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Abstract

In this paper higher-dimensional trees that are balanced with a red-
black balancing scheme are compared to ones implemented with a BB[α]
balancing scheme. This research is motivated by results by George S.
Lueker which show that an algorithm with fast operation costs for per-
forming dynamic orthogonal range queries using a BB[α] balanced higher-
dimensional tree exists. Whether similar results can be achieved using the
red-black balancing scheme is interesting since it not only is simpler to
implement correctly but also has relatively short path lengths that could
make it perform better in terms of space cost. We will show how to al-
gorithmically construct red-black trees that achieve maximum space cost
for trees with some relatively small number of leaves n, as well as reason
about general upper and lower bounds for enormous trees. We will also
give a sequence of insert and delete operations that will perform poorly
in terms of rebalancing cost.
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1 Motivations and terminology

In this thesis we study special tree structures for storing points of higher di-
mensions. These trees which are a natural extension of ordinary binary search
trees to higher dimensions store points only in its leaves and store other lower
dimensional trees in its internal nodes. We shall refer to this structure as a
higher-dimensional tree and define it formally as follows:

Definition 1.1. A valid binary tree T where each internal node has exactly two
children and points are stored in leaves is a higher-dimensional tree of dimension
d if either d = 1, or d > 1 and each internal node v in T contains a higher-
dimensional tree Ti of dimension d− 1 and each point that is stored in a leaf in
the sub-tree of v is also stored in a leaf in Ti.

We will refer to a higher-dimensional tree of dimension d simply as a d-
dimensional tree and we will refer to the tree contained in some node v as the
internal tree of v. We refer to the single binary tree Tm in some d-dimensional
tree T that is not an internal tree of any node in Tm as the main tree. Typically
the points in a d-dimensional tree are points from Rd, that are stored such that
an inorder traversal of the d-dimensional tree T yields a list of points sorted on
the d’th coordinate and an inorder traversals of any d − 1-dimension internal
tree will yield lists of points sorted on the d− 1’th coordinate, see section 5 on
range trees in [4]. We will not need to consider such restrictions in this paper
though.

Since higher-dimensional trees are such a natural extension of ordinary bi-
nary trees they are of interest to study not only because of the practical results of
their connection to orthogonal range searching, but also to establish theoretical
results.

Lueker describes in [8] an algorithm for dynamically performing orthogonal
range searches in higher dimensions. The dynamic version of the d-dimensional
orthogonal range search problem is the the problem of reporting all d-dimensional
points in a given set that are contained within a specified d-dimensional hyper
cube while also allowing new points to be inserted into or removed from the set.
This problem is ubiquitous in many areas of computer science and is a funda-
mental part of database theory and many geometrical problems. The algorithm
proposed in the paper offers a O(logd n) amortized time bound on inserting a
new point into a set of n d-dimensional points and an O(n logd−1 n) bound on
the space cost to store n d-dimensional points. The core part of the algorithm
is the use of a higher-dimensional tree that uses a BB[α] rebalancing scheme.
However higher-dimensional trees can be implemented using any rebalancing
scheme, and it is of interest to see how these perform compared to the BB[α]
case.

There are two restricting factors for how high the dimension of higher-
dimensional trees can be before they stop being useful in practice: the cost
of performing rebalancing in the tree and the space cost of storing the tree in
memory. Interestingly these two costs are inversely related as we will show.

3



Figure 1: An example of an internal tree becoming invalid after a rotation.
Recall by definition 1.1 that an internal tree must contain each point in the
leaves of the sub-tree of the node it is contained in. The internal tree in P can
be replaced with the internal tree from Q but no replacement exists for the new
internal tree in Q.

1.1 Rebalancing higher-dimensional trees

As is the case with most dynamic tree structures, inserting into or removing
points from higher-order may cause the tree to become invalid with respect
to its rebalancing scheme and the tree must be rebalanced in some way. If a
higher-dimensional tree is rebalanced with rotations however then the problem
of invalidating an internal tree occurs.

Figure 1 shows the aftermath of a rotation in a binary tree. If the tree is
a higher-dimensional tree then P now needs an internal tree that contains all
the points in the sub-trees of A,B and C. Such a tree is readily available as the
old internal tree in Q. Q however needs an internal tree that contains all the
points in B and C and no internal tree with that combination of points exist.
It is possible if the sub-trees of A and C contain a sufficiently small number
of leaves to reuse the old internal structure from P and simply remove excess
points while inserting the points from the sub-tree of C, but in the general case
no better approach exists for Q than to simply rebuild the full internal tree from
scratch.

Bentley and Friedman investigate in [1] the static case of orthogonal range
searches also using higher-dimensional trees and note that a d-dimensional tree
containing n points can be built statically in time O(n logd−1 n). This is a
different result than Lueker since their statically built tree is near perfectly
balanced, that is no path in the main tree or in the same internal tree will have
length differing by more than one node. We can construct a list containing all
the points sorted in the internal tree in any node by performing an in-order
traversal. We need only merge two such lists to have a list in sorted order of all
the points needed to rebuild an internal tree in a node, and we can thus build
it statically using Bentley and Friedman’s method. We thus infer that the total
time cost of rebuilding the internal d-dimensional tree in a node with sub-tree
containing n leaves is O(n logd−1 n).

If a balancing scheme performs many rotations on nodes that contain a large
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number of leaves in their sub-tree then the the rebuilding time of internal trees
will dwarf the time it takes to search the tree when inserting and deleting points,
and the tree becomes very ineffective.

1.2 Space cost of storing higher-dimensional trees

The other limiting factor as the dimensions of higher-dimensional trees grow
is the space cost of storing the tree. Indeed any point in a leaf in a d > 1-
dimensional tree will be stored in an internal tree in each of its ancestor nodes,
these points will in turn be stored in internal trees of their ancestors and so
forth. So for any higher-order tree that is balanced so its path lengths are
logarithmic in the number of leaves it contains, it is easy to see that adding
another dimension to the tree adds a factor of O(log n) to its space cost. The
case is even worse if the d-dimensional tree is not balanced as a completely
unbalanced tree with a path of length n will have space cost of the order Θ(nd).

Finally we note that even though a d-dimensional tree of n leaves with
O(log n) path lengths will have O(n logd−1 n) order space cost, the hidden co-
efficient in the cost may differ greatly. Indeed Lueker notes that the coefficient
is dependent on d and as we shall see later, the difference between trees with n
leaves and O(log n) path lengths may grow exponentially in d.

We previously described the merits a rebalancing scheme should have to be
useful in the context of higher-dimensional trees. It must rebalance frequently
enough that the space cost of storing the tree does not become prohibitive but
not so frequently that the cost of inserting in or deleting points from the tree
becomes too costly. We will briefly describe the two rebalancing schemes that
are the focus of this thesis and list their pros and cons with respect to balancing
higher-dimensional trees.

1.3 The BB[α] rebalancing scheme

The BB[α] rebalancing scheme keeps a binary tree balanced by imposing a re-
striction on how large a difference there can be in the number of nodes contained
in the sub-tree children of a any node based on the parameter α. It was pro-
posed by Nievergelt and Reingold [9] and has some interesting properties that
fit well with higher-dimensional trees, although it is quite complex to implement
and harbors some pitfalls. Indeed an error in the valid ranges of parameters in
the original paper was not discovered until 8 years later by Blum, Norbert and
Mehlhorn [2]. More recently an implementation of a variant of BB[α] trees in
the standard library of the programming language Haskell was found to have
invalid ranges too [7].

In a BB[α] tree a weight is associated with each internal node. The weight
definition from the original paper states that the weight of an internal node v
where nl and nr are the number of internal nodes plus the number of leaves
in v’s left and right sub-tree respectively is w(v) = nl+1

nl+1+nr+1 . The additional
constants in the definition prevent the weight of any internal node from being 0
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or 1 if an internal node is missing a child, but since internal nodes in this thesis
always have exactly two children we can use a simpler definition:

Definition 1.2. The weight of an internal node v where nl and nr are the
number of leaves in v’s left and right sub-tree child respectively is given by w(v) =
nl

nl+nr
.

Clearly the weight of any internal node v is a real valued number in the
range 0 < w(v) < 1. Using definition 1.2 a binary tree is valid with respect to
the BB[α] rebalancing scheme if the following holds:

Definition 1.3. A binary tree T is a BB[α] tree if for every internal node v in
T it holds that α ≤ w(v) ≤ 1− α.

Note that by this definition a tree containing nothing but a leaf is valid
since it has no internal nodes for the restriction to apply to. Any binary tree is
valid with respect to BB[0] and only a fully balanced binary tree with a number
of leaves that is a power of 2 is valid with respect to BB[1/2]. Values for α
outside of this range are meaningless. If some insert or delete operation causes
a BB[α]-tree to become invalid it is rebalanced using rotation.

One very desirable property of the BB[α] rebalancing scheme in the context
of higher-dimensional trees is the fact that the change in weight of a node v
after an insert or delete operation is smaller the more nodes there are in v’s
subtree. Since rotations can only occur when the weight of v is outside the
valid range [α, 1 − α], if rebalancing occurs in a smart manner such that the
weight of v is nearer the middle of the range after rebalancing, then it will take
more operations to invalidate a large node than a small node. In the context
of higher-order trees such a rebalancing would perform fewer costly rebuilds on
large nodes compared to small nodes.

The value of α chosen influences how many rebalancing operations can po-
tentially take place since the larger the range [α, 1 − α] is the more sub-tree
structures are valid. Similarly more sub-trees with longer paths become valid
too. Nievergelt and Reingold show that the path length in a BB[α] tree of n
leaves is bounded by C(log n), but the that the constant C grows the smaller
the value of α. Thus the choice of α directly influences the potential operations
and space cost of higher-dimensional BB[α] trees. We explore these costs in
section 2.2 and 4.1.

1.4 The red-black rebalancing scheme

The main focus of this thesis is establishing results for red-black
higher-dimensional trees and comparing them with established results for BB[α]
higher-dimensional trees. In [5] Guibas and Sedgewick proposes a rebalancing
scheme that rebalances a tree based on its path lengths by associating a color
with each internal node. The scheme is easy to understand and can be imple-
mented with a series of simple near identical rebalancing cases. In a red-black
binary tree each internal node is either colored red or black, and the following
restrictions are imposed:
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Definition 1.4. A binary tree T is a red-black tree if the following four condi-
tions are met:

1 The root node in T is black.

2 If an internal node in T is red then its parent cannot also be red.

3 Any leaf in T has the same number of black internal node ancestors.

4 Any leaf in T is black.

Since each path in a red-black tree T must have the same number of black
nodes, and red nodes cannot have red parents, it is easy to see that no path in
T can exceed 2 log n in length. This is a desirable property in the context of
higher-dimensional trees, as restrictions on path lengths are critical to lowering
space costs of storing trees.

When inserting a point into a red-black tree T one black leaf v will be turned
into a red internal node and the second property in definition 1.4 may be violated
prompting rebalancing. Similarly deleting a point collapses an internal node to
a black leaf which may violate property 3. In red-black trees rebalancing takes
one of two forms, sometimes it is enough to recolor a number of nodes, which
is of course no more costly in a higher-dimensional tree than in an ordinary
binary tree, and sometimes rotations must occur. We will take an in depth look
at rebalancing red-black trees in section 4.
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2 Size coefficients in higher-dimensional trees

In this section we examine the space cost of higher-dimensional trees and com-
pare space costs between implementations using red-black and BB[α] balancing
schemes. The space cost is one of the key limiting factors as the cost rises
exponentially as the dimension of the trees increase. Having small coefficients
hidden in the asymptotic bound is therefore a very desirable property as the
difference in space cost between two trees can be immense depending on how
they are balanced. To stretch this point we will show that the coefficients in a
fully balanced higher-dimensional tree may reduce the actual space cost of the
tree significantly compared to the asymptotic result. But first we will formally
define a function that maps a higher-dimensional tree to an integer that is a
good representation of the space cost of the tree.

We define the size of a higher-order tree as the sum of the number of leaves
in all of its internal 1-dimensional structures. So for example the size of a 1-
dimensional tree is found by merely counting the number of leaves it contains,
whereas the size of a 3-dimensional tree is found by summing the number of
leaves in all 1-dimensional trees that are contained in all the 2-dimensional
trees that are contained in the 3-dimensional tree.

Definition 2.1. For any node v in a tree of dimension d, D(v) is defined as
follows:

d = 1 :
D(v) = 1 if v is a leaf.
D(v) = D(vl) + D(vr) if v is an internal node, where vl and vr are the
left and right children of v.

d > 1 :
D(v) = 0 if v is a leaf.
D(v) = D(vi) + D(vl) + D(vr) if v is an internal node, where vi is the
root of the (d−1)-dimensional internal tree in v and vl and vr are the left
and right children of v.

Definition 2.2. The size of a tree T is the size of the root node of T.

This definition is sensible since the number of leaves in the first order struc-
tures easily outgrows the number of leaves or internal nodes in all other internal
trees. This is the case since the number of leaves in trees of dimension d− 1 in
a d-dimensional tree with n leaves is at least n log n, and the number of internal
nodes in any tree with n leaves is exactly n−1. It is also a very simple definition
to work with, and thus well suited for establishing bounds on the space costs of
higher-dimensional trees. It is trivial to see that the size of any 2-dimensional
tree is exactly equal to the sum of the number of ancestors of each leaf in the
tree, the so called external path length, and the size of trees can thus be thought
of as a generalization of external path lengths to trees trees of higher dimensions
which makes it an interesting characteristic to study.
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Note that the size of a higher-dimensional tree is highly dependent on the
lengths of the root to leaf paths in the tree. Any leaf will have its value stored
in the lower dimensional internal trees of each of its ancestor internal nodes.

2.1 A strict lower bound on sizes of higher-dimensional
trees

We will now use Definition 2.1 to prove a strict lower bound on the size of any
higher-dimensional tree under a reasonable assumption about the size coeffi-
cients of minimum size higher-dimensional trees. We note that a fully balanced
2-dimensional tree with a number of leaves that is a power of 2 achieves a
size coefficient of 1, which is clearly minimal for any 2-dimensional tree. We
will generalize such trees to higher dimensions in the following way: a higher-
dimensional tree T is fully balanced if for any node v in either its main tree or an
internal tree in T , all paths from v to one of its descendant leaves have the same
length. We will make an assumption that a result similar to the 2-dimensional
case holds holds for higher-dimensional trees in general.

Assumption 2.3. For any d-dimensional tree T with 2x ≤ n ≤ 2x+1 leaves,
the size coefficient of T is greater than or equal to the size coefficient of a fully
balanced d-dimensional tree of either 2x or 2x+1 leaves depending on whether
the size coefficients of fully balanced d-dimensional trees increase or decrease
with number of leaves.

We will show that the sizes of fully balanced higher-dimensional trees con-
verge. The size of a fully balanced higher-dimensional tree is given by the
following recurrence.

Lemma 2.4. The size of a fully balanced d-dimensional tree where each path
from the root to a leaf in the main tree has length h is given by
Fd(h) = h2h if d = 2.

Fd(h) =
∑h−1
i=0 2iFd−1(h− i) if d > 2.

Proof. For d = 2 it suffices to see that there are 2h leaves and each leaf con-
tributes its root distance, h, to Fd(h). For d > 2 assume that the result holds
for trees with dimension d − 1 and look at the i’th layer corresponding to the
i’th iteration of the sum. The layer contains 2i nodes that all have the same
number of leaves in their subtree, 2h−i. Since the internal tree in each node is
fully balanced the size of any node in the layer is given by Fd−1(h − i) by the
assumption. Thus the total size of the layer is given by 2iFd−1(h− i). Since the
assumption holds for 2-dimensional trees it holds for d > 2-dimensional trees as
well.

Calculating a closed form of the recurrence in Lemma 2.4 for trees of di-
mension 3 to 7 gives the following list of functions for the size of fully balanced
d-dimensional trees:

• F3(h) = 1
2 (h2 + h)2h
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• F4(h) = 1
6 (h3 + 3h2 + 2h)2h

• F5(h) = 1
24 (h4 + 6h3 + 11h2 + 6h)2h

• F6(h) = 1
120 (h5 + 10h4 + 35h3 + 50h2 + 24h)2h

• F7(h) = 1
720h(h+ 5)(h4 + 10h3 + 35h2 + 50h+ 24)2h

Observe that the coefficient of the dominating term in the polynomial is
exactly 1

(d−1)! for the d’th size function. This suggests that the ratio of the size

of a fully balanced d-dimensional tree with all root to leaf path lengths being h
and n = 2h leaves and 1

(d−1)!n logd−1 n will converge to 1 as h increases. This

result is trivially true for 2-dimensional trees. We will use this assumption to
inductively show its correctness for d > 2-dimensional trees.

Lemma 2.5. If Fd(h
′) = 2h

′
(

1
(d−1)!h

′d−1 + Pd−2(h′)
)

for all h′ ≥ 2 then

Fd+1(h) = 2h
(

1

d!
hd + Pd−1(h)

)
,

where Pd(h) is an arbitrary polynomial of h with degree d and coefficients de-
pending only on d.

Proof. By Lemma 2.4 Fd+1(h) is given by:

Fd+1(h) =

h−1∑
i=0

2iFd(h− i).

Using the inductive hypothesis on Fd+1(h) yields

Fd+1(h) = 2h

(
h−1∑
i=0

1

(d− 1)!
(h− i)d−1 +

h−1∑
i=0

Pd−2(h− i)

)
.

Let S1 be the left sum and S2 the right sum in the above definition of
Fd+1(h). It is clear that both sums yield polyonomials of h with coefficients
only depending on d. The degree of the polynomial S2 is clearly d − 1 so we
need not investigate it but can merely write S2 = Pd−1(h). The degree of S1 is
d and the coefficient of the d’th term must be found.

S1 =

h−1∑
i=0

1

(d− 1)!
(h− i)d−1

is equivalent to

=
1

(d− 1)!

h∑
i=1

(i)d−1.
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Faulhaber’s formula states that

x∑
i=1

iy =
1

y + 1

y∑
j=0

(−1)y
(
y + 1

j

)
Bjx

y+1−j ,

where Bi is the i’th Bernoulli Number. For a full topic on Faulhaber’s formula
and Bernoulli numbers see The Book of Numbers [3] by Conway et al. The sum
in the formula is similar to S1 with y = d− 1 and x = h so we may rewrite S1

as

S1 =
1

d!

d−1∑
i=0

(−1)i
(
d

i

)
Bih

d−i.

Unrolling the first iteration of the sum yields the coefficient for the d degree
term

S1 =
1

d!

(
(−1)0

(
d

0

)
B0h

d +

d−1∑
i=1

(−1)i
(
d

i

)
Bih

d−i

)
.

Since (−1)0 =
(
d
0

)
= B0 = 1 and since the i’th Bernoulli number is a function

only of i, the remaining sum is a polynomial of degree d−1 in h with coefficients
depending only on d. S1 becomes

S1 =
1

d!
hd + Pd−1(h).

Inserting the found values for S1 and S2 into Fd+1(h) now gives

Fd+1(h) = 2h
(

1

d!
hd + Pd−1(h)

)
which is the desired result and completes the proof.

Since the assumption in Lemma 2.5 is trivially true for 2-dimensional trees
the result holds for any d-dimensional tree where d ≥ 2. Since the size coefficient
of fully balanced higher-dimensional trees decreases as the number of leaves
increases, Lemma 2.5 gives a lower bound for the size coefficient of any d-
dimensional tree provided Assumption 2.3 is true.

Note that even though this result may seem to imply that the size of fully
balanced trees may grow very slowly in practice, large values of h are needed to
approach coefficient values near 1

(d−1)! which in turn increases hd−1.
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2.2 Maximum sizes of BB[α] higher-dimensional trees

In this section we will evaluate the coefficients in the worst case space cost of
higher-dimensional trees implemented with a BB[α] rebalancing scheme. From
Lueker [8] we know that the worst-case space cost of a d-dimensional BB[α]
tree with n leaves is O(n logd−1 n) but with coefficients depending on d. We will
calculate these coefficients using the size definition from definition 2.2.

Constructing a maximum size 2-dimensional BB[α] tree is simple since the
the maximum allowed length of a path in some sub-tree depends on the number
of leaves in the sub-tree, that is the more leaves are in a sub-tree, the greater
the number of ancestors each leaf can potentially have. Thus, since the size
contribution of a leaf in a 2-dimensional tree is exactly the number of ancestors
the leaf has, a maximum size 2-dimensional BB[α]-tree T is a tree where the
root of each sub-tree of n leaves in T has one child with exactly dαne leaves and
one child with exactly b(1− α)nc leaves.

Given some N and D we can easily calculate all sizes of d-dimensional BB[α]
trees with 1 ≤ n ≤ N leaves and 1 ≤ d ≤ D where the main and all internal
trees follow the structure of maximum size 2-dimensional trees. The algorithm
uses two nested loops. The outermost loop iterates over the dimension of the
tree, beginning with d = 2, and the innermost loops over number of leaves, note
that no calculation needs be done for d = 1 since the size of any 1-dimensional
tree is the number of leaves it contains.

Given that the maximum size of a tree of only one leaf is 0 for any dimension
we can calculate at the d′th innermost step and i > 1’th outermost step the
maximum size of a tree of i leaves and dimension d as the sum of sizes of its two
children and the size of the internal tree in its root. The number of leaves in the
children are given by n1 = dαie and n2 = b(1− α)ic. Clearly n1, n2 > 0 for all
i > 1 and the maximum sizes of these trees will already be calculated at the i’th
innermost step. The internal tree will have dimension d− 1 and will have been
calculated in the previous outermost step. This procedure can be completed in
O(DN) operations.

On Figure 2 size coefficients of BB[1/3] trees with up to 105 leaves and
dimension of 2 to 6 calculated by the algorithm are shown. 1/3 is the parameter
used in the algorithm by Lueker that achieves very favorable operation costs
for performing dynamic orthogonal range searches. We note that the space
coefficients are also quite small and that the 2-dimensional case appears nearly
constant as the number of leaves increase. Higher dimensional trees have smaller
coefficients that decrease very slowly in the plotted range.

Figure 3 shows size coefficients for BB[0.1] trees with same leaf and dimension
parameters. We note that the difference in coefficients between the 0.1 and the
1/3 α case are relatively small for low dimensions but become more pronounced
as this increases. We also note that the lower α value case is more volatile and
the coefficients decrease more rapidly in higher dimensions as the number of
leaves increase.

Whether the structure used here produces maximum size BB[α] trees for
dimensions greater than 2 is not easily proved. However in chapter 4 we give an
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Figure 2: Size coefficients of assumed maximum size BB[1/3] d-dimensional
trees with n leaves on logarithmic scale.

algorithm for computing actual maximum sizes of red-black trees. This algo-
rithm can also calculate maximum size BB[α] trees if it is slightly modified to,
instead of trying maximum size red-black candidate pairs, tries all maximum size
BB[α] candidate pairs that do not invalidate the weight constraint of its root.
Running this modified algorithm is slightly less computation intensive since the
number of candidates is smaller, however it is still prohibitive for large numbers
of leaves. We base the assumption that the maximum size 2-dimensional BB[α]
structure provides maximum size trees for higher dimensions on the fact that
the modified algorithm from chapter 4 and the algorithm presented here agree
on values for all BB[α] trees of dimension 1 ≤ d ≤ 6 and 1 ≤ n 104 leaves.

An upper bound on sizes of the 2-dimensional case is given by Nievergelt
and Wong [10]. Nievergelt and Wong state that if |T | is the sum of the number
of ancestors for each leaf and internal node in a BB[α] tree of n leaves and N
internal nodes then |T | is strictly bounded above by

|T | ≤ 1

H(α)
(n+N + 1) log(n+N + 1)− 2(n+N)

where
H(α) = −α logα− (1− α) log(1− α).

Since the size of a 2-dimensional tree is the sum of the number of ancestors
for each leaf in the tree we can show that Nievergelt and Wong’s result can also
be used to bound the sizes of 2-dimensional BB[α] trees. We do this by showing
that the size D(T ) of a tree T is proportional to |T |.
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Figure 3: Size coefficients of assumed maximum size BB[0.1] d-dimensional trees
with n leaves on logarithmic scale.

Lemma 2.6. For any 2-dimensional tree T of n leaves and N internal nodes
the sum of the number of ancestors for each leaf and internal node in T is related
to the size of T by |T | = 2D(T )− 2N.

Proof. The proof is trivially true for any tree of one leaf since N = 0 and
|T | = D(T ) = 0. We will prove the general case by structural induction on the
trees. Assume the result holds for trees T1 with n1 leaves and N2 internal nodes
and T2 with n2 leaves and N2 internal nodes. Joining these two trees together
as children of a new internal root node produces a tree T with n = n1 + n2
leaves and N = N1 + N2 + 1 internal nodes. Now clearly every internal node
except the new root and every leaf in T will have exactly one more ancestors
than it had in T1 or T2 so

|T | = |T1|+ |T2|+ n+N − 1

and
D(T ) = D(T1) +D(T2) + n.

Using the assumption |T | becomes

|T | = 2D(T1)− 2N1 + 2D(T2)− 2N2 + n+N − 1

= 2D(T1) + 2D(T2) + n−N + 1

which can be rewritten using the value of D(T ) as

= 2D(T )− n−N + 1.
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Since each internal node in a higher-dimensional tree has exactly two children
N1 = n1 − 1, N2 = n2 − 1 and N = n− 1 and clearly |T | = 2D(T )− 2N which
is the desired result. Since the result holds for trees of one leaf any tree where
internal nodes have exactly two children can be built and the result holds for
any 2-dimensional tree.

Theorem 2.7. A strict upper bound on the size of any BB[α] 2-dimensional
tree with n leaves is given by

D(T ) ≤ 1

H(α)
n(log n+ 1)− n

where
H(α) = −α logα− (1− α) log(1− α).

Proof. From Nievergelt we know that if T has N internal nodes then

|T | ≤ 1

H(α)
(n+N + 1) log(n+N + 1)− 2(n+N)

and from lemma 2.6 we know that |T | = 2D(T ) − 2N. Since N = n + 1 in a
2-dimensional tree we can use these values to get

2D(T )− 2N ≤ 1

H(α)
2n log(2n)− 4n+ 2

and so

D(T ) ≤ 1

H(α)
n log(2n)− 2n+ 1 +N

=
1

H(α)
n(log n+ 1)− n.

This completes the proof.

Theorem 2.7 shows that the size coefficient in a maximum size BB[α] 2-
dimensional tree converges to H(α) as the number of leaves increase. We see
that H(1/3) = log 8

log(27/4) ≈ 1.08897 and that H(0.1) ≈ 2.13222 which agrees with

the data plots generated by the algorithm.
The general case where d > 2 is harder to reason about. While it is clear

that the maximum sizes of a d-dimensional BB[α] tree of n leaves is given by
the recurrence used in the algorithm

Fd(n, α) = Fd−1(n, α) + Fd(dαne, α) + Fd(bn− αnc, α),

under the assumption that the structures of 2 and higher dimensional maximum
size trees are the same, the formula admits no obvious closed form. Calculating
a precise upper bound for this case is thus beyond the scope of this paper.
However we note that for the rather strictly balanced case where α = 1/3 the size
coefficients appear to decrease as dimensions increase and that the 2-dimensional
upper bound is therefore a non strict upper bound for any dimension. For
α = 0.1 we note that even though the d = 3 and d = 4 cases have trees with
higher size coefficient than the d = 2 case, outside of these two the coefficients
again decrease as d increases.
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3 Sizes of red-black higher-dimensional trees

In a red black tree no path can have length equal to twice the length of the paths
in a fully balanced tree. Initially this may seem like a stronger restriction on
size of trees than the one imposed by BB[α] trees however unlike BB[α] trees
where the majority of the leaves are concentrated near the top of the tree, no
such guarantee is given for red-black trees. Recall that the potential of a leaf to
contribute to the size of a higher-dimensional tree increases the further from the
root the leaf is. When discussing higher-dimensional red-black trees we will use
the notation that T [n, h, d] means a d-dimensional red-black tree with n leaves
where every path from root to a leaf in the main tree contains exactly h black
internal nodes. We shall refer to h as the black-height of T.

It is not as trivial to construct a maximum size red-black higher-dimensional
tree as a BB[α] higher-dimensional tree. Attempting to construct some maxi-
mum size red-black higher-dimensional tree with n leaves, we will want to place
some large portion n′ of n leaves at a deep layer i. However blindly increasing
the value for i might drastically lower the value of n′, since the black-height
may need to be increased facilitating an increase of leaves that must be stored
above i. Finding a balance between these two parameters is the focus of this
chapter.

We can however give a proof that shows a trivial upper bound on the size
coefficients in red-black higher-dimensional trees without taking the structure
of these into account. If we use the property that a red-black tree of n leaves
has at most 2 log n layers, we can just take the sum of an upper bound on the
sizes for each layer.

3.1 A trivial upper bound on sizes of red-black higher-
dimensional trees

Lemma 3.1. For all d ≥ 2 the size, D(T ) of any red-black higher-dimensional
tree T [n, h, d] is bounded by D(T ) < 2d−1n logd−1 n.

Proof. For d = 2, it suffices that no path in T can have length greater than
2 log n and therefore each of the n leaves can contribute no more than 2 log n to
D(T ).

For d > 2, assume the lemma holds for d − 1. Define the i’th layer in T
to be all the nodes that have distance exactly i from the root, including the
root itself. Again no path can be longer than 2 log n and there can therefore
at most be 2 log n layers. The size of each layer will be given by

∑
nj
D(nj)

where
∑
nj
nj ≤ n. By the induction hypothesis, D(nj) ≤ 2d−2nj logd−2 nj .

Each layer therefore contributes less than 2d−2n logd−2 n to the size of T and
the total size of T is bounded by

D(T ) ≤ 2 log n · 2d−2n logd−2 n = 2d−1n logd−1 n.

This concludes the proof.
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However it is not immediately clear how tight this bound is. To investi-
gate we will gather data on size coefficients and structures of actual maximum
size red-black higher-dimensional trees by proposing and implementing an al-
gorithm for computing these values. The algorithm will build maximum trees
by comparing all red-black higher-dimensional trees that have a possibility to
be maximum in size. We will show that for a given number of leaves, the num-
ber of trees that have this possibility is small. The output from this algorithm
will be size coefficients for red-black higher-dimensional trees that we compare
against similar BB[α] higher-dimensional trees, as well as information about the
structure of maximum size red-black higher-dimensional trees that will be used
to prove bounds on the size coefficients when the number of leaves in trees grow
to very large values.

3.2 Dynamically building maximum size
higher-dimensional trees

We propose and implement a dynamic programming approach to construct ac-
tual maximum size higher-dimensional red-black trees. Any red-black higher-
dimensional tree T [n, h, d] can be constructed by creating a new black root node
with an internal tree Ti[n, hi, d − 1] and two sub-tree children T1[n1, h − 1, d]
and T2[n2, h− 1, d] where n = n1 + n2. Such a tree is clearly a valid red-black
higher-dimensional tree if the components it is made up of are valid red-black
higher-dimensional trees and sub-trees and its size is given by

D(T ) = D(Ti) +D(T1) +D(T2).

We will show that any such tree of n leaves that is maximum size will need to
consider no more than 4n candidate triplets and that an algorithm that builds all
maximum size trees with up to some n leaves can have all candidates calculated
in advance for each tree.

3.3 Maximum size red-black higher-dimensional tree can-
didates

We show that to construct a maximum size higher-dimensional red-black tree by
joining two existing red-black higher-dimensional trees with a new root, only two
sets of tree candidates need to be considered: τ, the set of maximum size trees
compared to all other trees with same black-height and number of leaves and ρ,
the set of maximum size red-rooted sub-trees compared to all other red-rooted
sub-trees with same black-height and number of leaves. Formally defined:

Definition 3.2. A tree T [n, h, d] ∈ τ if for any tree T ′[n, h, d] it holds that
D(T ) ≥ D(T ′).

Definition 3.3. A red-rooted sub-tree T [n, h, d] ∈ ρ if for any red-rooted sub-
tree T ′[n, h, d] it holds that D(T ) ≥ D(T ′).
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Note that any tree T can only belong to τ if it is a proper tree with root
coloured black. It can only belong to ρ if it is a sub-tree with root coloured red.
It can obviously never belong to both sets.

Lemma 3.4. For any tree or sub-tree T [n, h, d] ∈ τ ∪ ρ with sub-tree children
T1[n1, h1, d] and T2[n2, h2, d] and internal tree T3[n, h3, d−1] in the root, it holds
that T1, T2, T3 ∈ τ ∪ ρ.

Proof. The size of T is given by:

D(T ) = D(T1) +D(T2) +D(T3).

Now assume T1 6∈ τ ∪ ρ. Then by definition 3.2 and 3.3: ∃T ′

1[n1, h1, d] where
D(T

′

1) > D(T1) and therefore ∃T ′
[n, h, d] where

D(T
′
) = D(T

′

1) +D(T2) +D(T3) > D(T ).

This contradicts T ∈ τ∪ ρ and therefore it must hold that T1 ∈ τ∪ ρ. A similar
argument shows T2, T3 ∈ τ ∪ ρ.

By Lemma 3.4 a tree T [n, h, d] ∈ τ can constructed if a Ti[i, h − 1, d] ∈ τ
and a T

′

i [i, h− 1, d] ∈ ρ is known for each 1 ≤ i < n and a T
′
[n, h3, d− 1] ∈ τ is

known.
Similarly a sub-tree T [n, h, d] ∈ ρ can be found if a Ti[i, h, d] ∈ τ is known

for each 1 ≤ i < n and a T3[n, h3, d − 1] ∈ τ is known. Knowing more than
one tree for any i from either of the two sets is unnecessary, since they will by
definition all have the same size. Neither will the size be affected if the position
of the two children are swapped. T can be found in linear time in n since there
is only one candidate for the contained tree in the root, and for each i there are
four possible candidate pairs. The number of leaves of one child sub-tree will
be i and the other n − i. Let Ti[ni, h − 1, d] ∈ τ and Ri[ni, h − 1, d] ∈ ρ. The
four possible candidate pairs are then: {Ti, Tn−i}, {Ti, Rn−i}, {Ri, Tn−i} and
{Ri, Rn−i}. T is found by trying the O(n) candidate pairs and leeping track of
which pair yielded the largest size.

Similarly a tree T [n, h, d] ∈ ρ can be found in linear time in n by trying two
candidate pairs from τ for each i < n.

3.4 An algorithm for constructing maximum size red-black
higher-dimensional trees

This gives rise to algorithm 1 that given values N and D will compute the sizes
of all maximum size red-black higher-dimensional trees with 2 to N leaves and
dimension 1 to D.

The algorithm consists of three nested loops and a quick preprocessing
phase that calculates the 1-dimensional case. The outermost loop loops over
D, the middle loops over logN and the innermost over N. At the d, h, n’th
state the algorithm first computes a maximum size red-black higher-dimensional
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tree Tb[n, h, d] with black root and then a maximum size red-black higher-
dimensional red rooted sub-tree Tr[n, h, d] by comparing the sizes achieved by
O(N) different candidate triplets. Anytime a new tree Tb[n, h, d] is computed it
is tested against Tmax[n, hmax, d] which is the current highest computed size of
any d-dimensional red-black higher-dimensional tree with n leaves and whatever
black-height yielded the largest size and Tmax is updated if needed.

To compute Tb the internal tree candidate is given by T ′[n, h′, d − 1] and
will have already been calculated at the d − 1’th step of the algorithm or the
preprocessing phase. Let Ti be one of the two remaining candidates in the
triplet, then Ti must be given by T [i, h− 1, d] and be either red or black rooted
and will have been computed in the previous iteration of the middle loop.

To compute Tr the internal tree candidate has again been calculated at a
previous outermost step or the preprocessing state. Let Ti be one of the two
remaining candidates in the triplet and note that Ti is given by Ti[i, h, d] and
must have black root. This tree was calculated just prior in the algorithm.

We conclude that after the d’th iteration of the outermost loop all trees with
dimension up to d and N leaves will have been calculated and that
Tmax[n, hmax, d] for any 2 ≤ n ≤ N will be a maximum size tree, and at the
end of the entire algorithm all maximum size trees within the parameters D,N
will have been computed.

To analyze the time cost of this algorithm we note that the outermost loop
in the algorithm iterates D times, at each iteration values are calculated for
O(N logN) trees where the computation for each tree takes O(N) operations.
This gives the algorithm a total running time of O(DN2 logN).

A few small optimizations are used in the actual implementation of the algo-
rithm, for instance no tree of dimension d and black-height h will be constructed
from any trees with dimension d′ < d− 1 or with d′ = d and h′ < h− 1 and so
these trees need no longer be stored. Also for trees with a given black-height h,
no tree can exists with n leaves where n < 2h or n > 22h.

Algorithm 1 Maximum sizes of higher-dimensional red-black trees
1: procedure MaximumSize(N,D)
2: Initialize all entries in B,R, Tmax to 0.
3: for n = 1 to N do
4: Tmax[n, 1]← n

5: for d = 2 to D do
6: B[2, 1, d]← Tmax[2, d− 1]
7: B[3, 1, d]← Tmax[3, d− 1] + Tmax[2, d− 1]
8: B[4, 1, d]← Tmax[4, d− 1] + TmaxB[2, d− 1] + Tmax[2− d]
9: for h = 2 to logN + 1 do
10: for n = 4 to N do
11: for i = 2 to n− 2 do
12: B[n, h, d]←Max{B[n, h, d], Tmax[n, d−1]+B[i, h−1, d]+B[n− i, h−1, d]}
13: B[n, h, d]←Max{B[n, h, d], Tmax[n, d−1]+B[i, h−1, d]+R[n− i, h−1, d]}
14: B[n, h, d]←Max{B[n, h, d], Tmax[n, d−1]+R[i, h−1, d]+R[n− i, h−1, d]}
15: B[n, h, d]←Max{B[n, h, d], Tmax[n, d−1]+R[i, h−1, d]+R[n− i, h−1, d]}
16: R[n, h, d]←Max{R[n, h, d], Tmax[n, d− 1] + B[i, j, d] + B[n− i, h, d]}
17: Tmax[n, d]←Max{Tmax[n, d], B[n, h, d]}

return Tmax
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3.5 Red-black higher-dimensional maximum size coefficients
in practice

In this section we study actual maximum size coefficients computed by Algo-
rithm 1. We reason about the tightness of the upper bound in Lemma 3.1
and compare these results to the coefficients of BB[α] higher-dimensional trees
obtained in section 2.2.
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Figure 4: Size coefficients k of maximum size red-black 2,3 and 4-dimensional
trees with n leaves on logarithmic scale.

Figure 4 shows coefficient values k of maximum size 2,3 and 4-dimensional
red-black trees as a function of the number of leaves in the trees. We see that the
growth of k appears to be decreasing and if k approaches the trivial upper bound
2 for the d = 2 case then it will most likely require trees with very large numbers
of leaves to verify. We also note that contrary to the trivial upper bounds which
increase as the dimensions of red-black trees increase, the coefficient values for all
maximum size 3-dimensional red-black trees are lower than their 2-dimensional
trees for every number of leaves in the range [100 : 100000]. We note that the
coefficients are all still growing as the number of leaves increases. We will use
these observations to motivate reinvestigating upper bounds on size coefficients
for red-black higher-dimensional trees.

Finally we see that for practical values of d and n red-black d-dimensional
trees of n leaves do not compare particularly favorable against BB[α] imple-
mentations. For the case where α = 1/3 coefficients are marginally better for
all values of d and n, and the discrepancies only increases with n. Even for a
relaxedly balanced tree with α = 0.1 the red-black tree is not much more than
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a factor 2 better and may not even outperform it for larger values of n.

3.6 Structures of maximum size red-black 2-dimensional
trees

In order to further investigate maximum sizes of higher-dimensional red-black
trees, we will try to determine the structure of such trees. Initially we reason
about the simple 2-dimensional case and work up to the general d-dimensional
case. First we show that any maximum size red-black 2-dimensional tree can
be expressed using three critical parameters, and that these parameters can be
found using Algorithm 1.

It is evident that the size contribution of a leaf in a red-black 2-dimensional
tree is exactly the number of ancestors of the leaf. Let v be any node in a tree
T , if there are ancestor nodes of v that have sub-tree children (excluding v) that
are not minimally saturated as well as descendent nodes of v that have sub-tree
children (again, excluding v) that are not maximally saturated then the size
of T can be trivially increased by moving nodes around. Thus any maximum
size 2-dimensional tree T must have a node v where each ancestor of v has one
all-black sub-tree child and the sub-tree of v is as maximally saturated as the
number of leaves in T permit.

We will formalize these possible candidates for maximum size red-black
higher-dimensional trees, based on three parameters, the number of all black
sub-trees on the path above v, the length a maximum path in the sub-tree
of v and finally the number of leaves missing before the sub-tree of v is fully
saturated.

Definition 3.5. A tree T is a member of Γ[H1, H2, γ] if T satisfies the following
four requirements:

• 1: The longest path P from the root to a leaf in T has length exactly
H1 +H2.

• 2: The H1 internal nodes closest to the root (including the root itself) on
P have one all-black sub-tree as child.

• 3: The H1’th internal node closest to the root on P has one sub-tree child
containing 2H2 − γ leaves.

• 4: No value H ′1 > H1 exists such that the H ′1 nodes closest to the root on
P (including the root itself) have one all black sub-tree as child.

Any maximum 2-dimensional red-black tree must be a member of Γ[H1, H2, γ]
for some value of H1, H2, γ and by the first and last requirement in definition 3.5
this triple of values must be unique. Note that two trees T1, T2 who are both
members of Γ[H1, H2, γ] will not necessarily have the same size unless γ = 0.

We will use Algorithm 1 to determine values ofH1, H2, γ for trees of relatively
few leaves in order to use these results for large trees. The hope is that these
admit a pattern that can be generalized to trees with an arbitrary number of
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leaves. The procedure is as follows: First the algorithm builds all maximum
size 2-dimensional trees with leaves up to N in time O(N2 logN). Each tree
T [n, h, 2] is then traversed in the following way, we start by visiting the root
node and at each visited node v the following step is performed: The left and
right sub-tree child of v is traversed to determine whether it is all black, this
can be done in time O(2h) keeping track of how many black nodes have been
visited, h′, and then verifying that no no path from the sub-tree root has length
greater than h−h′ and no node on each path of length h−h′ from the sub-tree
root is red. If exactly one sub-tree child is all-black then H1 is increased by one
and the sibling node of the all-black sub-tree root is visited. If both sub-trees
are all black then H1 is given the value of the path length of v to a an arbitrary
leaf, as these paths are all same length. If neither sub-tree is all black then each
node in the sub-tree of v is visited and the length of the longest path l2 and the
number of leaves n2 is counted. H2 then gets the value l2 and γ gets the value
2H2 − n2.

For each tree T we will attempt to discover if at most O(h) sub-trees are
all black, each requiring us to visit O(2h)nodes, we will visit all nodes in one
potentially large sub-tree of up to O(n) nodes and thus the time to determine
parameters for all N trees after is bounded by O(N2 logN).
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Figure 5: Values for H1 and H2 for maximum size 2-dimensional trees with n
leaves on a logarithmic scale.

Using this procedure Figure 5 is generated showing values of H1 and H2

together with size coefficients for maximum size red-black higher-dimensional
trees of up to 10000 leaves on a logarithmic first-axis. The values fluctuate quite
a bit, however two tendencies seem to exist for H1, H2 pairs, they both appear
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to be growing logarithmically in the number of leaves in the tree and the gap
between them appears to be widening.

We are interested in trees of the form Γ[H1, H2, 0] as the sizes of these are
easily calculatable even for very large trees. If such maximum size trees exist
and if it can be determined for which values of H1, H2, then maximum size
2-dimensional trees with a near arbitrairy number of leaves can be constructed
and data on how strict the trivial bound established is can be collected.
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Figure 6: Approximated size coefficients compared to actual maximum size
coefficients for trees with n leaves on a logarithmic scale.

The sizes of trees with different values for H1, H2 are tested against the size
of actual maximum size trees, and a best fit is selected. It turns out that the
approximation Γ[h+dlog he, h−dlog he, 0] yields very promising results. In fact,
of the first ten 2-order trees having this structure, only one is not a maximum
size tree for its number of leaves. Figure 6 shows the size coefficients of these
approximate maximum size trees plotted against the size coefficients of actual
maximum size trees.

3.7 Investigating the tightness of the upper bound for size
coeffients of 2-dimensional red-black trees

Lemma 3.6. For any constant δ > 0 there exists values n and h such that a
2-dimensional red-black tree T [n, h, 2] exists where D(T ) ≥ (2− δ)n log n.

Proof. Let T [n, h, 2] ∈ Γ[H1, H2, 0] where H1 = h − blog hc, H2 = h + blog hc
and let h be a power of 2. We will prove the result by showing that for a large
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enough h, a lower bound on D(T ) will outgrow an upper bound on (2− δ) log n.
First we note that T has n1 leaves in the sub-trees of the top H1 all-black

sub-trees where n1 is given by

n1 =

dH1/2e∑
i=1

2h−i +

bH1/2c∑
i=1

2h−i.

Where the first sum is the contribution from the all black sub-tree children of
the black nodes on the longest path P and the second sum is the contribution
from the all black sub-tree children of the red nodes on P. This is a sum of two
geometric series and therefore

n1 ≤ 2 · 2h−1 + 2 · 2h−1 = 2h+1.

The number of leaves not located in an all-black sub-tree child of a node on P
is given by n2 = 2H2 by the definition of Γ. Thus the total number of leaves in
T is bounded by

2H2 ≤ n ≤ 2H2 + 2h+1.

A lower bound on the size of T is given by only considering the size contribution
from the n2 leaves in the maximum saturated sub-tree child of the H1’th node
on P, so clearly D(T ) ≥ (2h)2H2 .

Now let D′(T ) be the right hand side of the inequality in the initial assump-
tion, then

D′(T ) = (2− δ)n log n.

Inserting the upper bound for n yields

D′(T ) ≤ 2(2h+1 + 2H2) log(2h+1 + 2H2)− δn log n,

for h ≥ 2 which also implies H2 ≥ h+ 1, so

D′(T ) ≤ 2(2h+1 + 2H2)(H2 + 1)− δn log n

= 2(2h+1)(H2 + 1) + 2(2H2)(H2 + 1)− δn log n.

Split D′ into parts so

D′(T ) ≤ D′1 +D′2 − δn log n

where

D′1 = 2(H2 + 1)2H2

D′2 = 2(H2 + 1)2h+1.

To complete the proof, it must be shown that there exists a h large enough that
subtracting the lower bound on D(T ) from the upper bound on D′(T ) yields
zero or less. Now
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D′(T )−D(T ) ≤ (D′1 −D(T )) +D′2 − δn log n.

Inserting the value for H2 into D′1 −D(T ) yields

D′1 −D(T ) ≤ 2(h+ log h+ 1)2H2 − (2h)2H2

= 2(log h+ 1)2H2 .

Using the value of H2 in D′2 yields

D′2 =
4

h
(H2 + 1)2H2

= (4 +
4 log h

h
+

4

h
)2H2 .

Finally, using the lower bound for n

δn log n ≥ δ(h+ log h)2H2

will outgrow both (D′1 −D(T )) and D′2 as h increases so D′(T )−D(T ) ≤ 0 for
sufficiently large h. This completes the proof.

3.8 Structures of maximum size higher-dimensional red-
black trees

Having proven tightness of bound for the 2-dimensional case, the general case
is now considered. Note that it is not trivial to show that the same rules that
apply to the structure of 2-dimensional trees apply to higher-dimensional trees.
Indeed the size contribution of a leaf in a higher-dimensional tree is not linearly
dependent on the number of ancestors the leaf has, but also depends on the
structures of the internal trees in these ancestors. Therefore it is not clear that
moving leaves further down a tree will always increase the size of the tree or
whether there are sensible Γ representations for these.

However the procedure used to generate parameters H1, H2, γ can also be
used in the d-dimensional case and trees with up to N leaves and up to D
dimension can be calculated in time O(DN2 logN).

Figure 7 shows that the values for H1 and H2 for maximum size trees of
dimension 2, 3 and 4 are nearly identical in the plotted interval. We will therefore
attempt to use the maximum size approximation from the 2-dimensional size
bound to improve on the upper bound for the d-dimensional case.

3.9 Improving the upper bound for maximum size
d-dimensional trees

The proof requires us to bound the sizes of the internal (d−1)-dimensional trees.
To do this we need the size coefficients of maximum size higher-dimensional red-
black trees to be growing monotonically. This however is not a trivial result to
prove or disprove and is beyond the scope of this thesis. Instead we will assume
it to be the case and note that plotted data suggest this.
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Figure 7: Values for H1 and H2 for trees with n leaves and dimension d on a
logarithmic scale.

Assumption 3.7. If for some δ > 0 there exists a red-black tree T [n, h, d] such
that D(T ) ≥ (k− δ)n logd−1 n then there exists an N and for any n′ ≥ N there
exists a tree T ′[n′, h′, d] where D(T ′) ≥ (k − δ)n logd−1 n.

Using the approximation of maximum size trees from the 2-dimensional proof
and Assumption 3.7 we will show that the upper bound on maximum size coef-
ficients of d-dimensional red-black trees can only increase with d.

Lemma 3.8. If for any constant δd > 0 there exists an nd and hd such
that a d-dimensional red-black tree Td[nd, hd, d] exists where D(Td) ≥ (k −
deltad)nd logd−1 nd and Assumption 3.7 is true then for any constant δ > 0 there
exists an n and h such that a (d + 1)-dimensional red-black tree T [n, h, d + 1]
exists where D(T ) ≥ (k − δ)n logd n.

Proof. As in the proof for Lemma 3.6, let T [n, h, d + 1] ∈ Γ[H1, H2, 0], H1 =
h− blog hc, H2 = h + blog hc and let h be a power of 2. The number of leaves
in T is again bounded by

2H2 ≤ n ≤ 2H2 + 2h+1.

Let v be any of the the H1 largest nodes in T . Per the assumptions in the
lemma, h can be picked large enough that there exists a tree Ti[i, h

′, d] with

D(Ti) ≥ (k − δ′)i logd−1 i,
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for all i ≥ 2h+log h = 2H2 . Therefore the d-dimensional internal tree in v can be
picked such that

D(v) ≥ (k − δ′)2H2 logd−1 2H2 ,

provided that k ≥ δ′. The size of T is then bounded by

D(T ) ≥ H1(k − δ′)2H2 logd−1 2H2

= (k − δ′)H1(H2)d−12H2 .

Let D′ be the right hand side in the lemma, to complete the proof it must be
shown that D(T )−D′ ≤ 0. Using the upper bound for n yields

D′ ≤ k(2H2 + 2h+1) logd(2H2 + 2h+1)− δn logd n,

which, if h ≥ 2 is

≤ k(2H2 + 2h+1) logd(2H2 · 2)− δn logd n

= k(2H2 + 2h+1)(H2 + 1)d − δn logd n.

Split D′ into parts where

D′ ≤ D′1 +D′2 −D′3
and

D′1 = k(H2 + 1)d2H2

D′2 = k(H2 + 1)d2h+1

D′3 = δn logd n.

Subtracting D(T ) from D′ yields

D′ −D(T ) ≤ (D′1 −D(T )) +D′2 −D′3.

To complete the proof, all that is needed is to show that D′3 will outgrow both
D′1 −D(T ) and D′2 as h becomes sufficiently large.

1) D′3 will outgrow D′1 −D(T )

Inserting value for H1 into D(T ) gives

D(T ) ≥ k(h− log h)(H2)d−12H2 − δ′H1(H2)d−12H2 .
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Inserting values for H2 into D′1 yields

D′1 = k(h+ log h+ 1)(H2 + 1)d−12H2

= kh(H2 + 1)d−12H2 + k(log h+ 1)(H2 + 1)d−1)2H2

which, using the binomial thorem, can be rewritten as

= kh

(
d−1∑
i=0

(
d− 1

i

)
(H2)i

)
2H2 + k(log h+ 1)(H2 + 1)d−12H2

and since
(
d−1
d−1
)

= 1 becomes

= kh

(
(H2)d−1 +

(
d−2∑
i=0

(
d− 1

i

)
(H2)i

))
2H2

+ k(log h+ 1)(H2 + 1)d−12H2 .

Finally subtracting D(T ) from D′1 gives

D′1 −D(T ) ≤ kh

(
d−2∑
i=0

(
d− 1

i

)
(H2)i

)
2H2

+ k(log h+ 1)(H2 + 1)d−12H2

+ k(log h)(H2)d−12H2

+ δ′H1(H2)d−12H2 .

Now to show that D′3 will outgrow each of these four terms to an arbitrairy
factor. D′3 = δn logd n ≥ δ2H2(H2)d has as coefficient a polynomial of H2 with
degree d with coefficients depending only on the constants d and δ. The first
three terms are of the order no larger than log hHd−1

2 with coefficients depen-
dent only on the constants k and d, clearly these will be outgrown arbitrarily
by a d order polynomial. The last term is also a polynomial in h of order d,
but it is clearly inferior to D′3 for any δ′ < δ. Since the size of δ′ can be picked
arbitrarily and independently of δ if h is sufficiently large, the last term can also
be outgrown arbitrarily.

2) D′3 will outgrow D′2

Inserting value for H2 into D′2

D′2 = (h+ log h+ 1)(H2 + 1)d−12h+1
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using the value of H2 to change the exponent

=
2

h
(h+ log h+ 1)(H2 + 1)d−12H2 .

A similar argument to the one in 1) shows that the coefficient of D′2 is a poly-
nomial of order Hd−1

2 log h with coefficients dependent only on the constants d
and k and will be outgrown by D′3 for sufficiently large h. This completes the
proof.

We now have the Lemmas to show our main result on maximum sizes of
red-black higher-dimensional trees. An upper and lower bound on sizes.

Theorem 3.9. The size of any red-black d-dimensional tree of n leaves where
d > 1 is bounded by 1

(d−1)!n logd−1 n < D(T ) < kn logd−1 n where k is at least

2 and at most 2d−1.

Proof. The lower bound is given by Lemma 2.5 provided Assumption 2.3 is true,
the lower bound for k is given by Lemma 3.6 together with Lemma 3.8 provided
Assumption 3.7 is true. The upper bound on k is given by lemma 3.1.

3.10 Approximating large maximum size 3-dimensional
red-black trees

As a final note on the sizes of red-black higher-dimensional, all it takes to in-
crease the value of k in the upper bound is to find one example of a d-dimensional
tree with size coefficient higher than k′ > 2 and every red-black tree of dimen-
sion greater than d will have coefficient at least k′ provided Assumption 3.7 is
true. We will show that constructing such a tree is most likely not possible using
any tree T [n, h, d] of the form Γ[h − blog hc, h + blog hc, 0]. To do this we give
a way to calculate efficiently a lower bound on the sizes of such 3-dimensional
trees for very large values of h.

First we note that the size of any 2-dimensional red-black tree in some
Γ[H1, H2, 0] can be calculated by summing H1 + 1 sub-tree sizes that can each
be calculated as a simple function without having to traverse the sub-tree. This
is the case since the closest H1 nodes on the longest path will have one all-black
sub-tree child and the remaining sub-tree in the H1’th node will be maximally
saturated. 2-dimensional trees where γ > 0 cannot be calculated in this way and
if H2 is large the computation will get prohibitively expensive. Unfortunately
the 3-dimensional trees that we are approximating will not necessarily have in-
ternal 2-dimensional trees of a number of leaves that permit γ to be 0. However
if we instead of calculating the sizes of these internal trees, we only calculate the
sizes of 2-dimensional trees Th on the form Γ[h− blog hc, h+ blog hc, 0], we can
calculate a reasonable lower bound for any maximum size 2-dimensional tree of
n leaves by using the tree Th of nh leaves where n − nh is minimized and still
positive. A reasonable lower bound on T is then given by D(Th) + (n− nh)H1.
Similarly we can calculate a reasonable upper bound on the size of T by finding
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a Th of nh leaves such that nh − n is minimized and positive and using the size
approximation D(Th)− (nh − n)H1.

In a 3-dimensional tree T [n, h, 3] on the form Γ[h − blog hc, h + blog hc, 0]
the majority of the size contribution will be from the H1 large nodes near the
root if h is very large, if we calculate the size of the approximate maximum
size 2-dimensional tree in each of these we get a lower bound on the size of T
where the size coefficient hopefully grows large and that can be calculated by
computing sizes of only O(h) internal tree approximations.

Unfortunately this approach leads to no trees with a size coefficient higher
than or equal to 2, even when the large approximations are used for the 2-
dimensional trees the size approximation of a 3-dimensional tree with black-
height h = 8192 and n > 28205 leaves yield a coefficient of k ≈ 1.99026..

This leads to several plausible conclusions: either trees T [n, h, d] of the form
Γ[h − blog hc, h + blog hc, 0] are not strong enough to model maximum size
higher-dimensional trees or the lower bound used on these is too low or the case
where d = 3 is special and somehow equivalent to the 2-dimensional case or the
maximum size coefficients of all d > 1-dimensional trees converge to exactly 2.
Exploring any of these possibilities further is beyond the scope of this thesis
however.
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4 Worst case rebalancing cost in higher-dimensional
trees

In this section we will compare worst case rebalancing costs between higher-
dimensional trees implemented using a BB[α] and a red-black rebalancing scheme.
A theorem by Lueker gives an amortized upper bound on rebalancing costs in
higher-dimensional BB[α] trees, we will merely sketch this proof and refer to [8]
for details. For red-black trees we will give a recipe for constructing a sequence
of input and delete operations that has very high rebuilding cost, we will not
show an actual strict upper bound but merely note that it is much larger than
that of the BB[α] case.

4.1 Worst case rebalancing of BB[α] higher-dimensional
trees

Figure 8: From Nievergelt and Reingold [9]. Rotations and double rotations in
BB[α] trees.

Nievergelt and Reingold give the following rules for rebalancing a BB[α] tree
in [9]. If after some insertion or deletion in a sub-tree with root v the weight
constraint of v has been violated such that w(v) < α and vr is the right child of
v then a single rotation is performed on v if w(v) < 1−2α

1−α and a double rotation
on v is performed othewise. If w(v) > (1 − α) then the symmetrical variant
of the rotation is performed and a single or double rotation will depend on the
weight of v’s right child. Blum and Mehlhorn show in [2] that performing this
rebalancing will restore the weight of v to within its allowed range for any BB[α]
tree where 2

11 ≤ α ≤ 1− 1
2

√
2.
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Lueker gives an upper bound on the cost of performing i mixed insert or
delete operations on an initially empty BB[α] d-dimensional tree as O(i logd i).

Theorem 4.1. The rebalancing cost of inserting or deleting i points on an
initially empty BB[α] d-dimensional tree where 2

11 ≤ α ≤ 1 − 1
2

√
(2) is worst

case O(i logd i).

Proof. We will sketch Lueker’s proof here and refer to [8] for full details. First
define β(v) for a node v as the distance of w(v) from the range [1/3, 2/3]. That is
β(v) is 0 if w(v) is in the range and otherwise it is the smaller of the two values
it takes to increase w(v) to 1/3 or decrease w(v) to 2/3. Let the imbalance I(T )

of a d-dimensional BB[α] tree T be defined as the sum of β(x)2n′ logd
′−1 i for

each internal node v in the main tree or any internal tree in T where the sub-tree
of v contains n′ leaves and has dimension d′.The proof uses amortization and
uses the decrease in I(T ) after a rebalance to cover the cost of the insertions.
Lueker proves by induction that a single insert into T can increase the value of
I(T ) by at most O(logdi). Although not explicitly stated in the paper, a similar
argument holds for the increase after a delete operation. Lueker then proves that
any time a rotation takes place at a node v′′ in T with sub-tree of dimension d′′

containing n′′ leaves, I(T ) is decreased by at least (α− 1
3 )2n′′ logd

′′
i.

Since rebuilding a node v with sub-tree of dimension d containing n leaves
can be done in time O(n logd−1 n) Lueker concludes that rebalancing covers the
cost of the insert and delete operations if a suitable constant based on α is used
to charge these.

Thus, since path lengths in BB[α] trees are logarithmic in lengths in the
number of leaves in the tree, a search in a BB[α] d-dimensional tree T of n
leaves visits at most one internal tree for each node on any path it traverses we
note that the time to search T is bounded by O(logdn). This is a remarkable
property of BB[α] trees that even though a single rebuild operation may take
as much as O(n logd−1 n) time, the amortized rebuilding time is no worse than
the time it takes to search the tree.

4.2 Rebalancing cost of red-black higher-dimensional trees

Red-black trees are balanced by recoloring nodes and performing rotations. Fig-
ure 9 shows the rules used for rebalancing red-black trees in this paper. Note
that rebalancing a red black tree of n leaves after an insert or delete opera-
tion requires at most one single- or double rotation and since path lengths in
red-black trees are logarithmic, at most the recoloring of O(log n) nodes. We
note that cases exist where both delete rule 4.1 and 4.2 can be used to correctly
balance a red-black tree, however in this thesis we will have rule 4.1 take prece-
dence over rule 4.2 unless otherwise stated. Refer to [5] for proof that these
rules correctly rebalance any red-black tree after an insert or delete operation.

As mentioned in section 1 Bentley and Friedman show in [1] that a d-
dimensional tree where path lengths differ by at most one for the main tree
and each internal tree can be built from n points in time O(n logd−1 n). Such a
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tree can easily be be colored into a valid red-black tree if either it contains 2 or
fewer leaves by coloring all internal nodes and leaves black or if this is not the
case then by coloring all internal nodes on the lowest layer in the tree red and
all other leaves and internal nodes black.

Figure 9: Visual representation of rebalancing rules for red-black trees from
Hansen and Schmidt’s Transition Systems [6]. Squares represent the node that is
currently being rebalanced, if no squares are present in the result of a rebalancing
rule then the rule terminates the rebalancing.

Unlike in a BB[α] higher-dimensional tree where an amortization argument
shows that the time spent rebuilding trees can be paid for by the number of
insert or delete operations needed to unbalance large nodes, no such argument is
easily available to red-black trees. It is therefore of interest to consider sequences
of insert and delete operations that require the rebuilding of many large internal
trees. We will be working mostly with the main tree of the red-black higher-
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dimensional trees in this section, and when we refer to a point being larger or
smaller than some other point, we mean in the context of the coordinate with
the specific index that is being used to compare points in this main tree.

4.3 Constructing a red-black higher-dimensional tree with
high rebuilding cost

We will show that if a red-black tree with a specific structure Y is constructed,
then a sequence of k insert and delete operations into Y can be repeated indefi-
nitely and each repetition will require rotation on a node with sub-tree contain-
ing a very large number of leaves.

Definition 4.2. A a higher-dimensional red-black tree T [n, h, d] is a member
of Y if the main tree of T satisfies the following properties.

• 1 The left sub-tree child of the root is all black.

• 2 The right child of the root vr is black and the right child of vr is also
black.

• 3 The left sub-tree child of vr is all black.

• 4 The left and right sub-tree children of the right child of vr are maximally
saturated, with each path being alternating red-black.

We will give a general recipe to construct trees of a chosen black-height h
that are memberes of Y.

4.4 Constructing a red-black higher-dimensional Y tree

Since reasoning about the results of the different rebalancing rules leads to very
many tedious cases, we will rely on results generated by our computer program
that implements red-black trees using the rules specified in figure 9. We note
that the implementation contains a function that given some tree validates that
every restriction imposed by the red-black rebalancing scheme is indeed met.
We have run this function on generated red-black trees containing hundreds of
thousands of leaves and have thus far found no invalid trees.

The following sequence constructs a red-black tree of black-height h in Y.
First the skeleton of the tree T0 is created by inserting 2h−1−1 increasing points
into an initially empty red-black tree. Except for the first two inserts, all inserts
will be rebalanced using some combination of the mirrors of insert rule 3.1 and
4.1. These two rules will only color nodes on the right-leaning path or the left
child of the root red, and simulation shows that if the number of points inserted
in this value is a power of 2 then the end result is a tree with one right-leaning
black and red alternating path where each left sub-tree child on the path is all
black. See figure 13 in appendix A2 for an example of a tree T0 generated in
this manner.
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To construct the next step, T1, we first insert decreasing points into the left
sub-tree child of the root where each point pi is smaller than the point stored
in the left-most leaf in the sub-tree. This will eventually color all right siblings
on the left most path in the sub-tree red, until rebalancing reaches the left child
of the root’s left child where rule 3.1 colors the root’s right child black. This is
done with less than 2h−2 inserts and afterwards the same number of points is
deleted so that the left sub-tree child of the root is again all black. See figure 14
in appendix A2 for an example of a tree T1 generated in this manner.

Note that we leave the right child of the root’s right child black, which seems
counterintuitive as it decreases the number of leaves in its sub-tree, however the
reason is that otherwise both delete rule 4.1 and 4.2 would be able to balance the
tree in the step where we perform the rotation that causes the large rebuilding.
If the precedence of these rules were for instance chosen at random the structure
of the tree could end up in a configuration where resetting it to be a member of
Y required rebuilding it from scratch.

Finally, inserting values into the sub-tree of the root’s right child’s right
child until every path in this sub-tree is alternating red-black and the sub-tree
is maximally saturated generates the finished tree T ∈ Y and the preprocessing
ends. This can trivially be done by finding a leaf in the sub-tree that has a
minimum number of ancestors and inserting a point that is slightly larger or
smaller than the stored point in the leaf. See figure 15 in appendix A2 for an
example of a tree T that is a member of Y .

Once the tree is completed, the following sequence of operations on Y will
require costly rebuilding if Y is the main tree in a higher-dimensional red-black
tree. Let vr be the right child of the root’s right child. The sub-tree of vr
contains 22h−2 leaves and performing a left rotation on its parent will invalidate
its internal tree causing very costly rebuilding.

4.5 Performing a high cost sequence of operations on a Y
tree.

Let vl be the left child of the root’s right child and let pl be the point in the
left-most leaf in vl. Inserting 2h−1 − 1 decreasing points pi where pi < pl for
each i into the sub-tree of vl causes rebalancing by insert rule 3.1 and 4.2 and
after the final insert the otherwise all black sub-tree will have an alternating
red-black left leaning path and vl will be red. An example of the resulting tree
can be seen on figure 16 in appendix A2.

Now, deleting the point contained in the left-most leaf in y1 triggers recolor-
ing up the left-most path in the all black left sub-tree child of the root by delete
rule 5. Eventually the rule reaches the left child of the root where no recoloring
is possible. Instead a double rotation by delete rule 4.1 is performed. Note that
the position of vr in the tree remains unchanged after the double rotation, but
the left sub-tree of its parent is replaced by the right sub-tree child of vl and so
its internal tree is invalidated and must be rebuilt. The result of this sequence
is shown on figure 17 in appendix A2.
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The new left child of the right child of the root, v′l is now the old right
sub-tree child of vl which is an all black tree. The old left sub-tree child of vl
has been moved into the left sub-tree child of the left child of the root. Recall
that this sub-tree, the old vl had a red parent and was all black except for one
red-black alternating path and as such it contains exactly 2h−1−1 leaves. Thus
this sub-tree can be returned to an all black sub-tree of black-height h − 2 by
deleting 2h−2 − 1 points, and these points can be found by repeatedly deleting
the point in a leaf in the sub-tree that has a maximum number of ancestors.
Similarly the left sub-tree child of the left child of the root is all black with one
red-black alternating path with one missing leaf, the one that was deleted to
prompt the double rotation. This sub-tree has 2h−1 − 2 leaves and can thus be
made all black in a similar way by deleting 2h−2 − 2 points. After the deletion
of these points, the tree is structurally similar to the original tree Y, and the
sequence can be repeated.

Theorem 4.3. Under the assumption that our implementation of a red-black
tree is correct, a d-dimensional red-black tree T [n, h, d] that is a member of Y can
be constructed in O(n logd n) time and a sequence of insert and delete operations
exists into T where the average cost per operation is O(

√
n logd n).

Proof. Building only the main structure of the tree requires inserting and delet-
ing O(2h) = O(

√
n) points a constant number of times before finally filling up

a sub-tree with O(22h) = O(n) inserts. This can trivially be done in O(n log n)
time. After constructing the main tree we can use Bentley and Friedman’s
method to fill in the internal trees and the total time to construct the tree is at
most O(n logd n).

The number of leaves in the sub-tree of the root’s right child is clearly nr =
O(22h) = O(n), and so rebuilding its internal structure takes time O(n logd n).
After the tree has been constructed we insert 2h−1−1 points to recolor the root’s
right child’s left child, then delete one point to trigger the rotation and delete
2h−1 points to restore the tree to its original structure. Thus the amortized
time cost of performing an insert or delete in this sequence is O(

√
n logd n).

We end this section by discussing the merits of implementing
higher-dimensional trees with red-black rebalancing. We have regrettably not
found any way to prove how wide the gap between a worst-case sequence of
operations and the sequence in theorem 4.3 is. Indeed a much worse sequence
may exist and it could be much more complex than simply performing a single
rotation on a node with a large internal trees and then resetting the structure
of the main tree. We note, however, that the performance cost of the found
sequence is bad enough to render red-black higher-dimensional trees impractical
for use in any real-world scenario and any such sequence would be interesting
only as a theoretical result. Indeed the advantage of performing orthogonal
range queries using higher-dimensional trees over for instance kd-trees are purely
in the the lower costs of searching the tree as the space cost of storing higher-
dimensional trees is an order of magnitude higher.
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5 Conclusion

In this thesis we explored the two interesting properties of higher-dimensional
trees, their space cost and their operations cost, implemented with a red-black
balancing scheme and compared them with their well documented BB[α] coun-
terparts. The main motivation for this research was the paper [8] by Lueker
that describes an algorithm for efficiently performing dynamic orthogonal range
queries using a higher-dimensional BB[α] tree where it was stated that the main
limiting factor was the space cost increase as the dimensions of the trees increase.
Since the more ancestors some leaf has the more internal structures its point
can also be contained in it seemed natural to attempt to see if the relatively
short path lengths in a red-black tree could alleviate this problem in any way.
Another reason to investigate an alternative to BB[α] trees is that these seemed
very complex to implement correctly and examples were given on mistakes in
the original paper [2] as well as in commercial software [7].

We noted that asymptotically the two tree implementations had same space
cost, but that the hidden coefficients would depend on the dimensions of the
tree. We motivated our research into investigating these coefficients by showing
that for fully balanced trees of dimension d the coefficient drops exponentially
as d increases.

When comparing these coefficients of red-black ahd BB[α] higher-dimensional
trees we first showed that the sizes of what we assumed were maximum size
BB[α] higher-dimensional trees are about equal to those implemented with red-
black rebalancing for trees with a number of leaves that is feasible to use in a
real-world setting. Even when the value for α was chosen so that the trees would
have long paths, the BB[α] versions still performed about as well as the red-
black versions and the discrepancies decreased as the number of leaves increased.
Indeed the size coefficients for red-black trees increased in the computed range
as the number of leaves increase whereas the BB[α] trees were near constant or
decreasing for large enough dimensions.

To generate values for maximum sizes of BB[α] trees we used the simple
assumption that the structure of the main tree of a d-dimensional case is the
same as that of the 2-dimensional case. This gave a simple recurrence that
could be computed efficiently for trees with a decent number of leaves. We later
implemented a more rigorous algorithm that computed maximum sizes without
relying on any assumptions and noted that the two generated the same output
for all tested values. Since we found that no simple structure of maximum size
red-black higher-dimensional trees were readily available we had to rely on a
rigorous algorithm to generate data.

In order to explore theoretical results we used patterns in the structures
of the trees generated by the algorithm to construct a moderately successful
approximation of maximum size red-black higher-dimensional trees. We used
this approximation to show that coefficients of maximum size 2-dimensional
red-black trees will get within any arbitrary constant of 2 but never reach it
exact. Generalizing this approximation to d-dimensional trees we proved that
given the assumption of monotonic growth of maximum size coefficients then
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the size of any red-black d > 1-dimensional tree with n leaves is bounded by
1

(d−1)!n logd−1 n ≤ D(T ) < kn logd−1 n, where k is at least 2 and at most 2d−1.

The assumption used was that if it holds that given some constant depending
on the dimension of the tree, k′, and a d-dimensional tree exists where the size
coefficient is greater than k′ − δ for any positive constant δ then there exists a
number N such that a red-black higher-dimensional tree Tn with n leaves exist
for any n ≥ N where the size coefficient of T is also higher than k′− δ. No proof
was presented for this, but we noted that the data plotted by the algorithm
supported it being true.

We used the results of Nievergelt and Reingold to show that the upper
bound on sizes of 2-dimensional BB[α] trees is about half of the red-black case
for α = 1/3 and slightly larger for α = 0.1. As a final note on sizes of red-black
trees we attempted to construct an approximation of a 3-dimensional tree where
the size coefficient was above 2, but found no such tree even as the number of
leaves in the tree became astronomically high.

On cost of performing operations in higher-dimensional trees we noted that
for a single operation the dominating factor was potentially the time it takes
to rebuild internal trees after rotations occur. A proof in Lueker showed that
amortized this cost could be absorbed by the cost of the number of inserts and
deletes it takes before the rotation is needed. We showed that no such cost
absorption exists in red-black higher-dimensional trees and we gave a recipe for
constructing a sequence of insert and delete operations of arbitrary length into a
specific red-black higher-dimensional tree that makes rebalancing cost dominate
all other operation costs for the series. This cost is a factor of

√
(n) larger for

a tree with n leaves than the BB[α] cost and we noted that even though the
red-black higher-dimensional trees performed no better or worse to make any
real difference than the BB[α] higher-dimensional trees in terms of space cost
in the computed range, and that BB[α] trees are indeed complex to implement,
red-black higher-dimensional trees turned out to have very little purpose in any
real-world setting.

5.1 Future work

As the research done in this thesis indicates, red-black higher-dimensional trees
have little use in any real-world sense. However a number of theoretical results
may still be of interest. A number of assumptions are made in this thesis that,
although supported by data, are not rigorously proven. For one we assume that
the sizes of maximum size and minimum size higher-dimensional trees all follow
the same structure as the 2-dimensional case, that is a minimum size tree is as
close to perfectly balanced as possible and a maximum size tree has as many
leaves as possible positioned as far down in the tree as possible. Verifying or
discarding these assumptions may be an interesting result to pursue.

We also show that if these assumptions are indeed correct then the size
coefficient of a maximum sized d-dimensional tree converges to some k that
is at least 2 and at most 2d−1. Examining how tight this bound is is another
possible area of interest. The algorithm we give for constructing maximum
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size red-black higher-dimensional trees is super polynomial in the number of
leaves, if a better algorithm could be found perhaps more information about
the maximum sizes of red-black trees can be learned.

A final result on sizes of higher-dimensional trees that could be of inter-
est is solving the recurrence presented for maximum sizes of BB[α] trees and
uncovering a bound on the coefficients for these.

Finally we show that a sequence of inputs into a red-black higher-dimensional
tree of n leaves exists that causes average rebalancing cost of O(

√
n logd n). We

do not prove whether a worse sequence exists, and finding an example of such
or disproving it may also be a venue to explore.
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6 Appendix

6.1 A1

Output generated from Algorithm 1 shows structures of maximmum size red-
black 2-dimensional trees with 38, 39 and 40 leaves. Circles represent internal
nodes and boxes represent sub-trees where all paths have length h. A red box
is a fully saturated sub-tree and a black box is a minimally saturated sub-tree.

h=3

h=2

h=4

h=1 h=3

Figure 10: Maximum size
red-black 2-dimensional
tree with 38 leaves in
Γ[2, 5, 6].

h=3

h=3

h=2

h=2

h=3

h=2

h=1 h=0

Figure 11: Maximum size
red-black 2-dimensional
tree with 39 leaves in
Γ[4, 4, 1].

h=3

h=3

h=2

h=2 h=4

Figure 12: Maximum size
red-black 2-dimensional
tree with 40 leaves in
Γ[4, 4, 0].

6.2 A2

Various stages in generating trees in Y and performing the high rebalance cost
sequence on these generated by a computer program implementing red-black
trees.

40



8000

4000 16000

2000 6000 12000 20000

10000 14000 18000 24000

17000 19000 22000 26000

21000 23000 25000 28000

25000 26000 27000 29000

27000 28000 29000 30000

30000 31000

21000 22000 23000 24000

17000 18000 19000 20000

9000 11000 13000 15000

13000 14000 15000 160009000 10000 11000 12000

1000 3000 5000 7000

5000 6000 7000 80001000 2000 3000 4000

Figure 13: T0, the initial stage in generating a tree in Y with black-height 5.

8000

999 16000

995 4000 12000 20000

10000 14000 18000 24000

17000 19000 22000 26000

21000 23000 25000 28000

25000 26000 27000 29000

27000 28000 29000 30000

30000 31000

21000 22000 23000 24000

17000 18000 19000 20000

9000 11000 13000 15000

13000 14000 15000 160009000 10000 11000 12000

993 997 2000 6000

1000 3000 5000 7000

5000 6000 7000 80001000 2000 3000 4000

992 994 996 998

996 997 998 999992 993 994 995

Figure 14: T1, the second stage in generating a tree in Y with black-height 5.
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995 4000 12000 20000

10000 14000 18000 24000

17000 19000 22000 26000

21000 23000 25000 28000

25000 26000 27000 30000

27000 28000 29000 31000

29000 30000 31000 1000000027000 27000 28000 28000

25000 25000 26000 26000

26000 26000 26000 2600025000 25000 25000 25000

21000 22000 23000 24000

23000 23000 24000 24000

24000 24000 24000 2400023000 23000 23000 23000

21000 21000 22000 22000

22000 22000 22000 2200021000 21000 21000 21000

17000 18000 19000 20000

19000 19000 20000 20000

20000 20000 20000 20000

20000 20000 20000 2000020000 20000 20000 20000

19000 19000 19000 19000

19000 19000 19000 1900019000 19000 19000 19000

17000 17000 18000 18000

18000 18000 18000 18000

18000 18000 18000 1800018000 18000 18000 18000

17000 17000 17000 17000

17000 17000 17000 1700017000 17000 17000 17000

9000 11000 13000 15000

13000 14000 15000 160009000 10000 11000 12000

993 997 2000 6000

1000 3000 5000 7000

5000 6000 7000 80001000 2000 3000 4000

992 994 996 998

996 997 998 999992 993 994 995

Figure 15: T , the final stage in generating a tree in Y with black-height 5.
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21000 23000 25000 28000
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25000 25000 26000 26000

26000 26000 26000 2600025000 25000 25000 25000

21000 22000 23000 24000

23000 23000 24000 24000

24000 24000 24000 2400023000 23000 23000 23000

21000 21000 22000 22000

22000 22000 22000 2200021000 21000 21000 21000

17000 18000 19000 20000

19000 19000 20000 20000

20000 20000 20000 20000

20000 20000 20000 2000020000 20000 20000 20000

19000 19000 19000 19000

19000 19000 19000 1900019000 19000 19000 19000

17000 17000 18000 18000

18000 18000 18000 18000

18000 18000 18000 1800018000 18000 18000 18000

17000 17000 17000 17000

17000 17000 17000 1700017000 17000 17000 17000

8991 8997 10000 14000

9000 11000 13000 15000

13000 14000 15000 160009000 10000 11000 12000

8989 8993 8996 8998

8996 8997 8998 89998987 8990 8992 8994

8992 8993 8994 89958986 8988 8990 8991

8985 8987 8988 8989

8985 8986

993 997 2000 6000

1000 3000 5000 7000

5000 6000 7000 80001000 2000 3000 4000

992 994 996 998

996 997 998 999992 993 994 995

Figure 16: The result of performing insertions in the sub-tree of vl in a tree in
Y.
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999 8995 12000 20000

10000 14000 18000 24000
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21000 23000 25000 28000
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27000 28000 29000 31000

29000 30000 31000 1000000027000 27000 28000 28000
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26000 26000 26000 2600025000 25000 25000 25000
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23000 23000 24000 24000

24000 24000 24000 2400023000 23000 23000 23000

21000 21000 22000 22000

22000 22000 22000 2200021000 21000 21000 21000

17000 18000 19000 20000

19000 19000 20000 20000

20000 20000 20000 20000

20000 20000 20000 2000020000 20000 20000 20000

19000 19000 19000 19000

19000 19000 19000 1900019000 19000 19000 19000

17000 17000 18000 18000

18000 18000 18000 18000

18000 18000 18000 1800018000 18000 18000 18000

17000 17000 17000 17000

17000 17000 17000 1700017000 17000 17000 17000

9000 11000 13000 15000

13000 14000 15000 160009000 10000 11000 12000

995 4000 8991 8997

8989 8993 8996 8998

8996 8997 8998 89998987 8990 8992 8994

8992 8993 8994 89958986 8988 8990 8991

8985 8987 8988 8989

8985 8986

993 997 2000 6000

1000 3000 5000 7000

5000 6000 7000 80001000 2000 3000 4000

993 994 996 998

996 997 998 999994 995

Figure 17: The result of deleting the smallest point in a tree and performing a
double rotation that causes high rebuilding cost. Note that if excess points are
deleted in the left sub-tree of the root then the tree returns to being in Y .
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