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Abstract
There exist several models of how a computer works putting their emphases on
varying aspects of the computer. This paper uses the random access model (RAM),
external memory model and cache oblivious model to describe three similar algo-
rithms based on the same general idea to support orthogonal range counting queries
in O(log2 n) time, O(logB N) I/Os and O(logB N) I/Os respectively all using linear
space.

The cache oblivious orthogonal range counting structure presented in this paper
has been published in the proceedings of the 21st Annual ACM Symposium on
Computational Geometry [5].

The three algorithms has been implemented and are benchmarked running both
on internal and external memory. L2 cache misses are also measured. It is found
that the algorithm for the RAM model performs best in RAM and the external
algorithm performs best when the data needs to be stored on disk and when working
with little available RAM forcing the programs to swap memory. The algorithm
for the cache oblivious model is found to work well in both circumstances but not
better than the model designed for the specific environment. On the L2 cache the
cache oblivious model is found to work on par with the external model algorithm.

It is shown that the method used for the layout of the data structures for the
cache oblivious model using the van Emde Boas layout has a positive effect on the
performance of the algorithm.
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Preface
When I started the initial work on this thesis I did not have any specific goal in
mind. I had an idea that I would like to concentrate on a topic in the area of
computational geometry and external memory algorithms. So I started skimming
different articles within this area of interest looking at what had been done and
what results had been achieved. I made some tables (Table 1.1 1.2 and 1.3 in the
introduction) of my findings comparing different problems with their results in the
RAM, external memory and the cache oblivious memory model. I quickly realized
that the RAM and the external models were well described and already had good
general results. But in the cache oblivious model hardly any results had been made.
So in stead of writing about something that has already been made or improving
on it I decided to make something original. I chose range counting since it is a
relatively simple problem and there are some good simple results available in both
the RAM [12] and the external memory model [16] to try to match up against.
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Chapter 1

Introduction

1.1 Motivation

The range counting problem is probably one of the simplest geometric problems.
Given a set of points and a geometric shape. Count the number of points inside the
geometric shape. The easy solution would be to look at each point and check if it
lies within the shape. This is also the fastest way to do it if we are only interested in
making one query. But if we want to make several queries to a given point set it is
worth while doing some initial calculations making data structures with additional
information so that we do not have to look at all points for each query.

Range counting is typically used in areas such as geographic information sys-
tems (GIS) in short. A GIS handles geographic informations such as topographic
information about a landscape or the road net of a country. Here huge amounts of
data are normally present which need to be analyzed. An example could be that
you had a detailed map of a region and you wanted to know the number of trees
inside a square.

The problem when analyzing the data is that all the data takes up lots of space
and cannot all be stored in a computers internal memory. It has to be stored else-
where in some external memory like on a hard drive or on a network while being
analyzed. This represents a problem since the access time to a piece of data stored
in the external memory is very large compared to if it was stored in the computers
internal memory. To get around this problem we have to develop ways to minimize
the number of times that we access the external memory and when we do, use the
data we get as much as possible.

1.2 Different types of range queries

Range searching problems have been studied for a long time. They are of the
general form: Given a set of input objects in a geometric space and a query range.
Calculate a given property of the objects which fall within the query range. This
involves problems such as range searching, range counting and range max which

1
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RAM External Cache Oblivious
1 dimension

2 dimensions
q O(log n + t)
u O(log n)
s O( n log n

log log n )
[21]

q O(logB N + T/B)
u O( log2

B N
logB logB N )

s O( N logB N
logB logB N )

[6]

q O(
√

N/B + T/B)
u O(log2

B N)
s O(n)

[25]

q O(logB N + T/B)
s O( N log2

2 N
log2 log2 N ) [5]

3 dimensions

q
O((log log logB N) logB N+
T/B)
s O(N/B log4 N/B)

[27]

d dimensions

w < 1
q O( log n

(log log n)d−1 + t)
u O(logw+d−2 n)
s O(n logw+d−2 n)

[20]

q O(( log n
log log n )d−2 + t)

s O(n( log n
log log n )d−3)

[26]

B = 22c

q O((N/B)1−1/d + T
B )

s O(n)
i/d O(log2

B N)

[2]

Table 1.1: Orthogonal range reporting

are described below. Others could be empty set, decide if a given query range does
not contain any objects, or point intersection searching, given a set of geometric
objects decide which objects contain the query point.

In the following discussion of different range searching problems it is assumed
that the query range is a simple axis aligned cube in the given dimension. Other
query ranges could as an example be a planar disk where range counting can be
answered in O(

√

n log2 n) time using O(n log n) space [3].
In the tables below the following terminology is used: q it the query cost, s

is the size of the structure used to answer the queries, u is the update cost, i is
the insert cost and d is the deletion cost. An expression at the beginning is a
requirement for the algorithm.

The problem of range reporting is: Given a set of points, report what points lie
within the query range. The results achieved can be seen in Table 1.1. The term
T is the result size being reported. For the 2 dimensional case the results achieved
for all the models are the same.

Range counting is: given a set of points, count the number of points within the
query range. The results achieved for this problem can be seen in Table 1.2. The
2 dimensional results are the algorithms described in this thesis with the exception
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RAM External Cache Oblivious
1 dimension
2 dimensions q O(logB N)

s O(N) [5]
3 dimensions

d dimensions
d ≥ 2
q O(( log n

log log n )d−1)
s O(n( log n

log log n )d−2)
[26]

d ≥ 2
q O(logd−1

B N)
s O(N logd−2 N)

[16]

Table 1.2: Orthogonal range counting

RAM External Cache Oblivious

1 dimension

q/u O(log n)
s O(n)
d
O(log n log log n)

[18] q O(log1+e n)
s O(n)

[14]

2 dimensions q O(logB N)
u O(logB N) [12] q O(log2

B N)
s O(N)

[1]
q O(logB N)
s O( N log2

2 N
log2 log2 N ) [5]

3 dimensions
d dimensions

Table 1.3: Orthogonal range max

of the RAM model. For that we use the article by Bernard Chazelle [12] which can
perform queries in O(log2 n) time and takes up O(n) space.

The problem of range max is: given a set of points where each point has an
associated weight, find the point with the largest weight. Table 1.3 shows the
existing results found. The cache oblivious version is partly based on the algorithm
described in Chapter 7, where a slightly modified version of this is used to calculate
3 sided queries.

Many more different types of range searching problems exist. For a survey of
some more results we refer to the survey by Agarwal [3]. It mostly covers results
in the RAM model.
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Chapter 2

Models of Computation

To describe the performance of a program running on a computer different models
have been developed. The basic and most commonly used model is the RAM
model which only considers the work done by the CPU. This idealized model does
not take into account that real computers only have a limited amount of RAM. To
deal with this limited amount of RAM the computer swaps some of the data onto
some other storage medium like a hard drive and fetches it again when needed. This
results in the external memory model. In recent years the cache oblivious model
has been developed. This model does not depend upon information of how and
where memory is stored as opposed to the external memory model while still being
able to handle large amounts of data. This model has the advantage of handling
multi level memory hierarchy seamlessly. This is relevant in e.g. virtual machines
where we do not necessarily have information about the specifics of the underlying
machine.

2.1 Hardware

A computer consists of a number of different connected pieces of hardware. The
central part of any computer is the CPU. This is the one in charge of doing all the
calculations. It is capable of many different types of calculations. They range from
the basic arithmetic functions like +,−,×,÷, boolean functions like NOT, AND,OR
to the more complicated like comparison and branching. It also contains functions
to control the behaviors of other pieces of hardware.

The CPU is connected to a hierarchy of several levels of memory. The inner-
most memory is the CPU registers which contain the variables being worked on
at any given time. There are however very few of these. Then comes a number
of layers of cache each further away from the CPU but also larger in size. They
contain the data and program being worked on at the moment. The first level of
cache (L1) contains a subset of information of the next level (L2) and so on. Data
is then propagated back and forth between the layers to maintain consistency as
needed. The innermost layer is in charge of supplying the CPU with the required

5
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information.
The next level after the cache levels is the RAM. This is the main place where

the data being work on is stored. It is significantly larger than the cache but slower.
The last normal level of memory is the hard drive. This contains all the pro-

grams and data being kept on the computer for long term use. It can however also
be used to store memory that the computer is working on in case that the RAM
gets full. The hard drive has however a major disadvantage since the access time
to data is a lot slower than that of all the other levels.

To get some perspective on the access time for the different levels of memory
we can look at the following where the hardware access time and a human equiva-
lent is compared:

Time Hardware Time Human equivalent
0.5ns CPU register ∼ 0.5s Time to get information from the

brain
5ns L2 Cache ∼5s Time to read some information from

a paper on your desk
50ns RAM ∼50s Time to look up some information in

a book
10ms Hard drive ∼ 10000000s

or ∼ 1/3
years

Time to walk from the east coast to
the west coast of USA lookup some
information and then walk back

1

From this perspective we can see that even though 10ms might seem fast it is very
slow compared to the rest of the system.

There exist other types of memory like a CD-ROM drive or a network stor-
age array but we will leave them out. There are also other types of hardware not
associated to memory like audio and video cards but they are not relevant to this
discussion and will therefore not be discussed.

2.1.1 Page faults

The Linux operating system (OS) presents a linear piece of memory for a program
to use. Each piece of data has a virtual address in this memory at which the data
is stored. It is then up to the OS to figure out how that address is mapped into
an actual physical memory address. If the program’s memory requirements grow
beyond the available RAM the OS starts swapping some of the data out onto the
hard drive. The OS marks the address where the data was stored in the physical
memory as being free but does not delete the data there. The program is unaware
of this swapping as it still sees the data as having the same virtual address.

When at a later stage the program need the data again there are two scenar-
ios. The OS might not have used the physical address where the data was stored
previously to store some other data. In this case the OS simply uses the same

1107 s ≈ 115.7 days. If you walk 5.4 kmph for 16 hours a day for 57.5 days you walk 4968km
and USA coast to coast along Route 50 is approximately 4944km[9]
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physical memory address for the data using the data already there. This is called a
minor page fault. In the case that the OS has used the physical memory address to
store some other data a free address in the physical memory address is located and
the data is retrieved from the hard drive and put into this address. This is called a
major page fault. When a major page fault occurs it takes considerable time before
the data is available in the RAM because of the slow access times of a hard drive.

2.2 RAM Model

In the random access memory (RAM) model we have a machine with an infinite
amount of memory and an arithmetic unit. What the arithmetic unit can do and
how the memory can be accessed differs. In [12] variants of the RAM models are
described. The memory can either be accessed by use of pointers which can be
followed around in memory or memory can be accessed by a calculated memory
address. The arithmetic unit can be limited to only having +, having to simulate the
rest of the arithmetic functions. Or it can have the full range of arithmetic functions
+,−,×,÷, shift, boolean operators, comparison and more.

At present time the generally used model to describe algorithms is the RAM
model. It has an infinite amount of memory which can be accessed at random
in O(1) time. The arithmetic unit or CPU can perform all common arithmetic
functions at a unit cost. The cost of an algorithm is calculated in terms of how
many calculations are done on the elements. This model is however not realistic
when working with large amounts of data since we do not have infinite amounts of
main memory in practice.

2.3 External Memory Model

In the external memory model we have a CPU with some limited amount of internal
memory connected to some external memory. The data set consists of a total of n
elements which take up N space. An element is considered to be a small set of data
describing e.g. a set of coordinates specifying a point. The internal memory can
contain M elements and can be accessed randomly for free. The external memory
can contain an infinite amount of elements and can also be accessed randomly. To
do any calculations on an elements it is necessary that it is in the internal memory.
If it is not present in the internal memory an input/output (I/O) operation will have
to take place in which the needed data are transferred into the internal memory and
replaced with some other data. Each I/O operation on the external memory will
load B consecutively stored elements, with 1 ≤ B ≤ M/2, into the internal memory.
The time to make an I/O is considerably longer than accessing the internal memory
or doing calculations on the CPU. So the cost of an algorithm is measured in terms
of I/Os done. Linear time is considered to be O(N/B) since that is the time it takes
to scan through all the elements. Sorting of elements can be done in O( N

B log M
B

N
B )

I/Os [4] where we make use of the knowledge of the memory size by filling the
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main memory and then sorting parts of the problem there and finally merging it all.
For searching we have B-trees [8] which can perform searches in O(logB N) I/Os.

2.4 Cache Oblivious Model

In this model we describe the algorithm in the RAM model but we analyze it in the
external model. That is, we design an algorithm which is unaware of the memory
hierarchy but analyze it as running under that hierarchy. This model was developed
by Frigo et al. [15]. In the model we have a CPU which has a limited amount
of cache of size Z words. There is also some main memory of which we have
no information about except that it is sufficiently large. If the cache is full and
some new data is needed from the memory the data will replace some data already
present in the cache using the optimal off-line replacement strategy[15]. Since
programs are designed to work optimally for all sizes of blocks and memory we
can assume that it will work optimally for all layers of memory [15]. So there
is only the cache and the main memory that we will have to think about. When
accessing data it is first checked if the data is in the cache. If it is, it is given to the
CPU. Else the data is fetched from the main memory and replaces some data in the
cache which is predicted to be used furthest into the future by the optimal off-line
replacement strategy.

We have the usual n elements which take up N space. We do not know anything
about the main memory except that it is there and has sufficient space. We do
not know about B either. Some algorithms however make use of the tall cache
assumption that B2 < Z to achieve some results. When getting data from the
memory the presence of the cache makes it possible to do calculations on what
was received. If we make sure that we store data that we need sequentially so that
the data received contain several useful pieces of information we do not have to
perform as many memory transfers. Thus enabling us to perform procedures such
as scanning all elements in O(N/B) I/Os without being aware of the size B. With
the tall cache assumption we can, as in the external model, again perform sorting in
O( N

B log M
B

N
B ) I/Os using funnelsort [15]. Searching can be done in O(logB N) I/Os

with the help of the van Emde Boas layout which is the cache oblivious version of
the B-tree, see Section 3.2.3.



Chapter 3

Terminology

In this chapter some of the terminology used through out this paper is presented. In
Section 3.1 the terminology associated with geometry is presented and in Section
3.2 some of the general methods used in the cache oblivious model is described.

3.1 Geometry

3.1.1 Points

Throughout this paper the same set of points PG will be used for illustrative pur-
poses. This is done to make it possible to illustrate some of the similarities in the
three algorithms. The points can bee seen in Figure 3.1. This particular set of
points have been chosen so that they make the structures generated by the algo-
rithms show some interesting features.
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Figure 3.1: The input points PG
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3.1.2 Semigroup

A semigroup is a group of elements S and a binary operator +. For a group S
to be a semigroup the elements have to be associative. For the semigroup to be
commutative the operator + has to be commutative. That is that the order at which
the elements are applied to the operator does not matter a + b = b + a.

3.1.3 Range Counting

A survey of some general range searching algorithms is nicely described in the
survey [3] by P. K. Agarwal and J. Erickson. In it the problem of range searching
is defined as follow.

“Let (S,+) be a commutative semigroup. For each point p ∈ S, we assign a
weight w(p). For any subset S′ ⊆ S, let w(S′) = ∑p⊆S′ w(S) where addition is
taken over the semigroup. For a query range γ ⊂ R, we wish to compute w(S ∩γ).”

For the problem of range counting we have that + is the normal algebraic ad-
dition and that w(p) = 1 for all points p ∈ S. For range reporting we have that
the operator + is the union operator ∪, the weight of the point is the point it self
w(p) = p.

3.2 Cache oblivious primitives

3.2.1 Scanning

If we go linearly through all the elements stored consecutively in memory visiting
all of them one at the time this is called a scanning. Because of the cache we
are able to hold onto small parts of consecutive data which we can scan through
without having to make additional memory transfers. Because of this we are able
to scan through all the elements in O(N/B) I/Os.

3.2.2 Sorting

We are here talking about comparative sorting. That is given two elements we can
compare them with comparative operators, like <, to each other and say which one
is the smaller. An efficient way of doing this in the cache oblivious model is to use
funnel sort [12].

Given an input with n elements. We split it up into n1/3 subproblems which we
sort recurcivly. We merge the subproblems using a k-merger. A k-merger works
by taking k sorted input streams each holding k2 elements. The streams are merged
recurcivly using

√
k k-mergers. The base case is k = 2 producing k3 = 8 sorted

elements. When merging we use a buffer to hold the points and we only merge
2k3/2 elements at the time after which we begin the merging of an other k-merger
coming back to it when we need more elements from that particular buffer.

This together with the tall cache assumption enables us to perform sorting in
the optimal O(N/B logM/B N/B) I/Os.
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3.2.3 van Emde Boas Layout

The van Emde Boas layout [24] is a way to layout a binary tree so that a search
can be performed in O(logB N) I/Os. It is the cache oblivious version of the B-tree
from the external model.

In a normal binary tree the internal nodes of the tree can be laid out in any
order one would want. You would then have pointers between the nodes to enable
traversal of the tree. This can result in a lot of jumping backward and forward a lot
of times while only getting small amounts of data each time when traversing the
tree. This is no problem when working in the RAM model since random memory
access is free. But when working in the external or cache oblivious model this
becomes expensive. However using the van Emde Boas layout enables us to only
travel forward in memory while using fewer steps to get the same data. This is done
by clustering data that we are likely to use next, close to and forward in memory,
making it likely that when you access the memory that you need you will also get
the next couple of pieces of data needed.

It works by laying out the nodes of the tree recurcivly. Given a tree C of height
h we split the tree in half where the top tree C0 is of height bh/2c. This gives us
s = 2bh/2c sub trees C1 to Cs each of height dh/2e. We then recurse on the top tree
first and then on all the subtrees from left to the right. In the case where we have
h = 1 we store the node next to the previously stored node. See Figure 3.2 for an
example of the layout.
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Figure 3.2: The van Emde Boas layout. The node number represent the location in
memory of the node.

When accessing a node stored in external memory we get O(B) elements back
which form a small subtree of height O(log2 B). This can then be traversed without
the need for further I/Os. Then the next small tree on the path can be loaded from
memory and traversed and so forth. So to traverse a complete tree we need to make
O( log2 n

log2 B ) = O(logB n) I/Os.
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Chapter 4

Orthogonal range counting,
general approach

The range counting algorithms described in Chapters 5, 6 and 7 are all based on
the same general idea.

4.1 4 sided→ 2 sided queries

Given an orthogonal range counting query Q = [x1, x2] × [y1, y2] we can split up
this query into four separate two sided sub queries:

Q1 = ] − ∞, x2] × ] −∞, y2]
Q2 = ] − ∞, x1[ × ] −∞, y2]
Q3 = ] − ∞, x2] × ] −∞, y1[
Q4 = ] − ∞, x2[ × ] −∞, y1[

The queries are also illustrated in Figure 4.1. This gives us that our query then
becomes Q = Q1 −Q2 −Q3 +Q4. Thus reducing the problem of four sided queries
into four problems of two sided queries. So all that we have to be concerned about
is how to answer a two sided query q =] −∞, xq] × ] −∞, yq].

4.2 Data structure for 2-sided queries

In the following section we describe a data structure for the 2-sided query q =
]−∞, xq] × ]−∞, yq]. We make a search tree X of the points P sorted with respect
to the x coordinates. When traversing X to find a value xq, at a node v we want
to be able to know how many points have smaller x values that vx and has v as an
ancestor. Of those we want to find out how many got an y value less than yq. If
we can calculate that then all that we got to do is to traverse X and each time that
we reach a node v whose x values is less than xq we add the calculated sum to the
final result. Figure 4.2 shows an example of such a query. To be able to do this we

13
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6

-
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Figure 4.1: The four two sided subqueries needed to make one four sided query

store a list Lv of points at each node v containing all the points which got v as an
ancestor. Since each point is stored in one list at each level in the tree this gives us
a space requirement of O(n log n). The list Lv is sorted with respect to the y value.
Together with each point we store how many points in the left child got an y value
smaller than it self. This rank correspond to what we wanted to calculate above
where we wanted to find the number of points with a x values smaller than vx and
y value smaller than yq at each node.

4.3 Fractional cascading

Searching in the Lv lists after the point with the largest y value smaller than or equal
to yq using a search tree for each LV would imply an extra log n time for each Lv

giving a total query time of O(log2 n).
To eliminate this problem we make use of the idea of fractional cascading [13].

This can be done since the lists of the children of a node v are subsets of the list Lv.
We start by having a search tree Y of the points sorted with respect to the y values.
This points into the list Lr at the root note vr of X. We then add pointers from each
point p in the list Lv down into the lists of the children of v to the point with the
largest y value less than or equal to py. This enables us to follow the points with y
value less than or equal to yq at each list without having to search for it except at
the root note.

This is the general way that the algorithms in Chapters 5, 6 and 7 works. But
they all have their own special way to do certain things reflecting some design
choices and the model in which they are designed to work.



4.3. FRACTIONAL CASCADING 15

L0

X

L1

L2

L3
x

Qyq

y

xq

Figure 4.2: A two sided query q =] −∞, xq] × ] −∞, yq] with the X tree.
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Chapter 5

Range Counting in the RAM
model

In this section we describe the range counting algorithm by Bernard Chazelle [12]
which assumes the RAM model. The reason for choosing this algorithm is that it
has linear space cost and queries can be performed in O(log2 n) time at the same
time as being simple to understand and implement. The CRB tree [16] as described
in Section 6 is also based upon this algorithm but it also works well in the external
memory model. There exist other algorithms like [26] which is faster than this
algorithm but it is not as simple as the one described here.

This algorithm works in a similar way as the general algorithm described in
Chapter 4. But it has an other way to split up the four sided query. If we got a
query Q = [x1, x2] × [y1, y2] the sub queries does not go towards −∞ on the x-axis
but rather goes towards the least common ancestor of x1 and x2 in the search tree X.
To be able to do this it is required that a point p in the lists Lv keeps track of how
many points from both the left and right child are small than or equal to py.

5.1 Data structure

The data structure consists of four arrays X,Y, B,C each of size n. The arrays X and
Y stores the x and y coordinates respectively sorted with respect to the x coordinate
while keeping them paired up. The B and C arrays stores bit vectors which has to
do with the sorting of the points, bit counting and some intermediate values.

Let λ = dlog2 ne and µ = 2(1 + blog2 λc). Each index i in Bi consists of two
parts Λi and Mi in order to save space. Λi is of size λ bits and Mi is of size µ
bits together forming Bi. The Λ part represents how a binary mergesort of the y
coordinates would have taken place. A position in Λ refers to the position from
the beginning of the list upto the point of interest. Λ is basically an array of all the
lists Lv for the nodes v of X. The binary mergesort works by merging the children
of the nodes of the tree representing the points P. This merging is illustrated in
Figure 5.2. The merging starts at the leaves of the tree X going from left to right

17
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and moving upwards. Given two lists L0 and L1 of sorted points coming from the
left and right child of a node in the tree. We then pick the smallest point from
the bottom of the lists of either L0 or L1 and put it into a new list Lv, where v is
the parent of the two lists. If the point chosen was from L0 or L1 we put a 0 or
1 respectively into the next position in the L list. This is done until both lists are
empty. This continues all the way to the root of the tree. Mi is the number of 1’s
in the binary representation of the index i. This is used to be able to look up the
number of set bits in a variable without having to calculate it first.

C also consists of two parts at each index i. The first part λCi of size λ bits is
equal to 2i and is only defined for i ∈ [0, λ − 1] the rest is left black. The second
part MCi of size µ is equal to the total number of 1’s in the bit representation of Λ
from Λ0 to Λi. This is used to be able to look up the total number of points which
has come from a right child up till Λi.

To make it possible to fit the two parts into one variable it is required that the
word size w is equal to

w ≥ λ + µ = dlog2 ne + 2(1 + blog2 λc) = dlog2 ne + d2 ∗ log2 log2 ne + 2 (5.1)

To give an example of how the data structure works Figure 5.1 illustrates the
data structures generated given the input points P and Figure 5.2 shows how the
values for Λi were created.

P={(24,34),(29,24),(31,36),(30,27),(27,31),(26,28),(32,25),(23,26),(33,21),(36,35),

(21,30),(22,32),(34,33),(35,22),(25,29),(28,23)}
λ = 4, µ = 6
X={21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36}
Y={30,32,26,34,29,28,31,23,24,27,36,25,21,33,22,35}
B={0101 000000,1010 000001,0110 000001,0101 000010,1001 000001,1001 000010,

0101 000010,0101 000011,1011 000001,0100 000010,1100 000010,0110 000011,
1101 000010,1010 000011,0000 000011,1011 000100}

C={0001 000010,0010 000100,0100 000110,1000 001000,0000 001010,0000 001100,
0000 001110,0000 010000,0000 010011,0000 010100,0000 010110,0000 011000,
0000 011011,0000 011101,0000 011101,0000 100000}

Figure 5.1: An example of the data structure generated given the input points Pg

5.2 Algorithm

A query Q = [x1, x2] × [y1, y2] is split up into 4 sub queries:
Q1 [x1, cut[×[−∞, y2]
Q2 [x1, cut[×[−∞, y1[
Q3 [cut, x2] × [−∞, y2]
Q4 [cut, x2] × [−∞, y1[
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Figure 5.2: The merge sort of the points PG and the resulting values for Λ

This gives that a query is Q = Q1 + Q3 − Q2 − Q4. Here cut is the lowest common
ancestor in the X tree which spans x1 and x2. In the following we will consider a
query q to be one of the four described sub queries and xq and yq to be the input
corner coordinates and cut to have been given. cut can initially be calculated by
following a search for x1 and x2 in X and cut will be where the searches separate.

We start by defining some functions to be used by each query. There is a
function One(pos) which calculates the number of set bits in Λ up till bit number
pos. This is done by looking at MCi for i = pos/λ which contain the number of
ones in Λi up till Bi−1. We then mask out the bits after pos in the λ part of Bi

resulting in a value z. To avoid having to count the number of set bits in z we look
this up in Mi for i = z which contains the number of set bits in z. Since all we do
in this function is arithmetic on O(1) different values in RAM this function runs in
O(1) time.

The second function Newpos is used to calculate the position of a bit when
going from a node v to its child u. That is we calculate the pointers from a list Lv

to its child lists. It takes four arguments:

• dir indicates if we should go to the left or right child.

• block the position of the first bit in Λi for the node v.

• pos the position of the bit of interest in Λi.

• width the number of leaves of the subtree rooted at node v.

The function works in two different ways depending on dir. If we go to the left
we return pos − n + One(block) − One(pos). That is we go from the point of
interest and down one level in the tree. We then need to align the position up by
subtracting the points coming from the right child of v. If we go to the right we
return block−n+width/2+One(pos)−One(block). That is we go down the tree one
level but from where the node v started ending at the beginning of the left child.
We then go to the right child and finally aligning it up. This function also only do
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some arithmetic operations and call a function twice that works in O(1) time so it
also runs in O(1) time.

A third function Cum calculates the sum of the positions in Λ we have visited
when taken a child going away from cut in X. It takes four arguments:

• cut is the same as cut mentioned above.

• init is the position in Λ of the point with y value at most qy at the root node.

• path is the path down X to locate qx. Stored using one bit for each level
where 0 is left and 1 is right.

• dir is the direction away from cut. 0 is left and 1 is right.

We use some variables. pos is the position in Λ that we are currently at. Initialized
to init. block is the beginning of the list Lv in Λ. It is initialized to be the position
starting position of Lr. cur is the size of Lv For each level l in X we do the follow-
ing. If the bit for the current level in path is the same as dir we add the result of
Newpos(1-dir,block,pos,cur) to the result returned. pos is updated to be the position
in Λ of the child as indicated by path in the level below of the point with at most
an y value of qy. cur is halved and block is set to point to the beginning of the list
of the child node in Λ. This function calls Newpos one or two times at each level
of X for a total of log2 n levels giving a total running time of O(log2 n).

To make a sub query we first find the paths Px and Py down X and Y for the
query values xq and yq. For each index i in Pxi and Pyi we store the path as a bit
where 0 represents a left turn and 1 represents a right turn. The number the bits
of Px and Py gives are basically the rank of the point, sorted with respect to x or y
respectfully, with coordinates at most that of the query. Cum is then called on each
of the four queries subtracting the two lower queries to get the results.

Cum does not actually give the number of points in a query but rater a sum of
positions visited in Λ. To explain this we have to take a look at a level l in X. For
a top and a bottom query on the same side the contribution to Cum of the position
post and posb at a level l when subtracted is actually the number of points in the
interval we are interested in. Not the sum of positions. Fortunately the order at
which we add and subtract numbers does not matter.

So the total time for running the four queries are O(4 · log2 n) = O(log2 n).

5.3 Implementation

The Pascal code for the algorithm is written in the article [12]. So what had to be
done to implement it was just to rewrite it in C++. This code with optimizations
can be found in Appendix C. Some optimizations were made to speed up the code.
The main speed up done is in the construction algorithm on the code meant to count
the number of set bits in a variable used to calculate Mi. The code in the paper runs
in time O(number o f bits in index) which basically adds an extra O(log2 n) to the
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construction time because each index in Mi contains log2 n bits. This can be done
more efficient as described in Appendix B making that part run in constant time.

The implementation requires that the query lies within the bounding box of the
input points. Otherwise the result might be wrong. To get around this a point can
be placed at plus and minus infinity or just simply checking if the query falls within
the bounding box and if not returning some kind of error. Another limitation to this
implementation is that it is required that the number of input points is a power of
two. This is simply solved by placing the remaining required points at plus infinity.

Since the B and C array consists of two parts the use of 32 bit integers limits
the input size to n ≤ 221. This is because at this point, see Equation 5.1, the needed
word size is

w = λ+ µ = dlog2 221e+ 2(1 + blog2dlog2 221ec = 21 + 2(1 + blog2 21c = 31 (5.2)

So to be able to handle larger input sizes it is necessary to use 64 bit integers. This
unfortunately, doubles the memory size required. This could of cause be reduced
slightly by splitting up the array into its two different parts. Then it would only
be necessary with a 32 bit and a 16 bit array saving 16 bit. A better solution is
however available as described in Section 5.4.

5.4 I/O analysis

This algorithm is designed to work well in the RAM model without consideration
to the other models. In this section we analyze the number of I/Os required to
handle queries in the cache oblivious model.

The algorithm starts by finding the path down the binary tree of X and Y . This
is done in O(log2 N) I/Os. One I/O for each level in the tree. The only function in
the main loop which accesses the data structures is the function One. This function
makes a memory accesses at three different locations each time it is called. This
gives us O(1) I/Os. When going down through the tree we call One on pos and
block at each level in the tree resulting in a lookup in both B and C in the corre-
sponding position of pos. The difference in pos between one level and the next is
approximately n bits. This is because for a given point as indicated by pos and the
same point in the level below almost all the other points are also present in Λ. This
gives that we can not use what we have already read from memory at the next level.
This results in that we have to spend O(1) I/Os at each level for a total of O(log2 N)
I/Os for each query.

Implementation wise the code could be made more efficient with respect to
I/Os. To calculate the path down the X and Y tree a structure like the van Emde
Boas layout [24] could be used. This would give O(logB n) I/Os instead of the
O(log2 n). In the function One the table lookup in Mi of the number of set bits in
a number could be computed when needed saving an I/O at the cost of some few
calculations. This will also save some time in the construction part since we do not
have to precompute all of Mi. The λCi part can also be left out since that is just
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2i. This makes it possible to merge Λ from array B and MCi from array C into one
array saving one array or the extra space in the arrays could be used to increasing
the possible input size to 232 without increasing the existing size.

The algorithm will still run in O(log2 N) I/Os but should perform better in
benchmarks. Hence λCi and Mi is removed in the implementation used when run-
ning the benchmark tests in Chapter 10 to make it slightly faster and to be able to
use more than 221 points without having to increase the memory size needed per
point.

So it can be seen that this algorithm does not perform as well in the exter-
nal memory model where we have a structure like the CRB-tree [16] described in
Section 6 which answers queries in O(logB N) memory transfers.



Chapter 6

Range Counting in the External
Memory Model

This section describes the external memory range counting algorithm for CRB-
trees by [16] Agarwal et al. It is based on the range counting algorithm by Chazelle
[12] described in Chapter 5 which is designed to work in the RAM model. Based
on the assumption that the word size is dlog2 ne it uses O(n) space and performs
queries in O(logB n) I/Os. This is the fastest known algorithm for range count in
the external memory model1. The structure can be constructed in O(n logB n) I/Os.

This algorithm also differs from the way the general algorithm described in
Chapter 4 split up the query. For a query Q = [x1, x2] × [y1, y2] we, as in Chapter
5, count towards the lowest common ancestor of x1 and x2 in the search tree X. We
also take advantage of the knowledge of B and therefore use trees with nodes of
degree B.

6.1 Data structure

The algorithm uses 3 structures. A B-tree [8] Y of the points P sorted with respect
to the y coordinates2 . X is also a B-tree of the points P but sorted with respect to
the x coordinates3 . X also contains a secondary structure Σv at each internal node
v of X, see Figure 6.1. Σv consists of two arrays. A child index array CIv and a
prefix count array PCv. CIv is the basic list Lv of which child a given point comes
from and PCv keeps track of how many points from each of the different children
of v we have passed at specific intervals along PCv.

Let v0 to vB−1 be the children of v. CIv’s size is equal to the number of leaves
of v. The points are placed in CIv sorted by increasing y value. Each index in CIv

contains a number from 0 to B−1 of which subtree the point is a leaf in. Each index
is stored using log2 B bits. CIv is split in chunks of size µ = B logB N points so that

1As of 26/4/06
2In the article [16] this structure is called Ψ but is renamed to keep the notation consistent.
3Originally called T .
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Figure 6.1: The secondary data structure Σv on X given the input points PG

they each take up B space. For each chunk i the number of points originating from
each of the B different subtrees including those points from previous chunks are
stored in PCv. This is done so that PCv[i, j] contains the sum of points in subtree j
contained in the chunks up to and including chunk i.

6.2 Algorithm

A query Q = [x1, x2] × [y1, y2] is computed by traversing T from the root down to
the leaves containing x1 and x2. Along the path the count is calculated by use of the
secondary structure Σv of the nodes visited. Let v be the node of the nearest com-
mon ancestor which contains x1 and x2 at the root. Let Pv be the points contained
in the subtrees rooted at v and Nv be the number of points in Pv. Let vλ and vρ be the
children of v which contains x1 and x2 respectively. The query is then split up into
two parts. The number of points at the leafs of the children inbetween vλ and vρ
can be calculated using Σv. The remaining parts can be done by a recursive call on
vλ and vρ. To calculate the count for child j we need to maintain two values αv and
βv. They are respectively the rank of the point just above y1 and just below y2 of
the points in Pv Let ϕ( j, r) , for 0 ≤ j ≤ B − 1 and 1 ≤ r ≤ Nv, be the number of
points with rank at most r that belong to Pv j . Then the count of points in between
y1 and y2 of a child v j can simply be calculated as ϕ( j, βv) − ϕ( j, αv). αv and βv

can initially be found by a search in Ψ. Maintaining them is simple since αv j is
the rank of first point in Pv belonging to Pv j with y coordinate at least y1 or more
precisely αv j = ϕ( j, αv). The same also count for βv j = ϕ( j, βv). So the calculations
needed at each level is to calculate ϕ(vλ, αv), ϕ(vρ, βv) and ϕ(v j, αv) and ϕ(v j, βv)
for λ ≤ j ≤ ρ. This can fortunately be done by 4 I/Os. Suppose r = µa + c for
a ≥ 0 and 0 ≤ c ≤ µ. Then
ϕ( j, r) = |{k | k ≤ r and CIv[k] = j}|

= PCv[a, j] + |{k | µa < k ≤ r and CIv[k] = j}|.
Let d and e be the chunks in CIv just before where αv and βv points respectively.
Then in one I/O each we can calculate the following PCv[d, 1], ..., PCv[d, B],
PCv[e, 1], ..., PCv[e, B], CIv[µd + 1], ...,CIv[αv] and CIv[µe + 1], ...,CIv[λv] giving
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us the results we need.

6.3 Implementation

An implementation4of the algorithm has been done by one of the authors of the
article [16] Sathish Govindarajan. In our experiments we used this code with some
few changes. Some more benchmark related code was added and changed the
header files to reflect the use of TPIE for Linux instead of BSD. TPIE is a software
environment (written in C++) that helps facilitates the implementation of external
memory algorithms. For more information about TPIE see www.cs.duke.edu/TPIE/.

4The implementation uses some specific calls to TPIE which are not present in newer versions
of TPIE. So TPIE version 082902 should be used. TPIE version 082902 only works with gcc 3.3 or
earlier and not on 64 bit computers.
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Chapter 7

Range Counting in the Cache
Oblivious Model

In this section a range counting algorithm in the cache oblivious model is pre-
sented. This algorithm is also presented in [5]. The data structure is inspired by
a combination of [19] to make the L lists and the van Emde Boas layout [24] to
make it cache-oblivious. The use of bit compression comes from the reading of
articles [12] and [16] describing the algorithms in Chapter 5 and 6.

7.1 Data structure

The data structures used by this algorithm consists of three arrays. Two arrays
containing points which make up two separate search tree for searching in the
points with respect to either the x or y coordinates. The points in them are arranged
according to the van Emde Boas layout in order to make it possible to make efficient
searches in the cache oblivious model. It is build using implicit pointers in order to
save space at the cost of CPU time using the technique described in [11]. In stead
of following pointers around the tree we calculate the position in the van Emde
boas layout of a point by the recursive equation

Pos[d] = Pos[D[d]] + T [d] + (i AND T [d]) · B[d] (7.1)

where D[d] is the dept of the root of the corresponding top tree, T [d] is size of the
corresponding top tree, i is the position in a BFS of the tree and B[d] is the size of
the this bottom tree. i AND T [d] is the bitwise and of the two values. At the root
Pos[1] = 1, d = 1 and i = 1. D[d], T [d] and B[d] can be precomputed given the
height of the tree. The third array contains the list Lv of the points at each node v.

7.2 Algorithm

Given a set S of N points in the plane we do as follow. The N points are stored at
the leaves of a tree T with respect to their x coordinate in increasing order from left

27
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to right. At each node v of T a list Lv is associated with it containing all the points
of the leaves rooted at v. Lv is sorted with respect to the y coordinate. With each
point pi in Lv we store three additional things. Two pointers left(pi) and right(pi) to
the topmost points pl and pr in Lleft(v) and Lright(v) respectively, which has a y value
of at most y(pi). And a number leftsum(pi) whose value is the number of points in
Lleft(v) whose y value is at most y(pi). At the root vr we have a binary search tree
over Lr. The tree is sorted with respect to descending y. This representation takes
up O(N log(N)) space since each element is present at each level in T . In Figure
7.1 the structure of T is shown.
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Figure 7.1: The structure of T without any memory layout of the points PG

To make a query Q = (−∞, xr]×(−∞, yr] we first perform a search in the binary
search tree over Lr to find the topmost point pi in Lr whose y value is at most yr.
We then make a top down traversal of T down towards the right most point whose
x value is at most xr. At each node v in T visited during the traversal we follow
the left(pi) or right(pi) pointer in Lv from the point pi down to pl or pr in Lleft(v) or
Lright(v) depending on if we go to the left or right at v. Whenever we go down to
the right child we also add the value leftsum(pi) to the result. If the point reached
at the bottom of T is within Q then we add one more point to the result.

To show that this works we will have to prove that if pi is the topmost point in
Lv with y value at most yr then left(pi) and right(pi) are the topmost points in Lleft(v)
or Lright(v) with y value at most yr. This is true since Lleftv

⊆ Lv and Lrightv
⊆ Lv for

all nodes v.
It can easily be seen that the running time of a query is O(log N), since we use

O(log N) time to search Lr and O(1) time for each of the log N levels in T .
To achieve a cache oblivious algorithm we have to consider two different ideas.

The first idea is a recursively defined layout based on the van Emde Boas layout
for the Lv lists. The second idea is to ensure locality of reference during a search
by adding redundant information. This is done by adding dummy points to each Lv

list to get new lists Lv ⊇ Lv. We will further ensure that Lr = Lr and Lv ⊆ Lparent(v).
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The pointers, at each point pi in Lv, left(pi) and right(pi) still points down to pl

and pr in Lleft(v) and Lright(v) respectively also if it is a dummy point. For the value
leftsum(pi) we do not consider the dummy points in Lleft(v). Since Lv ⊆ Lparent(v)
and Lv ⊇ Lv this does not change the correctness or the time complexity of the
algorithm described above.

7.2.1 Memory layout

The cache-oblivious structure consists of three structures X, Y and L. The struc-
tures X and Y are binary search trees based on the van Emde Boas layout of the base
tree T and Lr respectively. This insures that the query time for those structures are
O(logB N) memory transfers. L is a recursive layout of the Lv lists inspired by the
van Emde Boas layout.

In the following we will let α denote a constant whose value is 1 at the moment.
But when going on to reduce the size to linear space in Section 7.2.3 the value will
be α = dlog2 Ne1. We define the recursive layout using a triple < C, I, p >. C is a
subtree of T of height h rooted at node v, I is an y-interval and p is a dummy point
to be included in all lists Lu for nodes u ∈ C. We require that p is the lowest point
in I and that we have that |Lu ∩ I| ≤ α2h where h is the height of C. For the root
we have that C = T , I is the interval (−∞,∞) and p is the smallest point in S with
respect to the y value.

The layout of < C, I, p > is based on the van Emde Boas layout. The subtree
C of height h rooted at node v is split up into s = 2bh/2c + 1 new subtrees C0...Cs.
C0 is the same subtree as C but only the top bh/2c levels. C1...Cs are new subtrees
rooted at the leaves of C0 going from the left to the right. These are of height dh/2e.
The layouts of C0...Cs are stored consecutively in memory. The layout of each C i

is also stored recurcivly , see top Figure 7.2, until we have a tree of height 1. For
each Ci rooted at vi we split I into ni = |Lvi ∩ I|/(α2h/2) new intervals I1

i ...I
ni
i of size

|I1
i ∩Lvi | ≤ α2hi for the first and |I j

i ∩Lvi | = α2hi for 1 < j ≤ ni. The recursive layout
for each Ci is then < Ci, I1

i , p > for the first and < Ci, I
j
i , p

j > for 1 < j < ni where
p is the original point p from < C, I, p > and p j is the lowest point in I j

i ∩ Lvi .
The space required for X and Y are O(N) [24] and for L, not including the

dummy points, the space required is O(N log2 N) since each point p is present in
the Lv lists for each of the log2 N ancestors of the leaf containing p. What remains
to be shown is that the number of dummy points introduced is O(N log2 N).

Lemma 1 The total number of dummy points introduced in the recursive layout is
O(N + (N log2 N)/α).

Proof. For the initial case in the outermost recursion we add the same dummy
point p, the smallest point in I, to each node of T for a total of N times. For a
recursive layout of < C, I, p > where we split C in C0...Cs subtrees and Ci has ni

1In the article [5] it is blog2 Nc but it should be dlog2 Ne since the height of the tree would be
dlog2 Ne
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recursive layouts we introduce n − 1 ≤ |Lvi ∩ I|/(α2hi ) new dummy points into Lu

for each node u ∈ Ci. We charge them to the points in Lvi ∩ I so that we charge
each point O((|Ci| · |Lvi ∩ I|)/(α2hi ) = O(1/α) dummy points, where |Ci| ≤ 2h

i .
For any given point p it can be seen that it will only appear in the lists Lu of the
nodes u which are ancestors to the leaf storing p. This gives that there are a total
of O(

∑log2 log2 n
i=0 2i) = O(log2 n) recursive layouts that a point p is present in. So

for each point p we charge it for O((log N)/α) dummy points or for a total of
O((N log N)/α) dummy points. 2

It can be seen that a similar proof can be made that the number of base cases
in the recursive layouts, number of lists Li, is O(N + (N log2 N)/α). Every time we
have made a dummy point we have also made a list.

Lemma 2 The total number of base cases introduced in the recursive layout is
O(N + (N log2 N)/α).

To get the query performance we first observe that during a search in a layout
< C, I, p > we will stay inside the nodes of C when using the left(p) and right(p)
pointers. This is because all nodes in C contains dummy points with min(I) = y(p).
The second observation is to note that the size of < C, I, p > is O(|C|(1 + |Lv ∩ I))
where v is the root of C. This is because p and each point in Lv ∩ I can at most
be added once to the lists Lu for u ∈ C. This then gives that if C is of height h the
size of < C, I, p > is O(α22h). So if C is of height 1

2 log2 B and α is as previously
assumed 1 the size is O(1) blocks. So we can search through a layout < C, I, p >
with C of height 1

2 log2 B in O(1) memory transfers. So if the complete layout
consists of smaller layouts of heights between 1

4 log2 B and 1
2 log2 B each fitting

into O(1) blocks we can traverse the complete layout in O( log2 N
(log2 B)/4 ) = O(logB N)

memory transfers.

Theorem 1 There exists a cache-oblivious data structure for storing N points in
the plane using O(N log2 N) space, such that a four-sided range counting query
can be answered in O(logB N) memory transfers.

7.2.2 An alternative layout

There exists a slightly different way to layout the memory than the one described
in [5]. This layout is inspired by some of the early works while making [5] and can
still be seen in Figure 8 of the paper.

Given the triple < C, I, p > we first split the interval I into n = |Lv ∩ I|/(α2h)
new intervals I1...In . The subtree C is again split up into s = 2bh/2c+1 new subtrees
C0...Cs with C0 being of heightbh/2c and the remain subtrees C1...Cs roted at the
leaves of C0 being of height dh/2e. Each interval I j is spread out over all the
subtrees Ci for 0 ≤ i ≤ s. The smallest point p j in I j ∩ Lv is added as a dummy
point in each of the subtrees Ci. For a difference between the two different layouts
see Figure 7.2 and for performance differences see Chapter 10.
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C0,1 C0,n0 · · ·
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Figure 7.2: The normal memory layout on top and the alternate memory layout at
the bottom.
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Figure 7.3: The normal memory layout of L with α = 2 to better illustrate the
layout of the points PG.

7.2.3 Linear space

In this section we will continue to work on the memory layout of 7.2.1 to make a
structure of size O(N) memory words using bit compression. We will assume that
the word size W ≥ log2 N and that we can perform shifts, addition, multiplication
and boolean operations in O(1) time.

In this section we will let α = dlog2 Ne. This gives us that by Lemma 2 we
now only introduce O(N) dummy points and that the O(N log2 N) points in the
layout of the Lv lists now consists of O(N) chunks which in the base case are of
size O(log2 N).

Lemma 3 Each chunk of a list Lv contains left and right pointers to points in at
most O(1) different chunks.

Proof. Consider a chunk c of Lv with root at node v with a child u. Let I be the
y-interval spanning the chunk c and v is a node of a top chunk C0 and u is the top
node of a bottom chunk Ci. The dummy points in c insures that all pointers to Lu

stays within I. Since u is a top node in Ci all the points in Lu∩ I are partitioned into
chunks of size α except the last chunk which is of size at most α plus a possible
dummy point. Because the O(α) pointers in Lv all points to consecutive points in
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Figure 7.4: The alternate memory layout of L of the points PG

Lu it follows that at most O(1) different chunks in LU can at most be hit from a
chunk in Lv. 2

What remains to be described is how to make each of the O(N) chunks fit into
O(1) space so that we get a total size of O(N) words.

A pointer from a chunk to an other chunk is stored as a pair < chunck, offset >
where chuck is the chunk being pointed to and offset is position of the point being
pointed to in its chunk. For each chunk we store three values, left(p0), right(p0)
and leftsum(p0) where p0 is the smallest point in the chunk. For all of the re-
maining points p1, p2, ... in the chunk we store three bits. ∆left(i), ∆right(i) and
∆leftsum(i) where ∆left(i) = left(pi) − left(pi−1), ∆right(i) = right(pi) − right(pi−1)
and ∆leftsum(i) = leftsum(pi) − leftsum(pi−1). The values ∆left(i), ∆right(i) and
∆leftsum(i) can be stored in O(1) space since there are at most α points in each
chunk each requiring 3 bits for a total of at most 3 words. We also stores explicit
pointers for left(pi) if left(pi) and left(pi−1) points to two different chunks. There
are at most O(1) such points as is shown in Lemma 3. The same explicit pointers
is done for right(pi).

If we have a pointer < c, i > to a point p in a chunk c we can calculate
leftsum(pi) as leftsum(po) + ∑i

j=0 ∆leftsum(i). To calculate left(pi) we find the
highest explicit pointer left(pk) =< q, o > where k ≤ i and we then have that
left(pi) =< q, o + (

∑i
j=0 ∆left( j) −∑k

j=0 ∆left( j)) >. The same is done to calculate
right(pi).

To calculate ∑i
j=0 ∆leftsum(i),∑i

j=0 ∆left( j) and ∑i
j=0 ∆right( j) we need to have

a function bitcount(w, i) which returns the number of bits equal to 1 in the word
w from 1 ≤ i ≤ |w| and is done in O(1) time. bitcount can either be calculated by
hardware 2 or done with the help of bitmasking, shifting and some arithmetic. For

2Processors like the Itanium http://www.nersc.gov/vendor docs/intel/c ug/comm1059.htm and
the Cray http://ed-thelen.org/comp-hist/vs-cray-res.html supports this in the hardware
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64 bit words it can be done like [7] :

w -= (w>>1) & 0x5555555555555555;

w = ((w>>2) & 0x3333333333333333) + (w & 0x3333333333333333);

w = ((w>>4) + w) & 0x0f0f0f0f0f0f0f0f;

w *= 0x0101010101010101;

return w>>56;

See also Appendix B for more information on bitcounting.
We have argued that we can compress a chunk into O(1) space and that it can

be transversed in O(1) time. To bound how long time it takes to make a complete
traversal we note that if we have a chunk < C, I, P > with a root v it satisfies that
|Lv ∩ I| ≤ α|C| which gives us that the total size is O(|C||Lv ∩ I|/α) = O(α|C|2/α) =
O(|C|2) which we have already argued in 7.2.1 gives that we can make a search in
O(logB N) memory transfers.

Theorem 2 There exists a cache-oblivious data structure for storing N points in
the plane using O(N) space, such that a four sided range counting query can be
answered in O(logB N) memory transfers.

7.3 Implementation

In the first part of this section the implementation of the X and Y trees are de-
scribed. Then in Section 7.3.1 it is described how the basic O(N log2 N) data struc-
ture is implemented. In Section 7.3.2 it is described how the linear data structure
is implemented and how other improvements are made.

The implementation basically consists of 5 different parts. The main part which
is managing it all. A class for making Cache-oblivious search trees using the van
Emde Boas layout and implicit pointers used for the X and Y trees. Then a class
for making the lists with dummy points, left and right pointers and leftsum count.
To make those two classes work an implementation of a cache oblivious funnelsort
[15] was used which was found on the internet3 and adapted for use in this imple-
mentation. Finally there is a file defining various structures, classes and operators
used through out the code.

To make it possible to easily get the data structures again for later use, espe-
cially when using small amounts of RAM, all the data structures are stored using
mmap [17] and using no pointers only index’s into arrays. The reason for this is
to make it possible to save this structure for later use without having to generate it
all again. This is helpful when testing using small amounts of RAM to get a feel
of how the structure performs with respect to memory transfers. Because other-
wise the time taken to generate this structure with small amounts of RAM would
be considerable. A requirement to make it to be possible to load again is that no
pointers to other memory locations are made. This is because it is not likely that

3See http://www.diku.dk/forskning/performance-engineering/frederik/ for more information
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any given piece of data would be located at the same memory location at a later
time. To avoid this all pointers point to an index of an array.

The funnelsort code was basically used as it was. It has been modified slightly
so that it can compile with never versions of gcc. The function kSize has been
moved to its own separate .cpp and .hpp file to fix a problem with multiple defini-
tions of the function when linking it all together.

The construction of a search tree consists of 3 steps. First sorting the points
with respect to either the x or y value. Then a scan through all the points marking
the points position in a van Emde Boas layout. This is done by simulating a Dept
first traversal of the tree starting at the bottom left. Points are assigned its position
only when traveling up to the point in the tree. This would follow the points in
its sorted order. The position in the van Emde Boas layout can be calculated from
the technique described in [11] getting the position in the tree from the traversal.
Finally the points are again sorted but this time with respect to their position in the
van Emde Boas layout. The space for the trees are allocated using mmap.

There are two functions used for making querying the trees. The first one find
is used for finding the point in Lr at which to start from. This is done by a standard
binary search. Returning the largest point which is at most as big as the query
point. The second function path is used for calculating the path down X, returning
the result as an array of integers. This is also done by a standard binary search
down the tree remembering the path down. If during the path down the actual
query point is visited the right child is chosen. The coordinates of the leaf at the
end of the path is also returned at the end of the array.

7.3.1 Constructing L

The creation of the structure L was the hardest one. It works by recursing on the
triple < C, I, p > so as to create the layout of the Lv lists. For each recursion the
input is: the triple < C, I, p >, information about Lu of the top nodes of the child
subtrees of C and some information about where it is in the X tree. It returns the
information it has generated about Lv where v is the top node of C. It works in two
different ways depending upon if the height of C is one or otherwise.

Before the recursion starts a bit of setup has to be done. All the lists are kept
in a single array yp which is of size c ∗ n ∗ (log2 n)/8 for some constant c which
depend on the type of lists generated and the term (log2 n)/8 is the word size. The
size is an overestimation since no exact result can be calculated because it depends
upon how the size of the intervals are distributed which is only known when the
actual lists are made. The array is allocated using mmap. There is a structure
treeinfo which is used to keep track of the progress of the lists at each node in
X. The structure is indexed according to the number of the node in a breath first
search. This stores where we have reached in leftsum and how far down in the
lists of Lleft(v) and Lright(v) we are at a node v in the recursion. A list of the leafs
is initialized. This list is used to pass to the recursion as the information of what
is beneath the complete tree. A sort is then made with respect to y-coordinate in
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descending order to form the initial I over the complete interval spanning all the
points.

Then the main recursion starts which consists of two branches. It depends upon
if the height of the subtree is 1 or something else. In the case where the height is
different from 1 the following pseudo code explains what happens if we do as in
Section 7.2.1

1 Split the points in I up into the subtrees they come from

2 Add a dummy point where necessary

3 Allocate structure to be filled by bottomtrees and passed to

the toptree

4 Forall subtrees

5 Forall intervals

6 Call recurcivly on the interval for the subtree

7 Forall intervals of the toptree

8 Call recurcivly on the interval

or if we do as described in Section 7.2.2

1 Forall intervals

2 Split the points in the interval up into the subtrees they

come from

3 Add dummy point where necessary

4 Allocate structure to be filled by bottomtrees and passed to

the toptree

5 Forall subtrees

6 Call recurcivly on the interval for the subtree

7 Call recurcivly on the interval for the toptree

In the other case where the height is 1 the following is done:

1 Initialize information with respect to where we have reached in

the child lists

2 Forall(points p in I)

3 insert left(p_i), right(p_i) and leftsum(p_i) into yp

4 If(p==left(p_i)) update left(p_i) to the next and

decrement leftsum(p_i)

5 If(p==right(p_i)) update right(p_i) to the next

6 Save information of where we reached

yp is filled from the end to make the lists be inserted into the correct positions. To
make it possible to fill it from the end a global variable is kept. The information
of where it has reached for this node in the X tree is stored in a global array called
treeinfo indexed by the nodes position as it is visited in a breadth first search.

To make queries, two additional functions are used. One called bettermatch
which is used to find the correct point to report in the case that several points have
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the same coordinates. This should not give rice to additional I/O since the input
point is already in memory and hence also the points surrounding it from where the
correct point is found. The second function is count, the one doing the counting.
This is a very simple function. It follows the path down X as indicated by what is
returned by path. It starts at Lr at the point given by bettermatch. From a point p it
jumps forward in yp as indicated by either left(p) or right(p). If we go to the right
increments the count by leftsum(p). At the bottom of the tree it is checked if the
point stored at the end of path is inside the query and if so the count is incremented
by 1. Finally the count is returned.

The main part is straight forward. First the X tree is made, then L and finally
the Y tree. Then the query is split up into the four subqueries. Each query is then
made by first locating the point in Lr from the Y tree. Then finding the path down
the X tree. And then finally calculating the count by using L.

7.3.2 Compressing L

To compress L the interval lists are shrunk into one unit. This unit consists of the
usual left, right and leftsum but only for the first element. Then there are 2 variables
bleft and bright which are treated as bit vectors in which each of the remaining
elements is represented by one bit. A 1 bit if it should go one step further into
its child’s bitrepresentation and 0 is it should not. There is no bleftsum since it
is identical to bleft. Then there are two more values offl and offr to indicate an
additional offset from where to count from in the child. Finally there are cutl, cutr,
cutoffsetl and cutoffsetr which are used in the cases where the child interval are
split up into 2 subintervals where these variables then points to the second interval.
This can happens when an interval points down into an other interval which has
been split into two subintervals where the splitting was done at least 2 steps further
up into the building recursion of L from when the intervals were first split.

The construction of is quite simple when we first have the code for the original
construction of L. When we make the intervals at height 1 we first initialize all
the variables. That is basically just to make it point down to the first left(p i) and
right(pi) that it would point down to in the uncompressed version. We then goes
through all the points in the interval. When ever we would point to a new lower
element in the child lists we just set a 1 bit at the corresponding place for the point
in the bit vector for either bleft or bright depending on weather it was the left or
rigth child. If we go to a new child interval we set the cut.. variables accordingly
to point to this interval as well.

To make the queries we do the same as we have done before. But now we also
have to count the preceding bits in the bit vector and add this to the offset to jump
into the correct place in the bit vector below as well as subtracting the number of 1
bits in bleft from leftsum.

It can also be seen that bright is equal to the bitwise complement of bleft which
then makes it possible to skip one of them.

To further reduce the size of L all the variables can be saved into a bit array
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where only the relevant number of bits in each variable is saved. To construct what
appears as a bit array some functions to save variable length of bits into an array of
int’s was made. The functions support bit lengths of upto 64 bits4. The bits wrap
around the int’s so as to not waste any space.

Since it is now possible to only store the needed bits of a variable it now makes
sense to make the values of variables as small as possible so as to store less bits. We
can observe that the index i in the array of where a list is stored is near to where the
left pointer points to and that the left and right pointer is even closer to each other.
So an obvious thing would be to only store the difference |i − left| and |left − right|.
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Figure 7.5: The graph shows the various sizes of T in words of the various imple-
mentations made. See Section 10 for more information of the different implemen-
tations.

When looking at the consumption of space for making the structure L at each
level of the tree, see Figure 7.6 looking at the binary compression, it is quite no-
ticeable how much space is used by the levels at the bottom compared to the rest
of the levels. This is because the number of points in each of the lists at those
levels are small compared to at other levels while it is still necessary to save the
same amount of information about pointers and leftsum. To minimize the space
consumption of those levels we can when making the first recursion chose to di-
vide the bottom subtrees so as to give them a predefined height. Because then it
is possible to precalculate all the pointers and leftsums in the entire bottom part of

4On a 32 bit architecture 64 bits is the max length of a variable. But on a 64 bit machine 128 bits
variables are possible and the functions can easily be changed to support that.
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normal binary compressed structure as described in Section 7.2.3. Reduced bottom
is the structure described in Section 7.3.2

the tree so that the only information necessary to store is bleft in each of the list.
This is possible because the size of each list then just depends on the height from
the bottom. In essence we make a lot of small versions of the structure described
in Chapter 5 but storing it using the van Emde boas layout.



Chapter 8

Comparing the three different
algorithms

Since the algorithms described in the previous three chapters are based on the same
idea as described in Chapter 4 they share some similarities but also have some
differences based on the model they are made for. In the following some of those
are described.

The search trees for X and Y differs to reflect the different models for which
they are developed. Binary search tree for RAM, B-Tree for external and van Emde
Boas layout for the cache model.

To achieve the linear size data structure they all use the same technique. Each
piece of information about a point is stored using log2(degree of nodes) number
of bits. They then group the points together in groups together with some extra
information necessary to make meaning of the compressed information. They then
make use of the assumption that the word size is O(log2 n) bits so that each group
of points take up a fixed amount of space.

The real difference in how the algorithms work is in the organization of how the
memory of the secondary structure is stored. The RAM model just stores the data
consecutively in memory not necessarily storing all information about a specific
point in the list at the same location. This results in many apparently random reads
in memory when performing queries which is fine when working only in main
memory but is very inefficient when working outside main memory. The external
model uses the knowledge of the underlying system to make the wide fanout of the
trees resulting in shorter paths of length dlogB ne instead of the usual dlog2 ne down
the trees. This gives fewer lists to visit and hence the reduced number of I/Os. In
the cache oblivious model we do not have this information about the system. So
here all information on a list is stored together and the possible lists to visit next
is stored as close to as possible using the van Emde Boas layout. This then make
it so that each time we make an I/O we get some extra information along as well
containing the lists that we are going to visit after the one currently at.

As an example of the similarities between the algorithms we can take a look
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at Figure 5.2, 6.1 and 7.4. The second last line of bits in Figure 5.2 is the same
as the bits for

∑

v0 ...
∑

v3 in Figure 6.1 which are the same as the bits of bright, as
described in Section 7.3.2, of the lists L22, L26, L30 and L34 in Figure 7.4



Chapter 9

Experimental setup

In order to make it possible to compare the results all the timing was done in the
same way in the three programs. To get the process time used the standard C++
function clock() was used. This function has a resolution of 10ms making it nec-
essary to make several queries in a row to get useful results but this does also help
giving a better average. It only counts the time that the program spends running on
the CPU. This does not include the time spent doing I/Os . To get some sort of idea
of how much time is spent including I/O time the function gettimeofday is used.
This gives the wall clock with a resolution of 1 micro second. Using this time is
however not the most reliable since the time other programs have spent doing cal-
culations or doing I/Os is also included in this time. So the number of background
processes has to be minimized. In the file /proc/self/stat the number of major and
minor page faults can be found. Major page faults is the number of times that the
OS has had to swap memory from the hard drive into the main memory.

To make the test programs run out of main memory fast so that they start swap-
ping the linux kernel was forced to only allocate a total of 41 MB memory. This
is done by the kernel boot option mem = 41m where the kernel reserves 9MB of
memory leaving 32MB free for programs to use.. The data structures are however
generated with max amounts of memory to save preprocessing time and then stored
on the hard drive for later use.

The kernel is run at run level 1 in order to minimize the effect that background
programs could have on the cache, memory and I/Os.

The machine used to perform the benchmarking was an:
CPU: AMD 64 X2 4200+, 2GHz, 512 KB L2 cache
memory: 2*1024MB PC 3200 Kingston KVR400X64C3AK2/1G
hard drive: 80GB Seagate Barracuda ATA IV
motherboard: Asus A8N-SLI SE
with: Kernel 2.6.17-rc1 64 bit smp, with perfctr[23] 2.6.21 patch applied

Because of an error in the kernel when using an AMD64 processor with smp
and 64bit as documented in [22] it was necessary to use a newer kernel like the
one used. The error causes the timer to run at twice the speed some of the time.
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This makes benchmarking results unreliable as the time results retrieved consists
of a mixture of both normal running time and double running time. The error was
discovered while making test results for Appendix B. The test results varied a lot
from different results but were normally either a minimum value or twice that. To
resolve the problem smp support had to be disabled when running benchmarks.



Chapter 10

Benchmarking

In this chapter the benchmarking of the three previously described algorithms are
presented. In the first section the results of running the programs where all the data
can be contained in the RAM is discussed. In the second section it is shown what
happens when the programs run out of memory and has to start swapping memory
from the hard drive.

There has only been tested one version of the program for the RAM model and
the external model. For the cache oblivious model several different versions has
been tested to test various things. The following versions has been tested:

• Binary compression using the alternate layout described in Section 7.2.2
using the compression described in Section 7.3.2. This is the main program
which uses all the techniques used except for reducing the bottom.

• Binary compression, big interval as above but where α has been increased.
To see the effect of using bigger intervals

• Reduced bottom using the alternate layout described in Section 7.2.2 and the
compression described in Section 7.3.2 together with the method of collect-
ing the bottom 7 levels into one. The reason for choosing 7 levels is because
the bottom trees then contains 128 points which can be stored using two 64
bit integers for ble f t.

• Normal compression using the alternate layout described in Section 7.2.2
and the compression described in Section 7.2.3. To see how the algorithm
performs without the use of binary compression

• No compression using the alternate layout described in Section 7.2.2 while
using no compression techniques. This is to see how the O(N log2 N) space
algorithm works.

• No compression, no layout using no layout at all. Basically setting α to in-
finity. This shows how the basic algorithm performs before the introduction
of the memory layout.
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• Normal compression, paper layout using the layout described in Section
7.2.1 and the compression described in Section 7.2.3. This is to see if there
is any difference between the original way of splitting the list up and the one
described in [5].

• Binary compression, paper layout using the layout described in Section
7.2.1 using the compression described in Section 7.3.2. Same as above.

All the program were tested on input sizes ranging from 28 to 224 with the
exception of Reduced bottom and Normal compression which was only tested
upto 222 because of memory constraints.

10.1 Running only in RAM

In this section we look at how the programs perform when all the data structures
can fit inside the RAM of the computer.

The query time as reported by clock() depending on the input size can be seen
in Figure 10.1. This is the processor time excluding time spent doing I/Os. It is
easy to see that the external program here takes the longest time. This is probably
because of the use of TPIE where it handles its own memory and that it is this
overhead that we see here when the input size starts to grow. The RAM program
performs best all the way through. When looking at the cache oblivious programs
they are initially split up into two groups. There are the ones using no compres-
sion and normal compression which make up the best performing group. And then
there are the ones using binary compression which has to perform some extra cal-
culations to decompress the data and therefore takes a bit longer. But as the input
size grows the two without compression start to head off followed a bit later by the
programs using normal compression. So that in the end it is the programs using bi-
nary compression that performs the best. To explain this we will have to look at the
number of minor page faults shown in Figure 10.2. The graphs look pretty similar
with the different graphs starting to grow at the same input sizes. For completnes
the time spent for the external program can be seen in Figure 10.3. This is quite a
lot more than the rest.
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Figure 10.1: Time per query with 2 GB of ram. Zoomed in on the cache oblivious
programs.
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Figure 10.3: Time per query with 2 GB or ram. Showing the full graph.

10.2 Beyond RAM

In these set of benchmarks the computer is limited to only having 32 MB of mem-
ory available to run programs. This is done to force the programs into making
major page faults.

In Figure 10.4 the number of major page faults can be seen. When the RAM
program begins to run out of memory the number of major page faults starts to
climb steeply. The external program performs best in this test. This is also ex-
pected as this is what the algorithm is designed for. Of the cache oblivious pro-
grams there is one that stands out in particular. This is the one with no layout and
no compression. Comparing this to the other one with no compression shows that
the use of the memory layout describe in Section 7.2.1 is what makes the algorithm
perform well. Figure 10.5 shows a zoom of the results to make it easier to distin-
guish the different programs. From this it can be seen that the programs falls in
groups according to the type of compression used. Or in other words the size of
the structure T which is shown in Figure 7.5. The only one to really fall out a bit
is the reduces bottom which performs better in the end than the others using binary
compression.

In Figure 10.6 the wall time per query is shown. That is the time including
I/O time. We can see that this figure is similar to Figure 10.4. There is however
something strange with it. It appears as if for some reason the time taken to perform
an I/O in the cache oblivious programs takes longer than on the other two programs.
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10.3 L2 cache

In this section we look at the number of cache misses of the programs. The pro-
grams were all tested on the default computer and also on a computer with a P4
CPU which got a 1024 KB L2 cache. [htbp]

In Figure 10.7 we can see the number of L2 cache misses. The programs lines
up like the results in Section 10.2 with the RAM program with most misses. Then
comes the cache oblivious with out compression followed by the ones with normal
compression and then binary compression. With the best one being the external
program.

It is clear to see when the ram program fill out the cache. This happens when
the input size is 215 because there the four arrays of ints take up 4 ∗ 4 ∗ 215 =
524288bytes = 512KB which is the size of the L2 cache. It also interesting to note
how close the bottom version comes to the external program and if the trend from
the graph continues would probably beet it.

On the P4 as seen in Figure 10.8 we see the same result. The cache oblivious
programs were only tested upto input sizes of 223 because of memory restrictions
on 32 bit computers. The cache oblivious programs using binary compression
almost perform on par with the external program and in one case even beating it.

It is again easy to see when the RAM program hits the cache limit at an input
size of 216 where it takes up 4 ∗ 4 ∗ 216 = 1048576bytes = 1024KB.

When comparing the two Figures 10.7 and 10.8 we can see that the twice as
large L2 cache of the P4 does not appear to have the big impact since the results are
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Figure 10.7: Number of L2 cache misses on an AMD X2 with 512 KB L2.
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comparable. But the two non memory optimized programs, the RAM and the no
compression no layout seems to be hit harder on the P4 as compared to the AMD.

10.4 Benchmark Conclusions

As expected the RAM program performed well when running on exclucivly on
RAM and the external program worked well when working on external storage.
The external program is found to also work well on the cache level.

The cache oblivious programs performed well in all cases showing that splitting
up large lists of data and laying it out in memory using the van Emde Boas works
well on all layers of memory. When looking at memory access it is seen that it
is worth while compressing the data to make it fit into as little space as possible.
There is not found a significant difference between the two ways of splitting up the
lists for the cache oblivious algorithm.

When comparing the graphs of L2 cache misses withe the number of major
page faults with 32MB of RAM we see that they have a similar shape. But when
performance starts to rise steeply it seems that the major page faults are hit the
worst.
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Appendix A

Availability

The source code for the programs used in this paper including this paper can be
found at:
http://daimi.au.dk/∼mol/spec
TPIE can be found at:
http://www.cs.duke.edu/TPIE/
PAPI can be found at:
http://icl.cs.utk.edu/papi/
More recent versions of perfctr, to support more recent versions of the kernel, can
be found at:
http://user.it.uu.se/ mikpe/linux/perfctr/

To compile using PAPI use the makefile Makefile.papi. The makefile should
be able to detect if you are using 32 bit or 64 bit CPU’s. But remember you can
only use the external program compiled to 32bit.

The RAM program can be run by the command:
./count < height > <number of queries> <-w file> <-k file> <-papi>
where height is the height of the tree. number of queries is the number of queries
to be performed. -w file is to use a pregenerate file for the data structures. -k file
is to keep the data structure in a file after the programs terminates. -papi is to use
papi for benchmarking as well, must be the fourth argument.

The cache oblivious versions is run by:
./count <height> <number of queries> <-f file> <-p x1 y1 x2 y2> <-wl filel filet>
<-wx file> <-wy file> <-kl filel filet> <-kx file> <-ky file> <-papi> <-nocomp>
<-bincomp> <-paper> <-paperbin> <-fast> <-fastlong> <-long>

where height is the height of the tree. number of queries is the number of
queries to performe. -f file is to load the points in file. -p x1 y1 x2 y2 is to perform
a query Q = [x1, x2] × [y1, y2]. -wl filel filet is to use filel for the L lists and filet
for handling multiple points at the same location. -wx file is to use file for the X
tree. -wy file is to use file for the Y tree. -kl filel filet is to keep the L lists in filel and
to keep the handling multiple points at the same location in file filet. -kx file is to
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keep the X tree in file. -ky file is to keep the Y tree in file. -papi is to use papi when
benchmarking. -nocomp, -bincomp, -paper, -paperbin, -fast, -fastlong and -long is
to use the given version of the program as specified in Section 10, can only be used
one at the time.

The external program be run by:
./test compressed range tree <number of queries> <file>
where number of queries is the number of queries to performe. file is the input file
with points, if not specified the program will use the file in ./data/uniform.dat.

To compile the external program it is assumed that TPIE is in the folder ../tpie/.
This can be changed in the Makefile.



Appendix B

Bitcounting

Bitcounting or also known as population count is counting the number of set bits
1’s in a variable. There are various methods of doing that [7] [10] ranging from
checking every bit to see if it is set to using a constant number of bitmasks without
any conditionals.

I have tested five different methods of doing bitcounting on 32bit integers.

inline int bitcount1(int x){

x -= (x>>1) & 0x55555555;

x = ((x>>2) & 0x33333333) + (x & 0x33333333);

x = ((x>>4) + x) & 0x0f0f0f0f;

x *= 0x01010101;

return x>>24;

}

inline int bitcount2(int x){

x -= (x>>1) & 0x55555555;

x = ((x>>2) & 0x33333333) + (x & 0x33333333);

x = ((x>>4) + x) & 0x0f0f0f0f;

x = x + (x>>8);

x = x + (x>>16);

return x & 0x3f;

}

inline int bitcount3(int cur){

int counter = 0;

while (cur != 0) {

counter++;

cur = cur & (cur-1);

}

return counter;

}
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inline int bitcount4(int cur){

int counter=0;

for(int n=0;n<32;n++){

int i=1<<n;

counter+=(cur&i)>>n;

}

return counter;

}

inline int bitcount5(int cur){

int counter = 0;

while(cur>0){

int tmp=cur;

cur=cur/2;

counter+=tmp-2*cur;

}

return counter;

}

bitcount1 and bitcount2 works by using bitmasks. The first three lines are the same.
Here they first count set bits in pairs of 2 then 4 and finally 8 bits. The last lines
differ in the way that final results is calculated. bitcount1 uses multiplication to add
the 4 sums of 8 bits where bitcount2 adds them together and them mask out the
result. They both work in constant time. bitcount3 works by counting the number
of times that it can remove the least significant bit in the variable. bitcount3 works
in O(setbits). bitcount4 works by checking each bit from 0 to 31 to see if it is 1. It
has the advantage for the CPU that it does not require any branching since the loop
can be unrolled. Runs in O(n). bitcount5 is the basic method of counting. Half the
number each time and check if there is a remainder. This also runs in O(n).

The performance of each method can be seen in Figure B.1. The tests were run
on an array of 100 million random integers where the numbers where rounded to
the desired size. The compiler had full knowledge of the whole program to opti-
mize the various methods. The program was run on the same machine as described
in Section 9. This means that it is possible to performed bitcount in only 10 clock
cycles using bitcount1.

To compare this to something i made a program with an array storing the values
of bitcount from 0 to 218 which could all fit inside L2 cache. It took an average of
5.8 nanoseconds for each loop compared to 5.4 nanoseconds for bitcount1. This
basically means that it is not worth while making table lookup for bitcounting since
the processor can calculate it faster than the time it takes to look it up in L2 cache.
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Appendix C

Source code for range counting in
the RAM model

This is the C++ source code for the range counting program for the RAM model. It
contains various optimizations compared to the code presented in [12] as explained
in Section 5.3 and 5.4.

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

#include <string.h>

#include <time.h>

#include <sys/time.h>

#include <sys/mman.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/types.h>

#include <papi.h>

#define MAX_INT (int)1<<26

#define RANGE ((int)1<<20)

#define exch(A, B) { int t = A; A = B; B = t; }

#define array(A,B) { int t=B;A=t;}

int n=8;

int lambda=(int)(log((double)n)/log(2.0));

int my=2*(1+(int)floor(log((double)lambda)/log(2.0)));

int M=(int)pow(2.0,my);

int *X;

int *Y;

int *B;

int *C;
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int bitcount(int x){

x -= (x>>1) & 0x55555555;

x = ((x>>2) & 0x33333333) + (x & 0x33333333);

x = ((x>>4) + x) & 0x0f0f0f0f;

x *= 0x01010101;

return x>>24;

}

int One(int pos){

int i=pos/lambda;

int j=B[i]>>(lambda-pos%lambda);

int z=bitcount(j);

if(0<i) z=z+C[i-1];

return z;

}

int Newpos(int dir, int block, int pos, int width){

int r;

if(dir==0)r=pos-n+One(block)-One(pos);

else r=block-n+One(pos)-One(block)+width/2;

return r;

}

int Path(int *A, int q){

int l=0;

int r=n-1;

while(l<r){

int k=(l+r)/2;

if(q<=A[k])r=k;

else l=k+1;

}

return l;

}

int Cum(int cut, int init, int path, int dir){

int pos=init;

int z=0;

int block=(lambda-1)*n;

int cur=n;

while(cur>=2){

int bit=((2*path)/cur)-(2*(path/cur));

if((cur<cut) && (bit==dir)){

z=z+Newpos(1-dir,block,pos,cur);
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}

pos=Newpos(bit,block,pos,cur);

cur=cur/2;

block=block-n+bit*cur;

}

return z;

}

void Preprocessing(){

int fill=0;

int index=0;

int step=2;

int* T=new int[n];

while(step<=n){

int l=0;

while(l<n){

int r=l+step-1;

int u=(l+r)/2;

{for(int k=l;k<=r;k++){

T[k]=Y[k];

}}

T[r+1]=MAX_INT;

int i=l;

int j=u+1;

int k=l-1;

while((i<=u) || (j<=r)){

B[index]=2*B[index];

k=k+1;

if((T[j]<T[i]) || (i>u)){

Y[k]=T[j];

j++;

B[index]=B[index]+1;

C[index]=C[index]+1;

}else {

Y[k]=T[i];

i++;

}

fill++;

if(lambda==fill){

index++;

fill=0;

if(index<n) C[index]=C[index-1];

}
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}

l=l+step;

}

step=step*2;

}

delete[] T;

}

bool LegalQuary(int x1,int x2, int y1, int y2){

if(x1>X[0] && x2<X[n-1] && y1>Y[0] && y2<Y[n-1])return true;

return false;

}

void quicksort(int a[],int b[],int l,int r) {

int i, j, k, p, q; int v;

if (r <= l) return;

v = a[r]; i = l-1; j = r; p = l-1; q = r;

for (;;) {

while (a[++i]<v);

while (v<a[--j]) if (j == l) break;

if (i >= j) break;

exch(a[i], a[j]);

exch(b[i], b[j]);

if (a[i]==v) { p++; exch(a[p], a[i]);exch(b[p], b[i]); }

if (v==a[j]) { q--; exch(a[q], a[j]);exch(b[q], b[j]);}

}

exch(a[i], a[r]);exch(b[i], b[r]); j = i-1; i = i+1;

for (k = l ; k < p; k++, j--){exch(a[k], a[j]);exch(b[k], b[j]);}

for (k = r-1; k > q; k--, i++){exch(a[k], a[i]);exch(b[k], b[i]);}

quicksort(a, b, l, j);

quicksort(a, b, i, r);

}

int main(int argc, char **argv) {

srand(time(NULL));

bool loaded=false;

int totalsize=0;

int numberoftimes=1;

int x1;

int x2;

int y1;

int y2;

int n=1<<atoi(argv[1]);

numberoftimes=atoi(argv[2]);
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lambda=(int)(log((float)n)/log(2.0));

my=2*(1+(int)floor(log((float)lambda)/log(2.0)));

M=(int)pow(2.0,my);

loaded=true;

totalsize=n*sizeof(int);

X=(int*)malloc(n*sizeof(int));

Y=(int*)malloc(n*sizeof(int));

B=(int*)malloc(n*sizeof(int));

C=(int*)malloc(n*sizeof(int));

X[0]=0;

Y[0]=0;

X[1]=RANGE;

Y[1]=RANGE;

for(int a=2;a<n;a++){

X[a]=(int)rand()%RANGE;

Y[a]=(int)rand()%RANGE;

}

x1=(int)rand()%RANGE;

x2=(int)rand()%RANGE;

if(x2<x1)exch(x1,x2);

y1=(int)rand()%RANGE;

y2=(int)rand()%RANGE;

if(y2<y1)exch(y1,y2);

quicksort(X,Y,0,n-1);

clock_t t1,t2;

Preprocessing();

time((time_t *)0);

int i=0;

timeval* wallstart=new timeval();

timeval* wallend=new timeval();

gettimeofday(wallstart, NULL);

t1=clock();

long cum=0;

while(i++<numberoftimes){

int low=Path(Y,y1)+(lambda-1)*n;

int high=Path(Y,y2)+(lambda-1)*n;

int left=Path(X,x1)-1;

int right=Path(X,x2);

int cut=n;

while(((2*left)/cut)==((2*right)/cut)){

cut=cut/2;

}

int z=Cum(cut,high,left,0)+Cum(cut,high,right,1);

z=z-Cum(cut,low,left,0)-Cum(cut,low,right,1);
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cum+=z;

//query MUST be within the bounding box of the points

x1=((int)rand()%(RANGE-1))+1;

x2=((int)rand()%(RANGE-1))+1;

if(x2<x1)exch(x1,x2);

y1=((int)rand()%(RANGE-1))+1;

y2=((int)rand()%(RANGE-1))+1;

if(y2<y1)exch(y1,y2);

}

t2=clock();

gettimeofday(wallend, NULL);

//necesary because else it cheats when optimising

printf("%i %lu ",atoi(argv[2]),cum/numberoftimes);

printf("%.3f ",((t2 - t1)/(CLOCKS_PER_SEC / (double) 1000.0))

/(double)numberoftimes);

printf("%.5f ",((wallend->tv_sec - wallstart->tv_sec)*1000+

(wallend->tv_usec-wallstart->tv_usec)/1000.0)/(double)numberoftimes);

printf("\n");

return 0;

}
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