
s

t

Aarhus University, Department of Computer Science

Master’s Thesis
Shortest Path Problem in the Plane with

Polygonal Obstacle Violations

Nick Bakkegaard - 20114270
Peter Burgaard - 201209175
Advisor: Gerth Stølting Brodal

June 15, 2018

Abstract

This thesis is dedicated to exploring a solution to the shortest path in the plane
with polygonal obstacles violation problem. First, we explore and implement
a naive O(n3) solution to introduce the problem and key concepts. Next, we
move on to a O(n log n) algorithm which solves the shortest path in the plane
without polygonal obstacle problem, which is due to Hershberger and Suri [6],
where one build a shortest path map, in which one can find the shortest path
without violations in time O(log n). This algorithm is extended to the main
O(k2n log n) solution which is due to Hershberger, Kumar and Suri [5], in which
the algorithm builds a shortest k-path map, from which the shortest path with
k violations can be queried in O(log n) time.

iii

Acknowledgement

We want to thank Niels Bross and Kresten Maigaard Axelsen for being great
office buddies and also being up for a nice chat and a cup of coffee.

We also want to thank Andrease Malling Østergaard and Andreas Øster-
gaard Nielsen for being great skribbl.io opponents.

v

Contents

Contents vi

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Formal problem description . 3
1.2 Previous work . 3
1.3 Overview of thesis . 4

2 Simple O(n3) implementation 5
2.1 Constructing the visibility graph 6

2.1.1 Number of crossings . 6
2.1.2 Crosses . 7
2.1.3 Right turn . 8
2.1.4 Crossing of two line segments 10
2.1.5 Crosses algorithm . 11
2.1.6 Run time . 11

2.2 Dijkstra . 11
2.3 Experiment . 12

2.3.1 Computer specification 12
2.3.2 Correctness of algorithm 12
2.3.3 Running time of algorithm 13

3 Continuous Dijkstra - overview of O(k2n log n) algorithm 17
3.1 The Hershberger-Suri algorithm overview 17
3.2 From no violations to k-violations 19
3.3 Construction of a shortest k-path map 20

4 Shortest path maps and their geometric properties 23
4.1 Definitions for shortest paths and shortest k-paths 23
4.2 Shortest path map and shortest k-path map 25
4.3 Complexity of SPM map . 28

5 Conforming subdivision 31
5.1 Defining well covering of regions 32
5.2 Conforming subdivision theorem 34
5.3 Construction of the conforming subdivision 35

vi

CONTENTS vii

5.3.1 Definitions of i-boxes and i-quads 35
5.3.2 Merging of i-quad . 37
5.3.3 Transforming 1-conforming subdivision to α-conforming

subdivision . 39
5.3.4 The invariants . 39

5.4 Pseudo code for build-subdivision 40
5.5 Pseudo code for growth . 42
5.6 An O(n log n) implementation for computing a 1-conforming

subdivision . 43
5.6.1 Minimum spanning trees 44
5.6.2 build-subdivision implementation 45

6 Wavefront propagation 49
6.1 Overview of propagation algorithm 50

6.1.1 Definitions and terminology for propagation algorithm . 51
6.1.2 The propagation algorithm, main loop 52
6.1.3 The artificial wavefronts 54
6.1.4 The bisector events . 57
6.1.5 Computing the shortest path map 63

6.2 The list based data structure for wavefront propagation 66
6.3 An implementation of the wavefront propagation 66

6.3.1 Dynamic wavefront propagation 69
6.3.2 Analysis of the wavefront propagation 73

7 Algorithm for shortest path with obstacle violations 75

8 Lower bound of the "shortest path in the plane with polyg-
onal obstacles" problem 79
8.1 The algebraic computation tree model 79
8.2 Element distinction problem . 80

8.2.1 Sorting of numbers . 80
8.2.2 Shortest path in the plane 80

9 Conclusion 83
9.1 Future work . 84

A Definition for a hyperbola and bisection 85
A.1 Hyperbola definition . 85
A.2 Bisection . 86

B Guide to running the code 87

C Proof of correctness for Chapter 5 89
C.1 Correctness for build-subdivision 89
C.2 Correctness for growth . 91
C.3 Proofs for correctness of the conforming subdivision 92

C.3.1 Lemma for efficient construction time of conforming sub-
division of the free space 97

D Survival guide 99

E Tables 102

Bibliography 107

List of Figures

1.1 A right turn formed by three points 1
1.2 A simple example of the wavefront spreading in the plane around

an obstacle O and encapsulating different areas. 2
1.3 A shortest k-path from s to t with k = 2 2

2.1 Example of visibility graph . 5
2.2 A collection of 10 different cases showing what we have defined as

an intersection between a polygon and a line segment 7
2.3 A right turn formed by three points 8
2.4 Area are of a parallelogram given by two vectors 8
2.5 Right turn example . 9
2.6 Two lines crossing . 10
2.7 Two line which does not cross . 10
2.8 p1p2 passes both tests of 1, while p2p3 only passes one 10
2.9 Examples of figures for correctness 13
2.10 Example of how the run time test are constructed. Here is a 3 times

3 example . 13

3.1 A simple example of the wavefront propagation from s and hitting
vertices on obstacle O which starts new wavefronts, from these ver-
tices. The wavefronts hit each other and creates bisectors, which
splits the plane into regions. 18

3.2 The left figure show a plane with source s and target t with two
obstacles while the right a plane with the regions of SPM0 drawn.
The dash dotted line is the edge of two areas where there is two
shortest paths of equal length. 20

3.3 The left figure shows the preparation of the modified Hershberger-
Suri, which will propagate through each color on the left most edge
of the triangular obstacle, and the right the modified Hershberger-
Suri algorithm propagates through the triangle to the opposite side,
where the propagation into the free space will happen for each col-
ored sub-edges as sources. 21

4.1 Triangular Inequality approaching equality 25
4.2 An example of an SPM build around s with where the area between

the arrows and fully drawn lines shows the regions in the plane with
the same predecessors[6]. 26

viii

List of Figures ix

4.3 Here we present a SPM1 map, where we the fat lines are obstacles. 27
4.4 Here the boundary of V1 is marked with dashed lines, while the

region of V0 is shown with dotted lines. V1 is further shown with
blue and the V1 \ V0 is shown with green [5]. 28

5.1 An example of part of an strong 1-conforming subdivision. The
shaded region in the figure is the union of cell U(e), a well-covering
of edge e [6]. 33

5.2 A square-annulus, where the distance from the inner square to the
outer square, which is ∆, is at least 1/4 the side length of the outer
square which is 4 ·∆ . 34

5.3 An example of how i-quads would be grown around the point p1, p2
and p3. Here we also see that in this particular i’th stage of growth,
that p1 and p3 belong to the same equivalence class, while p3 does
not. 36

5.4 The two top i-quads with points u and v are as close as they can
be without belonging to the same equivalence class, that is not
overlapping, and therefore have d(u, v) = 6 · 2i. The two lower i-
quads with points u′ and v′ overlap, and therefore have d(u, v) < 6 ·2i. 38

5.5 The figure shows two examples of non maximal matching, and one
maximal matching [19] . 42

5.6 The figure shows three examples of maximal matching, one should
notice that the last figure have multiple maximum matching, each
with two edges[19]. 43

6.1 An example of a wavefront propagation from s with distance t to all
points of its circular arch. Since a path into the dashed and dotted
area would require a turn at O, these areas are propagated by g
and g′. Since we look at the propagation at time t both generator
would have propagated a distance t. 50

6.2 The adjacent generator g and g′ each produce a wavelets which
propagates the space, these are represented by the dotted circular
arcs. These will overlap, and the split the area between them into
two equal sized regions. The fully drawn line segment between them
then represent the splitting point between the two generators, where
any point on the line segment, has equal length shortest path to both
of the generators. 50

6.3 An example of an artificial wavefront from v reaching point p on
edge e[6] . 55

6.4 The contribution of b to W (e) is constrained to be left of pb and
right of x and therefore does not exist[6]. 57

6.5 The shaded path from z to r claims r before the wavelet from u,
and from the same side of h as u[6]. 60

6.6 Here the white regions are the active regions and the shaded regions
are the inactive. The boundaries between the regions encapsulating
active and inactive region, are defined by being the bisector of one
marked and one unmarked generator[6]. 63

x List of Figures

6.7 To find the region close to W (e) than to W (f) under weighted
distance, trace a ray from some v ∈ W (e) through S(e) and S(f)
until it hits a point equidistant from the two wavefronts, then trace
outward from the point along the bisector Γ[6]. 65

6.8 W (e, g) is assembled from W (e′, g) and W (e′′, g), where e′ and e′′
are two edges on the boundary of g’s cell[6]. 67

6.9 Insertion of transparent edges parallel to e to fix the cells non con-
vexity. The right figure is the cases of an obstacle overlaying the
cell[6]. 67

6.10 A subdivision of a cell, with a convex hull around a boundary edge
e and the inner square of the annulus[6]. 68

6.11 Crossing of two line segments . 70
6.12 v and v′ each claim the end points of e, with their bisectors being

shared with other generators claiming the middle part of e, repre-
sented by the dots. 70

6.13 v and v′ claim all of e and only have one bisector between them . . 70
6.14 v claims all of e and there are therefore no bisectors other than the

ray projected from v through e. 70
6.15 A visualization of what a generator v’s priority value, |vp|+ d(s, v),

could be with the dashed lines being bisectors of the generators
claiming e. 70

6.16 A visualisation of the three groups of bisectors that can occur in
the calculation of W (e, f). One going left of f , one going right of
f (these two groups are marked with gray) and the middle group
which is the group W (e, f) consists of. 72

7.1 An example of a triplet generator where v starts to emit at time t,
and enter obstacle O through edge e, which creates the new triples
generator (v, t, e). 76

8.1 An example of the reduction from sorting numbers to shortest path 81

A.1 Example of a hyperbola . 85
A.2 Example of Segment Bisection . 86

C.1 Left example of v’s added vertical edges splitting the cell into three
piece, and right example of the cell being split into two. 93

C.2 Constructing a conforming subdivision of the free space, given a
strong conforming subdivision for the obstacle vertices. The shaded
cells on the right are interesting cells[6]. 94

C.3 A cell of U may be partitioned into many subcells in Soverlay, but
only O(1) of them belong to any one Ri. [6] 95

C.4 Ri and Rj are disjoint components of U(e) in Soverlay. Ri is parti-
tioned by a vertical line inside U(e), so c(Ri) consists of two cells;
c(Rj) is a single cell. c′(Rj) intersects both Ri and Rj , so Ri ∼ Rj .
Note that c′(rj) may have transparent edges outside U(e). [6] . . . 96

List of Algorithms

1 MakeVisibilityGraph(O, s, t) . 6
2 NumberOfCrossings(l,O) . 7
3 rightTurn(p1, p2, p3) . 10
4 Crosses(l1, l2) . 11
5 Initialize-Single-Source(G,s) . 11
6 Relax(u, v, w) . 12
7 Dijkstra(G,w, s) . 12
8 Algorithm build-subdivision 41
9 Algorithm growth(S) . 42
10 Implementation of build-subdivision 46
11 step 10 to 20 from Algorithm 8 47
12 Propagation Algorithm . 52
13 Construct SPMk . 77

List of Tables

1.1 Shortest Paths in the Plane with Polygon obstacles algorithms . . 3

E.1 Data from graph 1 . 102
E.2 Data from graph 2 . 103
E.3 Data from graph 3 . 104
E.4 Data from graph 4 . 105

xi

Chapter 1

Introduction

Given a starting point s, an endpoint t and a set of polygons O in the plane, we
want to find the shortest path from s to t without traveling through the interior
of any polygon in O. This is an old and well studied problem, and historically
there have been two conceptually different approaches to the problem, one
using visibility graphs and another using the continuous Dijkstra method.

The visibility graph approach is to construct a graph of all paths between
every pair of vertices in the plane which does not go through an interior of
an obstacle. These paths are called legal paths. Then the shortest path is
found by then running a single source shortest path algorithm on that graph.
A problem of this approach is that the complexity of the graph can be Θ(n2),
with n begin the number of vertices of the polygons, which makes it difficult
to get below this threshold.

The continuous Dijkstra method works by simulating a wavefront propaga-
tion. A wavefront is a circular arch which originates from a point and expands
in at unit-speed (non-changing speed) such that all points of the boundary of
the arch have equal distance d to the generator point from which the wavefront
originated, at every time t. This point is the source (start point) s, see Figure
1.1.

s

d3

d2

d1

t1

t2

t3

Figure 1.1: A right turn formed by three points

1

2 CHAPTER 1. INTRODUCTION

From the figure we can see that since the wavefront expands at unit-speed,
the time distance di at time ti are equal, are one therefore is only concerned with
the time t. Every time a vertex v is reached a new wavefront starts emitting
from v. This way the plane will be divided into different areas depending on
which wavefront encapsulates it, see Figure 1.2.

s

O

area1

area2

area3

area4

Figure 1.2: A simple example of the wavefront spreading in the plane around
an obstacle O and encapsulating different areas.

In 1999 Hershberger and Suri published the paper "an optimal algorithm
for euclidean shortest paths in the plane"[6] in which they presented an optimal
O(n log n) time algorithm which matched the lower bound of the problem (see
Chapter 8), using an implementation of the continuous Dijkstra method.

In 2017 they, together with Kumar, looked at a generalization of the prob-
lem: given the same setting as before, one is now allowed to go through up to
k obstacles. See Figure 1.3.

s

t

Figure 1.3: A shortest k-path from s to t with k = 2

The problem lies in which polygons you should pass through to minimize
the distance from s to t. They presented an O(k2n log n) algorithm for this
problem, which used a modified version of the 1999 algorithm[5]. Notice that
if k = 0 it is identical to the Shortest path with no violations.

In this thesis we are going to present implementation details of both the
original and the generalized problem. We start by describing and implement-
ing a naive algorithm for solving the problem based on computing a visibility

1.1. FORMAL PROBLEM DESCRIPTION 3

graph and then running the Dijkstra single source shortest path algorithm.
Afterwards we are going to explain the theoretical results leading to the algo-
rithm and the implementation details. Lastly we describe the algorithm from
2017 and its implementation details.

1.1 Formal problem description

Given two points in the plane s, t ∈ R2 and a list of polygons O = o1, . . . , oh
where oi is a list of points in polygon oi starting at an arbitrary place and in
clockwise order (note that sometimes we use O as a set e.g. polygon oi ∈ O).
We say a legal path is a list of points where two adjacent points are mutually
visible, i.e. you are able to draw a line from one to the other without crossing
the interior of any polygon in O. We want to find a shortest legal path from s
to t.

1.2 Previous work

Year Paper Run time Space Visibility graph SPM
Naive1 O(n3) O(|E|) x

1978 Lee [11]2 O(n2 log n) ? x
1985 Welzl [18] O(n2) O(n2) x
1991 Ghosh et al. [4]3 O(E + n log n) O(E + n) x
1991 Mitchell [13]4 O(kn log2 n) O(n) x
1996 Mitchell [14]5 O(n3/2+ε) O(n) x
1999 Hershberger et al. [6] O(n log n) O(n log n) x

Table 1.1: Shortest Paths in the Plane with Polygon obstacles algorithms

In 1978 Lee presented a O(n2 log n) algorithm for constructing a visibility map
in his Ph.d. thesis[11], we were unable to find the original paper, the running
time is taken from [6].

Seven years later, in 1985, Welzl [18] published an O(n2) time algorithm
consuming O(n2) for construction of a visibility map.

Six years later in 1991 Ghosh et al. [4] presented an O(E+n log n) algorithm
consuming O(E + n) space, for constructing a visibility graph where E is the
number of edges in the visibility graph. Since the visibility graph can contain
O(n2) the algorithm is output bound and people started making shortest path
map algorithm instead, hoping to reach the Ω(n log n) lower bound (see chapter
8).

That same year in 1991 Michell [13] published an algorithm for construct-
ing the shortest path map, with running time O(kn log2 n) and O(n) space
consumption. Where k is bounded by the number of different obstacles that
touches any shortest path from s.

1See Chapter 2
2We were not able to obtain the original ph.d. thesis, the got the running time from [6]
3Where E is the number of edges in the visibility graph
4Where k is a number bounded by the number of different obstacles that touches any

shortest path from s
5For any ε > 0 where the constant in the big-Oh notion depending on ε

4 CHAPTER 1. INTRODUCTION

In 1996 he improved the run time to O(n3/2+ε), for any ε > 0 where the
constant in big-Oh notion depends on ε keeping the linear space consumption
[14].

Then finally in 1999 Hershberger et al. [6] revealed a O(n log n) algorithm
for computing the shortest path map, matching the lower bound. The space
consumption is O(n log n) and it is still an open problem if there exists an
algorithm with run time O(n log n) and linear space consumption.

1.3 Overview of thesis

Chapter 2 We describe a simple O(n3) algorithm for constructing a visibility
graph. Then we implement it and compare the run time to the theoretical
time.

Chapter 3 Gives an overview of the Hershberger et al. [6] algorithm.

Chapter 4 Goes through the formal definition of the shortest path maps and
its geometric properties including the complexity of the map.

Chapter 5 Explains what the conforming subdivision is and how it is con-
structed.

Chapter 6 Is dedicated to the wavefront propagation algorithm explaining
how it works and its implementation details.

Chapter 7 Presents the Hershberger et al. [5] which shows how to extend the
original algorithm to work with k violations.

Chapter 8 In here we prove the lower bound of the "shortest path in the plane
with obstacles problem in The Algebraic Computation Tree Model. By
making a reduction from number distinction to number sorting to shortest
map in the plane with obstacles.

Chapter 9 We conclude the work we have done.

Chapter 2

Simple O(n3) implementation

In this section we describe an O(n3) implementation which solves the "Short-
est Paths in Plane with Obstacles Violations"-problem using visibility graphs.
Recall that n is the number of vertices in the polygons and k is the number
of polygon violations allowed. In Section 2.1 we describe how we construct
the visibility graph. Imagine a plane with a starting point s, an end point t,
and O polygon obstacles, which is build of groups of connected points, each
representing an obstacle. A visibility graph is a graph where for each set of
points p, q ∈ O ∪ {s, t} there is an edge between them if the two points can
see each other without going (or looking) through any interior of an obstacle
(see Figure 2.1). In Section 2.2 we explain Dijkstra’s algorithm for finding the
shortest path from s to t in the visibility graph and finally in Section 2.3 we
test our implementation to verify that the actual running time is the same as
the theoretically predicted one.

s

t

(a)

s

t

(b)

Figure 2.1: Example of visibility graph

5

6 CHAPTER 2. SIMPLE O(n3) IMPLEMENTATION

2.1 Constructing the visibility graph

The naive way of constructing a visibility graph is to make a graph where every
pair of points p, q ∈ O ∪ {s, t} is connected to each other, then removing all
edges that cross the interior of a polygon. But in this setting we are allowed
to cross k polygons, so we construct the graph a bit differently. Given a set
O consisting of all the polygons, where each polygon is a list of the points in
the polygon we use the following algorithm 1. Create a graph G0 = (V,E),
where V contains all the vertices in O ∪ {s, t}, and let E contain all possible
connections between the vertices. Make k copies of the graph G0 and name
them G1, . . . , Gk. Algorithm 1 goes as follows: for each graph Gi, take each
edge ej ∈ Gi and call NumberOfCrosses(ej), which returns the number m of
polygons from O that the line segment crosses, and connect the endpoint to
the corresponding point in Gi+m, i.e. if you take an edge in the graph, that
goes through m polygons, you travel m graphs up. If i+m > k then delete the
edge from Gi. We now have a graph that has k levels where every time you go
through k polygons you go k levels up.

Algorithm 1 MakeVisibilityGraph(O, s, t)
1: for all Gi = (Vi, Ei) ∈ G do
2: for all e ∈ Ei do
3: crosses = numberOfCrossings(e)
4: if crosses+ i ≤ k then
5: make e go from Gi to Gi+crosses
6: else
7: delete edge e

The only missing part is the numberOfCrossings function, which we define
below.

2.1.1 Number of crossings

Calculating the number of polygons a line segment crosses is no trivial task,
since there is a number of edge cases. We try to give a brief intuition of the
edge cases, and then we present our algorithm. The first five cases (a-e) in
Figure 2.2 are allowed intersections since it is only the interior of a polygon
that we can not travel. The next five cases (f-j) are not allowed since they
travel through the interior of the polygon.

So, given a polygon o ∈ O, and a line segment l we want to determine if l
crosses the polygon O. We start by making each obstacle (i.e. list of points o =
p1, p2, . . . , pi) into a list of line segment o′ = (p1, p2), (p2, p3), . . . , (pi−1, pi), (pi, p1).
Then we observe that if a line segment crosses a line segment of a polygon, it
counts as a crossing (cases f and g). The other three cases of crossing (cases
h, i and j) all have in commonm that the line segment crosses four end points
of the polygon. So we could say it is not allowed to cross four points of a
polygons line segments. The problem is that it makes (cases a, c and d) illegal.
But fortunately they all have in common that they are collinear (they lie on a
common line) with a line segment of the polygon, so the algorithm is as follows:

2.1. CONSTRUCTING THE VISIBILITY GRAPH 7

No intersection

(a) (b) (c) (d) (e)
Intersection

(f) (g) (h) (i) (j)

Figure 2.2: A collection of 10 different cases showing what we have defined as
an intersection between a polygon and a line segment

1. if a line segment l1 crosses another line segment l2 of a polygon it crosses
the polygon

2. if a line segment has four points in common with the polygon, it crosses
the polygon, unless the line segment is collinear with a line segment of
the polygon

This leads us to the following algorithm:

Algorithm 2 NumberOfCrossings(l,O)
1: howManyCrosses=0
2: for each o ∈ O do
3: count= 0
4: for each l′ ∈ o do
5: result=crosses(l′, l)
6: if result==-1 then
7: counter= 4
8: Break
9: else if result==0 then

10: count=count+1
11: if counter > 3 then
12: howManyCrosses=howManyCrosses+1

return howManyCrosses

2.1.2 Crosses

To make a crosses function, we need a right turn function. Consider three
points p1, p2, p3 in the plane and make a line that goes through p1 and p2.
Now if we stand at point p1 and look in the direction of p2 , if p3 does not lie

8 CHAPTER 2. SIMPLE O(n3) IMPLEMENTATION

on the same line as p1 and p2 will it be on the right or the left of the line. Let
pi.x and pi.y denote the x-coordinates and y-coordinates respectively. To find
out whether the three points form a right turn, a left turn or are collinear we
make the following two vectors.

v1 = p2 − p1 = 〈p2.x− p1.x, p2.y − p1.y〉
v2 = p3 − p1 = 〈p3.x− p1.x, p3.y − p1.y〉

Let us denote v1 = 〈a, b〉 and v2 = 〈c, d〉 (see Figure 2.3a)

2.1.3 Right turn

p1

p2

p3

v2

v1

(a)

Figure 2.3: A right turn formed by three points

p1

p2

p3v1

v2

c a

d

b

A

A
B

B

C C

(a)

Figure 2.4: Area are of a parallelogram given by two vectors

We claim that we can calculate the turn by calculating the signed area of
the parallelogram spanned by the two vectors (see Figure 2.4a). The area
of their parallelogram can be calculated as follows: calculate the area of the

2.1. CONSTRUCTING THE VISIBILITY GRAPH 9

big rectangle, and take the two small triangles and the two small squares and
subtract that area.

area = (a+ c)(d+ b)− 2A− 2B − 2C

= ad+ ab+ cd+ bc− cd− 2ad− ab
= bc− ad
= (p2.y − p1.y)(p3.x− p1.x)− (p2.x− p1.x)(p3.y − p1.y) (2.1)

Now we claim that the area between these two vectors is positive if the three
points form a right turn, and negative if they form a left turn. We illustrate
that by an example (see Figure 2.5)

Given our formula (formula 2.1) we get that the q1, q3, q2 area is

(q3.y − q1.y)(q2.x− q1.x)− (q3.x− q1.x)(q2.y − q1.y)

= (2− 0)(−1− 0)− (0− 0)(1− 0)

= 2 · (−1)− 0 · 1
=− 2− 0

=− 2

And the area of q1, q3, q4 is

(q3.y − q1.y)(q4.x− q1.x)− (q3.x− q1.x)(q4.y − q1.y)

=(2− 0)(1− 0)− (0− 0)(1− 0)

=(2 · 1− 0 · 1
= 2− 0

= 2

q1 = (0, 0)

q2 = (−1, 1)

q3 = (0, 2)

q4 = (1, 1)

Figure 2.5: Right turn example

The righturn function below will return a negative number if the three
points make a left turn, a positive number if it is a right turn and 0 if the three
points are on a line.

10 CHAPTER 2. SIMPLE O(n3) IMPLEMENTATION

Algorithm 3 rightTurn(p1, p2, p3)
1: return (p2.x− p1.x)(p3.y − p1.y)− (p2.y − p1.y)(p3.x− p1.x)

2.1.4 Crossing of two line segments

l1

l2

Figure 2.6: Two lines crossing

l2

l1

Figure 2.7: Two line which does not
cross

p1

p2

p3 L1

Figure 2.8: p1p2 passes both tests
of 1, while p2p3 only passes one

Lemma 1. Given two line segments, l1 and l2 we can decide whether they
cross by first checking if the two end points of l2, namely l2.p and l2.q, lie on
separate sides of the line which is collinear to l1. Should this be the case, we
do a similar check for l2 on l1. Should both cases be true we know l1 crosses
l2, see Figure 2.6.

Proof. Let L1 and L2 denote the lines collinear to l1 and l2 respectively. If both
the end points of l2 are on the same side of L1, then the line segments cannot
cross L1, and therefore l1 obviously(see Figure 2.7). If they lie on opposite
sites, l2 crosses L1 and we have to determine if l2 crosses L1 between l1.p and
l1.q.

We know the line l2 crosses L1, the question is, if it is between the two end
points. We determine this verifying that if the endpoints of l1 lie on opposite
sites of l2, like before(see Figure 2.7). If they do, it must be the case that l1
and l2 cross, if not, it crosses L1 in another place.

2.2. DIJKSTRA 11

2.1.5 Crosses algorithm

We can check if the endpoints of a line segment lie on opposite sites of another
line segment by multiplying the right turn results, since, if they lie on opposite
sites, they will have different signs, if they lie on the same side they will have
the same sign, so the result will be negative if they are on opposite sites and
positive if they are on the same side. If both foo and bar is negative, the
segments cross and we return −1. If either foo and bar is 0 it means that
a point from one segment touches the other line segment and we return 0.
Otherwise they do not touch at all, and we return 1.

Algorithm 4 Crosses(l1, l2)

1: foo = rightTurn(l1.p, l1.q, l2.p) · rightTurn(l1.p, l1.q, l2.q)
2: bar = rightTurn(l2.p, l2.q, l1.p) · rightTurn(l2.p, l2.q, l1.q)
3: if foo< 0 and bar< 0 then
4: return −1
5: else if foo= 0 or bar= 0 then
6: return 0
7: else
8: return 1

2.1.6 Run time

Calculating the number of crossing each set edge make takes O(n3) since there
are O(n2) possible edges and they each can cross O(n) possible polygon edges.
Then constructing the k layers takes O(kn2). Since k < n (if k ≥ n the shortest
distance will just be the line from s to t) O(n3) will dominate and the running
time will be O(n3).

2.2 Dijkstra

Dijkstra originally conceived the algorithm in his 1959 paper "A note on two
problems in connexion with graphs" [2]. The following description is based on
an "Introduction to Algorithms"[17], 24.3.

Dijkstra’s algorithm solves the single-source shortest path problem for a
weighted directed graph G. i.e. Given a graph G = (V,E), where V is the
vertices and E is the directed weighted edges and a start vertex s ∈ V , find
the path where the sum of the weights is the smallest possible.

Let vπ either be a predecessor of null. vd being the upper bound of the
weight of a shortest path from source s to v.

Algorithm 5 Initialize-Single-Source(G,s)

1: for each vertex v ∈ G.V do
2: v.d =∞
3: v.π = Null
4: s.d = 0

12 CHAPTER 2. SIMPLE O(n3) IMPLEMENTATION

Relaxing an edge (u, v) consist of testing whether we can improve the short-
est path to v found so far, by going through u and, if so, update v.d and v.π.
We define w as following for a path p = 〈v0, v1, ..., vk〉

w(p) =

k∑
i=1

w(vi−1, vi)

Algorithm 6 Relax(u, v, w)

1: if v.d > u.d+ w(u, v) then
2: v.d = u.d+ w(u, v)
3: v.π = u
4: s.d = 0

In the below algorithm Q acts as a min-priority queue to contain all the
vertices in V . Naive implementation of Dijkstra’s algorithm yields O((V +
E) log V) which is O(E · log V) if all vertices are reachable from the source.
And can be O(V 2) if E = O(V 2/ log V). Extract-min runs in O(log V)

Algorithm 7 Dijkstra(G,w, s)

1: Initialize-Single-Source(G, s)
2: S = ∅
3: Q = G.V
4: while Q 6= ∅ do
5: u =Extract-Min(Q)
6: S = S ∪ {u}
7: for each vertex v ∈ G.Adj[u] do
8: Relax(u, v, w)

2.3 Experiment

In this section we present the experiments we did on our O(n3) implementation,
both for running time and test of correctness.

2.3.1 Computer specification

The test were run on a computer with the following specification

Model Lenovo ThinkPad, x230
Operating system Arch Linux

CPU Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz
Memory 8 GB

2.3.2 Correctness of algorithm

To verify the correctness of our implementation we run the code against a list
of tests. We implemented the function to output a svg image of the polygons

2.3. EXPERIMENT 13

and route so we were able to confirm the algorithm made the correct visibility
graph. (See Figure 2.9a and 2.9b)

s

t

(a)

s

t

(b)

Figure 2.9: Examples of figures for correctness

2.3.3 Running time of algorithm

To test the running time of our implementation we auto generated a map
consisting of x times x squares and put s and t in opposite corners of the map
(see Figure 2.10)

s

t

Figure 2.10: Example of how the run time test are constructed. Here is a 3
times 3 example

14 CHAPTER 2. SIMPLE O(n3) IMPLEMENTATION

We ran the implementation with the number of violations being constant
at 5 and the number of vertices was n = 4 · t2 for t = 1, . . . , 41 and got the
following graph

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0

0.5

1

1.5

2

2.5

3

3.5

·106

n

ti
m
e
(m

ic
ro
se
co
nd

s)

Running time k = 5, n = 2, . . . , 6726

Then we tried to figure out where the time was mostly spent so we tried
measuring the crossing function, the construction of visibility graph and Dijk-
stra’s algorithm separately and we obtained the following result:

2.3. EXPERIMENT 15

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0

0.5

1

1.5

2

2.5

3

3.5

·106

n

ti
m
e
(m

ic
ro
se
co
nd

s)

Running time k=5,n=2,...,6726, split up

Crosses function
Visibility graph construction

Dijkstra’s algorithm

The implementation is totally dominated by the crossing calculation, which
makes sense since the O(n3) is the most dominant time of the three, we tried
dividing the first graph with n3 and got the following

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0

0.5

1

1.5

2

2.5

3

·10−5

n

ti
m
e
(m

ic
ro
se
co
nd

s)
/n

3

Running time k = 5, n = 2, . . . , 6726, diving by n3

16 CHAPTER 2. SIMPLE O(n3) IMPLEMENTATION

Lastly we tried to make a test where n = 252 and k = 1, . . . , 25 (see Figure
2.10) to see if k would influence the runtime. We got an almost horizontal
graph, meaning that given a bigger k does not seem to influence the overall
run time that much, which is what we would expect.

0 5 10 15 20 25

1.85

1.85

1.85

1.85

1.86

1.86

1.86

1.86

·105

k

ti
m
e
(m

ic
ro
se
co
nd

s)
Running time k = 1, . . . , 25, n = 2 + 4 · 252

In conclusion we have implemented a naive O(n3) algorithm and made tests
both for confirming its correctness and its running time.

Chapter 3

Continuous Dijkstra - overview of
O(k2n log n) algorithm

The following chapter is dedicated to giving the reader an overview of an
O(k2n log n) time algorithm for solving the shortest problem path with polyg-
onal obstacle violation. First, we present an overview of the Hershberger-
Suri algorithm, which solves the shortest path with no violation in an optimal
O(n log n) time [6]. This algorithm produces a shortest path map, which divides
the free space (free space being the plane minus the interior of the obstacles)
into regions where each region will have the same shortest sub-path from s to
all points in that region. This structure can then be extended for the purpose
of calculating shortest paths with violations, which we will present an intu-
itive idea on how this is done. Finally, we present an algorithm in chapter
7 which combines the Hershberger-Suri algorithm with a modified version of
the same algorithm, to produce a shortest k-path map, a subdivision which
has the shortest sub-path to all points in an area with k violations, in time
O(k2n log n). This result is due to Hershberger, Kumar and Suri [5].

3.1 The Hershberger-Suri algorithm overview

The Hershberger-Suri algorithm is an algorithm for computing a shortest path
map, a data structure from which we can query the shortest path in a plane in
the presence of obstacles without violations. The Hershberger-Suri algorithm
was proven to be optimal-time in [6], with its O(n log n) running time, where
n is the total number of vertices of the obstacles located in the plane. This is
done by computing a shortest path map which is a map containing the shortest
paths from a fixed source point s, to all other points in the plane. This is done
by subdividing the plane into a finite number of regions, where all the points
in such a region have the same shortest sub-path from s. This map can be
constructed in O(n log n) time and requires O(n log n) space [6]. A query for a
shortest path can be processed in O(log n) time due to [8].

The first step in the Hershberger-Suri algorithm is to use an implementation
of the continuous Dijkstra method, which purpose is to give a distance from the
source s to each vertex and edge in the plane. The continuous Dijkstra method
is a theoretical tool to simulate a propagation of a unit speed wavefront in a
free space, where s sends out the first emission, which propagates through the

17

18
CHAPTER 3. CONTINUOUS DIJKSTRA - OVERVIEW OF O(k2n log n)

ALGORITHM

plane and collides with obstacles. Upon collision between a wavefront and a
vertex in an obstacle, then this vertex will also start emitting a wavefront of
its own, with its weight equal to the time it took from s started to emit its
wavefront until a contact (with any wavefront), see Figure 3.1.

s

O

area1

area2

area3

area4

Figure 3.1: A simple example of the wavefront propagation from s and hitting
vertices on obstacle O which starts new wavefronts, from these vertices. The
wavefronts hit each other and creates bisectors, which splits the plane into
regions.

Hershberger and Suri introduced two new ideas to speed up the implemen-
tation of the continuous Dijkstra method compared to previous attempts, the
first being a quad-tree-like subdivision of the plane, which we will introduce in
chapter 5 as a conforming subdivision, and the second being an approximate
wavefront, which introduces a bit of slack in the calculation of the collision-time
of the wavefronts, which we will discuss in chapter 6.

The first idea is grounded in the observation that a wavefront of the type
in the continuous Dijkstra method, will be quite complicated to implement
directly. A subdivision of the plane into well-behaved regions will be a way
around this. This subdivision is constructed in such a way that it aids the
propagation of the wavefronts. This is done by temporarily ignoring the line
segments(edges) between the vertices in the obstacles, and subdividing the
plane into a grid-like subdivision of size O(n) around the vertices. Each cell
in this subdivision, (the conforming subdivision) will only have a constant
number of straight line edges, and will contain at most one obstacle vertex. This
construction means that the subdivision satisfies the following crucial property:
for any edge e of the subdivision, there are O(1) cells within distance 2|e| of e,
which will be crucial in bounding the overall complexity of the subdivision.

The obstacle line segments will then be inserted into the subdivision, while
maintaining both the linear size of the subdivision and its conforming property,
except now a non-obstacle edge e will have the property of having O(1) cells
within shortest path distance 2|e| of the edge.

These cells will then form the basis for the unitspeed propagation in the
algorithm, which will act as the wavefront propagation in the algorithm. This

3.2. FROM NO VIOLATIONS TO k-VIOLATIONS 19

means that at each step of the wavefront will propagated through one cell
at a time. Since the descriptive complexity of each cell will be constant, the
algorithm will perform efficiently in the propagation through each of the cells.

Inside each of these cells there will be two types of event: the first being a
collision between a wavefront and an obstacle, which is quite easy to handle.
The second type of event will be a collisions between two wavefronts which
will be more complex problem to handle. There will be two different types
of collisions between two wavefronts, the first being the collisions where the
wavelets are neighbors in the wavefront, and the second being collisions between
non-neighboring wavelets. Here two wavefronts are waves emitted from two
different sources, and two wavelets being two parts of the wave arch emitted
from one source. The case of colliding neighboring wavelets occurs when a
wavelet would be engulfed by the expansion of wavelets of its two neighbors
and should be quite easy to detect and process. The collision between non-
neighboring wavelets, however are more troublesome, and to process these we
make use of the second idea: approximate wavefront.

The idea of approximating wavefronts is the abandonment of trying to com-
pute the exact time of collision and instead maintaining two separate wavefronts
approaching the edge from opposite sides. Each of these wavefronts is an ap-
proximate wavefront, representing the wavefront that hits the edge from only
one side. This leads to the other wavefronts which arrives at the edge after the
first wavefront, wont be recorded by the edge, due to it being slower than the
initial arriving wavefront.

As mentioned above, the Hershberger-Suri algorithm make use of timers to
estimate the distance between two points in the plane but also to estimate when
each edge in the subdivision would be engulfed by the wavefronts. A critical
task of these timers is to ensure that the collision between two wavefronts which
are used in the construction of the shortest path map, is measured in a small
proximity of their actual collision, and therefore location.

At the end of the propagation phase, all the collision information is col-
lected, and then a Voronoi diagram like technique is used in each cell to com-
pute the collision events in that cell exactly. These collisions determines the
edges of the final shortest path map, which will give us the shortest path to
every point in the plane.

3.2 From no violations to k-violations

Previously, we have given an overview of the Hershberger-Suri algorithm which
calculates a shortest path map (SPM) in O(n log n) time from a source point
s [6]. By modifying the algorithm, and using it as a subroutine, Hershberger,
Kumar and Suri showed an algorithm for calculating the shortest path map,
where every route would violated at most k obstacles from s to an endpoint t
[5]. This is done by calculating a shortest k-path map, which in essence would
produce a subdivision of the plane into regions, as done by the Hershberger-Suri
algorithm, but with the guarantee of every path violating at most k obstacles.
A way to better understand how such a map would be calculated is by using
the metaphor of a parking garage. Here every obstacle would be seen as an
elevator from one floor i to the next floor i + 1. This would imply one could
only take at most k elevator trips when taking the path from s to t. When

20
CHAPTER 3. CONTINUOUS DIJKSTRA - OVERVIEW OF O(k2n log n)

ALGORITHM

thinking about the problem in this way, it seems quite natural to think of the
construction of SPMk iteratively, starting by making the SPM0 map, which
is done by the Hershberger-Suri algorithm, and then from this construct the
SPM1 map, and for each iteration going one floor up, until we reach SPMk.

3.3 Construction of a shortest k-path map

TheO(k2n log n) implementation of shortest path with obstacle violation, makes
use both of an unchanged and a modified version of the Hershberger-Suri al-
gorithm. The unchanged version is used to prepare the SPM0 map, which the
modified version then uses to iteratively calculate the SPMk map. The differ-
ence is due to the unchanged algorithm starting the wave propagation from a
source point s which then propagates through the plane.

s

t

(a)

s

t

(b)

Figure 3.2: The left figure show a plane with source s and target t with two
obstacles while the right a plane with the regions of SPM0 drawn. The dash
dotted line is the edge of two areas where there is two shortest paths of equal
length.

Above we see in Figure 3.2a a plane with s and t and two obstacles. Figure
3.2b shows a drawing of the SPM0, where each encapsulated area is a region
of the SPM , which will be the output of the unmodified Hershberger-Suri
algorithm.

3.3. CONSTRUCTION OF A SHORTEST k-PATH MAP 21

s

t

(a)

s

t

(b)

Figure 3.3: The left figure shows the preparation of the modified Hershberger-
Suri, which will propagate through each color on the left most edge of the tri-
angular obstacle, and the right the modified Hershberger-Suri algorithm prop-
agates through the triangle to the opposite side, where the propagation into
the free space will happen for each colored sub-edges as sources.

The modified algorithm needs to be able to propagate not from a source
which is a point but from a sub-edge which can be seen in Figure 3.3a. Each of
the colors represent a "sub-edge-source" from which wavefronts will propagate
the obstacle. When the obstacles interior has been propagated, the modified
algorithm is ready to propagate the free space towards t, which we see in
Figure 3.3b. It is worth noting that the free area the modified algorithm needs
to propagate in Figure 3.3b, is enclosed by the the two red line which are
collinear with s and the top and bottom point of the triangle, with an angle of
less than 180 degree. This is due to the area on the other side of the wedge could
be reached faster by just going directly from s without violating an obstacle.

This process is then repeated when constructed the next level of the SPMi

map. Finally we will have SPMk which will consist of an area where the path
freely can traverse, since it haven’t violated more than the allowed obstacles,
and a SPM=k which consist of areas, where the path needs to make turns since
it can’t violate any more obstacles. These two areas are what SPMk are made
of, and from this we can use the map to look up the fastest path from s to t.

Chapter 4

Shortest path maps and their
geometric properties

This chapter is dedicated to presenting some formal definition that will help
us precisely discuss the theory in the rest of the thesis. These definition are
very much inspired or borrowed from [6] section 3 and [5] section 2 and 3. We
will also define the shortest path map and its near relatives the shortest k-path
map, and some properties their properties. Finally we will present a Lemma
which bounds some complexity of the shortest path map which will be usefull
later in Chapter 6.

4.1 Definitions for shortest paths and shortest k-paths

We start with a trivial definition which we will expand upon.

Definition 2. Path: Given a plane encapsulated by a polygon P, let s and
t be two points in the plane. We define a path between s and t to be a set of
vertices and edges which forms a connection from s to t.

Its trivial to see that a path with a minimum length in the case where s
and t are the only entities in the plane will be st. But we can imagine the
space being occupied not only by two points s and t, but also with a set of
polygons in which a path cannot pass through. We call such polygons obstacles
and we assume through out the rest of this thesis that these obstacles will be
simple polygons. Since we will represent these with graphs we give a definition
of simples graphs.

Definition 3. Simple Graph: A graph is simple if it has no loops and no
two of its links join the same pair of vertices.

Now we might be in a situation where the path with minimum length be-
tween two point s and t isn’t just st due to obstacles being placed in the way.
We further define what space we can create our path in, and which we cannot.

Definition 4. Free space:
Let O = {O1, O2, ..., Ok} be a family of simple polygons which will act as ob-
stacles in the interior of an encapsulating polygon P. We define the free space
to be FS = P \ O, that is the plane of the encapsulating polygon minus the
interiors of all obstacle polygons.

23

24
CHAPTER 4. SHORTEST PATH MAPS AND THEIR GEOMETRIC

PROPERTIES

The final O(k2 · n log n) algorithm that we will be examining will need the
obstacles to be convex, which are defined as follows:

Definition 5. Convex Polygons:
A convex polygon is a simple polygon (not self-intersecting) in which no line
segment between two points on the boundary ever goes outside the polygon. In
a convex polygon, all interior angles are less than or equal to 180 degrees, while
in a strictly convex polygon all interior angles are strictly less than 180 degrees.
[10]

We are only allowed to make paths between s and t in the free space, which
we will denote as legal paths.

Definition 6. Legal Path:
We define a path between two vertices to be legal if it lie entirely in the free
space. That is a legal path is disjoint from the interiors of all potential obstacle
polygons in the plane.

Now we are ready to define out legal shortest path between our two points
s and t

Definition 7. Euclidian shortest path:
The legal path of minimum total length connecting the two endpoints is a short-
est path.

We define a path which is not legal to be violating, or having a number
of violations, equal to the number of obstacles in which the path will pass
through. We will not only deal with shortest paths which have no violations,
but also shortest path which allow up to k violations.

Definition 8. Shortest k-path The path of minimum total length which vio-
lates at most k obstacles.

Through out this thesis we will use use the notation of π(s, t) to denote
the shortest paths connecting two points s and t in the case where no obstacle
violation is allowed. The length of any path in π(s, t) is the shortest path
distance between s and t, denoted d(p, q). If the shortest path between s and
t is the line segment pq, then p and q are said to be visible.

Definition 9. Visibility between points: We define two points s and t to be
visible to each other if s and t are connectible with the path st which is either
legal, or in the case of violations have less that the allowed k violations.

The notion of shortest path distance between two sets of points X and Y is
denoted as d(X,Y) and is the minimum d(x, y) over all pairs of points x ∈ X
and y ∈ Y . [6]

We call a path violating of at most k obstacles a k-path, generalizing on the
traditional obstacle-free path, which is a 0-path. We use the notation of πk(p)
to be the shortest path in this case where the path can pass through up to k
obstacles from a fixed source s to the point p. When reasoning about a path
with exactly k crossing we denote this as an (= k)-path. And equally we use
dk(p) to denote the length of the shortest path from the fixed source s in the

4.2. SHORTEST PATH MAP AND SHORTEST k-PATH MAP 25

case of up to k obstacle violations. The reason we use a separate notation in
the case of obstacle violation is that shortest 0-path problem with origination
at a common source point s cannot intersect, by the triangle inequality[5]

Definition 10. Triangle Inequality:
Let A and B be points in a Rn space and let |AB| denote the distance between
A and B. Then the triangle inequality states that for three points A,B,C ∈ Rn
[7]

|AB| ≤ |AC|+ |BC|

A

B

C

A

B

C

A
B

C

|AC| < |AB| + |BC|

|AC| < |AB| + |BC|

|AC| ≈ |AB| + |BC|

Figure 4.1: Triangular Inequality approaching equality

4.2 Shortest path map and shortest k-path map

This section will briefly introduce the reader to the concept of shortest path
map and shortest k-path map and som basic properties of these.

We begin this section with a definition of a predecessor which is essential
to understand what a shortest path map is

Definition 11. Predecessor:
The predecessor of an arbitrary point p is defined as a vertex in the plane
which is adjacent to p in π(p, s). These vertices also include the source s. A
predecessor of p is necessarily visible from p. If p and s are mutually visible,
then s is a predecessor of p. [6]

Next we give the definition of a shortest path map

Definition 12. Shortest Path Map:
The shortest path map of a particular source point s, denoted SPM(s), is a
subdivision of the plane into two-dimensional regions such that all the points
in one region have the same, unique predecessor[6].

An example of a construction of SPM can be seen in Figure 4.2 blow

26
CHAPTER 4. SHORTEST PATH MAPS AND THEIR GEOMETRIC

PROPERTIES

s

Figure 4.2: An example of an SPM build around s with where the area between
the arrows and fully drawn lines shows the regions in the plane with the same
predecessors[6].

The figures shows the SPM build around s as the source, and the different
obstacles in the plane. Since a shortest path only needs to turn at the vertices
of the obstacles, by triangular inequality, the vertices of obstacles naturally
constitute the unique predecessors of the points within the different regions
marked by the fully drawn lines. Here the lines will extend until the meet the
encapsulating polygon P an then be fully enclosed. The dashed lines show the
shortest path from a region s or to the preceding region. It should be noted
that these fully drawn line constitutes bisectors (which will explained in later
chapter) and there point on the line have a equal distance to s through either
of the regions which the bisector acts a border between. It should therefore be
noted that in the case of the SPM there may multiple shortest paths to points
in the plane, in which case one just chooses one of them.

The distance to a point p in the SPM is calculated by finding the weight
from s to p

Definition 13. Weight:
We define weight of an vertex (including obstacle vertices) to be its shortest
path distance to the source s. Given an arbitrary point p in free space, its
weighted distance to a visible vertex v is defined as

d(s, v) + |vp|

that is the straight-line distance from v to p plus the shortest path distance from
s to v. [6]

Next we move on to the definition of k-predecessors and the shortest k-path
map

Definition 14. k-predecessor
Given a shortest k-path πk(p), we define the predecessor of p to be the vertex
(including s) that is adjacent to p in πk(p)[5].

Definition 15. Shortest k-path map(Definition 9 in [5])
The partition of free space into connected regions with the same k-predecessor is

4.2. SHORTEST PATH MAP AND SHORTEST k-PATH MAP 27

called the shortest k-path map, and is denoted by SPMk. The subset of SPMk

for which the shortest path πk(p) to every point p has exactly k crossings is
called the shortest (= k)-path map and denoted by SPM=k.

It is quite easy to see that a SPM is the same as an SPM=0, we will there-
fore use SPM when dealing with the Hershberger-Suri algorithm in chapters
5 and 6, and SPM=0 when dealing with the computing of SPMk in chapter 7.

We saw with the SPM0 map that each predecessor to an region always
where on the boundary on said region, this isn’t necessarily the case for a
SPMk. Further more multiple regions in SPMk may have the same predecessor
see Figure 4.3.

s

p

q

Figure 4.3: Here we present a SPM1 map, where we the fat lines are obstacles.

Here we see that the shortest path from s to p goes through point q which lies
outside the region in which p is. So we need to maintain additional information
with polygon vertices to disambiguate the predecessor relation. So suppose we
have a line segment vp between to vertices which crosses (k − 1) obstacles for
some 0 ≤ i ≤ k, then the length dk(p) of πk(p), is defined as the sum of the
length of the i-path to v and the length of segment vp. So in the context of
Figure 4.3 we have qp crosses (k− 1) obstacle in the relation of 0 ≤ 1 ≤ k = 1,
which leaves the k − 1 = 0 obstacles left which we can cross. The 0-path to q
is the direct path sq, where we have the total shortest path.

So for a point p in SPM=k, we identify the k-predecessor of p by the pair
(v, i), where v is a vertex of P and i ∈ {0, 1, .., k} such that dk(o) = di(v)+ |vp|
and the segment vp crosses (k − i) obstacles [5].

Neat property of the SPMk is we devide it into two parts, a Vk−1 path which
is the region consisting of k− 1-visible points, which is star-shaped (Definition
16), and the SPM=k part. The concept of V areas can be seen in Figure 4.4.

28
CHAPTER 4. SHORTEST PATH MAPS AND THEIR GEOMETRIC

PROPERTIES

Figure 4.4: Here the boundary of V1 is marked with dashed lines, while the
region of V0 is shown with dotted lines. V1 is further shown with blue and the
V1 \ V0 is shown with green [5].

4.3 Complexity of SPM map

Here follows a Lemma which will be usefull for bounding the number of hyper-
bolic arcs in the proof of Lemma 46 in Chapter 6 but first we define what a
star-shaped polygon is.

Definition 16 (Star-shaped polygon). [15] A simple polygon P is star-shaped
if there exists a point z not external to P such that for all points p of P the line
segment zp lies entirely within P . The locus of the points z having the above
property is the kernel of P.

Lemma 17 (Lemma 3.2). The shortest path map SPM(s) has O(n) vertices,
edges and faces. Each edge is a segment of a line or a hyperbola

Proof. Note that each face SPM(s) is star-shaped (see Definition 16) with the
unique predecessor vertex for the face, and the predecessor is in the kernel of
the face. The idea behind this proof is to show that each obstacle vertex is
a predecessor vertex for at most one face in SPM(s). Consider a vertex u
that is the predecessor of a face F and let pred(u) be the set of predecessors
of u, this is a set because there can be multiple predecessors. Observe that
d(s, u) = d(s, v) + |uv| for any v ∈ pred(u), since the distance d(s, u) can
always be rewritten as the distance to from s to u’s predecessor, and a straight
line from the predecessor to u since your predecessor is always visible from a
point.

If a point p is visible from a vertex v ∈ pred(u) with v, u, p not being
collinear, then p cannot have u as its predecessor. This is due to the triangle
inequality, where it is always shorter to take the direct line instead going by
another point.

Consider the subset of the free space that is visible from u but not visible
from v ∈ pred(u). Let R(u, v) denote the component of this subset that is

4.3. COMPLEXITY OF SPM MAP 29

incident to u. Then R(u, v) lies in an angular angle around u of less than 180◦.
Define

R(u) =
⋂

v∈pred(u)

R(u, v) (4.1)

Clearly F ⊆ R(u), since the area R(u) is the area that is incident to u, and
not visible from any predecessor v ∈ pred(u)

Then the claim is that there is at most one face of SPM(s) in R(u) with u
as its predecessor.

We do this by contradiction: Suppose there were two faces F1 and F2 both
having u as their unique predecessor. The faces F1 and F2 must have exactly
one point in common, the vertex u. In the space between F1 and F2 there is
a point p, there have to be a point here, otherwise they would be the same
face. The point p is arbitrarily close to u with predecessor z such that z is
distinct from both u and pred(u). In other words d(s, u) + |up| > d(s, z) + |zp|.
However as p moves towards u the difference in the distance shrinks and finally
d(s, u) = d(s, z) + |zu|. But then z must be a predecessor of u. This means
that F1 and F2 is part of the same face, contradicting the hypothesis. Thus a
vertex u is a predecessor of at most one face in the shortest path map.

Finally to prove the linear upper bound on the size of the shortest path
map, recall that the number of obstacle vertices is n the remaining vertices
border at least three faces of SPM(s) (for this argument we count the obstacle
polygons as faces of the shortest path map). Since the number of faces is O(n),
Eulers formula for planar graphs implies that the total number of vertices is
also O(n). This completes the proof

Chapter 5

Conforming subdivision

The following chapters results are due to Hershberger and Suri[6] section 2 and
6. We will present the main theory behind a conforming subdivision, and an
algorithm for computing it, and The implementation details for an O(n log n)
implementation.

Given a plane with obstacles, we could view this as a plane with holes in
it, which we cannot enter. These holes are made of the obstacles occupying
the space. So here the notion of free space is the plane minus the interior of
the obstacles. This free space is where the unmodified Hershberger-Suri would
find a shortest path, that is a shortest path without violations. One of the key
ideas for calculating the shortest path map, which we need to find the shortest
path, is the notion of a conforming subdivision of the free space. This is a
subdivision of the free space into squares, which we will call cells, where a cell
has a constant descriptive complexity.

This construction is done i two steps: the first step constructs a subdivision
while only considering the vertices of the obstacle polygons. The second step
will then insert the obstacle edges into the subdivision, which will have a taken
a grid-like structure. This structure is build bottom up, such that every vertex
in the plane is contained in the interior of a cell. The algorithm then proceeds
to simulate growth-process which will make the cells grow until then entire
plane is covered by these cells. The way this growth is facilitated is by defining
a equivalence class of when cells overlap, and can be merged together. This
is the reason it’s called a conforming subdivision, since the grid grows, and
conforms to the vertices in the plane.

When this grid of orthogonal cells has been produced we insert the obstacle
edges intro the grid, giving us two types of edges. The edges that we have
grown, which we will call transparent edges, since our wavefronts will be able
to pass through them, and the obstacles edges which we will call opaque edges,
which the wavefront will be blocked by. The transparent edges will obey the
claim that they will be well-covered, which we will define in the next section,
but this helps us bind the overall complexity of the subdivision, and secure that
there are O(1) of cells within a distance of 2|e| for every transparent edge e. It
is this well-covering property that the shortest path algorithm relies heavy on,
in the unmodified Hershberger-Suri algorithm. This subdivision can be built
in O(n log n) time shown by Lemma 34 [6].

31

32 CHAPTER 5. CONFORMING SUBDIVISION

5.1 Defining well covering of regions

A crucial property of the quad-like subdivision is the subdivision being well-
covering on its internal edges. The following section outlines the different
definitions and properties that we mean by well-covering, This section is very
much inspired by Hershberger and Suri definition of the same concepts in [6].

We give the following definition for well-covering:

Definition 18. Well-covering with parameter α:
Given a straight line subdivision S1 of the plane, an edge e ∈ S is said to be
well-covered with parameter α if the following three conditions hold:

W1. There exists a set of cells C(e) ⊆ S such that e lies in the interior of their
union. The union is denoted U(e) = {c | c ∈ C(e)}.

W2. The total complexity of all the cells in C(e) is O(α).

W3. If f is an edge on the boundary of the union U(e), then the Euclidean
distance between e and f is at least α ·max(|e|, |f |).

The edge is said to be strongly well-covered if the stronger condition W3’ holds:

W3’. If f is an edge on or outside the boundary of the union U(e), then the
Euclidean distance between e and f is at least α ·max(|e|, |f |).

In either of the two cases, we will say the region U(e) is the well-covering
region of e. The Hershberger-Suri algorithm focuses solely on the distance
from the boundary of U(e) to e, which means we only require a the region to
be well-covered, and not strongly well-covered. The reason for a definition of
strongly well-coveredness is due to the definition being used later for proving
correctness of algorithm.

Definition 19. α-conforming subdivision:
Let V denote the set of vertices of the obstacle polygons, plus the source vertex
s. A subdivision S is called a (strong) α-conforming subdivision for V if:

C1. Each cell of S contains at most one point of V in its closure2.

C2. Each edge of S is (strongly) well-covered with parameter α.

C3. The well-covering region of every edge of S contains at most one vertex
of V .

The reason for the naming of definition 19 being conforming, is due to
condition C1 and C3, will force the cell structure to conform around the dis-
tribution of the vertices of V . An example of this can be seen in Figure 5.1.
Since the Hershberger-Suri constructs a 2-conforming subdivision V , we will
the rest of the thesis denote conforming to mean 2-conforming, and explicitly
state the parameter if it is not 2.

1a subdivision composed of straight lines
2its interior plus boundary

5.1. DEFINING WELL COVERING OF REGIONS 33

e

Figure 5.1: An example of part of an strong 1-conforming subdivision. The
shaded region in the figure is the union of cell U(e), a well-covering of edge e
[6].

As mentioned earlier in the overview of the Hershberger-Suri algorithm, the
subdivision of S is similar to a quad-tree in that all its edges are horizontal or
vertical. However, as we will see, the cells of S may not always be convex and
the subdivision itself can be disconnected. As will shown later, each cell is still
reasonably well-behaved, and there are at most one hole per cell. To give a
more precise definition, each cell is either a square or a square-annulus.

Definition 20. (Square-annulus:)
We will define it as a square A which is missing a square B internally such
that the internal square B is at least 1/4 the side length of the outer square A

The boundary of these cell may be subdivide into a constant number of
edges. We require also that they have the following minimum clearance prop-
erty:

Definition 21. (Minimum clearance property:)
The minimum width of an annulus in the subdivision (the minimum distance
from the inner square to the outer square) is at least one quarter of the side
length of the outer square. See Figure 5.2

34 CHAPTER 5. CONFORMING SUBDIVISION

≥ ∆

≥ ∆

4 · ∆

Figure 5.2: A square-annulus, where the distance from the inner square to the
outer square, which is ∆, is at least 1/4 the side length of the outer square
which is 4 ·∆

Both the annuli and square faces are subject to the uniform edge property:

Definition 22. Uniform edge property:

• Every edge on the outer square of an annulus has length 1/(4dαe) times
the side length of the outer square.

• Every edge on the inner square has length 1/(4dαe) times the side length
of the inner square.

• The lengths of edges on the boundary of a square cell differ by at most a
factor of 4.

5.2 Conforming subdivision theorem

The conforming subdivision theorem precisely states the properties we expect
of the subdivision. It is also why this theorem will be proven by construction
of the conforming subdivision algorithm which we will present in section 5.6.

Theorem 23. (Theorem 2.1 in [6]) Conforming Subdivision Theorem:
For any α ≥ 1, every set of n points in the plane admits a strong α-conforming
subdivision of O(αn) size satisfying the following additional properties:

1. All edges of the subdivision are horizontal or vertical,

2. Each face is either a square of a square-annulus, with subdivided bound-
ary,

3. Each annulus has the minimum clearance property,

4. Each face has the uniform edge property, and

5. Every data point is contained in the interior of a square face

Such a subdivision can be computed in time O(αn+ n log n).

5.3. CONSTRUCTION OF THE CONFORMING SUBDIVISION 35

This theorem implies that we need to make modifications to the strong
conforming subdivision of V to accommodate for the edges of the obstacles,
because our goal is to produce a conforming subdivision of the free space. This
is done by modifying the edges present in the subdivision, s.t. we differen-
tiate between the edges introduced by the subdivision construction and the
edges of obstacles. We mentioned the difference between these before, but for
completeness we here present a formal definition of these differences.

Definition 24. Transparent and opaque edges:
Let the edges in a conforming subdivision of the free space, which are introduced
by the subdivision, be transparent edges. Equally let the edges in a conforming
subdivision of the free space, which are introduced by the obstacles be opaque
edges.

The reason, as mentioned before, we the need to differentiate between these,
is due to the fact that the algorithm allows wavefronts to pass through trans-
parent edges, but are blocked by the opaque edges. We also require that the
transparent edges are well-covered in the conforming subdivision of the free
space, even though they don’t need to be strongly covered. Due to these re-
quirement, we will slightly alter definition 18 first and third requirement as
such:

W1fs. Let e be a tranparent edge of S. There exists a set of cells C(e) ⊆ S such
that e is contained in the closure of the uinion of cells U(e) = {c | c ∈
C(e)}.

W3fs. Let e and f be two transparent edges of s such that f lies on the boundary
of the well-covering region U(e). Then the shortest path distance between
e and f is at least α ·max(|e|, |f |).

It is worth noting that condition W3fs. ensures e does not touch any trans-
parent boundary edge of U(e), although it may touch opaque boundary edges.

5.3 Construction of the conforming subdivision

In this section we go through the basic building blocks used for computing
the conforming subdivision, i-boxes and i-quads, and some nice properties and
behavior of them. We will go through the overlap relation, which is used to
make set of equivalence classes of i-quads. These equivalence classes are the
main component for the two algorithms which will calculate the conforming
subdivision. We will also briefly show a lemma for transforming a 1-conforming
subdivision to a α-conforming subdivision, for a constant α. Finally we will
discuss the invariants of the of the conforming subdivision algorithms, before
moving on to discuss the algorithm in the next section.

5.3.1 Definitions of i-boxes and i-quads

Before going into the algorithm for constructing the conforming subdivision,
wee need preliminary terminology and definitions.

To make things easy for ourselves, we fix a Cartesian coordinate system in
the plane we are working with. We say for any integer j and l, the i’th-order

36 CHAPTER 5. CONFORMING SUBDIVISION

grid in the coordinate system is the arrangement of all lines x = j · 2i and
y = l · 2i. This makes a grid where each cell (face), is a square of size 2i × 2i,
whose lower-left corner lies at the point (k · 2i, l · 2i), for any pair of integers j
and l. We will refer to such a cell as an i-box. Any array of size 4× 4 is called
an i- quad, see Figure 5.3.

0

2i

2 · 2i

3 · 2i

4 · 2i

5 · 2i

. . .

0 2i 2 · 2i 3 · 2i 4 · 2i 5 · 2i . . .

core

p1

i-quad

p2
core

core

p3

Figure 5.3: An example of how i-quads would be grown around the point p1, p2
and p3. Here we also see that in this particular i’th stage of growth, that p1
and p3 belong to the same equivalence class, while p3 does not.

One could note that, while it is true that the size of an i-quad is the same
as an (i+ 2)-box, an (i+ 2)-box may not be a cell in the (i+ 2)-order grid. So
these are not always equal. We also refer to the four non-boundary i-boxes of
an i-quad as the core of the i-quad, see Figure 5.3. By this definition the core
is always an 2 × 2 array in the i-boxes. One can also observe that an i-box b
may have up to four i-quads that contain b in their cores.

The algorithm for building a 1-conforming subdivision, is in a quad-tree-
like fashion where we build a partition around the set of points in the plane
in a bottom up procedure. This i done by growing a square box around each
data point, until the entire plane is covered by these boxes. This is done in a
number of discrete stages numbered −2, 0, 2, 4, The end goal is to produce
a 1-conforming partition of the points, where the subdivision will be a grid
with orthogonal cells. Key idea behind the growth process is, each data point
p in stage i is in the core of an i-quad. And since we grow the initial box, the
data point p will remain in the i-quads core, and the following lemma holds
inductively, by definition of the process we have described.

Lemma 25. Each (i− 2)-quad constructed in stage (i− 2) lies in the core of
some i-quad constructed in stage i.

5.3. CONSTRUCTION OF THE CONFORMING SUBDIVISION 37

To lower overhead of the algorithm, we only maintain a minimal set of
quads at any given i-stage. We denote the set of quads in stage i with Q(i).
This set is partitioned into equivalence classes under the transitive closure of
an overlap relation.

Definition 26. (Overlap relation:)
Given any two quads q and q′, we say these are in the same equivalence
class, by the overlap relation, if and only if there is a sequence of quads q =
q0, q1, ..., qm = q′ ∈ Q(i), s.t. qj and qj+1 overlap (have common interior point)
for all j = 0, 1, ...,m − 1. Further more, let {S1(i), ..., Sl(i)} denote the parti-
tion of Q(i) into these equivalence classes in the ith stage, and let ≡i denote
the transitive equivalence relation.

We denote a region, or to be more exact the partition of the plane, covered
by the quads of one class a component. By previous definitions we know that a
component in stage i either is a single i-quad, of the a union of i-quads where
the points in each i-quads core, belong to the same equivalence class. We
differentiate between two types of classes. The first being a simple component.
A component at stage i is simple if

1. Its outer boundary is an i-quad.

2. It contains exactly one (i− 2)-quad of Q(i− 2) in its interior.

The second type is a complex component. A complex component is complex
if it is not simple.

5.3.2 Merging of i-quad

In this subsection we show some distance properties that is satisfied by points of
the same equivalence class at stage i, which will be useful in the final algorithm.
We say that a quad q is a containing i-quad of a point3 u ∈ V if q ∈ Q(i) and
u lies in q’s core. We also say that a point u belongs to an equivalence class
S ∈ Q(i) if there is a containing i-quad of u in S.

Lemma 27. (Lemma 6.6 in [6])
Let u be a point of V and let q ∈ Q(i) be a containing i-quad of u. Then the
minimum distance between u and the outer boundary of q is 2i.

Proof. The key idea is the property that u lies in the core of q, which we know
the size of. Since q has side length 2i+2, and u lies at least a quarter of this
distance away from the outer boundary, the lemma trivially follows.

As used earlier in the thesis, we use the notation d(u, v) to denote the
distance between the points u and v.

Lemma 28. (Lemma 6.7 in [6])
Let u and v be two points of in the plane that belong to two different equivalence
classes of Q(i). Then d(u, v) > 2 · 2i.

3its worth noting that in this section and generally in this context of conforming subdi-
vision, that points and vertices are equivalent

38 CHAPTER 5. CONFORMING SUBDIVISION

Proof. Let qu and qv be two containing i-quads for u and v, respectively. Since
u and v lie in different equivalence classes, these i-quads cannot intersect.
By Lemma 27, each of the points lies at least a distance 2i away from the
outer boundaries of their i-quads, which immediately gives a lower bound of
d(u, v) > 2× 2i, which proofs the lemma.

Lemma 29. (Lemma 6.8 in [6])
Let u and v be two points in the plane and let qu and qv, respectively, be the
two i-quads of Q(i) containing them. If qu ∩ qv 6= ∅, then d(u, v) < 6 · 2i.

Proof. By Lemma 27, the maximum distance between u and the outer bound-
ary of qu is at most 3 ·2i. The same holds for v and qv, which implies the upper
boundary of d(u, v) < 6 · 2i. See Figure 5.4.

0

2i

2 · 2i

3 · 2i

4 · 2i

. . .

0 2i 2 · 2i 3 · 2i 4 · 2i . . .

u v3 · 2i 3 · 2i

3 · 2i
3 · 2i < 3 · 2iu′ v′

Figure 5.4: The two top i-quads with points u and v are as close as they can
be without belonging to the same equivalence class, that is not overlapping,
and therefore have d(u, v) = 6 · 2i. The two lower i-quads with points u′ and
v′ overlap, and therefore have d(u, v) < 6 · 2i.

5.3. CONSTRUCTION OF THE CONFORMING SUBDIVISION 39

5.3.3 Transforming 1-conforming subdivision to
α-conforming subdivision

The following lemma shows how to transform a 1-conforming subdivision into
an α-conforming subdivision of size O(α · n in O(α · n) time. This is quite
important for the correctness of our algorithm, since we will need the ability
to transform the 1-conforming subdivision to an α-conforming subdivision.

Lemma 30. (Lemma 6.1 from [6])
Let V be a set of n points, and let S1 be a 1-conforming subdivision for V of
size O(n). For any α > 1, we can build an α-conforming subdivision Sα for V
with complexity

Proof. Subdivide each edge of S1 into dαe equal-length pieces. Define the well-
covering region of each edge e in Sα to be the same as the well-covering region
in S1 of which e is a fragment. These operations can performed in O(α · n)
time.

We show below that the subdivision thus defined satisfies properties from
definition 19.

1. Sα has the same set of cells as S1, so each cell of Sα contains at most one
point of V in its closure.

2. Each internal edge eα of Sα is well-covered with parameter α, since it
satisfies the conditions stated in 18. Let e1 be the edge of S1 of which eα
is a fragment. Let Cα(eα) be the set of cells of Sα whose union Uα(eα)
is the well- covering region of eα. Define C1(e1) and U(e1) analogously.

a) Uα(eα) covers the same area as U1(e1), so eα is contained in its
interior.

b) Each edge of each cell in C1(e1) is divided in dαe pieces in Cα(eα) is
O(α).

c) Let fα be an edge of Sα on (or outside in the case of strongly 1-
conforming) the boundary of Uα(eα), and let f1 be the edge of S1
from which it is derived. The Euclidean distance between eα and
fα is at least as large as the distance between e1 and f1, which is at
least max(|e1|, |f1|) ≥ max(α · |eα|, α · |fα|).

3. Well-covering regions in Sα are the same as in S1, so each contains at
most one vertex of V .

Which establishes the lemma.

5.3.4 The invariants

The main objective of the algorithm is to draw the boundaries of certain com-
ponents, which in the end will give the correct subdivision with the properties
of the conforming subdivision theorem. Each of these edges will be straight
line segments, all parallel to one the axes, and will be subdividing the plane
into orthogonal cells. The critical property of our subdivision is the following
conforming property:

40 CHAPTER 5. CONFORMING SUBDIVISION

Invariant 1: For any edge e and cell c of the subdivision, c has an interior
point within distance |e| of e if and only if c and e are incident (their closures
intersect). Thus There are at most six cells within distance |e| of any edge e.

The algorithm will only draw edges of increasing lengths, and so we never
need to subdivide previously drawn edges inside a component. In order to
maintain Invariant 1, the algorithm will also enforce the following auxiliary
invariant:

Invariant 2: The boundary of each complex component in stage i is subdi-
vided into edges of length 2i that are aligned with the ith-order grid 4.

Through the algorithm the outer boundary of simple components, wont be
drawn until just before they merge with other components to form complex
components. This will show itself very valuable, since this helps to ensure the
upper bound of the size for the final subdivision of O(n).

The algorithm consists of two main sub-algorithms. The first procedure
growth, will take care of simulating the growth of the (i − 2)-quads to i-
quads at a stage i. The second procedure build-subdivision, will compute
and maintain the equivalence classes, and will also draw the subdivision edges
(which will satisfy invariant 1 and 2).

First we will present build-subdivision, and then move on to presenting
growth. All we need to know about growth for now is, given an i-quad q,
the procedure growth(q) will produce a (i + 2)-quad containing q inside its
core. For a family S of i-quads, growth(S) is a minimal set of (i + 2)-quads
satisfying the following:

∀q ∈ S, ∃q̄ ∈ growth(S) s.t. q̄ = growth(q)

As mentioned earlier, up to four (i+ 2)-quads may contain the i-quad q in
their cores. So to not complicate matter, we will postpone the discussion of how
the procedure growth chooses growth(q). For now we will be content with
growth(q) being a unique (i + 2)-quad returned by the procedure growth.
We also use the notation q̄ to denote growth(q).

5.4 Pseudo code for build-subdivision

To assure that all components will be simple and disjoint at the initial state,
and not complex (overlap) we will scale the plane in such a way that either
the horizontal or the vertical distance between any two points in the plane
is at least 1, and no points has a coordinate which is a multiple of 1/4. We
compute a (−2)-quad for every point p in the plane, with p in the upper left
corner of the (−2)-boxes core. These quads form the initial set of quads in
Q(−2). Since no i-quad overlaps, they all belong to their own equivalence
class, and can in this context be regarded as singletons. We proceed to draw
the (−2)-box around each point p, which will be contained in the core of the
(−2)-box, which we won’t draw now. From this initial setup, one can easily

4both invariants are as defined in [6] section 6.2

5.4. PSEUDO CODE FOR BUILD-SUBDIVISION 41

see that the invariants are satisfied, and we are ready to proceed with the
build-subdivision algorithm:

Algorithm 8 Algorithm build-subdivision

1: while |Q(i)| > 1 do
2: i = i+ 2
3: Initialize Q(i) = ∅
4: for each equivalence class S of Q(i− 2) do
5: Q(i) = Q(i) ∪ growth(S).
6: for each pair of i-quads q, q′ ∈ Q(i− 2) do
7: if q ∩ q′ 6= ∅ then
8: Set q ≡i q′.
9: Extend ≡i to an equivalence relation by transitive closure, and compute

the equivalence class
10: for each q ∈ Q(i− 2) do
11: Let q̄ = growth(q) as computed in step 2− 8
12: if q is a simple component of Q(i−2) but q̄ isn’t a simple component

of Q(i)(*) then
13: Draw the boundary box of q and subdivide each of its sides into

four edges at the (i− 2)-order grid lines.
14: for each equivalence class S of Q(i) do
15: Let S′ = {q ∈ Q(i− 2) s.t. growth(s) ∈ S}.
16: if |S| > 1 then
17: Let R1 = ∪q∈S′{the core of growth(q)}.
18: Let R2 = ∪q∈S′{the region covered by q}.
19: Draw (i − 2)-boxes to fill the region between the boundaries of

R1 and R2.
20: Draw i-boxes to fill the region between the boundaries of R1 and

S; break each cell boundary with an endpoint incident to R1 into
four edges of length 2i−2, to satisfy Invariant 1.

As we explained earlier, the algorithm runs in discrete stages of−2, 0, 2, 4, ...,
which we see in the increment step of step 2. Step 3 to step 8 computes the
Q(i) from Q(i−2). This is done by growing the previous squares from Q(i−2),
one equivalence class at a time, and the see if any of then newly grown squares
overlap. If this is the case, thye belong to the same equivalence class, and
should be marked as such in Q(i). Next in step 10 to 13 we process the simple
components of ≡i−2 that are about the merge with other components. This is
done by checking if the square q which was simple before the growth process
still would be simple after the growth. If not we draw the boundary box of
q before the growth, and subdivide its sides into edges of equal length, each
a quarter of the total side length. The last steps 14 to 20 are dedicated to
processing the complex components. Here we compute a S′ which consists of
the q ∈ Q(i− 2) which will grow into the equivalence class S in Q(i). We will
only process if |S′| > 1 which means S would be complex. Here create two set
R1 being the cores of the i-quads in the complex equivalence class S and R2

being the region covered by the q in S′. Should these not overlap we fill the
region between R1’s and R2’s boundaries with (i−2)-boxes. In the last step we

42 CHAPTER 5. CONFORMING SUBDIVISION

basically draw the outer boundaries of the growth(q) square, to fill the space
between the cores, R1, and the outer boundary of S, with edges that satisfy
the invariants.

This is the overall idea behind the build-subdivision algorithm. This
pseudo code, while not being efficient enough, gives a good understanding of
what we want it to do. We will visit this algorithm again in section 5.6, at
improve it to an O(n log n) implementation, with the needed supporting data
structures and more.

5.5 Pseudo code for growth

The overall idea behind the algorithm for growth(S) is to build a graph on
the quads in S.

Algorithm 9 Algorithm growth(S)

1: Set growth(S) = ∅
2: for each pair of quads q1, q2 ∈ S do
3: if q1 ∪ q2 can be contained in a 2× 2 array of (i+ 2)-boxes then
4: Put an edge between q1 and q2.
5: Compute a maximal matching in the graph computed in Step 1
6: for each edge (q1, q2) in the maximal matching do
7: Choose an (i+ 2)-quad q̄ containing q1, q2 in its core.
8: Set growth(q1) = growth(q2) = q̄, and add q̄ to growth(S).
9: for each unmatched quad q ∈ S do

10: Set growth(q) = q̄, where q̄ is an (i+ 2)-quad containing q in its core.
11: Add q̄ to growth(S).

Initially we set growth(S) to be empty. Step 2 to step 4 builds a graph
whose nodes are the i-quads of S, with the property that their collective area
can be contained in a grid of 2× 2 (i+ 2)-boxes. If this is the case we connect
the two nodes. In step 5 we compute a maximal matching of the graph.

Definition 31. Maximal matching
Given a graph G = (V,E), we define a matching M in G to be the set of
pairwise non-adjacent edges; that is, no two edges will have a vertex in common.
A maximal matching is then defined as a matching M of G with the property
that if any edge not in M is added to M , then M will no longer be a matching.
By this definition, we see that a maximal matching M is a superset of all other
matchings of G, where further M can’t be a subset of the other matching of G.
See Figure 5.5 and 5.6[17].

Figure 5.5: The figure shows two examples of non maximal matching, and one
maximal matching [19]

5.6. AN O(n log n) IMPLEMENTATION FOR COMPUTING A
1-CONFORMING SUBDIVISION 43

Figure 5.6: The figure shows three examples of maximal matching, one should
notice that the last figure have multiple maximum matching, each with two
edges[19].

An implementation of a maximal matching algorithm could be the approx-
vertex-cover from [17].

The proof of correctness of the growth algorithm can be found in appendix
C, but it is worth noting that the maximum node degree of the graph build
in step 2 to 4, is of constant size, O(1). This is due to the fact that only a
constant number of i-quads can touch any i-quad q. This implies the maximal
matching in this graph has Θ(|E|) edges. Since growth basically maps an
i-quad to its larger counter part in the next stage, each i-quad at stage i maps
to an (i + 2)-quad in stage (i + 2). And since each matching edge, that is
the edges marked in step 5, corresponds to two i-quads that map to the same
(i+ 2)-quad, it follows that:

|growth(S)| = |S| − |Θ(|E|)

Later we will show that |E| is a constant fraction of |S| which leads to |S|
gradually becoming smaller and smaller, which is why the algorithm terminates.
A formal proof for this fact can be found in appendix C, but we are content
with the fact that for each iteration step 5 will compute a maximal matching
on gradually smaller and smaller graphs.

Step 5 to 8 constructs a new larger (i+2)-quad if two point q1 and q2 would
be in it’s core, and assigns this quad to the equivalence class S. The remaining
unmatched quad q are just grown individually and added to the equivalence
class S.

The fact that any two quads q, q′ ∈ S are contained in the same grown quad
growth(q) = growth(q′) if their closure intersect is one of the main facts why
growth(S) runs in time O(|S| log |S|), which is the overall running time for
growth.

5.6 An O(n log n) implementation for computing a
1-conforming subdivision

The following section presents an O(n log n) implementation for building a 1-
conforming subdivision of the free space. This is done by maintaining the
different equivalent classes in Q(i) for each discrete stage i. This is done
by making a Delaunay triangulation of the vertices in the plane. When we
have this triangulation we can compute the minimum spanning forest by us-
ing Kruskal’s algorithm, and connect each tree if the distance between them
is close enough to make the equivalence class merge together. This minimum
spanning forest is maintained through each growth stage until all trees in the
minimum spanning forest have merged into one tree.

44 CHAPTER 5. CONFORMING SUBDIVISION

5.6.1 Minimum spanning trees

The minimum spanning tree problem is based on the problem of connecting
n points, with n − 1 edges in such a way that the total weight of these edges
remain minimal. More formally, given a graph G = (E, V), we can let w(u, v)
be a weight function for any two vertices u and v in the graph G which returns
the weight of the edge between u and v if such an edge exists, and ∞ if no
such edge exists. Then the minimum spanning tree problem is to find a acyclic
subset T ⊂ E that connect all vertices, such that the total weight

w(T) =
∑

(u,v)∈E

w(u, v)

is minimized [17]. The minimum spanning tree would then be the solution to
this problem.

We further say, if the graph G is made up of multiple components then the
minimum spanning tree for each component, will together form a minimum
spanning forest of G.

We recall from section 5.3.2 by Lemma 29, if two i-quads qu and qv overlap
(and therefore at stage i belong to the same equivalence class S ∈ Q(i)) the
distance between the two point u and v, contained in respectively qu’s and qv’s
core, has the following property d(u, v) < 6 ·2i. The O(n log n) implementation
of build-subdivision is based upon the fact that, given VS which is the set
of points in the core of some equivalence class S ∈ Q(i), then the longest edge
of a minimum spanning tree of VS has length less than 6 · 2i.

Let V be the set of all vertices in the plane we want to build a conforming
subdivision around. We then define G(i) to be the graph on V which contains
exactly those edges whose weight is at most 6 · 2i, and define MSF (i) to be
minimum spanning forest of G(i). Here the forest consist of each minimum
spanning from each component S ∈ Q(i).

To show the validity of this idea, we briefly present two Lemma for the
correctness of this the above assumption. First we show that each point at a
stage i only will belong to a single minimum spanning tree.

Lemma 32. (Lemma 6.9 in [6]) The points contained in any component S of
Q(i) belong to a single tree of MSF (i).

Proof. Let S be a random component of Q(i). By Lemma 29, the points
contained in S can be linked by a tree with edges shorter than 6 · 2i. This
implies that any bipartition5 of the points of VS , has a minimum weight edge
linking the two subsets together which is shorter than 6 · 2i. The minimum
spanning tree of VS has all edges shorter than 6 · 2i, and therefore VS belongs
to a single tree of MSF (i).

Next we show that if two i-quads at stage i don’t overlap, then their points
will belong to different minimum spanning trees in stage i− 2.

Lemma 33. (Lemma 6.10 in [6]) If i-quads q1 and q2 belong to different
components of Q(i), then their points belong to different tree of MSF(i− 2).

5bipartition is the grouping of vertices into two groups

5.6. AN O(n log n) IMPLEMENTATION FOR COMPUTING A
1-CONFORMING SUBDIVISION 45

Proof. By Lemma 28 we know that every edge from a point in q1’s core to any
point outside that core has length greater than 2·2i. The points of quads q1 and
q2 components are in the same tree ofMSF (i−2) only if every bipartition of V
that separates the points of q1 from those of q2 is bridged by an edge of length
less than 6 · 2i−2, this is due to lemma 28. But the bipartition separating the
points of q1’s component of Q(i) from the rest of V has bridge length greater
than 2 · 2i, which is due to lemma 28. Since 2 · 2i > 6 · 2i−2. the points of q1
and q2 must belong to different trees of MSF(i− 2).

5.6.2 build-subdivision implementation

The final implementation of the build-subdivision procedure is based on an
efficient construction of theMSF (i) for all i such thatMSF (i) 6= MSF (i−2).
One way to go about this is to compute a Delaunay triangulation of V . To
understand what a Delaunay triangulation is, we start by understanding what
a Voronoi diagram is. The Voronoi diagram is build around points in a plane,
where the plane partition into a set of cells, where each cell has exactly one
point in its interior. The special property for each of these cells is that each edge
in their border is placed between two points, in such a way that the distance
from the two points to any point on the edge is the same. The Voronoi diagram
can be computed in O(n log n) time [12].

Delaunay Triangulation can then be understood as the dual graph of the
Voronoi diagram. Such a dual graph is build as follow: each vertex in the dual
graph corresponds to a cell of the Voronoi diagram. Each pair of vertices in the
dual graph is connected with a edge if the vertices corresponds to neighboring
cell in the Voronoi diagram. This gives us a triangulation of the all the points
in the plane, where no edge overlaps.

The Delaunay triangulation of a plane with points can be done in O(n log n)
time[12]. Then for finding the minimum spanning tree of this triangulation we
can run Kruskal’s MST algorithm[17].

Kruskal’s algorithm will insert the O(n) edges, made in the Delaunay trian-
gulation, into the, at stage i, current minimum spanning forest in sorted order
from shortest to longest. Any edge that might join two trees of the forest is
retained, and all other edges are dropped.

For each edge e added to the forest, we compute K = 2d 12 log2(|e|/6)e, which
determines the stage k at which e is added to MSF (k). This can be seen by
knowing the inclusion of e in the forest happens when |e| < 6 · 2i. By inserting
2 · 2i into k we see that.

2d1
2

log2(|e|/6)e = 2d1
2

log2(6 · 2i/6)e

= 2d1
2

log2(2i)e

= 2d1
2
ie = i

Which is the stage in which e is added.
By stopping just before each stage change, we produce MSF (i) for each

even i such that MSF (i) 6= MSF (i− 2) in O(n log n) total time.

46 CHAPTER 5. CONFORMING SUBDIVISION

Algorithm 10 Implementation of build-subdivision
For each T ∈MSF(i), maintain the corresponding set of i-quads in Q(i) that
are the containing quads for the vertices of T . Call this set Q(i, T).

Initialize i = −2. Initialize MSF(−2) to be a forest of singleton vertices. For
each vertex v ∈ V,Q(−2, {v}) is a singleton quad with v in its core.

Maintain a set N of trees in MSF(i) such that for each T ∈ N , |Q(i, T)| > 1;
that is, T ’s component is not a singleton quad. Initialize N = ∅.

1: while |Q(i)| > 1 do
2: iold = i;
3: if |N | > 0 then
4: i = i+ 2
5: else
6: Set i to the smallest even i′ > i such that MSF(i′) 6= MSF(i)

7: for each edge e of MSF(i) not in MSF(iold) do
8: Let T1 and T2 be the trees linked by e.
9: for each Tx ∈ {T1, T2} do

10: if Tx ∈ N then
11: Remove Tx from N .
12: else
13: compute the singleton (i− 2)-quad in Q(i− 2, Tx).
14: Join T1 and T2 to get T ′, and put T ′ in N .
15: Set Q(i− 2, T ′) = Q(i− 2, T1) ∪Q(i− 2, T2)

16: for each T ∈ N do
17: Initialize Q(i, T) = ∅.
18: for each equivalence class S of Q(i− 2, T) do
19: Q(i, T) = Q(i, T) ∪ growth(S).
20: Compute the equivalence classes of Q(i, T) by plane sweep.
21: perform Steps 10 through 20 of algorithm 8 on Q(i, T).
22: if |Q(i, T) = 1 then
23: Delete T from N .

To give a better overview, we include step 10 through 20 from algorithm 8,
see algorithm 8 below.

5.6. AN O(n log n) IMPLEMENTATION FOR COMPUTING A
1-CONFORMING SUBDIVISION 47

Algorithm 11 step 10 to 20 from Algorithm 8

1: for each q ∈ Q(i− 2) do
2: Let q̄ = growth(q)
3: if q is a simple component of Q(i− 2) but q̄ isn’t a simple component

of Q(i)(*) then
4: Draw the boundary box of q and subdivide each of its sides into four

edges at the (i− 2)-order grid lines.
5: for each equivalence class S of Q(i) do
6: Let S′ = {q ∈ Q(i− 2) s.t. growth(s) ∈ S}.
7: if |S| > 1 then
8: Let R1 = ∪q∈S′{the core of growth(q)}.
9: Let R2 = ∪q∈S′{the region covered by q}.

10: Draw (i − 2)-boxes to fill the region between the boundaries of R1

and R2.
11: Draw i-boxes to fill the region between the boundaries of R1 and S;

break each cell boundary with an endpoint incident to R1 into four
edges of length 2i−2, to satisfy Invariant 1.

There are a couple of things worth noting about algorithm 10. For once
we only process stages in which something happens, indicated by the choice
of i in step 2 to step 6. These cases are if MSF (i) changes, that is two
trees merge into one, or there are complex components of Q(i) whose growth
computation is nontrivial. By this we mean we only compute growth(S) for
complex components and for simple components that will merge with other
components soon, and compute the equivalence classes of Q(i) only for this
same set of quads. Simple components that are well-separated from others are
not involved in these computations since they by nature are quite trivial.

The running time of this algorithm is dominated by the O(K logK) required
for a plane sweep [12] of k = |Q(i, t)| quads in step 20. There are O(k) quads
in complex components either in Q(i, T) or in Q(i + 2, T), so there are O(K)
edges drawn for these quads at stage i or i+2. We amortize this cost by charg-
ing O(logK) per edge of the subdivision getting O(n log n) time overall. The
computation of the Delaunay triangulation and the minimum spanning forest
contributes a term of the same asymptotic magnitude.

We have established the following lemma.

Lemma 34. (Lemma 6.11 in [6])
Algorithm build-subdivision can be implemented to run using O(n log n) stan-
dard operations on a real RAM, plus O(n) floor and base2 logarithm operation.

Chapter 6

Wavefront propagation

This chapter presents the results of Hershberger and Suris wavefront propaga-
tion, and is therefore heavily inspired by section 4 and 5 of [6].

Here we will present wavefront propagation with the unmodified Hershberger-
Suri algorithm in mind. One of the only differences in the regards to the mod-
ified Hershberger- Suri, is the sources of the wavefronts, can be sub-edges inn
the modified algorithm, instead of points in the unmodified.

When the conforming subdivision has been constructed we are ready to
actually simulate the continuous Dijkstra method, by propagating through the
subdivision with a wavefront expanding at a unit-speed spreading among the
obstacles and cells. At simulation time t, we say that a wavefront consists of
all the points whose shortest-path distance to the source is t. See Figure 6.1.
Such a wavefront is a set of disjoint paths and closed cycles. Each path or
cycle is a sequence of circular arcs, called wavelets. Each of these wavelets are
centered on a obstacle vertex that is covered by the wavefront. These vertices
are called generators of the wavelets. This is the reason that Figure 6.1 has
multiple sources, since if both the dashed and dotted arches had source at s,
their paths from s to g would overlap (the same for s to g′). The obstacle
vertices g and g′ are engulfed by the wavefront with source s, and becomes
generators for their own wavelets.

As the wavefront expands, the meeting point of two adjacent wavelets
sweeps along a bisector curve, and divides the area between them with a hy-
perbolic bisector of the two wavelets generators1. These ideas can be seen on
Figure 6.2. Here g and g′ are generators, who each starts a wavelet marked
by the dotted line. These two wavelets meets, and for every point they meet,
the shortest distance from this point has equal length to both g and g′. This
is what creates the horizontal line between g and g′, which is the hyperbolic
bisector. The wavefronts creates paths, which have their endpoints when the
wavelet meet obstacles, or the planes outer boundary. These endpoints sweeps
along the obstacle boundaries as the wavefront expands.

From the above we see that the topology, or "shape", of wavefronts during
the simulation changes in the case of two different event: wavefront-wavefront
collisions and wavefront-obstacles collisions.

1see appendix A

49

50 CHAPTER 6. WAVEFRONT PROPAGATION

s

t

t

t

O

t

g′

g

Figure 6.1: An example of a wavefront propagation from s with distance t to all
points of its circular arch. Since a path into the dashed and dotted area would
require a turn at O, these areas are propagated by g and g′. Since we look at
the propagation at time t both generator would have propagated a distance t.

S

g

g′

Figure 6.2: The adjacent generator g and g′ each produce a wavelets which
propagates the space, these are represented by the dotted circular arcs. These
will overlap, and the split the area between them into two equal sized regions.
The fully drawn line segment between them then represent the splitting point
between the two generators, where any point on the line segment, has equal
length shortest path to both of the generators.

6.1 Overview of propagation algorithm

The wavefront propagation algorithm operates in two phases: first a wave-
front propagation phase, and second a map computation phase. The wavefront
propagation phase, simulates the wavefront, and thereby determines the ap-
proximate locations of the different wavefront collision events. We remind that
there are two different kind of wavefront collisions, the first being the colli-
sions where wavelets are neighbors in the wavefronts, that is adjacent wavelets
and the collision between them. The second being collisions between non-
neighboring wavelets. This propagation happens through adjacent cells, and
only across their transparent edges. We remind the reader that transparent
edges are the edges established by the subdivision, and opaque edges, are the
edges of the obstacle polygons. The map computation phase uses the infor-

6.1. OVERVIEW OF PROPAGATION ALGORITHM 51

mation of wavefront collisions to build a shortest path map in each cell in the
conforming subdivision.

One of the main idea behind the algorithm, is the idea of calculating two
"single-sided approximate wavefronts" where each approximate wavefronts will
approach the transparent edge from their own side. This idea comes from
the fact that literally translating the idea of wavefront propagation into an
implementation would be very hard. Instead we are contempt with calculating
for each transparent edge, two approximate wavefronts, which will pass through
the transparent edge, one from each side. So the job of the wavefronts is to
assign an value t to each point p on an transparent edge. Here t is the time it
takes to travers at unit speed from the source s to p. Each p would have two
such values, one from each side, where the minimum or these would the one
we would use for a shortest path. In some cases we determine if a portion of
a wavelet w arrives after the wavelet w′ from the other side has fully engulfed
an edge, that there is no need to record the time of w since it is so much
later than w′. This is also a reason why we refer to it as approximate, since
the approximate wavefront might not necessarily give a complete view of all
wavelets time to an edge.

6.1.1 Definitions and terminology for propagation algorithm

By visiting the cells in a correct order, and going cell by cell we can calculate
the correct time in which a wavefront hits a transparent edge, within a giving
approximation which will be enough for our purpose. To do that we formalize
the following to sets of edges for an edge e, input(e) and output(e).

By input(e) we mean the set of edges whose approximate wavefronts we
use when computing the approximate wavefront collision with e, and as such
the distance to e. This set consists of transparent edges on the boundary of
U(e) which is the well covering region of e. This is described in section 5.1.
Computing the approximate wavefront at e then consist of propagating the
approximate wavefronts from input(e) to e inside U(e). It is quite clear that a
shortest path without violation only needs to bend in the case getting around
an obstacle, and the same is true for the wavefront. Because U(e) neither
needs to convex, or even simply connected, nonconvexity of U(e) can block
the wavefronts from some edges of input(e) from reaching e. Typically, paths
corresponding to blocked wavefronts either pass through free space outside
U(e) and re-enter through other edges of input(e) of simply run into obstacles
outside U(e).

By output(e) we refer to the set of edges where e influences the approximate
wavefront. Formally we define output(e) as

output(e) = input(e) ∪ {f |e ∈ input(f)}

The reason output(e) contains input(e) is the algorithm is depending on
output(e) having a cyclic enclosing of e for detecting wavefront collision events.

Lemma 35 (Lemma 4.1 in [6]).
For any transparent edge e, output(e) contains a constant number of edges.

52 CHAPTER 6. WAVEFRONT PROPAGATION

Proof. Due to |U(f)| = O(1) for all edge f , and each U(f) being a connected
set of cells of S ′, no edge e can belong to input(f) for more than O(1) edges
f .

The implementation of the wavefront propagation is loosely synchronized.
A main idea of approximate wavefront propagation being approximate lies in
the following implementation: For a transparent edge e = ab we define

d̃(s, e) = min(d(s, a), d(s, b))

This estimates d(s, e) because if the wavefront hits a or b then d̃(s, e) =
d(s, e), with d(s, e) being the real distance from s to e. Should the wavefront
hit right in the middle, between the endpoints of ab = e, then the distance to a
and b from the point the wavefronts collides with would be (s, e) = d(s, e)+ 1

2 |e|.
Since if we, in the later case, move the point of collision in any direction the
distance becomes smaller, since it must hold that d(e, s) ≤ d̃(e, s) ≤ d(e, s) +
1
2 |e|.

Since we want to compute the covering time of each e, i.e. the time at which
e is completely covered by the wavefront. We set the time to d̃(s, e) + |e|. It is
obviously a conservative estimate of when the whole edge is fully covered. This
time can easily be calculated on the fly and only be looking at the input(e).
We denote the time where the edge e is fully covered by covertime(e).

6.1.2 The propagation algorithm, main loop

Initially we look at every e that is in the well-covering region U(e) (which also
includes the source point s). We proceed to calculate an upper bound on d̃(s, e)
considering only straight-line paths inside U(e) and set the covertime(e) =
d̃(s, e) + |e|. For all other edges e we initialize covertime(e) =∞. This implies
if the covertime(e) is set to ∞, then the shortest path π(s, a) or π(s, b) must
exit the boundary of U(e).

The algorithm for simulation, maintains a time parameter t and processes
each edge in order of its covertime. The main loop of the simulation is as
follows:

Algorithm 12 Propagation Algorithm
1: while there is an unprocessed transparent edge do
2: Select edge e with minimum covertime(e)
3: Set time t to covertime(e)
4: compute the approximate wavefronts at e based on the approximate

wavefronts from all edges f ∈ input(e) satisfying covertime(f) <
covertime(e)

5: Compute d(s, v) exactly for each endpoint v of e.
6: for each edge g ∈ output(e) do
7: Compute time tg when approximate wavefront from e first engulfs

an endpoint of g
8: Set covertime(g) to min(covertime(g), tg + |g|).

6.1. OVERVIEW OF PROPAGATION ALGORITHM 53

Lemma 36 provides a proof of the propagation algorithms consistency, by
showing covertime() is correctly maintained and the edges needed for process-
ing e would already have been processed.

Lemma 36 (Lemma 4.2 in [6]). During the wavefront propagation the following
invariants hold:

(a) If a wavefront of an edge f ∈ input(e) contributes to an approximate wave-
front of e then d̃(s, f) + |f | < d̃(s, e) + |e|.

(b) The value of covertime(·) is updated a constant number of times.

(c) The final value of covertime(e) is d̃(s, e) + |e|. This value is reached no
later than the simulation clock reaches that time.

(d) Edge e is processed at simulation time d̃(s, e) + |e|

Proof. The parts of the lemma are proven individually
(a) If a wavelet is able to contribute to the approximate wavefront at e

it must be the case that it reaches e at some time te where d(e, s) ≤ te ≤
d̃(s, e) + |e|. On the way from s to e the wavelet either goes straight from s
in side U(e) or by going through another transparent edge f ∈ inpute(e) at an
earlier time tf with d(s, f) ≤ tf < d̃(s, f) + |f | and te ≥ tf + d(f, e). Since we
know from (W3fs) of a well-covering region with parameter 2, d(f, e) ≥ 2|f |
and so te ≥ d(s, f) + 2|f |. Since d̃(s, f) + 1

2 |f |, it must be the case that
d̃(s, f) + |f | < d̃(s, e) + |e|.

(b) The value of covertime(e) is only updated when an edge f is processed
from either f ∈ input(e) or e ∈ input(f). There are O(1) such edges by Lemma
35

(c),(d) These are proven by induction on the simulation clock. (c) and (d)
holds for the edges e whose initial covertime(e) values are not infinite. The
wavelets that first reaches an endpoint of e, at te = d̃(s, e) passes through some
f ∈ input(e). Because of the base-case in the induction we know that f has has
already been visited before the simulation clock reaches te and so covertimee
is set to d̃(s, e) + |e| no later than te = d̃(e, s). The variable covertimee can-
not be set to any smaller value, because no approximate wavefront can reach
the endpoints of e earlier than d̃(s, e). It follows that e will be processed at
simulation time d̃(s, e) + |e|.

Lemma 37 (Lemma 4.3 in [6]). For every vertex v of our conforming subdivi-
sion, the propagation algorithm correctly determines the distance d(s, v) before
v is used as a generator in any wavefront.

Proof. In a conforming subdivision, every vertex v is an endpoint of a trans-
parent edge e. The wavefront that creates the distance d(s, v), either reaches
v by only traveling within the boundary of U(e) or exists through an edge
f ∈ input(e) s.t. covertime(f) < covertime(e). In the case of not leaving
U(e), the initialization trivially computes d(s, v) correctly. The case of leaving
U(e), step 4 and 5 in algorithm 12 implies d(s, v) would be correctly computed.
Should v be an obstacle vertex, it may appear as a generator in a wavefront,

54 CHAPTER 6. WAVEFRONT PROPAGATION

but it will not be used until d(s, v) is computed at time d̃(s, e) + |e| (Lemma
36 (d))

Even though a well-covering union of cells U(e) has constant complexity, it
might not be a simple connected component. One could consider the case of
a square annulus. Consequently there might be multiple topologically distinct
paths from a boundary edge f ∈ input(e) to e. But we’re not interested in
comparing paths of different topologies, so to avoid comparisons of different
topological paths we split the wavefront W (e) into topologically equivalent
pieces.

For this purpose, let W (e) denote one of the approximate wavefront pass-
ing through e. Now when we will compute W (e) from the set {W (f) | f ∈
input(e)}, we will use topologically constrained versions of the two incoming
wavefronts, which we will denote W (f, e). In this context a wavefront W (f, e)
will be a portion of W (f) that follows a single topological path inside U(e)
from f to e.

To further extend this notation, we can consider a U(e) which contains holes.
In this cell there will therefore be multiple topologically distinct paths from an
edge f ∈ input(e) to e. When distinguishing between the multiple topologically
different wavefronts from a single edge f to e, we will use a primed notation
W (f, e), W (f ′, e) etc.

Lets assume that two point p, q ∈ e are hit by a single topologically con-
strained wavefront W (f, e). The segment of e which has p and q as endpoints
then all of the segments points has among their predecessor the generator ver-
tices in W (f), which intersects f and e. Also the quadrilateral2 bounded by
the segments of f and e, which is a subset of U(e). Such paths are not always
segments. We can imaging an obstacle vertex v which lies in a well-covering
region of e, and the path from f to p turns at v. This would then imply that
the predecessor of p in W (f, e) may be v. Should this be the case, then the
paths from p and q to f can be continuously deformed (there is no obstacles
between the two paths) to each inside U(e).

Unless source s ∈ U(e), then for any points p ∈ e the shortest path π(s, p)
would pass through some f ∈ input(e), an so constrain the source wavefronts
to pass through input(e), and by doing so not lose any essential information
for the path.

6.1.3 The artificial wavefronts

As mentioned earlier, conceptually when calculating the distance to a transpar-
ent edge e, we can get to situation where one wavefront will consume the edge
way before the other edge even reaches e. In such a situation we would want
to discard the wavefront arriving later, because we don’t need it since its being
dominated. The concept for this is the artificial wavefronts. This mechanism
will also be our only mechanism for pruning the wavefront that arrives second
at a transparent edge. The easiest way to understand artificial wavefronts is
by an example, see Figure 6.3 below.

2A figure consisting of 4 vertices in a euclidean space

6.1. OVERVIEW OF PROPAGATION ALGORITHM 55

v
p

u

Figure 6.3: An example of an artificial wavefront from v reaching point p on
edge e[6]

Here u’s wavefront engulfs the left side of the transparent edge below it,
lets call it e. The left endpoint of e is v. When v is engulfed, v will generate
a artificial wavefront, which will run along e. In the figure we see that v’s
artificial wavefront engulfs p before the wavefront from the other side even
reaches e. By the triangular inequality we have d(s, p) ≤ d(s, v) + |vp| for any
point p ∈ e. This surely means that the upper wavefront reaches p first, and
there is therefore no need to continue the propagation of the lower wavefront
through p.

So when computing the approximate wavefront passing through e from
below, the contributing wavefronts are the following:

1. All wavefront W (f, e) for f ∈ input(e) and f below the line supporting
e. As mentioned before, we differentiate between paths of topological
difference, so if f intersect the line supporting e, we then split W (f, e)
into two, and keep only the portion W (f ′, e) that comes from the part of
f below e.

2. An artificial wavefront expanding from each endpoint of e. These gener-
ator, e.g. v from Figure 6.3 has weight d(v, s).

So in essence, the artificial wavefront is a convenient mechanism for dis-
carding parts of the actual wavefront which will be completely dominated by
other parts of the wavefront. Since we only use of the artificial wavefronts to
discard parts of incoming wavefronts, their generators will not be passed on to
output(e) as part of the approximate wavefront, unless it’s also a vertex of the
set of obstacles O.

Proof for artificial wavefronts

The following proofs are taken from [6], and included for completeness.
Consider a set of wavefronts that reach e from the same side. We say that

a contributing wavefront W (f) claims a point p ∈ e if W (f) reaches p before
any other contributor from the same side of e.

Lemma 38 (Lemma 4.4 in [6]). Let e be horizontal and letW (f, e) andW (g, e)
be two contributors to the approximate wavefront that passes through e from
below. Let p and p′ be points on e claimed by W (f, e) and let q be a point e
claimed by W (g, e). The q cannot lie between p and p′.

56 CHAPTER 6. WAVEFRONT PROPAGATION

Proof. Consider the the shortest paths π(s, p), π(s, p′), and π(s, q) in the mod-
ified environment in which e has been replaced by an open, opaque segment.
These paths connect p and p′ to f and q to g, inside U(e). Shortest paths
π(s, p), π(s, p′), and π(s, q) do not cross. The subpaths of π(s, p) and π(s, p′)
inside U(e) can be continuously deformed to each other inside U(e), so g is not
between them. It follows that q is not between them, either.

Lemma 39 (Lemma 4.5 in [6]). Let u and v be two obstacle vertices, both
generating wavelets that are considered when the approximate wavefront passing
through an edge e from below is computed. Then the bisector generated by u
and v intersects e at most once in SPM(s).

Proof. Suppose the bisector intersects e twice. Without lose of generality as-
sume u lies inside the loop formed by the bisector and e. If the bisector in-
tersects e twice in u lies inside the loop formed by the bisector and e. If the
bisector intersects e twice in SPM(s), then the segment from u to its prede-
cessor must intersect e between the two bisector intersections. The means that
d(e, s) < d(u, s), in fact, d(e, s) + 2|e| ≤ d(u, s). Hence d̃(e, d) + |e| < d(u, s)
and u cannot contribute to the approximate wavefront at e: it does not become
a generator until after e is processed, contradicting the assumption that both
u and v contribute to the approximate wavefront at e.

Lemma 40 (Lemma 4.6 in [6]). Given W (f, e) for each f below e that con-
tributes to W (e) we can compute the interval of e claimed by each W (f, e) in
O(1+m) total time, where m is the total number of generators in all wavefronts
W (f, e) that are absent from W (e).

Proof. For each contributing wavefrontW (f, e), we show how to determine the
portion of e claimed byW (f, e) if only one other contributing wavefrontW (g, e)
is present. Lemma 4.4 implies that this portion is contiguous. The intersection
of these claimed portions taken over all other contributors W (g, e), is part of
e claimed by W (f, e) in W (e).

In constant time we determine whether the claim of W (f, e) is left or right
of that of W (g, e). If both W (f, e) and W (g, e) reach the left endpoint of e
in constant time, check which one reaches it sooner. Otherwise one of W (f, e)
and W (g, e) reaches a point on e that is left of any point reached by the other,
and this point determines the ordering. Without loss of generality, assume that
the claim of W (f, e) is left of that of W (g, e)

By Lemma 4.4 we can combine the two wavefronts using only local oper-
ations. Let a denote the generator in W (f, e) claiming the rightmost point
on e. Let pa be the left endpoint of a’s interval on e. Similarly, let b denote
the generator in W (g, e) claiming the leftmost point on e and let pb be the
right endpoint of b’s interval on e. Compute the bisector of a and b, and let
its intersection with e be the point x. (By Lemma 4.5 there is only one in-
tersection point in SPM(s). If the hyperbola generated by a and b intersects
e twice, then a is to the left of b at only one of the intersections, and we use
that intersection as x.) See Figure 4.2. If x is to the left of pa, then delete
a from W (f, e) if x is to the right of pb, then delete b from W (g, e) in either
case redefine a, b, pa, pb recompute x, and repeat this test. If pa is left of pb
and x lies between them then x is the right endpoint of W (f, e)’s claim in the
presence of W (g, e)

6.1. OVERVIEW OF PROPAGATION ALGORITHM 57

e

a b

pa pb
x

Figure 6.4: The contribution of b to W (e) is constrained to be left of pb and
right of x and therefore does not exist[6].

By combining the claimed regions for all contributors W (f, e) we construct
the approximate wavefront e. The time bound follows since spend constant
time per generator that is deleted for each pair of wavefronts, and he total
number of wavefronts W (f, e) to be merged is also constant. This finishes the
proof

Lemma 41. Any generator deleted during the construction of an approximate
wavefront at edge e does not contribute to the true wavefront at e. Every
generator that contributes to the true wavefront at e either is s or belongs to
one of the approximate wavefronts at e.

Proof. The first part is clear since every deleted generator is dominated by
some other generator at e. The second part follows by induction from two
facts: any wavelet that contributes to the true wavefront at e must come either
from s inside U(e) or through one of the edges in input(e) (by the definition of
well-covering). The approximate wavefronts at input(e) are ready before they
are needed to construct W (e) (by Lemma 4.2)

6.1.4 The bisector events

First we remind the reader that when we speak of bisectors, we refer to the
meeting points of two adjacent wavelets along a bisector curve, which divides
the area between them with a hyperbolic bisector, see Figure 6.2. When we talk
about bisector events we mean the event of intersections of bisectors with each
other or with obstacles. These may happen when we propagate an approximate
wavefront W (e) to output(e). These bisector event may be detected in two
ways:

1. During the computation of W (e, g) from W (e) for some g ∈ output(e).
This kind of bisector event is detected when simulating the propagation
of wavefront from e to g to compute W (e, g). In particular, when two
generators u and v are non-adjacent in W (e), but at any time in the
propagation from e to g become adjacent, then there is a bisector event
involving u and v.

2. During the merging process described in Lemma 40. Let a generator v
be contributing to one of the input wavefronts W (e, g), but not the the

58 CHAPTER 6. WAVEFRONT PROPAGATION

merged wavefrontW (g) at g, then v will be involved in the bisector event
on the way from e to g.

The algorithm for detecting bisector events, detects these in a small proxim-
ity to their actual location in SPM(s). The process of doing this is by marking
the generators that participate in a bisector event in O(1) cell near where the
event is detected. So if a generator v is involved in a bisector event in a cell
c, then v is guaranteed to belong to a set of marked generators for c. It may
however be the case that the set of marked generators for a cell c is a super
set of generators that actually participate in bisector events in c. The proof
of showing that this total number of generator marked in all the cell in O(n)
time will be shown in Lemma 43

We here state the rules for Marking generators as given in [6].

1. If a generator v lies in a cell c, them mark v in c.

2. Let e be a transparent edge, and let W (e) be the approximate wavefront
coming from some generator v’s side of e.

a. If v claims an endpoint of e in W (e), or if it would do so except for
an artificial wavefront, then mark v in all cells incident to the claimed
endpoint.

b. If v’s claim in W (e) is shortened or eliminated by an artificial wave-
front, then mark v in the cell on v’s side of e.

3. Let e and f be two transparent edges with f ∈ output(e). Mark v in
both the cells that have e as an edge if one of the following event occurs:

a. v claims an endpoint of f in W (e, f);

b. v participates in a bisector event detected either during the computa-
tion of W (e, f) from W (e), or during the merging step at f . We also
mark v as having a bisector event if v’s claim of W (f) is shortened by
an artificial wavefront.

4. If v claims part of an opaque edge when it is propagated from an edge e
toward output(e), mark v in both cells with e on their boundary.

From the above we see that both rule 2a and 3a apply when a wavefronts
claims an endpoints of an edge e. The difference lies in 2a marking cells near
the claimed end point while 3a marks generators in cells near the source edge
of the wavefront.

Proof for bisector events

The following proofs are taken from [6], and are included for completeness.
A generator may contribute to a wavefront more than once in the wave-

front sequence; each mark applies to only one instance of the generator in the
sequence. The following technical lemma is used in the proof of Lemma 43 to
establish the correctness of the marking rules.

6.1. OVERVIEW OF PROPAGATION ALGORITHM 59

Lemma 42 (Lemma 4.8 in [6]). Let v be a generator that contributes to an
approximate wavefront W (e) suppose there is a point p ∈ e that is claimed by v
in W (e) but not in SPM(S) (because a wave from the other side of e reaches
p first) Then v is marked in the cell c on v’s side of e.

Proof. If v is unmarked in c there must be generators u and w such that u,
v, w are consecutive in W (e) — otherwise Rule 2 would apply. The bisectors
(u, v) and (v, w) must exit from U(e) though the same transparent edge h —
otherwise Rule 3 or 4 would apply. For the same reason, the region bounded by
(u, v), (v, w), h, and e is a subset of U(e) — if the region contained a non-U(e)
island, v would claim an endpoint of a boundary edge of that island. Edge
h is by definition part of input(e). Consider the point p ∈ e that is claimed
by v in the approximate wavefront W (e) but not in the true wavefront at e,
and suppose that the true predecessor of p is z 6= v. The vertex z is either an
obstacle vertex or the source s. In the former case, z lies outside U(e) or on
its boundary ∂U(e) — by condition (C3), U(e) contains at most one obstacle
vertex, so any vertex not strictly outside U(e) must be connected to points
outside U(e) by opaque edge. Vertex z may lie strictly inside U(e) only if
z = s.

Let us first assume that z lies outside the well-covering region U(e) — the
proof simplifies in the other case, which is considered below. Let q denote the
intersection point between zp and input(e) closet to p (recall that input(e) ⊂
output(e) and input(e) ⊂ ∂U(e)). Based on the position of q relative to the
bisector (u, v) and (v, w) we argue that v must have been involved in a bisector
event detected by our algorithm and thus marked in cell c.

First consider the case in which q lies between the bisectors (u, v) and
(v, w) on the edge h. Now, since |qp| ≥ |h| (by the well-covering property), the
endpoints of h are engulfed by a wavefront from z or from some other generator
before the wavefront from z reaches p at time d(s, z) + |zp|. The artificial
wavefront from h’s endpoints will cover h before time d(s, z) + |zp| + |h|. By
assumption we have d(s, v)+ |vp| > d(s, z)+ |zp|. The wavefront from v cannot
reach e earlier than d(s, v) + |vp| − |e|. By well-covering with parameter 2,
d(e, h) is at least |e|+ |h| and so the wavefront from v reaches h no earlier than
d(s, v)+|vp|+|h| > d(s, z)+|zp|+|h|, at which time h is already covered by the
artificial wavefront. The claim of v on h is shortened by the artificial wavefront
(in fact a’s claim is eliminated completely), and so it must be marked by Rule
3b.

In the second case, q is not between the bisectors (u, v) and (v, w) on h.
The segment qp must intersect one of the bisectors. Without loss of general-
ity, assume qp intersects bisector (u, v). Since every point on qp has z as its
predecessor in SPM(s), the bisector (u, v) does not reach ∂U(e) in SPM(s).
We show that our propagation and merging algorithms will detect a bisector
event for (u, v). Let r be the intersection point between the bisector (u, v) and
the edge h. As noted in the discussion after Lemma 37, the triangle defined by
the segments ur, vr and e is a subset of U(e). Bisector (u, v) crosses the tri-
angle boundary on e and at r, but nowhere else. The larger region R bounded
by e, h, ur and bisector (v, w) also is a subset of U(e) and it contains point
p. Because qp crosses into R to intersect (u, v) and it does not intersect the
(v, w) or h sides of R, qp must intersect ur let x be the point of intersection.
The wavelet from z reaches x before the one from u, so the path z → x → r

60 CHAPTER 6. WAVEFRONT PROPAGATION

starting at time d(s, z) reaches r before the path u→ r starting at time d(u, s).
Observe also that the path z → x → r is a legal path — it lies in free space.
Now, consider the shortest path from z to r inside the triangle 4zxr that does
not cross h or any obstacle edge (see Figure 6.5).

z

q

r
h

v w
u

e

x

p

Figure 6.5: The shaded path from z to r claims r before the wavelet from u,
and from the same side of h as u[6].

Because z → x→ r lies in free space, such a path exists and is shorter than
z → x→ r. This path claims r from the same side as u before the wavelet from
u reaches r. (If the path passes through an endpoint of h, then an artificial
wavefront claims r otherwise the last obstacle vertex on the path claims r.)
Thus a bisector event for (u, v) is detected during the computation of W (e, h)
or W (h) and v is marked by Rule 3b.

Next consider what happens if the predecessor vertex z lies on the boundary
of the well-covering U(e). Let h be a boundary edge U(e) incident to z. In this
case we detect a bisector event involving v when we advance the wavefront from
e to output(e): if z lies between the bisectors (u, v) and (v, w) then v is marked
by Rule 3a or 4 if z is not between the bisectors, the segment zp intersects one
of the bisectors, say (u, v) and we detect a bisector event for (u, v) in advancing
the wavefront from e to output(e).

Finally consider the case in which z = s lies inside U(e). If z is not between
the bisectors (u, v) and (v, w) segment zp intersects one of them and the proof is
as above. Let r be the intersection of (u, v) with h and let t be the intersection
of (v, w) with h. The convex quadrilateral bounded by subsegments of e, ur,
h, and tw is contained inside U(e). Hence if z is between the bisectors (u, v)
and (v, w), the entire segment rt is visible from z (that is 4zrt is empty) and

6.1. OVERVIEW OF PROPAGATION ALGORITHM 61

so v’s claim on h is eliminated by z. Therefore v is marked by Rule 3b. This
completes the proof.

Lemma 43 (Lemmma 4.9 in [6]). If a generator v participates in a bisector
event of SPM(s) in a cell c, then v is marked in c.

Proof. If a bisector has an endpoint on an opaque edge of c, it either emanates
from an obstacle vertex on the edge, or it is defined by two generators that
claim part of the opaque edge. Rule 1 and 4 guarantee that all such generators
are marked in c. If a generator v that contributes to an approximate wavefront
in c is unmarked then by Rule 2a there must be transparent edges e and f
on the boundary of c such that W (e) and W (f) both contain the generator
subsequence u, v, w for some u and w. Without loss of generality assumeW (e)
enters c and W (f) leaves c. If v participates in a bisector event of SPM(s)
in c, then at least one point p inside the region R bounded by e, f , (u, v) and
(v, w) is not claimed by v in SPM(s). Let z be the true predecessor of p. Let
r and t be the intersections of (u, v) and (v, w) with f , respectively. Region
R is contained in the convex quadrilateral Q bounded by ur, rt, tw, and the
line supporting e. Because u, v, w is a subsequence of W (e), no vertex on the
same side of e as v claims any point of the side of Q collinear with e, that is,
zp does not cross that side of Q. If r and t are both claimed by v in SPM(s)
then ur ∈ π(s, r) and wt ∈ π(s, t). In this case π(s, p) cannot cross ur or wt
and hence it must cross rt. The intersection of zp with rt is a point q that
satisfies the hypothesis of Lemma 4.8, and so v is marked in c. On the other
hand if either r or t is not claimed by v in SPM(s) that vertex satisfies the
hypothesis of Lemma 4.8 and so v is marked in c.

The following technical lemma shows that the approximate wavefront are
not too different from the true wavefronts this lets us bound the number of
marks made by the marking rules.

Lemma 44 (Lemma 4.10 in [6]). Let B be the set of pairs (e,b) of transparent
edges e and bisectors b such that b crosses e in some approximate wavefront
but the same crossing does not occur in SPM(s). Then |B| = O(n)

Proof. Let (e, b) be a pair in B. Bisector b is defined by two generators u and
v. The proof of Lemma 4.8 notes that each generator (except possibly s) is
outside or on the boundary of U(e). That proof also shows that b’s intersection
with e in some approximate wavefront (that is, the presence of u and v in
W (e)) is proof that u and v claim points on the boundary of U(e) (in input(e))
in SPM(s). Let p = b ∩ e. Because (e, b) is not an incident pair in SPM(s),
there must be at least one bisector event in SPM(s) that lies in the interior of
U(e) between the line segment up and vp. We can charge the early demise of
b to any one of these bisector events.

The segments pu and pv are disjoint inside U(e) from the corresponding
segments defined by any other pair (e, b′) ∈ B in the modified shortest path
problem in which the obstacles are O ∪ {e} the segments pv and pu belong to
π(s, p) and hence they are disjoint from any other such segments. Thus the
sector bounded by pu and pv is disjoint inside U(e) from the sector defined by
any other pair (e, b′) ∈ B so each bisector event inside u(e) is charged at most

62 CHAPTER 6. WAVEFRONT PROPAGATION

once for all pairs in B that have e as the first element of the pair. Each cell in
the conforming subdivision belongs to O(1) well-covering regions U(e). Hence
the sum over all transparent edges e of the number of bisector events in U(e)
is only O(n). This total is an upper bound on |B|.

Lemma 45 (Lemma 4.11 in [6]). The total number of marked generators over
all cells is O(n)

Proof. We begin by defining a propagation region for each edge e. For any
transparent edge e let P (e) be the collection of cells through which wavefronts
propagate on the way from e to all edges f ∈ output(e). Clearly P (e) ⊆ U(e)∩
{U(f)|f ∈ output(e)}. The number of cells in P (e) is constant since |output(e)|
is constant and so is the number of cells in U(f) for any f . Furthermore since
every cell of P (e) is within a constant number of cells of e, each cell c belongs
to P (e′) for only a constant number of edges e′.

The total number of generator-cell marks made under Rule 1 is clearly O(n)

Each P (e) has constant complexity so there are O(n) edge pairs (e, f) where
e is transparent and f is either transparent and in output(e) or opaque and
inside or on the boundary of P (e). From this it follows that the number of
marks made by Rules 2a and 3a is O(n). similarly there are O(n) Rule 4
marks in which the wavelet from v claims an endpoint of the opaque edge or
is the first or last nonartificial wavelet in W (e).

Any Rule 4 mark not yet counted involves a generator v that does not
reach any opaque edge endpoint when propagated forward from e. Because
v is not the first or last nonartificial wavelet in W (e), there is a generator u
such that v’s claim on e in W (e) is bounded on the left of bisector (u, v). We
can assume that (u, v) intersects e in SPM(s) by Lemma 4.10 there are only
O(n) bisector-edge pairs that intersect in approximate wavefronts but not in
SPM(s). Bisector (u, v) terminates in P (e) either on the opaque edge or in
a bisector event before the opaque edge. Let us charge the marking of v at e
to this endpoint of (u, v) in SPM(s). Because each cell belongs to P (e′) for
a constant number of edges e′, each vertex of SPM(s) is charged O(1) times.
Since |SPM(s)| = O(n), the number of RULE 4 marks is O(n).

The proof for rule 2b and 3b are similar to that Rule 4. We begin with the
proof for Rule 3b. We can assume that the interval claimed by v on e in W (e)
is bounded by two bisectors (v, u) and (v, w) for two nonartificial generator
u and w the first and last generators in W (e) counted separately sum to at
most O(n) overall. Furthermore we can assume that (u, v) and (v, w) both
intersect e in SPM(s) there are only O(n) bisector-edge pairs that appear in
some approximate wavefront but not in SPM(s) (Lemma 4.10). At least one
of the two bisector fails to reach the boundary of P (e) in SPM(s) because
Rule 3b applies and a detected bisector event implies the existence of an actual
bisector event no later than the point of detection we charge the marking of
v to that bisector endpoint. Each bisector event gets charged O(1) times and
there are O(n) bisector events in SPM(s).

To bound the number of rule 2b marks, consider where the generator v
lies. There is at most one generator v inside U(e) and so O(n) marks for such
generators overall. If v lies outside U(e) there is at least one edge in input(e)
where v is marked by Rule 3b because of the shortening of v’s claim on e.

6.1. OVERVIEW OF PROPAGATION ALGORITHM 63

Charge the Rule 2b mark at e to this Rule 3b mark. There are O(n) Rule 3b
marks and hence O(n) Rule 2b marks

We defer the finer details of the propagation algorithm to section 6.3 and
instead describe the second phase of the algorithm next, namely the shortest
path map computation.

6.1.5 Computing the shortest path map

So far in this section we have gone through the propagation phase. In this phase
we have propagated the plane with wavefronts and wavelets from generator,
and we have used approximate wavefronts for each transparent edge to sort out
dominated wavefronts. We also marked generators in every cell c, where each
marked generator is in the approximate wavefront of one of the boundary edges
of c, an all but O(1) of them contribute to a bisector event either in c or in one
of O(1) nearby cells. Here the bisector event was the intersections of bisectors
with each other or with obstacles. The sketch of an algorithm from the proof
of Lemma 40, will be presented in section 6.3, which will let us compute the
marked generators in O(log n) time a piece.

This section is dedicated to show how we can break the interior area of a
cell c into active and inactive regions. This splitting will be done on the basis
of whether a vertex of SPM(s) lie in a region. If it does we denote the area as
active, and if no vertex is present in the area we denote it as inactive. We saw
in section 6.1.4, lemma 43 that only marked generator would contribute to a
bisector event in c.

The bisectors made by a marked generators and tehri unmarked neighbors
generators will be drawn in the SPM(s). All such bisectors are disjoint, and
we will see the partition of c into active and inactive regions, will be done
such that active regions are claimed only by unmarked generators and inactive
regions by marked generators. This can be seen in Figure 6.6.

I

A

A I A

A

I

A

A I A

A

Figure 6.6: Here the white regions are the active regions and the shaded regions
are the inactive. The boundaries between the regions encapsulating active
and inactive region, are defined by being the bisector of one marked and one
unmarked generator[6].

64 CHAPTER 6. WAVEFRONT PROPAGATION

The algorithm will compute the active regions, which can be done in a
time that is proportional to the number of marked generators in the cell c.
Overall can this be done since we know the order of the generator along the
boundary of c, which will help us finding the marked generators with unmarked
neighboring generators. The calculated boundary of these active regions will
haveO(1) segments. These segments will either be a transparent edge fragment,
an opaque edge, of a bisector in SPM(s).

We now let e be a transparent edge fragment that’s bounding an active
region. Further let W (e) be the wavefront that enter the active region by
crossing edge e. Should W (e) be the only wavefront entering through e, it will
partition the active region into piece which we call S-faces. Each S-face has a
unique predecessor in the W (e) partitioning the area. The S faces of an active
region may not cover all of it, since each point in an S-face must be connected
to its predecessor by a segment that intersect e. We define S(e) to be this
partition. So basically S(e) are the building blocks of a shortest path map,
which restricts the active regions and considers only generators in W (e). Let
assume a point p lies in an S-face of S(e) with predecessor v, then S(e) assigns
weight d(s, v)+ |vp| to p. Points outside any S-face are assigned infinite weight
by S(e).

We can compute S(e) in O(m logm) time, where m = |W (e)|, by using the
propagation algorithm and the auxiliary data structures which will be intro-
duced in section 6.3.

Proof of correctness for computation of SPM

The following proofs are taken from [6], and included for completeness.
The following lemma shows how to combine the wavefronts incident to

different boundary edges of an active region.

Lemma 46 (Lemma 4.12 in [6]). Given the approximate wavefronts on the
boundary of a cell c and a set of g marked generators in those wavefronts, we
can compute the vertices of SPM(s) inside c in time O(g log g).

Proof. Consider an active region inside c and two transparent edge fragments
e and f on the boundary of this active region. We can use the merge step from
a standard divide-and-conquer Voronoi diagram algorithm[12] to compute the
portion of the region nearer to W (e) than to W (f) using weighted distance
in time O(|W (e)| + |W (f)|). More specifically assume that S(e) and S(f)
have both been computed. Let m = |W (e)| + |W (f)|. Each of S(e) defines a
distance function on the points of the active region. The pointwise minimum of
these two functions determines which points are nearer to W (e) than to W (f)
under weighted distance. Consider a point p in the S-face for some generator
v ∈ W (e). Point p belongs to v’s S-face in SPM(s) only if all of the segment
pv is closer to v than to any generator in |W (f)|. The set of points p such
that the entire segment from p to its predecessor is closer to W (e) than to
W (f) is bounded by a single chain Γ of O(m) hyperbolic arcs (see appendix
A. (The number of arcs follows from Lemma 17.) To find Γ, first trace along
a ray emanating from some generator v ∈ W (e) marching through S(e) and
S(f) simultaneously until the ray reaches the boundary of c or reaches a point
whose weight in S(f) equals its weight in S(e). This takes O(m) times since a
line cuts O(m) edges of S(e) and S(f) containing the current point trace along

6.1. OVERVIEW OF PROPAGATION ALGORITHM 65

the hyperbola until it leaves one of the two S-faces then follow the hyperbola
determined by the next pair of S-faces etc. This procedure takes O(1) time
per arc of Γ or O(m) time altogether (see Figure 6.7).

v

e
f

Figure 6.7: To find the region close to W (e) than to W (f) under weighted
distance, trace a ray from some v ∈W (e) through S(e) and S(f) until it hits a
point equidistant from the two wavefronts, then trace outward from the point
along the bisector Γ[6].

The tracing procedure computes region closer to W (e) than to W (f) for
one edge f . Intersecting the results for all such edges f on the boundary of
the active region produces the region R(e) claimed by W (e) in SPM(s). In-
tersecting R(e) with S(e) gives vertices of SPM(s) to which W (e) contributes.
We repeat this computation for each transparent edge fragment to find all the
vertices of SPM(s) in the active region. Applying this algorithm to all active
regions finds all vertices of SPM(s) inside c.

The partition S(e) determined by each edge fragment e participates O(1)
times in a Voronoi-style merge, so the total cost of merging is O(g). Hence the
running time is dominated by the propagation algorithm which takes O(g log g)
times altogether.

Lemma 47 (Lemma 4.13 in [6]). The shortest path map vertices computed
cell-by-cell can be combined to build SPM(s) in additional O(n log n) time.

Proof. To compute SPM(s) we compute all its edges separately then use a
standard plane sweep to assemble them as follows. Create a list of the bisector
endpoints discovered in the computation of Lemma 46, each identified by a
key consisting of two generators. Put each three-bisector endpoint into the
list three times, once for each bisector. Put each bisector/edge collision in
once labeled with the generators of the bisector. Now sort the list to group
together endpoints belonging to each bisector. Take the endpoints belonging
to the bisector of a generator pair (v, w) and sort them along the hyperbola
determined by the weighted generators of v and w. This determines all edges
of SPM(s) on the hyperbola. Doing this for all pairs that appear as keys
in the sorted list gives all O(n) hyperbolic arcs of SPM(s). Finally with a
standard plane sweep, we can combine these arcs with the edges of O to build
the subdivision SPM(s).

66 CHAPTER 6. WAVEFRONT PROPAGATION

6.2 The list based data structure for wavefront
propagation

To keep track of our approximate wavefront, we use a list to keep track of the
generators coming from obstacle vertices. For this list we need a data structure
which supports two types of operations:

1. Standard list operations: these are insert, delete, concatenate, split, find
previous and next element, and search. Here the search operation locates
the position of a query point. This position is found in the list of bisectors
defined by the generators wavefront at a particular time.

2. Priority queue operations: these operations are used on the generators, to
which we assign a priority. The data structure should be able to update
priorities and find the minimum priority in the list.

These two types of operations should be implemented in a flavor of self
balancing binary trees. One could implement the operations e.g. in a red and
black search tree[17]. Here the generators will be located at the leaves, and
each node should have a priority field which records the minimum priority of
the leaves in it subtree.

The only requirements to the flavor of self balancing binary tree is the list
operations should each take O(log n) time to process on a list of length O(n).
Each priority operation should likewise take O(log n) time each.

Beside these operations we also need the tree to be fully persistent, s.t. we
can operate on past version of any list. Each kind of operation uses O(1) storage
per node of the binary tree, which mean we can make the data structure fully
persistent by path copying. The effect of using an operation affects O(log n)
nodes of the tree, which also includes the ancestors of every affected node.
We simple, before an operation modifies the tree, copy all the nodes that will
be affected, and then modify the copies. This way we create a new version
of the tree while leaving the old version unchanged. Since the data structure
uses O(log n) for each operation, and we save a copy of size O(log n), the total
storage usage of the data structure is O(m log n) where m is total number of
operations used. The above gives us the following lemma:

Lemma 48 (Lemma 5.1 in [6]). There is a linear-space data structure that rep-
resents an approximate wavefront an supports list operations and priority queue
operations in O(log n) time per operation. The data structure can be made fully
persistent at the expense of an additional O(log n) space per operation.

6.3 An implementation of the wavefront propagation

Concretely the idea of wavefront propagation is to propagate an approximate
wavefront from an edge on the boundary of the cell containing the edge we want
to propagate to. In particular, we want to propagate the wavefront W (e), and
compute W (e, g) for every edge g ∈ output(e), and in this process, assign the
time (weight) of first contact between W (e, g) and the endpoints of g. In this
section we will show how to do this computation of W (e, g) for all transparent
edges g on the boundary of e’s cell.

6.3. AN IMPLEMENTATION OF THE WAVEFRONT PROPAGATION 67

We know from lemma 35 that there is a constant number of edges in
output(e), which means they can only belong to a constant number of dif-
ferent cells. We will use this fact to compute W (e, g) for all g ∈ output(e).
When propagating the wavefront cell-by-cell, one can think of this as splitting
the wavefront W (e, g) into multiple piece. Each piece is labeled by the se-
quence of crossings of the transparent edges it follows from e to g. TheW (e, g)
is then made of these components wavefronts by concatenating the piece that
are topological equivalent paths inside U(e).

Since each of these component wavefronts is a list of generators, we may
find that adjacent wavefront piece can contain duplicate generator that claims
the common endpoint. One of these duplicates are to be deleted before the
lists are concatenated.

As an example of the above see Figure 6.8. Here W (e, g) is assembled from
W (e′, g) and W (e′′, g), where e′ and e′′ are two edges on the boundary of g’s
cell.

e

e′

e′′

g

Figure 6.8: W (e, g) is assembled from W (e′, g) and W (e′′, g), where e′ and e′′
are two edges on the boundary of g’s cell[6].

The propagation algorithm assumes that each cell c is convex. Since we
assumed the conforming subdivision could be build with square annulus’s, this
isn’t satisfied immediately. For this we temporarily break a cell which isn’t con-
vex into subcells by adding transparent edges, which are parallel to e through
the points of nonconvexity. An example of this i shown in Figure 6.9.

e e

Figure 6.9: Insertion of transparent edges parallel to e to fix the cells non
convexity. The right figure is the cases of an obstacle overlaying the cell[6].

68 CHAPTER 6. WAVEFRONT PROPAGATION

Let f be a transparent edge of the boundary of c such that f 6= e. Then
the propagation algorithm has the following invariant.

Propagation Invariant: When a wavefront W (e, f) is propagated for dis-
tance 2 · |f | beyond f , it intersects only a constant number of cells of the
conforming subdivision of the free space.

We already saw in the former chapter that the conforming subdivision S′
already satisfy the Propagation Invariant, since, by the propagation invariant,
each edge f is well-covered with parameter 2. But since we just added some
temporary transparent edges to non convex cells, we need to fix these in a
way that abides to this invariant. This is done by dividing these added edges
into O(1) pieces, each no longer than the edges of S on the boundary of the
annulus’s outer boundary, one-eight the side length of the outer square, which
we know is bounded by the minimum clearance property and uniform edge
property of the conforming subdivision. These are explained in section 5.1.

We now let H denote the convex of e and the inner square of the annulus
as shown in Figure 6.10. A convex hull is the smallest set of points which
makes the set convex [12]. Should H intersect an added transparent edge f ,
we further subdivide the edge segment f ∩H into pieces of length equal to the
inner square of the annulus, as also shown on Figure 6.10.

e

f

H

Figure 6.10: A subdivision of a cell, with a convex hull around a boundary
edge e and the inner square of the annulus[6].

Due to f being parallel with edge e and the inner boundary of the annulus
being well separated from the outer boundary (see again the minimum clearance
property) the total length of f ’s edge segment inside H is proportional to the
side length of the inner square. By this it follows that the partition of f
only creates O(1) edges. We can see that these subdivided edges satisfy the
propagation invariant, by the following example. Given any such f , let g′ be an
edge of c such W (e, f) leaves c by passing through g′. Since g′ is an edge from

6.3. AN IMPLEMENTATION OF THE WAVEFRONT PROPAGATION 69

the conforming subdivision of the free space, S ′, we know it is a fragment of
an edge g in the conforming subdivision of the obstacles vertices and s, S. We
know we from lemma 62 (see appendix C) that there are O(1) cells of S′ within
shortest path distance 2|g| of g′ by construction. Since the new transparent
edge which makes the cell c convex is subdivided into piece such that |f | ≤ |g|,
then this implies that the propagation invariant holds for the edge f .

6.3.1 Dynamic wavefront propagation

Up until now we have, in this chapter, kept the simulation of wavefront prop-
agation rather static, in the sense that we have look at the atomic examples of
how to handle different cases at different time in the propagation process. Now
we take these ideas and see what happens when we let them operate in a dy-
namic setting. This means e.g. since a wavefront is a collection of generators,
which one of the generators waves do we calculate first, and how do we drop a
generator when it has served its purpose, and so on. So we see what happens
to the wavefront propagation when we add the element of time to the process.

So what happens to the combinatorical structure of the wavefront as it
sweeps across the (convex) cells, and how does the wavefront W (e) behave as
it sweeps across a cell c after entering it through the edge e? The simulation
should detect and process each bisector event involving the generators from
each wavefront, e.g. W (e) that may occur inside c. The events are processed
in an order of increasing distance to s. This is to simulate the element of time
since the weight and therefore the distance to each generator is assigned by the
arrival of the wavefront in unit speed, so distance and time are equivalent in
this sense. So generator marked as event are process.

Let W denote the current wavefront we currently are simulating, at any
time in its simulation process. In the beginning of the simulation we have
W = W (e) as the approximate wavefront which passes through e to compute
cell c. It might be the case that the edge e is claimed by multiple waves,
and therefore W is a list of generators, each claiming a portion of e. Every
generator v ∈W defines a pair of bisectors with its neighbors in the list. If we
let v be the first generator in the list, then v claims one of the endpoints of e,
and its first bisector represented as the ray from v through the end point of e.
We define the last generator v′ of the generators similarly. Should v = v′ and
claim the whole edge e, then there are no bisectors in the list, and the wave
is the ray propagated from the generator through e. See figures 6.12, 6.13 and
6.14.

70 CHAPTER 6. WAVEFRONT PROPAGATION

Figure 6.11: Crossing of two line segments

e

· · ·

v v′

Figure 6.12: v and v′ each claim the
end points of e, with their bisectors
being shared with other generators
claiming the middle part of e, repre-
sented by the dots.

e
v v′

Figure 6.13: v and v′ claim all of e and
only have one bisector between them

e
v

Figure 6.14: v claims all of e and there
are therefore no bisectors other than the
ray projected from v through e.

In order to process the bisectors event in the correct order, we will maintain
the generators of W in the priority queue which was describe in section 6.2.
The priority field which each node of the priority queue tree has, is assigned
with its weighted distance to the point at which the two bisectors that defines
v and its neighbors intersect, beyond e. An example of this is given in Figure
6.15. Here the bisectors defining v and its neighbours intersects after passing
through e, and meeting at the point p. This means that v’s priority value
priority(v) = d(s, v) + |vp|.

e
v

p

|vp|

d(s, v)

Figure 6.15: A visualization of what a generator v’s priority value, |vp|+d(s, v),
could be with the dashed lines being bisectors of the generators claiming e.

6.3. AN IMPLEMENTATION OF THE WAVEFRONT PROPAGATION 71

The processing of the approximate wavefront propagation will be done in
event of increasing priority up to some maximum priority tstop. The tstop is
calculated from the shape of the cell c, rules for this will be presented later
in this section. The limit of tstop is calculated from the individual values
of tstop(f) for each transparent edge f of c. Initially the values for all f is
tstop(f) = ∞ and therefore tstop = ∞. Also to keep track of the priorities
through out the simulation, we initialize an empty set T which will be cleared
after each simulation.

At each step of the simulation, the generator v with the lowest priority from
the queue is processed, where one of following scenarios can happen.

1. If the event (the intersection of the v’s bisectors) happens inside the cell
c, then v is deleted, since it can no longer propagates the free space,
and we recompute the priorities for v’s neighbours. We mark v in W (e)
for the cell c by the marking rules explained in section 6.1.4, which also
implies marking it in O(1) number of neighbouring cells to c accord to
the marking rules.

2. If v’s event happens outside c, then we set priority(v) =∞ and add v to
the set T . In this case the generator list is not changed since v still has
more free space outside of c to propagate.

If we where to process each bisector event of W in their initialize time
order, and not update them in the first of the above cases, then the neighboring
generators of v could participate in bisector event outside of cell c before all
bisector events inside c were fully processed.

So far we have seen the intersection of v’s bisectors if its neighbours engulfs
v, as seen in Figure 6.15, in which case we would mark v by rule 3 of the
generator marking rules. But it’s also important to be aware that the bisector
event or v could also happen if either the intersection lies on a opaque edge of
if they lie on different transparent edges with an opaque edge between them.
In that case rule 1 above, should still do as stated, but would use rule 4 to
mark v for cell c and its neighbours. Should the intersection point p lie on a
transparent edge, e.g. f , then we update our tstop’s as follows:

tstop(f) = min(tstop(f), d(s, v) + |vp|+ |f |)
tstop = min(tstop, tstop(f))

The update of tstop(f) is either the current tstop(f) or the weight as calcu-
lated the same way as in Figure 6.15 plus the length of the transparent edge f .
This way we assure, that overestimate the priority since we would have swept
all of f . By doing it this way, we also don’t overshoot the estimate since it is
still not 2 · |f | times greater than the time at which W first comes to contact
with f .

The tstop priority, which is in the priority queue, is either tstop =∞ in which
case all events inside c have been processed, or tstop < ∞, which happens in
the above update if there is a transparent edge f on the boundary of c with
tstop = tstop(f). We see that by updating tstop(f) this way, we ensure that
all bisector events needed to produce W (e, f) have indeed been processed. So
now we move one to explain how to process W (e, f). The wavefront W (e, f)

72 CHAPTER 6. WAVEFRONT PROPAGATION

is calculated from W in the following way. First we locate the endpoints of
f in W , which can be done by can picking a bisector in W , and following
its neighbors outwards, there is at least on such bisector (in the case of one,
this bisector claims all of f). Mark the endpoint claiming generators by rule
2. From here we split the generator list into 3 parts. Those generators whose
bisectors are between the two endpoint claiming generators. Those are the one
who will go through f , which after the reset of priorities will be the W (e, f)
wavefront, and the other two sets are those who pass left and those who pass
right of f , see figurue 6.16. The simulation process continues with the left and
right passing sets independently after the tstop has been reset in each set to be
the minimum of tstop(g) over the transparent edges g for that group.

f

e

W (e, f)

g g′

Figure 6.16: A visualisation of the three groups of bisectors that can occur in
the calculation of W (e, f). One going left of f , one going right of f (these two
groups are marked with gray) and the middle group which is the groupW (e, f)
consists of.

So the above is the case of tstop <∞. Should we stop because we reach tstop
and tstop = ∞ then we split the current generator list at all the transparent
edge endpoints, which will produce W (e, f) for each transparent edge f , and
some wavefront pieces that hit only opaque edges.

Should no transparent edges remain in some piece, then all bisectors in the
piece hits an opaque edge, in which case we mark all the generators in that
piece for cell c and a O(1) of neighboring cell by marking rule 4. We also make
the necessary marking of rule 2 and rule 3.

When finished the priority of each vertex in T is reset, based on the bisectors
it defines with its neighbours in the new list. This is done to ensure each
wavefront fragment W (e, f) has the proper priorities. Now we have computer
W (e, f) and we can determine the time the wavefront first makes contact,
which is d(s, v) + |vp|.

6.3. AN IMPLEMENTATION OF THE WAVEFRONT PROPAGATION 73

6.3.2 Analysis of the wavefront propagation

The propagation algorithm calls the self balancing binary priority queue O(1)
times with priority and list operations per bisector event processed and O(1)
for each edge in the conforming subdivision (transparent edge). Each operation
takes by construction of the data structure O(log n) time and space. Since the
data structure by construction is fully persistent, all the modifications we do
when computing a single wavefront list W (e) are independent.

The main result for section 6.3.1 can be summarized in the following lemma:

Lemma 49 (Lemma 5.2 in [6]). Every bisector event processed in the procedure
described in section 6.3.1 either:

1. Lies inside cell c.

2. Involves a generator whose region is truncated by an opaque edge of c.

3. Is associated with tstop(f) being set to a finite value for the first time for
some transparent edge f of c, or

4. Lies within shortest path distance 2 · |f | of a transparent edge f of c.

If the number of event is m, then the procedure takes O(m log n) time.

This Lemma, together with the results of chapter 4 and 5 gives us the
following theorem due to Hershberger and Suri [6].

Theorem 50 (Theorem 5.3 in [6]). Let O be a family of polygonal obstacles
in the plane with pairwise disjoint interiors and a total of n vertices. Given
a point s, we can construct the shortest path map from s with respect to O in
time O(n log n) and space O(n log n).

By this theorem we see that, one can compute the SPM(s) by processing
the point locations in the plane, where after one can make a shortest path query
from s to any point t in the plane, which can be answered in time O(log n) due
to [8]. A shortest path π(s, t) can be computed in additional O(h) time, where
h is the number of edges in π(s, t).

Chapter 7

Algorithm for shortest path with
obstacle violations

This chapter is dedicated to showing the extension of the Hershberger Suri
algorithm which was presented in Chapter 5 and 4 for calculating a shortest
k-path map, SPMk in time O(k2 · n log n). This extension is due to Hersh-
berger, Kumar and Suri and presented in [5] section 3.2 and 4. This is done by
extending the continuous Dijkstra method into a k-garage structure. This way
we can enter each level i by going through an obstacle polygon in level i − 1,
and leave it into the next layer i. This can then be done up to k times, which
is equivalent to violating k obstacles. So more precisely, when a wavefront hit
an obstacle O ∈ O, it claims the sub edges of the outer boundary of O, and
then is reemitted into the interior of O, therefore also claiming the interior
space of O. When reaching the opposite side of O from which it entered, it
is reemitted into the free space free space a level higher than when entering.
Therefore this "vertical" movement in the interior of O adds no time delay. So
in this extension a wavefront at time t contains all points at all levels which
has t distance to s.

Another change has to be made to the Hershberger Suri algorithm which
involves how we identifies generators i each level. Before we had a generator
g known by which vertex v it start emitting from, and the time t in which
it starts to emit. When using the elevator we pass through some subedges of
O, which leads us to define the generators in term of a triplet, which now also
involves the sub edge on the border of O through which we enter this new level,
see Figure 7.1.

75

76
CHAPTER 7. ALGORITHM FOR SHORTEST PATH WITH OBSTACLE

VIOLATIONS

s
v

e

t

O

Figure 7.1: An example of a triplet generator where v starts to emit at time t,
and enter obstacle O through edge e, which creates the new triples generator
(v, t, e).

We can now imaging that entering the next level through e is the same as
emitting a wave from v through the interior "triangular flap", shown in Figure
7.1 with dotted lines, which is connected to e and from there enter the free
space at the next floor. Algorithmically we ignore the triangular flap, and
start emitting directly from e, which is another difference compared to the
unmodified Hershberger Suri algorithm where we only emitted from points,
and not edges. So we do the following for each edge e of the conforming sub
division, as described in [5]:

1. Find all boundary sources (v, t, e) such that the well-covering region of
U(f) which contains e.

2. Initialize covertime(f), which is the time at which f would be engulfed
by the wavefront minimizing over all boundary sources (v, t, e) with e ∈
U(f) and for each such source considering paths from v with delay t,
constrained to pass through e.

3. For each source (v, t, e) with e ∈ U(f), propagate its wavelet to e inside
U(f).

By using the modified Hershberger Suri algorithm described above we get
the following lemma, which we will use without proof.

Lemma 51 (Lemma 22 in [5]). Given m boundary sources in a polygonal
domain with n vertices, we can compute the exit claims of the sources in O((m+
n) · log(m+ n)) time and space.

New we are ready to present the algorithm for constructing the SPMk.
The algorithm takes as a polygon P which encapsulate all the vertices in the
plane we want in our SPMk. The obstacles should be convex obstacles, which
is a tighter condition than the unmodified Hershberger Suri algorithm, which
also will work for non convex obstacles. Let M denote the set of boundary
sources, which will be passed to the modified Hershberger Suri algorithm. The

77

algorithm computes two different things, namely the (k−1)-visibility region V
and the k =-path map SPM=k, which together forms the SPMk. The length
from s to a point p in the plane by first locating the region in the SPMk which
contains p and then follow the k-predecessor of the region, back to s adding
their length.

Algorithm 13 Construct SPMk

1: Set M = {s}
2: call the Hershberger-Suri algorithm on P and computer SPM0

3: Let V = ∅
4: for i = 1 to k do
5: Using the modified Hershberger-Suri algorithm propagate the sources

in SPMi−1 the obstacles in P and compute the set of boundary sources
Mnew for SPM=i

6: Identify all the regions in SPM=(i−1) for which the predecessor is s.
Observe that this is precisely the region V ′ = Vi−1 \ Vi−2. Set P to be
the new polygon domain with this region removed.

7: if V = ∅ then then
8: set V = V ′

9: else
10: Merge V with V ′ at the common vertices.
11: Set M = Mnew

12: Call the modified Hershberger-Suri algorithm to compute SPM=i for
input P

13: Merge SPM=k with v at the boundary of regions of SPM=k that have s
as predecessor, i.e. V ′ = Vk \ Vk−1 to obtain SPMk

When end this chapter with the theorem for the running time of algorithm
above

Theorem 52 (Theorem 23 in [5]). If P is a polygonal domain bounded by
convex obstacles with a total of n vertices, the shortest k-path map for P with
respect to a srouce point s can be computed in O(k2 · n · log n) time and O(k ·
n log n) space.

Chapter 8

Lower bound of the "shortest path
in the plane with polygonal
obstacles" problem

In this chapter we will show the shortest path without violation has a Ω(n log n)
lower bound in the algebraic computation tree model, therefore affirming that
the Hershberger Suri algorithm is optimal. After defining the algebraic com-
putation tree model, we firstly introduce the element distinction problem, then
we present a lower bound for that problem. Afterwards, we present the sort-
ing problem, and we make a reduction to the element distinction problem and
thereby showing, that sorting must have at least the same lower bound as ele-
ment distinction and lastly showing that the shortest path in the plane without
violations can be used to sort number and thereby showing that the shortest
path problem has a lower bound which is at least the same.

8.1 The algebraic computation tree model

This section is based on [1]. The idea of the The Algebraic Computation Tree
Model is to construct a rooted tree where each path from the root to a leaf is
a membership test. Let W ⊆ Rn be any set. The membership problem for W
is the following:

Given x = (x1, . . . , xn) ∈ Rn determine if x ∈W (8.1)

Formally a computation tree T for each vertex v it holds that

• If v has one son it computes one of the following computations

fv := fv1 ◦ fv2 or fv := c ◦ fv1 or fv :=
√
fv1 (8.2)

where vi is an ancestor of v in the tree T or fvi ∈ {x1, . . . , xn}, ◦ ∈
{+,−, ·, /}

• If v has two children it is a test instruction on the form

fv1 > 0 or fv1 ≥ 0 or fv1 = 0 (8.3)

79

80
CHAPTER 8. LOWER BOUND OF THE "SHORTEST PATH IN THE

PLANE WITH POLYGONAL OBSTACLES" PROBLEM

• If v is a leaf it is either labeled YES or NO, depending on weather the
path down the tree T makes (x1, . . . , xn) ∈W

So given an input x ∈ Rn we can build a tree T and find the depth of the tree to
see what the lower bound of the computation is. The important thing to note
is that we are allowed to make comparisons (formula 8.3) and computations
(formula 8.3).

8.2 Element distinction problem

The element distinctness problem is as follows

Definition 53. (Element distinctness problem:)
Given n elements x1, . . . , xn ∈ R is there a pair xi = xj where i 6= j?

The following theorem is due to Michael Ben-Or 1983 [1]

Theorem 54. Any algebraic computation tree that solves the n-element dis-
tinctness problem must have complexity of at least Ω(n log n)

With that settled, we will move on to sorting.

8.2.1 Sorting of numbers

Definition 55 (Section 2.1 [17]). (Sorting:)
Given a sequence of n numbers x1, . . . , xn find er permutation x′1, . . . , x′n such
that x′1 ≤ x′2 ≤ · · · ≤ x′n

Now we make a reduction from distinction problem (Definition 53) to the
sorting problem (Definition 55). We are given x1, . . . , xn, and would like to see
if there exists a pair xi = xj where i 6= j. We do this by sorting the values
and afterwards make a linear scan to see if x′i = x′i+1 since the elements is in
sorted order, two element that are the same will appear next to each other in
the sorted sequence, so we will find it using this approach. Since the reduction
takes O(n) and the element distinction can be solved using sorting that means
that sorting must have at least the same lower bound, Ω(n log n), as element
distinction.

8.2.2 Shortest path in the plane

Now we make a reduction from sorting numbers to calculating the shortest
path in the plane with obstacles (See section 1.1 for the formal definition).
Given numbers x1, . . . , xn ∈ N, and let us for simplicity say that they are all
positive (i.e. xi > 0 for i = 1, . . . , n) we construct the obstacle as follows: Take
each point xi and construct a rectangle with the following points (xi, x

2
i), (xi−

1, x2i), (xi − 1,max), (xi,max), where max is the maximum value (see Figure
8.1)

8.2. ELEMENT DISTINCTION PROBLEM 81

1

(x1, x
2
1)

(x2, x
2
2)

(x3, x
2
3)

1

t = (x4, x
2
4)

s

f(x) = x2

Figure 8.1: An example of the reduction from sorting numbers to shortest path

Set s = (0, 0) and let imax = arg max
i

(xi) and set t = (ximax , x
2
imax

). This

gives us an instance of shortest path problem in the plane with obstacles where
each rectangle has the lower right corner laying on the function f(x) = x2.

This function is convex which results in every lower right corner of the
rectangles to be visited on the way from s to t. Now we can run our SPM
algorithm, to get a path which will be the sorted range of the numbers.

Given that the reduction (constructing the rectangles and finding t) takes
O(n) we can conclude that we can make a reduction from number sorting to
finding the shortest path in the plane with obstacles. This mean that we have
shown an Ω(n log n) lower bound on shortest path in the plane with obstacles.

Chapter 9

Conclusion

In this thesis we have studied the problem of finding the shortest path in a
plane with k polygonal obstacle violations. First we showed a naive way for
computing this problem, by building a visibility graph and using Dijkstra to
find the shortest path with a maximum of k allowed obstacle violation. This
could be done in O(n3 +k ·n2 +Dijkstra), where Dijkstra runs in time O((V +
E) log V). We implemented our naive algorithm and found our implementation
ran in the expected time.

Next, we presented an optimal solution of solving the shortest path prob-
lem without obstacle violation, which is due to Hershberger and Suri[6], and
presented an extension of this solution into one which could handle paths with
obstacle violation, which is due to Hershberger, Kumar and Suri [5].

We began our discussion of the Hershberger-Suri algorithm with the con-
struction of a conforming subdivision which builds a grid on top of the plane
which gives us some strong properties for subdividing it into a shortest path
math. Here we considered both theoretical results and implementation details.
Next, we presented the wavefront propagation which uses the conforming sub-
division to construct the shortest path map, from which we can query the
shortest path between a source point s and an endpoint t in time O(log n) [8].

Next, we presented an extension of the Hershberger-Suri algorithm, with
a needed modification of the Hershberger-Suri algorithm and the overall algo-
rithm which solves the shortest path with k polygonal obstacle violations in
k2 · n log n) time. We also gave an overview of the theory behind the solution
to give a better understanding of the main ideas on which the algorithm is
constructed.

Finally we gave a reduction of finding a shortest path without obstacle
violation to sorting numbers and proved the optimally of the Hershberger-Suri
algorithm.

83

84 CHAPTER 9. CONCLUSION

9.1 Future work

Implementing the Hershberger Suri algorithm as described through chapters
5 and 6 would seem quite natural as the next step in this process, though
the sheer complexity of it seems to make it a non trivial task. With such
an implementation, it would be interesting to measure its performance and
compare it to the naive O(n3) solution.

Also of interest would be an expansion of the bound of complexity for SPMk

and general lower bound of a shortest k-path computation

Appendix A

Definition for a hyperbola and
bisection

A.1 Hyperbola definition

Definition 56. Hyperbola:
A hyperbola is a set of points, such that for any point P of the set, the absolute
difference of the distance |PF1|, |PF2| to two fixed points F1, F2, also known
as the foci, is constant, usually denoted by 2a, a > 0[16]:

H = {P | ||PF1| − |PF2|| = 2a}

F2 M
F1

a a

P

|PF2|
|PF1|

| |PF2| − |PF1| |= 2a

Figure A.1: Example of a hyperbola

85

86 APPENDIX A. DEFINITION FOR A HYPERBOLA AND BISECTION

A.2 Bisection

Definition 57. Bisection:
Bisection is the division of something into two equal or congruent parts, usually
by a line, which is then called a bisector. The most often considered types of
bisectors are the segment bisector (a line that passes through the midpoint of
a given segment) and the angle bisector (a line that passes through the apex of
an angle, that divides it into two equal angles).[10]

A B

Figure A.2: Example of Segment Bisection

Appendix B

Guide to running the code

The code is located at https://github.com/bakkegaard/Thesis
It is compiled using the make file, and running make from the terminal.

The program takes data from stdin. If the -p flag is given the program prints
svg code to draw the graph to stdout, if the flag -k <number> is given k
is set to <number> There a example files in the test folder. The program
generateBig.py can by used to generate test files descriped in Chapter 2.3.3, it
takes a number corresponding to t.

87

https://github.com/bakkegaard/Thesis

Appendix C

Proof of correctness for Chapter 5

The following section includes all the proofs for correctness of the discussed
topics in the chapter. These are taken from [6], and included for completeness.

C.1 Correctness for build-subdivision

Lemma 58. (Lemma 6.2 in [6])
The subdivision computed by the algorithm build-subdivision satisfies Invari-
ants 1 and 2.

Proof. We prove by induction that the invariants hold inside the family of
quads Q(i), for all i. The initial family of quads Q(−2) clearly satisfies the
two invariants. We show that no step of the algorithm build-subdivision
ever violates these invariants. Step 2− 8 compute growth(S) for each equiva-
lence class of Q(i), and then computes Q. No new edges are drawn in this step.

The only edges drawn in step 9− 12 are on the boundaries of simple com-
ponents. Let q be (i − 2)-quad that is a simple component of Q(i − 2). By
definition, the single (i− 4)-quad of Q(i− 4) contained in q lies in its core, and
thus is separated from the outer boundary of q by a gap of at least 2i−2 on all
sides. Hence the edge already drawn in the core satisfy Invariant 1: they have
length no more than 2i−2 (actually 2i−4, except when i = 0), and are separated
from the boundary of q by a gap of at least 2i−2. We draw the boundary of q
in step 9 − 12; since any previously drawn edges within q withing q lie in its
core, the new edges satisfy Invariant 1. Invariant 2 holds vacuously.

Steps 13 − 19 subdivides the region covered by each complex component
S. Again, the boundary of S is separated from any components of Q(i − 2)
contained in it by a gap at least the width of an i-box. Step 18 add (i − 2)-
boxes to pad the region covered by Q(i− 2) out to the boundaries of i-boxes.
By Invariant 2, the newly drawn boxes satisfy Invariant 1 with respect to the
previously drawn edges; they clearly satisfy Invariant 1 with respect to each
others edges. Step 19 pacts the area between the core and the boundary of S
with i-boxes, and breaks the segments incident to previously drawn cells into
four pieces to guarantee Invariant 1 with respect to those cells. (The previously
drawn edges on the core boundary have length 2i−2, so by induction the cells
incident to them have side lengths at least 2i−2. It follows that the cells inside

89

90 APPENDIX C. PROOF OF CORRECTNESS FOR CHAPTER 5

the core satisfy Invariant 1 with respect to the newly drawn segments of length
2i−2.) The segments of the boundary of S are unbroken, so Invariant 2 holds
at the next stage of the algorithm. This completes the proof.

Lemma 59. (Lemma 6.3 from [6])
The subdivision produced by build-subdivision has size O(n).

Proof. We show that the algorithm draws a linear number of edges altogether.
The number of edges drawn in step 9−12 is proportional to the number drawn
in 13−19, so we draw a constant number of edges in step 9−12 for each simple
component that merges to form a complex component at the next stage. The
number of edges drawn in step 13− 19 for a complex component S if O(|S′|),
the number of (i− 2)-quads whose growths constitute S. The key observation
in proving the linear bound is that the total size of Q decreases every two
stages by an amount proportional to the total number of quads in complex
components. This fact, which we prove in Lemma 61, can be expressed as
follows: If ei edges are drawn in stage i, then

|Q(i+ 2)| ≤ |Q(i− 2)| −Θ(ei)

That is, there exists an absolute constant β such that

β · ei ≤ |Q(i− 2)| − |Q(i+ 2)|

If we sum this inequality over all even i ≥ 0, the right hand side telescopes,
and we obtain

β ·
∑
i

ei ≤ |Q(−2)|+ |Q(0)| − 2

Since |Q(−2)| = n, we have
∑
i ei ≤ (2n − 2)/β. The number of edges in the

subdivision is O(n).

Lemma 60. (Lemma 6.4 in [6])
The subdivision produced by build-subdivision is strongly 1-conforming and
satisfies the following additional properties:

1. all edges of the subdivision are horizontal or vertical

2. each face is either a square or a square-annulus (with subdivided bound-
ary)

3. each annulus has the minimum clearance property

4. each face has the uniform edge property, and

5. every point of V is contained in a square face.

Proof. Strong 1-conformity is a consequence of Invariant 1, as we now show.
Condition C1. from definition 18 is trivially true, since each point is initially
enclosed by a square.

To establish well-covering, condition C2., let I(e) be the union of the (at
most 6) cells incident to an edge e. By Invariant 1, the distance from e to any
edge outside or on the boundary of I(e) is at least |e|. Edge e may be collinear
with other edges of the two cells on whose boundary it lies. We define C(e) to

C.2. CORRECTNESS FOR GROWTH 91

be the set of cells incident to any of these collinear edges; U(e), the union of
these cells, is a super-set of I(e). See Figure 5.1. Because the two cells with
e as a boundary edge meet only along edges collinear with e, this definition of
U(e) means that for any edge f on or outside the boundary of U(e), if I(f)
does not contain both cells incident to e. But this implies, by Invariant 1, that
e is on or outside the boundary of I(f), and hence the distance from e to f is
at least |f |. Edge e certainly lies in the interior of U(e) (condition W1. from
definition 19).

Condition W2. follows because C(e) is the union of I(e′) for O(1) edges e′
collinear with e, |I(e′)| ≤ 6 for each e′, and each cell has constant complexity.
As noted above, the minimum distance between e and any edge f on or outside
the boundary of U(e) is at least max(|e|, |f |), which establishes condition W3’.

Condition C3. follows from the observation that a well-covering region U(e)
includes a vertex v of V if and only if e is an edge of the square containing v.
This is because each vertex-containing square is the inner square of a square
annulus in the subdivision. No edge belongs to two such squares, so condition
C3 holds.

Properties (1)-(5) holds by construction. this completes the proof.

Conforming Subdivision Theorem:
For any α ≥ 1, every set of n points in the plane admits a strong α-conforming
subdivision of O(αn) size satisfying the following additional properties:

1. All edges of the subdivision are horizontal or vertical,

2. Each face is either a square of a square-annulus, with subdivided bound-
ary,

3. Each annulus has the minimum clearance property,

4. Each face has the uniform edge property, and

5. Every data point is contained in the interior of a square face

Such a subdivision can be computed in time O(αn+ n log n).

Proof. Lemma 30, 59, 60 and 34 establish the theorem.

C.2 Correctness for growth

Lemma 61. (Lemma 6.5 in [6])
Let S ⊂ Q(i) be a set of two or more i-quads such that growth(S) is a complex
component under the equivalence relation ≡i+2. Then |growth(growth(S))| ≤
κ|S|, for an absolute constant 0 < κ < 1.

Proof. We show that either |growth(S)| < (3/4)|S|, or at least half of the
quads of growth(S) can be contained in a 2 × 2 array of (i + 2)-boxes with
some other quad of growth(S).

92 APPENDIX C. PROOF OF CORRECTNESS FOR CHAPTER 5

If |growth(S)| < (3/4)|S|, then we are done, because the following inequal-
ity obviously holds: |growth(growth(S))| ≤ |growth(S)| ≤ (3/4)|S|. There-
fore, suppose that |growth(S)| ≥ (3/4)|S|. Then at least half the i-quads of
S are not matched in step 5 of the function growth(S), and their growths
contribute more than half of the (i+2)-quads of growth(S). Consider on such
i-quad q ∈ S. Since S is non-singleton equivalence class, there exists another
i-quad q′ ∈ S that overlaps q Let q̄ = growth(q) and q̄′ = growth(q′). By as-
sumption q̄ 6= q̄′. The cores of q̄ and q̄′ both contain the overlap region q∩q′, so
the cores must overlap. Therefore both cores are contained within a 3×3 array
of (i+2)-boxes, and both the (i+2)-quads q̄ and q̄′ are contained within a 5×5
array of (i+ 2)-boxes. This ensures that q̄ and q̄′ are joined by an edge in the
graph of growth(S): any two (i+ 2)-quads whose bounding box is contained
in a 5×5 array of (i+2)-boxes can be covered by an 2×2 array of (i+4)-boxes.
Hence the number of edges in the maximal matching of growth(S) is Ω(|S|),
which proves the inequality |growth(growth(S))| ≤ κ|S| for some κ < 1.

C.3 Proofs for correctness of the conforming subdivision

The following lemma proves that one can modify a strong conforming subdivi-
sion of obstacle vertices to obtain a conforming subdivision of the free space.
This subdivision of free space has the additional property that each obstacle
vertex is incident to a transparent edge. It should be noted that the shortest
path algorithm of [6] computes the distance from the source of the endpoints of
all the transparent edges. The condition that each obstacle vertex is incident
to a transparent edge ensures the distance to each obstacle vertex is correctly
computed.

Lemma 62. (Lemma 2.2 in [6])
Every family of disjoint simple polygons with a total of n vertices admits a 2-
conforming subdivision of the free space with size O(n) in which each obstacle
vertex is incident to a transparent edge.

Proof. Let V by the set consisting of the source vertex s and the vertices
from the family of obstacles O’s polygons. Let S be a strong 2-conforming
subdivision constructed as described in Theorem 23. This would imply that S
has O(n) vertices, edges and cells1. We note that by the theorem each cell is
either a square of a square annulus.

Let Soverlay be the subdivision S with the obstacle edges on top. This
overlay will cut the plane into O(n2) cells. We will call a cell in Soverlay
interesting if its boundary contains an obstacle vertex or a vertex of from S.
We see that each vertex from O and S we keep intact the cells in Soverlay that
these vertices are incident. This implies at most four cell for each vertex of S
and two cell for each vertex of O.

Every edge fragment of S not on the boundary of an interesting cell is
deleted.

For each cell, if the cell contains an obstacle vertex v, we extend edges
vertically up and down from v, if the resulting edges do not enter the interior
of the obstacle it self, as can be seen in Figure C.1. This cuts the cell into at

1we use the term cells instead of face here on out when talking about the subdivision

C.3. PROOFS FOR CORRECTNESS OF THE CONFORMING
SUBDIVISION 93

O

1

2

3

O

1

2

Figure C.1: Left example of v’s added vertical edges splitting the cell into three
piece, and right example of the cell being split into two.

most three convex pieces, due to the cells being derived from a square in S.
See Figure C.1.

For each such cell c in S that contains such a v, let δ be the length of the
shortest edge on the boundary of c (recall that these can be subdivided). The
newly added vertical edges are then subdivided into pieces of length at most
δ, which produces O(1) vertical edge fragments. This is due to the boundary
of c consists of O(1) edges, all with approximately same length and with the
uniform edge property.

We let S ′ be the result of such subdivision of cells of S. A result of this is
that all cells are convex excepts those derived from a square-annuli.

Every nonconvexity in Soverlay is derived either from nonconvexity in S of
O, this is because every cell in Soverlay is derived from the intersection of a
cell in S with a face of O. This implies that all nonconvex cell of Soverlay
are interesting cells. So any cell in Soverlay with an obstacles vertex inside its
boundary is cut into convex pieces by the addition of vertical edges as was
shown in Figure C.1. So the only other nonconvex vertices in Soverlay are
the annulus vertices. Therefore each edge fragment that is deleted lie on the
common boundary of two uninteresting face, and its deletion therefore creates
no new nonconvexity.

Lets assume that a cell c of S has p edges on its boundary. Then for each
subcell of c in S ′ which contains one of c’s vertices will have size at most
2 · p+O(1), since each convex corner of c may be cut off by an obstacle edge,
adding an extra edge, and two obstacle edges may enter and exit through the
same edge, leaving and obstacle vertex in the cell.

Adding vertical edges through each obstacle vertex splits a cell into at
most three subcells, with at most O(1) additional edges shared between them.
Because each cell of S has constant complexity, then the same will be true for
the interesting cells of S ′. From this it follows that the total complexity of the
interesting cells is O(n). Each uninteresting cell of S ′, that is those without a
vertex of S or V , has at most eight edges. Them being four fragments from S
and four from O.

Since S ′ has O(n) vertices, and each of these vertices are a vertex of an
interesting cell, then by planarity, S ′ has O(n) faces. Figure C.2 shows a
simplified example of such a construction of S ′.

94 APPENDIX C. PROOF OF CORRECTNESS FOR CHAPTER 5

Figure C.2: Constructing a conforming subdivision of the free space, given a
strong conforming subdivision for the obstacle vertices. The shaded cells on
the right are interesting cells[6].

We will dedicate the remainder of the proof to show that the portion of S ′
outside all obstacles in O is a conforming subdivision of the free space. So all
we to do is check the portion of S ′ outside all the obstacles in O behaves as
defined by the 3 conditions from Definition 19

From the above it can be seen that the first condition from Definition 19
is satisfied: that is each vertex of V lies in its own square cell in S. Each of
these cells are interesting, and therefore they are either retained as they are or
subdivided in S ′. Each cell of Soverlay therefore contains at most one vertex of
V in its closure.

To show the next condition of Definition 19: that is all transparent edges of
S ′ are well-covered, which would mean they will behave as defined in Definition
18, we consider such an edge e′. This edge e′ can be one of three cases:

1. it may be a fragment of an edge e ∈ S

2. or it may be all of e s.t. e = e′

3. or it may be a fragment of a vertical edge added incident to an obstacle
vertex.

We will treat the first two cases as one, and for this purpose we will for the
purpose of simplifying the notation have U = U(e). We remind the reader that
U(e) = {c|c = C(e)} with C(e) being the a set of cells with e in its interior, and
c being a cell.

In the third case where e′ being a fragment of a vertical edge added incident
to an obstacle vertex, e′ is inside a square c of S, we will define U = ∪e∈∂cU(e),
that is U is the union of U(e) over all edges of c’s boundary. It is worth noting
that the boundary of U is covered by edge fragments from S, and therefore
also from Soverlay, but not necessarily edge fragments from S ′. Some edge
fragments on the boundary of U may be erased in the construction of S ′. That
is, U is union of cells of S and therefore also of Soverlay, but not necessarily of
S ′.

Region U satisfies conditions 1fs by construction and 3fs because U satisfies
condition 3 in Definition 18 for the transparent edges of S, and therefore for
those of Soverlay. However, it is not necessarily true that U is made up of a
union of cells from S ′. This will lead to U being cut into a non-constant number
of pieces by obstacle polygons. This implies we cannot use U directly as the
well-covering region of e′ in S ′. Instead we intersect U with the free space,

C.3. PROOFS FOR CORRECTNESS OF THE CONFORMING
SUBDIVISION 95

which will partition U into a connected set of components R1, R2, Exactly
one of these component, e.g. R1, contains e′.

Next, we show that each of the Ri’s which are unions of cells of Soverlay
is of constant size. This will bound the total complexity to be constant. We
argue that for each cell c in S, a cell c contains a number of Soverlay subcells,
of which only a constant number belongs to Ri. "If two subcells of c in Soverlay
both belong toRi, then the obstacle edges separating them must have endpoints
either inside U , or contained in one or more holes of U if U is multiply connected,
see Figure C.3".

U

Figure C.3: A cell of U may be partitioned into many subcells in Soverlay, but
only O(1) of them belong to any one Ri. [6]

Were we to traverse the boundary of Ri, one would visit the subcells of
c repeatedly. Between each pair of different subcells of c, one would traverse
either

1. A different hole of U ,

2. The outer boundary of U , or

3. The unique obstacle vertex inside U .

This is due to the fact that U only has O(1) holes, only O(1) subcells of c
belong to Ri.

For any given component Ri, let c(Ri) be the cells of Soverlay in Ri, we see
this mean |c(Ri)| = O(1). For each cell c ∈ c(Ri), we will have a unique cell c′
in S ′ such that c ⊆ c′. The cell c will be strict subset of c′ if and only if some
edge of c was erased during the construction of S ′. In case that c (c′, then
c′ will be an uninteresting cell, and therefore have at most eight edges. This
implies that both c and c′ have constant complexity. If we define

c′(Ri) = {c′|c′ ∈ S and c ⊆ c′ for some c ∈ c(Ri)}

then we have |c′(Ri)| = O(|c(Ri)|) = O(1).

96 APPENDIX C. PROOF OF CORRECTNESS FOR CHAPTER 5

If U is nonconvex, it may be the case that some cell c′ of S ′ that intersects
Ri also intersects another component Rj , that is c′(Ri)∩c′(Rj) 6= ∅, see Figure
C.4.

U(e)

Ri

Rj
c′(Rj)

Figure C.4: Ri and Rj are disjoint components of U(e) in Soverlay. Ri is
partitioned by a vertical line inside U(e), so c(Ri) consists of two cells; c(Rj)
is a single cell. c′(Rj) intersects both Ri and Rj , so Ri ∼ Rj . Note that c′(rj)
may have transparent edges outside U(e). [6]

Let us say that two components are connected, Ri ∼ Rj , if and only if
c′(Ri) ∩ c′(Rj) 6= ∅m and extend ∼ to an equivalence relation by transitive
closure.

We define U ′ = U(e′), the well-covering region for e′ in S ′, to be the union of
c′(Ri) for all Ri in the equivalence class R1 under the ∼ relation. We argue that
U ′ has constant complexity. Let R be the set of Ri that contain a vertex of S
or O. The set of cells c′(R) = ∪Ri∈Rc

′(Ri) has O(1) total complexity. Further,
if Ri 6∈ R, then c′(Ri) is a single convex cell with O(1) complexity, because all
transparent edges of c(Ri) inside U have been deleted. If such a cell c′ = c′(Ri)
does not intersect any component in R, then the union of c′(Rj) for all Rj ∼ Ri
is just the single cell c′. On the other hand, if c′ does intersect some Rj ∈ R,
c′ ∪ c′(Rj) is identical to c′(Rj). Because edge e′ was not deleted, R1 ∈ R. It
follows that U ′ ⊆ c′(R), and hence U ′ satisfies condition 2 of definition 22.

The definition of U(e′) implies that every transparent edge f ′ on the bound-
ary of U(e′) is outside or on the boundary of U . Edge f ′ is a subset of some
edge f of S, so the Euclidean distance from e′ to f ′ is at least 2 ·max(|e′|, |f ′|).
It follows that condition 3fs holds. Condition 1fs holds by construction.

As the last thing let us establish condition 3 of definition 19. A well-
covering region U(e′) in S ′ contains no obstacle vertex that lies outside the
well-covering region UinS from which U(e′) is derived, since no edges of S that
bound vertex-containing cells are deleted. If e′ is a fragment of an edge e of S
then its well-covering region U(e′) in S ′ contains at most one obstacle vertex,
since the same is true for U = U(e) in S. If e′ is one of the edges added to
S ′ inside a vertex-containing square, its well-covering region U is the union of
O(1) well-covering regions of S. Each component region contains the square

C.3. PROOFS FOR CORRECTNESS OF THE CONFORMING
SUBDIVISION 97

and its vertex, and no other vertex, hence the well-covering region of e′ in S ′
also satisfies condition 3 of definition 19.

This complete the proof that S ′ is a conforming subdivision of the free space
corresponding to the set of obstacles O.

C.3.1 Lemma for efficient construction time of conforming
subdivision of the free space

The last lemma of this section shows that the conforming subdivision described
above can be computed in O(n log n) time.

Lemma 63. (Lemma 2.3 in [6])
The linear-size conforming subdivision of free space described in Lemma 62 can
be built in time O(n log n).

Proof. We start with a string 2-conforming subdivision S of the obstacle ver-
tices; S is computed in O(n log n) time, by theorem 23. In O(n log n) additional
time, we build a point-location data-structure for the obstacle polygons, so that
given a query point q, we can in O(log n) times find the obstacle edge imme-
diately to the left, right, above, or below q [3][9]. The edges of S ′ are obstacle
edges, transparent edges on the boundary of kept cell, and transparent edges
incident to obstacle vertices. To identify the second kind of edges, we trace the
boundary of each kept cell separately.

Each kept cell is contained in a single cell of S and has at least one vertex on
its boundary, so we trace starting from each vertex. Tracing along an obstacle
edge is easy, since the next transparent edge intersected is one of the O(1) edges
on the boundary of the current cell in S. We use the point-location structure
to trace along transparent edges: the next cell vertex is either a vertex of S,
or it is the first obstacle point hit by the ray that the current point and edge
define. This tracing takes O(n log n) time altogether. The third kind of edges
can be computed in O(n) total time by local operations in each cell containing
and obstacle vertex. To stitch the three kinds of edges into a single adjacency
structure S ′, we use an O(n log n) time plane sweep algorithm [12].

This complete the chapter of the conforming subdivision.

Appendix D

Survival guide

n number of vertices
k number of violation
li, l edge segments

e, ei, f, fi edges
i, j counting variables

p, pi, q, qi, a, b, r points
s stars point, source
t end point
V set of vertices, in the context of G(E, V), else all vertices in the plane including s
E set of edges
G Graph

pi.x, qi.x x coordinate of points
pi.y, qi.y 4 coordinate of points
vi vectors or vertices

A,B,C Figures, like triangles and square, or corners of triangles
Li lines
vπ predecessor

sd, vd upper bound of weight of shortest paths
w(·, ·), w(·) weight function with one or two inputs

Q min priority queue
S straight line subdivision
K 2d 12 log2(|e|/6)e

99

100 APPENDIX D. SURVIVAL GUIDE

α well covering parameter
C(e) set of cells with e in its interior
Ci(ei) set of cells of Si whose union Uα(eα) the the well covering region eα
U(e) {c | c ∈ C(e)}
c cell
∆ side length of figure
x, y = j · 2i coordinate of i-quad
b i-box
Q(i) i-quads at stage i

S, S′, Sj(i) equivalence class of Q(i)
≡i transitive equivalence relation of overlap

input(e) edges who’s wavefront is used for computing distance to e from U(e)’s boundary
output(e) input(e) ∪ {f | e ∈ input(f)}

∂ boundary
VS points in the cores S quads
pq line segment between point p and q

covertime(e) time where e is fully covered
w,w′ wavelet
O,Oi obstacle
O the set of obstacles in the plane
g, g′ generators
π(p) set of shortest path from s to p
πk(p) the shortest path from s to p
SPM shortest path map
SPMk shortest k-path map
T, Ti minimum spanning tree or subset of edges
T ′ joined tree of T1 and T2
Tx one of {T1, T2}
N set of minimum spanning trees
G(i) graph with set of vertices V with edges weight of less than 6 · 2i
| · | length of edges of size of set
R1

⋃
q∈S′{the core of growth(q)}

R2

⋃
q∈S′{the region covered by q}

M matching in graph
qu, qv i-quad q containing vertex v or u in its core
MSF (·) minimum spanning forest at stage i
d(·, ·) distance function
d̃(s, e) min(d(s, a), d(s, b))
W (e) approximate wavefront passing through edge e
W (f, e) {w(f) | f ∈ input(e)}
W (f ′, e) topologically different than W (f, e)
S(e) S-face which segment intersects e
S-face piece of active region

101

102 APPENDIX E. TABLES

Appendix E

Tables

n time (in milliseconds)
2 0
6 0
18 0
38 1
66 9
102 24
146 50
198 112
258 235
326 466
402 848
486 1481
578 2462
678 3939
786 6083
902 9271
1026 13357
1158 19278
1298 27520
1446 37018
1602 50129
1766 66930
1938 88378
2118 114971
2306 148055
2502 188859
2706 238534
2918 298675
3138 371052
3366 457771
3602 559747
3846 680632
4098 822848
4358 989762
4626 1182116
4902 1404667
5186 1663503
5478 1958169
5778 2296425
6086 2682430
6402 3120744
6726 3616376

Table E.1: Data from graph 1

103

n crossing visibility Dijkstra
2 0 0 0
6 0 0 0
18 0 0 0
38 1 0 0
66 8 0 1
102 22 0 2
146 45 1 4
198 104 2 6
258 222 3 10
326 447 4 15
402 821 6 21
486 1444 9 28
578 2415 11 36
678 3878 15 46
786 6006 18 59
902 9178 22 71
1026 13244 28 85
1158 19144 33 101
1298 27359 40 121
1446 36821 47 150
1602 49895 56 178
1766 66658 65 207
1938 88071 75 232
2118 114616 87 268
2306 147650 100 305
2502 188395 115 349
2706 237995 131 408
2918 298074 148 453
3138 370383 167 502
3366 457025 190 556
3602 558914 213 620
3846 679704 238 690
4098 821822 264 762
4358 988634 298 830
4626 1180886 328 902
4902 1403311 363 993
5186 1662007 400 1096
5478 1956547 440 1182
5778 2294661 481 1283
6086 2680522 530 1378
6402 3118674 574 1496
6726 3614138 628 1610

Table E.2: Data from graph 2

104 APPENDIX E. TABLES

n time in miliseconds dividet by n3

2 0
6 0
18 0
38 1.82242309374544E-05
66 3.13047833708991E-05
102 2.26157360291291E-05
146 1.60661359272217E-05
198 1.44285421297971E-05
258 1.36838638480003E-05
326 1.34503354733029E-05
402 1.3053221060855E-05
486 1.29016795495295E-05
578 1.27498340864401E-05
678 1.26385397648696E-05
786 1.25270894447943E-05
902 1.26330137388433E-05
1026 1.2367070702209E-05
1158 1.24147019560424E-05
1298 1.25841634982224E-05
1446 1.2243570102851E-05
1602 1.21927454179994E-05
1766 1.2152027041557E-05
1938 1.21417937429069E-05
2118 1.21006985351175E-05
2306 1.20738331437455E-05
2502 1.20580136097767E-05
2706 1.20383485707373E-05
2918 1.20210667777948E-05
3138 1.20081459851104E-05
3366 1.20034459584254E-05
3602 1.19773474781993E-05
3846 1.19642236814143E-05
4098 1.19564913967957E-05
4358 1.19582904652676E-05
4626 1.19410690659842E-05
4902 1.19248646628465E-05
5186 1.19268580687987E-05
5478 1.19119836093996E-05
5778 1.19047328401354E-05
6086 1.1899605218836E-05
6402 1.18935399250374E-05
6726 1.18851040850164E-05

Table E.3: Data from graph 3

105

k time in miliseconds
0 184927
1 185173
2 185082
3 185218
4 184888
5 184901
6 185203
7 184971
8 185074
9 185320
10 185211
11 185254
12 185479
13 185317
14 185491
15 185355
16 185504
17 185928
18 185985
19 185669
20 185842
21 185879
22 185980
23 186128
24 186250
25 186189

Table E.4: Data from graph 4

Bibliography

[1] Michael Ben-Or. Lower bounds for algebraic computation trees (prelim-
inary report). In David S. Johnson, Ronald Fagin, Michael L. Fredman,
David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadim-
itriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors,
Proceedings of the 15th Annual ACM Symposium on Theory of Comput-
ing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 80–86. ACM,
1983.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271, December 1959.

[3] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal
point location in a monotone subdivision. SIAM J. Comput., 15(2):317–
340, 1986.

[4] Subir Kumar Ghosh and David M. Mount. An output-sensitive algorithm
for computing visibility graphs. SIAM J. Comput., 20(5):888–910, 1991.

[5] John Hershberger, Neeraj Kumar, and Subhash Suri. Shortest paths in
the plane with obstacle violations (all of it). In Kirk Pruhs and Christian
Sohler, editors, 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages
49:1–49:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[6] John Hershberger and Subhash Suri. An optimal algorithm for euclidean
shortest paths in the plane (all of it). SIAM J. Comput., 28(6):2215–2256,
1999.

[7] Mohamed A. Khamsi and William A. Kirk. An Introduction to Metric
Spaces and Fixed Point Theory. Wiley-interscience Publication, 2001.

[8] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J.
Comput., 12(1):28–35, 1983.

[9] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J.
Comput., 12(1):28–35, 1983.

[10] Serge Lang and Gene Murrow. Geometry. Springer, 2000.

[11] D. T. Lee. Proximity and reachability in the plane. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, 1978.

[12] Marc van Kreveld Mark de Berg, Otfried Cheong and Mark Overmars.
Computational Geometry. Springer, 2008.

107

108 BIBLIOGRAPHY

[13] Joseph S. B. Mitchell. A new algorithm for shortest paths among obstacles
in the plane. Ann. Math. Artif. Intell., 3(1):83–105, 1991.

[14] Joseph S. B. Mitchell. Shortest paths among obstacles in the plane. Int.
J. Comput. Geometry Appl., 6(3):309–332, 1996.

[15] Franco P. Preparata and Michael Ian Shamos. Computational Geometry -
An Introduction. Texts and Monographs in Computer Science. Springer,
1985.

[16] James Stewart. Calculus. Thomson, 2006.

[17] Ronald L. Rivest Thomas H. Cormen, Charles E. LeiserSon and Clifford
Stein. Introduction to Algorithms. The MIT press, 2009.

[18] Emo Welzl. Constructing the visibility graph for n-line segments in o(n2)
time. Inf. Process. Lett., 20(4):167–171, 1985.

[19] Wikipedia. Matching (graph theory), 2018. [Online; accessed 12-June-
2018.

The thesis is mainly build on [6] and [5] which are read and understood in their
entirety. The rest of the literature have been used "secondary litterateur" and
we have therefore only read their abstract, or main results.

	Contents
	List of Figures
	List of Tables
	Introduction
	Formal problem description
	Previous work
	Overview of thesis

	Simple O(n3) implementation
	Constructing the visibility graph
	Number of crossings
	Crosses
	Right turn
	Crossing of two line segments
	Crosses algorithm
	Run time

	Dijkstra
	Experiment
	Computer specification
	Correctness of algorithm
	Running time of algorithm

	Continuous Dijkstra - overview of O(k2 n logn) algorithm
	The Hershberger-Suri algorithm overview
	From no violations to k-violations
	Construction of a shortest k-path map

	Shortest path maps and their geometric properties
	Definitions for shortest paths and shortest k-paths
	Shortest path map and shortest k-path map
	Complexity of SPM map

	Conforming subdivision
	Defining well covering of regions
	Conforming subdivision theorem
	Construction of the conforming subdivision
	Definitions of i-boxes and i-quads
	Merging of i-quad
	Transforming 1-conforming subdivision to -conforming subdivision
	The invariants

	Pseudo code for build-subdivision
	Pseudo code for growth
	An O(n logn) implementation for computing a 1-conforming subdivision
	Minimum spanning trees
	build-subdivision implementation

	Wavefront propagation
	Overview of propagation algorithm
	Definitions and terminology for propagation algorithm
	The propagation algorithm, main loop
	The artificial wavefronts
	The bisector events
	Computing the shortest path map

	The list based data structure for wavefront propagation
	An implementation of the wavefront propagation
	Dynamic wavefront propagation
	Analysis of the wavefront propagation

	Algorithm for shortest path with obstacle violations
	Lower bound of the "shortest path in the plane with polygonal obstacles" problem
	The algebraic computation tree model
	Element distinction problem
	Sorting of numbers
	Shortest path in the plane

	Conclusion
	Future work

	Definition for a hyperbola and bisection
	Hyperbola definition
	Bisection

	Guide to running the code
	Proof of correctness for Chapter 5
	Correctness for build-subdivision
	Correctness for growth
	Proofs for correctness of the conforming subdivision
	Lemma for efficient construction time of conforming subdivision of the free space

	Survival guide
	Tables
	Bibliography

