
Data Structures: Range Queries and
Space Efficiency

Pooya Davoodi

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Data Structures:
Range Queries and Space Efficiency

A Dissertation
Presented to the Faculty of Science

of Aarhus University
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Pooya Davoodi

Last Revision: May 7, 2011

Abstract (English)

We study data structures for variants of range query problems. In particular, we con-
sider (1) the range minimum problem: given a multidimensional array, find the position
of the minimum element in a query rectangle; (2) the path minima problem: given a
weighted tree, find the edge with minimum weight in a query path; (3) the range di-
ameter problem: given a point set in the plane, find two points that are farthest away
in a query rectangle. These and similar problems arise in various applications includ-
ing document retrieval, genome sequence analysis, OLAP data cubes, network flows,
shape-fitting, and clustering.

The three mentioned problems are considered for either static inputs or dynamic in-
puts. In the static setting, we investigate the space-efficiency of data structures, which
is an important aspect in massive data algorithmics. We provide lower bounds on the
trade-off between the query time and the space usage of range minimum and range
diameter data structures. We also present data structures for these problems to either
complement the lower bounds or beating the lower bounds under certain assumptions
about inputs. One of the results proves that to answer a multidimensional range min-
imum query, the product of the number of cells that we need to read and the number
of bits stored in indexing data structures is at least equal to the number of elements
in input arrays. Another result shows that using at most linear bits in addition to an
array, we can achieve constant query time to support two-dimensional range minimum
queries.

In the dynamic setting, we present data structures for the path minima problem
that support optimal query time for various types of update operations. One of the
results presents a comparison-based data structure which answers path minima queries
in sub-logarithmic time and supports updating the edge-weights of input trees in op-
timal logarithmic time. We also prove lower bounds on trade-offs between the query
time and the update time of path minima data structures.

Finally, we study the space-efficiency of cardinal tree representations in the dy-
namic setting, which has practical applications, for example in text indexing struc-
tures. We present a succinct dynamic data structure that supports traversing low-arity
cardinal trees while answering queries during the traversal.

v

vi

Abstract (Danish)

Afhandlingen beskæftiger sig med forskellige varianter af range query problemer.
Specifikt, så studerer vi (1) range minimum problemet: givet et multidimensionalt
array, find positionen af et minimalt element indenfor et query rektangel; (2) sti min-
ima problemet: givet et vægtet træ, find en kant med minimum vægt langs stien
mellem to knuder; (3) range diameter problemet: given en punktmængde i planen,
rapporter to punkter der er længst fra hinanden indenfor et query rektangel. Disse og
beslægtede problemer har anvendelser indenfor mange område, så som dokument gen-
finding, analyse af genom-sekvenser, OLAP data cubes, netværks-strømninger, form-
tilpasning, og beregning af klynger i data.

De tre nævnte problem betragtes for enten statiske eller dynamiske input. I det
statiske tilfælde, studerer vi pladseffektiviteten af datastrukturer - et vigtigt aspekt
indenfor massiv data algoritmik. Vi viser nedre grænser for trade-off’et mellem
forespørgselstiden og pladsforbruget for datastrukturer for range minimum og range
diameter problemerne. Vi præsenter også datastrukturer for disse problemer, som en-
ten komplimenterer de nedre grænser eller som faktisk er bedre end de nedre grænser
under visse antagelser omkring inputtet. Et af resultaterne er at for a kunne svare på
multidimensionalle range minimum queries, skal produktet af det antal celler vi læser
og størrelsen af en indekseringsdatastruktur i bits være mindst antallet af elementer
i inputtet. Et andet resultat vi viser er at man kan understøtte to-dimensionale range
minimum queries i konstant tid ved kun at gemme et lineært antal bits ud over input
arrayet.

For dynamiske datastrukturer viser vi hvordan man kan opnå optimale query tider
for forskellige typer af opdateringer. Et resultat er en sammenligningsbaseret datas-
truktur, der understøtter sti minima queries i sublogaritmisk tid og opdateringer af
kant-vægte i input træet i optimal logaritmisk tid. Vi viser også nedre grænser for
trade-offs mellem query tiden og opdateringstiden for sti minima datastrukturer.

Det sidste emne vi studerer er plads-effektiviteten af dynamiske repræsentationer
af kardinaltræer, som bl.a. anvendes i tekstindekserings strukturer. Vi præsenterer en
succinct dynamisk datastrukturer der understøtter kardinaltræer af lav maksimal grad,
og som understøtter forespørgsler under traverseringen af træet.

vii

viii

 ix

Abstract (Persian)

درباره به سوالاتي در آنهادر مسائلي كاربرد دارند كه كه پردازيم مياي هاي داده به مطالعه ساختماننامه در اين پايان

كوچكترين در بازه:) 1(گيرند عبارتند از مسائلي كه مورد بررسي قرار مي .شوند داده مي پاسخيك بازه يا محدوده

)2(؛را بيابيد دهداده شبازه مستطيلي يك عنصر در داخل كوچكترينمكان ، رايه چند بعديآردرون يك د

داراي كوچكترين وزن در كه يالي باشد، كه هر يالش داراي يك وزن مي در يك درختكوچكترين در مسير:

) قطر در بازه: در يك مجموعه از نقاط در صفحه، دو نقطه را كه در 3باشد را بيابيد؛ (مي دهداده شداخل كه مسير

دارند، به مسائلي از اين دست كاربردهاي مختلفياز هم دارند بيابيد. ، دورترين فاصله را داخل يك بازه مستطيلي

، و كردن اشكال مطابق هاي جريان، شبكهها، پايگاه دادههاي ژنوم، در بازيابي اسناد، تحليل توالي ونهعنوان نم

 سازي. خوشه

 حافظه ،هاي پويا. در حالت ايستا وديشوند و يا براي ور سه مسئله ذكر شده يا براي ورودي هاي ايستا بررسي مي

 ارائهبه ،قطر در بازهدر مسائل كوچكترين در بازه و يرند. ما گ قرار مي مورد بررسياي هاي داده مصرفي ساختمان

به اين تحقيق ي كه دريكي از نتايج پردازيم. ميزمان اجرايي و حافظه مصرفيبراي و كران بالا چندين كران پايين

هايي از حافظه ، تعداد خانهآرايهاز در يك بازه عنصر ين براي يافتن موقعيت كوچكتراين است كه اثبات دست آمد

تعداد حداقل برابر است با در مقياس بيت،نمايه ساز دةساختمان دايك ضربدر اندازه كه نياز به خواندنشان داريم

در يك عنصر اي يافتن موقعيت كوچكتريندهد كه بر نشان مي حقيقتيج نتا يكي ديگر از عناصر موجود در آرايه.

 تعدادي بيت كه با يك تابع خطي از اندازه آرايهخيره ي با پيچيدگي ثابت، ذهاي دو بعدي در زمان از آرايهبازه

 كافي است.شود بيان ميورودي

زمان ائه مي دهيم كه همگي بهترينكوچكترين در مسير ار ئلهها براي مس در حالت پويا، ما چندين ساختمان داده

 يك ساختمان دادهدر يكي از نتايج، ما رساني را پشتيباني مي كنند. را دارند و انواع مختلفي از بروزاجرايي ممكن

 وزنها يابد و بروزرساني مي لگاريتمتابع رين وزن در مسيرها را در زماني كمتر از كوچكتاي ارائه مي دهيم كه همقاسي

رساني و زمان پايين براي زمان بروزما همچنين به اثبات چندين كران دهد. ريتمي انجام ميزمان لگادر را

 پردازيم. له كوچكترين در مسير ميمسئپاسخگويي

از نظر حافظه سازي متن هستند را از جمله در نمايهي هايردبكه داراي كارپويا نماياندن درختان كاردينال انتها،در

ينال با پيمايش يك درخت كارددهيم كه ارائه ميپويا يك ساختمان داده فشرده دهيم. قرار مي مصرفي مورد مطاله

 كند. سهايي در طول پيمايش پشتيباني ميه پرشبجه پايين را به همراه پاسخگويي حداكثر در

Preface

This dissertation is devoted to two aspects of data structures and algorithms: space-
efficient data structures and range queries. Data structures with agile queries on static
inputs are usually the commencement of space-efficiency and lead to the study of
time-space trade-offs in a broad range of computational problems. Furthermore, data
structures on dynamic inputs give rise to the analysis of query-update trade-offs. The
crossing point of these two types of trade-offs is the subject of succinct dynamic data
structures, where we care about all: optimal space, query time, and update time. In
this dissertation, I consider these issues of efficiency for three different versions of the
range query problem, and for a fundamental non-range query problem.

Structure of the dissertation.
• Chapter 1 (Introduction): In the first chapter, I give a detailed overview of the

subject of this dissertation. In particular, I define the different problems that are
considered in the next chapters, and survey the literature of those problems. At
the end of the chapter, I mention some preliminaries that are essential or useful
for the other parts of the dissertation.

• Chapter 2 (Range Minimum Queries): The content of this chapter is based
on a paper published in the proceedings of ESA 2010 [BDR10] that was later
invited to the special issue of Algorithmica for the conference which is now in
press [BDR11a]. This is a joint work with Gerth Stølting Brodal and S. Srinivasa
Rao under the title of “On Space Efficient two-dimensional Range Minimum
Data Structures”.

In this chapter, we study range minimum query (RMQ) data structures, which
support finding the position of the minimum element in a query rectangle within
a given array. We provide an optimal time-space trade-off for one-dimensional
RMQ indexing data structures (Sections 2.2.1 and 2.2.2). Also the first O(N)-
bit space two-dimensional RMQ indexing data structure with constant query
time for arrays that contain N elements is given (Section 2.2.3). Further-
more, for two-dimensional RMQ indexing data structures, the first time-space
trade-off in terms of both lower bounds and upper bounds is proved (Sec-
tions 2.2.1 and 2.2.4). Also an information-theoretic lower bound for the two-
dimensional RMQ problem is established, and a constant query time encoding
two-dimensional RMQ data structure that leaves a gap for the space bound of
such structures is given (Section 2.3). Finally, it is shown that the lower bound
for the time-space trade-off of the two-dimensional RMQ problem also holds
for multidimensional RMQ indexing data structures (Section 2.2.1).

xi

• Chapter 3 (Path Minima Queries): An extended abstract of this chapter is
going to appear in the proceedings of WADS 2011 [BDR11b]. This is a joint
work with Gerth Stølting Brodal and S. Srinivasa Rao under the title of “Path
Minima Queries in Dynamic Weighted Trees”.

In this chapter, it is demonstrated how to answer path minima queries in opti-
mal time under various update operations on trees (Sections 3.2 and 3.3). This
problem is considered in different computational models. The difficulty of the
dynamic path minima problem is also analyzed by proving some lower bounds
for query-update trade-offs by reductions (Section 3.4).

• Chapter 4 (Range Diameter Queries): This chapter consists of some new
results recently obtained in a joint work with Michiel Smid and Freek van
Walderveen.

In this chapter, we study the hardness of the range diameter problem, which asks
for the furthest points in a query rectangle within a given point set. In particu-
lar, we give a reduction from a fundamental data structure problem to the two-
dimensional range diameter problem. This reduction implies conditional lower
bounds for the space requirement of range diameter data structures (Section 4.2).
Also a lower bound for computing the furthest points in two vertically-separated
convex polygons is shown (Section 4.3). Finally, the problem is investigated for
convex polygons. We show that two-dimensional range diameter queries can be
supported more efficiently when point sets are convex and have low-modality
(Section 4.4).

• Chapter 5 (Succinct Representation of Dynamic Cardinal Trees): The con-
tent of this chapter is based on a paper that is going to appear in the proceedings
of TAMC 2011 [DR11]. This is a joint work with S. Srinivasa Rao under the
title of “Succinct Dynamic Cardinal Trees with Constant Time Operations for
Small Alphabet”.

In this chapter, a succinct dynamic data structure is presented that uses al-
most optimal space to represent k-ary cardinal trees for polylogarithmic k. The
data structure supports the standard navigational operations and a selection of
enhanced queries in O(1) time under leaf insertions and deletions performed
in O(1) amortized time. In this data structure, the operations are performed in
the course of traversing input trees.

Acknowledgements. During my M.Sc. studies, I worked on a paper which I only
recently realized that my Ph.D. advisor, Gerth Stølting Brodal, is one of the authors of
that paper. I clearly remember the first day that I met Gerth who told me “Welcome!
You finally arrived!”. This was a response to a long wait for getting permission to
leave my country, Iran. I would like to thank Gerth for his friendly welcome to my
thousands of questions, for the weekly morning badminton that never led to my win,
and more importantly for his moral support during my studies.

I thank Lars Arge who made the opportunity for me to be educated in a friendly
environment of MADALGO. I also thank all the MADALGO Ph.D. students and Post-
docs, especially Peyman Afshani, Kasper Green Larsen, Nodari Sitchinava, and Freek

xii

van Walderveen. Special thanks go to Else Magård and Dorthe Haagen Nielsen since
my stay in Denmark could not be so pleasant without their help. I had a good time
with the friends that I met in Aarhus: Soheil Abginehchi, Reza Mohammadzadegan,
and Ahmad Behroozmand. I would like to say a special thank you to my close and kind
friends Mohammad Ali Abam and Konstantinos Tsakalidis who have been supportive
since I met them.

I visited Rajeev Raman at university of Leicester, Michiel Smid, Anil Maheshwari,
Prosenjit Bose, and Pat Morin at Carleton University. The discussions that I had with
them improved the way I look at many computational problems. I also thank all of
them for their hospitality.

During my Ph.D., I met many MADALGO visitors who provided me with an op-
portunity to have fruitful discussions with them. In particular, I thank John Iacono, J.
Ian Munro, and Bradford G. Nickerson.

I had great and long discussions with S. Srinivasa Rao over Skype which not only
led to new results, but also taught me a lot. I thank him for all the joint work, recom-
mendations, and helps.

I received a very educational review for my range minimum query paper, which I
always appreciate it. I would like to thank the anonymous reviewers of my papers for
their helpful comments.

I also thank Anders Møller, Alejandro (Alex) Lòpez-Ortiz, and Rasmus Pagh for
accepting to be in my Ph.D. committee.

Writing this thesis was a slow but an educational process. Many people helped me
to finish this task. In particular, Gerth Stølting Brodal, Kasper Green Larsen, S. Srini-
vasa Rao, Nodari Sitchinava, Michiel Smid, and Freek van Walderveen who improved
the thesis by their comments. I especially thank Freek van Walderveen for helping
with some figures in this dissertation.

My co-authors Gerth Stølting Brodal, S. Srinivasa Rao, Michiel Smid, and Freek
van Walderveen have been excellent fellow researchers to work with.

During the last three years that I stayed abroad, very often I remembered my M.Sc.
advisor, Abbas Nowzari-Dalini, whom I had very good discussions with about differ-
ent aspects of life. I thank him for all the lessons that he taught me.

Finally, I thank my parents, Ahmad Davoodi and Shahnaz Kanaani, who have
encouraged and supported me as long as I can remember. My wife Elahe Farjami gave
me new energy everyday by her enthusiastic love. I would like to send my love to her.

Pooya Davoodi,
Aarhus, May 7, 2011.

xiii

Contents

Abstract (English) v

Abstract (Danish) vii

Abstract (Persian) ix

Preface xi

1 Introduction 1
1.1 Space Efficiency and Succinctness 2

1.1.1 Succinct Data Structures . 3
1.1.2 Succinct Dynamic Data Structures 6
1.1.3 Succinct Indexing Data Structures 9

1.2 Range Queries in Arrays . 10
1.2.1 Range Minimum Queries . 11

1.3 Range Queries in Trees . 18
1.3.1 Path Minima Queries . 19

1.4 Geometric Range Aggregate Queries 23
1.4.1 Range Diameter Queries . 24

1.5 Preliminaries . 26
1.5.1 Computational Models . 26
1.5.2 Cartesian Trees . 28
1.5.3 Trees: Transformations and Decompositions 29
1.5.4 Q-heap . 32
1.5.5 Inverse-Ackermann Function 33

2 Range Minimum Queries 35
2.1 Introduction . 36

2.1.1 Our Contributions . 36
2.2 Indexing Data Structures . 37

2.2.1 Lower Bound . 37
2.2.2 Tightness of the Lower Bound in One Dimension 40
2.2.3 Constant Query Time with Optimal Space in Two Dimensions 41
2.2.4 Time-Space Trade-off in Two Dimensions 44

2.3 Encoding Data Structures in Two Dimensions 45
2.3.1 Upper Bound . 46
2.3.2 Lower Bound . 46

xv

2.4 Dynamic Structures in One Dimension 47
2.5 Open Problems . 48

3 Path Minima Queries 49
3.1 Introduction . 50

3.1.1 Our Contributions . 50
3.2 Data Structures for Dynamic Weights 51

3.2.1 In the Comparison Model 51
3.2.2 In the RAM Model . 56

3.3 Data structures for Dynamic Leaves 57
3.3.1 Query-Update Trade-off in the Semigroup Model 57
3.3.2 Constant Update Time in the Semigroup Model 60
3.3.3 Constant Query and Update Time in the RAM Model 61

3.4 Lower bounds . 62
3.4.1 Dynamic Edges in Weighted Forests 63

3.5 Open Problems . 64

4 Range Diameter Queries 67
4.1 Introduction . 68

4.1.1 Our Contributions . 68
4.2 Conditional Lower Bound: Relation to Set Intersection 68
4.3 Relation to Set Disjointness . 71
4.4 Convex point sets . 72

5 Succinct Dynamic Representation of Low-Arity Cardinal Trees 75
5.1 Introduction . 76
5.2 Preliminaries . 76

5.2.1 Dynamic Arrays . 76
5.2.2 Dynamic Searchable Partial Sums 76
5.2.3 Dynamic Data Structure for Balanced Parentheses 77
5.2.4 Dynamic Rank-Select Structure 78
5.2.5 Dynamic Predecessor Search Structure 79

5.3 Data Structure . 80
5.3.1 Representation of Micro Trees 81

5.4 Supporting Operations . 83
5.4.1 Navigation . 83
5.4.2 Enhanced Queries . 84
5.4.3 Updates . 85
5.4.4 Memory Management . 85

Bibliography 87

xvi

Chapter 1

Introduction

It was a large room. Full of people. All kinds.
And they had all arrived at the same building at more or less the same time.

And they were all free.
And they were all asking themselves the same question:

What is behind that curtain?
— Anderson Laurie, “Born, Never Asked Lyrics”, 1982.

For more than three decades, one of the hot areas of research in design and analysis
of data structures has been range query problems. The goal is to preprocess a set of
objects that have some positional relationship to each other, such that we can efficiently
report or count all the objects that are within a query range, such as the points that are
within a query rectangle for a given point set in the plane. In a general setting, a
certain aggregation function that operates on the objects within a query range should
be computed efficiently. For example, for a given point set in the plane, an aggregation
function finds the top most point within a query range. These types of queries are
known as range aggregate queries. Also, in a more general setting, each object can
be associated with some weight, and aggregation functions operate on the weights of
objects that are within a query range.

Range query problems for geometric objects such as points, line segments, poly-
gons, and polyhedra in the d-dimensional Euclidean space Rd , are known as geometric
range searching in computational geometry [AE99,Afs08b]. The relationship between
geometric objects is their relative positions in some coordinate system, and queries ask
to report the intersections of objects with a query range. Geometric range searching
has many practical applications, for example in database systems (such as multi-key
searching [Knu98, Section 6.5]), time-series (temporal) databases [AE99], geographic
information systems (such as traffic monitoring [TP04]), statistics [BF79], and au-
tomation in VLSI design [SG06]. Some important range searching problems that have
attracted the attention of many geometers are dominance queries [CE87, Afs08a], or-
thogonal range queries [Meh84, PS85, AE99], simplex and halfspace range search-
ing [Wil82,HW87,Mat92,Mat93,Cha10]. These queries are depicted in Figure 1.1 for
two dimensional point sets.

In geometric range searching, in addition to the typical queries: reporting, counting
and emptiness, range aggregate queries are also studied. For example, for a given point
set, consider finding the closest pair of points among the points within a query range.

1

2 Chapter 1. Introduction

orthogonal range
query

dominance query simplex range
query

half-space range
query

Figure 1.1: Different geometric range searching problems can arise according to dif-
ferent query shapes enclosing the objects. Four different geometric range queries are
depicted for two dimensional points.

As another example, for a set of points that each is associated with a numerical weight,
queries ask for the point with maximum weight among the points within a given range.

A special case of geometric range searching is when inputs are dense point sets
in Rd such that the points can be placed in the cells of a d-dimensional array (grid).
In this case, the inputs are d-dimensional arrays, where each entry of the arrays can
maintain a weight assigned to a point. In Section 1.2, we provide an overview of this
problem.

Another variant of range queries is when inputs are trees. In this case, objects are
vertices of trees, and the relationship among vertices is defined by the edges incident
on the vertices. A range in a tree can for example be defined by a path in the tree
which is induced by two vertices. The goal is to report or count all vertices (or edges)
contained in a range, or to compute a function of them. In a more general setting, a
weight is assigned to each vertex (or edge), and then a function of the weights whose
corresponding vertices are within a query range has to be computed. In Section 1.3,
we sketch this problem.

1.1 Space Efficiency and Succinctness

The amount of data that is collected for various scientific applications is increasing ex-
tremely fast. We need efficient algorithms and data structures that can handle massive
data. The usual measures of efficiency of data structures are

• Time: How long a preprocessing algorithm takes to process an input and con-
struct a data structure, and how much time a query algorithm takes to answer a
given query and produce the desired output. If the data structure supports update
operations, then the time of those operations also matters.

• Space: How much memory a preprocessing algorithm takes to construct a data
structure and store it. The most important space bound is the size of the data
structure after the preprocessing algorithm is done.

In order to prevent expansion of memory usage, we are usually interested in data
structures using linear space. But at the same time, we would like to answer queries
as fast as we can, say constant time. For many computational problems, achieving
these two goals (linear space and constant query time) at the same time is not an easy

1.1. Space Efficiency and Succinctness 3

task, and sometimes it is impossible (for example, searching for a number in a list).
In particular, there is usually a trade-off between the space bound and the query time.
That is, large-sized data structures can support queries fast, whereas small-sized data
structures cannot answer queries quickly. A similar trade-off can happen between the
preprocessing time and the query time, and also between the query time and the update
time. One of the topics of this dissertation is considering these trade-offs for different
problems. In particular, we study the time-space trade-offs for range minimum queries
in arrays, and range diameter queries in two dimensional point sets, and we also study
the query-update trade-offs for path minima queries in trees. These problems will be
defined and described in detail in the next sections.

We are usually satisfied with linear space data structures, but sometimes we can
aim at making the space bounds even smaller. Indeed, data compression has always
been an important field of research in computer science in an attempt to represent data
in sublinear space. But, compressing data is not necessarily satisfactory for data struc-
ture problems, because we need to answer online queries fast, without decompressing
the data structures. In his PhD dissertation, Guy Jacobson wrote: “Small is beautiful.
It is good when a piece of data can be made smaller. It is bad, however, when this
reduction in size is accompanied by a reduction in accessibility as well, but this is the
compromise made in classical data compression. Sometimes such a compromise is
unacceptable.” [Jac89]. We need to optimize data compression techniques such that
they can transform inputs into small-sized data structures, while preserving important
functionality such as supporting queries or modifying data. Designing succinct data
structures introduced by Jacobson [Jac89] is an answer to this problem.

1.1.1 Succinct Data Structures

The goal of succinct data structures is to use the power of the unit-cost word RAM
model to store data in a number of bits close to the information-theoretic lower bound,
while supporting queries in optimal time. For example, to represent a binary tree con-
taining n nodes, the information-theoretic lower bound is 2n−Θ(logn) bits. This
bound is derived by taking the logarithm of the number of different binary trees of n
nodes captured by the Catalan number Cn = 1

n+1

(2n
n

)
. For an input binary tree con-

taining n nodes, we would like to design data structures of size close to 2n−Θ(logn)
bits, that can support navigational operations in the tree such as returning the left child
of a given node. Many different types of problems have been considered in the liter-
ature on succinct data structures such as dictionaries, and pattern matching [DPM05].
Trees are one of the fundamental structures in computing. In the following, we con-
sider succinct representations of trees which is one of the subjects of this dissertation
(Chapter 5). The word size of the machine is usually w = Θ(logn) bits, where n is the
input size, for example for tree representations, n is the number of nodes.

Binary trees. We have to represent an input binary tree containing n nodes in a num-
ber of bits close to the information theoretic lower bound 2n−Θ(logn), and support
the navigational operations left-child, right-child, parent for any given node in the tree.
In most of the applications, a piece of data of fixed size, termed satellite data, is asso-
ciated to each node of the tree. We can allocate an array containing n cells and store
the satellite data in the cells of the array. Thus, we map the nodes of the tree onto

4 Chapter 1. Introduction

the integers in {1, . . . ,n}, and the navigational operations return integers representing
their output nodes. Hence, we can use these integers to access the array containing the
satellite data.

Consider a bit vector of length 2n+ 1 made by performing a left-to-right level-
order (the breadth first) traversal of the tree, and storing 1 bits for the present nodes
and 0 bits for the absent children. In the traversal of the tree, each node attains an
integer rank according to its appearance in the traversal. Let this rank be the interface
of the navigational operations performed on the tree. Let the operation rank(i) return
the number of 1s before the position i in the bit vector, and the operation select(i)
return the position of the i-th 1 in the bit vector. The navigational operations on the
tree can be supported using the following equations:

parent(i) = select(bi/2c) ,

left-child(i) = 2 · rank(i) ,

right-child(i) = 2 · rank(i)+1 .

It is known that o(n) bits are sufficient to store a data structure that supports rank
and select in O(1) time on a bit vector of length n [Mun96]. Thus, a binary tree
containing n nodes can be represented with the bit vector along with a rank-select data
structure using 2n+o(n) bits to support the navigational operations in O(1) time, and
accessing the satellite data [Jac89, Cla96, CM96].

Ordinal trees. An ordinal tree is a rooted tree where each node can have an arbitrary
number of children in some order. There is a one-to-one correspondence between or-
dinal trees containing n nodes and binary trees containing n−1 nodes (Section 1.5.3).
Therefore, the information theoretic lower bound to represent ordinal trees contain-
ing n nodes is also 2n−Θ(logn) bits. The operations left-child and right-child men-
tioned for binary trees are replaced with the operation i-th child, which returns the i-th
child of any given node in the tree. Therefore, the navigational operations are i-th child
and parent. Every ordinal tree representation can also represent a binary tree within
the same time and space complexities to support the navigational operations ([MR01]
and Section 1.5.3), but the opposite is not clear. A typical operation on ordinal trees is
degree, which returns the number of children of a given node.

Jacobson presented the level-order unary degree sequence (LOUDS) representa-
tion of ordinal trees containing n nodes, which supports the navigational operations
in O(1) time and can be stored in 2n+o(n) bits [Jac89]. A tree is represented by the
sequence containing the degrees of the nodes in the level-order traversal, in which each
degree d is written as a string of d 1s and a 0.

There are applications in which we need to determine the size of the subtree rooted
at each node of the tree [MR01]. Therefore, we would like to design ordinal tree rep-
resentations that also support the operation subtree-size in addition to the navigational
operations. The LOUDS representation supports i-th child in O(1) time because there
is a simple relationship between a node and its children. But it cannot support subtree-
size in constant time, since it requires to traverse a subtree to determine its subtree
size.

Munro and Raman [MR01] overcame the difficulty of subtree-size by representing
an ordinal tree of size n using a balanced sequence of parentheses. This sequence is

1.1. Space Efficiency and Succinctness 5

derived from the depth-first traversal of the tree, by assigning an open parenthesis to
a node when we visit the node, and assigning a close parenthesis to a node after we
visit the whole subtree of the node. They showed that the representation can be stored
in 2n+ o(n) bits and it can support subtree-size in O(1) time because each subtree
is represented as a contiguous balanced sequence of parentheses. But the representa-
tion requires Θ(i) time to support i-th child [DPM05]. The representation maps each
node of the tree to the rank of the node in the preorder traversal of the tree called the
preorder number of the node. This representation is known as balanced parentheses
representation (BPS). They also show that their data structure can be used to support
the subtree size queries in binary trees [MR01, Section 3.2].

Benoit, Demaine, Munro, Raman [BDMR99] introduced the depth-first unary de-
gree sequence (DFUDS) representation which overcomes the difficulty of supporting
both subtree-size and i-th child in constant time by combining the virtues of LOUDS
and BPS. They create a balanced parentheses sequence containing the unary degree se-
quence of each node but in the order of the depth-first traversal of the tree, in contrast
to LOUDS which is in level-order. That is, the representation of each node contains
essentially the same information as in LOUDS, but the nodes are stored in a different
order. The DFUDS representation can be stored in 2n+o(n) bits and can support the
navigational operations, degree, and subtree-size, all in O(1) time [BDM+05].

Cardinal trees. A k-ary cardinal tree is a rooted tree in which each node has at
most k children and each edge is labeled by a symbol from a totally ordered set of
fixed size k. Another term for k-ary cardinal trees is tries with degree k. For each
node in such a tree, the edges between the node and its children are sorted increasingly
according to their labels. We assume that k≤ n. The number of different k-ary cardinal
trees containing n nodes is C (n,k) =

(kn+1
n

)
/(kn+1) [GKP88, Arr08]. Thus, if k is a

non-decreasing function of n, the information theoretic lower bound to represent k-ary
cardinal trees is n(loge+ logk) bits.

We can represent a k-ary cardinal tree using ordinal tree representations. But if
we would like to perform operations on the tree that are concerned with the edge-
labels, then we need to maintain some information about the edge-labels. One of these
operations can be label-child(α) which returns the child of a given node, where the
edge between the child and the node is labeled by α . To maintain the edge-labels, for
each node of the tree we can make a dictionary structure that contains the edge-labels
of all the children of that node. Now, we can perform label-child for a given node
using its corresponding dictionary along with the operation i-th child on the tree. In
particular, to find label-child(α) of a given node x, we determine whether α exists in
the dictionary corresponding to x. If it does, we compute the rank i of α , that is, the
number of labels existing in the dictionary which are smaller than α plus one. The
desired child is thus i-th child of x.

In an experimental work, Darragh, Cleary, and Witten [DCW93] showed a com-
pact form of representing k-ary cardinal trees named Bonsai, by storing 6+dlogke bits
per node. Their method is essentially a way of storing trees in a compact form of hash
tables. Their structure supports navigation through cardinal trees and inserting new
leaves in O(1) expected time.

Benoit, Demaine, Munro, and Raman [BDMR99] turned the attention of the suc-

6 Chapter 1. Introduction

cinct community from binary trees to cardinal trees of higher degrees. They repre-
sent k-ary cardinal trees containing n nodes using 2n+ ndlogke+ o(n) bits, and their
data structure supports the navigational operations in O(1) time except label-child
which takes O(log logk) time. Their structure was improved by using static dictio-
naries that support constant time rank operation [RR99], leading to an improvement
for label-child to O(1) time by spending totally 2n+ ndlogke+ o(n) +O(log logk)
bits [BDM+05]. The space bound of their structure is logC (n,k)+Ω(n) bits, as k
grows. Later, Raman, Raman, and Rao [RRS07] improved the space to logC (n,k)+
o(n)+O(log logk) bits, while supporting all the operations except subtree-size in O(1)
time. Finally, Farzan, Raman, and Rao [FRR09] presented a data structure that
achieves O(1) time for all the operations including subtree-size using the same amount
of space logC (n,k)+o(n)+O(log logk) bits.

1.1.2 Succinct Dynamic Data Structures

In succinct data structures, we arrange bits of preprocessed data in an optimal-length
sequence of memory words, such that queries can be supported efficiently using the
sequence. Of course, finding such an arrangement is much easier if the input data is
static [Jac89]. Considering the dynamic succinct data structures goes back to 1994,
where Brodnik and Munro [BM99] showed how to store a subset of a universe with
space bound within a small constant factor of the minimum required and to support
membership queries in constant time and insertions and deletions in constant expected
amortized time. Other fundamental problems such as dynamic arrays, dynamic partial
sums, and dynamic dictionaries have also been considered [DPM05]. In the following
we describe dynamic succinct representations of trees.

Dynamic binary trees. Munro, Raman, and Storm [MRS01] considered succinct
representations of dynamic binary trees for the first time. They presented a data struc-
ture of size 2n+o(n) bits which supports the navigational operations left-child, right-
child, parent in O(1) time, and allows inserting a node along an edge, inserting a leaf,
deleting a node with one child, and deleting a leaf all in O(log2 n) time in the worst
case, or in O(log logn) amortized time. When constant-sized satellite data is asso-
ciated with the nodes, their data structure supports accessing the data in O(1) time
with O(log3 n) worst case update time and O(logn) amortized update time. Also if
the size of satellite data for each node is Θ(logn) bits, then updating the structure
takes O(log4 n) worst case time and O(log2 n) amortized time. Of course, the space
used to store satellite data is added to the size of the data structure.

Farzan and Munro [FM10] presented a succinct representation of dynamic ordinal
trees (described later in this section), which can be used as a representation for binary
trees. In fact, every ordinal tree representation also supports navigation and updates
in binary trees within the same time and space complexities, using the transformation
algorithm mentioned in Section 1.5.3 (see also [MR01, Section 3.2]).

The data structure of [FM10] can represent ordinal trees of size n nodes with
satellite data of size b = O(logn) bits using 2n + bn + o(bn) bits. It supports the
basic navigational operations parent, first-child, last-child, next-sibling, and previous-
sibling, and accessing and modifying satellite data in O(1) time, and supports inser-
tions and deletions in O(1) amortized time (the similar types of insertions and deletions

1.1. Space Efficiency and Succinctness 7

as in [MRS01]).

Subtree sizes in dynamic binary trees. As mentioned for static binary tree repre-
sentations, determining the subtree size of a given node is an interesting operation for
some applications. Farzan and Munro [FM10] proved that maintaining a binary tree
containing n nodes under insertions and deletions of leaves and subtree size queries
requires Ω(logn/ log logn) amortized time per operation. They determined the lower
bound by a reduction from the subset rank problem as follows.

The subset rank problem is representing a subset S ⊆ {1, . . . ,n} under insertions
and deletions of elements, and rank which asks for the number of elements that are
smaller than a query element. They showed that the subset rank problem for S can be
transformed into representing the following binary tree under updates and subtree size
queries: consider a left skewed path of length n (where each node has only a left child,
except the bottom most one); correspond each node to an element in {1, . . . ,n}; for
each node in the path, if its corresponding element appears in S, give it a right child.
The subset rank problem also has the lower bound of Ω(logn/ log logn) amortized time
per operation in the cell probe model with words of length polylogarithmic in n [FS89].

To overcome this difficulty of supporting subtree size queries in dynamic setting,
Munro, Raman, and Storm [MRS01] introduced the traversal model by putting some
restrictions on the update operations and subtree size queries. The restriction is that
updates are performed in the course of a traversal which starts from the root, moves
through the tree by performing the navigational operations at the current node, and
ends at any node. Subtree size queries can be answered for every node only after the
traversal is completed. In other words, imagine that there is a finger which is initially
at the root, and it crawls on the tree using the navigational operations. The update
operations can be only performed on the finger, and subtree size queries can be only
answered after the navigation ends (the finger stops traveling in the tree). In this model,
the update time and the query time can be amortized over the movements of the finger,
as well as the time to perform the updates or to answer the queries. To achieve worst
case bounds for the update time, they assume that the traversal (the finger) stops at the
root.

In the traversal model, the dynamic data structure presented in [MRS01] can sup-
port the navigation, accessing satellite data, and subtree size queries in O(1) time
using 2n+ o(n) bits. The update time of the data structure is the same as mentioned
before considering subtree size queries.

Raman and Rao [RR03] improved the update time to O((log logn)1+ε) amortized
for satellite data of size b = O(logn) bits, while making the traversal model slightly
stronger by answering subtree size queries at any time during the traversal (not only
on completion of the traversal) but only at the current node. The size of their data
structure is 2n+bn+o(n) bits.

Dynamic ordinal trees. Farzan and Munro [FM10] showed the difficulty of sup-
porting the enhanced navigational operation i-th child in ordinal trees, in similar to
supporting subtree size queries in dynamic binary trees. In particular, they showed
that maintaining ordinal trees containing n nodes under insertions and deletions of
leaves, accessing satellite data, and the navigational operations i-th child and par-

8 Chapter 1. Introduction

ent requires Ω(logn/ log logn) amortized time per operation. They proved the lower
bound by a reduction from the list representation problem. In the list representation
problem, we have to maintain an ordered list of at most n elements from {1, . . . ,n}
under insertions, deletions, and reporting the element at a given position in the list.
The list representation problem also has the lower bound of Ω(logn/ log logn) amor-
tized time per operation in the cell probe model with words of length polylogarithmic
in n [FS89].

Gupta, Hon, Shah, and Vitter [GHSV07] presented a framework to dynamize suc-
cinct data structures focusing on achieving information-theoretically optimal space
along with near-optimal update time and query time for different data structures such
as dictionaries and trees. They dynamized the LOUDS representation of ordinal trees,
and achieved a dynamic data structure of size 2n+o(n) bits to represent ordinal trees
containing n nodes that supports the navigational operations in O(log logn) time, and
the update operations in O(nε) amortized time, for any constant ε > 0.

Sadakane and Navarro [SN10] in an attempt to simplify the existing succinct rep-
resentations of static ordinal trees, and cutting the redundancy of those representations,
proposed a technique to reduce the large number of relevant tree operations to a few
primitives. Moreover, they derived a dynamic data structure for ordinal trees that sup-
port plenty of operations. Their representation for ordinal trees of size n can be stored
in 2n+o(n) bits, and supports all the operations in O(logn/ log logn) time.

To overcome the difficulty of supporting i-th child in dynamic setting, Farzan and
Munro [FM10] utilized a stronger version of the traversal model1, in which the navi-
gation and queries can be performed at any time at any node, while updates are only
performed at the finger. In this model, they presented a dynamic data structure to
maintain ordinal trees containing n nodes with satellite data of size b = O(logn) bits,
using 2n+ bn+ o(bn) bits. Their data structure supports the basic navigational oper-
ations and the operations i-th child, degree, and subtree-size all in O(1) worst case
time, and updates in O(1) amortized time, degree returns the number of children of a
given query node.

Cardinal trees. Apart from the standard operations of dynamic ordinal trees, and
label-child for cardinal trees, we would like to have insert-label-leaf(α), which inserts
a leaf as a child of a given node, where the edge between the leaf and the node is
labeled by α , and also delete-label-leaf(α) defined analogously.

As previously mentioned, Darragh, Cleary, and Witten [DCW93] in an experimen-
tal work, presented the Bonsai structure to represent k-ary cardinal trees containing n
node using 6n+ ndlogke bits. The Bonsai data structure supports the navigational
operations and inserting new leaves in O(1) expected time.

In response to the question posed in [MRS01] about representing dynamic k-ary
cardinal trees succinctly, Arroyuelo [Arr08] presented a data structure of size 2n+
n logk + o(n logk) bits, that supports standard operations of dynamic cardinal trees
containing n nodes in the traversal model, where all the supported operations can
be performed at the current node at any time (this model is the same as the one
used in [RR03]). His data structure supports the navigational operations, subtree-
size, and degree in O(logk+ log logn) time and updates in O((logk+ log logn)(1+

1In their paper, this model is denoted as the finger-update model [FM10]

1.1. Space Efficiency and Succinctness 9

(logk)/(log(logk+ log logn)))) amortized time. These bounds appear due to using dy-
namic rank and select data structures for general alphabet size, using searchable partial
sums structures, and using dynamic DFUDS representations. This data structure does
not support accessing satellite data. For small alphabet size that has practical moti-
vations, in particular k = (logn)O(1), Arroyuelo’s data structure achieves O(log logn)
query time and O((log logn)2/ log loglogn) amortized update time. One of the contri-
butions of this dissertation is improving these bounds to constant (Chapter 5).

The traversal model used in cardinal trees representations has practical applications
such as constructing Lempel-Ziv indexes which is used for dynamic compressed full-
text indexes; and also constructing suffix trees, if we supplement the data structure
with satellite data.

Our contribution. Munro, Raman, and Storm [MRS01] asked for representing k-ary
cardinal trees succinctly while they speculated that their techniques for dynamic binary
trees may be suitable for k-ary cardinal trees as well. Arroyuelo [Arr08] presented a k-
ary cardinal tree structure and mentioned that improving his data structure for small
alphabets, such as polylogarithmic in the size of the input tree, is interesting. We
achieved this, by giving a succinct representation of dynamic k-ary cardinal trees that
uses 2n+ n logk+ o(n logk) bits for an input k-ary cardinal tree containing n nodes,
where k =(logn)O(1). Low-arity cardinal trees have practical applications, for example
in text indexing [BDMR99, Arr08]. Our data structure works in the traversal model
and supports the navigational operations in constant time, insertions and deletions of
leaves in amortized constant time, and the following enhanced queries in constant time:
determine the subtree size and the degree of the current node of the traversal; verify if
the current node is the ancestor of a given query node. This data structure is presented
in Chapter 5.

1.1.3 Succinct Indexing Data Structures

In some practical applications, it is needed to keep the original input (raw data) in
memory for some reasons unrelated to answering queries, for example someone else
needs the raw data for his applications. That is, the input is preprocessed and a data
structure is constructed which supports queries, but the input is also maintained even
though the data structure does not need the input any more. In these cases, it makes
sense to design data structures that utilize the existence of the input. It allows us
to make smaller data structures that answer queries by consulting the input, denoted
as indexing data structures. For example, in information retrieval systems, we can
use inverted indexes which essentially store the answer of all the queries in typi-
cally 50%− 300% of the size of the input. This enables the system to answer the
queries very fast without consulting the input. On the contrary, we can make an in-
dexing data structure of size about 2%-4% of the size of the original input which
answers the queries slower but fast enough (GLIMPSE as a searching tool is an ex-
ample of such an index [MW94]). According to the nomenclature of succinct data
structures, indexing data structures are also denoted as systematic schemes contrary
to non-systematic schemes or encoding data structures which do not need the input to
answer the queries [GM07].

10 Chapter 1. Introduction

1.2 Range Queries in Arrays

In this section, we consider the range query problem for input arrays. A d-dimensional
array A[1 · · ·n1]× [1 · · ·n2]×·· ·× [1 · · ·nd] is a table of elements, where A[i1, i2, . . . , id]
denotes an element of the array addressed by the indexes i1, i2, . . . , id , for 1 ≤ ik ≤ nk
and 1≤ k ≤ d. In this section, we consider range query problems for such arrays. An
orthogonal d-dimensional range query q = (i1, j1, i2, j2, . . . , id , jd) in an array A, spans
all the cells in A[i1 · · · j1]× [i2 · · · j2]×·· ·× [id · · · jd].

In contrast to geometric range searching, where counting the objects within the
range, or determining the emptiness of the range all require non-trivial data struc-
tures, in the case of arrays, these can be trivially solved by doing calculation on the
indexes i1, j1, i2, j2, . . . , id , jd (no preprocessing is required). The problem arises when
the query asks to compute a function of the elements, where some information about
the elements is required to compute the function.

In some versions of the problem, the function to be computed is an arithmetic func-
tion such as sum: the sum of the elements within the range. In this case the elements
of the input array are numbers (integers or reals). In some other versions, the function
is a comparison based function such as minimum (maximum): the smallest (greatest)
element within the range; median: the element of rank ds/2e among all the s elements
within the range. In this case, the elements of the array are some members of a to-
tally ordered set. There are also some versions in which the function is an equality
based function such as count: the number of distinct elements within the range. In
Section 1.2.1, we will study a version of the problem where the function is minimum,
which is one of the subjects of this dissertation (Chapter 2).

Let N = |A| = n1 · n2 · · ·nd be the size, the total number of the elements, of the
input array A. There are two naive solutions to answer range queries in A:

• Brute force search: Do not need to store anything during the preprocessing. To
answer a query, scan all the elements within the query range, and compute the
answer. This solution is not fast in terms of the query time. In particular, it takes
at least O(N) query time to just read the elements within the range, in the worst
case. Although it essentially does not use any space to store a data structure.
The space usage of the solution is O(N) to store the input array.

• Tabulation: During the preprocessing, compute the answer of every possible
query and arrange all the answers in a table (which is a two dimensional array).
Answer the query by looking up the table at the position corresponding to the
query. The size of the table is in the order of the total number of queries, which
is as large as O(N2). A naive preprocessing algorithm takes at least O(N3) time
to make the table by just reading all the elements within each possible query to
compute the answer of the query. Though, the query algorithm only takes O(1)
time to determine the answer. Notice that the query algorithm does not need to
read any element from the input array. Therefore, in this solution, the input array
is not stored in the data structure.

1.2. Range Queries in Arrays 11

1.2.1 Range Minimum Queries

In this problem, the input is a d-dimensional array A, and the elements of A are from
a totally ordered set. The query asks for the minimum element among the elements
within the query range. Notice that the query can be answered by finding the posi-
tion of the minimum element within the range, and then returning the element in that
position. Indeed, in the literature due to some applications such as simulating suffix
tree based algorithms on suffix arrays and LCP arrays [FHS08], the range minimum
query denotes the version of the problem, where the query asks for the position of the
minimum element within the range. In this thesis from now on, we follow the same
definition. In the following two sections, we review the one dimensional and multidi-
mensional versions of the problem, and at the end we mention our contribution.

Applications. The RMQ problem for one dimensional arrays has applications in for
example, range queries [Sax09], text indexing [AKO04, FMN08, Sad07a], text com-
pression [CPS08], document retrieval [Mut02, Sad07b, VM07], flowgraphs [GT04],
and position-restricted pattern matching [ICK+08]. The RMQ problem for two dimen-
sional arrays has applications in computer graphics, image processing (for example,
finding the lightest or darkest point in a range), computational biology (for example,
finding minimum or maximum number in an alignment tableau or in genome sequence
analysis), and databases (for example, range minimum or maximum query in OLAP
data cubes [Poo03]).

One dimensional RMQ. In the one dimensional range minimum query prob-
lem (1D-RMQ), the input is an array A[1 · · ·n] containing n elements. This problem
has been studied extensively.

Gabow, Bentley and Tarjan in their seminal paper [GBT84], solved several geo-
metric range searching problems including finding the point with minimum weight in
a given query range for a d-dimensional point set. Their solution resolves the 1D-RMQ
problem with O(1) query time by spending O(n) preprocessing time and space. They
recognized the Cartesian tree that was introduced by Vuillemin [Vui80] in the con-
text of average time analysis of searching. The Cartesian tree for the array A is a
binary tree with nodes labeled by the indexes of A. The root has label i, where A[i]
is the minimum element in A. The left subtree of the root is a Cartesian tree for
the subarray A[1 · · · i− 1], and the right subtree of the root is a Cartesian tree for the
subarray A[i+ 1 · · ·n]. This inductive definition implies that the answer to any range
minimum query q = (i, j) in A, is the label of the lowest common ancestor (LCA)
of the nodes labeled by i and j. The Cartesian tree of A can be constructed in O(n)
time [Vui80]. The LCA of two nodes in a tree of size n can be found in O(1) time
using O(n) preprocessing time and space in the word RAM due to Harel and Tar-
jan [HT84]. In the following, we briefly explain a relationship between the 1D-RMQ
problem and the LCA problem.

Equivalence between 1D-RMQ and LCA. The LCA problem is one of the most
fundamental problems in computer science [AGKR04] that was introduced by Aho,
Hopcroft, and Ullman [AHU73]. The problem has several variants in terms of of-
fline/online and static/dynamic [HT84]. In the online setting, we preprocess an input

12 Chapter 1. Introduction

tree and then we answer incoming queries one by one by finding the lowest common
ancestor of two given nodes. This problem for a static tree of size n was resolved
by Harel and Tarjan [HT84] in a complicated data structure of size O(n), constructed
in O(n) time that achieves O(1) query time. This structure works in the the word
RAM (in the pointer machine, Ω(log logn) query time is required [HT84]). There
have been works on simplifying the data structure of [HT84], for example see [SV88].

Gabow, Bentley and Tarjan [GBT84] showed that the LCA problem for a tree can
be solved using a 1D-RMQ structure. The input array to the 1D-RMQ problem can be
derived by listing the heights of the nodes in an inorder traversal of the tree. Essentially,
this reduction and the Cartesian tree solution for the 1D-RMQ together indicate that
these two problems, the 1D-RMQ and LCA, are equivalent. Although this is a simple
reduction from the LCA problem to the 1D-RMQ problem, but this did not give any
solution for the LCA problem (hopefully simpler than [HT84]). Because at that time,
there was no O(1)-query time data structure to solve the 1D-RMQ problem except the
one that relies on LCA in the Cartesian tree.

Berkman and Vishkin [BGSV89] presented a simple LCA PRAM-algorithm by re-
ducing it to a restricted-domain version of the 1D-RMQ problem denoted by±1RMQ,
in which each element of the array differs by +1 or −1 from its adjacent. The array
is derived by listing the heights of the nodes traversed in the Euler tour of the tree.
Notice that the difference between the heights of each pair of successive nodes in this
list is exactly one. They solved the ±1RMQ with O(1) query time, and O(n) pre-
processing time and space, by partitioning the array and precomputing the answers
for small subarrays (similar to the structure of [AS87]). Later, the sequential version
of their algorithm was demonstrated in a simplified presentation in [BFCP+05] ar-
guing that the difficulty in implementing the LCA algorithms should not prevent us
anymore to solve problems through giving algorithms that rely on the LCA problem.
See [AGKR04, FH06] for other results on the 1D-RMQ problem.

Succinct 1D-RMQ structures. The 1D-RMQ data structures can be classified into
two different types: indexing and encoding. Recall that indexing data structures sup-
port queries by using both verbatim input arrays and some additional information
stored along the inputs. Notice that if all the entries of the input arrays are distinct,
explicitly storing an input array takes Ω(n logn) bits. The goal is to reduce the addi-
tional space as much as possible, while supporting the queries fast. See Section 1.1.3
for more details about indexing data structures. On the contrary, encoding data struc-
tures must be able to support the queries without consulting the input array. The infor-
mation theoretic lower bound to represent the 1D-RMQ data structures is 2n−Θ(logn)
bits. This lower bound is derived from the fact that the Cartesian tree of an input array
can be constructed by answering some of the 1D-RMQs over the input array, and also
all the 1D-RMQs over the input array can be answered using the Cartesian tree of the
input array. Since the Cartesian tree is a binary tree, the logarithm of the Catalan num-
ber Cn = 1

n+1

(2n
n

)
as the number of binary trees containing n nodes, gives the lower

bound.
Sadakane [Sad07b] presented a 1D-RMQ encoding data structure that only

uses 4n+ o(n) bits of space while supporting the queries in O(1) time. Later, Fis-
cher and Heun [FH07] presented an indexing 1D-RMQ data structure of additional

1.2. Range Queries in Arrays 13

space 2n+o(n) bits that supports queries in O(1) time. Recently, Fischer [Fis10] im-
proved the size of the best 1D-RMQ encoding data structure to 2n+ o(n) bits, which
supports the queries in O(1) time. He introduced a new data structure named 2d-Min-
Heap instead of using the Cartesian tree.

1D-RMQ in the semigroup model The binary operation min(α,β) is a semigroup
operation that returns the minimum of α and β , without giving any information about
the position of the minimum. In the following, we illustrate how the 1D-RMQ problem
can be considered in the semigroup model.

First consider a related problem, the partial sums problem which has been consid-
ered extensively in the semigroup model. The partial sums problem asks to preprocess
an input array [x1, . . . ,xn] of real numbers and answer queries of the form qi, j = ∑

j
i xk.

The problem can be trivially solved using linear space with constant query time, by
storing the answer of all the prefix queries q1,i, and retrieving the answer of qi, j by
subtracting the answer of q1,i−1 from the answer of q1, j.

Yao [Yao82] considered the partial sums problem2 in a restricted model, where the
addition operation + is the only available operation of algorithms to operate on ele-
ments. He proved that any data structure stored in m memory cells, where m≥ n≥ 1,
requires to perform Θ(α(m,n)+ n

m−n+1) addition operations during the querying to
retrieve the answer of the queries. Yao proved that this lower bound also applies to
the partial sums problem in the semigroup model, where the elements xi are from a
semigroup, and the addition operation can be any semigroup operator.

Yao ignored the time needed to find the proper memory cells for answering the
queries [Yao82]. Thus, his upper bound does not apply to the RAM. Later, Chazelle
and Rosenberg [CR89] showed how to achieve such an upper bound in the RAM,
where the elements xi are from a semigroup. Since the minimum operation is a semi-
group operator, their data structure can trivially solve the version of the 1D-RMQ
problem, where the queries ask for the minimum element within the range instead of
the position of the minimum. Their data structure can also be used to solve the original
version of the 1D-RMQ problem as follows. In the input, replace each xi with (xi, i)
and use the following function as the semigroup operator:

f ((xi, i),(x j, j)) =
{

(xi, i) if xi ≤ x j

(x j, j) otherwise .

This gives a 1D-RMQ data structure of size O(n) that can answer the queries
in O(α(n)) time.

Multidimensional RMQ. In the d-dimensional RMQ problem, the input is an ar-
ray A[1 · · ·n1]× [1 · · ·n2]×·· ·× [1 · · ·nd] containing N = n1 ·n2 · · ·nd elements.

As previously described, Gabow, Bentley and Tarjan [GBT84] solved the 1D-RMQ
problem for an array of size n, in order to accomplish better bounds for several d-
dimensional geometric range searching problems including finding the point with
minimum weight in a given d-dimensional query rectangule. Their solution for d-
dimensional range searching problems can be used to solve the d-dimensional RMQ

2In his paper, this problem is named as “Interval Query” [Yao82].

14 Chapter 1. Introduction

Table 1.1: Results for the 1D-RMQ problem for an input array of n elements. The
parameter c is an integer, where 1 ≤ c ≤ n. The last three rows present results for
succinct indexing data structures, which are stored in addition to the input array. Our
results appear in boldface.

Reference Space Query Time
[GBT84, BGSV89, AGKR04]

O(n) O(1)[BFCP+05, FH06]
[Sad07b] 4n+o(n) bits O(1)
[Fis10] 2n+o(n) bits O(1)
[FH07] 2n+o(n) bits O(1)

Section 2.2.2 O(n/c) bits O(c)
Section 2.2.1 O(n/c) bits Ω(c)

problem for arrays, by transforming each element of the input array A to a point placed
in a cell of a d-dimensional grid in Rd . This gives a data structure that supports RMQs
in O(logd−1 N) query time with O(N logd−1 N) preprocessing time and space.

Chazelle and Rosenberg [CR89] in the semigroup model, considered the d-
dimensional partial-sum problem defined as follows3. Preprocess a d-dimensional
array A containing N elements from a semigroup, and then given a d-dimensional
rectangular range query, compute the sum of all the elements within the range. They
presented a data structure of size O(N) that works in the word RAM, and supports the
queries in O((α(N))d) time after spending O(N) preprocessing time. More precisely,
for O(M) preprocessing time and space, they achieve O((α(M,N))d) query time for
any M, where M ≥ 14dN. The term α(M,N) is the two-parameter inverse of Acker-
mann’s function (Section 1.5.5). Notice that minimum is a semigroup function, and
therefore their solution also solves the d-dimensional RMQ problem, and improves the
time and space bounds of the solution of [GBT84].

Amir, Fischer, and Lewenstein [AFL07] considered the two dimensional version
of the problem, the 2D-RMQ problem. They improved the query time O((α(N))2)
of [CR89] to O(1) time by spending more preprocessing time and space, specif-
ically O(N log(k+1) N) preprocessing time and O(kN) space, for any k > 1,
where log(k+1) N is the result of applying the function log for k+1 times on N.

For the 2D-RMQ problem that has an n by n input array, Demaine, Landau, and
Weimann [DLW09a] proved that any data structure that can support queries without ac-
cessing the input array at the querying stage, requires Ω(n2 logn) bits of space and pre-
processing time. This lower bound is derived by taking the logarithm of the number of
different input arrays with respect to 2D-RMQs, where two arrays are considered dif-
ferent only if there exists at least a 2D-RMQ with different answers in those two arrays.
They showed that the number of such different arrays is Ω((n

4 !)n/4). This lower bound
is extended in this thesis to Ω(mn logm) for m by n input arrays, where m≤ n (Sec-
tion 2.3.2).

Recently, Atallah and Yuan [AY10] achieved O(N) preprocessing time and space
while supporting d-dimensional RMQs in O(1) time.

3The upper bound result of this paper did not appear in the journal version [CR91]

1.2. Range Queries in Arrays 15

Table 1.2: Results for the 2D-RMQ problem for an m by n input array containing N
elements, where m ≤ n. The parameter c is an integer, where 1 ≤ c ≤ N. The lower
bound of [DLW09a] is for an n by n input array. The last three rows present results for
succinct indexing data structures, which are stored in addition to the input array. Our
results appear in boldface.

Reference Preprocessing time Space Query time
[GBT84] O(N logN) O(N logN) O(logN)

[CR89] O(N) O(N) O((α(N))2)

[AFL07] O(N log(k+1) N) O(kN) O(1)
[AY10] O(N) O(N) O(1)

[DLW09a] - Ω(n2 logn) bits -
Section 2.3.1 O(N) O(mn ·min{m, logn}) bits O(1)
Section 2.3.2 - Ω(mn logm) bits -
Section 2.2.3 O(N) O(N) bits O(1)
Section 2.2.4 O(N) O(N/c) bits O(c log2 c)
Section 2.2.1 - O(N/c) bits Ω(c)

Table 1.3: Results for the d-dimensional RMQ problem for an input array containing N
elements. The parameter c is an integer, where 1≤ c≤N. The last row presents a lower
bound for succinct indexing data structures, which are stored in addition to the input
array. Our results appear in boldface.

Reference Preprocessing time Space Query time
[GBT84] O(N logd−1 N) O(N logd−1 N) O(logd−1 N)

[CR89] O(N) O(N) O((α(N))d)

[AY10] O(N) O(N) O(1)
Section 2.2.1 - O(N/c) bits Ω(c)

Dynamic RMQ structures. The dynamic 1D-RMQ problem asks for dynamic data
structures that support 1D-RMQs under updating the elements of the input arrays at
arbitrary positions. In the following, we mention known lower bounds for this prob-
lem. Let tu be the time to update an entry of the array using a dynamic 1D-RMQ data
structure.

It can be proved that on a cell probe model with word size b bits, 1D-RMQs
on an array of size n require Ω(logn/ log(tub logn)) time. For example, the update
time (logn)O(1) implies query time Ω(logn/ log logn). This lower bound is derived
by reduction from the priority search trees problem defined as follows. We have
to maintain a set S ⊆ {1, . . . ,n} under insertions and deletions where we assign a
weight from {1, . . . ,n} to each element by the insertions, and a query for a given ele-
ment e ∈ {1, . . . ,n}, asks for the lowest weight among all the weights whose elements
are in S and are not larger than e.

The priority search trees problem can be solved using a dynamic 1D-RMQ struc-
ture as follows. Represent the set S with an array A[1 · · ·n] initially containing +∞

in all the entries. To insert an element e with weight w into S, perform A[e] = w,

16 Chapter 1. Introduction

and to delete an element e from S, perform A[e] = +∞. A query for a given ele-
ment e can be answered by the 1D-RMQ for the range A[1 · · ·e]. The above mentioned
lower bound was proved for the priority search trees problem by Alstrup, Husfeldt, and
Rauhe [AHR98, Section 2.2], which then holds for the dynamic 1D-RMQ problem as
well.

Brodal, Chaudhuri, and Radhakrishnan [BCR96] considered the problem of main-
taining the minimum of a set under insertions and deletions. They proved a lower
bound in the comparison model, for a slightly more difficult version of the problem in
which the delete operation is provided with the location of the element that is going to
be deleted. It is obvious that a dynamic 1D-RMQ structure can also solve this problem
by showing almost the same reduction used above for the priority search trees prob-
lem. Thus, the following lower bound is derived by applying the lower bound proved
in [BCR96] for the minimum maintenance problem. The lower bound implies that if
updates perform at most tu comparisons then 1D-RMQs require at least n/(e22tu)− 1
comparisons. For example, if 1D-RMQs use (logn)O(1) comparisons then updates
require Ω(logn) comparisons.

Consider a version of the 1D-RMQ problem in which queries ask for the min-
imum element within a given range, instead of asking for the position of the min-
imum. The partial sums problem in the semigroup model is a generalization of
this version of the 1D-RMQ problem. For the dynamic version of the partial sums
problem in the semigroup model, Pǎtraşcu and Demaine [PD06] proved the lower
bounds tq log(tu/tq) = Ω(logn) and tu log(tq/tu) = Ω(logn), where tq and tu denote
the query time and update time respectively. For example, the update time O(logn)
implies the query time Ω(logn) and vice versa.

In Section 1.3.1, we will consider a generalized version of the dynamic 1D-RMQ
problem, denoted as the dynamic path minima problem. Not only the above lower
bounds hold for the path minima problem in the corresponding models, but also the up-
per bounds for the path minima problem hold for the dynamic 1D-RMQ problem. One
of the results of this thesis is achieving optimal upper bounds for the dynamic 1D-RMQ
problem through solving the path minima problem.

Another version of the dynamic 1D-RMQ problem is when we want to maintain
a 1D-RMQ data structure under insertions and deletions of elements at arbitrary posi-
tions in the input array. As far as we know, there is no specific result for this problem.
Recall that the standard data structure to solve the 1D-RMQ problem is a Cartesian
tree with an LCA structure constructed for it. Bialynicka-Birula and Grossi [BBG06]
showed how to maintain a Cartesian tree under insertions and deletions performed
in O(logn) amortized time. Each update operation changes the topology of the Carte-
sian tree drastically, and this becomes an obstacle in maintaining the LCA structure
under such changes in the tree, although it is known that we can maintain a constant-
query time LCA structure under insertions and deletions of nodes performed in O(1)
time [CH05]. Notice that maintaining the input array of the 1D-RMQ problem ex-
plicitly under insertions and deletions, which shift the entries appropriately, is not
interesting due to the difficulty of the list representation problem [FS89].

Our contributions. We list our results for the RMQ problem that are presented in
Chapter 2. We investigate the problem in terms of both indexing data structures and

1.2. Range Queries in Arrays 17

Table 1.4: Results for the dynamic 1D-RMQ problem. Upper bounds are shown at the
top, and lower bounds are shown at the bottom. The lower bounds should be read like
a conditional sentence, for example, the result from [BCR96] states that if the query
time is logO(1) n, the update time Ω(logn) is required. Our results appear in boldface.

Ref.
Preprocessing Query

Space
Update

Modeltime time time
[ST83] O(n) O(logn) O(n) O(logn) Semigroup

Section 2.4 O(n) O(logn
log logn) O(n) O(logn) Comparison

Section 2.4 O(n) O(logn
log logn) O(n) O(logn

log logn) RAM

[PD06] - Ω(logn) - O(logn) Semigroup
[BCR96] - logO(1) n - Ω(logn) Comparison
[AHR98] - Ω(logn

log logn) - logO(1) n RAM

encoding data structures.

• An optimal time-space trade-off for 1D-RMQ indexing data structures (Sec-
tions 2.2.1 and 2.2.2): for an input array containing n elements, we show that
using an indexing data structure of size O(n/c) bits, the query time Θ(c) is the
best and sufficient, for any c where 1≤ c≤ n.

• The first O(N)-bit space 2D-RMQ indexing data structure with constant query
time, for an input array containing N elements (Section 2.2.3).

• The first time-space trade-off for 2D-RMQ indexing data structures in terms of
both lower bounds and upper bounds (Sections 2.2.1 and 2.2.4): for an input
array containing N elements, we prove that with an indexing data structure of
size O(N/c) bits, Ω(c) query time is the best possible, while our structure sup-
ports the queries in O(c log2 c) time, for any c where 1≤ c≤ n.

• An information-theoretic lower bound for the 2D-RMQ problem, and a con-
stant query time encoding 2D-RMQ data structure that leaves a gap for the
space bound of such structures (Section 2.3): the gap is proved to be be-
tween Ω(mn logm) and O(mn logn) bits, for m by n input arrays.

• The first time-space trade-off for multidimensional RMQ indexing data struc-
tures in terms of lower bounds (Section 2.2.1): generalizing the proof of the
lower bound for the 2D-RMQ problem, for an input array containing N ele-
ments, we prove that with an indexing data structure of size O(N/c) bits, Ω(c)
query time is the best possible.

For the indexing data structures, we prove the lower bounds in a non-uniform cell
probe model, and we achieve the upper bounds using partitioning and tabulation tech-
niques. For the encoding data structures, the lower bound for the 2D-RMQ problem

18 Chapter 1. Introduction

is derived by a counting argument, and the upper bound is given by encoding the in-
put arrays with the rank of the elements in the arrays and making an indexing data
structure for it.

1.3 Range Queries in Trees

In this section, we consider the range query problems in trees. A range query q= (u,v)
asks a question about all the nodes along the path (u, . . . ,v) between the nodes u and v
of T . Notice that in every tree, there is exactly one path between every two nodes. A
version of the problem is when the input tree is a rooted tree. This opens the door to
queries dependent on the hierarchical structure of the input tree such as LCA queries.

A simple range query may ask for the number of nodes along the query path. But
in a common generalization of the range query problem in trees, each edge of T is
assigned a weight, where the weight can be a number or a character from a universe.
In this case, queries ask to compute a function of the weights whose corresponding
edges are within the query range. Notice that the weights can be assigned to the nodes
instead of the edges, but this does not make the problem very different. Similar to
the range query problem for arrays, the function to be computed for weights can be
an arithmetic-based function such as sum, a comparison-based function such as mini-
mum, or a equality-based function such as counting the number of distinct weights.

The range query problem for trees is a generalization of the range query problem
for one dimensional arrays. This comes from the fact that if a tree is one path that
contains all the nodes of the tree, then the tree can be seen as a one dimensional array
that contains the edge-weights. This is particularly interesting from the lower bound
point of view, where we prove the hardness of the range query problem for trees.
Because this generalization implies that the range query problem for trees is at least as
hard as the range query problem for one dimensional arrays.

Similar to the range query problem for arrays, the brute force search and the tab-
ulation method are two naive solutions for the range query problem for trees. In the
following, we explain these two solutions for an input tree containing n nodes and a
range query q = (u,v).

• Brute force search: Do not need to store anything during preprocessing T . To
answer the query q, traverse the tree starting from u and ending at v. While
scanning the path (u, . . . ,v), compute the answer of q. This solution is not fast
in terms of the query time. In particular, it takes at least O(n) query time to
just access the nodes within the range, in the worst case. Although it essentially
does not use any space to store a data structure. The space usage of the solution
is O(n) to store the input tree explicitly using pointers.

• Tabulation: During preprocessing of T , compute the answer of every possible
query and arrange all the answers in a table (which is a two dimensional array).
Answer the query q by looking up the table at the position corresponding to q.
The size of the table is in the order of the total number of queries, which is as
large as O(n2). A naive preprocessing algorithm takes Θ(n3) time to make the
table by just traversing the tree to compute the answer of each query. Though, a
reasonable query algorithm only takes O(1) time to determine the answer from

1.3. Range Queries in Trees 19

the table. Notice that a query algorithm does not need to traverse T or access any
node in T . Therefore, in this solution, the tree is not stored in the data structure.

1.3.1 Path Minima Queries

The path minima problem is to preprocess an input tree in which each edge is assigned
a weight from a totally ordered set, such that we can find the edge with minimum
weight along a given query path. This query is denoted as pathmin4. Another type of
query is when we have to find the minimum weight instead of finding the edge with
minimum weight in a given path. This type of queries can be answered by first finding
the answer of the corresponding path minima queries, and then returning the weight
associated to the found edge. Therefore, if we have access to the edge-weights of the
input trees, this type of queries is at least simpler the path minima queries.

Offline setting. In the offline setting of the path minima problem, m queries are
given in advance together with a tree of size n. This problem is a generalization of the
minimum spanning tree verification problem. In the comparison model, the problem
can be solved in O(m+n) time using O(n) space [Kin97]. See [Tar78, Kom85, CR91,
DRT92] for other results on the static offline version in different models.

Online setting. Chazelle [Cha87] considered the online version of the path minima
problem. For input trees containing n nodes, when the edge-weights are from a semi-
group, he solved the problem with O(α(n)) query time, and O(n) preprocessing time
and space (see Section 1.5.5 for the definition of α(n) and its other variants). Later,
in an attempt at giving a trade-off between the preprocessing time and the query time,
Alon and Shieber showed that with O(nkαk(n)) preprocessing time and O(n) space,
a query can be answered in 4k− 1 semigroup operations [AS87]. In the compari-
son model, where the only operations allowed on the edge-weigths are comparisons,
Pettie [Pet06] achieved a slight decrease in the preprocessing time O(nk logαk(n))
with 4k−1 query complexity.

The problem has also the following known lower bounds which imply that the
above upper bounds are almost optimal. Alon and Shieber [AS87] proved that to
answer the queries using 4k−1 semigroup operations, Ω(nα2k(n)) preprocessing time
is required. Notice that α2k(n) = o(αk(n)) for k > 1 (Section 1.5.5). Pettie [Pet06]
proved a slightly higher lower bound in the comparison model, which improves the
lower bound of [AS87] but yet leaves a small gap in both the comparison model and
the semigroup model. He defines a function λk, where αk(n) < λ2k−1(n) < αk−1(n),
for k ≥ 1 as n grows. He states that for k query time, Ω(n logλkn) preprocessing time
is required. When only O(n) preprocessing time is allowed, an Ω(α(n)) query lower
bound is known in both models [AS87, Pet06].

The above lower bounds give trade-offs between the preprocessing time and the
query time of the data structures. But also limiting the space of the data structures
gives lower bounds for the query time. As mentioned in Section 1.2.1, a special case
of the path minima problem is the 1D-RMQ problem. Indeed, the 1D-RMQ problem
for an input array can be solved by solving the path minima problem for an input tree

4In [DLW09a], the path minima problem is named “Bottleneck Edge Query problem” (BEQ).

20 Chapter 1. Introduction

Table 1.5: Results for the static version of the path minima problem in both the offline
and online settings. The lower bounds should be read like a conditional sentence, for
example, the result from [Pet06] states that if the preprocessing time is O(n), the query
time Ω(α(n)) is required. The size of the input tree is denoted by n, and k and c are
arbitrary parameters, where 1≤ k ≤ α(n) and 1≤ c≤ n. In the last row of the table, t
denotes the number of bits required to explicitely store the input tree. Note that the
semigroup lower bounds of [CR91, AS87] are in stronger models.

Ref. Time Space Model

Offline for m queries
[Kom85] O(m+n) comparisons − Comparison
[Kin97] O(m+n) O(n) Comparison
[DRT92] O(m+n) O(n) RAM
[Tar78] Ω((m+n) ·α(m+n,n)) − Semigroup
[CR91] Ω((m+n) ·α(m+n,n)) − Faithful Semigroup

Ref.
Preprocessing Query

Space Modeltime time

Online
[Cha87] O(n) O(α(n)) O(n) Semigroup
[AS87] O(n · k ·αk(n)) 4k−1 O(n · k ·αk(n)) Semigroup

[DLW09a] O(n log(k) n) 4(k−1) O(n) Comparison
[Yao82] − Ω(α(n)) O(n) Semigroup
[AS87] Ω(n ·α2k(n)) 4k−1 - Commutative Semigroup
[AS87] Ω(n) O(α(n)) - Commutative Semigroup
[Pet06] Ω(n) O(α(n)) - Comparison
[Pet06] Ω(n logλkn) k - Comparison

[BDR11a] - Ω(c) O(n/c)+ t bits RAM

that is a path and has the entries of the array as its edge-weights in the appropriate order.
Thus, the following two lower bounds hold for the path minima problem by reduction
from the 1D-RMQ problem: (1) When the edge-weights are from a semigroup, every
path minima data structure of size O(n), requires Ω(α(n)) query time [Yao82]; (2) In
the cell probe model, every indexing data structure of size O(n/c) bits that solves the
path minima problem, requires Ω(c) query time [BDR11a] (notice that for the latter
lower bound and generally for indexing data structures, we assume that inputs, here
the trees including their edge-weights, are given in a read-only array).

As mentioned in Section 1.2.1, Cartesian trees are a standard data structure to solve
the 1D-RMQ problem. Interestingly, Cartesian trees can be used to solve the path min-
ima problem as well. However, while it is known that in the comparison model, linear
time is enough to construct a Cartesian tree of an array using an incremental fash-
ion [GBT84], but Ω(n logn) comparisons are required to construct a Cartesian tree of a

1.3. Range Queries in Trees 21

tree containing n nodes. This lower bound is derived from a reduction from the sorting
problem to making a Cartesian tree of a star-tree containing n nodes [DLW09a]. It is
known that for an input tree containing n nodes in the comparison model, O(n log(k) n)
preprocessing time is sufficient to answer the path minima queries in at most 4(k−1)
comparisons, for k ≥ 1, where log(k) n is the k-th iterated version of the logarithm
function [BMN+04, DLW09a]. Notice that this upper bound is worse than the one
of [Pet06] but it is achieved by a simpler algorithm.

Dynamic weighted trees. The dynamic version of the path minima problem can be
defined by providing some update operations performed on the input tree. We may be
interested in updating the edge-weights of the tree, and/or interested in updating the
topology of the input tree. In the latter case, we can think of insertions and deletions
of nodes in the input tree, or in a more general setting, we are given a collection of
trees (a forest) as the input and we can update this forest by linking and cutting the
trees, or making new trees. In the following, we define a set of update operations such
that providing various subsets of them defines different variants of the dynamic path
minima problem.

• update(e,w): change the weight of the edge e to w.

• insert(e,v,w): split the edge e = (u1,u2) by inserting the node v along it. The
new edge (u1,v) has weight w, and (u2,v) has the old weight of e.

• insert-leaf(u,v,w): add the node v and the edge (u,v) with weight w.

• contract(e): delete the edge e = (u,v), and contract u and v to one node.

• delete-leaf(v): delete both the leaf v and the edge incident to it.

• link(u,v,w): add the edge (u,v) with weight w to the forest, where u and v are in
two different trees.

• cut(e): delete the edge e from the forest.

Notice that to use the operations link and cut, we should also provide an operation
that can make new trees, for example one that can make a new single-node-tree that
contains a given new node. Different variants of the dynamic path minima problem
have been considered in the literature, where none of them consider the operation
update, although link and cut together can update an edge-weight. In the following,
we mention these variants.

In their seminal paper, Sleator and Tarjan [ST83] solved the most general version
of the dynamic path minima problem, in which all the above update operations are
provided. They presented a data structure denoted as dynamic trees or link-cut trees.
When the edge-weights are from a semigroup, their data structure supports many oper-
ations including link, cut, root and evert all in O(logn) amortized time. The operation
root finds the root of the tree containing a given node, and evert changes the root of
the tree containing a given node such that the node becomes the root, by turning the
tree “inside out”. This data structure can solve all the variants of the path minima
problem, however it does this through supporting the expensive operations root and

22 Chapter 1. Introduction

Table 1.6: Results for the dynamic path minima problem. The table is divided into four
parts corresponding to four variants of the problem according to the supported update
operations that are mentioned at the top of each part. For the first two parts, the input is
a tree containing n nodes. For the last two parts, the input is a collection of trees totally
containing n nodes. The lower bounds should be read like a conditional sentence. For
example, the last row of the table states that if the query time is O(logn/(log logn)2),
then (logn)Ω(log logn) update time is required. For the first row of the table, k is an
arbitrary parameter, where 1 ≤ k ≤ α(n). For the results of [DLW09a], u denotes the
size of the universe from which the edge-weights are. Our results appear in boldface.

Reference
Preprocessing Query

Space
Update

Modeltime time time

update operations: insert-leaf, delete-leaf

Section 3.3 O(nkαk(n)) 4k O(nkαk(n)) O(kαk(n)) Semigroup
Section 3.3 O(n) O(α(n)) O(n) O(1) Semigroup
[DLW09a] O(n logn) O(1) O(n) O(logn) Comparison
[DLW09a] O(n logn) O(1) O(n) O(log logu) RAM

[AH00, KS08], Section 3.3 O(n) O(1) O(n) O(1) RAM

update operations: update, insert, insert-leaf, contract

Section 3.2 O(n) O(logn
log logn) O(n) O(logn) Comparison

Section 3.2 O(n) O(logn
log logn) O(n) O(logn

log logn) RAM

[PD06] - Ω(logn) - O(logn) Semigroup
[PD06] - O(logn) - Ω(logn) Semigroup

[BCR96] - logO(1) n - Ω(logn) Comparison
[AHR98, Section 2.2] - Ω(logn

log logn) - logO(1) n RAM

update operations: link

[AH00, KS08] O(n) O(α(n)) O(n) O(1) RAM

update operations: link, cut

[ST83, Section 5] O(n) O(logn) O(n) O(logn) Semigroup
Section 3.4 − Ω(logn) − O(logn) Cell Probe
Section 3.4 − Ω(logn

log logn) − (logn)O(1) Cell Probe

Section 3.4 − O(logn
log logn) − Ω(log1+ε n) Cell Probe

Section 3.4 − O(logn
(log logn)2) − (logn)Ω(log logn) Cell Probe

evert, where it might not be necessary. The difficulty of these two operations will be
described in Section 3.4.

Another variant of the dynamic path minima problem is denoted as incremental
trees, in which the input is a forest and the only available update operation is link. In the
offline setting, where a sequence of m queries and updates are given in advance, Tar-
jan [Tar79a, Section 6] solved the incremental trees problem under the following two
restrictions: (1) the input contains rooted trees, thus link adds an edge between a root
and a node in two different trees; (2) each query path is between a node and the root of
the tree containing that node. Tarjan solved this problem in O((m+n) ·α(m+n,n))
time using O(m+n) space in the semigroup model. If only the sequence of updates is

1.4. Geometric Range Aggregate Queries 23

known in advance and not the queries, for rooted trees and the same restricted type of
queries, every operation can be performed in O(1) time in the RAM model [Har85].

Alstrup and Holm [AH00] considered the incremental trees problem in the on-
line setting for rooted trees. They achieved O(α(n)) query time for arbitrary queries,
and O(1) amortized update time using O(n) space in the RAM model. Kaplan and
Shafrir extended this result to unrooted trees [KS08] within the same complexities.

Another variant of the path minima problem is when only the update operations
insert-leaf and delete-leaf are provided. Alstrup and Holm [AH00] also presented a
linear space data structure that solves this version of the problem with O(1) query
and update time in the RAM model (see also [KS08, DLW09a]). In the compari-
son model, O(1) query time and O(logn) amortized update time with O(n) space is
achieved via maintaining the Cartesian tree of the input tree by using dynamic trees of
Sleator and Tarjan [DLW09a].

Our contributions. We itemize our contributions to the dynamic path minima prob-
lem. We study three different variants of the problem, and for each one we obtain the
following results.

• Optimal query time data structures that support updating the edge-weights (Sec-
tion 3.2): For an input tree containing n nodes, we show that the query
time Θ(logn/ log logn) can be achieved if we want to update the edge-weights
in Θ(logn) comparisons or O(logn/ log logn) RAM operations. Moreover our
data structures support the operations insert, insert-leaf, contract, delete-leaf
with the same update time.

• An optimal query time data structure that supports insertions and deletions of
leaves (Section 3.3): For an input tree containing n nodes, we show that the
path minima queries can be answered with at most 4k− 1 comparisons under
insertions and deletions of leaves with O(kαk(n)) amortized comparisons. This
result also holds in the semigroup model. In the word RAM model, we present
another approach to achieve O(1) query/update amortized time for this problem.

• Lower bounds for query-update trade-offs (Section 3.4): We prove two lower
bounds for the query-update trade-offs of the dynamic path minima problem
when the update operations are link and cut. These lower bounds are derived
by reductions. The difficulty of maintaining an input tree under updating the
edge-weights for path minima queries is also shown by a reduction from the
dynamic 1D-RMQ problem.

1.4 Geometric Range Aggregate Queries

In range aggregate query problems for geometric objects, the goal is to preprocess
a set of geometric objects, and compute a certain aggregation function that operates
on the objects within a query range. Aggregation function are either geometric or
non-geometric. For example, for a given set of line segments, queries ask for the num-
ber of intersection points of all the segments that are contained within a given range.
Non-geometric aggregation functions can be defined when, for example, weights are

24 Chapter 1. Introduction

Figure 1.2: The answer to a range diameter query is a pair of points that are farthest
away in a given orthogonal range.

associated to input objects. Then aggregation functions, such as minimum or median,
operate on the weights of the objects that are within a query range.

A standard technique to solve range aggregate query problems is given an input,
divide the input into disjoint partitions, aggregate each part separately and then com-
pute the final result by further aggregation of the partial results. This technique can
answer aggregation functions like count and maximum, but cannot support functions
like median, which cannot be computed by aggregating partial results5 [Gup05]. In
this section, we consider the geometric aggregation function diameter which has sim-
ilar difficulties like median.

1.4.1 Range Diameter Queries

In this section, we consider the two dimensional range diameter problem defined as
follows. The goal is to preprocess a set of n points from R2, such that we can efficiently
find the two furthest points within an orthogonal range query (Figure 1.2). We mainly
focus on the space efficiency of data structures and not their construction time. In
the following, we first describe a simple solution to the range diameter problem using
tabulation, and then we mention the known results on the problem.

The problem can be naively solved by tabulating the answer of all possible queries,
in rank space where each point is placed in a cell of an n by n grid according to the
rank of each of its coordinates. This technique gives O(logn) query time using O(n4)
space as follows. Consider the point set in rank space. Each orthogonal range query
is defined by two corners of the range. Thus, the total number of queries is O(n4).
Compute the answer of each query offline by looking at the original point set (not in
rank space), and store all the answers in a table in some canonical order. The size
of this table is O(n4) and it can be built in O(n6) time naively or in O(n5 logn) time
using diameter algorithms running in Θ(n logn) time for a point set of size n [PS91].
The furthest points within each orthogonal range query can be found by first doing a

5These types of functions are denoted as holistic functions in [Gup05].

1.4. Geometric Range Aggregate Queries 25

predecessor search in rank space in O(logn) time to find the borders of the range, and
then looking the answer up in the table in O(1) time.

Gupta, Janardan, Kumar, and Smid [JGKS08] mentioned that standard geometric
range searching structures can be used to decrease the space from O(n4) to O(n2 logn)
while answering queries in O(log4 n) time. This can be achieved as follows. Construct
a two-level range tree structure for the point set [dBCvK08]. For each node u in the
secondary structure (for Y -coordinates) of the range tree, let Su be the set of points
in the subtree of u. During the preprocessing, for every pair of nodes u and v in the
secondary structure, store the two furthest points of Su∪Sv in a table. The size of the
table is O(n2 logn). The range tree partitions every orthogonal query into O(log2 n)
subqueries that each corresponds with a node in the secondary structure of the range
tree. To answer a query, consider every pair of subqueries of the query. For every pair
of subqueries, find the furthest points by looking up in the table in O(1) time. Thus,
the query time of the data structure is O(log4 n) derived from the number of pairs of
the subqueries, and the space usage is O(n2 logn).

Gupta, Janardan, Kumar, and Smid [JGKS08] also improved the above solution by
giving a time-space trade-off for the problem. They presented a data structure that sup-
ports queries in O(k log5 n) time using O((n+(n/k)2) log2 n) space, for a parameter k
where 1≤ k ≤ n. To achieve this result, they utilized furthest-point Voronoi diagrams
and point location structures [Kir83]. A furthest-point Voronoi diagram of a point set P
of size n partitions the plane into at most n parts, where each part corresponds to one
point in P. A part D corresponding to a point p has the property that every point in R2

which is also in D has p as the furthest point among all the points in P.
In the following, we describe the data structure of [JGKS08] that achieves the men-

tioned trade-off. This data structure is similar to the first data structure of [JGKS08]
using range trees that was described above. Following the preprocessing algorithm of
the first data structure, for every pair of nodes u and v in the secondary structure, store
the two furthest points of Su∪Sv in a table, only if the size of both Su and Sv is at least k,
where k is a parameter. For every node u in the secondary structure of the range tree,
construct the furthest-point Voronoi diagram of Su along with a point location structure
for its subdivision. To answer a query, consider every pair of subqueries of the query.
For every pair of subqueries, if both of them have at least k points, find the furthest
points by looking up the table in O(1) time. If at least one of Su and Sv has less than k
points, say Su, then for each point p in Su, search for the furthest point to p in Sv using
the furthest-point Voronoi diagram constructed for Sv in O(k logn) time. Thus, the
query time of the data structure is O(k log5 n) derived from the number of pairs of the
subqueries. The size of the table is O((n/k)2 log2 n), and the space used to store all the
furthest-point Voronoi diagrams and point location structures is O(n log2 n).

Our contributions. We make a step forward to show the difficulty of range diameter
queries. We demonstrate relations between the range diameter query problem and
fundamental data structure problems suggesting lower bounds for the space usage.
We also describe that we can overcome the difficulty of range diameter queries under
assumptions for input point sets. Our results are as follows:

• Relation to the set intersection problem (Section 4.2): We prove that supporting
range diameter queries for a point set in the plane is as hard as verifying the

26 Chapter 1. Introduction

disjointness of two sets among a given collection of sets. The latter problem is
conjectured to have quadratic space complexity for constant query time. Assum-
ing the conjecture in a stronger model, our reduction suggests the same lower
bound for range diameter queries.

• A lower bound for computing the furthest points in two vertically-separated con-
vex polygons (Section 4.3): We prove that for any independent representation
of two given convex polygons that are vertically separated, any algorithm needs
nearly linear time in the number of vertices of the smallest polygon. This lower
bound is derived by a reduction from the asymmetric set disjointness in commu-
nication complexity.

• Supporting range diameter queries in logarithmic time (Section 4.4): We show
that for input convex polygons of size n, O(logn) query time can be obtained
using only O(n + m logm) space, where m is the total modality of a convex
polygon defined as the sum over all vertices of the number of local maxima in
the sequence of distances from each vertex to the other vertices.

1.5 Preliminaries

In this section, we present definitions, algorithms, and data structures that are used in
other parts of the dissertation.

1.5.1 Computational Models

Range queries can be considered in different computational models depending on the
various constraints that can be defined on the input data elements, memory access
methods, and the primitive operations of the machine running the algorithms.

Real RAM. In computational geometry, the standard model of computation is the
real RAM [PS85], where the input values (for example, the coordinates of points)
are unbounded real numbers, and the arithmetic operations (+, −, ×, /), compar-
isons, k-th root, trigonometric functions, exponential function (that is, ex), and the
logarithm function are available. In the real RAM, the real numbers are stored in a
randomly accessible memory. The geometric range query problems such as the range
diameter problem, are usually defined in this model.

Pointer machine. A more restrictive model denoted as the pointer machine model
was proposed by Tarjan [Tar79b] to understand the inherent power of pointer manip-
ulation in terms of considering lower bounds for the complexity of list processing
problems. In this model, any kind of memory address calculation is forbidden, and
data is accessed by following pointers. Chazelle [Cha88] considered variants of this
model to solve a number of problems in multidimensional range searching. Most of
the range searching data structures can be described in this model [AE99].

1.5. Preliminaries 27

Word RAM. Apart from restricting the memory access methods, we can restrict
the data elements to make them more realistic. Instead of working with unbounded
real numbers in the real RAM, we can assume that the data elements are integers, or
even more constrained, any number or symbol that can be represented in a memory
cell of size w bits. The latter one suggests the realistic word RAM model in which data
elements are integers or floats and can be represented in a machine word. In this model,
the operations are standard RAM operations (with or without bitwise operations), and
memory cells can be accessed randomly.

The geometric range query problems can be considered in this model. For example
the input can be a set of points, where their coordinates are integers of size w bits. The
word size of the model usually changes with the problem size. For example, if n is the
number of points in the input point set, we assume that w≥ logn or w = O(logn) bits.

The word RAM is the typical model used to study the range query problem on
arrays. In this model, each element of an array is stored in a memory word of size w
bits. The elements of the array can be restricted depending on the application. For
example, each element can be a member of a totally ordered set of size at most 2w.
In this case, only the comparison operations can be performed on the elements. In a
less constrained model, the input elements of the array can be numbers (w-bit inte-
gers or floating points), and any of the arithmetic operations, comparisons or bit-wise
operations may be allowed.

Comparison-based model. Although the advanced operations of the word RAM
model make it realistic and practical, but we are also interested to consider models
that are simple and clean. An example is the comparison-based model. In this model,
the data elements are from a partially or totally ordered set, and only comparisons
are allowed to be performed on the data elements. Comparison-based algorithms can
utilize the power of the pointer machine or RAM to find the memory cells. Standard
sorting algorithms such as quick sort are examples of comparison-based algorithms.

Decision tree model. A fundamental model from a theoretical perspective, which
is intellectually attractive [Hag98], is the decision tree model that is used to prove
lower bounds for the complexity of the number of comparisons to solve computational
problems (for example, sorting [AHU87]). In this model, the nodes of a decision tree
describe the branching operations (comparisons) performed by an algorithm, and each
leaf of the tree determines an output of the algorithm.

Semigroup model. Lueker [Lue78] speculated that the decision tree model cannot
demonstrate the difficulty of the multidimensional orthogonal range queries, and an-
other computational model should be considered to prove good lower bounds for such
a problem. Then, Fredman [Fre81] proposed the semigroup model in which he proved
a lower bound for the mentioned problem. A semigroup is a set of elements together
with an associative binary operation, for example, the elements could be numbers and
the operations be +, ∗, or the minimum of two numbers. The range query problem for
input arrays can be studied in the semigroup model. In this case, we assume that the
elements of the input arrays are from a semigroup, and every algorithm is only allowed
to use the semigroup operation on the elements of the array. Indeed, the algorithm is

28 Chapter 1. Introduction

oblivious to the actual semigroup operation that might be used, but it should give the
correct output for all of the semigroup operations.

Cell probe model. Another model that is used to prove strong lower bounds for
computational problems is the cell problem model. In this model, computation is free,
and we only pay for accessing memory (reads or writes). More precisely, we store
data structures in memory cells of size w bits, which is a parameter of the model. The
query time is counted as the number of cells probed by a query algorithm. The model
allows memory reads or writes to depend arbitrarily on past cell probes. The model is
non-uniform, that is, for different values of input parameter n, we can have different
algorithms.

1.5.2 Cartesian Trees

Vuillemin [Vui80] introduced Cartesian trees in the context of average time analysis
of searching. Let A be an array containing n elements from a totally ordered set. The
Cartesian tree of A is a binary tree with nodes labeled by the indexes of A. The root
has label i, where A[i] is the minimum element in A. The left subtree of the root
is a Cartesian tree for the subarray A[1 · · · i− 1], and the right subtree of the root is
a Cartesian tree for the subarray A[i+ 1 · · ·n]. This inductive definition implies that
the answer to any range minimum query q = (i, j) in A, is the label of the lowest
common ancestor (LCA) of the nodes labelled by i and j. Vuillemin also showed how
to construct a Cartesian tree in linear time [Vui80].

Now we consider the Cartesian tree of a tree. Let T be a tree (not necessarily
binary or rooted) containing n nodes and each edge of T is assigned a weight from a
totally ordered set. The Cartesian tree of T is a binary tree, where its root corresponds
to the edge e of T with minimum weight, and the two children of the root correspond
to the Cartesian trees of the two components made by deleting e from T [Vui80].
The internal nodes of the Cartesian tree are the edges of T , and the leaves of the
Cartesian tree are the nodes of T . This definition implies that the answer to any path
minima query between two nodes u and v in T , is determined by the LCA of the leaves
corresponding to u and v in the Cartesian tree (Figure 1.3) [DLW09a].

It has been proved that an O(n) space data structure to maintain the Cartesian tree
of a tree with n nodes, can be constructed in O(n logn) time and comparisons to support
path minima queries in O(1) time ([Net99, Section 3.3.2], [BMN+04, Section 2],
and [DLW09a, Theorem 2]). Since the construction of the Cartesian tree of a star
tree (that is, a tree where one node is adjacent to all remaining nodes) corresponds
to sorting the edges, it follows that an explicit construction of a Cartesian tree will
require Ω(n logn) comparisons [DLW09a].

Maintaining Cartesian trees under inserting leaves. The above discussion ex-
plains how to support path minima queries in a static tree, using the Cartesian tree
of the tree. When the tree is dynamic, in the sense that we can insert and delete new
leaves in the tree, maintaining the Cartesian tree of the tree under these update oper-
ations is of interest. Indeed, the path minima problem for dynamic weighted trees in
different computational models is one of the subjects of this dissertations (see Sec-
tions 1.3.1 and 3.3 for further details).

1.5. Preliminaries 29

15

3

9 14

7

128

13 10
C

D

E

G

F

B

J

A

I

H

15

D F GI

10

9

14

12

B

7

CA

13

3

8

E H

J

Figure 1.3: A tree T (left) and the Cartesian tree of T (right). Inserting the new leaf J
as a neighbor of F with an edge of weight 8 in T causes 8 to be inserted as a node in
the Cartesian tree on the path from F to the the root such that heap order is preserved.

Here, we describe an algorithm presented in [DLW09b] that maintains the Carte-
sian tree of a tree T under inserting new leaves into T . In particular, they show how
to maintain a Cartesian tree of T containing n nodes under insertion of a new leaf in T
in O(logn) worst case time (Figure 1.4). Recall that every edge of T is an internal node
in the Cartesian tree, and every node (including leaves) of T is a leaf in the Cartesian
tree. Let ` be a new leaf which we want to insert into T as a new child of v. Therefore, v
is a leaf and the edge e = (`,v) is a new node in the Cartesian tree. In the Cartesian
tree, the edge e should be inserted in the path from v to the root such that the weights
along the path remain heap ordered, and ` becomes a child of e. Hence, the problem is
reduced to finding the appropriate location to insert e into the Cartesian tree.

Demaine, Landau, and Weimann [DLW09b] showed how to use the link-cut trees
of Sleator and Tarjan [ST83] to partition a Cartesian tree into disjoint paths such that e
can be located and inserted in the Cartesian tree by using a constant number of query,
link, and cut operations. The following lemma states their result6.

Lemma 1.1 ([DLW09a]) The Cartesian tree of a tree with n nodes can be maintained
in a data structure of size O(n) that can be constructed in O(n logn) time, and supports
pathmin in O(1) time and insert-leaf in O(logn) time.

1.5.3 Trees: Transformations and Decompositions

In this section, we describe different aspects of trees that are used in various parts
of this dissertation. First, we demonstrate a bijection function from the set of binary

6Their algorithm only appears in the online manuscript of the paper [DLW09b]. The conference
version of the paper states this result without describing how to achieve it [DLW09a].

30 Chapter 1. Introduction

13

3

15

9 14

7

128

10

11

F G

10

9

14

12

B

7

CA

13

3

E H

K

11

J

8

E

G

F

B
I

H

D

C

A

J

K

15

D I

Figure 1.4: In the tree T (left), a new node K is inserted on the edge (C,D) with
weight 3. The new edge (K,D) has weight 11 ≥ 3. In the Cartesian tree (right),
the new edge with weight 11 is inserted as a node on the path from D to the
node LCA(C,D)=“3” such that heap order is preserved.

trees to the set of ordinal trees. As mentioned in Section 1.1.1, this one-to-one corre-
spondence is used to show the information theoretic lower bound of representing the
ordinal trees. We also explain how we can utilize a representation of ordinal trees to
represent binary trees. This can be used in succinct data structures as mentioned in
Section 1.1.1. Then, we give another transformation from rooted trees to binary trees
that is usually used in data structures that deal with rooted trees. This transformation
shows that, for the sake of simplicity, we can build our data structures for binary trees
instead of rooted trees while supporting the operations on the rooted trees. We use
this transformation for our path minima data structure for rooted trees in Chapter 3.
We explain a known decomposition of trees, in which each node has degree at most 3.
This decomposition is used to design divide and conquer data structures for trees as
we do in Chapter 3. At the end, we describe an algorithm to split a binary tree into
constant number of binary trees under satisfying some properties. The split algorithms
are usually used to amortize the insertion operation in tree data structures such as ours
in Chapter 3.

One-to-one correspondence between ordinal trees and binary trees. There exists
a one-to-one correspondence between ordinal trees (ordered rooted trees) and binary
trees. More precisely, every ordinal tree containing n nodes can be transformed into a
binary tree containing n−1 nodes, and vice versa. This shows that the total number of
ordinal trees containing n nodes equals the total number of binary trees containing n−1
nodes. In the following, we describe these two transformations.

Let T be an ordinal tree that we want to transform into a binary tree T ′. For each
node u in T , we make a corresponding node u′ in T ′. We start from the root of T by
putting the corresponding root in T ′. Let ui be the i-th child of an arbitrary node u in
the tree. For each node u, u1 becomes the left child of u′, u2 becomes the right child
of u′1, u3 becomes the right child of u′2, and so on. In other words, all the siblings of the

1.5. Preliminaries 31

first child of u from left-to-right are placed in a right-skewed path from top-to-bottom
as the right subtree of the node corresponding to the first child of u. The result is a
binary tree containing n nodes whose root never has a right child. Therefore, it can be
removed from the binary tree, and the tree has n−1 nodes.

The above transformation is indeed a bijective function. Let T ′ be an arbitrary
binary tree containing n− 1 nodes. In the following we transform it to an ordinal
tree T containing n nodes, which then can be transformed back into T ′ using the above
transformation. For each node u′ in T ′, we make a corresponding node u in T . First
add a new root r′ to T ′ such that the previous root becomes the left child of r′. Make
a root r for T corresponding to r′. We start from the left child of r′. For each node u′

in T ′, if u′ is a left child, u becomes the first child of u′’s parent. If u′ is a right child of
a node v′, u becomes the immediate sibling of v to the right.

Representing binary trees with ordinal trees. In the following, we explain how
to use the basic navigational operations of an ordinal tree to support the navigational
operations in a binary tree.

Every binary tree T can be transformed to an ordinal tree T ′, such that each naviga-
tional operation on T can be performed using a constant number of basic navigational
operations on T ′. The transformation is as follows. For each node v in T , we make a
corresponding node in T ′ denoted as v′. We make T ′ by making a dummy root, and
putting the root of T as the first child of the dummy root. Then starting from children
of the root of T , for every node v in T , if v is the left child of its parent u, we make v′

as the first child of u′, and if v is the right child of u, we make v′ as the next sibling
of u′. Therefore, the left child of a given node u in T can be determined by finding the
first child of u′. The right child of a given node u in T can be determined by finding
the next sibling of u′. The parent of a given node v in T , can be determined by first
verifying whether the node is a left child or a right child. This can be done by finding
the first child of the parent of v′ denoted as u′. If u′ is the same as v′, then v is a left
child and we return the parent of v′ as the parent of v. If u′ is not the same as v′, then v
is a right child and we return the previous sibling of v′ as the parent of v.

Transforming rooted trees into binary trees. We first describe how to transform a
rooted tree into a binary tree, and then we show how to perform rooted trees operations
on the binary tree. The transformation is due to [Fre85]. Let T be the rooted tree that
we want to transform into a binary tree T ′. For every node u in the rooted tree with d
children v1,v2, . . . ,vd , where d ≥ 2, we represent u by d nodes w1,w2, . . . ,wd in the
binary tree. We make wi+1 the right child of wi with the edge-weight +∞, thus we
make a path of length d nodes. Then, we make vi the left child of wi with the weight
of the edge (u,vi), and we replace u by w1 as the left child of the parent of u. The right
child of wd is empty, which acts as a place holder for inserting new children for u.

The operation insert-leaf(u,v,w), which adds the new node v and the new edge (u,v)
weighted with w, can be performed by doing insert-leaf(wd , wd+1, ∞) for the left
child of wd , and insert-leaf(wd+1, v, w) for the right child of wd+1. The opera-
tion insert(e, v, w), which splits the edge e = (u1,u2) by inserting the node v along
it, such that the new edge (u1,v) has weight w, and (u2,v) has the old weight of e, can
be performed by a single insert operation on the binary tree.

32 Chapter 1. Introduction

Micro-macro decomposition of a binary tree. We utilize the algorithm presented
in [ASS97] to partition a tree. Given a binary tree T with n nodes and a parameter x,
where 1 ≤ x ≤ n, we decompose the set of nodes in T into O(n/x) disjoint subsets,
each of size at most x, where each subset induces a subtree of T called a micro tree.
Furthermore, the division is constructed such that at most two nodes in a micro tree are
adjacent to nodes in other micro trees that are denote by boundary nodes. If a micro
tree has two boundary nodes, then one of the nodes is the root. We define a macro tree
consisting of all the boundary nodes, such that it contains an edge between two nodes
if either they are in the same micro tree or there is an edge between them in T .

Lemma 1.2 ([ASS97]) Given a rooted binary tree T with n nodes and a parameter x,
where 1 ≤ x ≤ n. A partitioning of T into micro trees can be performed in O(n) time
that satisfies: (1) each micro tree contains at most x nodes, (2) there are O(n/x) micro
trees, and (3) each micro tree has at most two boundary nodes.

Splitting a binary tree. Given a binary tree T with n nodes and at most two bound-
ary nodes, we decompose the set of nodes of T into at most four disjoint subsets
inducing four subtrees of T in O(n) time, where each subtree has at most 1+ 2n/3
nodes, and at most two boundary nodes including the old boundary nodes. Note that T
can also be decomposed by using Lemma 1.2, but then the old boundary nodes do not
necessarily remain as the boundary nodes of the newly created subtrees. Therefore,
we present another algorithm for this decomposition as follows.

We first find a centroid edge e of T , i.e., an edge whose removal partitions T
into two trees of size at most 1+ 2n/3 each. It is well-known that for a given non-
empty binary tree, such an edge exists and can be found in O(n) time [Cha82]. We
remove e from T to obtain two components T1 and T2, each of size at most 1+2n/3.
We should maintain the property that each component has at most two boundary nodes.
Let c1 and c2 be the incident nodes of e, existing in T1 and T2 respectively. There are
three cases based on the location of the boundary node(s) of T : (1) Let b be the only
boundary node of T . Assume w.l.o.g. that b is in T1. Then T1 is a micro tree with
two boundary nodes b and c1, and T2 is a micro tree with one boundary node c2. (2)
If nodes b1 and b2 are the two boundary nodes of T , and if b1 is in one component
and b2 is in the other component, then each component has two boundary nodes. (3)
If nodes b1 and b2 are the two boundary nodes of T , and if w.l.o.g. both of b1 and b2
are in T1. The component T2 has one boundary node c2. The component T1 has three
boundary nodes c1, b1, and b2. Then we split T1 into three components as follows.
Let (c1, . . . ,b,x1, . . . ,b1) be the path from c1 to b1, and (c1, . . . ,b,x2, . . . ,b2) be the
path from c1 to b2, where b is the last common node in these two paths. We remove
the edges (b,x1) and (b,x2) which partition T1 into three components. Each component
has exactly two boundary nodes which are the pairs (b1,x1), (b2,x2), and (c1,b).

1.5.4 Q-heap

Fredman and Willard [FW94] presented a dynamic data structure denoted as Q-
heap. This data structure for a small enough set of integers, supports the operations
search (unsuccessful search returns the predecessor), rank (which returns the number

1.5. Preliminaries 33

of elements in the set that are less than the query element), insert, and delete in constant
time in the RAM model. The following lemma summarizes this data structure.

Lemma 1.3 ([FW94]) For any integer n < 2b, and a set of m b-bit integers, where b
is the word size of the machine and m is at most (logn)1/4, there exists a data structure
of size O(m) supporting insertion, deletion, and rank operations in O(1) worst case
time using a lookup table of size O(n) constructed in O(n) time.

1.5.5 Inverse-Ackermann Function

The inverse-Ackermann function denoted by α has been defined variously [AS87,
DLW09a, Tar79a]. In this dissertation, the definitions that are provided here are used
which are based on the definitions in [DLW09a,Niv09]. First, we define a sequence of
functions denoted as the inverse-Ackermann hierarchy for integers n≥ 1:

α0(n) = dn/2e
αk(1) = 0 for k ≥ 1
αk(n) = 1+αk(αk−1(n)) for k ≥ 1 .

In other words,

α0(n) = dn/2e
α
(1)
k (n) = αk(n) for k ≥ 0

α
(j)
k (n) = αk(α

(j−1)
k (n)) for k ≥ 0, j ≥ 2

αk(n) = min{ j | α(j)
k−1(n)≤ 1} for k ≥ 1 .

Note that
α1(n) = dlog2 ne
α2(n) = log∗ n
α3(n) = log∗∗ n .

Indeed, αk(n) = log∗∗···∗ n, where the ∗ is repeated k− 1 times in the superscript
for k ≥ 2. The inverse-Ackermann function is defined as:

α(n) = min{k | αk(n)≤ 3} .

The two-parameter version of the inverse-Ackermann function for integers m,n≥ 1 is
defined as follows:

α(m,n) = min{k : αk(n)≤ 3+m/n} .

This definition of the function satisfies α(m,n) ≤ α(n) for every m and n. Further
details can be found in [Niv09, Sei06].

Chapter 2

Range Minimum Queries

Abstract. The range minimum query (RMQ) problem for multidimensional arrays
is considered in this chapter. This is a problem that asks ”where is the minimum in
an orthogonal range within an array?”. The problem is studied for input arrays with
different dimensionality. We address some questions regarding the RMQ problem such
as: how fast can we answer a query with a compressed indexing data structure? and
how many bits do we require to encode a two dimensional input array?

For input arrays (in any dimensions) containing N elements, we prove that if an
indexing data structure stores O(N/c) bits, it requires Ω(c) time to support RMQs, for
any c where 1≤ c≤ N, in the cell probe model. For one-dimensional input arrays, we
show that this lower bound is tight up to a constant factor. For two-dimensional input
arrays, we present an RMQ indexing data structure supporting queries in O(c log2 c)
time using additional space O(N/c) bits. For O(1) query time, this gives an optimal
space indexing data structure, and it leaves a gap for super constant query time.

We also prove that to encode an m by n input array, where m≤ n, Ω(mn logm) bits
is required to support RMQs. This information-theoretic lower bound is smaller than
the trivial upper bound O(mn logn) bits. We also present an encoding data structure
that supports RMQs in O(1) time using O(mn ·min{m, logn}) bits.

We also give optimal query time data structures that can maintain one dimensional
input arrays containing n elements under updating their entries. These data structures
achieve Θ(logn/ log logn) query time, and obtains Θ(logn) update time in the com-
parison model and O(logn/ log logn) update time in the RAM model.

An extended abstract of this chapter was previously published as: Gerth S. Brodal, Pooya Davoodi,
and Srinivasa S. Rao, On Space Efficient Two Dimensional Range Minimum Data Structures, In Pro-
ceedings of 18th Annual European Symposium on Algorithms (ESA), volume 6347 of Lecture Notes in
Computer Science, pages 171–182. Springer-Verlag, 2010. The full paper is going to appear in Algorith-
mica, special issue on ESA 2010, [DOI: 10.1007/s00453-011-9499-0].

36 Chapter 2. Range Minimum Queries

2.1 Introduction

In this chapter, we consider the range minimum query (RMQ) problem for d-
dimensional arrays. We preprocess an array A[1 · · ·n1]× [1 · · ·n2]× ·· · × [1 · · ·nd]
containing N = n1 · n2 · · ·nd elements from a totally ordered set, into an RMQ
data structure. An RMQ data structure supports queries asking for the po-
sition of the minimum element within a given orthogonal d-dimensional range
query q = (i1, j1, i2, j2, . . . , id , jd) that spans all the cells in A[i1 · · · j1]× [i2 · · · j2]×·· ·×
[id · · · jd]. Without loss of generality, we assume that all the entries of A are distinct
(identical entries of A are ordered lexicographically by their index). In this chapter, a
matrix denotes a two dimensional array. We also consider the RMQ problem for one
dimensional arrays when updating the entries of the arrays is also possible.

2.1.1 Our Contributions

We study RMQ indexing data structures for input arrays of any dimension. We prove
a lower bound for the trade-off between the number of bits required to store an in-
dexing data structure and its query time. In particular, for an input array containing N
elements, we prove that Ω(N/c) bits is required to store an indexing data structure sup-
porting RMQs in O(c) time, for any c where 1≤ c≤ N. This lower bound is proved in
a non-uniform cell probe model, and the proof is similar to the proof of Theorem 3.1
of Golynski [Gol07]. This result appears in Theorem 2.1 of Section 2.2.1.

For the 1D-RMQ problem, where the input is a one dimensional array, we present
a simple indexing data structure of size O(N/c) bits that supports 1D-RMQs in O(c)
time. This implies that the lower bound proved in Theorem 2.1 of Section 2.2.1 is
tight for the 1D-RMQ problem within a constant factor. Notice that this data structure
brings the space below the information-theoretic lower bound 2N+o(N) bits which is
for encoding 1D-RMQ data structures. We mention this upper bound in Section 2.2.2.

For the 2D-RMQ problem, where the input is a two dimensional array contain-
ing N elements, we present an indexing data structure of size O(N/c) bits that sup-
ports RMQs in O(c log2 c) time. This trade-off gives the optimal additional space
bound O(N) bits for O(1) query time. For super constant query times, this leaves a
gap to the additional space of RMQ data structures. To present this data structure, we
first show how to achieve O(1) query time using additional space O(N) bits in Sec-
tion 2.2.3. Then, using this data structure, we build a data structure that achieves the
claimed trade-off in Section 2.2.4.

We also consider the issue of encoding data structures for the 2D-RMQ problem.
In particular, we prove an information-theoretic lower bound Ω(mn · logm) bits to
encode an m by n input array such that the encoding information can be used to an-
swer 2D-RMQs. Notice that the input arrays can be stored explicitly using O(mn logn)
bits. Thus, we introduce a gap to the encoding space. Recall that Demaine, Landau,
and Weimann [DLW09a] proved that Ω(nn · logn) bits is required when the input is
an n by n array. Indeed, our lower bound is an extension of theirs with a similar argu-
ment. We also show that O(mn ·min(m, logn)) bits is sufficient to support 2D-RMQs
in O(1) time. Section 2.3 is devoted to this issue.

We finish this chapter by giving two data structures that achieve Θ(logn/ log logn)
query time for the 1D-RMQ problem under updating the entries of input arrays

2.2. Indexing Data Structures 37

Table 2.1: Our contribution to the d-dimensional RMQ problem for arrays contain-
ing N elements. The parameter c is an integer, where 1 ≤ c ≤ N. The lower bounds
should be read like a conditional sentence, e.g., the result of Theorem 2.1 states that if
the additional space is O(N/c) bits, then Ω(c) query time is required. For the results
of the last two rows, the input is an m by n array, where m≤ n.

Reference dimension Query time Space (bits) Prep. time
Theorem 2.1 d ≥ 1 Ω(c) O(N/c) -
Theorem 2.2 d = 1 O(c) O(N/c) O(N)

Theorem 2.3 d = 2 O(1) O(N) O(N)

Theorem 2.4 d = 2 O(c log2 c) O(N/c) O(N)

Theorem 2.5 d = 2 - Ω(mn · logm) -
Section 2.3.1 d = 2 O(1) O(mn ·min(m, logn)) O(N)

Table 2.2: Our contribution to the dynamic 1D-RMQ problem for arrays containing n
elements.

Ref.
Preprocessing Query

Space
Update

Modeltime time time
Theorem 2.6 O(n) O(logn

log logn) O(n) O(logn) Comparison

Theorem 2.7 O(n) O(logn
log logn) O(n) O(logn

log logn) RAM

containing n elements (Section 2.4). The first data structure supports the updates
in Θ(logn/ log logn) time in the comparison model (Theorem 2.6), and the second
data structure obtains O(logn) update time in the RAM model (Theorem 2.7).

2.2 Indexing Data Structures

In this section, we study RMQ indexing data structures. First, we prove a lower bound
for any dimensional input arrays. Then we show that the lower bound is tight for
the 1D-RMQ problem. We also present an indexing data structure that supports 2D-
RMQs in constant time using optimal space. At the end, we give a 2D-RMQ indexing
data structure that achieves a time-space trade-off using the constant query time data
structure.

2.2.1 Lower Bound

We prove a lower bound for the query time of the 1D-RMQ problem where the input
is a one dimensional array of n elements, and then we show that the bound also holds
for the RMQ problem in any dimension. The proof is in the non-uniform cell probe
model [Mil]. In this model, computation is free, and time is counted as the number
of cells accessed (probed) by the query algorithm. The algorithm is also allowed to
be non-uniform, i.e., for different values of input parameter n, we can have different

38 Chapter 2. Range Minimum Queries

110111111111111111 111111111111111011111111110111111111

110111111111111111 111111111111111011111101111111111111

c

· · ·

· · ·
q2

Figure 2.1: Two arrays from C , each one has n/c blocks. In this example c = 18. The
query q2 has different answers for these arrays.

algorithms.
For integers n and c, where 1 ≤ c ≤ n, we define a set of arrays C , and a set

of queries Q. W.l.o.g., we assume that c divides n. We will argue that for any 1D-
RMQ algorithm which has access to an index of size n/c bits (in addition to the input
array A), there exists an array in C and a query in Q for which the algorithm per-
forms Ω(c) probes into A.

Definition 2.1 Let n and c be two integers, where 1 ≤ c ≤ n and c divides n. The
set C contains the arrays A[1 · · ·n] such that the elements of A are from the set {0,1},
and in each block A[(i−1)c+1 · · · ic] for all 1≤ i≤ n/c, there is exactly a single zero
element (Figure 2.1).

The number of possible data structures of size n/c bits is 2n/c, and the number of
arrays in C is cn/c. By the pigeonhole principle, for any algorithm G there exists a
data structure DG which is shared by at least (c

2)
n/c input arrays in C . Let CDG ⊆ C

be the set of these inputs.

Definition 2.2 Let qi = [(i−1)c+1 · · · ic]. The set Q = {qi | 1≤ i≤ n/c} contains n/c
queries, each covering a distinct block of A.

For algorithm G and data structure DG , we define a binary decision tree capturing
the behavior of G on the inputs from CDG to answer a query q ∈Q.

Definition 2.3 Let G be a deterministic algorithm. For each query q ∈Q, we define
a binary decision tree Tq(DG). Each internal node of Tq(DG) represents a probe into
a cell of the input arrays from CDG . The left and right edges correspond to the output
of the probe: left for reading a zero and right for reading a one. Each leaf is labelled
with the answer to q, i.e., the position of the zero within the block covered by q.

For each algorithm G , we have defined n/c binary trees depicting the probes of
the algorithm into the inputs from CDG to answer the n/c queries in Q. Note that
the answers to all these n/c queries uniquely determine the input. We compose all
the n/c binary trees into a single binary tree TQ(DG) in which every leaf determines
a particular input. To obtain TQ(DG), we first replace each leaf of Tq1(DG) with the
whole Tq2(DG), and then replace each leaf of the obtained tree with Tq3(DG), and so
on (Figure 2.2). Every leaf of TQ(DG) is labelled with the answers to all the n/c queries
in Q which were replaced on the path from the root to the leaf. Every two input arrays
in CDG correspond to different leaves of TQ(DG). Otherwise the answers to all the

2.2. Indexing Data Structures 39

Tqn/c
(DG)

composing

j1, j2, · · · , jn/c

pn/c

label of pn/c:

pn/c

p2

j1

p1

p2

p1

Tq1(DG)

Tq2(DG)

j2

jn/c

Figure 2.2: Composing the n/c decision trees to obtain the large decision tree TQ(DG).
Each leaf is labeled with a vector of positions of zeros in the input.

queries in Q are the same for both the inputs which is a contradiction. Therefore, the
number of leaves of TQ(DG) is at least (c

2)
n/c, the minimum number of inputs in CDG .

We next prune TQ(DG) as follows: First we remove all nodes not reachable by any
input from CDG . Then we repeatedly replace all nodes of degree one with their single
child. Since the inputs from CDG correspond to only reachable leaves, the number
of leaves becomes equal to the number of inputs from CDG which is at least (c

2)
n/c.

Note that the result of a repeated probe is known already, because the probe has been
performed before. Therefore, before pruning, one child of the node corresponding to
a repeated probe is unreachable, and after pruning where all the unreachable nodes are
pruned, there is no repeated probe on a root to leaf path. Every path from the root to
a leaf has at most n/c left edges (zero probes), since the number of zero elements in
each input from C is n/c. Each of these paths represents a binary sequence of length
at most d containing at most n/c zeros, where d is the depth of TQ(DG) after pruning.
By padding each of these sequences with further 0s and 1s, we can ensure that each
sequence has length exactly d + n/c and contains exactly n/c zeros. The number of
such binary sequences is

(d+n/c
n/c

)
, which becomes an upper bound for the number of

leaves in the tree after pruning.

Lemma 2.1 For all n and c, where 1 ≤ c ≤ n, the worst case number of probes re-
quired to answer a query in Q over the inputs from C using a data structure of size n/c
bits is Ω(c).

Proof. First, we prove a lower bound for d, the depth of TQ(DG) after pruning. Then,
we divide the lower bound by n/c, the number of binary trees, to prove the lower bound
for the number of probes.

In the above discussion, we obtained the following upper bound for the number of
leaves of TQ(DG) after pruning.(

d + n
c

n
c

)
=

(d + n
c)!

(n
c)! · (d + n

c − n
c)!
≤ (d + n

c)
(n

c)

(n
c)!

.

40 Chapter 2. Range Minimum Queries

Comparing this upper bound with the lower bound for the number of leaves of TQ(DG),
we have (c

2

)n/c
≤ (d + n

c)
(n

c)

(n
c)!

.

By Stirling’s formula, we obtain the following:

c
2
≤ (d + n

c)e
n
c

,

and therefore d ≥ n(1
2e − 1

c). For any arbitrary algorithm G , the depth d of TQ(DG)
is at most the sum of the depths of the n/c binary trees composed into TQ(DG). By
the pigeonhole principle, there exists an input x ∈ CDG and an i, where 1 ≤ i ≤ n/c,
such that the query qi on x requires at least d/(n/c) = Ω(c) probes into the array
maintaining the input. 2

Theorem 2.1 Any algorithm that uses N/c bits additional space to solve the RMQ
problem for an input array of size N (in any dimension), requires Ω(c) query time, for
any c, where 1≤ c≤ N.

Proof. Lemma 2.1 gives the lower bound for the 1D-RMQ problem. The proof for
the 2D-RMQ is a simple extension of the proof of Lemma 2.1. The set C consists of
matrices, each composed of mn/c submatrices [ic1 + 1 · · ·(i+ 1)c1]× [jc2 + 1 · · ·(j+
1)c2] of size c1 by c2, for 1 ≤ i < m/c1 and 1 ≤ j < n/c2, where c = c1 · c2 (w.l.o.g.,
assuming that c1 divides m, and c2 divides n). Each submatrix has exactly one zero
element, and all the others are one. There are N/c queries in Q, each one asks for
the minimum of each submatrix. As in the proof of Lemma 2.1, we can argue that
there exists a query requiring Ω(c) probes by utilizing the methods of decision trees,
composing and pruning them, and bounding the number of leaves. The proof can be
generalized straightforwardly to higher dimensional versions of the RMQ problem. 2

2.2.2 Tightness of the Lower Bound in One Dimension

We show that the lower bound proved in Theorem 2.1 is tight for the 1D-RMQ prob-
lem.

Theorem 2.2 The 1D-RMQ problem for a one dimensional input array of size n is
solved in O(n) preprocessing time and optimal O(c) query time using O(n/c) addi-
tional bits.

Proof. Partition the input array into n/c blocks of size c. Construct a 1D-RMQ encod-
ing structure D for the list of n/c block minima (minimum elements of the blocks)
in O(n/c) bits [Sad07b]. The query is decomposed into three subqueries q`, qm,
and qr (see Figure 2.3). The subquery qm contains all the blocks fully spanned by
the query. To solve qm, we first find the block containing the answer by querying the
data structure D in O(1) time, and then scan that block in O(c) time to find the answer.
Each of the subqueries q` and qr, which is contained within a single block, is answered
in O(c) time by scanning the respective block. 2

2.2. Indexing Data Structures 41

qℓ

qm

qr

q

1 n/c

block minima

Figure 2.3: The input is partitioned into n/c blocks of size c. The 1D-RMQ encoding
structure D of size O(n/c) bits is built for the list of the block minima. The query q is
divided into three subqueries q`, qm, and qr.

2.2.3 Constant Query Time with Optimal Space in Two Dimensions

We present an indexing data structure that supports 2D-RMQs in O(1) time using ad-
ditional space O(N) bits. This structure forms the basis of another data structure in
Section 2.2.4 to achieve a time-space trade-off for the 2D-RMQ indexing data struc-
tures.

Preliminaries. We introduce some terminology that we use to describe an index-
ing data structure for the 2D-RMQ problem in the following sections. A block is a
rectangular range in a matrix. Let B be a block of size m′ by n′. For the block B,
the list MinColList[1 · · ·n′] contains the minimum element of each column of B and
MinRowList[1 · · ·m′] contains the minimum element of each row of B. For inte-
ger ` where 1 ≤ ` ≤ m′/2, let TopSuffixes(B, `) be the set of blocks B[m′/2− i`+
1 · · ·m′/2]× [1 · · ·n′], and BottomPrefixes(B, `) be the set of blocks B[m′/2+1 · · ·m′−
(i−1)`]× [1 · · ·n′], for 1≤ i≤ m′/(2`) (w.l.o.g., assuming that 2` divides m′).

Data structure and querying. In the following, we present an indexing data struc-
ture of size O(N) bits achieving O(1) query time to solve the 2D-RMQ prob-
lem for an m by n input matrix M of size N = m · n. The basic idea of the
construction is to solve the problem with four levels of recursion, reducing the
queries to subqueries of size log logm by loglogn, which are solved by a tabulation
idea of Atallah and Yuan [AY10]. We partition the input matrix M into m/ logm
blocks B = {b1, . . . ,bm/ logm} of size logm by n by cutting the input matrix at every
logm’th row. If a query is contained in a block bi, the problem is solved recursively
for this block. Otherwise, the query q is divided into subqueries q1, q2 and q3 such
that q1 is contained in b j and q3 is contained in bk, and q2 spans over b j+1, . . . ,bk−1
vertically, where 1≤ j < k≤m/ logm (see Figure 2.4). Since q1 and q3 are range min-
imum queries in the submatrices b j and bk respectively, they are answered recursively.
The subquery q2 is handled as described below. Lastly, the answers to q1, q2 and q3,
which are indices into three matrix elements, are used to find the index of the smallest
element in q.

A binary tree structure is utilized to answer q2. This binary tree has m/ logm
leaves, one for each block in B. Without loss of generality, we assume that m/ logm
is a power of 2. Each leaf maintains a 1D-RMQ structure [Sad07b] for MinColList of
its corresponding block bi. Each internal node v with 2k leaf descendants corresponds
to a submatrix M composed of 2k consecutive blocks of B, for 1≤ k ≤ m/(2logm).

42 Chapter 2. Range Minimum Queries

p

q1

q↑2

q↓2

q3

q2

bj

bk

c↑ c↓M

log logn

log logm

1

2

2

3

33

3

4 4

445

5

5

logm

log n
micro block

5

Figure 2.4: Top: Partitioning the input and building the binary tree structure. The
node p is the LCA of the leaves corresponding to b j+1 and bk−1. The columns c↑

and c↓, which contain the answers to q↑2 and q↓2 respectively, are found using the 1D-
RMQ structure stored in p. The minimum element in each of the columns c↑ and c↓

is found using the 1D-RMQ structure constructed for that column. Bottom: The num-
bers 1,2,3,4, and 5 on the subqueries depict the recursion level that answer the corre-
sponding subqueries.

These 2k blocks correspond to the 2k leaf descendants of v. Note that each of the sets
TopSuffixes(M, logm) and BottomPrefixes(M, logm) contains k blocks. For each of
these 2k blocks, the internal node v stores a 1D-RMQ structure that is constructed for
the MinColList of the block.

We also construct a 1D-RMQ structure for each of the rows and columns of the
input matrix M.

In the binary tree structure, let p be the lowest common ancestor of the leaves cor-
responding to b j+1 and bk−1, and let M be the submatrix corresponding to p. The sub-
query q2 is composed of the top part q↑2 and the bottom part q↓2, where q↑2 and q↓2 are two
blocks in the sets TopSuffixes(M, logm) and BottomPrefixes(M, logm), respectively.
Two of the 1D-RMQ structures maintained in p, are constructed for MinColLists of q↑2

2.2. Indexing Data Structures 43

and q↓2. These 1D-RMQ structures are utilized to find two columns c↑ and c↓ containing
the answer to q↑2 and q↓2. The 1D-RMQ structures constructed for these two columns
are utilized to find the answer to q↑2 and q↓2. Then the answer to q2 is determined by
comparing the smallest element in q↑2 and q↓2.

In the second level of the recursion, each block of B is partitioned into blocks
of size logm by logn. The recursion continues for two more levels until the size of
each block is log logm by loglogn. In the binary tree structures built for all the four
recursion levels, we construct the 1D-RMQ structures for the appropriate MinColLists
and MinRowLists respectively. The blocks that are used to make MinRowLists are
defined similarly to TopSuffixes and BottomPrefixes, but for left suffixes and right
prefixes respectively. In the second and fourth levels of recursion, where the binary tree
structure gives two rows containing the minimum elements of q↑2 and q↓2, the 1D-RMQ
structures constructed for the rows of the matrix are used to answer q↑2 and q↓2. Similar
to the first level of the recursion, in the third level, where the binary tree structure gives
two columns containing the minimum elements of q↑2 and q↓2, the 1D-RMQ structures
constructed for the columns of the matrix are used to answer q↑2 and q↓2.

We solve the 2D-RMQ problem for a block of size log logm by loglogn using the
table lookup method given by Atallah and Yuan [AY10]. Their method preprocesses
the block by making at most c′G comparisons, for a constant c′, where G = log logm ·
log logn, such that any 2D-RMQ can be answered by performing four probes into
the block. Each block is represented by a block type which is a binary sequence of
length c′G, encoding the results of the comparisons. The lookup table has 2c′G rows,
one for each possible block type, and G2 columns, one for each possible query within
a block. Each cell of the table contains four indices to address the four probes into the
block. The block types of all the blocks of size G in the matrix are stored in another
table T . The query within a block is answered by first recognizing the block type
using T , and then checking the lookup table to obtain the four indices. Comparing the
results of these four probes gives the answer to the query. For further details, we refer
the reader to [AY10].

Theorem 2.3 The 2D-RMQ problem for an m by n matrix of size N = m ·n is solved
in O(N) preprocessing time and O(1) query time using O(N) bits additional space.

Proof. We first consider the query time. The subquery q2 is answered in O(1) time by
using a constant query time LCA structure [HT84], querying the 1D-RMQ structures
in constant time [Sad07b], and performing O(1) probes into the input matrix. The
number of recursion levels is four, and for each level, we perform at most four recursive
subqueries (see Figure 2.4). In the last level, the subqueries contained in blocks of
size G are also answered in O(1) time by using the lookup table and performing O(1)
probes into the matrix. Therefore the query q is answered in total O(1) time.

We bound the space of the data structure as follows. The depth of the binary tree,
in the first recursion level, is O(log(m/ logm)). Each level of the tree has O(m/ logm)
1D-RMQ structures for MinColLists of size n elements. Since a 1D-RMQ structure of
a list of n elements is stored in O(n) bits [Sad07b], the binary tree can be stored in O(n ·
m/ logm · log(m/ logm)) = O(N) bits. Since the number of recursion levels is O(1),
the binary trees in all the recursion levels are stored in O(N) bits. The space used by
the m+n 1D-RMQ structures constructed for the columns and rows of M is O(N) bits.

44 Chapter 2. Range Minimum Queries

Since G= o(logN), then G≤ c′′ logN for any constant c′′> 0, and sufficiently large N.
We can therefore bound the size of the lookup table by O(2c′c′′ logNG2 logG) = o(N)
bits when c′′ < 1/c′. The size of table T is O(N/G · log(2c′G)) = O(N) bits. Hence the
total additional space is O(N) bits.

Finally, we consider the preprocessing time. In the binary tree, in the first level of
the recursion, each leaf maintains a 1D-RMQ structure constructed for a MinColList
of size n elements. These m/ logm lists are constructed in O(N) time by scanning the
whole matrix. Each MinColList in the internal nodes is constructed by comparing the
elements of two MinColLists built in the lower level in O(n) time. Therefore construct-
ing these lists, for the whole tree, takes O(N +n ·m/ logm · log(m/ logm)) = O(N)
time. Since a 1D-RMQ structure can be constructed in linear time [Sad07b], the 1D-
RMQ structures in all the nodes of the binary tree are constructed in total O(N) time.
The LCA structure is also constructed in linear time [HT84]. Therefore the binary tree
is built in O(N) time. Since the number of recursion levels is O(1), all the binary trees
are built in O(N) time. The lookup table and table T are also constructed in O(N)
time, see [AY10, Sections 3.2 and 5]. 2

Corollary 2.1 The query algorithm performs at most 38 probes into the input to solve
the query.

Proof. As shown at the top of Figure 2.4, the subquery q2 is answered by compar-
ing the smallest elements in q↑2 and q↓2. To find these two smallest elements, the al-
gorithm performs two probes into the input. For each of the subqueries solved in
different recursion levels, shown at the bottom of Figure 2.4, at most two probes
are performed. As described earlier, to solve the subqueries contained in blocks of
size log logm by loglogn, four probes are performed. Therefore, the total number of
probes in the recursion levels is the sum: 2+2 ·2+4 ·2+4 ·2+4 ·4 = 38. 2

2.2.4 Time-Space Trade-off in Two Dimensions

We now describe how to use the data structure of Section 2.2.3 to achieve a trade-
off between the additional space usage and the query time. We present an indexing
data structure of size O(N/c · logc) bits additional space solving the 2D-RMQ prob-
lem in O(c logc) query time and O(N) preprocessing time, where 1 ≤ c ≤ N. The
input matrix is divided into N/c blocks of size 2i by c/2i, for each integer i in the
range [0 · · · logc]; w.l.o.g., assuming that c is a power of 2. Let Mi be the matrix of
size N/c containing the minimum elements of the blocks of size 2i by c/2i. Let Di be
the linear space data structure of Section 2.2.3 applied to the matrix Mi using O(N/c)
bits. Each Di handles a different ratio between the number of rows and the number of
columns of the blocks. Note that the matrices Mi are constructed temporarily during
the preprocessing and are not maintained in the data structure.

A query q is resolved by answering logc+ 1 subqueries. Let qi be the maximal
subquery of q spanning blocks of size 2i by c/2i for 0≤ i≤ logc. The minimum ele-
ments of the blocks spanned by qi assemble a query over Mi which has the same answer
as qi. Therefore, qi is answered by using Di. Note that whenever the algorithm wants
to perform a probe into a cell of Mi, a corresponding block of size c of the input is

2.3. Encoding Data Structures in Two Dimensions 45

c

c

c
c

q

c
c

A

q0

q1

q2

q3

q4

Figure 2.5: Right: The white area of the query q contains the subqueries which com-
pletely span the blocks of size 2i by c/2i. Left: A corner of q which is contained in a
block of size c by c. The shaded area contains O(c logc) elements.

searched for the minimum (since Mi is not explicitly stored in the data structure). The
subqueries qi overlap each other. Altogether, they compose q except for O(c logc) ele-
ments in each of the four corners of q (see the proof of Theorem 2.4). We search these
corners for the minimum element. Eventually, we compare the minimum elements of
all the subqueries to find the answer to q (see Figure 2.5).

Theorem 2.4 The 2D-RMQ problem for a matrix of size N is solved in O(N) prepro-
cessing time and O(c log2 c) query time using O(N/c) bits additional space.

Proof. The number of linear space data structures Di is logc+ 1. Each data struc-
ture Di requires O(N/c) bits. Therefore, the total additional space is O(logc ·N/c)
bits.

The number of subqueries qi is logc+1. Each qi is answered by using Di in O(1)
query time in addition to the O(1) probes into Mi. Since each probe into Mi can be
performed by O(c) probes into the input matrix, the query qi can be answered in O(c)
time. Each of the four corners of the query q not covered by the qi queries, is contained
in the union of at most logc+ 1 blocks, at most one block of each size 2i by c/2i

for 0 ≤ i ≤ logc (see Figure 2.5). The four corners are searched in O(c logc) time
for the minimum element. In the end, the minimum elements of the subqueries are
compared in O(logc) time to answer q. Consequently, the total query time is O(c logc).

Each Di is constructed in O(N/c) time (Section 2.2.3) after building the matrix Mi.
To be able to make all Mi efficiently, we first construct an O(N)-bit space data structure
of Section 2.2.3 for the input matrix in O(N) time. Then, Mi is built in O(N/c) time by
querying a block of the input matrix in O(1) time for each element of Mi. Therefore,
the total preprocessing time is O(logc ·N/c+N) =O(N). Substituting the parameter c
by c logc gives the claimed bounds. 2

2.3 Encoding Data Structures in Two Dimensions

We examine the RMQ encoding data structures for m by n input arrays. Without
loss of generality, we assume that m ≤ n. First we present a simple data structure of

46 Chapter 2. Range Minimum Queries

size O(mn ·min(m, logn)) bits that supports 2D-RMQs in O(1) time without consulting
the input. Then, we prove the information-theoretic lower bound Ω(mn logm) bits
for the 2D-RMQ problem. This leaves a gap for the space requirement of such data
structures.

2.3.1 Upper Bound

The algorithm described in Section 2.2.3 can preprocess an m by n input matrix A of
size N = m · n into a data structure of size O(N) bits in O(N) time. But the query
algorithm in Section 2.2.3 is required to perform some probes into the input matrix.
Since A is not accessible in the encoding model, we store another matrix maintaining
the rank of all the N elements using O(N logN) = O(N logn) bits. Whenever the
algorithm wants to perform a probe into A, it does it into the rank matrix. Therefore the
problem can be solved in the encoding model using O(N logn) preprocessing time (to
sort A) and O(1) query time using space O(N logn) bits.

Another solution in the encoding model is the following. For each of the n columns
of A, we build a 1D-RMQ structure using space O(m) bits [Sad07b], in total us-
ing O(mn) = O(N) bits. Furthermore, for each possible pair of rows (i1, i2), i1 ≤ i2,
we construct a 1D-RMQ structure for the MinColList Li1,i2 of A[i1 · · · i2]× [1 · · ·n], i.e.,
Li1,i2 [j] = mini1≤i≤i2 A[i, j], using space O(n) bits. Note that we only store the 1D-
RMQ structure for Li1,i2 , but not Li1,i2 itself. In total we use space O(m2n) = O(Nm)
bits. The column j containing the answer to a query q = [i1 · · · i2]× [j1 · · · j2] is found
by querying for the range [j1 · · · j2] in the 1D-RMQ structure for Li1,i2 . The query q is
answered by querying for the range [i1 · · · i2] in the 1D-RMQ structure for column j.
Since both 1D-RMQ queries take O(1) time, the total query time is O(1).

Selecting the most space efficient solution of the above two solutions gives an
encoding structure of size O(N ·min{m, logn}) bits with O(1) query time.

2.3.2 Lower Bound

To prove a lower bound for the space required in the encoding model, we generate a
large class of input matrices which are distinguishable by the queries. We consider two
matrices A1 and A2 different if there exists a 2D-RMQ with different answer for A1
and A2. We present a set of Ω((m!)n) matrices which are pairwise different. The
elements of the matrices are from the set {1, . . . ,mn}. In every matrix A of the set, the
smallest mn′ elements of A are placed in two parts A′ = A[1 · · ·m/2]× [1 · · ·n′] and A′′

containing all the anti-diagonals of length m/2 within the block A[m/2+1 · · ·m]× [n′+
1 · · ·n] where n′= b(n−m/2+1)/2c, w.l.o.g., assuming that m is even (see Figure 2.6).
The odd numbers from the set {1, . . . ,mn′} are placed in A′ in increasing order from
left to right and then top to bottom, i.e. A′[i, j] = 2((i−1)n′+ j)−1. The even numbers
of {1, . . . ,mn′} are placed in A′′ such that the elements of each anti-diagonal are not
sorted but are larger than the elements of the anti-diagonals to the right. The total
number of matrices constructed by permuting the m/2 elements of each of the n′ anti-
diagonals of A′′ is (m

2 !)n′ .
For any two matrices A1 and A2 in the set, there exists an index [i2, j2] in the anti-

diagonals of A′′ such that A1[i2, j2] 6= A2[i2, j2]. Without loss of generality, assume
that A1[i2, j2]< A2[i2, j2]. Let [i1, j1] be the index of an arbitrary odd number in A′ be-

2.4. Dynamic Structures in One Dimension 47

j1 n

m
2

n′

n′ m
2
− 1

qm
2

i1

A′

A′′

i2

j2

Figure 2.6: All the elements in the dotted area are greater than the elements in the
white area. The rectangle drawn with dashed line shows the query q. The smallest
entry in A′∩q is A[i1, j1] and the smallest entry in A′′∩q is A[i2, j2].

tween A1[i2, j2] and A2[i2, j2]. The query q = [i1 · · · i2]× [j1 · · · j2] has different answers
for A1 and A2: For A1 the answer is [i2, j2] whereas the answer for A2 is [i1, j1] (see
Figure 2.6). It follows that any two matrices in the set are different.

Theorem 2.5 The minimum space required to store an encoding data structure for the
2D-RMQ problem is Ω(mn logm) bits, assuming that m≤ n.

Proof. Since the number of different matrices in the set is (m
2 !)n′ , the space for a data

structure encoding these matrices is Ω(log(m
2 !)n′) = Ω(mn′ logm) = Ω(mn logm) bits,

since n′ ≥ (n− m
2)/2≥ n/4, where the last inequality follows from m≤ n. 2

2.4 Dynamic Structures in One Dimension

We state our result for the dynamic version of the 1D-RMQ problem, where the ele-
ments of input arrays can be updated. This problem is a special case of a variant of the
dynamic path minima problem, in which we have to maintain a weighted tree under
updating the edge-weights while supporting queries that ask for the edge with mini-
mum weight along a given path. Further details about the path minima problem and
its variants can be found in Section 1.3.1 and Chapter 3. Obviously, any data structure
that solves this variant of the dynamic path minima problem can also solve the dynamic
1D-RMQ problem for an array A by transforming A to a path, where the i-th edge on
the path obtains the weight with the same value as A[i]. Therefore, our data structures
presented in Section 3.2 can also solve the dynamic 1D-RMQ problem. As was shown
in Section 1.2.1, the dynamic 1D-RMQ problem has known lower bounds in differ-
ent computational models. These lower bounds imply that our path minima dynamic

48 Chapter 2. Range Minimum Queries

data structures achieve optimal query time for the dynamic 1D-RMQ problem in the
comparison model and the the word RAM. We state our results in the following two
theorems which are immediate consequences of Theorems 3.1 and 3.2 respectively.

Theorem 2.6 In the comparison model, there exists a linear space data structure
that supports RMQ queries over one dimensional arrays containing n elements
in Θ(logn/ log logn) query time, and obtains Θ(logn) amortized update time.

Theorem 2.7 In the RAM model, there exists a linear space data structure
that supports RMQ queries over one dimensional arrays containing n elements
in Θ(logn/ log logn) query time, and obtains O(logn/ log logn) amortized update
time.

2.5 Open Problems

The lower bound of Theorem 2.1 closed the issue of indexing data structures for the
1D-RMQ problem. In other words, for an input array containing N elements, if we
want to support 1D-RMQs in O(c) time, for any parameter c where 1 ≤ c ≤ N, we
know that the best possible space bound Θ(N/c) bits for the size of an indexing data
structure is achieved by the data structure of Section 2.2.2.

But for the 2D-RMQ problem, there is still an interesting question asking about
the best possible query time using an indexing data structure of size O(N/c) bits. The
current best upper bound gives O(c log2 c) (Theorem 2.4), and the current best lower
bound implies Ω(c) (Theorem 2.1). The answer might be somewhere in between,
say Θ(c logc).

Another appealing question is: how much can we compress an encoding of
an m by n input array, where m≤ n, such that we can still answer 2D-RMQs using the
encoding? The best lower bound proved in Theorem 2.5 implies Ω(mn · logm) bits,
while it is far from the best upper bound O(mn ·min(m, logn)) bits (Theorem 2.3.1)
for small values of m, such as m = O(logn).

The whole subject of indexing and encoding data structures for the multidimen-
sional RMQ problem has still many open problems. For an input array containing N
elements, the best space bound is O(N) words due to the indexing data structure
of [AY10] which supports RMQs in O(1) time. The lower bound that we proved
in Theorem 2.1, leaves a gap for the size of the constant query time RMQ indexing
data structures.

Chapter 3

Path Minima Queries

Abstract. In this chapter, we study the path minima query problem. We are in-
terested in finding an edge with minimum weight along a given path of a tree with
weighted edges. We address some questions such as: how fast can we answer a path
minima query if we allow updating the edge-weights? how fast can we insert and
delete leaves in a tree while answering path minima queries? and does the dynamic
trees of Sleator and Tarjan give the best possible query time for the path minima query
problem for input dynamic forests?

For input trees containing n nodes, we present a comparison-based data structure
that supports path minima queries in Θ(logn/ log logn) time under updating the edge-
weights performed in Θ(logn) time. When the edge-weights are integers in the word
RAM, we improve the update time to O(logn/ log logn). Both of these data structures
support inserting a node on an edge, inserting a leaf, and contracting edges.

We also show that if we are not interested in updating the edge-weights, and we
only want to insert and delete leaves, it is significantly easier to support path minima
queries in the semigroup model, for which we have to compute the product of the
edges-weights within a given query path, where the edge-weights are from a semigroup
and the product is the semigroup operation. We present a data structure that supports
these queries in Θ(α(n)) time with O(1) insertion and deletion amortized time. We
also show that this data structure can be extended such that queries can be supported
using 2k semigroup operations and insertion and deletion of leaves can be performed
in O(kαk(n)) semigroup operations, for a parameter k, where k ≥ 1.

For collections of trees that can be updated by linking the trees and cutting the
edges, we prove lower bounds for the query time of the path minima problem through
reductions. These lower bounds provide different trade-offs between the query time
and the update time of the path minima problem. A consequence of these lower bounds
is that the dynamic trees of Sleator and Tarjan do not achieve the best possible path
minima query time with polylogarithmic time for link and cut.

An extended abstract of this chapter is going to appear as: Gerth S. Brodal, Pooya Davoodi, and
Srinivasa S. Rao, Path Minima Queries in Dynamic Weighted Trees, To appear in Proceedings of 11th
International Symposium on Algorithms and Data Structures (WADS), 2011.

50 Chapter 3. Path Minima Queries

3.1 Introduction

In this chapter, we consider variants of the dynamic path minima problem for input
weighted trees. We preprocess a collection of input trees containing totally n nodes,
where each edge is associated with a weight from a totally ordered set. Our data
structures should support pathmin queries asking for the edge with minimum weight
along a query path in a tree. Different data structures can also support various subsets
of the update operations: update, insert, insert-leaf, contract, delete-leaf, link, and
cut (see Section 1.3.1 for the definition of these operations).

We consider the following three variants of the dynamic path minima problem:

• An input consists of a tree, and the operations pathmin, update, insert, insert-
leaf, and contract should be supported. We can support the operations on un-
rooted trees by choosing an arbitrary node as the root, designing data structures
for rooted trees. Moreover, we can design data structures for binary trees due to
existence of the transformation from rooted trees to binary trees (Section 1.5.3).

• An input consists of a tree, and the operations pathmin, insert-leaf, and delete-
leaf should be supported. The above discussion about unrooted trees, rooted
trees, and binary trees also apply to this variant of the problem.

• An input consists of a collection of trees, and the operations pathmin, link, and
cut should be supported.

We distinguish between three types of algorithms in path minima data structures,
depending on how algorithms perform computation on the edge-weights. In other
words, we study the dynamic path minima problem in three different models:

• The comparison model: The only allowed operations on the edge-weights are
comparisons.

• The word RAM model: Any standard RAM operations are allowed on the edge-
weights.

• The semigroup model: The edge-weights are from a semigroup. In this model,
pathmin queries ask for the product of the edge-weights on a query path, where
the product is the operator of the semigroup.

Except for computations on the edge-weights, our algorithms are in the unit-cost RAM
model with word size Θ(logn) bits.

3.1.1 Our Contributions

We present dynamic data structures for two variants of the dynamic path minima prob-
lem. In Section 3.2.1, for an input tree containing n nodes, we demonstrate that in
the comparison model, we can support path minima queries in Θ(logn/ log logn) time
while performing the operations update, insert, insert-leaf, and contract in Θ(logn)
amortized time. We also improve this data structure in the word RAM model such that
it can support the same update operations in O(logn/ log logn) time (Section 3.2.2).

3.2. Data Structures for Dynamic Weights 51

The optimality of the query times and the comparison-based update time are proved in
Section 3.4.

In Section 3.3, we show that the query time and the update time of the data struc-
tures of Section 3.2, can be improved if we only allow the operations insert-leaf and
delete-leaf. This will be shown through dynamizing the path minima data structure
given in [AS87]. This shows that in the semigroup model, path minima queries can be
supported in Θ(α(n)) semigroup operations while updating the data structure by in-
serting and deleting leaves takes O(1) amortized semigroup operations (Section 3.4).
We also give another data structure that achieves a trade-off between 4k− 1 query
time and O(nkαk(n)) update time for the same update operations, for a parameter k,
where k ≥ 1 (Section 3.3). We also show another approach to obtain O(1) time for all
the operations in the RAM model, which was already obtained in [AH00, KS08] (see
Section 3.3.3).

In Section 3.4, for an input collection of trees totally containing n nodes, we prove
that if we want to support link and cut in polylogarithmic time, we cannot hope for
answering path minima queries in faster than Ω(logn/ log logn) time in the cell probe
model. We also show that for logarithmic time for link and cut, the Θ(logn) query time
achieved by the dynamic trees of Sleator and Tarjan is the best possible. Furthermore,
we prove that with sub-logarithmic query time, obtaining logarithmic time for link and
cut is impossible.

3.2 Data Structures for Dynamic Weights

We present two data structures for the dynamic path minima problem for an input bi-
nary tree containing n nodes. These structures support the operations pathmin, update,
insert, insert-leaf, and contract. The first data structure is in the comparison model
and achieves Θ(logn/ log logn) query time, Θ(logn) time for update, and O(logn)
amortized time for insert, insert-leaf, and contract. The second data structure is in
the RAM model and achieves O(logn/ log logn) for all the above operations by uti-
lizing Q-heaps [FW94] (Section 1.5.4). Both of the structures are similar to the ones
in [KS08]. In the following, we first describe the comparison based structure, and then
we explain how to convert it to the RAM structure.

3.2.1 In the Comparison Model

We present a dynamic path minima data structure in the comparison model. First,
we describe how to preprocess an input binary tree to a data structure, and then we
demonstrate how to support the operations. In the preprocessing algorithm, we make a
recursive micro-macro decomposition of input trees (Section 1.5.3). Within each micro
tree, we precompute the answer of all possible queries. The topology structure of each
micro tree and its edge-weights determine a type for the micro tree. We also maintain
the edge-weights of each micro tree in a searchable data structure under insertions
and deletions of new edge-weights to facilitate updating the type of a micro tree after
performing an update operation on it. Path minima queries are supported recursively.

Let n be the size of an input tree. By choosing the size of each micro tree to
be O(logε n) in the decomposition, for small enough ε , we can make linear-sized

52 Chapter 3. Path Minima Queries

Table 3.1: Our contribution to the dynamic path minima problem. The table is divided
into three parts corresponding to three variants of the problem according to the sup-
ported update operations that are mentioned at the top of each part. For the first two
parts, the input is a tree containing n nodes. For the last part (with the update oper-
ations link and cut), the input is a collection of trees totally containing n nodes. The
lower bounds should be read like a conditional sentence. For example, the last row
of the table states that if the query time is O(logn/(log logn)2), then (logn)Ω(log logn)

update time is required. For the first row of the table, k is an arbitrary parameter,
where 1≤ k ≤ α(n).

Reference
Preprocessing Query

Space
Update

Modeltime time time

update operations: insert-leaf, delete-leaf

Theorem 3.3 O(nkαk(n)) 4k O(nkαk(n)) O(kαk(n)) Semigroup
Theorem 3.4 O(n) Θ(α(n)) O(n) O(1) Semigroup
Theorem 3.5

O(n) O(1) O(n) O(1) RAM[AH00, KS08]

update operations: update, insert, insert-leaf, contract

Theorem 3.1 O(n) Θ(logn
log logn) O(n) Θ(logn) Comparison

Theorem 3.2 O(n) Θ(logn
log logn) O(n) O(logn

log logn) RAM

update operations: link, cut

Section 3.4 − Ω(logn) − O(logn) Cell Probe
Section 3.4 − Ω(logn

log logn) − (logn)O(1) Cell Probe

Section 3.4 − O(logn
log logn) − Ω(log1+ε n) Cell Probe

Section 3.4 − O(logn
(log logn)2) − (logn)Ω(log logn) Cell Probe

lookup tables and we obtain O(logn/ log logn) levels of decomposition. Then queries
and updates can be supported in O(logn/ log logn) levels. At each level, a query takes
constant time, and an update takes O(log logn) time due to searching for an edge-
weight in a micro tree. Therefore, queries take O(logn/ log logn) time and updates
take O(logn) time. Amortization for updates is also used to overcome exceeding the
limit of the size of micro trees after insertions and deletions. In the following, we de-
scribe the details of our decomposition algorithm, the data structure, the lookup tables,
and the query and update algorithms.

Decomposition. Let T be the input binary tree. We decompose T into micro trees us-
ing Lemma 1.2, such that each micro tree has size O(logε n) and at most two boundary
nodes. Each micro tree is contracted to a super-node. A new tree T ′1 of size O(n/ logε n)
is built containing these super-nodes. For each path between the root of a micro tree
and the root of its parent micro tree, we put a super-edge between the correspond-
ing super-nodes in T ′1 . The weight of this super-edge in T ′1 is the minimum weight
along the corresponding path (Figure 3.1). We let T1 be a binarized version of T ′1 (Sec-

3.2. Data Structures for Dynamic Weights 53

e

µ1

µ2

u e′

c2

c1

contraction

Figure 3.1: The micro trees µ1 and µ2 are contracted to the nodes c1 and c2
respectively. The weight of the edge e′ is calculated as follows: w(e′) =
min{w(e),w(pathmin(u,r(µ2)))}.

tion 1.5.3). The decomposition continues recursively on T1. In level i, the tree Ti−1 is
decomposed, and the tree Ti is built, for i = 1, . . . , `, where T0 denotes T and ` is the
number of recursive levels. The size of the micro trees in all the levels and also the
size of T` is O(logε n), for some constant ε , where 0 < ε < 1. The number of recursive
levels, `, is O(logn/ log logn).

Data structure. The data structure consists of the following parts:

• We explicitly store all the trees T0, . . . ,T`.

• For each node in Ti, we store a pointer to the micro tree of Ti containing that
node, and the local ID (insertion time) in the micro tree.

• We represent each micro tree µ with the tuple (sµ , pµ ,rµ , |µ|) of size o(logn)
bits, where sµ , pµ , and rµ are arrays defined as follows. The array sµ is the
binary encoding of the topology of µ . The array pµ maintains the local IDs of
the nodes within µ , and enables us to find a given node inside µ . The array rµ

maintains the rank of the edge-weights according to the preorder traversal of µ .

• For each micro tree, we store a balanced binary search tree containing all the
weights of the micro tree. This allows us to find the rank of a new weight within
the micro tree under insertion in O(log(logε n)) time.

• For each micro tree µ of Ti, we store an array of pointers that point to the original
nodes in Ti given the local IDs.

Precomputed tables. We use lookup tables to perform each of the following op-
erations within a micro tree µ: pathmin, update, insert, insert-leaf, contract, LCA,
root and child-ancestor, where root returns the local ID of the root of µ; LCA re-
turns the local ID of the lowest common ancestor of two given nodes in µ; and child-
ancestor(u,v) returns the local ID of the child of u that is also an ancestor of v (if such

54 Chapter 3. Path Minima Queries

a child does not exist, returns null). Tables are indexed by the micro tree represen-
tation (sµ , pµ ,rµ , |µ|) and the arguments of the corresponding operation. To perform
update, insert, and insert-leaf within µ , we find the rank of the new weight among the
edge-weights of µ using its balanced binary search tree in O(log |µ|) = O(log logn)
time. This rank becomes an index for the corresponding tables. The following lemma
shows that the operations can be supported using the tables of size o(n) bits.

Lemma 3.1 Within a micro tree of size O(logε n), we can support pathmin, LCA,
root, child-ancestor, and moving a subtree inside the tree in O(1) time. The operations
update, insert, insert-leaf, and contract can be supported in O(log logn) time using the
balanced binary search tree of the micro tree and precomputed tables of total size o(n)
bits that can be constructed in o(n) time.

Proof. Let µ be the micro tree. The size of the lookup table used to perform pathmin
is analyzed as follows. Each entry of the table is a pointer to an edge of µ which can
be stored using O(log logn) bits. The index to the table consists of (i) (sµ , pµ ,rµ , |µ|),
and (ii) two indexes in the range [1 · · · |µ|] which represent two pointers to query nodes.
The number of different arrays sµ is 2|µ|. The number of different arrays pµ and rµ

is O(|µ|!). Therefore, the table is stored in O(2|µ| · (|µ|!) · (|µ|3) · (log |µ|)) = o(n)
bits.

In the lookup table used for update-weight, each entry is an array rµ which main-
tains the rank of the edge-weights of µ after updating a weight. The index to the
table consists of (i) (sµ , pµ ,rµ , |µ|), (ii) an index in the range [1 · · · |µ|] to an edge to
be updated, and (iii) the rank of the new weight. Therefore, the table can be stored
in O(2|µ| · (|µ|!) · (|µ|4) · (log |µ|)) = o(n) bits.

In the lookup table used for add-leaf, each entry is a four-tuple (sµ , pµ ,rµ , |µ|)
which maintains the representation of µ after adding the new leaf. The index to the
table consists of (i) (sµ , pµ ,rµ , |µ|), (ii) an index in the range [1 · · · |µ|] to a vertex
adjacent to the new edge, and (iii) the rank of the new weight. Therefore, the table can
be stored in O(2|µ| · (|µ|!) · (|µ|4) · (log |µ|)) = o(n) bits.

The size of the other two tables used for LCA and child-ancestor is analyzed sim-
ilarly. Since the total number of entries in all the tables is less than o(2|µ|

2
) and each

entry can be computed in time O(|µ|), all the tables can be constructed in o(n) time.
2

Supporting queries. The query pathmin(u,v) can be answered using the lookup ta-
bles, if u and v are in the same micro tree in T . When u and v are not in the same micro
tree, we divide the query into subqueries according to our recursive decomposition as
follows. Let c be the LCA of u and v in T . There are three micro trees in T that each
one contains one of u, v, and c. Each of these three micro trees contains a subquery that
can be answered using the lookup tables. In the next level, we consider three micro
trees of T1, each one contains a super-node corresponding to one of the three micro
trees that we considered in the previous level. Then, we solve the remaining parts
of the query that are within these three micro trees. This query algorithm continues
for k ≤ ` levels, until the two micro trees containing u and v are in the same micro
tree (Figure 3.2). In our implementation, we first compute the LCA node of each level

3.2. Data Structures for Dynamic Weights 55

u

v

µ

LCA

Figure 3.2: Decomposition of the path minima query between the nodes u and v. The
micro tree µ in some level of the decomposition contains u, v, and the LCA of u and v.
Every thick path is a subquery which is answered by precomputation within µ . Every
thin path is a subquery which is answered recursively.

when we return from the previous level. In this way, we can avoid to construct an LCA
structure for each Ti. In each level, the three subqueries within the micro trees can be
answered in O(1) time using Lemma 3.1. Thus, we achieve O(logn/ log logn) query
time.

Updating the edge-weights. We perform update(e,w) by updating the data structure
in all the ` levels. Without loss of generality, assume that e = (u,v), where u is the
parent of v. Let µ be the micro tree in T0 that contains v. We start to update from
the first level, where the tree is T : (1) Update the weight of e in T . (2) If v is not the
root of µ , then we update µ using Lemma 3.1. If v is the root of µ , i.e., e connects
µ to its parent micro tree, we do not need to update any micro tree. (3) Perform
check-update(µ) which recursively updates the edge-weights in T1 between µ and its
child micro trees as follows. We check if pathmin along the path between the root
of µ and the root of each child micro tree of µ needs to be updated. We can check
this using pathmin within µ . If this is the case, for each one, we go to the next level

56 Chapter 3. Path Minima Queries

and perform the three-step procedure on T1 recursively. Since each micro tree has at
most one boundary node that is not the root, then at most one of the child micro trees
of µ can propagate the update to the next level, and therefore the number of updates
does not grow exponentially. Step 2 takes O(log logn) time, and thus update takes
totally O(logn) time in the worst case.

Insertion. We perform insert(e,v,w) using a three-step procedure similar to update.
Let µ be the micro tree in T that contains u2, where e = (u1,u2) and u1 is the parent
of u2. We start from the first level, where the tree is T : (1) To handle insert in the
transformed binary tree, we first insert v along e in µ . Note that if u2 is the root of µ ,
then v is inserted as the new root of µ . This can be done in O(log logn) time using
Lemma 3.1. (2) If |µ| exceeds the maximum limit 3 logε n, then we split µ into k ≤ 4
new micro trees, each of size at most 2 logε n+ 1 (see Section 1.5.3). These k micro
trees are contracted to nodes that should be in T1. One of the new micro trees that con-
tains the root of µ corresponds to the node that is already in T1 for µ . The other k−1
new micro trees are contracted and inserted into T1 with appropriate edge-weights, us-
ing insert recursively. Let µ ′ be the new micro tree that contains the boundary node
of µ which is not the root of µ . We perform check-update(µ ′) to recursively update
the edge weights in T1 between µ ′ and its child micro trees. (3) Otherwise, i.e., if |µ|
does not exceed the maximum limit, we do check-update(µ) to recursively update the
edge weights in T1 between µ and its child micro trees, which takes O(logn) time.

To perform insert-leaf(u,v,w), we use the algorithm of insert with the following
changes. In step (1), we insert v as a child of u. This can be done in O(log logn) time.
The step (3) is not required.

A sequence of n insertions into T0, can at most create O(n/ logε n) micro
trees (since any created micro tree needs at least logε n) node insertions before it
splits again). Since the number of nodes in T0,T1, . . . ,T` is geometrically decreas-
ing, the total number of micro tree splits is O(n/ logε n). Because each micro tree
split takes O(logε n) time, the amortized time per insertion is O(1) for handling micro
splits. Thus, both insert and insert-leaf can be performed in O(logn) amortized time.

Edge contraction. We perform contract(e) by marking v as contracted and updating
the weight of e to ∞ by performing update. When the number of marked edges exceeds
half of all the edges, we build the whole structure from scratch using insert-leaf for the
nodes that are not marked and the edges that do not have weight of ∞. Thus, the
amortized deletion time is the same as insertion time.

Theorem 3.1 There exists a dynamic path minima data structure for an input tree of n
nodes in the comparison model, supporting pathmin in O(logn/ log logn) time, update
in O(logn) time, insert, insert-leaf, and contract in O(logn/ log logn) amortized time
using O(n) space.

3.2.2 In the RAM Model

We present a dynamic path minima data structure in the RAM model. Indeed, we
exploit the RAM model for improving the time to support updating the edge-weights

3.3. Data structures for Dynamic Leaves 57

to O(logn/ log logn) from O(logn) in the data structure of Theorem 3.1. The bot-
tleneck in our comparison based data structure is that we maintain a balanced binary
search tree for the edge-weights within a micro tree. This search tree is used to find the
rank of a weight among the weights that are currently in the micro tree. The search for
a weight in this search tree takes O(log logn) time. Instead of this search tree, in the
RAM model, we can maintain the edge weights of the micro tree in a Q-heap [FW94]
to find the rank of a weight in O(1) time (Lemma 1.3). We obtain the following data
structure.

Theorem 3.2 There exists a dynamic path minima data structure for an input tree of
n nodes in the RAM model, which supports pathmin and update in O(logn/ log logn)
time, and insert, insert-leaf and contract in O(logn/ log logn) amortized time us-
ing O(n) space.

3.3 Data structures for Dynamic Leaves

We present data structures that support path minima queries under inserting and delet-
ing leaves. First, we consider the problem in the semigroup model, where the edge-
weights are from a semigroup. Of course, such data structures work in the compari-
son model as well (see the explanation about the 1D-RMQ problem in the semigroup
model in Section 1.2.1). We also consider the problem in the RAM model, and we
give another approach to achieve the known upper bound O(1) time for all the oper-
ations [AH00, KS08]. Notice that, the data structures of this section do not support
updating of existing edge-weights.

3.3.1 Query-Update Trade-off in the Semigroup Model

In the semigroup model, we show how to maintain trees containing n nodes to sup-
port path minima queries using 4k− 1 semigroup operations under insertions and
deletions of leaves performed in O(kαk(n)) semigroup operations, for a parameter k,
where 1 ≤ k ≤ α(n). Our data structure is a dynamized version of the path minima
structure of Alon and Schieber [AS87]. They showed how to support path minima
queries in 4k− 1 semigroup operations after O(nkαk(n)) preprocessing time [AS87].
We first demonstrate the data structure, and then we explain how it supports queries
and updates. At the end, we analyze the complexities of the operations.

Data structure. Every pathmin(u,v) query can be reduced to two subqueries
pathmin(c,u) and pathmin(c,v), where c is the LCA of u and v. Therefore, we con-
struct a dynamic LCA data structure for the tree [CH05], and we only consider queries
pathmin(u,v), where u is an ancestor of v. Let k > 0 be an input parameter to the
preprocessing algorithm.

The data structure is recursive. We partition an input tree into micro trees using
the micro-macro decomposition explained in Section 1.5.3 with parameter k. Also, we
partition each micro tree into smaller micro trees recursively with parameter k. The
decomposition of micro trees into smaller micro trees continues until the size of each
micro tree becomes constant. In the last level, we precompute the answer of all possi-
ble queries within each micro tree. Recall that in this decomposition, every micro tree

58 Chapter 3. Path Minima Queries

has at most two boundary nodes (Lemma 1.2). Also, we partition the macro tree using
the micro-macro decomposition recursively with parameter k−1. The data structures
for the micro trees and the macro tree are constructed recursively with appropriate
parameter.

Every query q = pathmin(u,v) is denoted as a small query if both of u and v lie
within the same micro tree, and is denoted as a large query if u and v do not lie within
the same micro tree. Notice that u is an ancestor of v by assumption. We consider large
queries, while small queries are supported recursively. The decomposition divides q
into at most three subqueries, each one of three different types: (1) a small subquery
between v and the root of the micro tree containing v; (2) a small subquery between
u and a boundary node of the micro tree containing u; (3) a large subquery that is
between the root of the micro tree containing v and a boundary node of the micro tree
containing u.

Recall that small queries are supported recursively. But queries of types 1 and 2
are some special cases of small queries (one side of them is either at a root or a bound-
ary node) that can be answered in constant time by precomputing the answer of all
such queries. Notice that no semigroup operation is required to answer each of these
queries. Queries of type 3 are recursively supported using the macro tree with param-
eter k−1. Hence, we divide a large query into at most three subqueries, one of which
is of type 3, and then we divide the subquery of type 3 into at most three subqueries
recursively.

In addition to the number of semigroup operations, finding the proper memory
cells is also a factor that affects the query time. A small query that lies within a micro
tree may become a large query at some level of the decomposition. We need to find
this level, without going through all the levels. To find this level quickly, we make a
data structure as follows.

Consider the decomposition of the input tree T into micro trees, and each micro
tree recursively into smaller micro trees. We build a tree LT corresponding to such a
decomposition. Every node in LT corresponds to a micro tree in the decomposition.
The root of LT corresponds to the tree T . Each subtree of the root of LT corresponds to
the decomposition of each micro tree of the first level of the decomposition recursively.
We construct a dynamic LCA data structure [CH05] for LT . Using this data structure,
we can find the top most level of the decomposition in which a small query splits into
subqueries.

The size of micro trees and macro trees. We set the size of the micro trees and
the macro tree in the decomposition, such that we achieve the claimed bounds. Recall
that k is the input parameter to the preprocessing algorithm.

The input tree is partitioned into O(n/αk−1(n)) micro trees, each of
size O(αk−1(n)). Hence, the size of the macro tree is O(n/αk−1(n)). In the second
level, each micro tree is partitioned recursively into O(αk−1(n)/αk−1(αk−1(n))) micro
trees, each of size O(αk−1(αk−1(n))). In the last level, the size of each micro tree is
constant. Hence, the number of levels is O(αk(n)) (Section 1.5.5).

As previously described, the partitioning of the input tree with parameter k is per-
formed recursively on the macro tree with parameter k− 1. Let n′ = O(n/αk−1(n))
denote the size of the macro tree. Therefore, the macro tree is partitioned

3.3. Data structures for Dynamic Leaves 59

into O(n′/αk−2(n′)) micro trees, each of size O(αk−2(n′)).

Base data structure. Our recursive data structure is built on base data structures
in the last level of the recursion. More precisely, the data structures that we make
for the macro trees are constructed recursively with parameter k− 1. In the last level
of the recursion where k = 1, we build a base data structure. This data structure has
size O(n logn) and supports path minima queries using at most 1 semigroup operations,
and performs updates in O(logn) amortized time. In the following, we present the data
structure.

We decompose the input tree T into two micro trees of size n/3 and 2n/3. We
recursively decompose each micro tree into two micro trees similarly. Hence, the
number of levels of the decomposition is O(logn). There is no macro tree in the
decomposition. We precompute the answer of queries of type 1 and 2 within each
micro tree. Also, we precompute the answer of all possible queries within the micro
trees of the last level. We also make a dynamic LCA data structure for T , and a
dynamic LCA data structure for LT .

Our decomposition partitions a query into at most two subqueries, each of type 1
or 2. Therefore, a query can be answered in at most 1 semigroup operations. The
appropriate level of the decomposition, in which two micro trees contain the subqueries
can be found using the LCA data structure of LT in constant time.

Suppose that we want to insert a new leaf ` adjacent to a node u in T such that
the weight of the new edge between ` and u is w. We insert ` into each of the micro
trees containing u in all the levels of the decomposition. Let µ be the micro tree
containing u in level i of the decomposition. We precompute and store the answer of
the query pathmin(rµ , `), where rµ is the root of µ . Notice that this query is of type 1.
The answer is determined by min{w,weight(pathmin(rµ ,u))}. We precompute this
answer for all the levels in O(logn) time.

After inserting `, if the size of a micro tree in some level i exceeds the threshold,
then we split it into a constant number of smaller micro trees (see Section 1.5.3). Then
at each level below level i, the appropriate micro trees split. If i = 1, it can be shown
that the total cost of the splits in all the levels is O(n logn). We amortize the cost
of all the splits over the linear number of insertions performed to make a micro tree
full. Thus, the cost of a split is O(logn) amortized, and an insertion takes O(logn)
amortized time.

Theorem 3.3 For an input tree containing n nodes, there exists a data structure in the
semigroup model using O(nkαk(n)) space, that supports path minima queries in 4k−1
semigroup operations, and performs insertions and deletions of leaves in O(kαk(n))
amortized update time, for a parameter k, where 1≤ k ≤ α(n).

Proof. We prove the theorem by induction on k, that is, we assume that the bounds
hold for k′ < k, and then we prove them for k. The base of the induction is k = 1,
which was proved by the base structure.

Query time. First we consider queries of form pathmin(u,v), where u is an ances-
tor of v. As explained before, the decomposition divides a query recursively into at
most three subqueries. The number of recursive levels in the division of queries is at

60 Chapter 3. Path Minima Queries

most k. Subqueries of types 1 and 2 are supported without performing any semigroup
operations. The number of semigroup operations to answer a query is derived from the
equation tq(n,k) = 2+ tq(n/αk−1(n),k−1), where tq(n,1) = 1 (see the base structure).
Therefore, the query time is 2k−1.

To answer a general query pathmin(u,v), we combine the answer of the subqueries
pathmin(c,u) and pathmin(c,v), where c is the LCA of u and v. Each subquery is
answered in 2k−1 operation. Therefore, the overall query time is 4k−1.

Insertion. We perform the insertion of a new leaf into the input tree in
three stages: (1) we insert the leaf into the appropriate micro tree µ (recall
that |µ|= O(αk−1(n))); (2) we split µ if its size exceeds the threshold; and (3) we
insert the new boundary nodes into the macro tree (notice that splitting µ results in
making new boundary nodes). The cost of the first stage is calculated recursively. We
amortize the cost of the second stage over all the insertions performed in µ , as de-
scribed later. The cost of the third stage is O((k− 1)αk−1(n/αk−1(n))) by induction
on k. We amortize this cost over all the insertions into µ , and we obtain O(k) amor-
tized time. In the following, we show that the amortized cost of a split is constant, and
then we add up the costs of all the three stages.

We split µ into a constant number of smaller micro trees in linear time, using the
algorithm described in Section 1.5.3. Then, the appropriate micro trees contained in µ

at the level below should also split. The number of such micro trees which split is
constant, say c > 0. Let n′ be the size of µ . Thus, the cost of splitting µ is tSPLIT(n′) =
O(n′)+ c · tSPLIT(αk−1(n′)). It can be shown that tSPLIT(n′,k) = O(n′). We amortize
this cost over linear insertions into µ . Therefore, the cost of split is O(1) amortized.

Now, we add up the cost of all the three stages using the equation tINS(n,k) =
tINS(αk−1(n),k)+O(1)+O(k). It can be shown that tINS(n,k) = O(kαk(n)). Also,
updating the LCA data structures can be done in constant time. Thus, the overall
insertion time is O(kαk(n)).

Space. The data structure for the input tree consists of the data structures constructed
for each micro tree of the first level (which have size O(αk−1(n))). It also includes the
data structure of the macro tree in the first level, which has size O(n/αk−1(n) · (k−1) ·
αk−1((n/αk−1(n))) = O(nk) derived from the induction hypothesis on k. Therefore
the overall space is calculated by the equation S(n,k) = (n/αk−1(n)) ·S(αk−1(n),k)+
O(nk). It can be shown that S(n,k) = O(nkαk(n)).

2

3.3.2 Constant Update Time in the Semigroup Model

We describe a linear space data structure which supports queries in O(α(n)) time, and
insertions and deletions of leaves in O(1) amortized time for an input tree containing n
nodes. Notice that if we simply replace k with α(n) in the complexities of the structure
of Theorem 3.3, we obtain O(α(n) query time, O(α(n)) update time, and O(nα(n))
space. Here, we improve the update time and space to O(1) and O(n) respectively.

We decompose the input tree T into O(n/α2(n)) micro trees of size O(α2(n))
using the micro-macro decomposition of Lemma 1.2. The macro tree which has

3.3. Data structures for Dynamic Leaves 61

size O(n/α2(n)) is represented using the structure of Theorem 3.3 for k = α(n). Re-
call that the data structure of Theorem 3.3 supports path minima queries and updates
within the macro tree in O(α(n)) time. We then decompose each of the micro trees
into micro-micro trees of size O(α(n)) with a macro-micro tree of size O(α(n)). Path
minima queries within a micro tree µ of size α2(n) can be supported in O(α(n)) by
traversing the appropriate micro-micro trees and the macro-micro tree.

Inserting a leaf into µ can be supported in O(1) time, by simply performing the
insertion into the appropriate micro-micro tree. If the size of a micro-micro tree ex-
ceeds its maximum threshold, we split it and insert new leaves into the macro-micro
tree all in O(α(n)) time. If the size of a micro tree exceeds its maximum threshold,
we again split it and insert new leaves into the structure of the macro tree which sup-
ports O(α(n)) insertion time. Therefore, the insertion time is constant amortized.

The required space to store the data structure of the macro tree
is O(n/α2(n) ·α(n)) = O(n). The micro-micro trees and the macro-micro trees
are stored explicitly using O(n) space.

Theorem 3.4 For an input tree of n nodes, there exists a dynamic path minima data
structure in the semigroup model using O(n) space, that supports pathmin in O(α(n))
time, insert-leaf and delete-leaf in amortized O(1) time.

3.3.3 Constant Query and Update Time in the RAM Model

We present a dynamic data structure in the RAM model that supports path minima
queries in O(1) time, and insertions and deletions of leaves in O(1) amortized time.
This is not a new result due to [AH00,KS08], but here, it is achieved by using another
approach.

We decompose the tree into micro trees of size O(logn) with a macro tree of
size O(n/ logn) using the micro-macro decomposition of Lemma 1.2. We again de-
compose each micro tree into micro-micro trees of size O(log logn) with a macro-
micro tree of size O(logn/ log logn). The operations within each micro-micro tree is
supported using precomputed tables and Q-heaps. We do not store any representation
for the micro trees. We represent the macro tree and each macro-micro.

The decomposition induces a division of queries to subqueries that are contained
within a micro-micro tree, a macro-micro tree or the macro tree. The subqueries within
the micro-micro trees are answered using precomputed tables in O(1) time. The sub-
queries within the macro-micro trees and the macro tree are answered using the corre-
sponding Cartesian trees in O(1) time. Since the total number of subqueries is O(1),
we can compute the answer in O(1) time.

To perform insert-leaf, we add the new leaf into the appropriate micro-micro tree
using precomputed tables. Then, if the size of the micro tree exceeds its maximum
threshold, we split it into at most four micro trees (Section 1.5.3). The new boundary
nodes are inserted into the appropriate macro-micro tree (described later). If the size
of the macro-micro tree also exceeds its maximum limit, we split it into at most four
macro-micro trees similarly. During the split of a macro-micro tree that we remove at
most three edges, we also split the micro-micro trees containing these three edges and
distribute the micro-micro trees among the new macro-micro trees. Then the nodes
that connect the new macro-micro trees to each other, are inserted into the macro tree.

62 Chapter 3. Path Minima Queries

We have shown that new leaves can be inserted into Cartesian trees in logarithmic
time (Lemma 1.1). The following lemma shows that, during the split, the new nodes
can be inserted into the macro-micro trees as leaves, which is similarly true for the
macro tree. This is our main observation.

Lemma 3.2 When a micro-micro tree is split, we can insert the new boundary nodes
by performing insert-leaf using the Cartesian tree of the corresponding macro-micro
tree.

Proof. Lemma 1.1 explains how we can insert a leaf into the Cartesian tree in loga-
rithmic time. We only need to show that the new boundary nodes can be inserted by
performing the same operation insert-leaf. Let b1 and b2 be the two boundary nodes
of a micro-micro tree, and let x be a new boundary node as a result of splitting the
micro-micro tree. Recall that the edge (b1,b2) in the macro-micro tree is the path
minima along the path between b1 and b2 in the micro-micro tree. Let w be the weight
of (b1,b2). If x is not on the path between b1 and b2, then it is a leaf in the macro-micro
tree. Otherwise, x splits the edge (b1,b2) into two edges (b1,x) and (b2,x). Obviously
the weight of one of these two edges, w.l.o.g. (b1,x), is equal to w, and the other one
has a weight w′, where w′ ≥ w. Consider the subtree S of the Cartesian tree rooted at
the child of (b1,b2) that has b2 as a descendant. Then x is a leaf, adjacent to b2, in the
part of the macro-micro tree corresponding to S. Thus, (b2,x) can be inserted into the
Cartesian tree as a leaf. 2

The precomputed tables and the representation of the micro-micro trees are similar
to Section 3.2.1. To perform delete-leaf, we simply mark the deleted leaves because
they have no effect on the result of future operations. Using global rebuilding for
delete-leaf and the amortized analysis, we achieve the following data structure.

We represent the Cartesian trees by using the comparison based structure
of [DLW09a], which supports O(1) query time and logarithmic leaf insertion and dele-
tion time. Therefore, Lemma 3.2 allows us to achieve the following.

Theorem 3.5 There exists a dynamic path minima data structure for an input tree of n
nodes using O(n) space that supports pathmin in O(1) time, and supports insert-leaf
and delete-leaf in amortized O(1) time.

3.4 Lower bounds

In this section, we show some lower bounds for the query time and update time of two
variants of the dynamic path minima problem by giving reductions from other prob-
lems. First, we draw attention to the fact that the dynamic 1D-RMQ problem defined
in Section 1.2.1, can be trivially solved by the dynamic path minima problem using
only the operations pathmin and update. The lower bounds proved by this reduction
in different models, show the optimality of some of our data structures. Then, we con-
sider the variant of the dynamic path minima problem, where the operations link and
cut are available. The proved lower bounds for this problem show that the dynamic
trees of Sleator and Tarjan achieves the best possible results only if we want fast update
times, say as fast as query times, but not if we want a query time faster than the update
time. In the following, let tq denote the query time.

3.4. Lower bounds 63

Reduction from dynamic 1D-RMQ. As mentioned above, the dynamic 1D-RMQ
problem defined in Section 1.2.1, can be trivially solved by the dynamic path minima
problem using only the operations pathmin and update. Indeed, the dynamic 1D-
RMQ problem is a special case of the dynamic path minima problem, where the input
tree is a path. Therefore, all the three lower bounds mentioned in Section 1.2.1, for
the dynamic 1D-RMQ problem also apply to the variant of the dynamic path minima
problem, where the only supported update operation is update as follows. Let tu denote
the running time of update.

In the cell probe model with word size b bits, path minima queries on a
tree containing n nodes require Ω(logn/ log(tub logn)) time, where tu is the time
for update. For example, this proves that update time (logn)O(1) implies query
time Ω(logn/ log logn).

In the comparison model, if update performs at most tu comparisons, then path
minima queries require at least n/(e22tu)− 1 comparisons. For example, this proves
that if path minima queries use (logn)O(1) comparisons then updates require Ω(logn)
comparisons.

In the semigroup model, we obtain the lower bounds tq log(tu/tq) = Ω(logn)
and tu log(tq/tu) = Ω(logn). For example, this proves that with update time O(logn),
path minima queries would require time Ω(logn) and vice versa.

3.4.1 Dynamic Edges in Weighted Forests

We prove cell probe lower bounds for the most general variant of the dynamic
path minima problem, where all the update operations including link and cut are
provided. Let tu denote the maximum of the running time of link and cut. We
show that if we want to support link and cut in a time within a constant fac-
tor of the query time, then tq = Ω(logn). Moreover, if we want a fast query
time tq = o(logn), then one of link or cut cannot be supported in O(logn) time, for
example, if tq = O(logn/ log logn), then tu = Ω(log1+ε n) for some ε > 0. We also
show that O(logn/ log logn) query time is the best achievable for polylogarithmic up-
date time, for example, a faster query time O(logn/(log logn)2) causes tu to blow-up
to (logn)Ω(log logn).

Reduction from fully dynamic connectivity. The fully dynamic connectivity prob-
lem on forests is defined as follows. We have to maintain a collection (forest) of
undirected trees under three operations connect, link, and cut, where connect(x,y)
returns true if there exists a path between the nodes x and y, and returns false oth-
erwise. Let tcon be the running time of connect, and tupdate be the maximum of
the running times of link and cut. Pǎtraşcu and Demaine [PD06] proved the lower
bound tcon log(2+ tupdate/tcon) = Ω(logn) in the cell probe model.

This problem is reduced to the dynamic path minima problem as follows. We
put a dummy root r on top of the forest, and connect r to an arbitrary node of each
tree with an edge of weight −∞. Thus the forest becomes a tree. For this tree, we
construct a dynamic path minima data structure. The answer to connect(x,y) is false
iff the answer to pathmin(x,y) is an edge of weight −∞. To perform link(x,y), we first
run pathmin(x,r) to find the edge e of weight −∞ on the path from r to x. Then we
remove e and insert the edge (x,y). To perform cut(x,y), we first run pathmin(x,r) to

64 Chapter 3. Path Minima Queries

find the edge e of weight −∞. Then we change the weight of e to zero, and the weight
of (x,y) to −∞. Now, by performing pathmin(x,r), we figure out that x is connected
to r through y, or y is connected to r through x. Without loss of generality, assume
that x is connected to r through y. Therefore, we delete the edge (x,y), insert (x,r)
with weight −∞, and change the weight of e back to −∞.

Thus, we obtain the trade-off tq log((tq + tu)/tq)) = Ω(logn). For example, we
conclude that if tq = O(logn/ log logn), then tu = Ω(log1+ε n), for some ε > 0. We
can also show that if tu = O(tq), then tq = Ω(logn).

Reduction from boolean union-find. The boolean union-find problem is maintain-
ing a collection of disjoint sets under the following operations: find(x,A): returns true
if x∈A, and returns false otherwise; union(A,B): returns a new set containing the union
of the disjoint sets A and B. Kaplan, Shafrir, and Tarjan [KST02] proved the trade-
off tfind = Ω(logn

log tunion
) for this problem in the cell probe model, where tfind and tunion are

the running time of find and union.
The incremental connectivity problem is the fully dynamic connectivity problem

without the operation cut. The boolean union-find problem is trivially reduced to the
incremental connectivity problem. The incremental connectivity problem is reduced
to the dynamic path minima problem with the same reduction used above.

Therefore, we obtain tq = Ω(logn/ log(tq + tu)). We can conclude that
when tq = O(logn/(log logn)2), slightly less than O(logn/ log logn), then the running
time of tu blows-up to (logn)Ω(log logn).

3.5 Open Problems

There are several interesting questions related to the dynamic path minima problem
that remain open. In this section, update time denotes the maximum of the running
time of all the required update operations. In the most general setting, where all the
operations are required, the only known solution is the dynamic trees (link-cut) trees
of Sleator and Tarjan [ST83]. They can support all the operations in the semigroup
model, using two basic operations root and evert in O(logn) amortized time. In the
cell probe model, Pǎtraşcu and Demaine [PD06] proved, by reduction from the fully
dynamic connectivity problem, that root is an expensive operation and link-cut trees of
Sleator and Tarjan are optimal if we want to support root. It is not clear that if we can
improve the link-cut trees by not using root. Pǎtraşcu and Thorup [PT06] conjectured
that reducing the update time for dynamic data structures below the optimal query time
is impossible, without a large blow-up in the query complexity. This conjecture and
the lower bounds of Section 3.4 show that for logarithmic update time, link-cut trees
are optimal in the RAM model. We list the following three open problems:

• Can we achieve O(logn/ log logn) query time and O(log1+ε n/ log logn) update
time? Notice that this upper bound touches the lower bound curve proved in
Section 3.4.

• If we require the operations link and update, can we obtain O(logn/ log logn)
query time and O(logn) update time in the comparison model,
or O(logn/ log logn) for both the query time and update time in the RAM

3.5. Open Problems 65

model? The only structure that solves this problem is the link-cut trees that
give logarithmic bounds. Note that our structures in Section 3.2 obtained these
bounds by supporting insert, insert-leaf, and contract instead of link.

• If the only required update operation is link, can we achieve O(α(n)) query time
and O(1) update time in the semigroup model and the comparison model? This
is already known in the RAM model [AH00, KS08]. Recall that in the static
case, with linear preprocessing time, the query time is Ω(α(n)) [AS87, Pet06].

Chapter 4

Range Diameter Queries

Abstract. The range diameter problem is considered in this chapter. The problem
asks “which two points are farthest away in an orthogonal range within a point set?”.
The problem is studied for point sets in the plane. We step forward to address some
questions about the space-efficiency of range diameter data structures such as: can
we achieve sub-quadratic space to support queries in constant time? how fast can we
answer a query using linear space? What are the special point sets, for which we can
support queries in logarithmic time using linear space?

For an input point set of size n in the plane, we provide support for the hardness
of the range diameter problem by showing a reduction from the set intersection prob-
lem. We slightly generalize an existing folklore conjecture on the hardness of the set
intersection problem, thereby suggesting a lower bound of Ω̃(n2) for the size of any
data structure that supports range diameter queries in O(1) time. We also prove a
lower bound for a related problem which asks to find the furthest points in two given
vertically-separated convex polygons for any arbitrary representation of them. Finally,
we show that range diameter queries for convex polygons can be supported in logarith-
mic time using an O(n+m logm)-space data structure, where m is the total modality
of convex polygons.

This is a joint work with Michiel Smid (Carleton University) and Freek van Walderveen
(MADALGO, Aarhus University).

68 Chapter 4. Range Diameter Queries

4.1 Introduction

In this chapter, we consider the two dimensional (2D) range diameter problem. We
preprocess a set of n points from R2 into a data structure such that given an orthogonal
range query, we can find the two furthest points within the query efficiently.

As mentioned in Section 1.4, the standard divide and conquer technique to partition
a query to subqueries, and combine (aggregate) the answer of the subqueries to obtain
the final result, does not solve the range diameter problem. This property causes that
the range diameter data structures need to store a lot of information about the relation
of subqueries to each other in order to support the queries fast. In this chapter, we take
a step forward to show this difficulty of the problem by relating it to a fundamental
data structure problem that is popularly conjectured to be hard. We also prove a lower
bound for another problem which is related to the range diameter problem. At the
end, we consider the class of convex point sets for which we present a range diameter
data structure that can overcome the difficulty of the problem depending of the total
modality of input convex polygons.

4.1.1 Our Contributions

In Section 4.2, we give a reduction from the set intersection problem to the range
diameter problem. The former problem is conjectured to need quadratic space for
constant query time. This problem has fundamental applications in information re-
trieval [CP10a, PR10]. Assuming the conjecture in a stronger computational model,
our reduction suggests a lower bound of Ω̃(n2) space for O(1) query time for general
point sets. A general version of the conjecture implies Ω̃((n/k)2) space for Õ(k) query
time, for a parameter k where 1≤ k ≤ n.

In Section 4.3, we prove a lower bound for a related problem, where we have to
find the two furthest points in two given convex polygons that are vertically separated.
We prove that for any independent representation of the two polygons, any algorithm
needs time nearly linear in the number of vertices of the smallest polygon. This lower
bound not only addresses an open problem mentioned by Edelsbrunner [Ede85, Sec-
tion 4], but might also give a direction towards proving the lower bound of Section 4.2
unconditionally.

In Section 4.4, we look at convex polygons by paying attention to their total modal-
ity, which is the total number of local maxima in the sequence of distances from each
vertex to the other vertices. We present a data structure of size O(n+m logm) support-
ing range diameter queries in O(logn) time, where m is the total modality of inputs.
This data structure beats the conditional lower bound proved in Section 4.2, when the
total modality is O(n2−ε).

4.2 Conditional Lower Bound: Relation to Set Intersection

In this section, we show that range diameter queries in the plane can verify the dis-
jointness of two sets among a collection of sets. The latter problem is known as the set
intersection problem. Our reduction implies conditional lower bounds for the range
diameter problem. In the following, we define the set intersection problem, and then

4.2. Conditional Lower Bound: Relation to Set Intersection 69

we present the reduction algorithm. At the end, we explain the lower bounds obtained
by this reduction.

Problem 4.1 The set intersection problem with parameters (m,N,U) asks to prepro-
cess m sets S1,S2, . . . ,Sm⊆ [U], where ∑

m
i=1 |Si|=N such that given two query indexes i

and j, we can efficiently verify if the sets Si and S j are disjoint or not.

A naive solution would be tabulating the answer of disjointness for every pair of
sets. The size of this table is O(m2) and the query time will be O(1). Notice that
we can assume m ≤ N. Cohen and Porat [CP10a, CP10b] gave a data structure of
size O((N/k)2) which supports queries in O(k) time. They tabulate the answer of the
queries for pairs of sets where both sets have at least k elements. To answer a query,
if any of Si or S j, say Si, has less than k elements, they search for each element of Si

in S j, each in constant time using the linear perfect hashing of [Pag00].
In the following theorem, we give a reduction from the set intersection problem to

the 2D range diameter problem.

Theorem 4.1 Given a data structure that solves the 2D range diameter problem for
any point set of size n using s(n) space and t(n) query time, we can solve the set
intersection problem with parameters (m,N,U) using s(2N) space and t(2N) query
time.

Proof. For the set intersection problem, we are given m sets S1,S2, . . . ,Sm ⊆ [U],
where ∑

m
i=1 |Si| = N. We construct a point set of size 2N, and we show that the an-

swer to each of the m2 set intersection queries can be found using the answer to an
orthogonal range diameter query.

We map each element e∈ Si to two points positioned on the first and third quadrant
of the circle ci with radius ri centred on (0,0). The positions are determined by the two
intersection points of the line y= ex with ci (see Figure 4.1). It is clear that the distance
between the two points corresponding to e is 2 ·ri. Let ri = 2i−1 for i= 1, . . . ,m. Notice
that for e ∈ Si and e ∈ S j, the distance between the corresponding points on the first
quadrant of ci and the third quadrant of c j is ri+r j. By the triangle inequality, for e∈ Si

and e′ ∈ S j, where e 6= e′, the distance between the corresponding points of e and e′ on
the first quadrant of ci and the third quadrant of c j is less than ri + r j. Therefore, to
verify the disjointness of Si and S j, we make a rectangular range query with bottom-
left point (−ri,−ri) and top-right point (r j,r j). If the diameter within this rectangle
is ri + r j, then there is a common element in Si and S j, and if the diameter is smaller
than ri + r j, then Si and S j are disjoint. 2

Using the above reduction, we prove a conditional lower bound based on a conjec-
ture for the set intersection problem. Pǎtraşcu and Roditty state the following folklore
conjecture [PR10].

Conjecture 4.1 ([PR10, Conjecture 3]) Any data structure that solves the set inter-
section problem with parameters (m,N, logc m) for a large enough constant c, in O(1)
query time, requires Ω̃(m2) space.

We generalize this conjecture to the following, which then implies a time-space
trade-off for the range diameter problem in terms of conditional lower bounds (see
also [PR10]).

70 Chapter 4. Range Diameter Queries

S1 S2 S3 S4

Figure 4.1: Example reduction for Theorem 4.1. The dashed point pair forms the
range diameter for the dashed query range, implying that S3 ∩ S4 = /0. Note that for
example S2∩S3 6= /0.

Conjecture 4.2 Consider a computational model in which algorithms can work with
unbounded real numbers using standard arithmetic and comparisons operations plus
square root.

Any data structure that solves the set intersection problem with parame-
ters (m,N, logc m) for a large enough constant c, in Õ(k) query time, re-
quires Ω̃((N/k)2) space, for a parameter k where 1≤ k ≤ N.

The following corollary states our conditional lower bound for the 2D range diam-
eter problem.

Corollary 4.1 Assuming Conjecture 4.2, any data structure that solves the 2D range
diameter problem for a point set of size n with Õ(k) query time, requires Ω̃((n/k)2)
space, for a parameter k where 1≤ k ≤ n.

Remarks. We stress the importance of suggesting a stronger model for the set inter-
section problem in Conjecture 4.2. In the reduction algorithm, the N elements of the
sets are transformed into a point set of size 2N. The points of this point set have expo-
nentially large coordinates. In particular the elements of the last set Sm are mapped to
points on a circle with radius rm = 2m−1. This is the reason that we need to consider
the set intersection problem in a model that supports unbounded real numbers. Also
the reduction algorithm uses the operation square root to determine the coordinates of
the points on the circles. Therefore, we have to provide this operation to the set inter-
section data structures as well. This model for the set intersection problem becomes
more reasonable when we see that a related problem, the set disjointness problem, has
been previously considered in a similar model, as we will discuss in the next section.

4.3. Relation to Set Disjointness 71

4.3 Relation to Set Disjointness

We consider a problem related to the 2D range diameter problem defined as follows.
We separately preprocess two convex polygons P and Q in the plane that are vertically
separated, that is, the preprocessing of each polygon is oblivious to the other poly-
gon. Using the representations of P and Q, we have to compute the two furthest points
of P∪Q. We denote this problem as the polygons diameter problem. This problem
usually arises as a subproblem in the 2D range diameter problem, in case we want to
combine the answer of subqueries. We prove a lower bound for the polygons diam-
eter problem by a reduction from the the set disjointness problem in communication
complexity. This lower bound may be a step forward to prove the lower bound of
Corollary 4.1 unconditionally. It also solves an open problem mentioned by Edels-
brunner [Ede85, Section 4].

In the set disjointness problem, we are given two sets A and B, each containing n
real non-negative numbers. We have to determine whether A and B are disjoint or
not, that is, A∩B = /0. There is a reduction from this problem to the set diameter
problem defined as follows: Given a 2D point set of size n, compute the two furthest
points. The reduction gives an Ω(n logn) lower bound for the set diameter problem in
the algebraic decision tree model [BO83]. The reduction is obtained by transforming
the sets to a point set of size |A|+ |B| in the plane [PS91, Section 4.2.3]. Using the
idea of that transformation, we reduce the asymmetric version of the set disjointness
problem (|A| 6= |B|) in communication complexity to the polygons diameter problem.
The asymmetric version of the set disjointness problem is also denoted as the lopsided
set disjointness problem [Pǎt10].

In the asymmetric set disjointness problem in communication complexity, Alice
and Bob receive sets A and B respectively, where A,B⊆ [n], and |A|< |B|< n/2, and
they want to determine whether A and B are disjoint or not. Miltersen, Nisan, Safra,
and Wigderson [MNSW98] showed that the number of bits that Alice and Bob need to
communicate to solve the problem is Ω(|A|) (indeed they gave a stronger lower bound,
but this is enough for our application). Their result immediately gives an Ω(|A|logn) lower
bound for the following problem.

Problem 4.2 Given two sets A and B, where A,B⊆ [n], and |A|< |B|< n/2. Prepro-
cess both of the sets separately (the preprocessing of each set is oblivious to the other
set) such that after we are done with preprocessing, we can efficiently check whether A
and B are disjoint or not.

Now, we prove the lower bound for the polygons diameter problem by giving a
reduction from Problem 4.2 in the following theorem.

Theorem 4.2 For any representation of two convex polygons P and Q that are verti-
cally separated, and |P|< |Q|, finding the two furthest points in P∪Q requires Ω(|P|logn)
time.

Proof. Let A and B be the given sets in Problem 4.2. We construct two point sets P
and Q corresponding to A and B respectively that are vertically separated, and we show
that the disjointness of A and B can be verified by finding the diameter of P∪Q.

72 Chapter 4. Range Diameter Queries

We map each element e ∈ A to a point positioned on the intersection point of the
line y = ex with the first quadrant of the unit circle. Similarly, we map each ele-
ment e ∈ B to a point positioned on the intersection point of the line y = ex with the
third quadrant of the unit circle. Hence, P has |A| points and Q has |B| points. It is
clear that there exists an element e belonging to both A and B if and only if there exist a
point p ∈ P and a point q ∈Q such that the distance between p and q is 2. We compute
the diameter of P∪Q. If the diameter is 2 then there is a common element in A and B,
and otherwise (the diameter is less than 2) A and B are disjoint. 2

4.4 Convex point sets

As it appears unlikely that we can get polylogarithmic query time when using O(n2−ε)
space for range diameter queries on sets of n points, we consider in this section the
case of convex point sets: sets of points formed by the vertices of a convex poly-
gon. For this case we give a data structure with logarithmic query time that uses
space depending on the total modality of the polygon. The total modality of a poly-
gon P = (p1, p2, . . . , pn) (in clockwise order) is defined as the sum over all vertices pi

of the number of local maxima in the sequence of distances from pi to the other ver-
tices. More formally, take p0 := pn, pn+1 := p1, and let Mi = {1≤ j≤ n : d(pi, p j−1)<
d(pi, p j) > d(pi, p j+1)} be the set of local maxima for vertex pi where d(p,q) is the
Euclidean distance between points p and q, then m = ∑

n
i=1 |Mi|. Note that m = O(n2).

In the special case where |Mi| ≤ 1 for all i (and hence m = O(n)), P is called uni-
modal. Avis, Toussaint, and Bhattacharya [ATB82] show that not all convex polygons
are unimodal, and that there exist polygons for which m = Θ(n2). However, Abra-
hamson [Abr90] proves that under two definitions of random convex polygons, the
expected maximum modality maxi{|Mi|} is small: for the convex hull of points drawn
uniformly from a disc it is O(logn/ log logn) and for the convex hull of points drawn
from a two-dimensional normal distribution it is O(log logn/ log loglogn). Hence, for
both cases m = o(n logn).

In this section we show that it is possible to answer range diameter queries by
making a constant number of predecessor queries (in coordinate space) and two-
dimensional range maximum queries on a set of m points (in rank space), yield-
ing an O(n+m logm)-space solution supporting queries in O(logn) time using the
range maximum data structure of [GBT84] (in the word RAM, one can use the 2D
range maximum data structure of [CLP11], which uses O(m logε m) space and an-
swers queries in O(log logm) time). Hence, we beat the conjectured lower bound of
Corollary 4.1 in case the total modality of a given convex polygon is O(n2−ε). We now
discuss our solution, first describing how to find the sections of P intersecting a query,
and then describing how to find the furthest point pair among those sections.

Finding sections. The boundary of any query q = [x1 : x2]× [y1 : y2] can intersect P
at most twice for each side as P is convex, so there can be at most four such sections.
Assume for simplicity of exposition that no two vertices of P have the same x or y
coordinate. To determine the index of the first and last vertex in each section, we con-
struct predecessor/successor-search structures on the sets of x- and y-coordinates of

4.4. Convex point sets 73

q

P

x1 x2

y2

y1

Figure 4.2: Predecessor and successor queries, indicated by arrows. White vertices are
within the query range and determine the sections of q∩P.

the vertices on the upper, lower, left, and right hulls of P (defined as usual). Then,
we query the upper and lower hulls for the successors of x1 and the predecessors of x2,
and similarly we query the left and right hulls for the successors of y1 and predecessors
of y2. We now determine which of the eight vertices found in this way are contained
in q and thereby find the sections of q∩P (see Figure 4.2). Let Si be the sequence of
vertices in the ith section of q∩P and let fi be the index of the first vertex in Si and li
the index of the last vertex in Si. The diameter d of the vertices in q∩P can be found by
taking the maximum of all vertex pair distances: maxi, j{maxp∈Si,q∈S j{d(p,q)}}. We
will now focus on determining the maximum vertex pair distance between two (possi-
bly equal) sequences Si and S j. The final answer can then be obtained by simply taking
the maximum distance over all sequence pairs.

Maximum distance between sequence pairs. Let Q be a set of points (i, j) for each
local maximum p j in the distance sequence of pi, that is, Q = {(i, j) | j ∈Mi}. To each
point (i, j) we assign a weight of d(pi, p j). Then we create a data structure DQ over Q
that can efficiently find the point with maximum weight within a given orthogonal
query range (or −∞ if no such point exists).

Lemma 4.1 A query for the furthest point pair in sequences Si and S j can be answered
using a constant number of 2D range maximum queries in DQ.

Proof. We need to determine the maximum distance within the range of S j of the
distance function for every point p in Si. This maximum will either be one of the local
maxima of the distance sequence of p, or be one of the end-vertices p f j or pl j of S j

(see Figure 4.3). Therefore, we can split the problem into two parts: 1) finding the
maximum of the local maxima that lie within the range of S j for all points in Si, and
2) finding for the two end-vertices p f j and pl j the furthest vertex in Si. The second
part can again be split into two in the same way: 2.1) finding the maximum local
maximum in the distance function of p f j (pl j) within Si, and 2.2) finding the maximum
distance between any of p f j , p f j , p fi , and pli . Problem 2.2 can be solved in constant
time by trying all combinations and problem 2.1 can be solved in the same way as

74 Chapter 4. Range Diameter Queries

d
is
ta
n
ce

query range

answer

Figure 4.3: Example of a distance function for a point. The local maxima are drawn as
white circles and the global maximum (the furthest point) is drawn as a black circle.
A query range and the corresponding answer are also shown.

problem 1, so we only need to consider problem 1. Note that the points in Q inside
a range [fi : li]× [f j : l j] (for fi ≤ li and f j ≤ l j) represent the local maxima of points
in Si that are contained in S j. Hence, a range maximum query over this range in DQ

returns the distance to the furthest local maximum. In case fi > li or f j > l j, we need
two or four queries to cover the query range. This way, we solve problem 1, thereby
proving the claim. 2

Theorem 4.3 A convex point set can be preprocessed into an O(n+m logm)-space
data structure allowing range diameter queries in O(logn) time.

Proof. We can use balanced binary search trees as predecessor/successor-search struc-
tures, requiring O(n) space. For range maximum queries we use the data structure
of [GBT84]. As |Q| = m, this results in the claimed space bound. Queries are an-
swered by a constant number of predecessor/successor queries and 2D range maximum
queries, all taking O(logn) time. 2

Remark. For unimodal point sets (where Mi ≤ 1 for all i) the solution can be simpli-
fied by replacing the 2D range maximum structure by a 1D range maximum structure,
yielding O(n) space and O(logn) query time.

Chapter 5

Succinct Dynamic Representation of Low-Arity
Cardinal Trees

Abstract. In this chapter, we consider succinct representations of dynamic k-ary car-
dinal trees. We address the question “how fast can we traverse a k-ary cardinal tree,
when k is not too large, while supporting enhanced queries and insertions/deletions of
leaves efficiently at the current node of the traversal?”

For an input k-ary cardinal tree containing n nodes, where k = O(polylog(n)),
we present a data structure of size 2n+ n logk+ o(n logk) bits, which is close to the
information-theoretic lower bound. Our data structure supports the operations par-
ent, i-th child, label-child, degree, subtree-size, preorder, is-ancestor in O(1) time, and
performs the update operations insert-label-leaf, and delete-label-leaf in O(1) amor-
tized time. The operations are performed at the current node of a traversal of the tree
starting and ending at the root.

An extended abstract of this chapter is going to appear as: Pooya Davoodi and Srinivasa S. Rao,
Succinct Dynamic Cardinal Trees with Constant Time Operations for Small Alphabet, To appear in Pro-
ceedings of 8th Annual Conference on Theory and Applications of Models of Computation (TAMC), 2011.

76 Chapter 5. Succinct Dynamic Representation of Low-Arity Cardinal Trees

5.1 Introduction

In this chapter, we consider succinct representations for dynamic k-ary cardinal trees,
which are rooted trees in which each node has at most k children and each edge is
labeled by a symbol from a totally ordered set of fixed size k such as {1, . . . ,k}. In this
problem, we have to design a data structure of size close to the information-theoretic
lower bound to maintain an input k-ary cardinal tree, that supports the navigational
operations and enhanced queries on the tree under inserting and deleting nodes. The
following theorem states our result.

Theorem 5.1 There exists a data structure of size 2n + n logk + o(n logk) bits to
maintain an input k-ary cardinal tree containing n nodes, for k = (logn)O(1). The
data structure supports the navigational operations parent, i-th child, and label-child
in O(1) time, the enhanced queries degree, subtree-size, preorder, and is-ancestor
in O(1) time, and the update operations insert-label-leaf and delete-label-leaf in O(1)
amortized time.

Achieving this result was posed as an open problem by Arroyuelo [Arr08]. Our
data structure works in the unit-cost RAM model with word size w = Θ(logn) bits. In
Section 5.2, we present some preliminaries which form the building blocks of our data
structure. In Section 5.3, we demonstrate our data structure, and in Section 5.4, we
explain how to support the navigation, queries, and updates.

5.2 Preliminaries

5.2.1 Dynamic Arrays

A dynamic array [RR03] is a structure that supports maintaining a sequence of el-
ements under accessing, inserting, and deleting elements in the sequence efficiently
with a small memory overhead.

Lemma 5.1 (Dynamic arrays [RR03, RR08]) There exists a data structure to repre-
sent an array of ` = wO(1) elements, each of size r = O(w) bits, using `r+O(k log`)
bits, for any parameter k≤ `. This data structure supports accessing the element of the
array in a given index in O(1) time, and inserting/deleting an element in/from a given
index in O(1+ `r/kw) amortized time. The data structure requires a precomputed
table of size O(2εw) bits for any fixed ε > 0.

5.2.2 Dynamic Searchable Partial Sums

In the searchable partial sums problem, we have to maintain an array A of m numbers
from the range [0, . . . ,k−1] under the following operations:

sum(i): return the value ∑
i
j=1 A[j],

update(i,δ): set A[i] = A[i]+δ , assuming that A[i]+δ < k,

search(i): return the smallest j such that sum(j)≥ i.

5.2. Preliminaries 77

This problem has been considered for different ranges of m and k [RRR01,HSS03].
Raman and Rao [RRR01] gave a data structure that solves the problem for m = wε , for
any fixed 0≤ ε < 1. Their data structure achieves O(1) time for all the operations and
uses O(mw) bits (they do not bound k, that is, k ≤ 2w). In the following, we present
a data structure of size m logk + o(m logk) bits, that achieves O(1) time for all the
operations, when m = O(wc), for a constant c > 0.

Lemma 5.2 For any integer n < 2w, there exists a searchable partial sums structure to
represent an array of m elements from the range [0, . . . ,k−1], using m logk+o(m logk)
bits and a precomputed table of size o(n) bits, where m = (logn)O(1). This data struc-
ture supports the operations sum, update, and search in O(1) time.

Proof. We pack every w/ logk elements of the array into a word. Within each word,
every b numbers denote a chunk, where b= log1/4 n. Within each chunk, the operations
can be supported in O(1) time using a precomputed table of size o(n) bits. The space
usage to store all the chunks is m logk+o(m logk) bits.

Now, we make a B-tree with branching factor at most b. Each leaf of the B-tree
stores a pointer to one of the chunks such that scanning the chunks of the leaves from
the left of the B-tree to the right gives the original array. The number of leaves is m/b
and the depth of the B-tree is O(1). At each internal node u, we maintain two arrays of
length b. The i-th element of the first array maintains the sum of all the elements in the
chunks that are descendants of the i-th child of u. The i-th element of the second array
maintains the number of all the elements in the chunks that are descendants of the i-th
child of u. The operations on these two arrays can be supported in O(1) time, using a
precomputed table of size o(n) bits. Since the number of internal nodes is O(m/b2),
the space usage for the B-tree is O((m/b2) · (b(logk+ logm))) = o(m logk) bits.

The operations on the input array, can be performed by traversing the tree top-down
and computing the operations at the internal nodes in O(1) time. 2

5.2.3 Dynamic Data Structure for Balanced Parentheses

We maintain a short sequence of balanced parentheses under the operations rank, se-
lect, updates and the following operations performed in constant time:

findclose(i): find the position of the close parenthesis matching the open parenthesis
in position i,

findopen(i): find the position of the open parenthesis that matches the closing paren-
thesis in position i,

enclose(i): given a parenthesis pair whose open parenthesis is in position i, return the
position of the open parenthesis corresponding to the closest matching parenthe-
sis pair enclosing i.

Lemma 5.3 There exists a dynamic data structure of size 2m+o(m) bits to maintain
a sequence of m pairs of balanced parenthesis using precomputed tables of size o(n)
bits, where m = (logn)O(1). This data structure supports the operations: findclose,
findopen, and enclose in O(1) time, and supports inserting and deleting of the pair of
parentheses “()” in O(1) amortized time.

78 Chapter 5. Succinct Dynamic Representation of Low-Arity Cardinal Trees

Proof. This representation is similar to the one of [CHLS07]. We divide the sequence
into chunks of size w` bits, where ` = O(

√
logn). Each chunk is represented by a

dynamic array of size w`+O(
√

logn log`) bits (see Lemma 5.1), which allows us to
access, insert, or delete a parenthesis at a given index in O(1) time (amortized for
updates) using a precomputed table of size o(n) bits. Therefore, the total space used
for the chunks is 2m+o(m) bits.

Now, we make a B-tree with branching factor b, where b = O(log1/4 n). Each
leaf of the tree stores a pointer to a sub-chunk of size ` such that scanning the sub-
chunks of the leaves from the left of the tree to the right gives the original sequence.
The number of leaves is 2m/`, and the depth of the tree is O(1). At each internal
node u, we maintain an array of length b such that its i-th element stores the number
of open parenthesis in the chunks that are descendants of the i-th child of u. Since
the array is small (i.e., O(log

1
4 n · log logn) bits), we can represent it by a searchable

partial sums structure using a precomputed table of size o(n) bits. This array is used to
perform the operations rank and select in O(1) time by traversing the tree from its root
to the appropriate leaf. In addition to this array, similar to [CHLS07], we store seven
arrays containing different information about the parentheses stored in the subtrees
of u. These arrays are used to perform the parenthesis operations. Update operations
are also straightforward. See [CHLS07] for more details. Since the number of internal
nodes is O(2m/(b`)), the space usage for the B-tree is O(2m/(bl) · b logm) = o(m)
bits. 2

5.2.4 Dynamic Rank-Select Structure

The operations rank and select on bit vectors are defined in Section 1.1.1. They can
also be defined for strings of characters similarly as follows. The operation rankc(i)
returns the number of occurrences of the character c before the position i in a string.
The operation selectc(i) returns the position of the i-th c in a string. We present a data
structure to maintain a short sequence over an alphabet of small size to support the
operations rank and select under insertions and deletions.

Lemma 5.4 There exists a dynamic representation of size m logk+o(m logk) bits for a
sequence of m symbols from an alphabet of size k using precomputed tables of size o(n)
bits, where m and k are (logn)O(1). This data structure supports the operations rank
and select in O(1) time, and supports the update operations insert and delete in O(1)
amortized time.

Proof. There exists a static data structure that supports the operations rank and select
in O(1) time for an alphabet of size k, using a multi-ary wavelet tree with O(1) height
(Theorem 3.2 of [FMMN07]). We dynamize their structure in the following way. We
set the branching factor of their wavelet tree to be k′, where k′ = O(

√
logn). At each

internal node we use a dynamic rank/select structure for an alphabet of size k′. In the
following, we explain this data structure. Note that the update operations do not change
the structure of the wavelet tree, and thus only the internal node structures should be
dynamized.

We pack every ` symbols of the sequence into a chunk of size ` logk′ bits,
for `= (w/ logk′) log1/4 n. Each chunk is represented by a dynamic array of

5.2. Preliminaries 79

size ` logk′+O(log1/4 n log`) bits, which allows us to access, insert, or delete a sym-
bol at a given index in O(1) time (amortized for updates) using a precomputed table
of size o(n) bits (see Lemma 5.1). Therefore, the total space used for the chunks
is m logk′+o(m logk′) bits.

Now, we make a B-tree with branching factor at most log
1
4 n. Each leaf of the

B-tree stores a pointer to a sub-chunk of size w bits in one of the chunks such that
scanning the sub-chunks of the leaves from the left of the B-tree to the right gives the
original sequence. Therefore, each chunk corresponds to log1/4 n leaves. The number
of leaves is m/(` log1/4 n) and the depth of the B-tree is O(1). At each internal node u,
we maintain k + 1 arrays, each of length log1/4 n. One of the arrays is denoted by
Size. The i-th element of the array Size maintains the number of symbols in the sub-
chunks that are descendants of the i-th child of u. Each of the other k′ arrays is for a
symbol in the alphabet, and its i-th element maintains the number of the corresponding
symbol in the leaves that are descendants of the i-th child of u. We represent each of
these arrays by a searchable partial sums structure with O(1) time for the partial sums
operations, using a precomputed table of size o(n) bits, since the arrays are small (that
is, O(log

1
4 n · log logn) bits).

To perform the operation rankα(i), we traverse the B-tree top-down starting from
the root. Let h be the sub-chunk containing the i-th symbol of the original sequence.
At each internal node u, we count the number of α in the sub-chunks that are to the
left of h, and are descendants of u. This counting can be performed in O(1) time,
using the partial sums structures that are constructed for the array Size and the array
corresponding to α . At the leaf level, where we should perform rank in a sub-chunk of
size w bits, we read the sub-chunk in O(1) time and perform the rank using word-level
computation. The operation selectα(i) can be performed similarly in O(1) time (the
array Size is not required for select).

For the operations insert and delete, we perform them on the appropriate chunks
in O(1) amortized time (with the support of the dynamic arrays), and then we up-
date the nodes of the B-tree along the appropriate path in a straightforward manner.
Therefore, the total update time is O(1) amortized. 2

5.2.5 Dynamic Predecessor Search Structure

Given a set of elements from a totally ordered set, the predecessor of a query element
is the maximum element in the set which is smaller than or equal to the query element.
We present a data structure to maintain a small set of elements over a small range, that
supports predecessor search under insertions and deletions.

Lemma 5.5 There exists a dynamic predecessor data structure of size m logk +
o(m logk) bits for a set containing m elements, where m = (logn)O(1) and each el-
ement is from the range [0 · · ·k−1], using a precomputed table of size o(n) bits. This
data structure supports the operation predecessor in O(1) time, and supports the up-
date operations insert and delete in O(1) amortized time.

Proof. We maintain the set with an array that contains the elements in sorted or-
der. For this structure, we use the same packing strategy and dynamic arrays as

80 Chapter 5. Succinct Dynamic Representation of Low-Arity Cardinal Trees

we used in the proof of Lemma 5.4. We make a B-tree with branching factor b,
where b =

√
logn. Each leaf maintains b elements from the array, such that concate-

nating the leaves from left to right, gives the original array. The height of the tree
is O(1). At each internal nodes, we maintain b guiding indexes. Every node (includ-
ing leaves) has b logk = o(w) bits which can be handled using a precomputed table of
size o(n) bits. To perform the operations, we traverse the tree top-down in O(1) time.
For the update operations, we also update the internal nodes in a bottom-up traversal.
The rebalancing is applied as needed. This structure is similar to the one of [FW94]
for atomic heaps. 2

5.3 Data Structure

We present a succinct data structure of size 2n+ n logk + o(n logk) bits to maintain
an input k-ary cardinal tree containing n nodes under the navigational operations, en-
hanced queries, and insertions and deletions of leaves. In this section, we demonstrate
the data structure, and in Section 5.4, we explain how it supports the required opera-
tions. This data structure supports the operations in the traversal model, where each
operation is performed at the current node of a traversal starting and ending at the root
of the tree (see Section 1.1.2 for more explanation of this model).

The input tree is decomposed into disjoint subtrees called micro trees. The data
structure consists of the representation of every micro tree. The representation of each
micro tree τ is a data structure that is constructed for τ to support the navigation,
queries and updates within τ . This data structure also encodes some information about
the micro trees that are neighbors to τ . This information is collected about pointers to
the neighboring micro trees, and also about the subtree sizes of the neighboring micro
trees. Our data structure is similar to the one presented in [Arr08].

When the traversal starts from the root, we are at the root of the micro tree τ that
contains the root of the tree. The desired operations on the tree are performed on τ

until the navigation take the current node of the traversal to a neighboring micro tree.
Then, the representation of τ is used to find a pointer to move to the appropriate micro
tree. When an update occurs at the current node within a micro tree τ , we have to
update the representation of τ , and also we have to update the representation of its
neighboring micro trees that store some information about τ , such as its subtree size.
But the traversal model allows us to postpone updating the neighboring micro trees
until the traversal arrives at those micro trees. Therefore, we can amortize updates over
the navigation through the tree. In the following, we first describe the decomposition
algorithm of the input tree, and then we demonstrate the data structure constructed for
each micro tree.

Definitions. Here, we define some of the terms that are used in the following sec-
tions. Let τ be a micro tree. The number of nodes (size) of τ is denoted by |τ|. A
frontier node of τ is a node that is adjacent to nodes in other micro trees. But the root
of a micro tree is not a frontier node of the micro tree. If the root of τ is adjacent to a
frontier node of another micro tree τ ′, then τ ′ is the parent micro tree of τ , and τ is a
child micro tree of τ ′. The number of frontier nodes of τ is denoted by n f (τ).

5.3. Data Structure 81

Decomposition algorithm. We decompose the input tree into micro trees of size
in the range [log2 n . . .k2 log2 n] using the decomposition algorithm in [GRR06]. The
micro tree containing the root might be smaller than log2 n. In our decomposition, we
maintain the following. For each micro tree τ , we duplicate its frontier nodes such that
every frontier is also the root of a child micro tree of τ . Therefore, all the children
of a frontier node are in the same micro tree, each frontier node is a leaf, and is also
adjacent to only one child micro tree, that is, n f (τ) equals the number of child micro
trees of τ .

5.3.1 Representation of Micro Trees

We preprocess each micro tree into a data structure that stores information about the
topology of the micro tree, (that is, τ seen as an ordinal tree), its edge-labels, its frontier
nodes, pointers to its child micro trees and its parent micro tree, and the subtree size of
the root of each of its child micro trees. As previously mentioned, this data structure
supports the operations to be performed within the micro tree, and allows us to navigate
to a neighboring micro tree. It also provides information about the subtree size of the
child micro trees, such that we can compute the subtree size of the current node at any
time. The representation of a micro tree τ consists of the following parts:

• The topology of τ , represented using the DFUDS representation.

• The edge-labels of τ , represented using the sequence of the edge-labels stored
in the DFUDS order. Recall that in the DFUDS order, all the edge-labels of
the children of each internal node appear consecutively once the internal node is
visited in the depth-first traversal (Section 1.1.1).

• Frontiers of τ stored in the order of the preorder traversal of τ .

• Pointers to the child micro trees of τ .

• A pointer to the parent micro tree of τ .

• The subtree size of all the child micro trees of τ .

In the following, we describe each of the representations in detail.

Tree topology of micro trees. We use a dynamic DFUDS representation to represent
each of the micro trees. The DFUDS representation consists of a sequence of paren-
theses that along with a data structure supporting rank, select and balanced parentheses
operations: findclose, findopen, and enclose on the sequence, can be used to perform
navigation and query operations on an ordinal tree (Section 1.1.1 and [BDM+05]).

Chan, Hon, Lam, and Sadakane [CHLS07] presented a data structure that main-
tains a sequence of balanced parentheses under findclose, findopen, enclose, and up-
dates which can be performed in logarithmic time. Their data structure combined
with a dynamic rank-select structure [MN08] gives a dynamic DFUDS representation
that can be used to represent the topology of a cardinal tree under the update opera-
tions [Arr08]. Here, we improve this combined data structure to a dynamic DFUDS
representation for micro trees that supports the operations in constant time. Our data
structure, in the following lemma, is an immediate application of Lemma 5.3.

82 Chapter 5. Succinct Dynamic Representation of Low-Arity Cardinal Trees

Lemma 5.6 There exists a dynamic DFUDS representation of size 2|τ|+ o(|τ|) bits
for a micro tree τ containing (logn)O(1) nodes using precomputed tables of size o(n)
bits. This data structure supports the operations parent, i-th child, degree, subtree-
size, is-ancestor, and preorder all in O(1) time, and supports the update operations
insert-leaf and delete-leaf in O(1) amortized time.

Edge labels of micro trees. We represent the edge-labels of a micro tree τ by the
sequence Lτ of the edge-labels that appear in the DFUDS order of τ . To support the
operations label-child, insert-label-leaf, and delete-label-leaf within τ , we construct
two types of data structures. The first one is a dynamic rank-select data structure con-
structed for Lτ . The second one is a collection of dynamic data structures, in which
each one supports the predecessor search operation over the edge-labels of an internal
node under the update operations. The combination of these data structures along with
the structure of Lemma 5.6 allows us to support the required operations within τ . As
previously mentioned in Section 1.1.1, to perform the operations on the edge-labels,
the rank of an edge-label among the edge-labels of an internal node determines the
appropriate position of the edge-label which then can be used by the ordinal tree oper-
ations.

To construct the dynamic rank-select data structure for Lτ , we use the structure of
Lemma 5.4. To make the dynamic predecessor structure for the edge-labels of each
internal node, we use the structure of Lemma 5.5. The following lemma presents our
data structure to represent the edge-labels of a micro tree, which is a combination of
the data structures in Lemmas 5.4, 5.5, and 5.6.

Lemma 5.7 For a k-ary cardinal tree τ of at most k2 log2 n nodes
where k = (logn)O(1), there exists a dynamic representation of size
2|τ| + |τ| logk + o(|τ| logk) bits that supports the operations parent, i-th child,
label-child, degree, subtree-size, is-ancestor, and preorder in O(1) time, and supports
the update operations insert-leaf and delete-leaf in O(1) amortized time. The structure
uses precomputed tables of size o(n) bits.

Frontiers of micro trees. We make a data structure to represent the frontier nodes
of a micro tree τ , such that we can check whether a node is a frontier or not. Let
the i-th frontier of τ be the i-th frontier that appears in the order determined by the
preorder traversal of τ . We build an array Fτ containing n f (τ) elements (the number
of frontiers), where Fτ [i] maintains the difference between the preorder number of
the i-th frontier and the preorder number of the i+ 1-st frontier. Then, we make a
searchable partial sums structure for Fτ .

Since Fτ has (logn)O(1) elements, each of size O(logFτ) bits, we use the searchable
partial sums structure of Lemma 5.2 that supports the operations sum, update, and
search in O(1) time, using n f (τ) log |τ|+o(n f (τ) log |τ|) bits. Thus the overall space
for all the micro trees is o(n) bits.

Pointers to the neighboring micro trees. For each micro tree τ , we store the point-
ers to the neighboring micro trees of τ to facilitate traversing through the tree. For the
parent micro tree of τ , we store a pointer to a location where the root of τ is maintained

5.4. Supporting Operations 83

as a frontier in the parent micro tree. In other words, if τ ′ is the parent micro tree and
its i-th frontier points to the root of τ , we store i.

Now, we consider the pointers to the child micro trees of τ . To provide fast access
to the pointers, we store the pointers in a particular order in an array such that we can
find a pointer once we find its corresponding frontier node. We make an array Pτ of
size n f (τ), such that Pτ [i] maintains the pointer to the child micro tree that is rooted at
the i-th frontier of τ . The space usage to store Pτ for all the micro trees is o(n) bits.

Subtree sizes. We make a data structure that allows us to compute the subtree size
of the current node in O(1) time. Let τ be the micro tree containing the current node.
Lemma 5.6 allows us to compute the local subtree size of the current node, that is,
its subtree size within τ . The subtree size of the current node is its local subtree size
plus the sum of the subtree sizes of all the child micro trees that are descendants of the
current node, where the subtree size of a child micro tree denotes the subtree size of
its root in the whole tree (not its local subtree size). For the subtree sizes of the child
micro trees, we make the following data structure.

For each micro tree τ , we make an array such that its i-th entry maintains the
subtree size of the i-th child micro tree of τ . Notice that the length of the array is equal
to the number of frontier nodes in τ , and each entry of the array is of size O(logn)
bits. We build a searchable partial sums for this array using Lemma 5.2. Therefore,
the size of the data structure is n f (τ) logn+ o(n f (τ) logn) bits, where n f (τ) denotes
the number of frontiers in τ . The overall space usage of this data structure for all the
micro trees is o(n) bits.

5.4 Supporting Operations

In this section, we explain how our data structure supports the required operations.
Recall that the operations are performed in the traversal model, that is each operation
is performed at the current node of a traversal starting and ending at the root. In the
following, we assume that the current node is in a micro tree τ .

5.4.1 Navigation

We first determine whether the current node is the root of τ or is a frontier of τ (or is
neither of them). To check whether the current node is a frontier of τ or not, we use
the data structure that represents the frontier nodes of τ . Recall that the data structure
maintains a searchable partial sums for an array containing the difference between the
local preorder numbers of the successive frontiers. Using this data structure, we search
for the preorder number of the current node. The preorder number of the current node
is stored in the array iff the current node is a frontier. Then, we do the following.

(1) If the current node is neither the root nor a frontier node, then any navigation at
the current node is supported in O(1) time using the data structures constructed for the
DFUDS sequence and the edge-labels of τ . (2) If the current node is the root of τ and
the operation at hand is parent, then we move to the parent micro tree τ ′, and we find
a frontier node of τ ′ that is a copy of the root of τ . Now that the current node is at that
frontier node of τ ′, we perform parent within τ ′. (3) If the current node is a frontier

84 Chapter 5. Succinct Dynamic Representation of Low-Arity Cardinal Trees

node u in τ , and an operation asks to go to a child of u, then we follow the pointer to
the appropriate child micro tree.

To perform the operation label-child(α) within τ , we find the rank i of α among
all the edge-labels of the current node. Then, we perform the operation i-th child at
the current node. To find i, we find the number of occurrences of α in the sequence of
the edge-labels of τ before the position of the current node, and then find the position
of the next α using the rank-select data structure that maintains the edge-labels of τ .

5.4.2 Enhanced Queries

Subtree size. To compute the subtree size of the current node, we first compute the
sum of the subtree sizes of the child micro trees that are descendants of the current
node. For this, among all the frontiers of τ that are descendants of the current node,
we find the left most one and the right most one. Then, we sum the subtree sizes
using the partial sums structure that we constructed for τ to support subtree-size. To
find the left most child micro tree that is a descendant of the current node, we search
for the local preorder number of the current node in the array Fτ that maintains the
difference between the local preorder numbers of the successive frontiers. The search
is performed using the searchable partial sums structure constructed for Fτ in O(1)
time. The right most frontier that is a descendant of the current node is found as
follows. Let v be the right most leaf (not necessarily a frontier) of τ that is also a
descendant of the current node. We first find the local preorder number of v within τ

by adding the local preorder number of the current node and its local subtree size
within τ . Then we search for the local preorder number of v in the array Fτ . This
determines the right most frontier node that is a descendant of the current node.

Preorder. We always maintain the preorder number of the current node in the tree,
whereas its local preorder number within τ can be computed using the DFUDS repre-
sentation of τ . Once, the current node moves in τ using the navigational operations,
we need to update the preorder number of the current node that we maintain.

When we move to the i-th child, we compute the preorder number of the i-th child
by adding the following numbers together: (1) the preorder number of the current
node; (2) the local subtree sizes of all the left siblings of the i-th child, that is, the j-th
children for j = 1 . . . i− 1; (3) the global subtree sizes of all the frontiers of τ that
are descendants of the left siblings of the i-th child. The subtree sizes in item (2) can
be computed by subtracting the local preorder number of the current node from the
local preorder number of the i-th child. The subtree size in item (3) can be computed
using the similar approach used to compute the global subtree size of the current node.
Updating the preorder number of the current node, when we move to the parent, is
performed using similar way.

Is-ancestor. The operation is-ancestor(u) can be performed using subtree-size as fol-
lows. Notice that the input to is-ancestor(u) is the preorder number of the node u. This
operation is straightforward due to the following fact. The current node is an ancestor
of u iff the preorder number of the current node is smaller than the preorder number
of u, and the preorder number of the current node plus its subtree size is greater than
the preorder number of u.

5.4. Supporting Operations 85

Degree. Since our decomposition algorithm puts all siblings in the same micro tree,
the operation degree is always performed locally within the micro tree that contains
the current node. The operation degree is supported by the DFUDS representation.
Thus, we can support it locally within each micro tree at the current node.

5.4.3 Updates

Insertion. To perform insert-label-leaf(α) in a micro tree τ , we update the represen-
tation of τ in the following way. The new leaf is inserted into the DFUDS sequence
of τ , by inserting “()” at the appropriate position. This position is determined by per-
forming a predecessor search for α among the edge-labels of the current node. The
new label α is inserted into the sequence of the edge-labels of τ in the same position. If
the preorder number of the new leaf is between the preorder numbers of two frontiers,
then inserting the new leaf changes the difference between the preorder numbers of
those two frontiers. Since the difference between the successive frontiers in τ is used
to represent the frontiers of τ with a searchable partial sums structure, we need to fix
this information by updating the data structure representing the frontiers. Therefore,
we increment the appropriate entry in the array containing the difference between the
preorder numbers of successive frontiers. All the above operations can be performed
in O(1) time.

If |τ| exceeds the value of k2 log2 n, we split τ into micro trees of size in the
range [2log2 n · · ·2k log2 n] using the decomposition algorithm that we used in Sec-
tion 5.3. Then we reconstruct the representation of each new micro tree. This
can be performed by inserting leaves one by one into the new micro trees. The
split and the construction of the representations of micro trees can be performed
in O(|τ|) =O(k2 log2 n) time. Since, this procedure makes micro trees of small enough
size (at most 2k log2 n), therefore, O(k2 log2 n) number of insert-leaf operations are re-
quired to make any of them full. It can be shown that the insertion time is O(1)
amortized.

Deletion. To perform delete-label-leaf(α) in a micro tree τ , we update the represen-
tation of τ similarly as insert-label-leaf(α). If |τ| becomes smaller than log2 n, then
we combine τ with its parent micro tree. This can be performed by inserting the nodes
of τ into the parent micro tree, in the preorder traversal of τ using insert-leaf. This
procedure takes O(|τ|) = O(log2 n) time. The new micro trees that we construct in
the split procedure of Section 5.4.3 are large enough (at least 2 log2 n size). It can be
shown that the deletion time is O(1) amortized.

5.4.4 Memory Management

An extendible array [BCD+99] is a data structure which maintains a sequence of m
equal-sized records, each assigned a unique index between 0 and m−1, under access-
ing, creating, and discarding records. If each record in the sequence is of size r bits,
the nominal size of the extendible array is nr bits. In our data structure, each micro
tree can be viewed as a sequence of records. Thus, we maintain each micro tree using
an extendible array.

86 Bibliography

Now, the problem is how to maintain all the micro trees in our data structure un-
der accessing and modifying each micro tree, and also creating and destroying micro
trees. Notice that the number of micro trees is at most n/ log2 n. We maintain each
micro tree in a separate location of the memory using an extendible array. The prob-
lem of maintaining a collection of extendible arrays is studied in [BCD+99, RR08].
The nominal size of a collection of extendible arrays is the sum of the nominal
sizes of the extendible arrays in the collection. The nominal size of all the mi-
cro trees is s = 2n+n logk+o(n logk) bits. Using the ideas in [RR08], we can

maintain the whole collection of micro trees in s+O(nw/ log2 n+
√

snw/ log2 n) =
2n+n logk+o(n logk) bits

Bibliography

[Abr90] Karl Abrahamson. On the modality of convex polygons. Discrete and
Computational Geometry, 5:409–419, 1990.

[AE99] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and
its relatives. In Proc. 1996 AMS-IMS-SIAM Advances in Discrete and
Computational Geometry, pages 1–56. American Mathematical Society,
1999.

[AFL07] Amihood Amir, Johannes Fischer, and Moshe Lewenstein. Two-
dimensional range minimum queries. In Proc. 18th Annual Symposium
on Combinatorial Pattern Matching, volume 4580 of LNCS, pages 286–
294. Springer-Verlag, 2007.

[Afs08a] Peyman Afshani. On dominance reporting in 3d. In Proc. 16th An-
nual European Symposium on Algorithms, pages 41–51. Springer-Verlag,
2008.

[Afs08b] Peyman Afshani. On Geometric Range Searching, Approximate Counting
and Depth Problems. PhD thesis, University of Waterloo, 2008.

[AGKR04] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest
common ancestors: a survey and a new distributed algorithm. Theory of
Computing Systems, 37(3):441–456, 2004.

[AH00] Stephen Alstrup and Jacob Holm. Improved algorithms for finding level
ancestors in dynamic trees. In Proc. 27th International Colloquium on
Automata, Languages and Programming, pages 73–84. Springer-Verlag,
2000.

[AHR98] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor
problems. In Proc. 39th Annual Symposium on Foundations of Computer
Science, page 534, Washington, DC, USA, 1998. IEEE Computer Soci-
ety.

[AHU73] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. On finding lowest common
ancestors in trees. In Proc. 5th Annual ACM Symposium on Theory of
Computing, pages 253–265. ACM Press, 1973.

[AHU87] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data structures and algo-
rithms. Addison-Wesley series in computer science and information pro-
cessing. Addison-Wesley, 1987.

87

88 Bibliography

[AKO04] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Re-
placing suffix trees with enhanced suffix arrays. Journal of Algorithms of
Discrete Algorithms, 2(1):53–86, 2004.

[Arr08] Diego Arroyuelo. An improved succinct representation for dynamic k-
ary trees. In Proc. 19th Annual Symposium on Combinatorial Pattern
Matching, pages 277–289. Springer-Verlag, 2008.

[AS87] Noga Alon and Baruch Schieber. Optimal preprocessing for answering
on-line product queries. Technical report, Department of Computer Sci-
ence, School of Mathematical Sciences, Tel Aviv University, 1987.

[ASS97] Stephen Alstrup, Jens P. Secher, and Maz Spork. Optimal on-line decre-
mental connectivity in trees. Information Processing Letters, 64(4):161–
164, 1997.

[ATB82] David Avis, Godfried T. Toussaint, and Binay K. Bhattacharya. On the
multimodality of distances in convex polygons. Computers & Mathemat-
ics with Applications, 8(2):153–156, 1982.

[AY10] Mikhail J. Atallah and Hao Yuan. Data structures for range minimum
queries in multidimensional arrays. In Proc. 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 150–160. SIAM, 2010.

[BBG06] Iwona Bialynicka-Birula and Roberto Grossi. Amortized rigidness in dy-
namic cartesian trees. In Proc. 23rd Annual Symposium on Theoretical
Aspects of Computer Science, pages 80–91. Springer Verlag, 2006.

[BCD+99] Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro, and
Robert Sedgewick. Resizable arrays in optimal time and space. In Proc.
6th Workshop on Algorithms and Data Structures, pages 37–48. Springer-
Verlag, 1999.

[BCR96] Gerth Stølting Brodal, Shiva Chaudhuri, and Jaikumar Radhakrishnan.
The randomized complexity of maintaining the minimum. Nordic Jour-
nal of Computing, 3(4):337–351, 1996.

[BDM+05] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh
Raman, and S. Srinivasa Rao. Representing trees of higher degree. Algo-
rithmica, 43(4):275–292, 2005.

[BDMR99] David Benoit, Erik D. Demaine, J. Ian Munro, and Venkatesh Raman.
Representing trees of higer degree. In Proc. 6th International Work-
shop on Algorithms and Data Structures, pages 169–180. Springer Ver-
lag, 1999.

[BDR10] Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space ef-
ficient two dimensional range minimum data structures. In Proc. 18th An-
nual European Symposium on Algorithms, volume 6347 of LNCS, pages
171–182. Springer-Verlag, 2010.

Bibliography 89

[BDR11a] Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space
efficient two dimensional range minimum data structures. Algorithmica,
Special issue on ESA 2010, 2011. In press.

[BDR11b] Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. Path min-
ima queries in dynamic weighted trees. In Proc. 12th Algorithms and
Data Structures Symposium, LNCS. Springer-Verlag, 2011. To appear.

[BF79] Jon Louis Bentley and Jerome H. Friedman. Data structures for range
searching. ACM Computing Surveys, 11(4):397–409, 1979.

[BFCP+05] Michael A. Bender, Martı́n Farach-Colton, Giridhar Pemmasani, Steven
Skiena, and Pavel Sumazin. Lowest common ancestors in trees and di-
rected acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.

[BGSV89] O. Berkman, Z. Galil, B. Schieber, and U. Vishkin. Highly parallelizable
problems. In Proc. 21st Annual ACM Symposium on Theory of Comput-
ing, pages 309–319. ACM, 1989.

[BM99] Andrej Brodnik and J. Ian Munro. Membership in constant time and
almost-minimum space. SIAM Journal on Computing, 28(5):1627–1640,
1999.

[BMN+04] Prosenjit Bose, Anil Maheshwari, Giri Narasimhan, Michiel Smid, and
Norbert Zeh. Approximating geometric bottleneck shortest paths. Com-
putational Geometry, 29(3):233–249, 2004.

[BO83] Michael Ben-Or. Lower bounds for algebraic computation trees (pre-
liminary report). In Proc. 15th Annual ACM Symposium on Theory of
Computing, pages 80–86. ACM, 1983.

[CE87] Bernard Chazelle and Herbert Edelsbrunner. Linear space data struc-
tures for two types of range search. Discrete & Computational Geometry,
2:113–126, 1987.

[CH05] Richard Cole and Ramesh Hariharan. Dynamic lca queries on trees. SIAM
Journal on Computing, 34(4):894–923, 2005.

[Cha82] Bernard Chazelle. A theorem on polygon cutting with applications. In
Proc. 23rd Annual Symposium on Foundations of Computer Science,
pages 339–349, 1982.

[Cha87] Bernard Chazelle. Computing on a free tree via complexity-preserving
mappings. Algorithmica, 2:337–361, 1987.

[Cha88] Bernard Chazelle. A functional approach to data structures and its use
in multidimensional searching. SIAM Journal on Computing, 17(3):427–
462, 1988.

[Cha10] Timothy M. Chan. Optimal partition trees. In Proc. 26th Symposium on
Computational Geometry, pages 1–10. ACM, 2010.

90 Bibliography

[CHLS07] Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane.
Compressed indexes for dynamic text collections. ACM Transactions on
Algorithms, 3(2), 2007.

[Cla96] David Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Waterloo, Ontario, Canada, 1996.

[CLP11] Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal
range searching on the RAM, revisited. In Proc. 27th ACM Symposium
on Computational Geometry, 2011.

[CM96] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary
storage (extended abstract). In Proc. 7th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 383–391. SIAM, 1996.

[CP10a] Hagai Cohen and Ely Porat. Fast set intersection and two-patterns match-
ing. Theoretical Computer Science, 411(40-42):3795–3800, 2010.

[CP10b] Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse
graph. The Computing Research Repository (arXiv), abs/1006.1117,
2010.

[CPS08] Gang Chen, Simon J. Puglisi, and W. F. Smyth. Lempel-Ziv factorization
using less time and space. Mathematics in Computer Science, 1:605–623,
2008.

[CR89] Bernard Chazelle and Burton Rosenberg. Computing partial sums in mul-
tidimensional arrays. In Proc. 5th Annual Symposium on Computational
Geometry, pages 131–139. ACM, 1989.

[CR91] Bernard Chazelle and Burton Rosenberg. The complexity of computing
partial sums off-line. International Journal of Computational Geometry
and Applications, 1(1):33–45, 1991.

[dBCvK08] Mark de Berg, Otfried Cheong, and Marc van Kreveld. Computational
geometry: algorithms and applications. Springer Verlag, 2008.

[DCW93] John J. Darragh, John G. Cleary, and Ian H. Witten. Bonsai: a compact
representation of trees. Software - Practice and Experience, 23(3):277–
291, 1993.

[DLW09a] Erik D. Demaine, Gad M. Landau, and Oren Weimann. On cartesian trees
and range minimum queries. In Proc. 36th International Colloquium on
Automata, Languages and Programming, volume 5555 of LNCS, pages
341–353. Springer-Verlag, 2009.

[DLW09b] Erik D. Demaine, Gad M. Landau, and Oren Weimann. On carte-
sian trees and range minimum queries. http://cs.haifa.ac.il/

~landau/gadi/icalp09oren.pdf, 2009. Manuscript.

Bibliography 91

[DPM05] Sartaj Sahni Dinesh P. Mehta. Handbook Of Data Structures And Ap-
plications (Chapman & Hall/Crc Computer and Information Science Se-
ries.). Chapman & Hall/CRC, 2005.

[DR11] Pooya Davoodi and S. Srinivasa Rao. Succinct dynamic cardinal trees
with constant time operations for small alphabet. In Proc. 8th An-
nual Conference on Theory and Applications of Models of Computation,
LNCS. Springer-Verlag, 2011. To appear.

[DRT92] Brandon Dixon, Monika Rauch, and Robert Endre Tarjan. Verification
and sensitivity analysis of minimum spanning trees in linear time. SIAM
Journal on Computing, 21(6):1184–1192, 1992.

[Ede85] Herbert Edelsbrunner. Computing the extreme distances between two
convex polygons. Journal of Algorithms, 6(2):213–224, 1985.

[FH06] Johannes Fischer and Volker Heun. Theoretical and practical improve-
ments on the rmq-problem, with applications to lca and lce. In Proc. 17th
Annual Symposium on Combinatorial Pattern Matching, volume 4009 of
LNCS, pages 36–48. Springer-Verlag, 2006.

[FH07] Johannes Fischer and Volker Heun. A new succinct representation of
rmq-information and improvements in the enhanced suffix array. In Proc.
1st International Symposium on Combinatorics, Algorithms, Probabilis-
tic and Experimental Methodologies, volume 4614 of LNCS, pages 459–
470. Springer-Verlag, 2007.

[FHS08] Johannes Fischer, Volker Heun, and Horst Martin Stühler. Practical
entropy-bounded schemes for o(1)-range minimum queries. In Proc. 18th
Data Compression Conference, pages 272–281. IEEE Computer Society,
2008.

[Fis10] Johannes Fischer. Optimal succinctness for range minimum queries. In
Proc. 9th Latin American Theoretical Informatics Symposium, volume
6034 of LNCS, pages 158–169. Springer-Verlag, 2010.

[FM10] Arash Farzan and J. Ian Munro. Succinct representation of dynamic trees.
Theoretical Computer Science, In Press, Corrected Proof, 2010.

[FMMN07] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro.
Compressed representations of sequences and full-text indexes. ACM
Transactions on Algorithms, 3(2), 2007.

[FMN08] Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. An(other)
entropy-bounded compressed suffix tree. In Proc. 19th Annual Sympo-
sium on Combinatorial Pattern Matching, volume 5029 of LNCS, pages
152–165. Springer-Verlag, 2008.

[Fre81] Michael L. Fredman. A lower bound on the complexity of orthogonal
range queries. Journal of the ACM, 28(4):696–705, 1981.

92 Bibliography

[Fre85] Greg N. Frederickson. Data structures for on-line updating of mini-
mum spanning trees, with applications. SIAM Journal on Computing,
14(4):781–798, 1985.

[FRR09] Arash Farzan, Rajeev Raman, and S. Srinivasa Rao. Universal succinct
representations of trees? In Proc. 36th International Colloquium on Au-
tomata, Languages and Programming, pages 451–462. Springer, 2009.

[FS89] Michael L. Fredman and Michael E. Saks. The cell probe complexity
of dynamic data structures. In Proc. 21st Annual ACM Symposium on
Theory of Computing, pages 345–354. ACM Press, 1989.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms
for minimum spanning trees and shortest paths. Journal of Computer and
System Sciences, 48(3):533–551, 1994.

[GBT84] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and
related techniques for geometry problems. In Proc. 16th annual ACM
symposium on Theory of computing, pages 135–143. ACM Press, 1984.

[GHSV07] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. A
framework for dynamizing succinct data structures. In Proc. 34th Inter-
national Colloquium on Automata, Languages and Programming, pages
521–532. Springer Verlag, 2007.

[GKP88] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Math. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1988.

[GM07] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct
data structures. Theoretical Computer Science, 379(3):405–417, 2007.

[Gol07] Alexander Golynski. Optimal lower bounds for rank and select indexes.
Theoretical Computer Science, 387(3):348–359, 2007.

[GRR06] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordi-
nal trees with level-ancestor queries. ACM Transactions on Algorithms,
2(4):510–534, 2006.

[GT04] Loukas Georgiadis and Robert E. Tarjan. Finding dominators revisited:
extended abstract. In Proc. 15th Annual ACM-SIAM symposium on Dis-
crete algorithms, pages 869–878. SIAM, 2004.

[Gup05] Prosenjit Gupta. Algorithms for range-aggregate query problems involv-
ing geometric aggregation operations. In Proc. 16th International Sympo-
sium on Algorithms and Computation, pages 892–901. Springer Verlag,
2005.

[Hag98] Torben Hagerup. Sorting and searching on the word ram. In Proc. 15th
Annual Symposium on Theoretical Aspects of Computer Science, pages
366–398. Springer-Verlag, 1998.

Bibliography 93

[Har85] Dov Harel. A linear time algorithm for finding dominators in flow graphs
and related problems. In Proc. 17th Annual ACM Symposium on Theory
of Computing, pages 185–194. ACM Press, 1985.

[HSS03] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data
structures for searchable partial sums. In Proc. 14th International Sym-
posium on Algorithms and Computation, pages 505–516. Springer, 2003.

[HT84] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest
common ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[HW87] David Haussler and Emo Welzl. epsilon-nets and simplex range queries.
Discrete & Computational Geometry, 2:127–151, 1987.

[ICK+08] Costas S. Iliopoulos, Maxime Crochemore, Marcin Kubica, M. Sohel
Rahman, and Tomasz Walen. Improved algorithms for the range next
value problem and applications. In Proc. 25th International Symposium
on Theoretical Aspects of Computer Science, volume 1 of Leibniz Inter-
national Proceedings in Informatics, pages 205–216. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2008.

[Jac89] Guy Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1989.

[JGKS08] Ravi Janardan, Prosenjit Gupta, Yokesh Kumar, and Michiel H. M. Smid.
Data structures for range-aggregate extent queries. In Proc. 20th Annual
Canadian Conference on Computational Geometry, 2008.

[Kin97] Valerie King. A simpler minimum spanning tree verification algorithm.
Algorithmica, 18(2):263–270, 1997.

[Kir83] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Jour-
nal on Computing, 12(1):28–35, 1983.

[Knu98] Donald E. Knuth. The art of computer programming, volume 3: (2nd
edition) sorting and searching. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1998.

[Kom85] János Komlós. Linear verification for spanning trees. Combinatorica,
5(1):57–65, 1985.

[KS08] Haim Kaplan and Nira Shafrir. Path minima in incremental unrooted
trees. In Proc. 16th Annual European Symposium on Algorithms, volume
5193 of LNCS, pages 565–576. Springer-Verlag, 2008.

[KST02] Haim Kaplan, Nira Shafrir, and Robert Endre Tarjan. Meldable heaps and
boolean union-find. In Proc. 34th annual ACM symposium on Theory of
computing, pages 573–582. ACM Press, 2002.

[Lue78] George S. Lueker. A data structure for orthogonal range queries. In Proc.
19th Annual Symposium on Foundations of Computer Science, pages 28–
34. IEEE Computer Society, 1978.

94 Bibliography

[Mat92] Jirı́ Matousek. Efficient partition trees. Discrete & Computational Ge-
ometry, 8:315–334, 1992.

[Mat93] Jirı́ Matousek. Range searching with efficient hiearchical cutting. Dis-
crete & Computational Geometry, 10:157–182, 1993.

[Meh84] Kurt Mehlhorn. Multi-dimensional Searching and Computational Geom-
etry. Springer-Verlag, Heidelberg, West Germany, 1st edition, 1984.

[Mil] Peter Bro Miltersen. Cell probe complexity - a survey. Advances in Data
Structures Workshop (Pre-workshop of FSTTCS), 1999. http://www.
daimi.au.dk/~bromille/Papers/survey3.ps.

[MN08] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed se-
quences and full-text indexes. ACM Transactions on Algorithms, 4(3),
2008.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson.
On data structures and asymmetric communication complexity. Journal
of Computer and System Sciences, 57(1):37–49, 1998.

[MR01] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing, 31(3):762–
776, 2001.

[MRS01] J. Ian Munro, Venkatesh Raman, and Adam J. Storm. Representing dy-
namic binary trees succinctly. In Proc. 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 529–536. SIAM, 2001.

[Mun96] J. Ian Munro. Tables. In Proc. 16th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, LNCS, pages 37–
42. Springer-Verlag, 1996.

[Mut02] S. Muthukrishnan. Efficient algorithms for document retrieval problems.
In Proc. 13th Annual ACM-SIAM symposium on Discrete algorithms,
pages 657–666. SIAM, 2002.

[MW94] Udi Manber and Sun Wu. Glimpse: A tool to search through entire
file systems. In USENIX Winter Technical Conference, pages 23–32.
USENIX Association, 1994.

[Net99] David Michael Neto. Efficient cluster compensation for lin-kernighan
heuristics. PhD thesis, University of Toronto, Toronto, Ontario, Canada,
Canada, 1999.

[Niv09] Gabriel Nivasch. Inverse ackermann without pain. http://www.yucs.
org/~gnivasch/alpha/, 2009.

[Pag00] Rasmus Pagh. Faster deterministic dictionaries. In Proc. 11th Symposium
on Discrete Algorithms, pages 487–493, 2000.

Bibliography 95

[Pǎt10] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. The
Computing Research Repository (arXiv), abs/1010.3783, 2010.

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the
cell-probe model. SIAM Journal on Computing, 35(4):932–963, 2006.
See also STOC 2004.

[Pet06] Seth Pettie. An inverse-ackermann type lower bound for online minimum
spanning tree verification. Combinatorica, 26(2):207–230, 2006.

[Poo03] Chung Keung Poon. Dynamic orthogonal range queries in OLAP. Theory
of Computing Systems, 296(3):487–510, 2003.

[PR10] Mihai Pǎtraşcu and Liam Roditty. Distance oracles beyond the Thorup-
Zwick bound. In Proc. 51th Annual IEEE Symposium on Foundations of
Computer Science, pages 815–823. IEEE Computer Society, 2010.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry:
An Introduction. Springer-Verlag, New York, USA, 1st edition, 1985.

[PS91] F.P. Preparata and M.I. Shamos. Computational geometry: an introduc-
tion. Texts and monographs in computer science. Springer, 1991.

[PT06] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predeces-
sor search. In Proc. 38th annual ACM symposium on Theory of comput-
ing, pages 232–240. ACM Press, 2006.

[RR99] Venkatesh Raman and S. Srinivasa Rao. Static dictionaries supporting
rank. In Proc. 10th International Symposium on Algorithms and Compu-
tation, pages 18–26. Springer Verlag, 1999.

[RR03] Rajeev Raman and S. Srinivasa Rao. Succinct dynamic dictionaries and
trees. In Proc. 30th International Colloquium on Automata, Languages
and Programming, pages 357–368. Springer-Verlag, 2003.

[RR08] Rajeev Raman and S. Srinivasa Rao. Succinct dynamic dictionaries and
trees. Manuscript, 2008.

[RRR01] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dy-
namic data structures. In Proc. 7th Workshop on Algorithms And Data
Structures, pages 426–437. Springer-Verlag, 2001.

[RRS07] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct in-
dexable dictionaries with applications to encoding -ary trees, prefix sums
and multisets. ACM Transactions on Algorithms, 3(4), 2007.

[Sad07a] Kunihiko Sadakane. Compressed suffix trees with full functionality. The-
ory of Computing Systems, 41(4):589–607, 2007.

[Sad07b] Kunihiko Sadakane. Succinct data structures for flexible text retrieval
systems. Journal of Discrete Algorithms, 5(1):12–22, 2007.

96 Bibliography

[Sax09] Sanjeev Saxena. Dominance made simple. Information Processing Let-
ters, 109(9):419–421, 2009.

[Sei06] Raimund Seidel. Understanding the inverse ackermann function. PDF
presentation, March 2006. 22nd European Workshop on Computational
Geometry, Delphi, Greece.

[SG06] R. Sharathkumar and Prosenjit Gupta. Range-aggregate proximity detec-
tion for design rule checking in vlsi layouts. In Proc. 18th Annual Cana-
dian Conference on Computational Geometry, pages 151–154, 2006.

[SN10] Kunihiko Sadakane and Gonzalo Navarro. Fully-functional succinct
trees. In Proc. 21st Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 134–149. SIAM, 2010.

[ST83] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for
dynamic trees. Journal of computer and system sciences, 26(3):362–391,
1983.

[SV88] Baruch Schieber and Uzi Vishkin. On finding lowest common ances-
tors: simplification and parallelization. SIAM Journal on Computing,
17(6):1253–1262, 1988.

[Tar78] Robert Endre Tarjan. Complexity of monotone networks for computing
conjunctions. Algorithmic aspects of combinatorics, page 121, 1978.

[Tar79a] Robert Endre Tarjan. Applications of path compression on balanced trees.
Journal of the ACM, 26(4):690–715, 1979.

[Tar79b] Robert Endre Tarjan. A class of algorithms which require nonlinear time
to maintain disjoint sets. Journal of Computer and System Sciences,
18(2):110–127, 1979.

[TP04] Yufei Tao and Dimitris Papadias. Range aggregate processing in spa-
tial databases. IEEE Transactions on Knowledge and Data Engineering,
16(12):1555–1570, 2004.

[VM07] Niko Välimäki and Veli Mäkinen. Space-efficient algorithms for docu-
ment retrieval. In Proc. 18th Annual Symposium on Combinatorial Pat-
tern Matching, volume 4580 of LNCS, pages 205–215. Springer-Verlag,
2007.

[Vui80] Jean Vuillemin. A unifying look at data structures. Communications of
the ACM, 23(4):229–239, 1980.

[Wil82] Dan E. Willard. Polygon retrieval. SIAM Journal on Computing,
11(1):149–165, 1982.

[Yao82] Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries
(extended abstract). In Proc. 14th annual ACM symposium on Theory of
computing, pages 128–136. ACM Press, 1982.

	thesis
	persian-abstract
	thesis

