
November 2013. doi:10.1137/120890855. 83

[6] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127,
September 1988. doi:10.1145/48529.48535. 8, 9, 21, 34, 40, 56, 80, 81

[7] D. Ajwani, U. Meyer, and V. Osipov. Breadth first search on mas-
sive graphs. In The Shortest Path Problem, Proceedings of a DIMACS
Workshop, volume 74 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 291–307. DIMACS/AMS, 2006.
doi:10.1090/dimacs/074/11. 35

[8] C. Alexander, L. Arge, P. K. Bøcher, M. Revsbæk, B. Sandel, J.-C. Sven-
ning, C. Tsirogiannis, and J. Yang. Computing river floods using massive
terrain data. In Geographic Information Science - 9th International Con-
ference, GIScience 2016, Montreal, QC, Canada, September 27-30, 2016,

147

https://doi.org/10.1007/3-540-35589-8_48
https://doi.org/10.1007/3-540-35589-8_48
https://doi.org/10.1007/11561071_33
https://doi.org/10.1007/11561071_33
https://doi.org/10.1145/1868237.1868249
https://doi.org/10.1007/s00453-005-1165-y
https://doi.org/10.1137/120890855
https://doi.org/10.1145/48529.48535
https://doi.org/10.1090/dimacs/074/11

148 BIBLIOGRAPHY

Proceedings, volume 9927 of Lecture Notes in Computer Science, pages
3–17. Springer, 2016. doi:10.1007/978-3-319-45738-3_1. 18

[9] A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske, A. Heise,
O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rhein-
länder, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and D. Warneke.
The Stratosphere platform for big data analytics. VLDB J., 23(6):939–964,
May 2014. doi:10.1007/s00778-014-0357-y. 35

[10] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In
Proceedings of the 4th International Workshop on Algorithms and Data
Structures WADS, volume 955 of Lecture Notes in Computer Science,
pages 334–345. Springer, 1995. doi:10.1007/3-540-60220-8_74. 9, 10,
21

[11] L. Arge. External Memory Data Structures, chapter 9, pages 313–357.
Springer, 2002. ISBN 978-1-4615-0005-6. 8, 35

[12] L. Arge, G. S. Brodal, J. Truelsen, and C. Tsirogiannis. An optimal
and practical cache-oblivious algorithm for computing multiresolution
rasters. In Algorithms - ESA 2013 - 21st Annual European Symposium,
Sophia Antipolis, France, September 2-4, 2013. Proceedings, volume 8125
of Lecture Notes in Computer Science, pages 61–72. Springer, 2013.
doi:10.1007/978-3-642-40450-4_6. 28, 35, 37

[13] L. Arge, J. S. Chase, P. N. Halpin, L. Toma, J. S. Vitter, D. Urban,
and R. Wickremesinghe. Efficient flow computation on massive grid
terrain datasets. GeoInformatica, 7(4):283–313, December 2003. doi:
10.1023/A:1025526421410. 20, 21, 22

[14] L. Arge, A. Grønlund, S. C. Svendsen, and J. Tranberg. Learning to find
hydrological corrections. In Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 464–467. ACM, 2019. doi:10.1145/3347146.3359095. 5

[15] L. Arge, A. Grønlund, S. C. Svendsen, and J. Tranberg. Learning
to find hydrological corrections. CoRR, abs/1909.07685, 2019. URL:
http://arxiv.org/abs/1909.07685. 5, 25

[16] L. Arge, A. Lowe, S. C. Svendsen, and P. K. Agarwal. 1D and 2D
flow routing on a terrain. ACM Transansactions on Spatial Algorithms
Systems, 2021. In submission. 5

[17] L. Arge, M. Rav, S. Raza, and M. Revsbæk. I/O-efficient event based
depression flood risk. In Proceedings of the Ninteenth Workshop on
Algorithm Engineering and Experiments, ALENEX, pages 259–269. SIAM,
2017. doi:10.1137/1.9781611974768.21. 10, 23, 82

https://doi.org/10.1007/978-3-319-45738-3_1
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1007/3-540-60220-8_74
https://doi.org/10.1007/978-3-642-40450-4_6
https://doi.org/10.1023/A:1025526421410
https://doi.org/10.1023/A:1025526421410
https://doi.org/10.1145/3347146.3359095
http://arxiv.org/abs/1909.07685
https://doi.org/10.1137/1.9781611974768.21

BIBLIOGRAPHY 149

[18] L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang. Sea-rise flooding on
massive dynamic terrains. In 17th Scandinavian Symposium and Work-
shops on Algorithm Theory, SWAT 2020, June 22-24, 2020, Tórshavn,
Faroe Islands, volume 162 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SWAT.
2020.6. 16, 18

[19] L. Arge, M. Rav, S. C. Svendsen, and J. Truelsen. External memory
pipelining made easy with TPIE. In 2017 IEEE International Conference
on Big Data (Big Data), pages 319–324. IEEE, 2017. doi:10.1109/
BigData.2017.8257940. 5, 26, 68

[20] L. Arge, M. Rav, S. C. Svendsen, and J. Truelsen. External memory
pipelining made easy with TPIE. CoRR, abs/1710.10091, 2017. URL:
http://arxiv.org/abs/1710.10091. 5

[21] L. Arge and M. Revsbæk. I/O-efficient contour tree simplification. In
Algorithms and Computation, 20th International Symposium, ISAAC,
volume 5878 of Lecture Notes in Computer Science, pages 1155–1165.
Springer, 2009. doi:10.1007/978-3-642-10631-6_116. 19, 22, 86, 96,
118

[22] L. Arge, M. Revsbæk, and N. Zeh. I/O-efficient computation of water
flow across a terrain. In Proceedings of the 26th ACM Symposium on
Computational Geometry, pages 403–412. ACM, 2010. doi:10.1145/
1810959.1811026. 16, 19, 23, 80, 82, 86

[23] L. Arge, Y. Shin, and C. Tsirogiannis. Computing floods caused by
non-uniform sea-level rise. In Proceedings of the Twentieth Workshop on
Algorithm Engineering and Experiments, ALENEX, pages 97–108. SIAM,
2018. doi:10.1137/1.9781611975055.9. 10, 18

[24] L. Arge, L. Toma, and J. Vitter. I/O-efficient algorithms for problems on
grid-based terrains. Journal of Experimental Algorithmics, 6:1, December
2000. doi:10.1145/945394.945395. 82

[25] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems
on grid-based terrains. ACM Journal of Experimental Algorithmics, 6:1,
December 2001. doi:10.1145/945394.945395. 20, 28

[26] L. Arge, L. Toma, and N. Zeh. I/O-efficient topological sorting of
planar DAGs. In Proceedings of the Fifteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 85–93. Association for
Computing Machinery, 2003. doi:10.1145/777412.777427. 10, 56

[27] L. Arge, J. Truelsen, and J. Yang. Simplifying massive planar subdivisions.
In 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering

https://doi.org/10.4230/LIPIcs.SWAT.2020.6
https://doi.org/10.4230/LIPIcs.SWAT.2020.6
https://doi.org/10.1109/BigData.2017.8257940
https://doi.org/10.1109/BigData.2017.8257940
http://arxiv.org/abs/1710.10091
https://doi.org/10.1007/978-3-642-10631-6_116
https://doi.org/10.1145/1810959.1811026
https://doi.org/10.1145/1810959.1811026
https://doi.org/10.1137/1.9781611975055.9
https://doi.org/10.1145/945394.945395
https://doi.org/10.1145/945394.945395
https://doi.org/10.1145/777412.777427

150 BIBLIOGRAPHY

and Experiments, ALENEX, pages 20–30. SIAM, 2014. doi:10.1137/1.
9781611973198.3. 28, 35, 37

[28] L. Arge, F. van Walderveen, and N. Zeh. Multiway simple cycle separators
and I/O-efficient algorithms for planar graphs. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 901–918. Society for Industrial and Applied Mathematics, 2013.
doi:10.1137/1.9781611973105.65. 10, 56, 64

[29] L. Arge and N. Zeh. I/O-efficient strong connectivity and depth-first
search for directed planar graphs. In Proceedings of the 44th Annual
IEEE Symposium on Foundations of Computer Science, pages 261–270.
IEEE, 2003. doi:10.1109/SFCS.2003.1238200. 10, 56

[30] F. Aurenhammer and R. Klein. Voronoi diagrams. In Handbook of
Computational Geometry, pages 201–290. North Holland / Elsevier, 2000.
doi:10.1016/b978-044482537-7/50006-1. 18

[31] Norwegian Mapping Authority. Height DTM 10,
2013. URL: https://kartkatalog.geonorge.no/
metadata/kartverket/dtm-10-terrengmodell-utm33/
dddbb667-1303-4ac5-8640-7ec04c0e3918. 114

[32] M. J. Bannister, W. E. Devanny, D. Eppstein, and M. T. Goodrich.
The Galois complexity of graph drawing: Why numerical solutions are
ubiquitous for force-directed, spectral, and circle packing drawings. In
Graph Drawing, volume 8871 of Lecture Notes in Computer Science, pages
149–161. Springer, 2014. doi:10.1007/978-3-662-45803-7_13. 57

[33] P. D. Bates and A. P. J. De Roo. A simple raster-based model for flood
inundation simulation. Journal of hydrology, 236(1-2):54–77, September
2000. doi:10.1016/S0022-1694(00)00278-X. 81, 83

[34] A. Beckmann, R. Dementiev, and J. Singler. Building a parallel pipelined
external memory algorithm library. In 23rd IEEE International Sympo-
sium on Parallel and Distributed Processing, IPDPS, pages 1–10. IEEE,
2009. doi:10.1109/IPDPS.2009.5161001. 36

[35] T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C. Nguyen, A. Noe,
S. Schlag, M. Stumpp, T. Sturm, and P. Sanders. Thrill: High-
performance algorithmic distributed batch data processing with C++.
In 2016 IEEE International Conference on Big Data, BigData. IEEE,
2016. doi:10.1109/BigData.2016.7840603. 35

[36] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious
sorting algorithm. ACM Journal of Experimental Algorithmics, 12:2.2:1–
2.2:23, June 2007. doi:10.1145/1227161.1227164. 26

https://doi.org/10.1137/1.9781611973198.3
https://doi.org/10.1137/1.9781611973198.3
https://doi.org/10.1137/1.9781611973105.65
https://doi.org/10.1109/SFCS.2003.1238200
https://doi.org/10.1016/b978-044482537-7/50006-1
https://kartkatalog.geonorge.no/metadata/kartverket/dtm-10-terrengmodell-utm33/dddbb667-1303-4ac5-8640-7ec04c0e3918
https://kartkatalog.geonorge.no/metadata/kartverket/dtm-10-terrengmodell-utm33/dddbb667-1303-4ac5-8640-7ec04c0e3918
https://kartkatalog.geonorge.no/metadata/kartverket/dtm-10-terrengmodell-utm33/dddbb667-1303-4ac5-8640-7ec04c0e3918
https://doi.org/10.1007/978-3-662-45803-7_13
https://doi.org/10.1016/S0022-1694(00)00278-X
https://doi.org/10.1109/IPDPS.2009.5161001
https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.1145/1227161.1227164

BIBLIOGRAPHY 151

[37] G. S. Brodal and J. Katajainen. Worst-case external-memory priority
queues. In Proceedings of the 6th Scandinavian Workshop on Algorithm
Theory, SWAT, volume 1432 of Lecture Notes in Computer Science, pages
107–118. Springer, 1998. doi:10.1007/BFb0054359. 9, 96

[38] R. Carlson and A. Danner. Bridge detection in grid terrains and improved
drainage enforcement. In Proceedings of the 18th ACM SIGSPATIAL
International Symposium on Advances in Geographic Information Systems,
ACM-GIS, pages 250–259. ACM, 2010. doi:10.1145/1869790.1869827.
25, 130, 131

[39] H. A. Carr, J. Snoeyink, and U. Axen. Computing contour trees in
all dimensions. Computational Geometry, 24(2):75–94, February 2003.
doi:10.1016/S0925-7721(02)00093-7. 19, 85, 86

[40] L.-C. Chang, H.-Y. Shen, and F.-J. Chang. Regional flood inundation
nowcast using hybrid SOM and dynamic neural networks. Journal of
Hydrology, 519:476–489, November 2014. doi:10.1016/j.jhydrol.2014.
07.036. 124

[41] L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–
108, June 1989. doi:10.1007/BF01553881. 18

[42] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. Erik Vengroff,
and J. S. Vitter. External-memory graph algorithms. In Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
139–149. ACM/SIAM, 1995. 9, 10

[43] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S. Teng.
Approximating center points with iterated Radon points. In Proceedings
of the Ninth Annual Symposium on Computational Geometry, pages 91–
98. Association for Computing Machinery, 1993. doi:10.1145/160985.
161004. 68, 72

[44] A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitásová.
TerraStream: from elevation data to watershed hierarchies. In Proceedings
of the 15th ACM International Symposium on Geographic Information
Systems, ACM-GIS 2007, page 28. ACM, 2007. doi:10.1145/1341012.
1341049. 19, 27, 112, 118, 128

[45] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, January
2008. doi:10.1145/1327452.1327492. 35

[46] R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template
library for XXL data sets. Software - Practice and Experience, 38(6):589–
637, August 2008. doi:10.1002/spe.844. 26, 28, 34, 35

https://doi.org/10.1007/BFb0054359
https://doi.org/10.1145/1869790.1869827
https://doi.org/10.1016/S0925-7721(02)00093-7
https://doi.org/10.1016/j.jhydrol.2014.07.036
https://doi.org/10.1016/j.jhydrol.2014.07.036
https://doi.org/10.1007/BF01553881
https://doi.org/10.1145/160985.161004
https://doi.org/10.1145/160985.161004
https://doi.org/10.1145/1341012.1341049
https://doi.org/10.1145/1341012.1341049
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1002/spe.844

152 BIBLIOGRAPHY

[47] R. Dementiev, P. Sanders, D. Schultes, and J. F. Sibeyn. Engineering an
external memory minimum spanning tree algorithm. In Exploring New
Frontiers of Theoretical Informatics, volume 155 of IFIP, pages 195–208.
Kluwer/Springer, 2004. doi:10.1007/1-4020-8141-3_17. 35

[48] S. Dong, Y. T. Lee, and K. Quanrud. Computing circle packing
representations of planar graphs. In Proceedings of the Thirty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2860–
2875. Society for Industrial and Applied Mathematics, 2020. doi:
10.1137/1.9781611975994.174. 57

[49] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical morse com-
plexes for piecewise linear 2-manifolds. In Proceedings of the Seventeenth
Annual Symposium on Computational Geometry, pages 70–79. ACM,
2001. doi:10.1145/378583.378626. 13, 86

[50] The Danish Agency for Data Supply and Efficiency. Dan-
marks højdemodel, 2021. URL: https://sdfe.dk/hent-data/
danmarks-hoejdemodel/. 3, 6, 22, 25, 57, 68

[51] The Danish Agency for Data Supply and Efficiency. GeoDanmark
specifikation 6.0, 2021. URL: http://geodanmark.nu/Spec6/HTML5/
DK/StartHer.htm. 29, 133

[52] The Danish Agency for Data Supply and Efficiency. Styrelsen for
dataforsyning og effektivering, 2021. URL: https://sdfe.dk. 127, 132

[53] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing, 16(6):1004–1022, De-
cember 1987. doi:10.1137/0216064. 10, 56, 64

[54] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM (JACM),
34(3):596–615, July 1987. doi:10.1145/28869.28874. 94

[55] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, August 1997. doi:10.1006/jcss.
1997.1504. 25, 130

[56] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special
case of disjoint set union. Journal of computer and system sciences,
30(2):209–221, April 1985. doi:10.1016/0022-0000(85)90014-5. 94

[57] GeoDanmark. Det hydrologiske tilpasningslag, 2021. URL:
https://www.geodanmark.dk/wp-content/uploads/2019/10/
One-Page_Hydro.pdf. 25

https://doi.org/10.1007/1-4020-8141-3_17
https://doi.org/10.1137/1.9781611975994.174
https://doi.org/10.1137/1.9781611975994.174
https://doi.org/10.1145/378583.378626
https://sdfe.dk/hent-data/danmarks-hoejdemodel/
https://sdfe.dk/hent-data/danmarks-hoejdemodel/
http://geodanmark.nu/Spec6/HTML5/DK/StartHer.htm
http://geodanmark.nu/Spec6/HTML5/DK/StartHer.htm
https://sdfe.dk
https://doi.org/10.1137/0216064
https://doi.org/10.1145/28869.28874
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1016/0022-0000(85)90014-5
https://www.geodanmark.dk/wp-content/uploads/2019/10/One-Page_Hydro.pdf
https://www.geodanmark.dk/wp-content/uploads/2019/10/One-Page_Hydro.pdf

BIBLIOGRAPHY 153

[58] M. T. Goodrich, J. Tsay, D. E. Vengroff, and J. S. Vitter. External-
memory computational geometry. In 34th Annual Symposium on
Foundations of Computer Science, pages 714–723. IEEE, 1993. doi:
10.1109/SFCS.1993.366816. 18

[59] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental
construction of Delaunay and Voronoi diagrams. Algorithmica, 7(4):381–
413, June 1992. doi:10.1007/BF01758770. 18

[60] S. Har-Peled. Geometric Approximation Algorithms. Mathematical
surveys and monographs. American Mathematical Society, 2011. ISBN
978-0-8218-4911-8. 60

[61] S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry.
Discrete & Computational Geometry, 45(3):462–496, February 2011. doi:
10.1007/s00454-010-9248-1. 60, 61

[62] H. J. Haverkort and J. Janssen. Simple I/O-efficient flow accumulation
on grid terrains. CoRR, abs/1211.1857, 2012. URL: http://arxiv.org/
abs/1211.1857. 21, 27, 28, 58, 67, 68

[63] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In IEEE
International Conference on Computer Vision, ICCV, pages 2980–2988.
IEEE, 2017. doi:10.1109/ICCV.2017.322. 134, 135

[64] J. Holm, E. Rotenberg, and M. Thorup. Planar reachability in linear
space and constant time. In 2015 IEEE 56th Annual Sympos. Foundations
of Computer Science, pages 370–389. IEEE, 2015. doi:10.1109/FOCS.
2015.30. 101, 105

[65] Indiana Spatial Data Portal. Indiana orthophotography (RGBI), Li-
DAR and elevation, 2013. URL: http://gis.iu.edu/datasetInfo/
statewide/in_2011.php. 114

[66] M. Isenburg, Y. Liu, J. R. Shewchuk, J. Snoeyink, and T. Thirion. Gen-
erating raster DEM from mass points via TIN streaming. In 4th Interna-
tional Conference on Geographic Information Science, GIScience, volume
4197 of Lecture Notes in Computer Science, pages 186–198. Springer,
2006. doi:10.1007/11863939_13. 19

[67] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Conference Track Proceedings of the 3rd International Conference on
Learning Representations, ICLR, 2015. URL: http://arxiv.org/abs/
1412.6980. 142

[68] P. Koebe. Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad.
Wiss. Leipzig, Math.-Phys. Kl., 88:141–164, 1936. 58

https://doi.org/10.1109/SFCS.1993.366816
https://doi.org/10.1109/SFCS.1993.366816
https://doi.org/10.1007/BF01758770
https://doi.org/10.1007/s00454-010-9248-1
https://doi.org/10.1007/s00454-010-9248-1
http://arxiv.org/abs/1211.1857
http://arxiv.org/abs/1211.1857
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/FOCS.2015.30
https://doi.org/10.1109/FOCS.2015.30
http://gis.iu.edu/datasetInfo/statewide/in_2011.php
http://gis.iu.edu/datasetInfo/statewide/in_2011.php
https://doi.org/10.1007/11863939_13
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

154 BIBLIOGRAPHY

[69] M. Kreveld, R. Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour
trees and small seed sets for isosurface traversal. In Proceedings of the
Thirteenth Annual Symposium on Computational Geometry, pages 212–
220. ACM, 1997. doi:10.1145/262839.269238. 85

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. Communications of the ACM,
60(6):84–90, May 2017. doi:10.1145/3065386. 134

[71] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, November 1998. doi:10.1109/5.726791. 130, 133

[72] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie.
Feature pyramid networks for object detection. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, pages 936–944. IEEE, 2017. doi:10.1109/CVPR.2017.106. 135

[73] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense
object detection. In IEEE International Conference on Computer Vision,
ICCV, pages 2999–3007. IEEE, 2017. doi:10.1109/ICCV.2017.324. 134,
135, 137, 138

[74] R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, July 1979. doi:10.
1137/0136016. 56

[75] Y. Liu and J. Snoeyink. Flooding triangulated terrain. In Developments
in Spatial Data Handling, 11th International Symposium on Spatial Data
Handling, pages 137–148. Springer, 2004. doi:10.1007/3-540-26772-7_
11. 16, 17, 23, 81

[76] A. K. Lohani, N. K. Goel, and K. K. S. Bhatia. Improving real time flood
forecasting using fuzzy inference system. Journal of Hydrology, 509:25–41,
February 2014. doi:10.1016/j.jhydrol.2013.11.021. 124

[77] A. Lowe and P. K. Agarwal. Flood-risk analysis on terrains under the
multiflow-direction model. ACM Transactions on Spatial Algorithms
Systems, 5(4):26:1–26:27, September 2019. doi:10.1145/3340707. 10,
11, 17, 23, 24, 28, 80, 82, 83, 84, 86, 96

[78] A. Lowe, P. K. Agarwal, and M. Rav. Flood-risk analysis on terrains.
Communications of the ACM, 63(9):94–102, September 2020. doi:10.
1145/3410413. 16, 82

[79] A. Lowe, S. C. Svendsen, P. K. Agarwal, and L. Arge. 1D and 2D flow
routing on a terrain. In Proceedings of the 28th International Conference

https://doi.org/10.1145/262839.269238
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1137/0136016
https://doi.org/10.1137/0136016
https://doi.org/10.1007/3-540-26772-7_11
https://doi.org/10.1007/3-540-26772-7_11
https://doi.org/10.1016/j.jhydrol.2013.11.021
https://doi.org/10.1145/3340707
https://doi.org/10.1145/3410413
https://doi.org/10.1145/3410413

BIBLIOGRAPHY 155

on Advances in Geographic Information Systems, SIGSPATIAL, pages
5–14. ACM, 2020. doi:10.1145/3397536.3422269. 5, 83

[80] A. Maheshwari and N. Zeh. I/O-efficient planar separators. SIAM
Journal on Computing, 38(3):767–801, May 2008. doi:10.1137/
S0097539705446925. 10, 56

[81] R. Manning. On the flow of water in open channels and pipes. Transac-
tions of the Institution of Civil Engineers of Ireland, pages 161–207, 1891.
29, 83, 107

[82] U. Meyer and V. Osipov. Design and implementation of a practical
i/o-efficient shortest paths algorithm. In Proceedings of the Eleventh
Workshop on Algorithm Engineering and Experiments, ALENEX, pages
85–96. SIAM, 2009. doi:10.1137/1.9781611972894.9. 35

[83] G. L. Miller, D. Talmor, S. Teng, and N. Walkington. A Delaunay based
numerical method for three dimensions: Generation, formulation, and
partition. In Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, pages 683–692. Association for Computing
Machinery, 1995. doi:10.1145/225058.225286. 57, 67

[84] G. L. Miller, S. Teng, W. Thurston, and S. A. Vavasis. Separators
for sphere-packings and nearest neighbor graphs. Journal of the ACM,
44(1):1–29, January 1997. doi:10.1145/256292.256294. 57, 58, 59, 68,
72

[85] T. Mølhave. Using TPIE for processing massive data sets in C++. ACM
SIGSPATIAL Special, 4(2):24–27, July 2012. doi:10.1145/2367574.
2367579. 26, 34, 35

[86] J. F. O’Callaghan and D. Mark. The extraction of drainage networks from
digital elevation data. Computer Vision, Graphics, and Image Processing,
27:323–344, August 1984. doi:10.1016/S0734-189X(84)80011-0. 20,
128

[87] G. L. Orick, K. Stephenson, and C. Collins. A linearized circle packing
algorithm. Computational Geometry, 64:13–29, August 2017. doi:10.
1016/j.comgeo.2017.03.002. 57

[88] Pennsylvania Spatial Data Access. PAMAP program DEM mosaics
by lidar delivery zones, 2008. URL: http://www.pasda.psu.edu/uci/
SearchResults.aspx?Keyword=PAMAP. 114

[89] M. Rav, A. Lowe, and P. K. Agarwal. Flood risk analysis on terrains.
ACM Transansactions on Spatial Algorithms Systems, 5(1):2:1–2:31, June
2019. doi:10.1145/3295459. 23, 80, 82, 84, 101, 104, 105

https://doi.org/10.1145/3397536.3422269
https://doi.org/10.1137/S0097539705446925
https://doi.org/10.1137/S0097539705446925
https://doi.org/10.1137/1.9781611972894.9
https://doi.org/10.1145/225058.225286
https://doi.org/10.1145/256292.256294
https://doi.org/10.1145/2367574.2367579
https://doi.org/10.1145/2367574.2367579
https://doi.org/10.1016/S0734-189X(84)80011-0
https://doi.org/10.1016/j.comgeo.2017.03.002
https://doi.org/10.1016/j.comgeo.2017.03.002
http://www.pasda.psu.edu/uci/SearchResults.aspx?Keyword=PAMAP
http://www.pasda.psu.edu/uci/SearchResults.aspx?Keyword=PAMAP
https://doi.org/10.1145/3295459

156 BIBLIOGRAPHY

[90] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks
for biomedical image segmentation. In Proceedings of the 18th Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention, MICCAI, volume 9351 of Lecture Notes in Computer Science,
pages 234–241. Springer, 2015. doi:10.1007/978-3-319-24574-4_28.
135

[91] SCALGO, 2019. URL: www.scalgo.com. 106

[92] SCALGO. Flash flood map, 2021. URL: https://scalgo.com/en-US/
scalgo-live-documentation/analysis/flash-flood-map. 129, 142

[93] SCALGO. SCALGO live, 2021. URL: https://scalgo.com/live/. 132,
146

[94] S. C. Svendsen. Practical I/O-efficient multiway separators. CoRR,
abs/2107.02570, 2021. URL: https://arxiv.org/abs/2107.02570. 5

[95] M. S. Tehrany, B. Pradhan, S. Mansor, and N. Ahmad. Flood sus-
ceptibility assessment using GIS-based support vector machine model
with different kernel types. Catena, 125:91–101, February 2015. doi:
10.1016/j.catena.2014.10.017. 124

[96] M. Thorup. Integer priority queues with decrease key in constant time
and the single source shortest paths problem. Journal of Computer and
System Sciences, 69(3):330–353, November 2004. doi:10.1016/j.jcss.
2004.04.003. 94

[97] TPIE technical documentation, 2021. URL: http://www.madalgo.au.
dk/tpie/doc. 51

[98] K. L. Verdin and J. P. Verdin. A topological system for delineation and
codification of the earths river basins. Journal of Hydrology, 218(1):1–12,
May 1999. doi:10.1016/S0022-1694(99)00011-6. 128

[99] J. S. Vitter. External memory algorithms and data structures. ACM
Computing Surveys, 33(2):209–271, June 2001. doi:10.1145/384192.
384193. 8, 35

[100] M. Wood, J. C. Neal, P. D. Bates, R. Hostache, T. Wagener, L. Giustarini,
M. Chini, G. Corato, and P. Matgen. Calibration of channel depth
and friction parameters in the LISFLOOD-FP hydraulic model using
medium resolution SAR data and identifiability techniques. Hydrology
and Earth System Sciences, 20(12):4983–4997, December 2016. doi:
10.5194/hess-20-4983-2016. 81

https://doi.org/10.1007/978-3-319-24574-4_28
www.scalgo.com
https://scalgo.com/en-US/scalgo-live-documentation/analysis/flash-flood-map
https://scalgo.com/en-US/scalgo-live-documentation/analysis/flash-flood-map
https://scalgo.com/live/
https://arxiv.org/abs/2107.02570
https://doi.org/10.1016/j.catena.2014.10.017
https://doi.org/10.1016/j.catena.2014.10.017
https://doi.org/10.1016/j.jcss.2004.04.003
https://doi.org/10.1016/j.jcss.2004.04.003
http://www.madalgo.au.dk/tpie/doc
http://www.madalgo.au.dk/tpie/doc
https://doi.org/10.1016/S0022-1694(99)00011-6
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/384192.384193
https://doi.org/10.5194/hess-20-4983-2016
https://doi.org/10.5194/hess-20-4983-2016

BIBLIOGRAPHY 157

[101] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In 2nd USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud. USENIX Association,
2010. 35

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Outline of Thesis

	Survey of Important Results
	External Memory Algorithms
	Terrain Definitions
	Flow Model Definitions
	Terrain Analysis Algorithms
	External Memory Algorithms in Practice
	Our Contributions

	Publications
	External Memory Pipelining Made Easy With TPIE
	Introduction
	An Example Problem
	TPIE Pipelining

	Practical I/O-Efficient Multiway Separators
	Introduction
	Preliminaries
	Multiway Separator Algorithm for k-ply Systems
	Applications to Delaunay Triangulations and Terrain
	Experiments
	Appendix: Proof of Constant VC dimension
	Appendix: Bound on the Total Number of Boundary Balls
	Appendix: Experimental Evaluation of Separator Size
	Appendix: Algorithm with Larger Sample

	1D and 2D Flow Routing on a Terrain
	Introduction
	Preliminaries & Models
	Terrain-flow Query
	I/O-Efficient Algorithms
	Vertex-Flow Query
	Extracting 2D Flow Networks
	Experiments
	Conclusion

	Learning to Find Hydrological Corrections
	Introduction
	The Data
	Segmenting Tiles with Neural Networks
	Complete Algorithm
	Experiments and Results
	Conclusion and Future Work

	Bibliography

