
Three-sided Range Reporting in
External Memory

Peter Gabrielsen, 20114179

Christoffer Holbæk Hansen, 20114637

Master’s Thesis, Computer Science

June 2016

Project Advisor: Kasper Green Larsen

Formal Advisor: Gerth Stølting Brodal

DEPARTMENT OF COMPUTER SCIENCE                                  

AARHUS                                  

UNIVERSITY                              AU

 





Abstract

The world has become increasingly data driven and almost everything in our
daily lives generate data. The generated data sets are typically larger than
we can fit in a normal computer’s internal memory. We therefore need clever
techniques to handle and analyse the large data sets in order to extrapolate in-
formation. Much of the data that is gathered is spatial in nature, i.e. it contains
e.g. GPS coordinates. Analysing coordinates require us to solve complicated
problems within the field of computational geometry. One such problem is
that of three-sided range reporting. In this problem we are asked to maintain
a dynamic set, S , of N points in R

2. The set can be updated by inserting or
deleting points. Any solution to the problem must be able to answer three-
sided range queries, i.e. given a range of the type [x1, x2]× [y, ∞] we report
points in S ∩ [x1, x2]× [y, ∞].

This thesis presents, implements, and experiments with several solutions
to the problem of three-sided range reporting. The main focus will be to
provide evidence to corroborate that the three-sided range reporting problem
on huge data sets is best solved using data structures optimized for external
memory.

We have implemented two external memory data structures that solves the
problem: The External Memory Priority Search Tree by Arge et al. [ASV99]
and the External Memory Buffered Priority Search Tree by Brodal [Bro15].

Besides comparing these structures we also compare them against our
own implementation of the Priority Search Tree of McCreight [McC85], and
wrappers around MySQL, libspatialindex R*-Tree, and Boost R-Tree.

Our results show that the External Memory Buffered Priority Search Tree
outperforms all other structures as soon as data exceeds internal memory
capacity. MySQL without an index was significantly faster at inserting but
as both the experiments with deletion and querying showed, the cost of not
having an index on the table is too high. The Boost R-Tree proved to be the
fastest of the internal memory data structures.
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Resumé

Flere og flere hverdagsapparater bliver koblet på internettet. Dette har til
formål at personliggøre og bedre kunne målrette produkter til forbrugeren.
Det skaber samtidig kæmpe mængder data — større mængder end en almin-
delig datamat kan håndtere i det interne hukommelseslager. Vi har derfor
brug for teknikker og redskaber til at analysere det genererede data. Meget
data indeholder information omkring vores position i form af GPS koordi-
nater. For at håndtere GPS koordinater skal man typisk løse komplicerede
problemer indenfor algoritmisk geometri. Et sådan problem kunne eksem-
pelvis være det tre-sidede interval rapporteringsproblem. Dette problem går
ud på at vedligeholde en dynamisk mængde, S , indeholdende N punkter i
R

2. Mængden kan modificeres ved at indsætte eller slette punkter. En løs-
ning på dette problem skal være i stand til at svare på forespørgsler af typen
[x1, x2]× [y, ∞], dvs. rapportere alle punkter i S ∩ [x1, x2]× [y, ∞].

Vi vil i dette speciale præsentere, implementere og eksperimentere med
mange forskellige løsninger til problemet. Hovedfokuset bliver at vise hvor
stor forskel, der er på strukturer optimeret til at håndtere store datamængder
og strukturer der er optimeret til at kunne være i det interne hukommelses-
lager. Dette gøres ved at sammenligne dem eksperimentielt.

Vi har igennem specialeforløbet implementeret to strukturer optimeret til
det eksterne hukommelseslager: Prioritetssøgetræet til det eksterne hukom-
melseslager af Arge et al. [ASV99] og det Bufferet Prioritetssøgetræ til det
eksterne hukommelseslager af Brodal [Bro15].

Vi har derudover implementeret et Prioritetssøgetræ til det interne hukom-
melseslager af McCreight [McC85], og lavet omslag til MySQL, libspatialindex
R*-Træ og Boost R-Træ.

Resultater fra eksperimenter viser at det Bufferet Prioritetssøgetræ til det
eksterne hukommelseslager præsterer bedre end de resterende data struk-
turer så snart de skal håndtere mere data end der er plads til i datamatens
interne hukommelseslager. MySQL uden et tilhørende indeks var den eneste
struktur der kunne følge med når det kommer til at indsætte. Denne struk-
tur måtte dog betale dyrt for de hurtige indsættelser i form af langsomme
slettelser og forespørgsler. Det var Boost R-Træet der viste sig at være den
hurtigste af strukturerne for det interne hukommelseslager.
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Preface

Writing this thesis has been been a long and often frustrating process with
many ups and downs. The struggle has been very real1 at some points during
the four and a half months. We got off to a very shaky start to say the least.
Only a few days before we were supposed to begin work on our thesis we
decided, based on a gut feeling, that the topic we were initially set on covering
was not going to lead to a good thesis; or at least not one that we thought
would encapsulate the hard work we have been putting in to our courses in
the 5 years we have studied Computer Science at Aarhus University. With
much haste, we decided to try to set up a meeting with Kasper Green Larsen
and Gerth Stølting Brodal. Gerth referred us to Kasper and to our surprise
Kasper had a project in mind. The project sounded extremely challenging
but also very interesting. It would allow us to really dig into some data
structures of very high complexity and implement these in C++ while at the
same time make use of our deep understanding of algorithm analysis. This
would allow us to utilize all of the hard work we had put into virtually all
offered algorithmic courses. We gladly accepted and only a few days before
start we now had ourselves a project.

#BetterGutFeeling.

After having spent a few days reading through articles we had a better idea
of what we were up against. The coding challenge was very daunting. We
initially estimated that we would need about 80% of the total time just to
implement the structures. We were not much off that estimate. We have tried
to summarize the main milestones throughout the project in Figure 1, and we
believe it gives a fair overview of how much effort we have put into coding.
In the end of the project we had a total of 19,009 lines of C++ code.

Even though the project has not been a walk in the park we still managed
to have a lot of fun throughout. As we were approaching the phase in the
project where we were going to start experimenting, the summer was also
nearing and the temperatures came close to the boiling point in our small
office. With five machines working overtime to finish experiments it is safe
to say that our indoor environment would not live up to human rights regu-
lations, but as a computer scientist it was cozy, and it was our home for the
time being. We put � Nelly with Hot in here on the stereo and embraced the
situation.

1Denotes a situation where the writers wishes to express that they are encountering some
sort of undesirable difficulty, but dealing with it [Dic16].
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The experiments often ran for more than a week at a time and in order
for us to know exactly when an experiment had finished, we had the clever
idea of using the beep function of the motherboard to alert us. As a simple
beep would be too boring we spent some time writing a small piece of code
which, by controlling the frequency and duration of the beep sound, would
play the Star Wars song: The Imperial March2. All was good and it worked
perfectly until one weekend where we did not come in early. As we walked
down the corridors approaching our office the sound of Darth Vader became
increasingly ear-wrecking. The sound was extremely annoying and we really
hoped that all the other tenants in the building would not be working during
the weekend. As we walked down the corridors toward our office we looked
through the small window next to the doors to see if anyone were noticeably
annoyed, but it did not seem to bother them. Just before our office we finally
glanced into the office just next to ours and in there sat a very displeased lady
with large headphones clearly very annoyed by the deafening sound of The
Imperial March. We are truly sorry about this.

Another perk of The Imperial March was the ability to scare the crap out
of Christoffer. Peter would be able to sit comfortably at home and randomly
start the cacophony which would make Christoffer jump out of his seat and
generally become very anxious about when the next sound would come.

After months of intense experimenting, documentation, and LATEX’ing we
concluded with a small out-of-sight victory dance, shut down our faithful test
machines, and with all our new knowledge and insight we could finally have
our happily ever after.

A number of people have been part to giving this thesis its life. First and
foremost we would like to thank our primary advisor, Kasper Green Larsen,
for our weekly meetings, constructive feedback, enthusiasm, and engagement
in the project. We would also like to thank our formal advisor, Gerth Stølting
Brodal, for his great work on the data structure we have implemented and
sparring when we were in doubt. In more general terms we would like to
thank Aarhus University for giving us 5 years worth of great courses and
preparing us for the life to come within the field of Computer Science.

We have really enjoyed working on this thesis and we sincerely hope you
enjoy reading it as much as we have enjoyed writing it!

Peter Gabrielsen and Christoffer Holbæk Hansen
Aarhus, Wednesday 22nd June, 2016.

2You know, the song that comes on when Darth Vader is there.
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aef45c4: (12.Jun) Prepress version ready for print

8611249: (10.Jun) Linear construction experiment added

45b7bbd: (08.Jun) All Makefile targets are updated and README changed

701f7a9: (07.Jun) Query experiment results come in

52d4e39: (25.May) Brodal buffer size experiment documented

1da6e4b: (10.May) Preface added

47b00ae: (29.Apr) libspatialindex PST added

ed54a60: (21.Apr) Now plays The Imperial March

4ee8a7a: (19.Apr) Base experiment class added

e028c0b: (17.Apr) Merge: MySQL PST done + Internal PST done

f585f41: (14.Apr 2016) Internal dynamic PST added

f96b91a: (12.Apr) Merge: Boost R-tree done and MySQL PST started

1132d2e: (12.Apr 2016) Documenting theory of Arge

ecd8b6e: (11.Apr 2016) Wrapper of Boost R-tree implemented

5f2471b: (07.Apr 2016) Merge: All tests of Arge passes

3db0fea: (06.Apr 2016) All tests of Brodal passes

1e4e94b: (30.Mar 2016) Implementation of Arge begun

69296f7: (29.Mar 2016) Cache event loop and intense bug hunting

ebad13f: (28.Mar 2016) Documenting theory on Brodal

6d7910d: (15.Mar 2016) Total refactoring from recursion to event loop

d3857d6: (05.Mar 2016) Cascading overflowing of point buffers

d4db0d5: (24.Feb 2016) Node degree overflow might work

d764b48: (19.Feb 2016) Implementation of Brodal started

7657914: (18.Feb 2016) Documenting theory on Child structure

54ba4b2: (17.Feb 2016) All tests of Child structure passes

c589395: (11.Feb 2016) Implementation of Child structure started

9f9c652: (10.Feb 2016) All tests of I/O streams passes

b3bd158: (08.Feb 2016) Implementation of I/O streams started

63268c1: (01.Feb 2016) Initial commit

Figure 1: Excerpt of the git history for the entire project. The figure is read bottom up.
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“The difference in speed between modern CPU and disk technologies is
analogous to the difference in speed in sharpening a pencil using a sharp-
ener on one’s desk or by taking an airplane to the other side of the world
and using a sharpener on someone else’s desk.”

— D. Comer

1
Introduction

In the early days of electronic computers disks were faster than processors.
Since then processor technology has advanced at an incredible rate achieving
annual speedups of 40 to 60 percent [RW94]. Although this is also true for
disk capacity an entirely different story can be told for the speed-up of disk
performance. The disparity between processor, internal memory, and external
memory speeds have grown larger for each year and the gap is widening as
seen in Figure 1.1. A back on the envelope analysis shows that a job that
was 5% disk bound in 1999 is more than 70% disk bound on an average
CPU in 2014. While the database community has always been involved in the
development of practically efficient external memory data structures, most
algorithm research has focused on worst-case efficient internal memory data
structures [Arg05].
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Figure 1.1: Growth of CPU and HDD speed ratio over time.
Data from https://en.wikipedia.org/wiki/Instructions_per_second .
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Figure 1.3: Hierarchical memory. Modern machines have complicated memory hierarchy
consisting of registers in the CPU, multi-tier caches (here denoted L1 and L2), volatile internal
memory and typically a mechanical or solid state disk as external memory.

With the advent of Big Data many industries have come to realise that
adapting classic and well founded internal memory algorithms on large data
sets is in many cases undesirable. They simply prove to perform much slower
than the asymptotic bounds suggests. The algorithm community has found
the reason to be the very same that ensured the success of the computer in-
dustry. The problem derives from the standard RAM-model of computation,
where we assume an infinite memory and uniform access cost. See Figure 1.2.

R

A

M

CPU

Figure 1.2: RAM-model. The stan-
dard model of computation. We as-
sume an infinite memory with uni-
form access cost.

The RAM-model is as powerful
as it is simple, but it ignores the
more complicated memory hierar-
chy on modern computers. See Fig-
ure 1.3.

As we move away from the CPU
the access time gets bigger. CPU
registers can be accessed in a few
nanoseconds. Accessing CPU caches
add a small multiple to that time. In-
ternal memory access are typically
a few tens of nanoseconds. Now
comes a big gap, as the time to access
external memory is typically mea-
sured in milliseconds, i.e. more than
106 times slower than internal mem-
ory access. Also, the storage capac-
ity increases. CPU registers are good

for bytes of data, caches for a few megabytes, internal memory for gigabytes,
and disks are good for terabytes of data [TG98].

Disk systems try to amortize the large access time by transferring large
contiguous blocks of data and many modern operating systems utilizes so-
phisticated paging and pre-fetching strategies to move blocks to and from
disk as needed [Tan07]. This is the main reason we still have many worst-
case optimal internal memory algorithms performing well on large datasets.
If the algorithms, however, relies on scattered access across data, even good

2



operating systems cannot take advantage of block access and we start to see
severe scalability problems. It is these observations that give rise to the ex-
ternal memory model. The model encapsulates performance as the number
of disk accesses as opposed to RAM accesses. For algorithms analysed in the
I/O model it is of extreme importance to store and access data in such a way
we can take advantage of data’s locality in order to achieve good bounds.

In some industries, disk-based systems present too large of an obstacle,
and in an attempt to close the gap they have moved towards developing in-
ternal memory big data processing algorithms. This move has been enabled
by growing internal memory capacities but it comes with the price of issues
such as fault-tolerance and consistency which are inherently more challeng-
ing to handle in volatile memory [ZCO+15].

Another price of the move to internal memory is the actual cost of running
server farms and the cost of internal memory compared to that of external
memory. The extra costs and increased complexity suggests that external
memory data structures have some well defined advantages.

Along with pervasive use of computers and sensors, increased ability to
acquire and store data, and the society being increasingly data driven, it seems
that data is collected everywhere today. It is claimed in [Osb10] that the
amount of generated data on a world-wide scale grew from 150 billion giga-
bytes to 1200 billion gigabytes from the year 2005 to 2010. This suggest that
we, today, generate as much data in a single day as the entire mankind did
until 2003.
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Figure 1.4: Total amount of data generated by Man over time.
Data from UC Berkeley.

An industry that has benefit severely from the continuous improvement
of technology is that of processing geographical data. Such systems are also
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known as geographical information systems (GIS). In the year 2000 the Shuttle
Radar Topography mission set out to map Europe and North America into
a 30-meter data set. Denmark alone consists of more than 46 million data
points and is stored using gigabytes of data that can easily fit in a modern
computer’s internal memory. Today, the data set has improved to a 1/2-meter
model of more than 168 billion data points. This amounts to terabytes of data
that is unlikely to fit into internal memory of a standard personal computer
in the coming years. Most GIS applications today use results from the field of
computational geometry, and it is in this field we will focus our studies.

An integral problem of computational geometry is that of range searching.
In addition to GIS applications, the problem arises in many different appli-
cations with huge data sets such as spatial databases and computer graphics.
The problem can be formally described as follows. Let S be a set of N points
in R

d, and let R be a family of subsets of R
d. Our objective is to preprocess

S such that for a query range r ∈ R, the points in S ∩ r can be reported or
counted efficiently [AE99]. The ranges can be anything from rectangles and
halfspaces to balls.

In this thesis we consider the problem of maintaining a dynamic set, S ,
of N points in R

2 in external memory. The set of points can be updated by
insertion and deletion. The set will be processed such that we are able to
report three-sided range queries, i.e. given a range of the type [x1, x2]× [y, ∞],
we report points in S ∩ [x1, x2]× [y, ∞].

x1 x2

y

Figure 1.5: A query of the form [x1, x2]× [y, ∞], reporting all points in the gray area.

The thesis will present several solutions to this problem, implement, and
experimentally compare solutions.

Some of the solutions will not be optimized for usage in external memory
and they must pay a hefty price for accessing data not readily available in
internal memory. This thesis will show the power of the I/O efficient data
structures for large data sets and demonstrate what happens when internal
memory data structures have to work overtime along with the virtual memory
system.

4



1.1 Outline of thesis

This thesis is structured as follows:
In Chapter 2 we investigate the I/O model – a model of computation that

encapsulates performance of the I/O bottleneck.
In Chapter 3 we give a preliminary overview of some of the techniques

used in developing external memory efficient data structures.
Much work has been done on the three sided range queries and more

general range queries. Some of the main ideas leading up to the main focus
of this thesis is presented in Chapter 4.

Chapter 5 gives a detailed description and analysis of the Priority Search
Tree for internal memory by McCreight [McC85].

Chapter 6 presents an external memory data structure for the three-sided
range reporting problem by Arge et al. [ASV99] with optimal query bounds.

The main focus of this thesis, the External Memory Buffered Priority
Search Tree of Brodal [Bro15] is presented in Chapter 7.

Leading up to our presentation of our experimental results in Chapter 11
we present other structures included in our experiments in Chapter 8, consid-
erations throughout our implementation in Chapter 9, and our experimental
setup in Chapter 10.

We conclude the thesis in Chapter 12 and present possible future work
that could be very interesting to realise.

5
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“All models are wrong but some are useful.”

— George E. P. Box

2
Model of computation

We will argue asymptotic complexities in this thesis using the external mem-
ory model of Aggarwal and Vitter [AV88]. The external memory model (or
I/O Model) measures the efficiency of an algorithm by counting the total
number of reads and writes to and from disk. In detail the model consists
of two levels of memory; a bounded internal memory of size M and an un-
bounded external memory. For a total of N records we define an I/O oper-
ation to be the process of transferring B contiguous records between the two
levels of memory as depicted in Figure 2.1. We restrict all computations on
records to internal memory. Throughout the thesis we will let K denote the
total number of records in the output.

External memory

block I/O

Internal memory

B

CPU

M

B

Figure 2.1: The I/O Model. Only reads and writes of contiguous blocks between internal and
external memory are charged.

The fundamental bounds in the I/O Model are that we can scan N records
in O(Scan) = O(N/B) I/O’s, sort N records in O(Sort) = O

(
N
B logM/B

N
B

)

I/O’s, and search for a single record between N records in O(logB N) I/O’s.
We denote O(N/B) as linear in terms of I/O’s. Note that the B factor is very
important as N/B < O

(
N
B logM/B

N
B

)
≪ N.

For convenience we will assume M > B2. This assumption is known as
the tall-cache assumption in the cache-oblivious model and basically states that
the number of blocks M/B is larger than the size of each block B [Pro99].
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“The way I see it, if you want the rainbow,
you gotta put up with the rain.”

— Dolly Parton

3
Preliminaries

This chapter aims to give an overview of some of the techniques and struc-
tures used throughout the thesis. Some of the techniques are very rudimen-
tary and may be skipped or revisited when encountered in later chapters.

3.1 Amortization

Amortization is an important algorithmic tool to argue about average perfor-
mance of an operation in the worst case. In an amortized analysis, we average
the time of a sequence of data structure operations. We can then show that,
even though a single operation in the sequence is expensive, the average cost
of an operation is small [CL09, p. 451-452].

The term was coined by Tarjan [Tar85] and describes two views of amorti-
zation. The first view is the banker’s view, where we assume that a computer
is running on coins. We can insert a coin and the computer will run for a fixed
amount of time. An operation will pay a certain amount of coins and the goal
of the analysis is then to show that all operations can be performed with the
amount paid. We assume that we start without any coins, we are allowed to
borrow coins, and coins can be carried over to later operations. Paying coins
amounts to averaging forward over time and borrowing is the opposite.

Another view of amortization is that of the physicist. Instead of represent-
ing prepaid work as coins, the physicist represent work as potential energy,
which can be released later to pay for future operations.

If we perform n operations, we will start with an initial data structure D0.
For each of the operations we let ci be the cost of operation i and Di be the
data structure that results from that operation on the previous data structure.
We define a potential function Φ to map a data structure Di to a real number
Φ(Di). The cost of the i’th operation becomes

ĉi = ci + Φ(Di)− Φ(Di−1)
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The total amortized cost becomes

n

∑
i=1

ĉi =
n

∑
i=1

ci + Φ(Di)− Φ(Di−1)

=
n

∑
i=1

ci + Φ(Dn)− Φ(D0)

If we can show Φ(Di) ≥ Φ(D0) for all i then we know that we always are
able to build up enough potential in advance.

3.2 Global rebuilding

The term global rebuilding refers to the technique of making a (typically small)
static data structure dynamic. We simply store all updates in an update block
and once a certain threshold has been collected we rebuild the data struc-
ture [Arg05]. For data structures that does not allow the space for deleted
records to be reoccupied we mark (or weak delete) the elements. Whenever
αN elements have been marked, for some constant α > 0, the entire data
structure is rebuilt from scratch with only the non-marked elements. The
cost of rebuilding is at most a constant factor higher than the cost of insert-
ing αN elements, and so the amortized cost of global rebuilding is paid in
advance when elements are inserted, i.e. elements are charged double such
that they later can pay for being removed from the structure during a global
rebuild [MSS03].

3.3 Filtering

The technique of filtering is used on retrieval problems where we query a
certain data structure for a subset of data points. The technique is based on
the fact that the complexity of the search and the report part of the algorithm
should be made dependent upon each other such that we charge part of the
query cost to output. In order to make filtering feasible, it is crucial that
the problems specifically require the exhaustive enumeration of the objects
satisfying the query.

3.4 Bootstrapping

It is often possible to develop dynamic external memory data structures by
externalizing the equivalent internal memory data structure. In the case of
trees this typically involves increasing the fanout from binary to multiway.
This, however, results in problems when searching and reporting items from
the tree, e.g. it might in worst case be that each subtree of a node only con-
tributes one item to the query answer, each costing one I/O.

This problem can sometimes be solved by augmenting the data structure
with several filtering substructures, i.e. smaller versions of the same problem.
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This approach was first described by Arge and Vitter [AV03]. Each of the
substructures typically holds O(B2) elements (B elements from each subtree),
and answers queries in O

(
logB B2 + K/B

)
= O (1 + K/B), where K is the size

of the output. It can even be a static structure if it can be constructed in O(B)
I/O’s, since B updates can be stored in a separate buffer and applied using a
global rebuild in amortized O(1) I/O’s per update [Vit08].

3.5 B-Tree

The B-Tree of Bayer and McCreight [BM72] is to external memory what the
balanced binary search tree is to internal memory. It supports insertions and
deletions of points, and searching in O(h) where h is the height of the tree.
The height of the tree depends on the branching parameter, i.e. the maximum
number of children a node can have. This parameter typically depends on
the characteristics of the disk used and the problem at hand. This gives the
following definition of a B-Tree:

Definition 1 T is a B-Tree with branching parameter b if

• All leafs have the same depth.

• All nodes store at most b − 1 elements.

• All nodes and leafs except for the root have degree between 1
2 b and b.

• The root has degree between 2 and b.

• Elements are stored in non-decreasing order in the nodes.

• The keys of node x, x.keyi, separate the children’s elements into ranges such
that if ki is a key stored in child ci then k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ · · ·

1 2

6

7 12 15

11

8 10 13 19 25 27 28 32 33 34 36 38 41 44

26 30 40 45

19 35 60

Figure 3.1: A B-tree with b = 4.

It follows from the definition that if b = Θ(B) then a B-Tree will have
height O(logB N). Note that the B-Tree is a special case of the (a, b)-Tree in
which the number of elements in leafs is a uniquely defined parameter.

Searching in a B-Tree is very much similar to searching in a binary search
tree. Instead of making a binary decision at each node we instead have to
make a multiway branching decision. If the element we are searching for is
not contained in the current node, we find the smallest i such that the key we
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are searching for is less than x.keyi . We then recursively search for the key
in child ci. It will in the worst case require O(logB N) I/O’s to search for an
element residing in a leaf.

Inserting in a B-Tree is not as simple as inserting into a binary search tree.
Similarly to binary trees we search for the leaf node to insert the key, but we
cannot simply create a new node for the key. Instead we insert the key into the
found leaf, and if the leaf now contains too many elements we split the leaf
into two each containing half the elements of the original leaf. The median
of the elements are inserted in the parent. See Figure 3.2. Splitting a leaf
might cause its parent to have too many children which causes the parent to
similarly split. Searching for the leaf node to insert into takes O(logB N) and
so does recursively splitting nodes from a leaf to root path as a split operation
requires O(1) I/O’s.

b+ 1 d(b+ 1)=2e b(b+ 1)=2c

v v0 v00

Figure 3.2: Splitting a degree b + 1 node v (or leaf with b + 1 elements) into nodes (or leafs)
v′ and v′′.

Deleting in a B-Tree introduces an opposite to splitting, fusing. To delete
a key from the tree we search the tree for the key, which now can reside in an
internal node x. We then delete the key from the node x, which might cause x
to have too few elements. To remedy this situation we will have to potentially
fuse x with a neighbouring node. If x together with either its predecessor
or successor contains less than b elements we can fuse the two nodes. See
Figure 3.3.

b− 1(b=2)− 1

vv v0

b=2

Figure 3.3: Fusing a degree (b/2)− 1 node v (or leaf with (b/2)− 1 elements) with sibling
v′.

If this is not the case then we know that we are able to steal an element
from a neighbouring node in order to satisfy the properties of the B-Tree. As
in the case of insertion, fusing nodes might recursively cause the parent to
fuse with one of its neighbours. Fusing two nodes require O(1) I/O’s but a
fuse can cascade on a leaf to root path causing O(logB N) I/O’s.

A B-Tree on N elements are stored in O(N/B) blocks and can be con-
structed in the sorting bound by building the tree level-by-level bottom-up.
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3.5.1 Weight-balanced B-Tree

A weight balanced B-Tree and a regular B-Tree differ with regards to how
and when splitting and fusing of nodes take place. Constraints are imposed
on the weight of a node rather than the number of children. The weight of
a node v is the number of elements stored in the subtree rooted at v. Let a
be the branching parameter and k the leaf parameter of the tree. An internal
node on level l has weight between 1

2 alk and 2alk and has at least one child.
Inserting in a weight balanced B-Tree is similar to a normal B-Tree and when
a leaf splits it might cause the weight of the parent to become too large and
recursively split on a path from a leaf to the root.

The strength of the weight-balanced B-Tree is the crucial property de-
scribed in the following lemma.

Lemma 1 After a split of a node vl on level l into two nodes v′l and v′′l , at least 1
2 alk

inserts have to pass through v′l (or v′′l ) to make it split again. After a new root r in a
tree containing N items is created, at least 3N inserts have to be done before r splits
again.

The lemma, simply put, states that a node v will not underflow or overflow
unless Ω(weight(v)) elements have been inserted or deleted in the subtree of
v. A proof of the lemma can be found in [AV96].

13



3.6 Buffer Tree

The Buffer Tree of Arge [Arg95] combines the basic B-Tree described in Sec-
tion 3.5 with a buffer-technique. The result is an external data structure sup-
porting batched operations efficiently in terms of I/O’s. The ideas introduced
by Arge has proven especially useful when generalizing well-known internal-
memory algorithms into efficient I/O algorithms. The main idea of the buffer-
technique is to introduce laziness in the update algorithms and utilize internal
memory to process a large number of updates simultaneously. For example,
when inserting a point we do not search all the way down the tree to find the
leaf. Instead, the point is inserted into a buffer of the root. Whenever the size
of a buffer exceeds a certain threshold we push elements from the buffer one
level down to buffers on the next level of the tree. This process of emptying
full buffers is repeated recursively down the tree.

Formally the basic Buffer Tree is defined according to Definition 2. Refer
to Figure 3.4 for an illustration of a Buffer Tree.

Definition 2 A basic Buffer Tree is

• A B-Tree with leaf parameter B.

• All internal nodes, except for the root, have degree between 1
4

M/B and M/B.

• The root has degree between 2 and M/B.

• Each internal node has a buffer of size M.

M elementsM=B

B

O
(l
og

M
=
B

N B
)

Figure 3.4: Buffer Tree.

Updates are handled by augmenting the element in question with infor-
mation on whether we are inserting or deleting the element. Since an element
can be represented in multiple buffers, we also augment elements with a time
stamp. Whenever we have collected B elements we insert all of them into the
root buffer of size M. Whenever the buffer overflows, i.e. have more than M
points, we initiate a buffer-emptying process that distributes all elements in
the buffers to the children.

For an internal node that does not have leafs as children this process is
done as follows. First, we load the M unsorted elements into internal mem-
ory and sort them. Then we scan through the sorted updates while removing
matching inserts and deletes with respect to the time stamps. Now we sim-
ply distribute the remaining elements one level down using a single scan. We
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make sure to distribute the elements in sorted order, as this will guarantee
that we leave no buffer of a child with more than M unsorted elements fol-
lowed by a list of sorted elements. Thus, we are able to sort the resulting
buffer in a linear number of I/O’s as depicted in Figure 3.5.

sortedunsorted

f f≤ M ≤ M

(a)

sortedsorted

(b)

sorted

Figure 3.5: (a) First, the ≤ M unsorted points are loaded into internal memory in O(M/B)
I/O’s and are then sorted in internal memory (b) Then, the two lists of sorted points are
merged in O(M/B) I/O’s.

We then recursively empty full child buffers provided that the children are
internal nodes that do not have leafs as children. Only when we have emptied
buffers of all overflowing internal nodes which do not have leafs as children,
we proceed the buffer-emptying process to leaf nodes. The reason is that a
buffer-emptying process on a leaf may result in the need for rebalancing. By
only emptying leafs after all internal node buffer-emptying processes have
been performed we prevent rebalancing and buffer-emptying processes from
interfering with each other.

We empty all relevant leaf buffers one-by-one while maintaining the leaf-
emptying invariant that all buffers of nodes on the path from the root to a
leaf with a full buffer are empty. Since we handle all internal nodes before
emptying the leafs this invariant is true when we handle the buffer-emptying
of the first leaf. To empty a node u with K elements in the leafs, we start by
sorting the buffer and remove matching inserts and deletes. Then, we merge
the buffer elements with the K leafs below, again removing matching inserts
and deletes. The resulting set of K′ sorted elements now needs to replace the
K original leafs along with new routing elements of u reflecting the changes.
If we end up with a resulting set of size K′ < K, i.e. we do not have enough
elements to fill the K leafs, we introduce K − K′ dummy elements and insert
those in the remaining leafs. If we have K′ ≥ K we place K elements in the
leafs. The remaining elements (if any) are finally placed one-by-one while
ensuring rebalancing when necessary. See Figure 3.6.

We can rebalance as in a normal B-Tree using splits as depicted in Fig-
ure 3.7, since the leaf emptying invariant ensures that all nodes from u to the
root have empty buffers.
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K 0
elements

f
K

K 0
= K : K 0 < K : K 0 > K :

Figure 3.6: Buffer emptying process. First the K original leafs and the buffer are merged, and
matching inserts and deletes are removed. This gives a set of size K′. If K = K′ then the
original leafs are replaced with the K′ new ones. If K′ < K then we add dummy elements, here
represented as circles, to the set such that we replace all of the original K leafs with elements
from the new set. If K′ > K then we use a subset of size K to replace the original leafs, and
the rest of the points are then inserted one by one.

B + 1

v

d(B + 1)=2e

v0

b(B + 1)=2c

v00

Figure 3.7: Split in a Buffer Tree. The leaf-emptying invariant guarantees that there are
empty buffers on the root to leaf path ensuring splits can be done as in a normal B-Tree.

After we have emptied all leaf buffers we remove the place-holder ele-
ments one-by-one. The leaf-emptying invariant ensures that a node v on the
path from u to the root has an empty buffer, but v′s sibling may not have an
empty buffer. Therefore we cannot fuse in a normal B-Tree manner. Instead,
we perform a buffer-emptying process on v′s immediate sibling before per-
forming the actual fuse. The emptying of the buffer of a sibling node v′ can
result in buffers running full. We empty all such full non-leaf buffers before
performing the actual fuse on v. See Figure 3.8.

The place-holder elements ensures we are always only in the process of
handling a rebalancing caused by a single delete.
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(a) (b) (c)

v0v v v0 v

Figure 3.8: Buffer tree fusing. (a) node v already have an empty buffer guaranteed by the leaf-
emptying invariant, but no such guarantee is given for the sibling node v′, so we have to start
a buffer-emptying process on v′ (b) The buffer emptying of v′ might cause a leaf split which
is handled before we fuse v and v′ (c) After the buffer-emptying process of v′ and rebalancing
has finished we perform the actual fuse of nodes. This is done as in a normal B-Tree.

3.6.1 Analysis

To empty an internal node buffer of size X ≥ M we need O(X/B) to scan
the elements and O(M/B) to distribute them one level down. In order to
empty a leaf node we have to scan the Θ(M) elements below it which gives
an additional O(X/B + M/B) I/O’s.

By letting the branching parameter equal M/B and the leaf parameter equal
B, we can push all elements in a buffer of size M down to the next level
in O(M/B) I/O’s. This follows from the fact that all the elements fit into
internal memory and we use O(1) I/O’s to push one block one level down.
Disregarding rebalancing of the tree, we can argue that we touch each block
of elements a constant number of times on each of the O

(
logM/B

N
B

)
levels.

Thus, inserting N elements can be done in an optimal O
(

N
B logM/B

N
B

)
I/O’s

assuming no rebalancing of the tree.
It is showed in [Arg05] that an N-element B-Tree with branching param-

eter b and leaf parameter k = Ω(B) has an amortized number of internal
node rebalancing operations (split/fuse) needed after an update equal to
O
(

1
b·k logb

N
B

)
I/O’s. It follows directly that the total number of internal node

rebalancing operations performed during N updates is O
(

N
b·M/B logM/B

N
B

)
.

Since each operation takes O(M/B) I/O’s to empty a non-empty buffer, the
total cost of the rebalancing is also O

(
N
B logM/B

N
B

)
.

We conclude that the total cost of a sequence of N update operations on
an initially empty Buffer Tree is O

(
N
B logM/B

N
B

)
amortized.
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“Nanos gigantum humeris insidentes.”

— Bernard de Chartres

4
Related work

McCreight introduced the Priority Search Tree for internal memory [McC85].
The Priority Search Tree is basically a combination of a binary search tree
on the x-coordinate and a heap on the y-coordinate, where the root of every
subtree stores the maximum y-value in that subtree and points are distributed
according to the median x-coordinate. This allows updates in O(log N) time
and three-sided range queries in O(log N + K) time, where K is the number
of points reported. The Internal Memory Priority Search Tree is explained in
greater detail in Chapter 5.

The study of adapting the Priority Search Tree to external memory was
initiated by Icking et al. [IKO88]. They achieve a static external Priority
Search Tree that uses O(N/B) space and answers three-sided range queries
in O(logB N + K/B) I/O’s. The data structure uses a blocked B-Tree with
pointers to full buckets of data points. The idea is depicted in Figure 4.1. In
order to make the data structure dynamic the underlying B-Tree is replaced
with a Red-Black tree. This change of underlying search tree results in a so-
lution that answers queries in O(log2 N + K/B) I/O’s and handles updates in
O(B log2 N) I/O’s.

Figure 4.1: Illustration of the solution of Icking et al. Blocked B-Tree with pointers to full
buckets of data points.
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Table 4.1: Previous dynamic external-memory three-sided range reporting data structures.
All query bounds except for [SR95] are optimal. Amortized bounds are marked †, and ε is
satisfying 0 < ε ≤ 1. All data structures require O(N/B) space, except for [RS94] requiring
space O(N/B log2 B log log B). IL∗(x) denotes the number of times log∗ must be applied
before the result becomes ≤ 2

Reference Update Query Construction

[RS94] O (log N log B)† O (logB N + K/B)

[SR95] O
(
logB N + (logB N)2/B

)†
O (logB N + K/B + IL∗(B))

[Arg95] O (logB N) O (logB N + K/B)

[Bro15] O
(

1
εB1−ε

logB N
)†

O
(

1
ε

logB N + K/B
)†

O (Sort(N))

Kanellakis et al. presents a linear space and partially dynamic solution
in [KRVV96]. The data structure answers three-sided queries in O(logB N +
K/B + log2 B) I/O’s and supports inserts in O(logB N + log2

B
N/B) I/O’s. The

result is fairly involved and is unlikely to perform well in any practical man-
ner. Please refer to Appendix A for a presentation of the overall ideas of their
solution.

Ramaswamy and Subramanian presents a suboptimal space data struc-
ture that answers three-sided queries with an optimal query bound in [RS94].
They use the same basic blocked B-Tree with pointers to full buckets of data
points as introduced by Icking et al. [IKO88] and illustrated in Figure 4.1. In
addition they introduce the idea of path caching. Please refer to Appendix B
for a presentation of the main ideas of their solution.

Ramaswamy and Subramanian continues their work and brings down the
space usage in [SR95]. This is achieved by constructing a search tree that
divides the points into smaller regions and using a slightly modified caching
scheme. Further details of the main ideas can be found in Appendix B.1.

Arge et al. presented the first linear space dynamic data structure with
optimal query bounds and suboptimal update bounds in [ASV99]. The data
structure supports queries using O(logB N + K/B) I/O’s and updates using
O(logB N) I/O’s. Please refer to Chapter 6 for a detailed description of the
solution.

Brodal [Bro15] introduced an amortized solution that improves the update
bound of [ASV99] by a factor εB1−ε by adding ε−1 to the query bound. This
gives a data structure supporting updates in amortized O

(
1

εB1−ε logB N
)

and

three-sided range queries in amortized O
(

1
ε

logB N + K/B
)

for 0 < ε ≤ 1.
The data structure adapts ideas of the Buffer Tree described in Section 3.6 to
the External Memory Priority Search Tree of Arge [ASV99]. The solution is
presented in detail in Chapter 7.

Please refer to Table 4.1 for a summary of the results.

4.1 Lower bounds

Solving the problem of three-sided range queries is very closely related to
that of the 1D-dictionary problem. The 1D-dictionary problem asks us to
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maintain a dynamic set of keys such that we can answer membership queries,
i.e. whether or not a key is contained in the set. We can reduce the three-sided
range reporting problem to the 1D-dictionary by restricting elements to be of
the form (x, x) and test membership by a query of the form [x, x]× [−∞, ∞].
By reduction we must have that the lower bounds of the 1D-dictionary prob-
lem also applies to that of the three-sided range queries.

The 1D-dictionary problem has been a popular topic in the case of internal
memory. It has been proved by a simply adversary argument that a query
can be forced to cost log2 N comparisons no matter the cost of updates, and
more generally it has been proved that if an insertion performs at most O(k)

comparisons then queries can be forced to cost at least max
{

log2 N, N/2Θ(k)
}

comparisons [BGLY81].
There has also been much work on the lower bounds of the 1D-dictionary

problem in external memory. We here give an adversary argument which
shows that for any comparison based dictionary storing N elements, there
exists a query requiring at least logB

N
M −O(1) I/O’s, i.e. a lower bound for

queries in external memory dictionaries. The argument goes like this:
Assume we are at a position in our dictionary where the elements that can

still be equal to our query are denoted candidate elements. These elements form
a consecutive subsequence in the partial ordering of the N elements in the dic-
tionary. Initially we can have at most M elements in internal memory. The
adversary will now select a partial ordering of these M elements, i.e. select
answers to each comparison between these M elements, such that there are at
least N−M

M+1 >
N

M+1 − 1 candidate elements left. Each I/O will bring in B ele-
ments. If we have k candidate elements before this I/O then the adversary will
choose a partial ordering such that there are at least k−B

B+1 >
k

B+1 − 1 candidate
elements left. An argument by induction will show that after i I/O’s there
are at least N

(M+1)(B+1)i − 2 candidate elements left. As a consistent answer to

the membership query cannot be given before we have only one candidate
element left we must have that N

(M+1)(B+1)i − 2 ≤ 1 ⇒ i = logB+1
N
M −O(1).

As mentioned in Section 3.5, the B-Tree is the external memory version of
a binary search tree. The query bounds of the B-Tree, O(logB N + K/B), are
optimal, i.e. equal to the lower bound, but this is not the case for the update
bounds.
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Figure 4.2: A summary of the results of Brodal and Fagerberg [BF03]. It depicts the trade-off
between insert and search/query. On one end we can achieve really fast insert operations
but pay the price with slow queries. In the other end we have the B-Tree which query bound
matches the optimal but has suboptimal insertions. No results exists for the gaps.

Brodal and Fagerberg [BF03] studied two lower bound trade-offs between
the I/O complexity of membership queries and updates. They arrive at the
following theorem:

Theorem 1 If N insertions perform at most δ · N/B I/O’s, for 1 ≤ δ ≤ B logB N
then

1. There exists a query requiring at least logB+1
N
M −O(1) I/O’s.

2. There exists a query requiring N/
(

M ·
(

M
B

)O(δ)
)

I/O’s for N > M.

3. There exists a query requiring Ω
(

log
δ log2 N

N
M

)
I/O’s for N > M.

The first is essentially just the result proved by the above adversary argu-
ment saying that B-Trees have an optimal query bound. This result is sum-
marized in Figure 4.2.

The results by Brodal and Fagerberg assume a comparison based model
and that keys are indivisible. Iacono and Pǎtraşcu [IP12] looks at what hap-
pens when we remove this assumption and are thus allowed to use hashing.
They improve the update time of the Buffer Tree by roughly a logarithmic
factor. More precisely they arrive at the following theorem:

Theorem 2 For any max
{

log log N, logM N
}
≤ λ ≤ B, we can solve the dictio-

nary problem by a Las Vegas data structure with update time tu = O( λ

B ) and query
time tq = O(log

λ
N) with high probability.
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This means that in one end of the trade-off they can for λ = Bε obtain an
update time of O(1/B1−ε) and query time of O(logB N). This matches the
bounds of the Buffer Tree of Arge.

If we instead set out to obtain fast updates, they are able to achieve an
update bound very close to the optimal disk transfer rate of 1/B namely they
obtain tmin

u = O
(

1
B · max

{
log log N, logM N

})
but at the cost of a query time

of tmax
q = O

(
logmax{log log N,logM N} N

)
.

These results suggest that there are still many possibilities to improve
external memory structures if we abandon the comparison and indivisibility
paradigms.
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“All my best thoughts were stolen by the ancients.”

— Ralph Waldo Emerson

5
Internal Memory Priority Search Tree

In this chapter we present an internal memory data structure for the three-
sided range reporting problem. The data structure was originally presented
by McCreight [McC85] and is denoted a Priority Search Tree. The Priority
Search Tree can be constructed in linear time and is a combination of a binary
search tree on the x-coordinate and a heap on the y-coordinate. A formal
definition of a Priority Search Tree on a set of N points, P, is as follows. We
assume that all points have distinct coordinates, though this assumption can
be removed by using the normal lexicographical ordering of points.

• If P = ∅ then the Priority Search Tree is an empty leaf.

• Otherwise, let pmax be the point in the set P with the largest y-coordinate.

Let xmid be the median of the x-coordinate of the remaining points.

Now let

Pbelow := {p ∈ P \ {pmax} : px ≤ xmid}

Pabove := {p ∈ P \ {pmax} : px > xmid}

The Priority Search Tree consists of a root node v where the point
p(v) := pmax and the value x(v) := xmid are stored. Furthermore,

• the left subtree of v is a Priority Search Tree for the set Pbelow

• the right subtree of v is a Priority Search Tree for the set Pabove

What is important to note is that the specific construction method al-
lows the data structure to be indexed in two different ways. First, the tree
can be searched as a binary search tree based on the x-coordinate. Second,
the tree operates as a max-heap based on the y-coordinate. Please refer to
Figure 5.1 for an illustration of a Priority Search Tree constructed on points
P = {A, B, C, D, E, F, G, H}.
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Figure 5.1: The letter given in the node represents the ymax stored as a key, while the dashed
line represents the median x value stored in the node.

5.1 Three-sided range query

When answering a query of the form [x1, x2]× [y, ∞] we begin at the root of
the tree and first check the y-coordinate of this node against the query-y. As
long as the y-coordinate of the current node is greater than the query-y we
will continue down the tree. We can use the fact that the tree is a basic binary
search tree on the x-coordinate to only visit the part of the tree that is within
our search range. Please refer to Figure 5.2 for an illustration of the general
query pattern.

x1 x2

Figure 5.2: The shaded subtrees in the figure store only points with x-coordinate within the
correct range. This property ensures we can search the subtrees based on y-coordinate only.
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Analysis

The search operation follows two root to leaf paths each of length O(log N).
Using the search paths and heap property of the tree we are guaranteed to
visit only nodes containing points that are reported. This gives a total running
time of O(log N + K).

5.2 Dynamic Priority Search Tree

The key difference between the static solution presented by McCreight and a
dynamic solution is that we always ensure that each point is placed in exactly
one leaf and the order of the leafs from left to right corresponds to the order
of the x-coordinate of the points. An internal node stores the point with
greatest y-coordinate in its subtree that is not already stored by an ancestor.
Whenever we store a point in an interior node, then the leaf node which
corresponds to this point is considered a place-holder. Please refer to Figure 5.3
for an illustration of a dynamic Priority Search Tree over the points P =
{A, B, C, D, E, F, G}.

A B C D E F G H

A

C

A

B

C

D

D

F

E

E

G

G
F

H

H

Figure 5.3: 8 data points and the corresponding dynamic Priority Search Tree. Dotted leafs
are place-holders for a key higher in the tree.

5.3 Construction

Assuming we are given a set of x-sorted points we can construct a balanced
dynamic Priority Search Tree using a bottom-up construction method simi-
lar to the bottom-up construction of a heap. In the first phase of construc-
tion we associate each point with a place-holder in the Priority Search Tree.
These place-holders will become the leaf level of the data structure. Next
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we select neighbouring pairs of place-holders and compare them to one an-
other in terms of their y-coordinate. We denote the point with the highest
y-coordinate as the winning point and the comparison between points as a
tournament round. It is the winning point that will be represented by a new
internal node at one level higher in the tree. Please refer to Figure 5.4 for an
illustration of the construction of the leaf level. At the next level of the tree,
we perform the same comparisons as before to determine which nodes will
advance to the third level. At most N/2 points are compared at this level.

Every tournament round will leave an empty interior node behind as the
wining point is moved one level up. We thus have to check if any previous
tournament losers are now eligible to be represented higher in the tree.

A B

A

C D

C

E F

E

G H

H

Figure 5.4: The first phase of the bottom-up construction "tournament".

Analysis

First, all points are inserted as leafs in the bottom layer of the tree. At a
layer above N/21 nodes are created and the tournaments are played one level
down. For the i’th level we create N/2i nodes and we play tournaments i
levels down. The total steps to build the dynamic Priority Search Tree of size
N is thus:

log(N)

∑
i=0

N

2i
i = N ·

log(N)

∑
i=0

i

(
1

2

)i

≤ N ·
∞

∑
i=0

i

(
1

2

)i

The solution to the last summation can be found by taking the derivative
of both sides of the well known geometric series:

∂

∂x

(
∞

∑
i=0

xi

)
=

∂

∂x

(
1

1 − x

)
⇒

∞

∑
i=1

ixi =
x

(1 − x)2

For x = 1
2 we get

1/2

(1 − 1/2)2
= 2

Plugging this in to the above sum we get that the total number of steps to
build a dynamic Priority Search Tree on N points is O(N).

This implies that we can construct the balanced dynamic Priority Search
Tree in linear time assuming we are given a sorted input. The tree is balanced
since we place all leafs at the same level. If the size of the input is not a perfect
power of 2, the tree will be unbalanced by a single level.
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5.4 Insertion

In order to insert a point into the data structure, we add a leaf (place-holder)
for the point and perform a push-down operation starting at the root.

We can determine where to add the place-holder as the dynamic Priority
Search Tree is a binary search tree on the x-coordinate of the points. When
we reach an existing leaf, we add a new internal node in place of this, and
make the existing leaf one of the children of the new internal node. Then we
add a new leaf to the tree as the other child, and store the new point in this
leaf. See Figure 5.5.

CB C

A B

CC

Figure 5.5: First step of the insertion algorithm. A place-holder is created for the point to be
inserted and an internal node is created as its parent. Here point A is inserted.

In order to maintain the heap order of the Priority Search Tree we now
perform a push-down operation, where we at each level compare the y-
coordinate of the point to be inserted with the y-coordinate of the point rep-
resented by the given internal node. If the y-coordinate of the point to be
inserted is less than that of the point stored in the internal node, then we
push the point to be inserted further down the tree. Otherwise, we store
the point to be inserted in this internal node, and take the point which was
formerly represented by this internal node and continue the push-down op-
eration with this point instead. See Figure 5.6.

C

A B

A

C

C

D

B
C

A B

A

D

B

Figure 5.6: Second step of the insertion algorithm. The push-down operation of point A
starts at the root. Here point A has smaller y-coordinate than point D. Point A has larger
y-coordinate than point C and so it occupies the internal node and pushes point C further
down the tree to its place-holder.
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Analysis

The first step of the insertion algorithm is a binary search on the x-coordinate
of the new point. The path is of length O(log N). Adding a new internal
node in place of the old leaf takes a constant amount of operations. The
push-down operation follows a single root to leaf path of length O(log N)
and uses a constant amount of work in each node. We conclude insertion of
a point can be done in O(log N).

5.5 Deletion

When deleting a point we must locate the node representing the point we
wish to delete. After we have removed the point from the dynamic search
tree, we must replay a portion of the tournament among the points below
this node in order to replace it. Finally we must delete the leaf which is the
place-holder for the point.

Analysis

Locating the node representing the point to be deleted can be done in O(log N)
using the binary search property. Once we have located the interior node we
can remove this point in O(1). The deletion of the point of a node leaves
a hole in the tree that we fill by replaying tournaments following a node to
leaf path of length O(log N). We conclude the deletion algorithm requires
O(log N) per deletion.

5.6 Rebalancing

If we use the operations as stated above we could end up with a highly un-
balanced tree. We fix this using global rebuilding when a linear number of
updates have been performed. We can collect all points in sorted order in
linear time by visiting leafs from left to right using an in-order tree walk. On
the collected points we now use the linear construction algorithm to rebalance
the tree. Using this strategy yields a data structure that handles updates in
O(log N) amortized. By using a Red-Black tree as the heart of the tree we can
achieve a data structure that is O(log N) worst case by performing rotations
to rebalance the tree.

5.7 Bounds in the I/O model

The above bounds translate directly to the I/O model as we cannot guarantee
that nodes on the search path are perfectly placed in blocks, which in the
worst case means that each visit to a node will equal 1 I/O.
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“Truth, like gold, is to be obtained not by its growth,
but by washing away from it all that is not gold.”

— Leo Tolstoy

6
External Memory Priority Search Tree

In this chapter we present a result on dynamic three-sided range reporting
due to Arge et al. [ASV99]. The result is a weight-balanced B-Tree where each
node is augmented with a bootstrapped structure for storing the top Θ(B2)
points w.r.t. the y-value of the subtree rooted at that node. The bootstrapped
structure is described in Section 6.1 and the main data structure of Arge et
al. that proves Theorem 3 is described in Section 6.2.

Theorem 3 An external memory data structure exists supporting insertion and dele-
tion of points in amortized O(logB

N/B) I/O’s and reporting of three sided range
queries in O(logB

N/B + K/B) I/O’s, where N is the input size and K is the size of
the output. The structure uses O(N/B) space.

6.1 Dynamic 3-sided queries on Θ
(

B2
)

points

In this section we describe a data structure that supports the operations stated
in Theorem 4.

Theorem 4 There exists a dynamic data structure for storing O(B1+ε) two dimen-
sional points for 0 ≤ ε ≤ 1. Insertion and deletion of s points requires amortized
O
(
1 + s

B1−ε

)
I/O’s. The data structure supports reporting of all points inside a query

range of the form [x1, x2]× [y, ∞] in O(1 + K/B) I/O’s. The structure uses linear
space. Finally the structure can be constructed using O(B1+ε/B) I/O’s given an
x-sorted set of B1+ε points.

The structure consists of a static structure L storing O(B1+ε) points and
two buffers I and D storing at most B points each. The buffers I and D store
delayed insertions and deletions, respectively, and are initially empty. A point
can appear in either I or D but not both as updates from either cancel each
other out.

Let L be the points stored in L and let ℓ = ⌈|L|/B⌉. When L is fully
constructed it will consists of 2ℓ − 1 blocks of B points in each block. The
points in L are first partitioned into blocks b1, . . . , bℓ sorted by x-value. The
last block may have size less than B.
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b1 b2 b3 b4 b5 b6 b7 b8

b1,2

b4,5
b6,7

b1,3

b1,5
b6,8

b1,8

Figure 6.1: The structure for B = 4. The points are represented by circles. The sweep line has
merged blocks b1 and b2 at the point where the blocks contain 4 points on or above the line.
This is represented by a line segment with black endpoints and the b1,2 label. The same goes
for the other merged blocks created.

To construct blocks bℓ+1, . . . , b2ℓ we make a vertical sweep over the points
in increasing y-order. When the sweep line reaches a point in a block bi that
together with an adjacent block, i.e. either bi−1 or bi+1, contains exactly B
points on or above the sweep line, we replace the two blocks by a single block
containing the B points on or above the sweep line. The merged block is
denoted bi,j if it contains points from the initial blocks in the range from, and
including, i to j. The two merged blocks are then excluded from the sweep
and the newly created merged block is included in the continued sweep.
Every merge of adjacent blocks causes the sweep line to intersect one block
less resulting in at most ℓ− 1 blocks created from the sweep.

A catalogue structure stores in O(1) disk blocks a reference to each of the
2ℓ− 1 blocks. For block bi we store the minimum and maximum x-values for
the points contained in the block. For a merged block bi,j we store the interval
[i, j] and the minimum y-value of the points in the block. Note, this minimum
y-value is also the point where the sweep line created the block bi,j.

Insertions and deletions are stored in I and D respectively. When a
point is inserted in I or D we make sure to remove any existing occurrence
of the point in I and D such that the new update overwrites any previous
updates. Whenever I or D overflows, i.e. |I| > B or |D| > B, the stored
updates are applied to the set of points in L. This is done by scanning L in
increasing x-order while applying insertions and deletions, i.e. for each point
in L we check whether we should insert a new point from I before it or if
the point should be deleted. This process results in a new set of points L′

which once again is partitioned into blocks b1, . . . , bℓ′ and a vertical sweep
similar to the previously described is performed to rebuild the merged blocks
and catalogue structure. This reconstruction is done in O(ℓ′) I/O’s. Since
ℓ′ ≤ ⌈(|L|+1)/B⌉ it requires O(⌈|L|/B⌉) = O(Bε) I/O’s to rebuild L. If we
amortize this cost over the > B updates that caused the overflow the cost
becomes O (Bε/B) = O (1/B1−ε) amortized I/O’s per delayed update.

Queries are of the form [x1, x2]× [y, ∞] and can be answered by scanning
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the catalogue to find the blocks intersected by the sweep when it was at y.
This corresponds directly to the t line segments immediately below the line
segment imposed by the bottom of the query range. These blocks will contain
a superset of the points contained in our query.

b1 b2 b3 b4 b5 b6 b7 b8

b1,2

b4,5
b6,7

b1,3

b1,5
b6,8

b1,8

y

Figure 6.2: The gray area is our query and we should report the points within. This is done
by finding the fat line segments which is the segments just below the sweep line at y. The
segments can be found using the catalogue. Now the blocks can be scanned and relevant
points can be reported in O(1 + K/B).

We know from construction that the blocks intersected contains B points
on or above the sweep line. The left most and right most of these blocks
are not necessarily fully contained in the query range and do not necessarily
contain any points to report. We know that blocks must contain at least
B⌊(t−2)/2⌋ points since two adjacent blocks in the query range at the sweep
line would otherwise have been merged to a single block containing just B
points, i.e. if we force merge all adjacent blocks two and two we would end
up with (t−2)/2 blocks each with at least B points on or above the sweep line.
It follows that the output is at least K ≥ B⌊(t−2)/2⌋.

The t relevant blocks are scanned and the points contained in the query are
reported. The total number of I/O’s required becomes O(1+ t) = O(1+ K/B)
as t ≤ 2 K

B − 2 from the previous observation.
We have now showed that we are able to construct a dynamic data struc-

ture with the bounds stated in Theorem 4.
�

6.2 Main structure

As mentioned earlier, the main structure is a weight-balanced B-Tree [AV96]
on the normal lexicographical ordering of points w.r.t the x-coordinate. Each
internal node of the structure stores an instance of the bootstrapped structure
described above for answering three-sided queries on Θ(B2) points. Arge et
al. denotes this structure the query data structure as it allows for fast queries
which will be explained later. Points are stored in the query data structure
according to the following rules.
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• An internal node stores at most B2 points in the associated query data
structure.

• For a child w of internal node v the Y-set of w denoted Y(w) is the
points of the query data structure of v that is associated with the range
of w. See Figure 6.3.

• An internal node stores at most B points for each child of the node,
i.e. for all children w of an internal node v we have that the size of Y(w)
is at most B.

• A leaf stores at most 2k points in its query data structure where k is the
leaf parameter of the B-Tree.

• If a node or leaf v stores points in its query data structure then Y(v) in
parent(v) must contain at least B/2 points.

v

Figure 6.3: An internal node v of the base B-tree. For each child w of v, the Y-set Y(w)
consists of the Θ(B) highest points stored in the subtree of v that are within the x-range of w.
The Y-sets of the five children of v are indicated by bold points. They are stored collectively
in the query structure of v.

The base B-Tree uses linear space and since each point is stored only once
in a query data structure that also uses linear space, we can conclude that the
structure stores N points in O(N/B) blocks.
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6.3 Updates

6.3.1 Insertion

Inserting a point in the structure involves two steps. The first is to insert the
point in the base B-Tree. This is done as described in Section 3.5 and may
result in nodes splitting which in turn might result in the splitting of query
data structures. Let v be a node in the tree that has just been split into v′ and
v′′ as depicted in Figure 6.4.

As a result Y(v′) and Y(v′′) may contain fewer than B/2 points. This
is remedied by promoting points of v′ (resp. v′′) into Y(v′) (resp. Y(v′′)).
Promoting a point from v′ to parent(v′) is done by finding the top-most point
p′ stored in the query data structure of v′ in O(1) I/O’s using the block
structure of Qv′ . The points found are as shown in Figure 6.5. Now, p′ is
deleted from Qv′ and inserted into Qparent(v′). This process might cause one of
the Y sets of the children to become too small and we thus need to recursively
promote a point. This recursion might in the worst case be on a path from v
down to a leaf. The process is called bubble-up.

v0

v1 v2 v3 v4 v5

v00 v0

v1 v2 v3 v4 v5

v00

Figure 6.5: Too small Y-sets are remedied by pro-
moting the topmost points from the children.

After inserting in the
base tree and appropriate re-
organization we need to in-
sert the point in the cor-
rect query data structure.
The search starts in the root.
The child w responsible for
the x-range of the point
is found and its Y-set is
found by a degenerate query
on the form [x-range of w]×
[−∞, ∞] on the query data
structure. If the number of points is ≥ B/2 and the point is below all of
them then the point is recursively inserted into the found child. Otherwise
the point joins the query data structure of the root. If the Y-set of the found
child is now too large we recursively insert the lowest of these points into the
child’s query data structure. If we reach a leaf we simply insert the point into
the query data structure of that leaf. See Figure 6.6.

v

v1 v2 v3 v4 v5

v
′

v1 v2 v3 v4 v5

v
′′

Figure 6.4: v is split into v′ and v′′. As a result Y(v′) and Y(v′′) may contain fewer than
B/2 points.
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e1 e2 · · · · · ·
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Qv

K points

Qv

K ≥ B=2

Qv

K ≥ B=2

Qv

(c)

w

K < B=2

(a) (b)

Figure 6.6: Bubble down. First we compute the Y-set of the found child w by a degenerate
query on the form [x-range of w]× [−∞, ∞] resulting in a set of points with size K (a) If
K < B/2 then we simply insert the point (here marked as a circle) (b) If K ≥ B/2 and the
point is larger than the smallest y-value then the point is inserted and the smallest y-value is
recursively sent down (c) If K ≥ B/2 and the point is smaller than the smallest y-value then
the point itself is sent recursively down.

6.3.2 Deletion

Rebalancing the tree after handling a delete is done by global rebuilding in-
stead of using fusion of nodes. To delete a point we search down in the base
tree for the point and mark it as deleted without actually removing the point.
The next step is to remove the point from the query data structure that it re-
sides in. This is done similar to finding the query data structure to insert the
point into. The Y-set is recursively found on the search path of the point and
if the Y-set contains the point, then the point is removed. If the Y-set becomes
too small as a result we perform a bubble-up operation.

6.3.3 Analysis

Inserting in the base tree can be done in O(logB N) I/O’s by Section 3.5 and
can cause as many splits on the path from a leaf to the root. Each split might
cause B/2 bubble-up operations. Each bubble-up at v costs O(1) I/O’s and
might recurse all the way to a leaf for a total of O(logB weight(v)) where
weight(v) is the size of the subtree rooted at v. In the worst case B/2 of
these operations are performed totalling O(B logB weight(v)) = O(weight(v))
I/O’s.

It follows from Lemma 1 in Subsection 3.5.1 that the cost of splitting a
node can be amortized over the insertions and thus each of the O(logB N)
splits cost O(1) I/O’s amortized.

Deleting can be done in O(logB N) I/O’s as it is just a search for the point
in the base tree and query data structure.
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Rebalancing of the tree is done using global rebuilding. After Θ(N) delete
operations the tree is rebuilt using O(N logB N) I/O’s which is paid for by
double charging the Θ(N) delete operations.

6.4 Query

Querying the data structure with Q = [x1, x2]× [y, ∞] consists of two steps.
The first step is to identify which nodes to visit and the second consists of
reporting points in Q from the query data structures of the identified nodes.
We identify which nodes to visit by searching on a path from the root to leaf
along paths corresponding to x1 and x2 and by visiting nodes in between the
two paths. As the tree is a search tree on the x-coordinate we know that
nodes in between the search paths for x1 and x2 will be in the query range of
Q. We will only proceed to visit a child of v if we report all points from the
query data structure of v in the Y-set of that child, with the exception of the
leftmost and rightmost paths which are always visited all the way to a leaf.
We report all points in Q, since, by the rules, a point in Q cannot be in an
unvisited subtree as this would have been visited if all points were reported
and no points in the subtree has lower y-values.

6.4.1 Analysis

In every internal node v visited we spend O(1 + Kv/B) I/O’s. There are
O(logB N) nodes on the search paths from root to the leftmost and rightmost
leaf and thus the number of I/O’s used on these paths is O(logB N + K/B).
All other internal nodes visited are visited because all points were reported
in the parent. If we do not report all points from a Y-set we can charge the
O(1) I/O’s of visiting the child to the parent which must have reported Θ(B)
points. As the cost of reporting from the query data structures is O(1 + K/B)
the total cost amounts to O(logB N + K/B).
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“Daring ideas are like chessmen moved forward:
they may be beaten, but they may start a winning
game.”

— Johann Wolfgang von Goethe

7
External Memory Buffered Priority

Search Tree

In this chapter we present an external memory data structure introduced by
Brodal [Bro15]. The structure supports updates in amortized O

(
1

εB1−ε logB N
)

I/O’s, three sided range queries in O
(

1
ε

logB N + K/B
)

I/O’s for 0 < ε ≤ 1,
and can be constructed on N sorted points in O(N/B) I/O’s. The parameter ε

determines the size of the fanout and in turn the size of a bootstrapped sub-
structure for storing O(B1+ε) points in every internal node. The substructure
is very similar to that of Arge et al. [ASV99, Section 3.1] for handling Θ(B2)
points with the main difference being that we reduce the capacity to allow an
amortized constant number of I/O’s per update. The bootstrapped structure
is in [ASV99] used to store the top Θ(B2) points w.r.t. the y value for the
subtree rooted at the given node. This structure uses it in a slightly different
way to store the top O(B1+ε) points of the children of the given node. The
bootstrapped structure is described further in Section 6.1 and will be referred
to as the child structure in the rest of the chapter.

The External Memory Buffered Priority Search Tree is a combination of
the External Memory Priority Search Tree of Arge et al. [ASV99] described
in Chapter 6, and the buffered updates of the Buffer Tree described in Sec-
tion 3.6 also thanks to Arge [Arg95]. The main data structure is described in
Section 7.1.

7.1 Main data structure

This section presents the main data structure achieving the results introduced
in Theorem 5.

Theorem 5 An external memory data structure exists supporting insertion and dele-
tion of points in amortized O( 1

εB1−ε logB N) I/O’s and three sided range queries in

amortized O( 1
ε

logB N + K/B), where ε is a constant, 0 < ε ≤ 1, N is the num-
ber of points in the structure, and K is the size of the output. The structure can be
constructed in amortized O(N/B) I/O’s on an x-sorted set of points and stored in
O(N/B) blocks.
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Figure 7.1: External Memory Priority Search Tree with buffers. The points stored in the point
buffers Pci

of the children are also stored in the child structure Cv of the parent. This allows
for fast queries.

The structure is a slightly modified version of the B-Tree over the x-values
of the points in the tree. Each internal node, except for the root, has a degree
between ∆/2 and ∆, with ∆ = ⌈Bε⌉. The root has degree between 2 and ∆.

Each node v stores three buffers containing O(B) points each, namely a
point buffer Pv, an insertion buffer Iv, and a deletion buffer Dv which purpose
will be described shortly.

As in the Internal Memory Priority Search Tree of McCreight [McC85]
described in Chapter 5, the points with highest y-value resides in the top of
the tree, i.e. we have a heap ordering among the nodes of the tree on the
y-value. This means that for a child c of v, there are no points in the point
buffer Pc of the child with larger y-value than any y-value in the point buffer
Pv of v.

The buffers Iv and Dv stores delayed insertions and deletions on their way
down to a point buffer of a descendant. Using the basic ideas of the Buffer
Tree of Arge [Arg95] described in Section 3.6, buffers are handled recursively
whenever an invariant is broken. We will introduce the invariants in Sec-
tion 7.1.1.

For each internal node v we also store an instance of the child structure
Cv containing a copy of all points stored in the point buffers Pc of every child
c of v. See Figure 7.1.

Finally, for each internal node, v, we store, in O(1) blocks, information
about the minimum y-value of the points in the point buffers of each of v’s
children. If a child is empty we will mark this by storing ∞ as the minimum
y-value.

All information at the root is kept in internal memory except for the child
structure.

7.1.1 Invariants

For a node v the following invariants must be true:

• Pv, Iv, and Dv are disjoint and points in the buffers have x-values spanned
by the subtree rooted at v.
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• All points in Iv ∪ Dv have y-value less than the points in Pv.

• An update in a buffer at v is more recent than updates in descendants
of v, and thus, should overwrite any updates in descendants of v.

• A leaf in the tree has empty insertion and deletion buffer and the size
of its point buffer is less than B/2.

• An internal node in the tree has B/2 ≤ |Pv| ≤ B, |Dv| ≤ B/4, and
|Iv| ≤ B.

7.1.2 Updates

We update the structure with insertions and deletions by adding points to the
root’s insertion or deletion buffer respectively, while maintaining the above
invariants. During an update the insertion or deletion buffer might overflow,
i.e. get larger than B or B/4 respectively. This is handled in the following five
steps: (i) handle overflowing deletion buffers (ii) handle overflowing insertion
buffers (iii) split leafs with overflowing point buffers (iv) split nodes of degree
∆ + 1 (v) fill underflowing point buffers.

We will in the following look at each step individually and argue their
complexity.

(i) A deletion buffer at node v overflows when |Dv| > B/4. As the struc-
ture is a B-Tree on the lexicographically ordering of points, we must
have by the pigeon-hole principle, that there exists a child c such that
we can push U ⊆ Dv of ⌈|Dv|/∆⌉ deletions to c. This is illustrated
in Figure 7.2. Points in U are removed from Dv, Ic, Dc, Pc, and Cv.
Any point p in U lexicographically larger than the minimum point in Pc

(w.r.t. y) is removed from U as the deletion cannot cancel any updates
further down in the tree. See Figure 7.3. g≥ B0=Bǫ f

B0

Dv

v

IvPv

Cv
Bǫ

c1 c2 c3 c4

Figure 7.2: Pigeon hole principle. Each cross represents a deletion stored in the deletion buffer
of v. Here B′ = B/4 = 16 and ε = 1/3. This gives Bε = 4. By the pigeon hole principle
there must exist an x-range containing at least B′/Bε points that can be sent down to the child
responsible for storing these points. Here the child c3 will receive a subset of the deletions.
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Dv

v

IvPv

Cv

Pc Dc

c

Ic

Smallest

y-value
in Pc U

Figure 7.3: Deletion buffer overflow. A total of ⌈|Dv|/Bε⌉ deletions are moved from Dv to U .
Deletions larger than the smallest y-value in Pc are removed from U since they cannot cancel
points further down due to the heap order of the tree. Finally all points in U are removed from
Pc, Ic, Dc, and Cv before U is inserted into Dc.

If v is a leaf we are done. If not, the remaining points in U are inserted
in Dc which might recursively overflow. In the worst case we might
recursively overflow along a path from the root to a leaf each time caus-
ing O(⌈B/∆⌉) deletes to be pushed one level down. Updating Cv with
O(⌈B/∆⌉) updates takes amortized O(1 + (B/∆)/B1−ε) = O(1) I/O’s.

(ii) An insertion buffer at v overflows when |Iv| > B. Similar to handling a
deletion buffer overflow we find a child c such that we can push U ⊆ Iv

of ⌈|Iv|/∆⌉ insertions to c. Points in U are removed from Iv, Ic, Dc, Pc,
and Cv. Any point p in U lexicographically larger than the minimum
point in Pc (w.r.t. y) is removed from U and inserted into Pc and Cv. If Pc

overflows, the lexicographically smallest points w.r.t. y are moved from
Pc to U and removed from Cv until Pc no longer overflows. If c is a leaf
then all points are inserted into Pc and U is now empty. Otherwise, the
remaining points in U are added to Ic which might overflow and cause a
similar overflow along a path from the root to a leaf in the worst case as
in the case of the deletion buffer overflow. See Figure 7.4. The analysis
and bounds are similar to the deletion buffer overflow.

Dv

v

IvPv

Cv

Pc Dc

c

Ic

Smallest

y-value
in Pc U

Figure 7.4: Insert buffer overflow. A total of ⌈|Iv|/Bε⌉ points are moved from Iv to U . All
points from U are removed from Dc since they cancel the deletions. Points larger than the
smallest y-value in Pc are inserted into Pc and points smaller than the smallest y-value in Pc

are inserted into Ic. This ensures the tree is heap ordered. Finally the newly added points to
Pc are also inserted into Cv to ensure that Cv contains a copy of all points in Pc.
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(iii) A point buffer overflows at a leaf v when |Pv| > B/2. If this is the case
then we split the leaf into two and evenly distribute the points from Pv

among the two leafs v′ and v′′ using O(1) I/O’s. See Figure 7.5. The
splitting of a leaf might cause the parent to get a degree of ∆ + 1.

v
0

Pv0

v
00

Pv00

v

Pv

d d+ 1

p

Cp

p

Cp

Figure 7.5: Point buffer overflow. The point buffer Pv is evenly distributed between v′ and
v′′. After the split the parent might have too high degree.

(iv) An internal node v with a degree larger than ∆ is split into two nodes
v′ and v′′. Iv, Dv, and Pv are distributed among v′ and v′′ according to
the x-values of the points. Finally the child structures of v′ and v′′ are
rebuilt from the children’s point buffers. See Figure 7.6. The split might
cause the parent of v to have a degree overflow and in the worst case
we need to split along a path from a leaf to the root. The splitting of
a single node costs O(∆) I/O’s due to the reconstruction of the child
structures.

B" + 1

v
0

C
v
0

v

Cv

v
00

C
v
00

Pv Iv Dv P
v
0 I

v
0 D

v
0 P

v
00 I

v
00 D

v
00

d(B" + 1)=2e b(B" + 1)=2c

Figure 7.6: Node degree overflow. The buffers Iv, Dv, and Pv are distributed among nodes
v′ and v′′. After the split we have to ensure the child structures mirrors all points of the
children’s point buffer.

(v) A point buffer underflows at v when |Pv| < B/2. In that case we try
to pull up the highest B/2 points from the children of v into Pv. If v’s
subtree does not store any points then we remove all points from Dv

and move points from Iv to Pv until |Pv| = B or Iv = ∅. Otherwise
we use O(∆) I/O’s to identify the set X of the top B/2 points from the
children of v and remove the identified points from the point buffers of
the children and the child structure Cv of v.
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If a point buffer of a child becomes empty before having identified all of
the top B/2 points we have to recursively fill that child before continu-
ing as the subtree might contain points with larger y-value than points
in the remaining children of v.

All points in X ∩ Dv are then removed from X. This might cause |X| <
B/2 − |Pv| resulting in a repeated run of the procedure to guarantee X
contains enough points to ensure Pv is no longer underflowed.

The remaining points of X are inserted into Pv and the child structure of
the parent of v. Please refer to Figure 7.7 for an illustration of the main
ideas of the pull up procedure.

The points of X inserted into Pv might have a smaller y-value than the
points in Iv. We solve this problem by swapping the highest point in Iv

with the lowest point in Pv while there exists a point in Iv that is higher
than a point in Pv, and make sure to maintain the child structure of the
parent to reflect the changes made to the insert and point buffer.

If the subtree of v becomes empty as a result of pulling points up to v
we must remove all points of Dv and move points from Iv to Pv. This
might cause Pv to overflow.

Finally, after having pulled points from the children, we check if any of
the children’s point buffers underflows and should be refilled.

c1

Pc1
Pc2

Pc3
Pc4

c2 c3 c4

X

Dv

v

IvPv

Cv

gB=2

p

Cp

Figure 7.7: Point buffer underflow. Here B = 32, ε = 2/5 giving Bε = 4. The point buffer
Pv contains less than B/2 points, i.e. it is underflowed. The point buffers of the children are
considered and the top B/2 points are added to X. Now deletions from Dv cancels points in
X and the remaining of X is inserted into Pv and the child structure of the parent Cp. Finally
the heap order is maintained by swapping points between Pv and Iv, and by reflecting these
changes in Cp.
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Analysis

The tree remains balanced during insertions as the tree only increase in height
whenever the root splits, which causes every path from root to leaf to increase
by one. In the B-Tree we handle rebalancing using fusion of nodes. We do not
apply this method here. Instead we apply global rebuilding when a linear
number of updates have been performed. By (iii) it follows that the total
number of leafs created during N insertions can be at most O(N/B) implying
that at most O( N

∆B ) internal nodes can be created by splitting internal nodes.

From this it follows that the tree has height O(log∆
N
B ) = O( 1

ε
logB N).

We can now argue that every update in (i) and (ii) requires amortized
O( 1

εB1−ε logB N) I/O’s. As every Θ(B/∆) update require O(1) I/O’s on every
layer of the tree we get the correct amortized bound:

O

(
1

B/∆
log∆

N

B

)
= O

(
Bε

B
logBε

N

B

)

= O

(
Bε

B

1

ε
logB N

)

= O

(
1

εB1−ε
logB N

)

In (iii), we know that at most O(N/B) leafs are created each requiring
O(1) I/O’s giving amortized O(1/B) I/O’s per update.

In (iv), we know that at most O( N
B∆

) internal nodes are created. The
creation of such a node costs O(∆) giving an amortized cost of O(1/B) I/O’s
per update.

In (v) each refilling might trigger a cascaded recursive refilling of one
or more of the children. Every refilling takes O(∆) I/O’s and moves Θ(B)
points one level up through the tree’s point buffers. Each point can at most
move O(log∆

N
B ) levels up, as this is the tree’s height. This means that the

total number of I/O’s for the refillings during the course of N operations is
amortized O( 1

B/∆
log∆

N
B ) = O( 1

εB1−ε logB N) per point.

This argument ignores the fact that when pulling up points some points
might swap positions from Iv to Pv. This swap does not change the fact that
the number of points we pull up remain the same and therefore it does not
affect the amortized accounting.

Another fact that we ignore is what happens if we are not able to pull
up B/2 points from the children. This is solved by a simple amortization
argument. We double charge the operation responsible for pushing points
to a child. This way we can ensure each node with non-empty point buffers
always has an I/O saved for being emptied by a recursive pull up.

7.1.3 Global rebuilding

Since we do not fuse nodes with too low node degree we might end up with
an unbalanced tree. We use global rebuilding as described in Section 3.2
to guarantee the tree never gets too unbalanced which would disprove our

45



amortized bounds. This is done by partitioning updates into epochs. After a
rebuild a new epoch begins and if the data structure at this points stores Ñ
points, then the next epoch will begin after Ñ/2 updates, i.e. a global rebuild
will be performed. Having a new epoch after every Ñ/2 updates ensures that

the tree never grows higher than O
(

1
ε

logB
3Ñ
2

)
= O

(
1
ε

logB N
)

as the size of

the tree is 1
2 Ñ ≤ N ≤ 3

2 Ñ.
Global rebuilding works by constructing an empty structure and then rein-

serting all the points of the old structure that has not been deleted.
The points to reinsert are found by doing a top-down traversal of the

tree while flushing insertion and deletion buffers to children. The points to
reinsert are then found in the point buffers after flushing. This might cause
buffers to temporarily overflow but we will allow this as the old structure will
be deleted.

Once the set of points to reinsert have been found we simply insert the
points in an initially empty tree.

Analysis

Elements at level i (leaf layer being level 0) can at most be flushed i levels

down. The structure holds at most 3Ñ
2B nodes in total and at level i the struc-

ture has at most 3Ñ
2B

1
∆i nodes. The cost of flushing all the buffers at level i

becomes i · 3Ñ
2B

1
∆i .

By summing over all layers of the tree we get the total cost of flushing all
buffers to be:

O(log∆
3N
2B )

∑
i=0

i ·
3Ñ

2B

1

∆i
<

∞

∑
i=0

i ·
3Ñ

2B

1

∆i

=
3Ñ

2B

∞

∑
i=0

i

∆i

=
3Ñ

2B

∞

∑
i=0

(
1

∆

)i

=
3Ñ

2B

1

1 − ∆

= O(N/B)

This gives an amortized cost of O(1/B) per update to flush all buffers.
The O(Ñ) reinsertions into the new, initially empty, tree can be done in

amortized O( Ñ
εB1−ε logB Ñ) I/O’s which is paid for by the Ñ/2 updates during

the epoch.
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7.1.4 Three sided range queries

Reporting a three-sided query Q = [x1, x2] × [y, ∞] consists of three steps.
Namely, identifying the nodes to visit, push down delayed insertions and
deletions between the identified nodes, and finally reporting the points con-
tained in Q.

We identify the nodes to visit in a breadth first manner. Starting from the
root we identify, from the query’s x-range, the children that are relevant to
the query and push all insertions and deletions belonging to those children.
This is done without handling possible overflows. After this we know that the
point buffers of the children do not change further and we can thus report all
points in the query range from the child structure and the point buffer. The
children worth visiting are then added to the back of the breadth first search
queue. We can decide whether a child is worth visiting without reading the
node by comparing the query-y with the minimum y-value of that child’s
point buffer. This follows from the heap-order of point buffers. If the query-y
lies above the minimum y-point of a child, then by the heap-order invariant,
we know that no relevant points are to be found in the subtree rooted at that
child. The minimum y-value for every child is stored in the parent. All nodes,
except for the root, do not need to report from their point buffers as the parent
of the node has already reported the relevant points from the child structure.

After all points have been reported we might have some buffers that are
temporarily overflowed. This is now handled in a bottom up fashion using
the update operations described in Subsection 7.1.2. We will handle a single
subtree at a time and make sure that the entire subtree has no broken invari-
ants, i.e. buffers that overflow or underflow or any nodes with too high node
degree.

level i

level i+ 1

level i

level i+ 1

Figure 7.8: Fixup of the tree after having reported a query. All broken invariants of subtrees
at level i are handled before handling broken invariants at level i + 1. Here, the gray subtrees
respects all invariants and we are about to handle the white subtree. The node degree overflow
at level i + 1 is handled after all subtrees at level i are valid w.r.t. the invariants.
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We do this by applying the update operations (i)-(iv)1 while we disallow
any recursion leaving the subtree, i.e. no splits may recursively split nodes
outside of the subtree. Only when the entire subtree has no overflows or
underflows can we remedy a potential underflowed point buffer using update
operation (v)2, and only then are we allowed to continue to a subtree one level
higher. See Figure 7.8. This way of handling the fixup procedure ensures we
never get interleaving update operations interfering with each other.

Analysis

During a query assume we visit V nodes not on the search paths for x1 or x2

and O
(

1
ε

logB N
)

nodes on the search paths. We know that the V nodes must
have at least VB/2 points in their point buffers before updates are pushed
down. The number of deletions we push down to visited nodes can at most
be
(
V +O

(
1
ε

logB N
))

B/4.

It now follows that the number of points we report, K, must be at least
the number of points in the point buffers before pushing down minus the
deletions we push down:

VB/2 −

(
V +O

(
1

ε
logB N

))
B/4 = VB/4 −O

(
B

ε
logB N

)
= K

By isolating V it follows that V = O
(

1
ε

logB N + K/B
)
. The worst case

bound now becomes the sum of visiting the V nodes, the nodes on the search
paths for x1 and x2, and the output: O(V + 1

ε
logB N + K/B) = O( 1

ε
logB N +

K/B). On top of this comes the cost of pushing down update buffer elements
and handling overflowing update buffers and overflowing point buffers.

This cost of pushing Ω(B/∆) points to a child is however already paid
for by the update operations and is thus covered by the analysis of Subsec-
tion 7.1.2. It is only when we push down O(B/∆) updates to a child, with
an amortized cost of O(1) that this cost is covered by the cost of visiting the
child.

Handling the overflowing update buffers and underflowing point buffers
are also paid for by the update operations described in Subsection 7.1.2.

This all adds up to a total amortized cost of O( 1
ε

logB N + K/B) I/O’s for
a three-sided range query.

7.1.5 Construction

The structure can be initialized with a set of N points using O(Sort) I/O’s. If
the points are sorted on the x-coordinate we only need O(Scan) I/O’s. For
the remainder of this section we assume that the points are initially sorted
w.r.t. to the x-coordinate.

1(i) overflowing deletion buffers (ii) overflowing insertion buffers (iii) split leafs with over-
flowing point buffers (iv) split nodes of degree ∆ + 1

2(v) fill underflowing point buffers
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∆=2 ≤ ∆=2

f

B=2 points

Figure 7.9: A B-Tree with each internal node have a degree of ∆/2. Each leaf stores B/2
points with the possible exception of the rightmost. The bold points are the top B/2 points
that is pulled up from the leafs into the layer above.

The first step of the construction is to construct a B-Tree over the x-values.
We let each internal node have a degree of ∆/2 and each leaf stores B/2
points, with the exception of the rightmost leaf which might contain less than
B/2 points, and the rightmost internal nodes having a degree less than ∆/2.

The point buffers of the internal nodes are now filled bottom up by pulling
up the top B/2 highest y-value points. If this results in a child having an
underflowing point buffer we recursively fill that child before proceeding. In
a second iteration we do the same but in a top-down fashion.

All insertion and deletion buffers are initially empty and the child struc-
tures are constructed from the point buffers of the children.

This construction algorithm could also have been used for global rebuild-
ing giving a matching amortized cost.

Analysis

We know level i of the tree contains at most N
B∆i nodes. It follows that the

number of points stored at or above level i is O
(

∑
∞
j=i B N

B∆j

)
= O

(
N
∆i

)
. It fol-

lows that we cannot move B/2 points to level i from i− 1 more than O
(

N
∆i /

B
2

)

times. We know that we can move B/2 points using O(∆) I/O’s and thus the
total number of I/O’s to fill the point buffers becomes:

O

(
∞

∑
i=1

∆
N

B∆i

)
= O

(
N

B

∞

∑
i=1

∆
1

∆i

)
= O

(
N

B

∞

∑
i=0

1

∆i

)
= O

(
N

B

)

Another aspect we have to look at is what happens to the amortized anal-
ysis when we initialize our data structure using this construction method,
i.e. we have to argue that the amortized cost of the remaining operations re-
main unchanged during the epoch started by the construction.

In order to argue this we consider a sequence of operations containing
Nins insertions and Ndel deletions and a newly constructed tree of N points.
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Let us first consider the cost of creating new nodes in the tree. Each leaf
has initially at most B/2 points and it follows that we can at most create
2Nins/B new leafs. Each new leaf is created in O(1) I/O’s and it thus cost at
most O(Nins/B) I/O’s to create new leafs during Nins insertions. By a similar

argument it follows that at most O
(

Nins
∆B

)
new internal nodes can be created

since each internal node initially has a degree of ≤ ∆/2. Each new internal
node is created in O(∆) I/O’s and it thus costs O(Nins/B) I/O’s to create
new internal nodes without the cost of refilling point buffers. The refilling of
point buffers will be accounted for in the following.

An insertion has to be moved at most from the top to the bottom of the
tree before it is cancelled or moved into a point buffer. Since the height of the
tree is O

(
1
ε

logB N
)

it follows that the cost of handling overflowing insertion

buffers during the course of Nins insertions becomes O
(

Nins
B/∆

1
ε

logB N
)

I/O’s.

A similar argument can be given for the case of deletions.
Each deletion leaves behind a hole which needs to be filled. This hole

is filled by recursively pulling up points which effectively moves down the
hole. Each split of internal nodes also potentially creates up to B holes. In

total we need to handle O
(

Ndel +
Nins
∆B

)
holes. We can move up B/2 points

using O(∆) I/O’s and they at most need to be moved to the top of the tree,
i.e. they need to be at most moved the height of the tree levels up. This gives

a total cost of O
((

Ndel +
Nins
∆B

)
∆
B

1
ε

logB N
)

I/O’s.

All this adds up to O
(

Nins+Ndel
B/∆

1
ε

logB N
)

= O
(

Nins+Ndel

εB1−ε logB N
)

I/O’s.

This matches the amortized bounds of the structure.
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“The problem with quotes found on the
internet is that they are often not true.”

— Abraham Lincoln

8
Other structures

8.1 R-Tree

The R-Tree was introduced by Antonin Guttman in [Gut84]. The structure
is heuristic in nature and does not provide any close to optimal worst case
search bounds. Arge et al. has, however, provided strong evidence for R-
Trees outperforming several theoretical optimal data structures in practice
[ABHY08]. We will introduce the important ideas of the R-Tree.

Let P be a set of points. An R-Tree stores all points from P in leaf nodes,
each of which contains Θ(B) points. Each non-leaf node u has Θ(B) children,
except for the root which must have 2 children unless it is the only node in
the tree. For each child c, u stores a minimum bounding rectangle (MBR), which
is the smallest rectangle that tightly encloses all the points in the subtree of
c. Note that there is no constraint on how points should be grouped into leaf
nodes. Also, there is no constraint on how non-leaf nodes should be grouped
in higher level nodes. Since each point is stored only once, the entire data
structure consumes linear space. Please refer to Figure 8.1 for an illustration
of an R-Tree structure.
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Figure 8.1: (a) Data and MBRs (b) The R-Tree structure

51



8.1.1 Query

Given a query Q = [x1, x2]× [y1, ∞] we want to find all the points in P covered
by Q. The relation to the R-Tree is that we only need to visit those nodes
whose MBRs intersect Q. Intuitively, this means we desire as small MBRs
as possible, as this directly implies that a query spans fewer MBRs, again
implying fewer nodes are visited. A good heuristic is therefore to minimize
the perimeter of each MBR as this directly implies MBRs covers smaller areas.

8.1.2 Insertions

To insert a point p, we add p to a leaf node u by following a single root-to-leaf
path. If u overflows we split it, which creates a new child of parent(u). This
could cause parent(u) to overflow which is handled in a recursive manner.
Finally, if the root split, then a new root is created. Note that it is legal
to insert a point p into any leaf, after which, the data structure will still be
considered legal. This is the main property that differs R-Trees from standard
B-Trees. There are several heuristics for choosing a subtree to insert into. It is
these heuristics that gives rise to the different R-Tree variants. We will cover
the original R-Tree heuristic and the R∗-Tree heuristic.

The formal definition of inserting a new point p is as follows. Given a
non-leaf u with children c1, c2, . . . , cΘ(B), we need to pick the best child c∗

such that the new point p is best inserted into the subtree of c∗.

Choosing a subtree to insert into in an R-Tree. The standard R-Tree
chooses the best child in a greedy manner. Specifically, c∗ is simply the child
ci whose MBR requires the least increase of area in order to cover p.

Choosing a subtree to insert into in an R∗-Tree. The problem in the
original R-Tree is that certain types of data points may create small areas but
large distances which will initiate a bad split. To overcome this, a mixed
heuristic is employed. At leaf level we try to minimize the overlap and in
case of ties the MBR that requires the least increase of perimeter is chosen. If
this again yields a tie the MBR that increases the least in area is chosen. At
the higher levels, it behaves similar to the R-Tree.

Node split in an R-Tree was by Guttman originally proposed handled
using two different heuristics. The linear method chooses far apart nodes as
ends. Randomly nodes are then chosen and assigned such that they require
the smallest MBR enlargement. The quadratic method chooses two nodes such
that the dead space between them is maximized. Nodes are then assigned
such that the MBR area is minimized.

Node split in an R∗-Tree is more involved but the main idea is to always
split point set S using an axis-orthogonal cut. This means that points of S are
sorted w.r.t. their x- and y-coordinate respectively. Then, the first B/2 points
are inserted into S1 and the rest is inserted into S2 for the x-sorted points and
into S′

1 and S′
2 for the y-sorted points. The final split is the better one, i.e. the

split that have the least combined MBR perimeter and least combined MBR
area. The above applies to splitting of a leaf node. The case of a non-leaf node
is a bit different because the items split are MBRs. The strategy is however

52



the same and involves sorting the MBRs by their centroids. Please refer to
Figure 8.2 for an illustration of the splitting of a leaf.

(a) (b)

Figure 8.2: (a) Split by cutting the x-dimension (b) Split by cutting the y-dimension.

8.1.3 Deletions

Let p be the point to be deleted. First the leaf node u which stores p is found
using p as search region. Then p is removed from u. The deletion is done
if the node has more than λB points, where λ denotes the minimum node
utilization. Otherwise, u underflows, which is handled by first removing u
from its parent, and then re-inserting all points in u using the insert algorithm
described earlier. Now, removing u from parent(u) may cause parent(u) to
underflow too. In general, the underflow of a non-leaf node u′ is also handled
by re-insertions, with the only difference that the items re-inserted are MBRs,
and each MBR is re-inserted to the same level of u′.

8.1.4 Analysis

It follows trivially from construction that a point can be inserted in O(logB N)
by simply searching after the MBR that is responsible for the update.

While much work has been done on evaluating the practical query per-
formance of the different variants of the R-Tree, very little is known about
their theoretical worst-case performance. Most theoretical work on R-Trees is
concerned with estimating the expected cost under hard assumptions on the
distribution of input and on the queries that is to be answered.

Since we cannot guarantee the heuristics for constructing the R-Tree choos-
ing all MBRs not to overlap, we believe a worst case analysis for querying
must be O(N).

8.2 MySQL

MySQL is a popular open-source relational database management system.
We will not give an in-depth description of how relational databases work
but we will describe how to very simply adapt MySQL to answer three-sided
range queries. A very minimal table was constructed with just two columns.
One for the x-coordinate and one for the y-coordinate. These two columns
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are base for a primary key on the table. This eliminates duplicates in the
table and allows for faster range queries by building some variant of a B-
Tree on the concatenation of the x- and y-coordinate yielding a single key,
i.e. MySQL does nothing extraordinary to utilize the two elements of the
key. Inserting in the table was done using simple INSERT IGNORE INTO table
VALUES { values } SQL queries. In order to make this work efficiently we
buffer inserts in memory and bulk insert whenever the buffer overflows. This
gave a significant speedup. Deletion was done using DELETE FROM table
WHERE (x,y) IN { values } queries and with buffers on top.

Queries of the form [x1, x2] × [y1, ∞] were answered using a SELECT *
FROM table WHERE x1 <= x AND x <= x2 AND y >= y1 query.

8.2.1 Analysis

It is important to keep an open connection to the server at all times; if not we
will end up spending a lot of time reconnecting to the server.

Inserting points in the database involves sending the query to the server,
parsing the query, and finally inserting the rows. Due to the primary key on
the table, we know that MySQL will build a B-Tree on the data. This will
give an insertion time of O(logB N) I/O’s for some MySQL implementation
specific B.

Deleting points is similar to inserting and is also done in O(logB N).
It is a little harder to argue about the complexity of a three sided query.

A B-Tree can answer normal two sided range queries in O(logB N + K/B).
We can however not guarantee that all points in the two sided range should
be reported and thus we cannot properly attribute any I/O’s to the output,
i.e. use filtering. We will have to settle with a complexity of O(logB N + T/B)
where T is the size of the output within the x range of the query.

If we enforce no index on the MySQL table, then we believe the standard
implementation will simply append all insertions to a continuous stream,
which can be done in O(1) I/O’s. We believe deletions and queries can be
handled in O(N/B) I/O’s by scanning the entire stream.
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“There is nothing more deceptive than an obvious fact.”

— Sherlock Holmes

9
Implementation

Throughout our implementation of the Internal Memory Priority Search Tree,
External Memory Priority Search Tree, and the External Memory Buffered
Priority Search Tree we noted down important considerations. In this chapter
we present these considerations together with a short presentation of how we
wrote wrappers around MySQL, Boost R-Tree, and libspatialindex R*-Tree.
We end the chapter with a description of the experimental framework we
developed to significantly simplify the experimental phase of the project.

All code can be cloned from the following git repository or downloaded
from the mirrors listed below. Instructions on how to compile and run the
code can be found in the accompanying readme file.

https://github.com/gabet1337/speciale

http://cs.au.dk/~peterg/three_sided.zip

http://cs.au.dk/~chrha22/three_sided.zip

9.1 General

Almost all code was developed using pair programming and we strongly
believe this technique, though slow and cumbersome, eliminated many mis-
takes that would otherwise had slowed us down later on. Everything we
implemented was unit tested and large parts of the project implemented us-
ing test driven development. We made sure to make sound design choices
to enable easy extension and reuse of our code. Stubs and mocks were used
to ease the integration of substructures into larger structures. We also wrote
checkers to automatically check validity of a tree. In the case of the External
Memory Buffered Priority Search Tree we wrote a checker that would iterate
the entire tree and check that no invariants were broken. Furthermore we
included a method to print the trees in a DOT format (graph description lan-
guage) allowing us to visualize every step of the algorithm. This really made
debugging easier as it supplied us with a quick overview of the structure.

We optimized the code as much as time allowed using the profiling tool
valgrind.
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In order to fully test that there were no errors in our implementation we
wrote a test that would insert thousands of random points and test validity of
the tree for every insert, delete, and query. We would then repeat this test for
several thousand iterations over several days while continuing on other parts
of the code.

Using all these methods and tools we feel confident that our code works
as intended.

9.2 Stream

The implementations we present make use of the concept of streams. A stream
gives access to reading and writing from disk to memory and vice versa. A
stream typically manages an internal buffer which is a mirror of a small por-
tion of the external memory allowing for fast interaction with that small piece
of data. Although the C++ standard library provides several streams that al-
low for the internal buffer to be managed we introduce an implementation
of our own. We denote this stream buffered_stream. This design choice
was made because of the nature of our experiments in which it is of extreme
importance that we are able to argue about the exact number of I/O’s being
used. By introducing a stream of our own we avoid that any undefined be-
haviour in the standard library implementations gives rise to a potential I/O
overhead. Any such I/O overhead would be reflected directly in the overall
running time of our implementation giving us a hard time to reason about
the behaviour. A stream of our own would further more allow us to count
the exact number of I/O’s being used.

The stream we introduce makes use of the read and write system calls
and is equipped with a buffer of size B that is maintained on all operations.

There are many different ways to construct a stream. In order to substan-
tiate our choice of using buffering on top of the read and write system calls
we conducted some experiments with different types of streams:

• Direct invocation of the operating system calls read and write that
reads/writes one item using no buffering mechanism.

• The standard library streams fread and fwrite that use a built-in buffer-
ing mechanism that we do not manage.

• Direct invocation of the operating system calls mmap and munmap that
makes use of the operating system’s virtual memory mechanism through
demand paging.

It is clear that direct invocation of the read and write system calls can-
not be better than adding buffering on top, which early experiments without
doubt showed. The results were so slow that we had to exclude them.

The results of Figure 9.1 and 9.2 show that the buffered_stream performs
similarly to using mmap when reading 5Gb of data while using fread and
fwrite is significantly slower. Figure 9.2 surprisingly shows that it is faster
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Figure 9.1: Reading 5Gb.
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Figure 9.2: Writing 5Gb.

to use the virtual memory mechanism to write data. Using virtual memory
however also means that we lose some control of when and how data is writ-
ten to disk, and we lose the control to accurately measure disk I/O’s as we
have no control of how the operating system schedules I/O’s. We would also
have a harder time measuring the number of page faults caused by our struc-
tures’ internal work as every I/O will cause a page fault which will interfere
with our measurements. With these considerations in mind we conclude that
it makes most sense to use the buffered_stream.

9.3 External Memory Buffered Priority Search Tree

This section presents important implementation specific design choices for
the main data structure of the External Memory Buffered Priority Search Tree
by Brodal presented in Section 7.1.

We decided to implement a dependency mechanism on each node that
allows for the node to be partly flushed and loaded. This allows us to op-
timize the number of I/O’s needed as we can restrict the load and flush to
required data. The data for each node naturally groups into a separate file for
the insert buffer, delete buffer, point buffer, meta data on children, and meta
data for the node itself.

As described in Section 7.1 we have subroutines calling each other. If we
simply let each subroutine call each other using a naïve call stack we would
have to manage that a subroutine can be both caller and callee. This would
require a complex logical mechanism that does nothing but manage the con-
trol flow of the recursion and handling of data load and flushing. In order to
overcome this we have introduced an event loop mechanism that uses a stack
of events to control flushing, loading, and calling proper subroutines. Using
this mechanism we are able to predict exactly what data is needed. Further-
more, it becomes an easy task to flush all required data before taking further
steps in the recursion ensuring optimal use of available internal memory.

As it is not uncommon to see consecutive events for the same node we
have added a caching mechanism that makes sure not to flush data on any
nodes used in the previous event if the same nodes and data is required in
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the current event. This idea of using a simple caching scheme dramatically
reduces the number of I/O’s required compared against the naïve solution.

In order to further reduce the number of I/O’s required we make sure to
maintain a detailed view of the state of each node. This enables us to test,
in only a single I/O, whether a node is internal or a leaf, and if it has any
broken invariants.

As both event loop and buffer over-/underflow thresholds depends on
whether we are currently global rebuilding, linear constructing, reporting, or
handling updates, we introduce a state switch that is used throughout our
implementation to decide which path the recursion should follow.

The general representation of buffers makes use of Red-Black search trees
(std::set from the C++ standard library) on totally ordered points. This
design choice allows us to retrieve the minimum and maximum element in
each buffer in constant time using iterators. Furthermore we are able to
traverse each buffer in sorted order in linear time. We are aware that using a
search tree comes with the price of a space blow-up. We maintain the point
buffer as two separate search trees totally ordered on the x-coordinate and
y-coordinate respectively. This is needed as we frequently need access to the
minimum y-value when deciding whether we should insert a point into the
point buffer or insert buffer. The catalogue structure containing information
about the children of each node is also represented as a Red-Black search tree.
In the info file of each node we maintain information on whether the node
is a leaf, a virtual leaf1, or an internal node, whether the node currently has
an overflowing or underflowing point buffer, insert buffer, delete buffer, and
whether the node is currently node degree overflowed. This allows the event
loop to identify whether we should remedy any broken invariants using only
1 I/O.

9.4 External Memory Priority Search Tree

Drawing from the experiences gained while implementing the External Mem-
ory Buffered Priority Search Tree of Section 9.3 we decided to once again
make use of the event loop to handle our recursion allowing for full control
of loading and flushing. This choice also allowed for simple adaptation of the
caching mechanism previously described.

The elements of the base B-Tree is a simple type containing a point, a
reference to a child, and a boolean telling us whether the point has been
deleted. The elements are stored in nodes which is just a collection of the
point type, a reference to a query data structure, and some booleans used
in the loading and flushing mechanisms. The collection used for the point
type is a Red-Black tree (std::set). This collection allows us to find the child
responsible for a point in logarithmic time using binary search and naturally
keeps the points in sorted order w.r.t. the x-coordinates.

Updates and reporting are done as described in Section 6.3 and 6.4 with
no remarkably deviations.

1An internal node with an empty subtree.
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9.5 Other structures

We also implemented wrappers around MySQL 5.7.12, Boost 1.60.0 R-Tree
using the quadratic method, and libspatialindex 1.8.5 external R*-Tree such
that we could use these structures as a Priority Search Tree. The structures
are described further in Chapter 8. We made sure to implement functionality
to disallow duplicates of points on top of the basic functionality.

9.6 Experimental framework

We developed an extensive framework for running experiments in order to
automate the process as much as possible.

ExperimentBase

run
plot

+

InsertExperiment

experiment+

(a) (b)

+

(c) (d)

Figure 9.3: (a) An experiment is created by extending a base class (b) The experiment is
added to an experiment queue (c) When a machine becomes available the experiment is run
(c) Measures on statistics and time are automatically plotted and finally the motherboard
beeper plays a tune to signal that an experiment has been processed.

(a) (b) (c)

Figure 9.4: (a) A factory produces an in-
stance of a Priority Search Tree (b) Each
experiment is run in a delegated thread
(c) Measures are recorded on statistics and
time.

Figure 9.3 depicts the flow of
an experiment from thought to
result. In order to achieve this
flow we wrote a framework that
would do all the hard work for
us such that all we had to do
was to describe the actual ex-
periment. As an example, to
test the time it takes to insert in
all the structures we only had
to tell the framework to insert
into the Priority Search Tree and
measure for each 10 megabytes.
The framework would then au-
tomatically run the experiment
on all the structures one-by-one,
measure time, I/O’s, page faults,
and other data structure specific
statistics (overflows, splits, etc.),
plot all the gathered data as a function of the input size, and finally play a
small tune to signal that the experiment had finished. To make sure that no
experiment leaves any ungathered memory behind we start each experiment
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in its own thread such that the memory would be automatically recollected
upon termination of the thread. All caches are dropped between each exper-
iment.

The running time was measured using the high_resolution_clock of the
chrono library. It was measured in both seconds and milliseconds to make
sure we had all the required data. In most cases it suffices to measure in
seconds.

In order to obtain a deeper understanding of the results we chose to mea-
sure the number of major page faults generated when using the data struc-
tures. This was done using perf - a performance analysis tool for Linux.
Finally we measured the number of I/O’s by extending our stream with a
counter on calls to read and write.

As the machines run on a 32 bit operating system it is very important to
define _FILE_OFFSET_BITS=64. This forces the system to use 64 bit pointers
when seeking in files allowing us to handle data sets larger than 232 on the
machines.
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“We must never make experiments to confirm our ideas,
but simply to control them.”

— Claude Bernard

10
Experimental setup

Conducting experiments on I/O algorithms is extremely time consuming.
In order to compare I/O efficient algorithms against internal memory algo-
rithms we need input sizes that force the internal memory algorithms to store
and load data to and from the disk (swapping). The input size to the algo-
rithms can be severely minimized if run on machines with a small amount of
internal memory which in turn decrease the running time severely as well.

It is important to mention some considerations when it comes to choice
of persistent storage media. In recent years solid state drives (SSD’s) have
grown increasingly more desirably in terms of price per gigabyte and storage
capacity, but there is still a significant gap in price between electronic SSD’s
and mechanical HDD’s. Disregarding this gap in price, solid state drives
clearly outperforms the mechanical hard disk in every notable aspect. Solid
state drives allow random access to blocks and diminish the seek time which
is considered to be the culprit of the mechanical disks due to the rotational
latency. The rotational latency makes it very important to store data on the
disk in consecutive blocks as scattering data blocks across the disk would
be detrimental to the performance as each block would have to wait for the
rotational latency. As long as the mechanical disk is still as widespread as it
is, these culprits of the mechanical disk have to be taken into consideration
when designing I/O efficient algorithms.

With these considerations in mind we acquired two very old Dell ma-
chines with the specifications outlined in Figure 10.1.

We used newer machines for some experiments where it made sense. An
example of a situation where it made sense was when we experimentally com-
pared the actual running time with the theoretical running time of a single
data structure, i.e. confirm whether the actual running time divided by the
asymptotic complexity would give a horizontal line. For these experiments a
newer machine would not change the results but rather provide faster results
and not take up scarce time on the two Dell machines.
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CPU Intel(R) Celeron(R) CPU 3.06GHz
CPU L1 cache 16Kb
CPU L2 cache 256Kb
RAM 512Mb DDR 553MHz
Disk Seagate ST3160828AS
Disk capacity 160Gb
Disk number of disks 2
Disk number of heads 4
Disk RPM 7200
Disk rotation time 8.33ms
Disk seek time 8.5ms
Disk buffer size 8192Kb
Disk sector size 512bytes
Operating system 32 bit Ubuntu 14.04
Kernel version 4.2.0-27-generic
Compiler gcc 4.8.4 with optimization level 2

Figure 10.1: Specifications of the two Dell machines used for running experiments.
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“Big results require big ambitions.”

— Heraclitus of Ephesus

11
Our results

The performance of the structures were evaluated and compared through
meticulous experimentation. In this chapter we present and discuss the most
interesting results. Some of the experiments are limited to run only for a
fixed amount of time. This was a necessary restriction as the internal memory
structures are severely limited when data input is greater than the available
internal memory. This will be very apparent in many of the presented results.

11.1 Parameter tuning

Both the original and buffered external memory Priority Search Tree by Arge
et al. (Chapter 6) and Brodal (Chapter 7) respectively are parametrised with
fanout and buffer size. These parameters are of a very machine dependent
nature as larger internal memory allows for larger buffer sizes. It is our goal
to utilize as much internal memory as available in the machine running the
data structure. We decided to focus the parameter tuning sorely on the insert
operation, since this would allow us to construct data structures with a large
amount of data, which again would give rise to interesting experiments for
the remaining operations. Put in other words; it is of no interest to achieve
a data structure that queries really fast if we are unable to construct it with a
decent amount of data within a decent amount of time.

In Subsection 11.1.1 we present our tuning parameters for the structure by
Brodal and in Subsection 11.1.2 we present our findings for the structure by
Arge et al.

11.1.1 External Memory Buffered Priority Search Tree

The experiments consisted of inserting 5Gb of data, i.e. for a 8 byte point
5 · 1024 · 1024 · 1024/8 ≈ 670 million data points. The coordinates of the data
points were chosen uniformly distributed among the positive integers.
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Buffer size

To tune the buffer size we fixed the fanout to two and varied the buffer size.
Theoretically the running time should decrease with ever increasing buffer
sizes as shown in Figure 11.1. We are, however, limited by the internal mem-
ory size and have to be careful not to cause swapping of internal memory to
external memory as this greatly decreases performance.

The results as running time per insert are depicted in Figure 11.2. The
actual running time follows the same tendency as the theoretical number of
I/O’s per insert. In Figure 11.3 we plot the actual number of I/O’s used per
insert. Again it seems we have a good alignment between the actual, and the
theoretical, number of I/O’s. In order to verify the running times to be truly
bound by the number of I/O’s we plot the actual time per insert divided
by the theoretical number of I/O’s per insert in Figure 11.4. We expect a
close relation between running time and the theoretical number of I/O’s and
produce a plot with close-to horizontal lines. For buffers of sizes 1Mb, 2Mb,
4Mb, 8Mb, and 16Mb we believe this to be the case.

For buffer size 32Mb we see more fluctuations and we can hardly argue the
plot follows a horizontal line. We believe this is caused by the limited amount
of internal memory forcing us to utilize more physical memory than available,
which again causes the operating system to swap out internal memory to
external memory. We verified this by examining the measured number of
page faults generated from which it became apparent that the data structure
started to cause page faults using this buffer size. See Figure C.1.

In Section 9.3 we argued about the high space overhead of using Red-
Black trees as buffers. When we underflow a point buffer we must load 2
child structures along with all of the related buffers giving a huge space blow
up. These two facts together explains the relatively low threshold at which
we begin to generate page faults.

We can conclude that while the buffers fit in internal memory the running
time improves with larger buffer sizes. The results shown in this section
was not generated from the machines described in Chapter 10, but a similar
experiment on those machines showed that a buffer size of 8Mb performed
best. Going forward we will stick to using a buffer size of 8Mb.
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Figure 11.2: Experimentally measured update time per operation for buffer sizes
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theoretical update bounds depicted in Figure 11.1
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Fanout

To tune the fanout parameter we fixed the buffer size to 8Mb and varied the
fanout parameter. The reader’s intuition might deceive him into concluding
an ever increasing fanout would cause an ever worsening of the update time.
This was certainly what we had expected as we pass down an ever decreas-
ing B/Bε fraction, and each such fraction charges an I/O to the total running
time. In Figure 11.5 we present the theoretical update time per insert. We see a
tendency of ever increasing fanouts causing an ever decreasing performance
for Bε ∈ {4, 5, 6, 8, 16, 32, 64}. When zooming in on the graphs for fanouts
Bε ∈ {2, 3, 4, 5} in Figure 11.6 we see that no theoretical gain is to be expected
when decreasing the fanout from 3 to 2. In fact it seems we achieve the exact
same update time per insert for fanout 2 and fanout 4. This is, however, not
as surprising as one might think. See Equation 11.1 and Equation 11.2 where
the theoretical bound is shown to be the exact same for fanouts 2 and 4.

Let Bε = 2:

1

ε · B1−ε
logB N =

2 log2(B)

B log2(2)
logB N (11.1)

Let Bε = 4:

1

ε · B1−ε
logB N =

4 log2(B)

B log2(4)
logB N

=
2 log2(B)

B log2(2)
logB N

(11.2)

What Equation 11.1 and Equation 11.2 essentially states is that the amor-
tized cost of sending double the amount of points down per overflow in a
tree of double the height yields no performance gain. Drawing from this con-
clusion we expect the performance of fanout 2 to be equal to that of fanout
4.

The results showing the experimentally measured update time per insert
on varying fanout are depicted in Figure 11.7. We see that the actual run-
ning time aligns with what the theoretical number of I/O’s per insert from
Figure 11.5 suggests. If we are truly I/O bound we expect the theoretical
number of I/O’s and the actual running time to align well with with the ac-
tual number of I/O’s per insert. We are pleased to see this is in fact the case
in Figure 11.8.

To support our claims of the measured running time and number of I/O’s
aligning well with theory, we have divided the actual result with the expected
in Figure 11.9 for the I/O’s and in Figure 11.10 for the running time. We
conclude there is a close relation between the actual measures and what the
theory suggests, as we see close-to horizontal lines in both plots.

If we zoom in on the measured running time for fanouts 2, 3, 4, 5, and 6
we see minor inconsistencies from what the theory suggests. Comparing the
measured running time per update in Figure 11.11 to the expected number of
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I/O’s per update in Figure 11.6 we see the tendencies align, but the order of
the fanouts are inconsistent. For example we would have expected fanout 2
to perform the same as for fanout 4, and surely we had expected fanout 3 to
perform the best of them all. This is not the case.

We believe these inconsistencies can be explained by the one parameter
not encapsulated in the I/O model; the amount of internal work being done.
Theory suggest we see a decreasing number of node degree overflows on in-
creasing fanouts, and in turn we expect less node degree overflows to produce
fewer point buffer underflows. These expectations align well with our mea-
sures on the total number of point buffer underflows depicted in Figure 11.12.
But the I/O model does not account for the internal work needed to handle
the actual point buffer underflow. In fact we regard this exact operation to be
the most expensive with regard to internal work. Running a profiler on the
structure for different fanouts showed us the exact distribution of time spent
in different parts of the code. The profiler showed that for smaller fanouts
we spent more time doing point buffer underflows, relative to the other op-
erations, than we do for larger fanouts. Refer to Figure 7.7 for a detailed
description of the underflow procedure. We claim that in the area of fanouts
from 2-6 we are highly influenced by the internal work needed for handling
the many point buffer underflows to a point where we do not benefit from
the large B/Bε fraction of points we pass down on each overflow.

The results suggest that a fanout of size 5 give the best performance. The
results presented was, however, not generated from the machines presented
in Chapter 10. The results of these machines show that with a buffer size of
8Mb it would be best to use a fanout size of 2. As the rest of the experiments
will be run on the machines described in Chapter 10 we will use a fanout of
size 2 going forward.
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with the theoretical update bounds depicted in Figure 11.5.
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Summary

We conclude from our above experiments with different fanouts and buffer
sizes that in order to get as fast an update time as possible we need a fanout
of between 2-6 and as large a buffer size as internal memory allows.

It is worth noting that, since the experimental results are very much in
line with the theoretical results, it can be concluded that the data structure is
I/O bound.

Going forward we will use a buffer size of 8Mb together with a fanout of 2.

11.1.2 External Memory Priority Search Tree

The experiment consisted of inserting 50 Mb of data, i.e. around 6.55 mil-
lion data points. The coordinates of the data points was chosen uniformly
distributed among the positive integers.

The results of the experiment are depicted in Figure 11.14. We are very far
away from the expected update time per insert depicted in Figure 11.13. The
main reason behind this is most likely that more data is needed in the struc-
ture for the theoretical O(logB N) I/O per update to be apparent. It would
seem we are dominated by the fact we need to load and store B data points
on each node visited in order to handle an update. Since the experiment was
very time consuming, we decided to elect a buffer size of 4Kb as the winning
buffer size. We will elaborate more on the main bottlenecks of the structure
in the insert experiment found in Section 11.2.
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Figure 11.13: Theoretical asymptotic up-
date time per insert for buffer sizes
B ∈ {4Kb, 8Kb, 16Kb, 32Kb}. Each graph
is on the form f (N) = logB N.
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11.2 Insertion

The goal of this experiment is to ascertain how the different structures com-
pare when it comes to inserting points. The experiment consists of inserting
as much data as possible within 24 hours. The data is uniformly distributed
in the positive integer range.

Figure 11.15 shows the theoretical complexities of inserting an element
into the different structures for different input sizes. We expect the data
structures not optimized for external memory to align close to the theoretical
bounds while completely contained in internal memory. Only when the op-
erating system is forced to swap data between internal and external memory,
do we expect a significant decrease in performance. When the data structures
are no longer able to fit into internal memory, and since they all rely on scat-
tered data access, we expect an amount of page faults close to the theoretical
asymptotic complexity. For the external memory data structures we expect
the MySQL implementation without an index to outperform all of the other
structures, since inserting essentially just appends points to a file. We expect
the effective buffering of points in the External Memory Buffered Priority
Search Tree by Brodal to outperform the R-Tree variants and MySQL with an
index on coordinates.
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Figure 11.15: Theoretical asymptotic insert time for all tested structures. Brodal’s is on the

form f (N) = 1
B1−ε

logB N for ε = log(B)
log(2)

. Arge’s and MySQL (with index) are on the form

f (N) = logB N. The Internal Memory Priority Search Tree is on the form f (N) = log2 N.
The MySQL (no index) is on the form f (N) = 1, and the Boost R-Tree and Libspatial R*-Tree
are on the form f (N) = N.

Figure 11.16 shows the actual running time per inserted megabyte in all of
the tested structures. The figure is cropped at N = 600 to better present the
relation between the internal memory and the external memory structures.
MySQL without an index was able to insert more than 10Gb in less than 3
hours. We decided to stop the experiment prior to the time limit since there
was no change in running time per inserted megabyte. The External Memory
Buffered Priorty Search Tree by Brodal was able to insert around 3.5Gb worth
of data within the time limit.

The internal memory data structures performs very well while contained
in memory. It can be seen in Figure 11.17 that there is a close relation between
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Figure 11.16: Actual running time when inserting into the tested structures. The figure
shows the running time per insert for the first 600Mb.

the running time and the number of page faults. We see the running time
increase significantly at the same input size as where the number of page
faults increases.

It is obvious that the data structure of Arge performs the worst when it
comes to inserting data. We believe this is due to the huge amount of data
we need to load and store for inserting just a single point. We will in the
following argue this in a more precise manner. It follows from the theory
that a single insert requires O(logB N) I/O’s. Each data point uses 8 bytes of
space, 4 bytes for each coordinate. This means that in order to insert 50Mb
data or equivalently 6,553,600 points in an initially empty structure with a
buffer of size 4Kb we need roughly

6,553,600

∑
i=0

log4096(i) ≈ 11.5 · 106 I/O’s

Comparing this against the structure of Brodal with the same buffer size and
a fanout of size 2, we get that Brodal’s requires roughly a factor B less:

6,553,600

∑
i=0

1

ε · 40961−ε
log4096(i) ≈ 67.8 · 103 I/O’s
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Figure 11.17: Number of page faults generated by the internal memory data structures when
inserting points.
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The calculations shows that in order to insert 50Mb of data, we need to
load/store 11.5 · 106 · 4096 = 47.1Gb in the case of Arge’s, and 67.8 · 103 ·
4096 = 0.278Gb in the case of Brodal’s. This gives a relatively difference of
around 170 times fewer I/O’s performed in Brodal’s over Arge’s.

To corroborate these observations we conducted a single experiment mea-
suring the I/O’s used when inserting 50Mb of data. The results can be found
in Figure 11.18. The results shows that the amount of I/O’s performed is sub-
stantially larger for Arge’s than for Brodal’s. In fact we can see that in order
to insert 50Mb we must perform I/O’s equal to moving around 1Tb of data
in Arges’ and around 13Gb of data in Brodal’s. This is a relative difference
of around 81 times fewer I/O’s in Brodal’s compared to that of Arge’s. This
result is close to what we would suspect from the theoretical reasoning above,
however with a constant factor between theory and reality.

Figure 11.19-11.23 shows the time per insert divided by the theoretical
asymptotic bound of each of the tested structures. For the external mem-
ory data structures we also display the number of I/O’s per insert divided
by the theoretical asymptotic bound and for the internal memory structures
we include the page faults per insert divided by the theoretical asymptotic
bound.

If the actual running time align with the theoretical bounds then we ex-
pect to see the graphs form horizontal lines. The caveat is that the internal
memory data structures will start to swap out data when they have no more
free internal memory to use, which again causes the running time to increase
severely. If we see a spike in both running time and number of page faults at
the same mark then we feel confident the two measures are closely related.

In Figure 11.19 we see that the time per insert in the structure of Brodal
aligns with the theoretical bound. This can be seen by the flattening of the
graph as the input size goes up, which again suggests the structure becomes
more and more I/O bound on increasing input size. The structure follows
the same trend in terms of I/O’s which further strengthens this hypothesis.

In Figure 11.20 we see that the time per insert and number of I/O’s per
insert follows the theoretical bound very well up to the N = 28 mark. We in-
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Figure 11.21: Time and page faults per insert
divided by log2 N for the Internal Memory
Priority Search Tree of McCreight.
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Figure 11.22: Time and page faults per insert
divided by log16 N for the Boost R-Tree.
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Figure 11.23: Time and page faults per insert
divided by N for the libspatial external R*-
Tree.
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vestigated this further and found this was the exact moment when the struc-
ture went from a B-Tree of height 2 to one of height 3. It would seem that
adding a layer significantly increased the amount of I/O’s. Further investiga-
tion of the trends for I/O’s we see the graph flattening again after the N = 28
mark, which provides evidence for the number of I/O’s once again becomes
a constant factor of the theoretical bounds. The same cannot be concluded for
the actual running time. We would have expected a flattening along the same
lines as for the number of I/O’s but this is clearly not the case. Once again
we conclude this is caused by the amount of data we need to load and store
to handle just a single insert.

Figure 11.21 shows that the Internal Memory Priority Search Tree of Mc-
Creight performs exactly as expected as long as the structure is contained
in internal memory. At the exact moment the structure starts to swap out
internal memory we see, just as expected, a significant increase in running
time.

It is almost the same situation for the results of the Boost R-Tree depicted
in Figure 11.22. The insertion time in an R-Tree heavily depends on heuris-
tics which explains the decreasing graph and far from worst case behaviour.
Again we see the same behaviour as for the structure by McCreight when we
run out of internal memory – the running time suffers tremendously.

The results for the libspatial external R*-Tree depicted in Figure 11.23
shows the running time follows the expected theoretical bounds very well.
We would have liked to measure the number of I/O’s for this structure but
since it is a library implementation this was infeasible. We are pleased to see
that the implementation does not generate any page faults. This is what we
would expect from a sound external memory data structure.

Figure 11.24 shows both the running time of MySQL with an index and
without an index both divided by the asymptotic running time, which for
the case of the indexed version is O(logB N) and the non-indexed version is
O(1). The results show that MySQL without an index follows the asymptotic
running time very closely while the indexed version becomes steeper and
steeper. Digging into the MySQL implementation of how indices and B-Trees
are used we found that MySQL uses a Red-Black tree to store data in internal
memory and then bulk insert the sorted data into a B-Tree whenever the Red-
Black tree overgrows internal memory. We believe the increases in running
time are caused by this bulk unloading into a B-Tree1. We deemed it out
of scope for this thesis to look closer into the inner workings of the MySQL
index structure.

1https://dev.mysql.com/doc/internals/en/bulk-insert.html
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11.3 Deletion

It was difficult to come up with a good experiment to compare the different
structures when it comes to deletion. In order to delete data we need to insert
it first, and we need to insert equally much data in all structures to compare
fairly. As described in the previous section it was not possible to insert much
data in the internal structures as well as the structure of Arge et al. To come
around this problem we decided to insert nothing more than 50 megabytes
worth of uniformly distributed points in all the structures. We could then
completely empty the structures while measuring for each megabyte. This
way we hope we can exclude structures from further analysis.
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Figure 11.25: Theoretical asymptotic delete time for all tested structures. Brodal’s is on the

form f (N) = 1
B1−ε

logB N for ε =
log(B)
log(2)

. Arge’s and MySQL (with index) are on the form

f (N) = logB N. The Internal Memory Priority Search Tree is on the form f (N) = log2 N.
The MySQL (no index), Boost R-Tree and Libspatial R*-Tree are on the form f (N) = N.

Figure 11.25 shows the theoretical complexity of deletion in the structures.
We expect the internal memory algorithms to outperform the external struc-
tures significantly while still in internal memory. As soon as we outgrow
internal memory we expect them to become obsolete. In external memory we
expect the structure by Brodal to be the best due to the effective buffering of
deletes.

First results

The results of the above described experiment are depicted in Figure 11.26.
We have left out the results from the structure of Arge as we were unable
to delete more than 2Mb worth of data within 24 hours, and thus concluded
it would be infeasible to finish the experiment within reasonable time. We
believe the poor performance of Arge’s structure is due to similar reasons as
described in Section 11.2.

In Figure 11.26 we see some, at first glance, strange behaviour on the
running time of the Internal Memory Priority Search Tree. It seems we are
achieving ever increasing running time on the first 9Mb worth of deletions,
and then, after seeing a significant spike, we are suddenly achieving very
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good running times on the emptying of the rest of the data structure. This
is, however, not as surprising at it might seem. Remember, we are making
use of global rebuilding in our implementation of the Internal Memory Pri-
ority Search Tree. We do this by marking any deleted place-holder, instead of
removing the actual place-holder from the data structure. This is also known
as a weak delete of an element. Only when we initiate a global rebuild on the
non-deleted points are we freeing the occupied memory of deleted elements2.
What we are observing are measures on an ever decreasing data structure in
terms of non-deleted data. But the deleted data is still part of the tree, and
thus it affects space usage, and again running time of our delete procedure.
We are global rebuilding exactly around the spike at the 41Mb mark. We
claim that the Internal Memory Priority Search Tree on 50Mb data is unable
to fit in internal memory, and what we see is the effect of the swapping of
internal memory to external memory. Only when we global rebuild to a data
structure holding around 40Mb worth of data are we able to process the data
structure entirely in internal memory. We believe Figure 11.27 depicting the
number of measured page faults supports this claim.

Narrowing the field

Arge’s structure, the Libspatial R*-Tree, and the Internal Memory Priority
Search Tree performs the worst of all the data structures when it comes to
handling deletions. Excluding these gives rise to Figure 11.28. It is obvious
that, even with an index on coordinates, the MySQL implementations are per-
forming much worse than the Boost R-Tree and the data structure of Brodal.
We suspect the good performance of the Boost R-Tree is due to the effective
space-usage and thus the data structure is able to process the deletions en-
tirely in internal memory. In order to verify this, we re-ran the experiment
only on Brodal’s data structure and the Boost R-Tree on larger input.

Finding the winning data structure

The result of emptying Brodal’s and the Boost R-Tree from a size of 400Mb
down to a size of 350Mb worth of data is depicted in Figure 11.29. We now see
the data structure of Brodal’s handling deletions several orders of magnitude
faster than the Boost R-Tree. We claim this is caused by the fact that the Boost
R-Tree cannot fit into internal memory, and thus have to rely on the operating
system handling swapping of data. Figure C.2 depicting the number of page
faults for the experiment supports this claim.

Explaining fluctuations

Finally we zoom in on the result of completely emptying Brodal’s data struc-
ture from a size of 400Mb of data in Figure 11.30. We see severe fluctuations

2We could, without having broken correctness of the implementation, have deleted place-
holders, but that was an observation made in hindsight, and we did not have the time to make
this change in code.
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in running time during the emptying of the data structure. We believe these
fluctuations are perfectly explained by the number of point buffer underflows
depicted in Figure 11.31 and the number of delete buffer overflows depicted
in Figure 11.32.
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Figure 11.27: Experimentally measured page faults when deleting 1Mb worth of data as a
function of the remaining data in the structure going from 50Mb to 0Mb.
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Figure 11.28: Experimentally measured running time when deleting 1Mb worth of data in a
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Figure 11.31: Experimentally measured number of point buffer underflows when emptying
Brodal’s from a size of 400Mb data.
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Figure 11.32: Experimentally measured number of delete buffer overflows when emptying
Brodal’s from a size of 400Mb data.
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11.4 Three-sided range queries

As the theoretical query bounds are analysed using the method of filtering,
we conduct experiments that focus on both the search and the report part of
the algorithms. Please refer to Section 3.3 for a description of the method of
filtering.

11.4.1 Focus on searching

In this subsection we try to focus on searching, i.e. remove the reporting part
of the query complexity, by fixing the output to a fixed constant number of
points.

First experiment

The first experiment on the search part of the algorithms was conducted by
first inserting data inside 5 fixed query windows as shown in Figure 11.33 of
5Mb data each, i.e. each query window contains 655,360 points. We use query
windows such that we report on both small and large ranges and high and
low in the tree. This was followed by inserting uniformly distributed data
outside the query windows. For every 10Mb of data inserted we report all of
the 25Mb points inside the query windows. The experiment was limited to
run for 24 hours.
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Figure 11.33: Distribution of points for the uniform reporting experiment (search). The gray
areas (a) - (e) contains 5Mb data each. Points are distributed uniformly random. The query
window (a) spans 5% of the x-axis and 100% of the y-axis (b) spans 17% of the x-axis and
20% of the y-axis (c) spans 11% of the x-axis and 60% of the y-axis (d) spans 14% of the
x-axis and 40% of the y-axis (e) spans 8% of the x-axis and 80% of the y-axis.
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All queries are performed once before the actual measuring is done. This
is to remove fluctuations on the internal data structures and to pay the amor-
tized cost of flushing buffers in the External Memory Buffered Priority Search
Tree. The results of the experiment are depicted in Figure 11.35.

The theoretical search complexity on each of the data structures are de-
picted in Figure 11.34. Even though the theoretical asymptotic bound sug-
gests the R*-Tree to be linear in the size of the input, we expect it to have an
actual average running time closer to O(logB N) guaranteed when no bound-
ing boxes overlap each other. We expect the external memory data structures
to perform much better than the internal memory data structures when the
operating system starts swapping out internal memory.
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Brodal with fanout 2
Brodal with fanout 16

Internal PST
Boost R-Tree

Libspatial R*-Tree
MySQL (no index)

MySQL (with index)
Arge

Figure 11.34: Theoretical search complexity for the query operation on all structures. Brodal’s

is on the form f (N) = 1
ε

logB N for ε = logB( f anout). The data structure of Arge and
MySQL with an index are on the form f (N) = logBN. The Internal Memory Priority
Search Tree is on the form f (N) = log2 N. Both the Boost R-Tree, the non-indexed MySQL
implementation and the Libspatial R*-Tree are worst case linear, i.e. f (N) = N.

We see that both the Internal Memory Priority Search Tree, the Boost
R-Tree, and MySQL with an index suffer when they cannot fit into inter-
nal memory. We argue in the following our observations according to the
zoomed-in plot depicted in Figure 11.36. It is difficult for us to argue that the
libspatial R*-Tree follows our expectations of an average O(logB N) search
time in the depicted results. We believe we would have had a better chance of
explaining the tendencies on the R*-Tree had we been able to construct a data
structure on a larger input size. This was not feasible within a reasonable
amount of time. To our surprise we see that the structure of Arge et al. per-
forms best of all the structures, but since we are unable to insert more than
around 70Mb of data in the data structure within 24 hours, we conclude the
implementation to be of no practical use when querying large data sets. We
see that the non-indexed MySQL’s running time is linear as expected. It is in-
teresting to see that the data structure of Brodal performs very well even for a
small fanout. The data structure aligns with the tendencies suggested by the
theory except for minor fluctuations. These are, however, perfectly explained
by the node degree overflows needed during fixup as shown in Figure C.3.
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Figure 11.35: Experimentally measured running time for querying using the query windows
of Figure 11.33 on all data structures of size N.
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Figure 11.36: Zoomed-in version of the experimentally measured running time for querying
using the query windows of Figure 11.33.
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Second experiment

The second experiment on the search part of the algorithms was conducted
by fixing x1 and x2 and y1, . . . , yn, and inserting data points such that there
is exactly 1Mb of data points in the range [x1, x2] × [yi, yi+1]. In the range
outside [x1, x2]× [−∞, ∞] we distribute data points uniformly. Now we report
points in ranges [x1, x2]× [y1, ∞], [x1, x2]× [y2, ∞], . . . , [x1, x2] × [yn, ∞]. The
idea is that the number of reported points K only grows with 1Mb when
reporting in the range [x1, x2]× [yi+1, ∞] compared to reporting in the range
[x1, x2]× [yi, ∞].
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Figure 11.37: Distribution of points for the uniform reporting experiment (searching). The
points x1 and x2 and y1, . . . , yn are fixed. There is 1Mb data in all ranges [x1, x2]× [yi, yi+1].

We first conducted the experiment with 50Mb data distributed inside the
query windows and an additional 50Mb of data distributed outside the query
windows. The result of this experiment is depicted in Figure 11.38. We see
the Internal Memory Priority Search Tree of McCreight suffers severely from
swapping of memory, and so we rule this data structure out after having
deleted only 2Mb worth of data. Also, it is obvious that the Boost R-Tree is
still able to fit entirely in internal memory and achieves a superior running
time. The data structure of Arge achieves decent running times, but since the
data structure took more than 24 hours to construct we have to rule it out as
a candidate for solving huge data sets. Based on this observation we added
an additional 300Mb data outside the query windows giving a total of 400Mb
data in Figure 11.39. We now see that the Boost R-Tree can no longer fit into
internal memory which results in a much worse running time than achieved
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by the external memory data structures. What is also clear is that MySQL
using no index is still superior compared to the data structure of Brodal. The
last experiment therefore added an additional 2,100Mb data outside the query
windows yielding a data structure of a total of 2,500Mb worth of data. The
experiment was then run on MySQL with no index and the data structure by
Brodal with a fanout of 2 and 4 respectively. The result of this experiment is
depicted in Figure 11.40. We now see that the data structure of Brodal with
fanout 4 outperforms MySQL which is explained by the fact that it is able
to exclude searching in the parts of the tree with no points to report based
on the y range of the query. We also see that the External Memory Buffered
Priority Search Tree just barely overtake MySQL with a fanout of 2. These
results support the tendency of increasing performance on query when the
fanout goes up. This aligns well with the theoretical analysis.
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Reporting using the strategy of Figure 11.37 on data structures of size 100Mb (Figure 11.38).
Here the Internal Priority Search Tree of McCreight suffers from swapping of memory. Run-
ning on data structures of size 400Mb (Figure 11.39). Here the Boost R-Tree suffers from
swapping of memory.
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Figure 11.40: Reporting using the strategy of Figure 11.37 on a data structure of size
2,500Mb. The data structure of Brodal on fanout 4 now outperforms MySQL with no in-
dex.

87



11.4.2 Focus on reporting
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Figure 11.41: Distribution of points for
the uniform reporting experiment. The
points x1 and x2 and y1, . . . , yn are
fixed. There is 100Mb data in all ranges
[x1, x2]× [yi, yi+1].

This experiment focuses on the re-

port part of the query algorithm.
We limited the experiment to only
include Brodal’s since we only had
limited time, and the nature of the
experiment required a large input
size. The experiment reused the
idea of distributing data inside fixed
query windows. The main differ-
ence was that we distributed 100Mb
uniformly random data inside each
query window and no data was
added outside of the query windows.
The idea is that we report in an
x-range that spans all points and
on increasing query-y values such
that the number of reported points,
K, grow with 100Mb when report-
ing in the range [x1, x2] × [yi+1, ∞]
compared to reporting in the range
[x1, x2]× [yi, ∞]. We see from the re-
sults in Figure 11.42 that the query
time follows a slowly decreasing line
going towards a limit. This is what
we would expect as

f (K) =
1
ε

logB N + K/B

K/B
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Figure 11.42: Experimentally measured running time divided by K/B when reporting in-
creasingly more data on Brodal’s of input size 1,200Mb. We fitted f (K) to the experimentally
measured data.
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11.5 Construction

An interesting feature of the External Memory Buffered Priority Search Tree is
that it supports construction in O(Scan) on sorted input. We decided to com-
pare this method on N points against the one-by-one insertion of N points. As
we mention in Subsection 7.1.5 we could use the linear construction method
together with a sorting algorithm to global rebuild the structure. The pur-
pose of this experiment is to get an indication of which method is best when
it comes to global rebuilding.

The experiment consists of constructing a data structure using the linear
construction method and inserting one-by-one for increasing input sizes, N,
and different fanouts to see whether this has an impact. We know from pre-
vious experiments that inserting becomes slower for larger fanouts but it is
not clear what happens when we use the linear construction method.
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Figure 11.43: Running time of the linear construction method for sorted input divided by the
input size in megabytes. The structure started to generate page faults on fanout 32.

Figure 11.43 depicts how the linear construction method performs for dif-
ferent fanouts. The running time is divided by the input size. Since the
construction method is linear we are very pleased to see the graphs are hor-
izontal when divided by N. This suggests we can construct the structure in
linear time on sorted input. We see the running time improves for larger
fanouts. This is explained in the decreased number of nodes in the tree which
implies a decreased number of point buffer underflows that needs to be han-
dled. Figure C.4 supports this claim.

Since linear construction is faster than inserting one-by-one we can con-
clude that it is indeed beneficial to construct the structure using the linear
construction method on sorted input data. In order to conclude that this
method should be used for global rebuilding we have to argue about the time
required to sort the data. From an earlier course we have experimentally
found that we can indeed sort fast enough for the linear construction method
to be viable. The results from this course are depicted in Figure C.5. Based on
these observations we feel confident to conclude that the linear construction
method is superior when it comes to global rebuilding.
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“To succeed, jump as quickly at opportunities
as you do at conclusions.”

— Benjamin Franklin

12
Conclusion

We have implemented three different data structures for solving the three-
sided range reporting problem: The Internal Memory Priority Search Tree
by McCreight [McC85], the External Memory Priority Search Tree by Arge
et al. [ASV99], and the External Memory Buffered Priority Search Tree by
Brodal [Bro15]. We have also implemented wrappers around MySQL 5.7.12,
Boost R-Tree, and libspatialindex external memory R*-Tree, such that the im-
plementation match the interface of a Priority Search Tree. All structures
have been thoroughly described and analysed in the I/O Model, and for the
internal memory structures we have argued that the complexity in the RAM
Model can be adopted directly to the I/O Model due to the oblivious and
inefficient access to data not available in internal memory.

We have conducted several experiments to compare the structures on the
operations of the Priority Search Tree interface: insert, delete, and report.

Our results show that the External Memory Buffered Priority Search Tree
outperforms all other structures except for MySQL without an index when it
comes to inserting uniformly distributed data. We found that the Boost R-Tree
performed the best in internal memory due to its efficient use of space.

When we looked at deleting uniformly distributed data, MySQL without
an index expectedly fell short, and as soon as the structures not optimized for
external memory outgrew internal memory we saw that the External Memory
Buffered Priority Search Tree outperformed all other structures significantly.

We experimented with querying in two different ways to encapsulate the
fact that the asymptotic complexity depends on both search and reporting.
We isolated the search part by fixing several query windows of different size
each with few megabytes worth of data, and we then inserted uniformly
distributed data outside the windows. The results shows that the internal
memory data structures once again perform very well while still contained in
internal memory, but as soon as we outgrow internal memory the only real
contestant to the External Memory Buffered Priority Search is MySQL with
an index, which is once again outperformed for large enough input sizes. We
isolated the reporting part of a query by reporting increasingly more data
from a fixed query window. Our results were limited to the External Memory
Buffered Priority Search Tree, and we showed that the structure follows the
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expected behaviour.
Our experiments also showed that our implementation of the External

Memory Priority Search Tree by Arge et al. proved inferior in all aspects
which we explain by the large number of I/O’s and heavy internal work.

As an extra experiment we found that the linear construction method of
the External Memory Buffered Priority Search Tree proved to be a superior
global rebuilding method over the one-by-one reinsertion of all points in an
initially empty tree.

12.1 Future work

The structure of Brodal described in Chapter 7 is able to report top-k queries.
A top-k query reports the highest k points in the query range. The structure
does this in O( 1

ε
logB N + K/B), i.e. in the same bound as three-sided range

queries, but here K is the minimum of k and the number of points in the query
range. It would have been interesting to see how the structure performs these
top-k queries compared to other results.

Many of the structures discussed in this thesis also describes a construc-
tion algorithm. In future work it could be interesting to see how the structures
compare in terms of construction time.

Furthermore it could be an interesting future work to optimize the space
usage of the structures allowing for larger buffers, and to see the effect of
such optimizations on the running time.
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A
Indexing for Data Models with

Constraints and Classes

Kanellakis et al. presents a linear space and partially dynamic data structure
in [KRVV96]. The data structure answers three-sided queries in O(logB N +
K/B + log2 B) I/O’s and supports inserts in O(logB N + log2

B
N/B) I/O’s. The

result is fairly involved and is unlikely to perform well in any practical man-
ner.

We will omit the full details and only present the overall ideas. As a
first step all points are shifted such that they lie above the line y = x. The
basic building block of the data structure is the metablock tree; a B-ary tree
of metablocks, each of which represents B2 data points. The root represents
the B2 data points with the largest y-values. The remaining N − B2 data
points are divided into B groups of (N − B2)/B data points each based on
the x-coordinate. The first group contains the (N − B2)/B data points with
the smallest x-values and so on. A recursive tree of the exact same type is
constructed for each such group of data points. This process continues until
a group has at most B2 data points and can fit into a single metablock. Refer
to Figure A.1 for an illustration of a metablock tree.

x

y

Figure A.1: A metablock tree for B = 3 and N = 70. All data points lie above the line y = x.
Each region represents a metablock. The root is at the top. Note that each non-leaf metablock
contains B2 = 9 data points.
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Points from each metablock are copied into new blocks that are both verti-
cally and horizontally oriented as depicted in Figure A.2.

a b

Figure A.2: Vertically and horizontally oriented blockings of data points. Each rectangle
represents a block: (a) vertically oriented (b) horizontally oriented.

Finally, each metablock M contains pointers to B blocks that represents
the set TS(M) that is obtained by examining the left siblings of M and taking
the B2 largest points according to the y-value. Depending on how the query
spans the metablock tree we can query the auxiliary data structures in such
a way that we can achieve the promised O(logB N + K/B + log2B) I/O’s. The
five different query cases are depicted in Figure A.3.

Case 1 Case 2 Case 3 Case 4 Case 5

Figure A.3: The three-sided queries can span the metablock tree in five different ways.
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B
Path Caching

Ramaswamy and Subramanian presents a suboptimal space data structure
that answers three-sided queries with an optimal query bound in [RS94].
They use the same basic blocked B-Tree with pointers to full buckets of data
points as introduced by Icking et al. [IKO88] and illustrated in Figure 4.1. In
addition they introduce the idea of path caching that we will explain shortly.
It can be seen that by using a B-Tree we are able to answer two-sided queries
in O(log N + K/B) I/O’s by classifying points inside the query into four cate-
gories as follows:

• Corner: this is the node whose region contains the corner of the query.

• Ancestors of the corner: These are nodes whose regions are cut by the left
side of the query. There can be at most O(log N) such nodes.

• Right siblings of the corner and the ancestors: these are nodes whose par-
ents’ regions are cut by the left side of the query. There can be at most
O(log N) such nodes.

• Descendants of right siblings: there can be an unbounded number of them,
but for every such node, its parent’s region has to be completely con-
tained inside the query. That pays for the cost of looking into these
nodes. That is, for every J descendant blocks that are partially cut by
the query, there will be at least J/2 blocks that lie completely inside the
query.

Please refer to Figure B.1 for an illustration of the categories.

Querying is done by locating the nodes intersecting the left side of the
query using the B-Tree. Points from the nodes are reported by examining the
associated buckets. Next, right siblings of the nodes and their descendants
are examined in a top-down fashion until the bottom boundary of the query
is crossed. It is crucial to note that the corner, ancestor, and sibling nodes can
cause wasteful I/O’s. Thus there are O(log N) wasteful nodes as every parent
of a visited node would have contributed an useful I/O. From this analysis we
can conclude that we can answer two-sided queries in O(log N + K/B) I/O’s.
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2-sided query

Corner

Ancestor

Descendant

of Sibling

Sibling

Figure B.1: Binary tree implementation of a Priority Search Tree in external memory showing
a corner, ancestor, sibling, and descendant of sibling on a query. Here, B is 4.

Now, we are able to avoid the wasteful I/O’s by caching the data in the ances-
tor and sibling nodes. By associating two caches with the corner that contain
all data in the siblings sorted by x-coordinate and y-coordinate respectively,
we are able to answer queries in O (logB N + K/B) I/O’s by simply locating
the corner in O(logB N) I/O’s and report using the cache. The storage us-
age is O(N/B log N) disk blocks of size B each. The idea can be extended to
handle three-sided queries by adding additional caches that cover point sets
sorted from right to left. This gives a space usage of O(N/B log2 N).

B.1 Better space bounds

Ramaswamy and Subramanian brings down the space usage in [SR95]. This
is done by building a search tree that divides the points into smaller re-
gions of size B log B instead of B giving a total of N/B log B regions. Now
a slightly modified caching scheme is used with an additional secondary
level structure for each region giving a total space usage of O(N/B log log B).
Reusing this idea in a multilevel scheme brings down the data structure to
an O(N/B log B log∗ B) space solution that answers queries in O(logB +K/B +
IL∗(B)), where IL∗(x) denotes the number of times log∗ must be applied
before the result becomes ≤ 2.
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Figure C.1: The measured number of page faults when inserting 5Gb of data in the External
Memory Buffered Priority Search Tree. We see that a buffer size of 32Mb will generate page
faults.
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Figure C.2: Experimentally measured number of page faults when deleting points in the Boost
R-Tree from a size of 400Mb down to a size of 350Mb.
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Figure C.3: Experimentally measured number of insert buffer overflows, node degree over-
flows, and point buffer underflows on the data structure of Brodal with fanout 2 depicted in
Figure 11.36
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Figure C.4: The number of point buffer underflows for different fanouts when linear con-
structing. We see that the number of point buffer underflows decreases with increasing
fanouts.
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Figure C.5: The running time for different sorting algorithms. The tested algorithms in-
clude the External Heap sort by Fadel et al. [FJKT99] both naive and with linear selec-
tion [BFP+73], The External Merge Sort as described by Knuth in [Knu97], Internal Quick
Sort by Hoare [Hoa61], and finally the Internal Heap Sort by Forsythe [For64].
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