
Geometric Measures of Depth
Mathies Boile Christensen, 20104810
Thomas Sandholt, 20103476

Master’s Thesis, Computer Science
July 2015
Advisors: Peyman Afshani and Gerth Stoelting Brodal

DEPARTMENT OF COMPUTER SCIENCE

AARHUS

UNIVERSITY AU

Abstract

Modern technology has greatly promoted the collection of large scale multivari-
ate data and analysing it is of interest in many statistical applications. Extend-
ing the univariate measures is insufficient as multivariate data lacks a natural
order in Euclidean space. The concept of depth solves this problem by defining
the centrality of a point relative to the input. Many notions of depth have been
introduced of which the simplicial and halfspace depth are very prominent. In
this thesis we will implement efficient algorithms for computing the depth of
a point in R2, using the two notions of depth, and demonstrate that robust
approximations can be achieved by uniformly sampling the input. We will also
study the problem of finding a point that best describes the data in R2 with
respect to the halfspace median and present an O(n1+ε) algorithm that use an
array of simple algorithmic techniques.

ii

Acknowledgements

We wish to express our sincere gratitude to our advisor Peyman Afshani for
guiding us during our work on this thesis. He always took time to answer our
questions and discuss new approaches and problems. Without his patience and
immense knowledge, this thesis would have been near impossible.

We would also like to thank family and friends for moral support, especially
Lukas Walther for contributing with constructive discussions and comments.

Mathies Boile Christensen,
Thomas Sandholt,

Aarhus, July 1, 2015.

iii

Contents

Abstract ii

Acknowledgments iii

List of tables v

List of figures vi

1 Introduction 1
1.1 Background and related work . 1
1.2 Thesis statement . 4
1.3 Computer specifications and source code 4
1.4 Overview . 4

2 Preliminaries 6
2.1 Duality and arrangements . 6
2.2 Levels . 8
2.3 Range space, ε-approximations and ε-nets 9
2.4 Query depth . 10
2.5 Cuttings . 12
2.6 Geometric functions . 15

3 Query depth 18
3.1 Simplicial query depth algorithms 18
3.2 Halfspace query depth algorithms 22
3.3 Testing and robustness . 25
3.4 Efficiency of calculating the query depth 26
3.5 Approximating the query depth 27

3.5.1 A query in the center . 28
3.5.2 A query near an outlier 29
3.5.3 Approximations on average 31
3.5.4 Ranking points in practice 33

3.6 Conclusion . 35

4 Arrangements 36
4.1 The bounded arrangement . 36
4.2 Details of the bounded arrangement 38

iv

4.3 The unbounded arrangement . 39
4.4 Details of the unbounded arrangement 41
4.5 The combined arrangement . 42
4.6 Testing and robustness . 44
4.7 Verification of the space complexity 45
4.8 Verification of the building time 46
4.9 Conclusion . 49

5 Cuttings 50
5.1 The naive cutting . 50
5.2 Details of the naive cutting . 52
5.3 The fixing cutting . 53
5.4 Details of the fixing cutting . 54
5.5 Testing and robustness . 55
5.6 Fine-tuning the cutting algorithms 56

5.6.1 The naive cutting . 56
5.6.2 The fixing cutting . 58

5.7 Comparing the cutting algorithms 62
5.8 Conclusion . 65

6 Halfspace median 66
6.1 The naive algorithm . 66
6.2 The level algorithm . 67
6.3 Details of the level algorithm . 71
6.4 Testing and robustness . 73
6.5 Fine-tuning the level algorithm 73
6.6 Verification of the running time 76
6.7 Verification of the breakdown point 79
6.8 Conclusion . 79

7 Conclusion 80
7.1 Future work . 81

Bibliography 81

Appendices 84
7.2 Convex sets . 84

v

List of Tables

3.1 The query time in ms when calculating the depth of a query
point in the center. 26

4.1 The arrangement building time in ms for select values of n using
double and rational number precision. 45

4.2 The theoretical bound on vertices and edges compared to the
actual values from running the algorithm. 45

6.1 The running time in ms when calculating the halfspace median. . 78

vi

List of Figures

2.1 A section of a doubly-connected edge list. 7
2.2 The zone of a line l in an arrangement of lines. 8
2.3 The lower 3-level in an arrangement of lines. The vertices with

2 lines strictly below them are red and the vertices with 3 lines
strictly below them are black. 9

2.4 The possible simplicial depths of two triangles. 11
2.5 Geometric interpretation of computing the sidedness of a point

r with respect to a line going through two points p and q. 16
2.6 Geometric interpretation of computing the angle θ from p to q. . 17

3.1 A query q with simplicial depth 4. 18
3.2 A non-degenerate and degenerate triangle. 19
3.3 Illustrations during the scan of QUERY_SIM_SORT. 21
3.4 A query q with halfspace depth 1 using the halfspace. 22
3.5 Rotating the halfspace going through q and pi. 23
3.6 Illustrations during the first scan of QUERY_HS_SORT. 25
3.7 The query time in ms when calculating the depth of a query

point in the center. 27
3.8 The normalized error when approximating the depth of a query

point in the center. 29
3.9 The normalized error when approximating the depth of a query

point near an outlier. 30
3.10 The normalized error when approximating the depth of multiple

random query points. 32
3.11 The normalized error when approximating the depth of multiple

random query points. 33
3.12 The approximate normalized depth of a query point in the center. 34
3.13 The approximate normalized depth of a query point near an outlier. 34

4.1 Illustrations of handling intersect events. 37
4.2 Translating the point p to determine the correct face. 39
4.3 An arrangement with a conceptual bounding box at infinity. . . . 40
4.4 Handling the stopping criteria with parallel lines. 41
4.5 The four cases of a semi-bounded arrangement. 42
4.6 An example of an unbounded arrangement. 43
4.7 An example of a semi-bounded arrangement. 43
4.8 An example of a bounded arrangement. 44

vii

4.9 The build time in ms for constructing an arrangement of lines. . 47
4.10 The number of L2 caches misses when constructing an arrange-

ment of lines. 48
4.11 The number of L3 caches misses when constructing an arrange-

ment of lines. 48
4.12 The number of completed instructions when constructing an ar-

rangement of lines. 49

5.1 An example of a 1
3 -cutting of 9 lines. 51

5.2 Triangulating unbounded faces. 52
5.3 A line that intersect an unbounded triangle without intersecting

the interior of the edges bounding the triangle. 53
5.4 An example of a 1

3 -cutting of 9 lines. 54
5.5 The build time in ms when constructing a 1

10 -cutting using the
naive cutting. 57

5.6 The number of triangles when constructing a 1
10 -cutting using

the naive cutting. 58
5.7 The build time in ms when constructing a 1

10 -cutting using the
fixing cutting. 59

5.8 Sampling two lines crossing a triangle in four and one refinement
steps respectively. 60

5.9 The number of triangles when constructing a 1
10 -cutting using

the fixing cutting. 60
5.10 The build time in ms when constructing a 1

10 -cutting using the
fixing cutting. 61

5.11 The number of triangles when constructing a 1
10 -cutting using

the fixing cutting. 62
5.12 The build time in ms when constructing a 1

10 -cutting using both
algorithms. 63

5.13 The build time in ms when constructing a 1
10 -cutting using the

fixing cutting. 63
5.14 The number of triangles when constructing a 1

10 -cutting using
both algorithms. 64

5.15 The number of triangles when constructing a 1
10 -cutting using

the fixing cutting. 64

6.1 The primal and dual interpretation of the same halfspace median
problem. 69

6.2 Checking whether a triangle may be pruned. 72
6.3 Bounding the solution during a one-dimensional search. 73
6.4 The running time in ms when calculating the halfspace median. . 74
6.5 The running time in ms when calculating the halfspace median. . 75
6.6 The number of constraints gathered when calculating the halfs-

pace median. 76
6.7 The running time in ms when calculating the halfspace median. . 77
6.8 Examples of the halfspace median with 0, n

3 and n
2 noisy data

points respectively. 79

viii

7.1 A convex and non-convex set. 84

ix

Chapter 1

Introduction

Consider a country far far away with a population of 1000 citizens ruled by a
vicious dictator. This dictator is accused by the U.N. of not paying his people
enough to maintain a decent standard of living. The current distribution of
salaries in the country is such that the dictator is paid 1.000.000.000 smackers
while each citizen is paid 1 smack. When questioned by the U.N. the dictator
simply presents the mean wage and argues that 1.000.000 smackers in average
income is more than enough to survive. Thus, the U.N. concludes that the
accusation is a lie and drops the case. However, upon further investigation by a
diligent U.N. worker, the median wage of the country turns out to be 1 smack
and the case reopens.

The above example illustrates how outliers can affect an estimator, which
in the worst case may lead to faulty conclusions. Therefore it is important
that an estimator is robust, i.e. it can handle noise and outliers. In this one-
dimensional case, the problem is solved by using the median instead of the
mean, which proves to be a more robust estimator.

More formally, given a set of points whose underlying probability distribu-
tion is unknown, or non-parametric and unimodal, the important data analyti-
cal task is to estimate a point which best describes the set. For any definition of
such a point it is important to consider the issues of robustness and efficiency:
How many outlying observations can an estimator tolerate before giving an in-
correct result and can such an estimator be found efficiently? The presence of
outliers also gives rise to the related problem of ranking and ordering points by
determining their outlierness, or equivalently their depth. These two problems
are of great relevance in any application where data analysis is paramount, but
are computationally challenging given a multivariate setup. In this thesis we
seek to solve these problems efficiently in R2 using the concept of data depth.

1.1 Background and related work
Data depth is an important concept and leads to the generalization of many
univariate measures into a multivariate setting. One such measure is the esti-
mator described above. The mean is fast to compute in any dimension and is
straight forward to apply in practice. The major disadvantage is that it falls

1

short in terms of robustness because a single outlier has great influence on the
result. To further reason about robustness we formalize the concept of the
breakdown point.

Definition 1.1. The breakdown point is the proportion of data which must be
moved to infinity so that the estimator will do the same.

The problem with the mean in R1 is that the breakdown point is 1
n because a

single point at infinity will move the mean to infinity. A more robust alternative
is the median which has a breakdown point of 1

2 . In fact, it has been show in
[A17] that the maximum breakdown point for any estimator is 1

2 meaning that
the median is optimal in R1. Intuitively, the breakdown point cannot exceed 1

2
because if more than half of the data points are outliers then it is not possible to
distinguish between the underlying distribution and the outliers. Even though
the median is a robust estimator it is only defined on ordered one-dimensional
data, thus a generalized multivariate definition is needed for data in more than
one dimension.

The generalization of the univariate median is an old research topic and
not all solutions rely on the concept of depth. One of the first suggestions
for generalizing the median was to combine several univariate medians along
the different dimensions of the data. An example of this idea is the vector-of-
medians from 1902 by Hayford [A7], but as was shown by Rousseeuw in [A16]
the problem with this idea is that it is possible to generate a median outside
the convex hull of the data points. Soon after Hayford’s definition, Weber [A1]
proposed to use the point which minimizes the sum of the Euclidean distances
to all data points as an estimator. This estimator is referred to as the geometric
median and coincides with the univariate median in one dimension. It has been
show in [A16] that the breakdown point of the geometric median in Rd is 1

2 ,
hence it is optimal with respect to robustness. Unfortunately, the geometric
median has a major drawback: It is unknown whether it can be computed
exactly for n > 3 in more than one dimension. All known algorithms to this day
approximate the geometric median and alternate definitions may be considered
depending on the application.

Another definition that generalizes the univariate median is based on a
popular depth measure, namely the halfspace depth. In 1929 Hotelling [A6]
described the univariate median as the point which minimizes the maximum
number of data points on one of its sides. This idea was generalized by Tukey
[A11] into the halfspace depth and later into the halfspace median which has
been subject to a lot of research. In order to define the halfspace median, we
must first consider the depth function. The median follows directly as it is the
point with the largest depth.

Definition 1.2. Given a set P ⊂ Rd of size n and a query point q ∈ Rd, the
halfspace depth Dhs(q) is defined as

Dhs(P, q) = min{|P ∩ γ| : over all closed halfspaces γ containing q}.

2

Definition 1.3. Given a set P ⊂ Rd of size n, the halfspace median Mhs(P) is
defined as

Mhs(P) = arg max
q∈Rd

Dhs(P, q).

The halfspace median is generally not a unique point, but the set of all
points at maximum depth is guaranteed to be a closed and bounded convex
set. It has a breakdown point between 1

d+1 and 1
3 as show in [A3] and therefore

serves as a robust estimator. Unfortunately, computing the halfspace median
is a very time consuming task and efficient algorithms are either conceptually
difficult or complex to implement. In order to emphasize the severity of the
problem, a naive algorithm in R2 runs in O(n6). An improvement to this
was made by Rousseeuw et al. in [A18] by calculating the depth of a single
point in O(n logn) resulting in a O(n5 logn) algorithm. Later they presented a
more complicated O(n2 log2 n) algorithm along with an implementation [A19].
In 1991 Matoušek [A8] presented a O(n log5 n) algorithm by showing how to
compute some point with depth greater than some parameter k in O(n log4 n)
and combining it with binary search on k. The algorithm was later improved
by Langerman et al. [A21] to find the median in O(n log4 n). Finally, in 2004
Chan [A22] presented an O(n logn + nd−1) optimal randomized algorithm for
computing the halfspace median in Rd. This algorithm is the best known to
date, but Chan perceives the problem from a purely theoretical point of view
and suspects that the algorithm has very large constants. Consequently, he
doubts its practical purpose and suggests that a simpler solution in R2 may not
be as inefficient as one thinks.

A competing depth measure was first introduced by Liu in [A20] and stems
from another generalization of the univariate median, namely the simplicial
median. The basic idea extends the univariate median when seen as the point
contained in the largest number of intervals constructed by the input. This
naturally suggests to use the number of intervals a point is contained in as
a depth measure. These intervals generalizes to simplicies in more than one
dimension and leads to the following definition of simplicial depth.

Definition 1.4. Given a set P ⊂ Rd of size n and a query point q ∈ Rd, the
simplicial depth Dsim(P, q) is defined as the number of simplicies formed by
d+ 1 data points from P that contain q.

Again, the simplicial median follows directly from this definition as it is the
point with the largest depth. Unfortunately, this definition of depth appears
to be even more challenging than the halfspace depth when the task at hand
is to compute an estimator. In R2 the best known algorithm was invented by
Aloupis et al. in [A5] and runs in O(n4). Furthermore, the simplicial median
has a worse breakdown point than the halfspace median which is shown by
Chen in [A24]. One thing the two depth measures have in common is that the
depth of a point can be calculated in O(n logn) using the algorithm described
by Rousseeuw et al. in [A18]. Even though this is considered efficient, the
process of ranking a set of points becomes a O(n2 logn) algorithm, but can be
improved by sampling the input.

3

In conclusion, the problem of finding a robust estimator using a depth mea-
sure is a computationally difficult challenge and efficient solutions are required
to make use of it in practice. The notion of depth also makes it possible to
rank data points in order to determine their outlierness. This task is less time
consuming, but does not scale well for ranking an entire set of points.

1.2 Thesis statement
Our contribution and objective of this master thesis is divided into two parts.
Firstly, we will describe, implement and analyze algorithms in R2 that compute
the halfspace and simplicial depth of point and test their efficiency and how
the depth measures are affected by uniformly sampling the input. Secondly, as
suggested by Chan, we will describe, implement and analyze a simpler algorithm
that computes the halfspace median in R2 and tests its efficiency in practice. To
do this, we use an array of computational techniques of which we will describe
and analyze the most extensive ones in great detail, in order to verify the final
algorithm.

1.3 Computer specifications and source code
All experiments are executed on an Asus UX31A notebook with an Intel core
i7-3517U processor with 2 cores (4 threads) and 4 GB memory. There is a single
L1 instruction cache and L1 data cache per core, each of size 32 KB. There is
also one unified L2 cache of size 256 KB per core. The unified L3 cache is
shared by all cores and can contain 4096 KB. The page size is 4 KB and the
cache line is 64 bytes. The L1 instruction TLB and L1 data TLB can contain
64 entries each and the unified L2 TLB can contain 512 entries. The code is
compiled with clang++ version 3.4-1ubuntu3 using the 03 optimization flag on
Ubuntu 14.04 LTS.

The source depends on GMP which is a multiple precision library for doing
arithmetic with large to infinite precision. The source also depends on PAPI
which is a library for counting hardware events. Finally, the source includes
PEMPEK which is a library that makes it easier to use assertions in production and
test code. The assertion library is included and precompiled inside the package
but GMP and PAPI needs to be installed on the host operating system. The source
code can be downloaded at https://www.dropbox.com/s/yzhxyk4898jrbo5/
thesis.zip?dl=0.

1.4 Overview
The thesis consists of 7 chapters whereas this introduction is the first. In
Chapter 2 we present the relevant and necessary theory used in the remaining
chapters. In Chapter 3 we study the first part of the thesis statement concerning
approximations of the halfspace and simplicial depth of a query point. We study
the second part of the thesis statement in Chapter 4 through 6. In Chapter 4
we present a data-structure for storing an arrangement of lines and in Chapter

4

https://www.dropbox.com/s/yzhxyk4898jrbo5/thesis.zip?dl=0
https://www.dropbox.com/s/yzhxyk4898jrbo5/thesis.zip?dl=0

5 we present two 1
r -cutting algorithms which uses this data-structure. The

material presented in these two chapters are targeted at verifying correctness,
improving performance and sets the stage for the algorithm computing the
halfspace median presented in Chapter 6. Finally, the thesis is concluded in
Chapter 7.

5

Chapter 2

Preliminaries

In this chapter we present the relevant and necessary theory, along with some
fundamental geometric functions, for implementing and analyzing the algo-
rithms used in this thesis. In this and the following chapters, we assume the
random-access model when analyzing algorithm complexities.

2.1 Duality and arrangements
In this section we describe the theory of duality and arrangements of lines from
[A12]. This topic is relevant since the problem of calculating the halfspace
median is defined on a set of points, but may be solved efficiently in dual space
where the arrangement of lines is a necessary tool.

In R2, the dualization of a point p = (x, y) is given by the line

l = (x,−y) (2.1)

where x denotes the slope and −y denotes the intersection with the y-axis. This
transformation ensures that there exists no vertical lines in the dual plane and
it is incidence and order preserving.

Definition 2.1. The duality transformation is a bijective mapping defined by
equation 2.1 and has the following properties.

• A point cannot dualize into a vertical line.

• It is incidence preserving meaning that points on a line maps to lines that
goes through the dual of the line.

• It is order preserving meaning that a point lies above a line if and only if
the dual of the line lies above the dual of the point.

A set of lines induces a subdivision that consists of vertices, edges and faces
and is referred to as an arrangement of lines. The complexity is defined in the
number of these structures and it is quadratic in the worst case.

Theorem 2.1. The arrangement induced by a set L of n lines in R2 has the
following space complexity.

6

• The number of vertices is at most n(n−1)
2 .

• The number of edges is at most n2.

• The number of faces is at most n(n+1)
2 + 1.

Proof. The number of vertices is equal to the number of intersections between
the lines of L and there are at most(

n

2

)
= n(n− 1)

2

such intersections. In order to prove the bound on the edges, we know that each
line can at most be cut into n edges by n− 1 vertices. Given that there are n
lines there can at most be n2 edges. Finally, the number of faces is increased by
the number of edges that are created when inserting a line in the arrangement,
because an edge splits a face in two. Taken the initial face into consideration
there are at most (

n∑
i=1

i

)
+ 1 = n(n+ 1)

2 + 1

faces in the final arrangement. Note, that if there are parallel lines or more
than two lines pass through the same point the number of vertices, edges and
faces decreases and the bounds still hold.

The preferred data-structure for representing an arrangement of lines is a
doubly-connected edge list. This data-structure creates a record for each vertex,
edge and face and stores them such that they can be traversed and modified
efficiently. The faces are not needed for implementing the algorithms in this
thesis so they are left out. Edges are doubly-connected, meaning that all edges
are oriented and have a twin edge pointing in the opposite direction. An edge
must at least store a pointer to the twin edge together with a pointer to the
previous edge and the next edge along with a pointer to the vertex that it
originates from. A vertex must at least store the coordinates of its position
and a pointer to an incident edge originating from it. A section of a doubly-
connected edge list is depicted in Figure 2.1.

next

e

prev

twin

origin

Figure 2.1: A section of a doubly-connected edge list.

Algorithms for constructing and traversing a doubly-connected edge list
simply use these pointers. In order to analyze such algorithms we need to
introduce the concept of zones. A zone is associated with a line l and consists

7

of the faces that the line intersects. An example is depicted in Figure 2.2. The
complexity of a zone is given by the number of vertices and edges bounding the
faces in the zone. It is not intuitive that its complexity is linear in the number
of lines that forms the arrangement because vertices may be counted more than
once. Nonetheless, as shown by the following theorem, it is true.

l

Figure 2.2: The zone of a line l in an arrangement of lines.

Theorem 2.2. Given an arrangement of n lines, the complexity of the zone
associated with a line l is O(n).

The formal induction proof of Theorem 2.2 can be found in the literature
referred to in the beginning of this section and starts by defining left and right
bounding edges. An edge is left bounding of the face that lies in the right
halfspace of the line defining it. Symmetrically, an edge is right bounding if the
opposite hold. Informally, the proof is carried by bounding the number of such
edges by 10n, i.e. by bounding left bounding edges by 5n and right bounding
edges by 5n. Considering left bounding edges, the induction step is proven by
counting how many edges the rightmost edge l1 that intersects l introduces. By
convexity of faces this number is at most 5 and the theorem holds by induction.

2.2 Levels
In this section we present the relevant theory about levels in arrangements
of lines as described in [A15]. The notion of levels is directly connected to
computing the halfspace median in dual space as it constrains the maximum
possible depth.

Given an arrangement of lines in general position, the upper level of a vertex
is the number of lines strictly above it. The upper k-level is the closure of the
set of vertices that have k lines strictly above them. Note that the upper k-
level contains vertices with upper level k or k− 1 in order for the closure to be
well defined. Symmetrically, The lower level of a vertex is the number of lines
strictly below it. The lower k-level is the closure of the set of vertices that have
k lines strictly below them. Note that the lower k-level contains vertices with
lower level k or k− 1 in order for the closure to be well defined. An example of
the lower 3-level vertices in an arrangement of lines is depicted in Figure 2.3.

Definition 2.2. Given an arrangement induced by n lines in general position
we define the k-level as follows.

8

• The upper k-level is the closure of the set of vertices that have k lines
strictly above them.

• The lower k-level is the closure of the set of vertices that have k lines
strictly below them.

Figure 2.3: The lower 3-level in an arrangement of lines. The vertices with 2
lines strictly below them are red and the vertices with 3 lines strictly below
them are black.

Unfortunately, the size of the k-level is super-linear and the best known
upper bound is O(nk1/3) [A23]. In practice this number is most likely smaller,
but it remains an open problem whether a tighter bound exists.

Lemma 2.1. The number of vertices on the k-level is at most O(nk1/3).

2.3 Range space, ε-approximations and ε-nets
In this section we recall the basic facts about range spaces, ε-approximations
and ε-nets as described in [A2] and [A4]. The concept of ε-approximations is
relevant for calculating the query depth, since the input space may be sampled,
producing results with a tolerable error. Additionally, ε-nets are important in
relation to calculating the maximum halfspace depth as the dual space may be
partitioned into smaller problems by sampling lines from the input. In this case
the theory provides on upper bound on the size of this partitioning.

A range space is a pair (X,R) where X is a set of n objects and R is a set
of subsets of X. We call the elements of R ranges and it is typically defined
in terms of a geometric structure. Given a subset Y ⊆ X, we naturally get a
sub space induced by Y - namely the range space R|Y = (Y, {Y ∩R : R ∈ R})
which is obtained by intersecting Y with each R ∈ R. Given the notion of
range spaces we can define an ε-approximation and ε-net.

Definition 2.3. Given a range space (X,R) and ε ∈]0; 1[, an ε-approximation
is a subset Y ⊆ X such that for each range R ∈ R∣∣∣∣ |R||X| − |Y ∩R||Y |

∣∣∣∣ ≤ ε.
Definition 2.4. Given a range space (X,R) and ε ∈]0; 1[, an ε-net is a subset
Y ⊆ X such that for each range R ∈ R

|R| ≥ ε|X| ⇒ Y ∩R 6= ∅

9

The notion of ε-nets is weaker than that of ε-approximations because an
ε-approximation is automatically an ε-net. To make any use of these definitions
we need to define the concept of shattering and the VC-dimension. We say that
a subset Y ⊆ X is shattered if |R|Y | = 2Y and the range space (X,R) is said
to have VC-dimension dvc if dvc is the smallest integer such that no dvc + 1 size
subset Y can be shattered. If no such limit exists the VC-dimension is infinite.
A property about range spaces with finite VC-dimension is that there exists an
upper bound on the size of ε-approximations and ε-nets that is independent of
the size of X.

Lemma 2.2. For any finite range space (X,R) with finite VC-dimension dvc
and ε ∈]0; 1[, there exists an ε-net of size at most O(dvc

ε log dvc
ε) and an ε-

approximation of size at most O(dvc
ε2 log dvc

ε).

With respect to ε-approximations, this lemma tells us that it is reasonable
to approximate |R||X| by taking a relatively small sample from X and computing
|Y ∩R|
|Y | instead. For ε-nets, the lemma simply gives an upper bound on its size.

The results proven in [A4] also reveal that we can expect to create an ε-net
within a constant probability by taking a random sample of size O(dvc

ε log dvc
ε).

Lemma 2.3. For any finite range space (X,R) with finite VC-dimension dvc
and ε, δ ∈]0; 1[, the subset Y ⊆ X is an ε-net with probability 1 − δ if Y is
created by choosing

m = max
(4
ε

log 2
δ
,
8dvc
ε

log 8dvc
ε

)
independent draws from X.

2.4 Query depth
We seek to apply the theory presented in Section 2.3 on the problems of finding
the simplicial and halfspace depths of a point. In this section we will prove that
the range spaces defining them have constant VC-dimension.

Theorem 2.3. The problem defined in Definition 1.4 (simplicial query depth)
has finite VC-dimension.

Proof. The range space for the simplicial depth problem consists of X which
is the set of all possible triangles constructed by the input points and R which
is the set of sets of all unique triangle combinations containing a query point.
Now, by the definition of shattering, R|Y shatters Y ⊆ X if it corresponds to
the powerset of Y . Thus for any combination of triangles from Y it should be
possible to place a query point inside only those triangles. An example of a
set of triangles being shattered is given in Figure 2.4. Here the labels represent
four different query points covering all the possible combinations of triangles.
The main insight to gain from the example is that the different triangle combi-
nations must correspond to a face in the arrangement constructed from the line
segments of the triangles. This follows from the fact that for any given triangle

10

combination a query point being covered by only those triangles must lie inside
a region covered by only those triangles. Armed with this it is now possible to
prove that the simplicial depth problem has finite VC-dimension. We know, that
in order for R|Y to shatter Y it must contain 2|Y | elements. This corresponds to
saying that the arrangement created by the line segments of the triangles must
contain 2|Y | faces. From Theorem 2.1 we know that the maximum number of
faces for any arrangement of n lines is bounded by n(n+1)

2 + 1 = O(n2). Thus
the simiplicial depth problem has finite VC-dimension, because if |Y | is a large
enough constant, then there will be fewer than 2|Y | faces in the arrangement,
meaning that Y is not shattered.

1 2 3 4

Figure 2.4: The possible simplicial depths of two triangles.

Theorem 2.3 states that the VC-dimension for the simplicial query depth
problem is finite, but gives no exact bound on the VC-dimension. It is however
possible to determine an upper bound using arrangement of lines theory. The
actual bound on the number of faces for an arrangement of n lines is n(n+1)

2 +1.
Combining this with the fact that n triangles will generate 3n line segments,
an upper bound for the number of faces in the arrangement created from n
triangles is 3n(3n+1)

2 + 1. Hence, an upper bound of the VC-dimension is given
by the equation

3n(3n+ 1)
2 + 1 = 2n

which has several solution of which n ≈ 8.35695 is the largest. Thus we conclude
that for the simplicial depth problem the VC-dimension is no more than 8
because n = 9 cannot be shattered.

Theorem 2.4. The problem defined in Definition 1.2 (halfspace query depth)
has finite VC-dimension.

Proof. Instead of looking at the halfspace depth problem, we look at a gen-
eralized problem where the halfspace can be positioned anywhere in R2. The
generalized problem consists of X which is a set of points in R2 and R which
is the set of all possible sets of points contained in a halfspace. By the defini-
tion of shattering, R|Y shatters Y ⊆ X if it corresponds to the powerset of Y .
Thus, we can prove that there exists a finite upper bound on the VC-dimension
by showing that it is not possible to shatter a set of four points. Any set of
four points can be partitioned into two subsets whose convex hulls intersect,
hence there will always exist a point that no halfspace can separate from the
rest of the points. Given four such points p1, p2, p3, p4 ∈ R2 there exists four

11

coefficients a1, a2, a3, a4 ∈ R that are not all zero such that the equations

4∑
i=1

aipi = 0 (2.2)

4∑
i=1

ai = 0 (2.3)

hold. Note that there are three equations and four unknown coefficients so the
system of equations is underdetermined. Such a system is either consistent and
has infinitely many solutions or inconsistent and has no solution. Inconsistencies
occur when the left hand side equations are linearly dependent and the constants
on the right hand side do not satisfy this dependency relation. In this case
the right hand side is the zero vector, thus the dependency relation is always
satisfied and the system is consistent. We now define the set I to contain the
indices of the positive coefficients and the set J to contain the indices of the
negative or zero coefficients. As a consequence of equation 2.3, and the fact
that the coefficients are not all zero, neither I nor J are empty and the set of
points they represent are convex because they contain between 1 and 3 indices.
The claim is that there exists a point q in both of these convex sets such that
they intersect. We can define q by rewriting equation 2.2 as below

q =
∑
i∈I

ai
a
pi = −

∑
j∈J

aj
a
pj

where a > 0 is defined by equation 2.3 as

a =
∑
i∈I

ai = −
∑
j∈J

aj .

Observe that q is a convex combination of both point sets represented by I and
J because the coefficients are non-negative ∀i ∈ I : ai

a > 0, ∀j ∈ J : aj

a > 0 and
the coefficients sum to one

∑
i∈I

ai
a =

∑
j∈J

aj

a = 1, hence q lies inside both sets
by Proposition 7.1 and no set of four points can be shattered.

In contrast to the proof of Theorem 2.3, the proof of Theorem 2.4 gives
an exact upper bound on the VC-dimension. Thus, the VC-dimension of the
halfspace query depth problem is no more than 3 because n = 4 cannot be shat-
tered. As for the simplicial query depth problem, we do not need to determine
the exact VC-dimension, but the fact that it is finite is sufficient in order to
utilize Lemma 2.2 when approximating the depth in Chapter 3.

2.5 Cuttings
In this section we present the definition of and relevant theory about 1

r -cuttings,
which are used as a tool in a divide and conquer algorithm for computing the
halfspace median, and prove an upper and lower bound on their size. This
theory is closely connected to ε-nets presented in Section 2.3, thus we will also
prove that the range space defining the problem has constant VC-dimension.

12

In general, a cutting is a disjoint partition of geometric objects. In this
thesis we restrict our attention to the two-dimensional plane where the objects
are lines. The partition that we are seeking is a set of open triangles with a
certain property defined below.

Definition 2.5. Let L be a set of n lines in R2 and r a parameter where
n ≥ r ≥ 1. A triangulation C of R2 is a 1

r -cutting of L if each open triangle
∆ ∈ C is crossed by at most n

r lines from L and C covers the entire plane.

The size of a cutting is determined by the number of triangles that it creates.
In relation to this, the size of a cutting may be bounded using ε-net theory, but
in order to apply Lemma 2.2 we need to prove that the VC-dimension is finite.

Theorem 2.5. The problem defined in Definition 2.5 (cuttings) has finite VC-
dimension.

Proof. We define the range space X as the set of n lines. Let s be an open
segment and define R as the set of lines intersecting s. The ranges R is the
set of R’s over all open segments s. This range space generalizes the problem
at hand because segments form the borders of any triangle. By the definition
of shattering, R|Y shatters Y ⊆ X if it corresponds to the powerset of Y , i.e.
there exists segments that intersect all combinations of lines from Y .

We claim that the number of sets in R|Y is bounded by the number of
face-face pairs formed by creating an arrangement of lines from Y . Clearly,
any segment has to start in face and end in a face of the arrangement. If we
can prove that all segments starting in the same face and ending in the same
face intersects the same lines, the claim holds by Theorem 2.1. Assume for
contradiction that there exists two segments s1 and s2 that start in the same
face f1 and ends in the same face f2, but s1 intersects a line l that s2 does not.
The line l then intersect either f1 or f2, otherwise it will intersect intersect s2.
Let f1 be the face that l intersects and consequently cuts in half. The segments
s1 and s2 now start in different faces contradicting the assumption, hence the
claim holds true.

By Theorem 2.1 the number of faces is O(n2) meaning that there exists
O(
(n2

2
)
) face-face pairs. Since this is bounded by O(n4) the VC-dimension is

finite, because if |Y | is a large enough constant, then there will be fewer than
2|Y | face-face pairs in the arrangement, meaning that Y is not shattered.

At this point, one could hope to build a cutting of n lines that is guaranteed
to be smaller than the trivial O(n2). In fact, the smallest 1

r -cutting one can
achieve has size Ω(r2) and is proven below.

Lemma 2.4. The size of a 1
r -cutting of a set of n lines L in R2 is Ω(r2).

Proof. Let C be a 1
r -cutting of L. Each triangle in C is intersected by at most n

r
lines by Definition 2.5. This means that any triangle in C will contain O((nr)2)
vertices since every intersecting line can intersect any other intersecting line.
From Theorem 2.1 we know that for n lines in general position the number of

13

vertices in its arrangement is Ω(n2). The number of needed triangles is therefore

Ω
(
n2

(nr)2

)
= Ω

(
n2 · r

2

n2

)
= Ω(r2)

which proves the lower bound.

In fact it is possible to prove that the upper bound is O(r2) as well. Instead,
we will prove slightly weaker upper bound which is used in Chapter 5.

Lemma 2.5. There exists a 1
r -cutting of a set of n lines L in R2 of size

O(r2 log2 r).

Proof. We define the range space (X,R) as in the proof of Theorem 2.5 and
choose a 1

2r -net denoted Y ⊆ X. By Theorem 2.5 we know that the VC-
dimension is finite so the size of Y is

O(dvc1
2r

log dvc1
2r

) = O(2rdvc log 2rdvc)

= O(r(log 2 + log r + log dvc))
= O(r log 2 + r log r + r log dvc)
= O(r + r log r + r)
= O(r log r)

due to Lemma 2.2. We construct the arrangement induced by Y and triangulate
it to obtain a cutting C. The triangulation is trivial since all faces are convex.

First we need to show that C is a valid cutting. Any edge e from C does
not intersect any line from Y , hence e intersects at most n

2r lines from X, which
follows from Definition 2.4. Since a line must intersect exactly 2 edges in order
to intersect a triangle, we can conclude that each triangle intersect at most n

r
lines, thus C is a valid cutting as the arrangement covers the entire plane.

Finally, we need to prove that the size of the cutting is O(r2 log2 r). Given
that the size of Y is O(r log r) we know by Theorem 2.1 that there exists
O(r2 log2 r) vertices in the arrangement of Y . The same thing holds for the
cutting C, because the triangulation does not introduce new vertices. Since the
number of vertices is an upper bound on the number of triangles the size of C
is O(r2 log2 r) and the statement is proven.

In Lemma 2.5 we claim that the number of vertices bounds the number of
triangles. In order to support this claim we show that any triangulation of n
points has O(n) triangles. We know that each triangle has exactly 3 edges, each
internal edge belongs to 2 triangles and each edge on the convex hull belongs
to 1 triangle. This gives rise to the equation

3t = 2(e− k) + k = 2e− k (2.4)

where t denotes the triangles, e denotes the internal edges and k denotes the
edges on the convex hull. Using Euler’s formula 2 = (t+ 1) +n− e we can now

14

determine the number of edges as

2 = (t+ 1) + n− e
e = t− 1 + n

3e = 3t− 3 + 3n = 2e− k − 3 + 3n
e = 3n− k − 3,

insert it into equation 2.4 we get

3t = 2e− k = 6n− 2k − 6− k = 6n− 3k − 6
t = 2n− k − 1

and realize that t = O(n) because k is equal to the number of vertices on the
convex hull.

2.6 Geometric functions
In this section we present two basic geometric functions in two-dimensional
space: One for determining the sidedness of a point with respect to a line and
another for computing the angle between two points. These functions are used
as subroutines for the implemented algorithms and are stated here for clarity.

The first problem consists of determining sidedness between points and boils
down to computing the dot product given by equation 2.5. The equation is
stated and proven below.

Proposition 2.1. Given points p, q, r ∈ R2, the sidedness of r with respect to
the line going through p and q is determined by:

S(p, q, r) = (qx − px)(ry − py)− (qy − py)(rx − px) (2.5)

where a positive result means right, a negative result means left and zero means
the points are colinear.

Proof. The correctness is a consequence of basic geometry, so we create the
vectors u = ~pq and v = ~pr as depicted in Figure 2.5a and examine the cross
product of these vectors in three dimensional space

u× v =
(
u2v3 − u3v2 u3v1 − u1v3 u1v2 − u2v1

)T
=
(
0 0 u1v2 − u2v1

)T
.

Only the third entry of the cross product can be non-zero because the input
is two-dimensional, i.e u3 = v3 = 0. Furthermore, the cross product is anti-
commutative, i.e. u× v = −(v×u), meaning that the sign of the cross product
depends on the order of u and v as depicted in Figure 2.5b. Thus, the sign of
(u1v2 − u2v1) determines whether r is on the left or right side of the line going
through p and q. When u1v2 − u2v1 = 0 we have that u1v2 = u2v1 which holds
when v is a scaled version of u or vice verse. In that case the points are colinear.

15

p

q

r
u

v

(a)

u

v

u× v

v × u

(b)

Figure 2.5: Geometric interpretation of computing the sidedness of a point r
with respect to a line going through two points p and q.

In terms of robustness, equation 2.5 may lead to incorrect results due to
round-off errors when the true cross product is near zero, provided that the
coordinates are expressed using floating point precision. One solution is to
use exact arithmetic using rational numbers but that comes with a significant
slowdown. Another approach that uses floating point precision is presented
by Shewchuk in [A10] who offers an effective and robust orientation test. This
algorithm depends on the system architecture but could be employed given that
the application at hand demands both speed and robustness.

The other function for determining the angle between two points is given
by equation 2.6 and it also suffers from floating point errors because the vector
between the two points is normalized using the square root and the result is
based on the inverse sine and cosine functions. In order to remedy some of
the errors we use the inverse sine and cosine functions whenever they are most
accurate. For example, the inverse cosine function is not very accurate at 0◦
and 180◦, but is fairly accurate between 45◦ and 135◦, whereas the inverse sine
function becomes inaccurate at −90◦ and 90◦ but improves between −45◦ and
45◦. The correctness is proven below and concludes the section.

Proposition 2.2. Given points p, q ∈ R2 and let u = q − p be a vector, the
angle θ in radians from p to q with respect to the line y = 0 is determined by

A(p, q) =

arccos(ûx) if qy > py and ûx ≤ ûy 1
2π − arccos(ûx) if qy < py and ûx ≤ ûy 2
arcsin(ûy) if qx > px and qy > py and ûx > ûy 3
2π + arcsin(ûy) if qx > px and qy < py and ûx > ûy 4
π − arcsin(ûy) if qx < px and ûx > ûy 5

(2.6)

where ûx = u
‖u‖ and ‖u‖ =

√
(ux)2 + (uy)2.

Proof. The angle that we seek to determine is exemplified in Figure 2.6a and we
want to argue that each case of equation 2.6, which is associated with a region
of Figure 2.6b, computes the correct angle. The correctness is a consequence of
basic geometry, so we recall that given a triangle with edges a, b, c where a is the
adjacent edge, b is the opposite edge and c is the hypotenuse, the angle θ can be

16

computed using the inverse sine function θ = arcsin(b/c) or the inverse cosine
function θ = arccos(a/c). In this case where u is normalized, the hypotenuse
is 1 so the angle can be computed solely from a or b. This means that the
angle is correctly computed by arccos(ûx) when q is in the upper half of the
unit circle and by 2π− arccos(ûx) when q is in the lower half of the unit circle.
Thus, region 1 an 2 are handled correctly. Furthermore, arcsin(ûy) computes
the correct angle in the right half of the unit circle except that the lower half
results in negative angles, which is accounted for by adding 2π to the result.
Thus, region 3 and 4 are handled correctly. Lastly, π−arcsin(ûy) computes the
correct angle in the left half of the unit circle because the lower half results in
negative angles, hence region 5 is also handled correctly.

p

q

y = 0

u

θ

(a)

1

2

3

4

5

(b)

Figure 2.6: Geometric interpretation of computing the angle θ from p to q.

17

Chapter 3

Query depth

In this chapter we study the problem of ranking points with respect to the sim-
plicial and halfspace depth in R2. We present a naive and sort based algorithm
for computing the simplicial depth in Section 3.1, and a naive and sort based
algorithm for computing the halfspace depth in Section 3.2. There is no general
position assumption as all algorithms in this chapter handle coinciding points
and more than two points on a line. In Section 3.3 we present a brief description
of the tests performed and some considerations about robustness. In Section
3.4 we experiment with the efficiency of the algorithms and compare them with
the theoretic bounds. We also experiment with the effects of approximating the
depth in Section 3.5, using the theory from Section 2.3, in order to rank points
and determine their outlierness. The chapter is concluded in Section 3.6.

3.1 Simplicial query depth algorithms
The simplicial depth of a point q is defined as the number of simplicies formed
by the input points that contain q as formalized in Definition 1.4. In R2 these
simplicies specializes into triangles. An example of a query with depth 4 is
depicted in Figure 3.1 and naturally proposes a naive algorithm that counts all
such triangles.

q

Figure 3.1: A query q with simplicial depth 4.

18

The naive algorithm is denoted QUERY_SIM_NAIVE and forms all possible
triangles from P and increments the depth whenever the query q is contained
in a triangle. The check is straightforward and consists of three sidedness
tests given by equation 2.5, one for each segment bounding the triangle, and
is carried out clockwise or counter-clockwise depending on the order in which
the points are examined. If q is on the same side of the lines spanned by the
boundaries of the triangle, the depth is incremented, which q2 and q3 in Figure
3.2a exemplifies. The sidedness test handles degenerate input with more than
two colinear points as long as q is not colinear with all three points from the
current triangle. In that case q is contained in the triangle if it is inside the
bounding box of the triangle. The special case is depicted in Figure 3.2b where
q1 is on all three lines spanned by the segments of the triangle, but is discarded
because it is outside of the bounding box. The correctness and complexity is
proven below.

p1

p2

p3

q1

q2

q3

(a) A non-degenerate triangle.

p1

p2

p3

q1

q2

q3

(b) A degenerate triangle.

Figure 3.2: A non-degenerate and degenerate triangle.

Theorem 3.1. Given a set P ⊂ R2 of size n and a query point q ∈ R2,
QUERY_SIM_NAIVE computes Dsim(P, q) in O(n3) time and uses O(n) space.

Proof. Without loss of generality we look at a particular triangle ∆ = ∆(p1, p2, p3)
and assume that the order is clockwise. Ignoring the degenerate case for now,
q is either outside or inside of the boundaries of ∆. When q is outside it is to
the left of at least one of the boundaries and when q is inside it is to the right
of all the boundaries, thus the depth is incremented correctly which follows
from equation 2.5. The same logic holds in the degenerate case, except when
p1, p2, p3 and q are colinear. In this case, the depth is incremented when qx is
in between the largest and smallest x-coordinate of p1, p2 and p3, and qy is in
between the largest and smallest y-coordinate of p1, p2 and p3.

There exists
(n

3
)
triangles and QUERY_SIM_NAIVE looks at each triangle a

constant number of times and executes a constant number of instructions every
time. Thus, the running time is O(n3). The space complexity is clearly linear
because the input has to be stored in memory at all times.

The naive algorithm is simple to implement but the running time makes it
useless in practice. An improved algorithm is described by Rousseeuw et al. in

19

[A18] which utilizes the order of the input points with respect to the query. The
algorithm is denoted QUERY_SIM_SORT and computes the simplicial depth as the
complement of the number of triangles that cannot contain q. Initially, all points
pi ∈ P are sorted in ascending order on their angles αi to q given by equation
2.6. Points coinciding with q are skipped and

(non

1
)(noff

2
)

+
(non

2
)(noff

1
)

+
(non

3
)

is added to the depth, where non is the number of points coinciding with q and
noff is the complement. If there exists a gap strictly larger than π between any
two consecutive angles, the algorithm returns the calculated depth. Otherwise
the smallest angle is subtracted from all other angles and the first occurring
angle αk strictly larger than π is remembered.

The final step of the algorithm consists of a scan through the α angles, with
the antipodal angles β intertwined, in order to count the number of triangles
that cannot contain q. An antipodal angle is given by βi = αi + π mod 2π
and the scan consists of traversing these 2n angles in sorted order. However,
there is no need to add the antipodal β angles to the array - they can simply be
calculated on the fly. During the scan two pointers are maintained: One for the
current α angle denoted tα and one for the current β angle denoted tβ. Initially
tα points to α0 while tβ points to the antipodal angle of αk. Furthermore,
two counters c1 and c2 are also maintained during the scan. The counter c1
denotes the number of angles in between tα and the antipodal angle of tβ when
traversing the angles in counter clockwise order from the antipodal angle of tβ
to tα. The counter c2 is the current number of triangles that cannot contain
q. Initially c1 = noff − k − 1 and c2 = 0. The setup before the scan begins is
exemplified in Figure 3.3a.

If tα = αi < βj = tβ then c1 is incremented and tα is updated to point
to αi+1. Otherwise c2 is incremented by the number of triangles

(c1
2
)
, c1 is

decremented and tβ is updated to point to βj+1. The state after the first two
steps is exemplified in Figure 3.3b where c2 =

(3
2
)

= 3 because there can be
made 3 triangles when fixing α3 and choosing from α4, α5, α0 that does not
contain q. The scan stops when all α and β angles have been examined and the
resulting depth is incremented by

(noff

3
)
− c2. The correctness and complexity

is proven below.

Theorem 3.2. Given a set P ⊂ R2 of size n and a query point q ∈ R2,
QUERY_SIM_SORT computes Dsim(P, q) in O(n logn) time and uses O(n) space.

Proof. Clearly, the number of triangles that contain q is the complement of the
triangles that do not contain q, so we want to prove that the algorithm counts
all such triangles and computes the complement. For now we ignore the points
coinciding with q and note that all indices are modulo n.

Let ∆(p1, p2, p3) be a triangle and let the angles from q to p1, p2 and p3
be denoted by α1, α2 and α3. Clearly, the triangle cannot contain q if there
exists an interval strictly smaller than π such that α1, α2 and α3 are contained
in the interval. We now define the root of all such triangles to be the angle
furthest in the clockwise direction. Coinciding angles have some fixed arbitrary
order. This ordering is well defined since all intervals are strictly smaller than
π. The set of all triangles that do not contain q can now be partitioned into
disjoint subsets of triangles, one for each root. Observe that for any root αi, the

20

α0β0

α1

β1

α2

β2

α3

β3

α4

β4

α5

β5

tα

tβ

c1 = 2
c2 = 0

(a) The setup before the scan.

α0β0

α1

β1

α2

β2

α3

β3

α4

β4

α5

β5

tαtβ

c1 = 2
c2 = 3

(b) The setup after two steps into the
scan.

Figure 3.3: Illustrations during the scan of QUERY_SIM_SORT.

corresponding set consists of
(mi

2
)
triangles where mi is the number of angles

in between αi and αi +π when traversing the angles in counter clockwise order
from αi to αi + π. Angles coinciding with αi are included when deemed larger
than αi determined by the fixed arbitrary order. Thus, we need to prove that
c2 is the size of the union of all these sets when the scan of the α and β angles
is complete.

Each time the algorithm updates tβ the size of the set defined by the root
αi, corresponding to the antipodal angle of tβ, is added to c2. Hence, c1 must
be equal to mi every time tβ is updated. This holds for the first root αk
because c1 is initialized to be the number of angles in between αk and tα = α0
when traversing the angles in counter clockwise order from αk to tα and c1 is
incremented once for each α angle until tα ≥ tβ.

When tβ is updated, c1 is correctly decremented because αk cannot be in
between αk+1 and βk+1 in the counter clockwise direction from αk+1 to βk+1
since that would require αk and αk+1 to be strictly more than π apart, meaning
that the algorithm would already have returned before the scan. In general, this
holds and ensures that c1 is always equal to mi when tβ is updated because tβ
marks the boundary such that any remaining α angles are included by updating
tα.

The correctness now follows from Proposition 2.2 and the standard sorting
algorithm. Thus c2 is the number of triangles that do not contain q when the
scan is completed because each α angle is considered as root exactly once. The
depth is correctly incremented because

(noff

3
)
corresponds to the number of

triangles that exist, ignoring points coinciding with q.
Finally, we need to argue for the equation that accounts for the points that

21

coincide with q. These points introduce three kinds of triangles where the first
are triangles with one point coinciding with q, the second kind has two points
coinciding with q and the third kind has three points coinciding with q, which
is exactly what the equation calculates.

With respect to space and time complexity the algorithm computes the
angles from q to any point in P and sorts them. This takes linear time plus the
sorting bound O(n logn). The scan loops over 2n angles and does constant work
for each angle, hence the total running time is bounded by O(n logn). Note
that the binomial coefficient is only calculated for

(k
1
)
,
(k

2
)
and

(k
3
)
ensuring that

it takes constant time to compute. The algorithm clearly uses linear space as
the n angles must be kept in memory at all times.

3.2 Halfspace query depth algorithms
The halfspace depth of a point q is defined as the minimum number of points
on one side of a halfspace going through q as formalized in Definition 1.2. An
example of a query with depth 1 is depicted in Figure 3.4.

q

Figure 3.4: A query q with halfspace depth 1 using the halfspace.

The example give rise to a naive algorithm that creates all interesting half-
spaces and counts the number of points on either side of the halfspace. The
naive algorithm is denoted QUERY_HS_NAIVE and iteratively creates a halfspace
between q and a point pi ∈ P and updates the depth as the minimum of the
depth from the previous iteration and the minimum number of points on either
side of the halfspace. Checking the sidedness of a point with respect to the
halfspace is determined by equation 2.5. Special care is taken for points on the
border of the halfspace, which is the case for pi, pj and pk in Figure 3.5. They
are considered to be on both sides, but the occurrences of points above and
below q are also counted separately, e.g pi and pj are above and pk is below.
Points coinciding with q are not considered. When updating the depth, the
number of points on the left side of the halfspace is subtracted by the maxi-
mum of the points above and below q that are on the border of the halfspace.
The same thing goes for the number of points to the right side of the halfs-

22

pace. In the case where the halfspace is horizontal the points on the border of
the halfspace is considered above when the x-coordinate is larger than qx, and
vice verse. Intuitively, this corresponds to rotating the halfspace as depicted in
Figure 3.5. Finally, if p coincides with q the above routine is skipped and the
depth is simply incremented.

q

pi

pj

pk

Figure 3.5: Rotating the halfspace going through q and pi.

Theorem 3.3. Given a set P ⊂ R2 of size n and a query point q ∈ R2,
QUERY_HS_NAIVE computes Dhs(P, q) in O(n2) time and uses O(n) space.

Proof. Clearly, the interesting halfspaces are those going through q and each
point pi ∈ P , since it is the only place the depth can change. Let ki be the
number of points on the side of the halfspace going through q and pi containing
the minimum number of points. The halfspace depth of q is then found by
minimizing ki. Without loss of generality we look at a particular point pi and
seek to determine ki. Disregarding the points that coincide with q, let l be the
number of points that are to the left or on the boundary of the halfspace, r be
the number of points that are to the right or on the boundary of the halfspace,
a be the number of points on the boundary of the halfspace on one side of q and
b be the number of points on the boundary of the halfspace on the other side
of q. Note that the halfspace can be rotated an infinitely small amount in both
directions, such that all points are either to the left or right of the halfspace.
Thus, it is possible to subtract either a or b from l and symmetrically for r.
The minimum number of points ki is then given by

ki = min(l −max(a, b), r −max(a, b)).

The points coinciding with q are ignored. They will inevitable be included in
the halfspace and are simply added to the final depth. The correctness now
follows from equation 2.5.

The query point q is connected to n points and computes order n instructions
each time. Thus, the running time is O(n2). The space complexity is clearly
linear because the input has to be stored in memory at all times.

As for the simplicial depth, the naive algorithm is simple to implement
but the running time makes it useless in practice even though it is a factor

23

of n faster. The improved algorithm is also inspired by Rousseeuw et al. in
[A18] and is denoted QUERY_HS_SORT. Initially, all points pi ∈ P are sorted in
ascending order given by equation 2.6. Points coinciding with q are skipped
and added to the depth. If there exists a gap strictly larger than π between any
two consecutive angles, the algorithm returns the calculated depth. Otherwise
the smallest angle is subtracted from all other angles and the first occurring
angle αk strictly larger than π is remembered.

The remaining part of the algorithm consists of two scans: One scan through
the α angles with the β angles intertwined and another scan solely with the α
angles. The β angles in the first scan are defined in the same way as in the
description of QUERY_SIM_SORT. During the first scan, two pointers tα and tβ
are maintained together with an array F and a counter c1. The counter c1
denotes the number of angles strictly less than tα + π meaning that the value
of c1 can be at most 2n. The i’th entry of F denotes the value of the counter
for αi. Initially c1 = noff where noff is the number of points not coinciding
with q. The setup before the first scan begins is exemplified in Figure 3.6a.

If tα = αi < βj = tβ then c1 is incremented and tα is updated to point to
αi+1. Otherwise the counter c1 is written into F at index j and tβ is updated
to point to βj+1. In the case where tβ is updated from βn−1 to β0 the value
noff is subtracted from c1 after writing into F . A state during the first scan is
exemplified in Figure 3.6b.

The second scan uses the information stored in F by scanning through the α
angles and maintaining a counter c2 that denotes the number of angles strictly
less than αi in order to minimize

d = min
i
{min(Fi − c2, noff − Fi − c2)}. (3.1)

Initially the minimum value is d = min(F0, noff − F0). If αi coincides with the
previous angle αi−1 the counter c2 is left untouched. In this case a separate
counter c3 is incremented to keep track of the number of coinciding angles.
Otherwise c2 is incremented once, plus the potential number of angles saved
in c3. When the second scan is complete the depth is incremented by d and
returned. The correctness and complexity is proven below.

Theorem 3.4. Given a set P ⊂ R2 of size n and a query point q ∈ R2,
QUERY_HS_SORT computes Dhs(P, q) in O(n logn) time and uses O(n) space.

Proof. We need to prove that computing equation 3.1 results in the correct
halfspace depth and that the minimization is solved correctly by the algorithm.
We ignore the points coinciding with q, because each such point clearly increases
the depth by one. By definition, the halfspace depth is the minimum number of
points on one side of a halfspace going through q, meaning that both sides of the
halfspace needs to be considered which is what the min operator ensures. We
just need need to argue that Fi−c2 equals the number of points on one side of the
halfspace going through q and a point pi ∈ P . Let Fi = |{j : 0 ≤ αj < αi + π}|
and Gi = |{j : 0 ≤ αj < αi}|. The value Fi − Gi = |{j : αi ≤ αj < αi + π}|
is equal to the number of points on one side of the halfspace and is what the
algorithm computes since c1 takes the value of Fi when writing to the array,

24

α0β0

α1

β1

α2

β2

α3

β3

α4

β4

α5

β5

tα

tβ

c1 = 6
F = [−,−,−,−,−,−]

(a) The setup before the first scan.

α0β0

α1

β1

α2

β2

α3

β3

α4

β4

α5

β5

tα

tβc1 = 5
F = [3, 4,−, 7, 8, 9]

(b) During the scan.

Figure 3.6: Illustrations during the first scan of QUERY_HS_SORT.

following a similar analysis as for c1 in the proof of Theorem 3.2, and c2 takes
the value of Gi when doing the minimization.

The minimization is performed once for each pi ∈ P where the border of
the halfspace is on one side of pi. The case where the border of the halfspace is
on the other side of pi is considered when handling points on the opposing side
of the unit circle. Furthermore, introducing c3 ensures that coinciding α angles
are always considered to be on the same side of the halfspace, since c2 is not
incremented until all coinciding α angles have been processed. The correctness
now follows from Proposition 2.2 and the standard sorting algorithm.

With respect to space and time complexity, the algorithm computes the
angles from q to any point in P and sorts them. This takes linear time plus the
sorting bound O(n logn). The first scan loops over 2n angles and the second
scan loops over n angles and both do constant work for each angle, hence the
total running time is O(n logn). The algorithm clearly uses linear space as the
n angles and F must be kept in memory at all times.

3.3 Testing and robustness
In addition to the correctness proofs of the query depth algorithms we also im-
plemented an extensive test suite which asserts the correct result on different
kinds of degenerate and non-degenerate inputs. The algorithms are also com-
pared pairwise on randomly generated input, though they sometimes proves to
disagree due to the robustness issues described in Section 2.6. The problem is
that equations 2.5 and equation 2.6 are biased towards different kinds of float-
ing point errors. In an attempt to remedy this, all algorithms are generic such
that the data type can be replaced by rational numbers or floating point num-

25

bers with more precision provided by the multiple precision arithmetic library
GMP. Unfortunately, the angle computation does not apply for rational num-
bers because the square root and the inverse sine and cosine functions are not
supported in the library. The algorithms are therefore compared using doubles
and floating point numbers from GMP with very large precision. This introduces
another problem because the implementation uses an approximation of π with
a finite number of decimals which can cause errors. Extensions of GMP introduce
functions that can calculate π with many decimals which could be used instead.
We considered this out of scope and settled with comparing the algorithms us-
ing doubles and floating point numbers from GMP - a setting in which we have
yet to see the algorithms fail in.

3.4 Efficiency of calculating the query depth
In terms of running time, the improved algorithms should in theory outperform
the naive algorithms. In Table 3.1 we present a selection of measured running
times for each of the four algorithms to get an impression of the gained speed.
The input consists of n normal distributed random points generated with stan-
dard mean 0 and variance 500 where the query point is located at (0, 0). It
should be mentioned that the random number generator is seeded with the
same number across all algorithms making it possible to compare the result.
This is the case for all experiments in this chapter.

n QUERY_HS_NAIVE QUERY_HS_SORT QUERY_SIM_NAIVE QUERY_SIM_SORT

4 0.0016 0.0004 0.0030 0.0004
8 0.0032 0.0009 0.0263 0.0008
16 0.0101 0.0019 0.2307 0.0018
32 0.0309 0.0037 1.2869 0.0035
64 0.1988 0.0075 7.0981 0.0071
128 0.2274 0.0146 48.8211 0.0144
256 1.6356 0.0303 374.3440 0.0296
220 174.0910 170.8180

Table 3.1: The query time in ms when calculating the depth of a query point
in the center.

It is clear that the sort bounded versions are much faster than their coun-
terparts, justifying the relative complexity their implementations demand. The
constants also appear to be relatively low given that it takes around 170 ms
to compute the depth of 220 points. The naive algorithms are several orders
of magnitude slower. In fact, QUERY_SIM_NAIVE made it infeasible to run the
experiment for larger inputs than shown in Table 3.1, making it completely
useless in a practical setting. The only obvious use of the naive algorithms

26

is that they serve as a nice tool for asserting the correct result for the more
complicated algorithms.

Though we already proved the complexity of the sort bounded algorithms,
the next experiment gives empirical evidence that the bound actually holds in
practice. The experiment is executed in the same setting as the timings in Table
3.1 and Figure 3.7 shows the results.

Figure 3.7: The query time in ms when calculating the depth of a query point
in the center.

The measured running time is divided by n logn in order to emphasize that
the algorithms run in O(n logn), because both algorithms converges towards a
constant. There seems to be no difference between the two algorithms, meaning
that the extra scan in QUERY_HS_SORT has a negligible impact on the overall
running time, which is bounded by the standard sorting algorithm. The exper-
iment also displays the trivial fact that the running time increases as the input
gets bigger. In conclusion, the presented experiments of the efficiency is in line
with what is expected and supports the theory.

3.5 Approximating the query depth
Computing the depth of a point in O(n logn) time will turn the process of
ranking a set of size n into an O(n2 logn) algorithm. Such a task will be very
time consuming for large inputs, but Lemma 2.2 offers hope for improving the
running time by ensuring an upper bound on the subset of Definition 2.3. In
other words, it should be possible to improve the running time by uniformly
sampling a random subset of the input without altering the result much. This
section contains experiments that examine the effects of sampling with respect
to the accuracy of the depth. Note that the algorithms are sampling the input
points uniformly throughout this section.

27

3.5.1 A query in the center

The first experiment illustrates the effects of sampling the input and calculating
the depth of a point close to the center. The input P consists of n = 220 normal
distributed random points generated with standard mean 0 and variance 500
where the query point is located at (0, 0). For each sample, multiple repeats are
performed and the average depth over all repeats is calculated. The normalized
error is obtained by rescaling the average depth based on the sampling proba-
bility, subtracting it from the true depth at full sampling size n and dividing it
with the true depth. The rescaling factor is computed using Definition 2.3 by
isolating the true depth |R| in the following manner∣∣∣∣ |R||X| − |Y ∩R||Y |

∣∣∣∣ ≤ ε
−ε ≤ |R|

|X|
− |Y ∩R|

|Y |
≤ ε

−ε|X|+ |Y ∩R| · |X|
|Y |

≤ |R| ≤ ε|X|+ |Y ∩R| · |X|
|Y |

.

Ignoring the error terms the approximation becomes

|R| ≈ |Y ∩R| · |X|
|Y |

where |Y ∩ R| denotes the depth and |X||Y | denotes the rescaling factor. When
approximating the halfspace depth we are given a query point q and a subset
Q ⊆ P of size k and compute Dhs(Q, q). In this case |X| = n and |Y | = k
meaning that the calculated depth Dhs(Q, q) is multiplied with n

k in order to
approximate Dhs(P, q). For the simplicial depth Dsim(Q, q) we have that |X| =(n

3
)
and |Y | =

(k
3
)
resulting in a rescaling factor of (n

3)
(k

3)
. The result of this

experiment is shown in Figure 3.8.
Based on Lemma 2.2 we expect the error to decrease rapidly given that

the function 1
ε2 log 1

ε also decreases rapidly, which is evident from Figure 3.8.
Both algorithms quickly stabilize towards a small normalized error because the
approximated depth does not deviate much from the actual depth, thus the
technique works really well for points deep inside the data cloud.

An interesting observation from Figure 3.8 is that the simplicial depth has
an error of 1 when the sampling probability is 2−18, corresponding to 4 points.
This follows from two facts. Firstly, the maximal simplicial depth converges
towards 1

4 of the total number of possible triangles. The intuition behind this
fact can be seen by looking at the implementation of QUERY_SIM_SORT. The
main insight is that the input points and their angles will be distributed evenly
around the point in the center. Hence, any root αi angle will get mi = n

2
during the execution of the algorithm. Each of the n angles can therfore form(n

2
2
)
triangles that does not contain q which corresponds to a factor of

n
(n

2
2
)(n

3
) = 0.75.

28

Figure 3.8: The normalized error when approximating the depth of a query
point in the center.

The second fact is that the simplicial depth of 4 points will be either 0, 2 or 4.
Clearly, a depth of 0 is always possible. A depth of 2 is possible since for any
point inside a single triangle spanned by 3 of the 4 points, it must also be inside
at least one more triangle formed by substituting one of the 3 points with the
fourth. Clearly, the edge on the opposing side of the fourth point can be used to
generate a new triangle also containing the query point. Lastly, a depth of 4 is
possible if the query point lies on the intersection of all the 4 possible triangles,
which is highly unlikely.

With these two facts in hand, it is now possible to explain the error of
1 for the sampling probability of 2−18. The problem is that the true depth
is equal to the rescaling factor. To clarify, the true depth is approximately
0.25 ·

(220

3
)
by the first fact and since

(4
3
)

= 4 the rescaling factor also becomes
(220

3)
4 = 0.25 ·

(220

3
)
. The approximated depth is 0, 2 or the highly unlikely 4

by the second fact, hence the corresponding error after rescaling becomes 1
because the approximation is either zero or two times the the real depth.

3.5.2 A query near an outlier

Given that the goal is to rank data points and mark potential outliers it makes
sense to see how the approximation approach behaves for outliers, hence the
second experiment attempts to show this effect. The setup is almost identical
to the first experiment and the only difference is that the query point is now
positioned very close to an outlier. The depth is still calculated by random
sampling and rescaling depending on the sampling probability. The results of
the second experiment is depicted in Figure 3.9.

Figure 3.9 illustrates two main problems with the approximation approach
when used on a point near an outlier. The first problem is that only a few
input points actually affect the depth calculation. This means that whenever

29

Figure 3.9: The normalized error when approximating the depth of a query
point near an outlier.

the outlier is not sampled the depth will simply be zero. The second problem
is caused by the rescaling performed on the sampled depth. The rescaling
assumes that the random sample represents the true distribution of the entire
input P , meaning that the calculated depth represents the true relative depth
of the query point. For example, given a point with a true halfspace depth of
1 caused by a given outlier pi, if all points except pi are included in the sample
the depth is zero. Otherwise, if pi is included in the sample the depth will be
scaled by the scaling factor, resulting in a depth larger than 1. Thus, for small
sample sizes there is a very high probability that pi is not sampled and the
normalized error is 1. On the other hand, if pi is sampled the normalized error
will be huge since the small sampling probability will scale the result by a large
factor.

Even though Figure 3.9 displays the normalized error, the curves converges
towards an error of 2 for small sampling probabilities which is a consequence
of how the sampling probability effects the rescaling. Take the halfspace depth
for example, assuming a single outlier pi affects the depth calculation and the
sampling probability is s, then with probability s, pi is sampled and the ap-
proximated depth is 1

s . Thus the normalized error is
1
s − 1

1 = 1
s
− 1.

Likewise, with probability 1 − s the depth is 0 and the normalized error is 1.
Suppose S is the random variable taking the value 1

s − 1 with probability s and
the value 1 with probability 1− s, it is now possible to calculate the expected
value of S

E[S] = s ·
(1
s
− 1

)
+ (1− s) · 1 = 1− s+ 1− s = 2− 2s.

Applying this to the experiment with a sampling probability of 2−10 we get an
expected normalized error of 2− 2 · 2−10 ≈ 2. This means the halfspace depth

30

error will be 2 most of the time as long as the sampling probability is low. A
similar argument can be made for the simplicial depth error, the only difference
is the normalized error calculated once pi is sampled. It gives rise to a more
complex equation since the approximated depth does not solely depend on the
sampling probability, i.e. adding more points will always increase the depth.

3.5.3 Approximations on average

Based on the result from the previous experiment the approximation approach
does not seem to be particularly good at estimating the depth on outliers be-
cause the error is relatively large. However, the first experiment shows the
opposite for query points near the center. This raises a natural questions: Is
the approximation approach viable at all?

The focus of the third experiment is to answer this question. The setup again
consists of 220 normal distributed random points with mean 0 and standard
deviation 500. Unlike the first and second experiments, this experiment does
not use a fixed query point, but picks a new random query point a number of
times. To elaborate, the experiment repeats the depth calculation for a query
point with respect to a given sample size, then picks a new random query point
and does the same. This is repeated a number of times before moving on to
the subsequent sample size. The experiment uses the same normalized error
calculation as the two first experiments. Worth noting is that the random
query point is generated using the same distribution as the input points. Thus,
the objective of the third experiment it to see the effects of the approximation
approach on average.

The first experiment showed that the approximation approach for points
close to the center achieves good results. The second experiment showed the
opposite for outliers. The problem with points at low depth is that the true
depth can almost be calculated using a sample which causes the rescaling to
overshoot the real depth. But the closer the point is to center the less this prob-
lem occurs. Furthermore, assuming the input data contains a natural center,
points at high depth will be more likely than points a low depth. Based on this,
it makes sense to expect the approximation approach to produce decent results
on average for random input data, assuming the query points follow the input
distribution. The results of the third experiment is shown in Figure 3.10.

Indeed this is evident in Figure 3.10. Although the algorithms converge
slower than in the first experiment, they clearly converge towards a very low
normalized error. Based on this there is some merit in using a random sampling
approach to approximate the real depth of a query point.

Given the error on average we also try to verify the theory by inserting into
Lemma 2.2. We know that the VC-dimension of the simplicial depth problem
is bounded by 8. Consider a sampling probability of 2−12 and observe that the
experiment measures a normalized error of 28.3851% for the simplicial depth.
Using Lemma 2.2 the expected theoretical upper bound on the sampling size is

8
0.2838512 log 8

0.283851 ≈ 478.

31

Figure 3.10: The normalized error when approximating the depth of multiple
random query points.

A sampling probability of 2−12 corresponds to sampling 256 points, thus the
experimental result is well within the theoretical upper bound. Since the dif-
ference between the two sampling sizes is relative high, this does indicate that
the true VC-dimension of the simplicial depth problem is smaller and a tighter
bound may exist. For completeness, we make the same computation for the
halfspace depth problem where theory reveals that the VC-dimesion is 3 or
less. For the sampling probability of 2−12 the experiment measures a normal-
ized error of 20.88% resulting in the upper bound

3
0.20882 log 3

0.2088 ≈ 264.

This proves to be a much tighter bound than for simplicial depth since the
difference is less than 10 points and emphasizes that the theory is sound.

Unfortunately, there is a problem with the simplicial depth and our method
of sampling. The approximation is based on the fact that any subset Y ⊆
X of the range space (X,R) can be generated as a possible sample. This is
the case for the halfspace depth since X consists of points and the algorithm
samples points. For the simplicial depth however, X consists of triangles but the
algorithm samples points. Thus, the algorithm cannot sample X independently
and some subsets are impossible to create. The most obvious example of an
impossible sample is two disjoint triangles. Such a pair cannot be generated
by sampling points, since the triangles generated by the points will always be
connected. Hence, the question is how these two sampling approaches relate?

The fourth experiment seeks to answer this question. The setup is the same
as in the previous experiment except in this experiment QUERY_SIM_SORT is
compared to a new sampling algorithm that actually samples uniformly from
all possible input triangles. One thing worth noting is that the uniform sam-
pling algorithm’s running time is O(n3) since n points can generate

(n
3
)
possible

triangles. Because of this, the fourth experiment is not executed for all sampling

32

probabilities, it simply takes too much time. The results of the experiment can
be seen in Figure 3.11

Figure 3.11: The normalized error when approximating the depth of multiple
random query points.

From Figure 3.11 it is evident that approximating by uniformly sampling
from all possible triangles is better than our standard sampling approach for
simplicial depth. However, approximating by sampling points is within the the-
oretic bound and not much worse, leading to the conclusion that approximating
by sampling points is decent even though it does not follow directly from the
theory.

3.5.4 Ranking points in practice

Seeing that approximating the depth can be calculated with a tolerable error, it
is interesting to see how the depth measure works for ranking points in practice.
Specifically, we want to see if outlier detection is possible while not sampling all
points? In order to answer this question, a slightly different depth calculation
is needed. The current problem is that random sampling and rescaling is only
viable for outliers if the sample probability is very high. The solution is to
approximate the depth relative to the maximal possible depth, i.e. the depth is
normalized. The only change needed for the approximation to work is to divide
the approximate depth with the theoretical max depth. Thus the new depth
approximation for halfspace is given by

Dhs(Q, q) ·
n

k
· 1
dn2 e

.

For simplicial depth the approximation becomes

Dsim(Q, q) ·
(n

3
)(k

3
) · 1(n

3
) .

33

The final experiment illustrates the effects of this approach. The experiment
consists of rerunning the first and second experiment using the new depth ap-
proximation. Instead of calculating the normalized error this experiment calcu-
lates the average normalized depth of the query point for a given sample. The
results can be seen in Figure 3.12 and Figure 3.13.

Figure 3.12: The approximate normalized depth of a query point in the center.

Figure 3.13: The approximate normalized depth of a query point near an outlier.

It is evident from Figure 3.12 that the normalized depth of a query point
close to max depth quickly stabilizes at a high value. Likewise, it is evident
from Figure 3.13 that the relative depth of an outlier is constantly very low.
In conclusion, we have established that outlier detection is indeed possible and
reliable when uniformly sampling the input, hence the process of ranking an
entire set of n points can be done within a tolerable error in O(nk log k) where
k is the sample size and k << n.

34

Note that the experiments are conducted on normal distributed data. There-
fore, taking uniform random samples can pose technical difficulties when applied
to specific types of input as presented by Afshani in [A14], where the simplicial
depth of a point deep in the data cloud has a large approximation error. We
will not pursue this problem further, but merely make it clear that this simple
method has certain disadvantages.

3.6 Conclusion
In this chapter we sought to describe, implement, analyze and experiment with
four different algorithms for ranking a point relative to the halfspace and sim-
plicial depth measures, in order to reason about efficiency and approximations.
The naive implementations are easy to implement but prove useless in prac-
tice due to their running time. More efficient algorithms can be achieved by
sorting the input and utilizing the order of the points such that the halfspace
and simplicial depth can be computed in O(n logn) time. Though ranking is
relatively fast for a few points, the process of ranking a set of size n becomes an
O(n2 logn) algorithm which may be infeasible for large inputs. As a solution,
approximate results can be achieved by uniformly sampling the input with a
tolerable error. The approximation error of outlying points are significantly
larger than points deep in the data cloud, but the error is very low on average
even for a very small sample. In practice the approximation method works very
well and can improve the algorithm for ranking a set of n points to O(nk log k)
where k << n. The approximation can be performed with respect to both
depth measures and the results is consistent with the theory on the subject.

35

Chapter 4

Arrangements

In this chapter we seek to describe and experiment with a versatile, efficient and
robust implementation of an arrangement of lines in R2. The main motivation
for this study is that the halfspace median may be calculated efficiently using a
geometric divide and conquer procedure in dual space. For that purpose we need
to split the plane into cells by cutting the input into triangles, which requires a
robust and efficient arrangement algorithm. Note that the algorithm does not
handle vertical lines as the input is a dualization of points, in which vertical lines
cannot occur. The algorithm is tedious to implement, explain and imposes a
lot of special case handling, hence it is presented in Section 4.1 through Section
4.5 for the sake of understanding. In Section 4.6 we present a brief description
of the tests performed and some considerations about robustness. The main
focus of the experiments presented in Section 4.7 and Section 4.8 is to verify the
theoretic space and time complexity of the arrangement in order to emphasize
the correctness of the algorithm. The chapter is concluded in Section 4.9.

4.1 The bounded arrangement
The algorithm for constructing an arrangement of lines is incremental and based
on a doubly-connected edge list as described in Section 2.1. The arrangement
implemented in the source code extends the arrangement presented in this sec-
tion and it is slightly more complicated. We will return to these extension in
Section 4.3 and Section 4.5.

The algorithm is denoted ARRANGEMENT and starts out by computing a
bounding box of the input lines L in R2. This is done by comparing all pairs
of lines and updating two points, i.e. the point in the top left corner with the
maximum y-coordinate and minimum x-coordinate and the point in the bot-
tom right corner with the minimum y-coordinate and maximum x-coordinate.
The lines are inserted one after another by finding the leftmost intersection
with the bounding box and traversing the interior of the arrangement from left
to right. Finding the next intersection is done by traversing the current face
using the next pointers of the edges. Intersections are always calculated be-
tween the line that is inserted l1 = (a1, b1) and the segment s spanned by two
vertices v1 = (x1, y1) and v2 = (x2, y2), which is done by determining the line

36

l2 = (a2, b2) going through v1 and v2 and computing the intersection

x = b2 − b1
a1 − a2

y = a1 · x+ b1.

(4.1)

The line l1 intersects the segment s if and only if x ∈ [min(x1, x2); max(x1, x2)]
and y ∈ [min(y1, y2); max(y1, y2)]. There are two intersect events to consider:
Either the line intersects an edge e or a vertex v. In the first case a new vertex
is created on the intersection point along with four edges. The first two edges
are inserted where the existing edge e is split. The remaining two are crossing
edges that are connected to the vertex from the previous event. This event is
depicted in Figure 4.1a where the red edges and red vertex are created. In the
second case, the line intersects a vertex and the faces around the vertex are
searched to find the one where the line continues in. This event is depicted
in Figure 4.1b where the two red edges are created. No vertices are created
in this case and crossing edges are added whenever the line is not coinciding
with an existing edge, which happens if there exists duplicate lines. The first
intersection with the bounding box is a special case as no crossing edges are
created. The algorithm terminates when the outer side of the bounding box
is reached. An example of a bounded arrangement can be seen in Figure 4.8
where the bounding box is substituted with at bounding triangle. The reason
for changing the bounding object will be explained later.

l

(a) Handling an edge intersect event.

l

(b) Handling a vertex intersect event.

Figure 4.1: Illustrations of handling intersect events.

Theorem 4.1. Given a set L of n lines in general position in R2, ARRANGEMENT
computes an arrangement of lines in O(n2) time and uses O(n2) space.

Proof. We need to prove that the doubly-connected edge list represents the
subdivision induced by L. Clearly there is no need to represent the subdivision
outside of the smallest bounding box having all intersections in its interior, thus
we need to shown that this interior is generated correctly.

Without loss of generality we look at a single line li and let Ai−1(L) de-
note the doubly-connected edge list before inserting li. Observe that the edge

37

list is updated correctly if all intersect events between li and l1, . . . , li−1 are
encountered during the insertion of li because these events are clearly handled
correctly as illustrated by Figure 4.1a and Figure 4.1b. The subsequent face
that li continues in after an intersect event, is traversed in the counter-clockwise
direction using the next pointers of the edges. By convexity of faces, this will
correctly determine the next intersection given that Ai−1(L) is generated cor-
rectly, because a line enters and leaves a face in exactly two unique points. Thus
all intersection events are encountered exactly once and Ak(L) is correct. Note
that there may be missing intersections between li and li+1, . . . , ln that needs
to be added to the edge list. These will be added by the same argument when
li+1, . . . , ln are inserted. Hence, An(L) represents the subdivision induced by
L.

Computing the bounding box takes O(n2) times because all intersections
between all pairs of lines are calculated. When inserting li the algorithm does
work proportional to the complexity of the zone associated with the line, which
is O(i) by Theorem 2.2, and the time spend inserting all lines is bounded by

n∑
i=1

O(i) = O

(
n(n+ 1)

2

)
= O(n2).

Hence the total running time is O(n2). With respect to space complexity The-
orem 2.1 tells us that there exists O(n2) edges and O(n2) vertices but it does
not account for the the records on the bounding box. Fortunately, there are
at most 2n = O(n) edges and vertices on the bounding box so the bound still
holds. Finally, the algorithm creates the double amount of edges, but that has
no influence asymptotically, thus the total space used is O(n2).

4.2 Details of the bounded arrangement
The are numerous implementation details when implementing the arrangement.
One such detail is how to determine what face the line continues in when han-
dling a vertex intersect event. This is handled by evaluating a point on the
line and checking whether it is inside the faces incident to the vertex. The
face that contains the point is the face the line continues in. Note that the
algorithm traverses the arrangement from left to right, so this point always has
a larger x-coordinate than the vertex of the intersect event. Performing the
check reduces to doing two sidedness tests using equation 2.5 because the point
must be to the left of the lines spanned by the edges bounding the face. During
implementation we discovered that this can cause precision error because the
line may intersect vertices that are not exactly on the line because the intersec-
tion routine recreates a line from two vertices. This is exemplified in Figure 4.2
where the line l = (a, b) intersects vertex v due to numeric instability. If the
algorithm aimlessly evaluates the point p the next face to consider is f1 which
has already been visited. The problem is solved by translating the point in the
y-direction such that it looks like l actually goes through v. The distance that
p is moved is determined by

vy − (a · vx + b)

38

which is the distance between v and l in the y-direction.

l

u

v

f1

f2

p

Figure 4.2: Translating the point p to determine the correct face.

Another interesting implementation detail when coding in a language with-
out a garbage collector is how to avoid memory leaks. The data-structure itself
uses a lot of memory, which we will return to in Section 4.7, and memory may
become an issue when using it in a recursive algorithm, thus it needs to be
freed. Freeing the memory obtained by a doubly-connected edge list requires
that the edge list can be traversed. We do this by a standard breadth-first
search using a queue of vertices. The root vertex is inserted into the queue and
marked visited by setting a bit on the vertex. The search procedure iteratively
removes a vertex from the queue, marks it visited and inserts all adjacent non
visited vertices in the queue. The search terminates when the queue is empty.
When a vertex is removed from the queue it is also inserted into a local list
along with all its incident edges. This ensures that all vertices and edges are
considered because the edge list is connected, meaning that all vertices can be
reached from the root, and each edge has exactly on originating vertex. The
vertices and edges are then deleted when the breadth-first search terminates.
The drawback of this delete procedure is that we need store a pointer for each
vertex and edge that forms the edge list. This cannot be avoided because delet-
ing edges and vertices during the breadth-first search causes invalid reads of
unallocated memory, e.g. when a vertex reads the visited bit of an adjacent
deleted vertex or when incident edges of a vertex is located using deleted edges
that originates from another vertex.

A final detail is that edges are equipped with a bit that marks whether
it is on the inside or outside of the arrangement. This notion will be used
extensively in the unbounded arrangement algorithm, but for now it is only
used to determine when the outer side of the bounding box is reached.

4.3 The unbounded arrangement
As described in Section 4.1, the algorithm implemented in the source code is
slightly more complicated than explained so far. One of its extensions is that
the concept of the bounding box is changed, thus becoming an unbounded
arrangement without increasing the complexity with respect to space and time.

39

The problem is that the arrangement is used to create a cutting in an algorithm
that runs faster than O(n2) time. Creating a cutting is done by sampling k ≤ n
lines, building the corresponding arrangement and triangulating it. For this
to work using the bounded arrangement the bounding box has to be built in
less than O(n2), because a bounding box of the sample does not provide a
subdivision of the lines outside of the box. The current algorithm computes the
bounding box in O(n2) by comparing all pairs of lines, but this could be done in
O(n logn) time by sorting the lines on their slopes. Instead, our implementation
is inspired by the idea of making a conceptual bounding box at infinity by
constructing infinity vertices representing the input lines. This is more efficient
because the lines does not need to be sorted. The concept is depicted in Figure
4.3 where the arrangement consists of the lines l1 = (a1, b1) and l2 = (a2, b2).

o2 = (a2, b2)

o3 = (a1, b1)

o1 = (a1, b1)

o4 = (a2, b2)

v = (x, y)start end

Figure 4.3: An arrangement with a conceptual bounding box at infinity.

Vertices and edges on the bounding box are referred to as outer vertices and
outer edges. The edges that connects inner and outer vertices are also special in
a sense and are referred to as hybrid edges. The lines are still inserted one after
another by finding the leftmost intersection with the bounding box. The term
intersection is a little misleading in this case because outer vertices contains
line parameters, thus the starting point is determined by the parameters of the
line. The outer vertices are sorted on these parameters such that vertices with
a larger slope are below vertices with a smaller slope. This only holds for the
left side of the arrangement, which is denoted start in Figure 4.3. The reverse
sorting holds on the right side of the arrangement. Hence, the initial step of
inserting the line l1 = (a1, b1) consists of finding the spot among outer vertices
on the starting side, which is done by following the next or previous pointers
of outer edges. When the search stops the algorithm handles the intersection
as a normal edge intersect event without creating the crossing edges and marks
the vertex as being outer. The parameters os = (as, bs) and ol = (al, bl) from
the two surrounding outer vertices are recorded, because they indicate where
the line intersects the outer vertices on the ending side, just in reverse order.
This stopping criteria becomes slightly more complicated when adding parallel
lines, but we will return to that in Section 4.4.

In addition to the standard edge and vertex intersect events as described in
Section 4.1, the line can now intersect hybrid edges and outer edges. Hybrid
edges are easy because the parameters of the other line is given by the outer

40

vertex o = (a2, b2) so equation 4.1 can be used to determine the intersection
point directly. The intersection is handled as a normal edge intersect event.
Outer edges are also easy to handle since the line intersects such an edge if and
only if the two surrounding outer vertices have parameters equal to os and ol.
The intersection is also handled as a normal edge intersect event and the vertex
is marked outer. With respect to vertex intersect events, the line can now
intersect outer vertices, but that just means that a coinciding line has already
been inserted so the algorithm can return safely. We will provide no formal
proof, but the statement from Theorem 4.1 still holds for the this unbounded
arrangement algorithm.

4.4 Details of the unbounded arrangement
As for the bounded arrangement there are many details to consider when im-
plementing the algorithm. Firstly, the stopping criteria on the ending side of
the arrangement is not necessarily determined by the two surrounding outer
vertices os = (as, bs) and ol = (al, bl) as described in Section 4.3 when there
exists parallel lines. The problem is that parallel lines do not swap places inside
the arrangement because they do not intersect each other which is depicted in
Figure 4.4.

o2 = (a2, b2)
o1 = (a1, b1)

o5 = (a2, b2)
o6 = (a1, b1)

o3 = (a3, b3)

o4 = (a4, b4)
start end

Figure 4.4: Handling the stopping criteria with parallel lines.

Take o2 for example, the surrounding outer vertices on the starting side are
o1 = (a1, b1) and o3 = (a3, b3), but the line ends between o6 = (a1, b1) and
o4 = (a4, b4). In order to remedy this, the algorithm issues a search among the
outer vertices on the ending side of the arrangement instead of recording the
surrounding vertices on the starting side. This fixes the problem, but parallel
lines actually impose another headache. Remember that the order of the outer
vertices are reversed when going from the starting to the ending side, i.e. the
vertex with the largest slope is lowest on the starting side and highest on the
ending side. That order does not hold for parallel lines that are sorted on the
intersection with the y-axis, which can be seen in Figure 4.4 where o1 is above
o2 on the starting side and o6 is above o5 on the ending side. Consequently, the
algorithm must issue two slightly different searches to determine the starting
position and the stopping criteria. This does not change the bounds as both

41

searches takes O(n) time in the worst case.
Another interesting implementation detail imposed by the unbounded ar-

rangement occurs during a vertex intersect event. Recall from Section 4.4 that
we needed to determine what face the line continues in, which reduced to two
sidedness tests using equation 2.5. If one of the edges bounding the face is
a hybrid edge, the algorithm needs to evaluate a point on the hybrid edge in
order to use equation 2.5. It is not possible to use the outer vertex because
it stores the line parameters that created the edge. The solution is however
straightforward since the hybrid edge is connected to this outer vertex. The
only question is whether the hybrid edge is bounded in the positive or negative
direction with respect to the x-axis, because the point needs to be on the edge.
In order to determine this, we added a bit on all outer vertices marking whether
it belongs to the starting or ending side. If the outer vertex is on the starting
side the point has a smaller x-coordinate than the vertex of the intersect event,
otherwise the x-coordinate is larger.

4.5 The combined arrangement
The arrangements described so far are either bounded or unbounded, but the
one implemented actually incorporates the best of both worlds. The combined
arrangement can either be unbounded, semi-bounded or bounded. The reason
is that the algorithms using the arrangement needs to build new arrangements
inside existing faces that are shaped as triangles. This does not pose a problem
for the bounded arrangement as the bounding object may just as well be a
bounding triangle, the building procedure is identical. For this combined algo-
rithm to work correctly, each line is checked against the current arrangement to
see if it starts in an unbounded region, ends in an unbounded region, both or
neither. Assuming that a line intersects the arrangement these cases are simple
to determine. If the arrangement has zero outer vertices or nothing but outer
vertices on the boundary, we are in one of the two last cases and the algorithm
continues using the bounded or unbounded algorithm respectively. Otherwise,
the arrangement is semi-bounded with two hybrid edges. In this case the line
may intersect both hybrid edges and the algorithm continues using the bounded
algorithm. If not, the line starts or ends in the unbounded region depending
on the cases depicted in Figure 4.5. Note that there cannot be more than π ra-
dians between the interior of the semi-bounded arrangement because it is built
from straight lines. Thus, each of these cases can be uniquely determined by
checking whether the outer vertices belongs to the starting or ending region.

(a)
(b)

(c)
(d)

Figure 4.5: The four cases of a semi-bounded arrangement.

42

In case 4.5a the line starts in the unbounded region if it has a smaller slope
than the leftmost hybrid edge. Similarly, the line ends in the unbounded region
if it has a larger slope than the rightmost hybrid edge. The slopes are checked
using the parameters saved in the associated outer vertices. The intersection
with the y-axis is checked on equality. Clearly, the result of one slope test
determines the other, which results in a minor optimization. Handling the
remaining three cases is a simple case analysis and is left out.

These extensions do not affect the space and time bounds stated in Theorem
4.1 as the combined arrangement algorithm merely combines the procedures
described in Section 4.1 and Section 4.3. For completeness, Figure 4.6 through
Figure 4.8 shows examples of these three kinds of arrangements produces by
the algorithm.

Figure 4.6: An example of an unbounded arrangement.

Figure 4.7: An example of a semi-bounded arrangement.

43

Figure 4.8: An example of a bounded arrangement.

4.6 Testing and robustness
Since the proof of correctness is purely theoretical it makes sense to test the
implementation of the arrangement algorithm for errors. The implementation
is not necessarily complex, but is very tedious because there are many pointers
that needs to be set correctly and it is very easy to overlook small errors.
Unlike the query depth algorithms there is no naive algorithm to compare up
against, which means that all tests are performed either manually, by drawing
the arrangement and looking at the edges and vertices, or automatically by
checking that all pointers are set correctly. The automatic test repeatedly builds
an arrangement on randomly generated input and verifies that the structure is
correct. This is done by testing all local properties of the doubly-connected
edge list. An example of such a property is that every edge should be the
twin of its own twin. Though this is a good indication that the algorithm is
correct, it is still difficult to truly verify that the edge list actually represents
the arrangement induced by the set of lines.

In addition to the more complicated testing situation, numerical instabil-
ity has an even worse effect on the arrangement algorithm. Rounding errors
during construction can cause non-parallel lines to become parallel or make
lines intersect vertices that they are just very close to. An example of this is
already described in Section 4.2. Such degeneracies can in the best case result
in a faulty arrangement, but in more critical situations the errors can cause the
algorithm to enter a face that the line does not intersect and loop indefinitely.
A solution to this problem is to detect infinite loops by keeping track of the
visited records, but this is not desirable for an already memory craving data-
structure. Alternatively, the algorithm may return prematurely if the line at
hand makes more than k intersections where k is the number of lines inserted
into the arrangement. This does not prevent the algorithm from looping inside
a face that the line does not intersect, but other thresholds can be applied to
escape such situations. Another approach that can be of use in applications

44

where precision is more important than speed is to use an arithmetic library
with very high to infinite precision. Such libraries differ in performance, but to
get an impression of the slowdown we tested the algorithm using the multiple
precision arithmetic library GMP. The results can be seen in Table 4.1.

n doubles rationals

32 0.129 7.734
256 12.695 567.910

2048 1316.510 36 277.400

Table 4.1: The arrangement building time in ms for select values of n using
double and rational number precision.

The table shows some building times using double and infinite precision
using rational numbers and reveals that the slowdown is significant. For 2048
lines the algorithm suffers a factor 26 slowdown which is a lot taken into con-
sideration that the construction takes more than 1 second when compiled with
double precision. In order to improve this, one could analyze the code and de-
termine which parts demand higher precision and which can manage with less
and thereby utilize rational numbers when needed. In conclusion, the algorithm
is compiled using double precision for improved efficiency.

4.7 Verification of the space complexity
Having described the arrangement algorithm, the focus of this section is to see
how well the algorithm behaves compared to the theoretical space complexity.
From Theorem 2.1 we know the exact number of edges and vertices used in an
arrangement induced by a set of n lines. Table 4.2 presents these theoretical
numbers compared to the number of vertices and edges created when building
an arrangement of n random lines. Note that hybrid edges are counted as
regular edges.

Theoretical Practice

n vertices edges vertices outer vertices edges outer edges

32 496 1024 496 64 2048 128
256 32640 65536 32640 512 131072 1024

2048 2096128 4194304 2096125 4096 8388548 8192

Table 4.2: The theoretical bound on vertices and edges compared to the actual
values from running the algorithm.

The most obvious deviation from the theoretical bound is the number of
edges, but the reason for this is simple. Recall that the data-structure is a

45

doubly-connected edge list, thus every edge has a twin pointing in the opposite
direction resulting in a factor of 2 more edges. Outer edges and outer vertices are
special in the sense that they do not have a direct connection to the theoretical
bound. Their only purpose is to allow the algorithm to pick the correct starting
edge to walk along in order to insert the line. Since they do not correspond
to actual intersection points between lines, they are not counted in Theorem
2.1. Their number is however only linear in the input size since every line can
only enter and exit the arrangement once and a constant number of edges is
needed to connect a constant number of vertices in a circular list. Thus we
can conclude that the total number of vertices and edges is very close to the
numbers from Theorem 2.1 when build on random input.

There are several ways to deviate from the theoretical bound. First off,
parallel lines can never intersect and will therefore result in less intersection
points and less vertices. Furthermore, lines that coincidence will only insert
edges and vertices once. If more than two lines intersect in the same point
the total number of vertices will also decrease. Finally, numerical precision can
cause any of the above situations to happen for arbitrary lines. Looking at
Table 4.2, we see that for 2048 random lines both the edge and vertex count is
lower than what is expected from the theoretical bound, i.e. there are missing 3
vertices and 30 edges. Which of the situations described above that causes this
is hard to tell, but parallel lines should be really rare because only 2048 lines
are sampled. By the same argument coinciding lines are also very unlikely. The
most probable cause is numeric instability and gives us an indication on the
amount of errors that we can expect in the resulting arrangement. Clearly, the
number of errors is minimal and the total number of edges and vertices does
not increase beyond the theoretical bound as expected.

4.8 Verification of the building time
Having established that the space complexity is within the theoretical bound,
the focus of this section is to verify the theoretical building time of O(n2).
Naturally, the first experiment consists of building an arrangement of n lines for
an increasing input size and measuring the building time. Worth noting is that
the space consumed by the algorithm is bounded by O(n2), thus large values of
n becomes infeasible to handle because the operating systems starts swapping
to slow disk memory. This is in itself an interesting effect, but drastically
slows down the algorithm which produces dominating data points and makes it
difficult to reason about input sizes that can fit in memory. The results from
the experiment is visible in Figure 4.9.

As is visible in the graph, the building time is divided by n2 since a running
time of O(n2) will result in a curve converging towards a constant factor. Un-
fortunately, it is not clear that the algorithm has this property when looking
at Figure 4.9. For n less than 25 the graph appears to be almost constant but
there is a noticeable increase from 25 to 27 and an even more drastic increase
from 27 to 211. This does not bode well for verifying that the building time
of the arrangement algorithm is O(n2). However, the analysis may still prove

46

Figure 4.9: The build time in ms for constructing an arrangement of lines.

to be sound because the building time is most likely dominated by external
factors, e.g. CPU cache misses. At some point the arrangement outgrows the
size of the CPU caches which causes cache misses followed by a look-up in the
next cache in the hierarchy. Such an operation takes more clock cycles and
stalls the CPU while the data is fetched from a slower memory location. This
phenomenon is not considered in the standard random-access machine model
in which the analysis is carried out. However the claim is that the bound still
holds and the discrepancies in the Figure 4.9 are a consequence of the machine
architecture, i.e. cache misses on different levels of the cache hierarchy.

In order to investigate this behaviour, the next three experiments seek to
support this claim. For this purpose we use PAPI - a library that counts hard-
ware events such as cache misses and instructions. The number of L2 cache
misses is subject to the following experiment and the result is visible in Figure
4.10.

Looking at Figure 4.10 we witness an increase in L2 cache misses that starts
somewhere between an input of size 25 and 26 which aligns with the increase in
building time in Figure 4.9. This supports the expectation and is in line with the
theory. We know from Table 4.2 that the arrangement consists of 496+64 = 560
vertices and 2048 + 128 = 2176 edges in total. An edge uses 40 bytes and a
vertex uses 32 bytes, thus the space consumed is at least 2176·40+560·32 ≈ 105
KB. Doing a similar calculation for n = 26 we get that the arrangement uses at
least 406 KB. Comparing these results with the size of the L2 cache (256 KB) it
is natural that L2 cache misses takes place because the size of the arrangement
exceeds the size of the cache.

Though L2 cache misses causes the increase in building time between inputs
of size 25 and 27, it does not explain the steeper increase for inputs larger than
27. We expect that a similar limit is reached at this point, namely the size of the
arrangement exceeds the size of the L3 cache. The focus of the third experiment
is to provide evidence for this hypothesis. The experiment is performed in the

47

Figure 4.10: The number of L2 caches misses when constructing an arrangement
of lines.

same setting as the previous, except that the program counts L3 cache misses
instead of L2 cache misses. The result is visible in Figure 4.11.

Figure 4.11: The number of L3 caches misses when constructing an arrangement
of lines.

Again, the graph supports the expectation as the number of L3 cache misses
aligns with the increase in building time in Figure 4.9. As for the previous ex-
periment, one can calculate a lower bound on the memory that the arrangement
uses to verify that this behaviour is correct.

Having established that the building time is influenced by cache misses, the
question is whether the theoretic bound of O(n2) still holds in practice? It may
be that the implementation is erroneous and simply computes more instructions
than anticipated. To reason about this, the final experiment runs the same ex-

48

periment as before and counts the number of completed instructions performed
by the CPU. As mentioned before, the analysis of the building time is carried
out in the random-access machine model meaning that basic arithmetic takes
constant time and a building time of O(n2) corresponds to O(n2) instructions
being executed by the CPU. Hence, we expect the number of instructions per-
formed by the algorithm to converge towards a constant value when divided by
n2. The result of the final experiment is visible in Figure 4.12.

Figure 4.12: The number of completed instructions when constructing an ar-
rangement of lines.

The graph does not give rise to further discussions and clearly shows that
the number of instructions is bounded by O(n2). Based on this fact, it seems
fair to conclude that the building time of the arrangement algorithm is indeed
bounded by O(n2) when assuming the random-access machine model, but in
practice the time spend is influenced by the clock cycles it takes to handle cache
misses which depends on the underlying machine architecture.

4.9 Conclusion
The goal of this chapter was to present and experiment with a versatile, efficient
and robust arrangement algorithm that can be used as a tool for other proce-
dures. The resulting algorithm can construct unbounded, semi-bounded and
bounded arrangements of lines in R2, including coinciding and parallel lines.
Even though the building time is influenced by cache misses, the building time
is bounded by O(n2) and the space complexity is O(n2), which is in line with
the theory on the subject. In terms of robustness, the algorithm may produce
a faulty arrangement or even loop indefinitely because of numerical instability.
Though this may be solved using rational numbers, the slowdown makes the
algorithm useless in practice. In conclusion, the trade-off between speed and
precision promotes the use of doubles for doing arithmetic operations - it is
simply the better alternative.

49

Chapter 5

Cuttings

In this chapter we describe, implement and analyze two algorithms that creates
a 1

r -cutting in R2 and compare them in order to determine which is faster.
The motivation for this study is closely connected with Chapter 4 as we are
seeking an algorithm that efficiently partitions the plane into as few triangles
as possible. In Section 5.1 and Section 5.2 we present a naive cutting algorithm
and describe the details encountered during implementation. A more advanced
cutting algorithm is described in a similar fashion in Section 5.3 and Section 5.4.
In Section 5.5 we present a brief description of the tests performed and some
considerations about robustness. The experiments presented in Section 5.6 and
Section 5.7 seek to determine the performance and quality of the algorithms in
order to determine a superior algorithm. The chapter is concluded in Section
5.8.

5.1 The naive cutting
By Definition 2.5 a 1

r -cutting of n lines L in R2 partitions the plane into triangles
where each triangle is cut by at most n

r lines. A trivial solution builds the entire
arrangement of L and triangulates the faces. Triangulating the faces are easy
because they are convex, i.e. an edge is simply added from one vertex v to
all other vertices that are not directly connected to v inside the face. This
produces a cutting of size O(n2), because there are O(n2) vertices, where no
lines intersect any triangle and has a space and time complexity of O(n2). This
is useless seeing that the goal is to use the cutting as a subroutine in a divide
and conquer algorithm, but the sub-optimal upper bound proven in Lemma 2.5
allows hope for improvements.

The naive cutting algorithm denoted CUTTING_NAIVE is an implementation
of the algorithm sketched in the proof of Lemma 2.5 and creates a cutting
given r by sampling a subset Y ⊆ L of size c · r log r. The sampling is uniform
and picks lines from L with replacement. The algorithm builds an unbounded
arrangement of Y using ARRANGEMENT and triangulates the faces. The details of
the triangulation is explained in Section 5.2. Each triangle ∆ is checked against
the lines in L to see if the crossing number ∆c exceeds the threshold n

r . Note
that triangles are open, thus avoiding the lines on the boundary to contribute to

50

the crossing number. If a triangle exceeds the threshold, the algorithm stops and
starts over. The size and complexity of this cutting algorithm improves greatly
over the trivial solution and is proven below. We also present an example of a
1
3 -cutting of 9 lines in Figure 5.1, where no more than 3 lines may intersect any
triangle.

Theorem 5.1. Given a set L of n lines in R2, CUTTING_NAIVE creates a 1
r -

cutting of size O(r2 log2 r) in O(nr2 log2 r) time and uses O(r2 log2 r) space.

Proof. By Theorem 2.5 we know that there exists a cutting of size O(r2 log2 r)
that results in a 1

r -cutting of size O(r2 log2 r). What we need to argue is that
the algorithm creates an 1

2r -net of size O(r log r). By Lemma 2.3 we can do this
with probability 1 − δ by sampling m lines from L, where m is defined in the
lemma. Setting δ = 1

r we get a constant probability of this happening and the
sample size becomes m = O(r log r). Thus we can expect the algorithm to find
an 1

2r -net within a constant number of trials. Note that for r = 1 the probability
of success becomes 0, but in that case the input is a 1

r -cutting because n lines
are allowed to cross each triangle.

In terms of running time the algorithm builds an arrangement on O(r log r)
lines which takes O(r2 log2 r) time. The triangulation is a traversal of the
arrangement and can be handled within the same bound. Verifying a triangle
takes O(n) time, hence the total running time becomes O(nr2 log2 r). Note that
the algorithm is expected to repeat this a constant number of times which does
not change the asymptotic bound. The space complexity is O(r2 log2 r) due to
the construction of the arrangement.

Figure 5.1: An example of a 1
3 -cutting of 9 lines.

51

5.2 Details of the naive cutting
The naive cutting algorithm is somewhat straightforward to implement when
having access to an unbounded arrangement algorithm, because it creates a
natural subdivision of the unbounded face. Nevertheless, there are some details
that are worth mentioning, like the triangulation procedure. First of all, the
arrangement must be traversed such that created triangles are verified exactly
once. The is done using a breadth-first search as described in Section 4.2. When
a vertex v is removed from the queue all of its incident faces are traversed. In
each face the algorithm determines if v is the bottom vertex inside the face,
i.e. the vertex with the lowest y-coordinate, and whether the face is unbounded
or not. The triangulation procedure handles bounded and unbounded faces
differently, so we will explain them separately.

If the face is bounded and v is the bottom vertex, the algorithm traverses the
face and triangulates it. Let w denote a vertex visited during such a traversal.
If w is a direct neighbor to v there is already an edge connecting them and no
crossing edge is created. Otherwise, a crossing edge is created between v and
w and the created triangle ∆ is checked against all lines in L to verify that ∆c

does not exceed the threshold n
r . When the traversal is done, the last triangle is

verified in the same manner. Thus, a bounded face is triangulated by a unique
bottom vertex and the created triangles are verified exactly once because the
breadth-first search visits all vertices exactly once.

v

o1 o2

(a) An incorrect triangulation.

v
o1 o2

(b) A correct triangulation.

Figure 5.2: Triangulating unbounded faces.

When the face is unbounded, the algorithm traverses the face and triangu-
lates it even though v is not the bottom vertex. This is necessary because the
bottom vertex can create an unbounded triangle with 5 borders as depicted in
Figure 5.2a. Note that crossing edges are not created when either v or w is an
outer vertex. In order to avoid creating such triangles, the algorithm starts by
traversing the outer vertices of the arrangement, marks them visited and adds
them to the queue. Thus, unbounded faces will always be triangulated by a
vertex v with an outer vertex as its neighbor as depicted in Figure 5.2b. In
other words, the arrangement is triangulated from the outside in. Verification
of a created triangle is only done if v is the actual bottom vertex in that trian-
gle. This potentially leaves triangles unverified when triangulating unbounded
faces. That is of course not the case because each of these triangles will have
a bottom vertex that has not been visited by the breadth-first search, which

52

follows from the fact that the arrangement is triangulated from the outside in.
Another interesting implementation detail is evident when calculating the

crossing number for unbounded triangles. Since triangles are open, a line l
from L cannot intersect a triangle in the vertices bounding it, i.e. the line
has to cross the interior of the triangle. This immediately suggest an intersect
procedure that checks whether l intersects the interior of at least one of the edges
bounding the triangle. This works for bounded triangles, but is not sufficient
for unbounded triangles as shown in Figure 5.3 where the line clearly intersects
the triangle without intersection the interior of the hybrid edges.

o1 o2

l

Figure 5.3: A line that intersect an unbounded triangle without intersecting
the interior of the edges bounding the triangle.

We handle this by checking the parameters of the line against the parameters
stored in the outer vertices o1 and o2. If the slope and intersection of l is within
these parameters, the line must intersect the interior of the unbounded triangle.
This check boils down to a case analysis depending on the outer vertices, i.e.
if they are in the starting or ending region as depicted in Figure 4.5. In case
4.5a the line intersects the unbounded triangle if it has a smaller slope than
the leftmost hybrid edge and a larger slope than the rightmost hybrid edge.
The intersection with the y-axis is checked on equality. Handling the remaining
three cases is equally simple and is left out.

As a final remark, the algorithm increments the number of sampled lines
when it starts over with a fresh sample. In theory, this is unnecessary, but the
algorithm may loop forever for small inputs, thus this fix ensures termination.
This will potentially create a larger cutting but should not be a serious problem
in practice.

5.3 The fixing cutting
The naive cutting algorithm proves the existence of a 1

r -cutting of sizeO(r2 log2),
but an even better bound may exist due the lower bound of size Ω(r2) stated
in Lemma 2.4. In fact, as hinted in Section 2.5, the upper bound can be proven
to be O(r2) as well. The cutting algorithm described in this section is denoted
CUTTING_FIX and proves the existence of such a cutting. The algorithm is a

53

two-level random sampling algorithm and creates an initial cutting given r by
sampling a subset Y ⊆ L of size c1 · r. The sampling is uniform and picks lines
from L with replacement. The algorithm builds an unbounded arrangement of
Y using ARRANGEMENT and triangulates the faces using a bottom vertex trian-
gulation. Each triangle ∆ is checked against the lines in L to see if the crossing
number ∆c exceeds the threshold n

r . If a triangle exceeds the threshold, the
algorithm computes the excess ∆e = ∆c · rn and creates a 1

∆e
-cutting of the

triangle using a sample of size O(∆c2
e). If the triangle still exceeds the thresh-

old after being refined once, the algorithm stops and starts over. The size and
complexity of this cutting is stated in the theorem below and Figure 5.4 shows
an example of a 1

3 -cutting of 9 lines created by the algorithm.

Theorem 5.2. Given a set L of n lines in R2, CUTTING_FIX creates a 1
r -cutting

of size O(r2) in O(nr2) time and uses O(r2) space.

Proof. We refer to [A9] where it is proven that the algorithm produces a 1
r -

cutting of size O(r2).
The arguments for the space and time complexity is identical to the ones

presented in the proof of Theorem 5.1, thus the time complexity is O(nr2) and
the space complexity is O(r2).

Figure 5.4: An example of a 1
3 -cutting of 9 lines.

5.4 Details of the fixing cutting
For the proof of Theorem 5.2 to hold, the implementation of CUTTING_FIX
requires a bottom vertex triangulation, because it meets the requirements of

54

three certain properties: Firstly, all triangles of the triangulation must have a
defining set of constant size. Secondly, for a triangle to appear the defining
set must be sampled. Lastly, a triangle is created if the former two properties
hold and no lines crossing the triangle are sampled. These properties are all
true for a bottom vertex triangulation and is proven in [A9]. Unfortunately,
the triangulation implemented is identical to the one described in Section 5.2,
which is a bottom vertex triangulation in all but the unbounded faces. We
argue that there are at most O(r) such faces, so even though the bound does
not hold it should not be that bad in practice. We will take a closer look at the
performance and quality of the cutting in Section 5.6.

Another noticeable detail is that the algorithm described in Section 5.3
stops and starts over after one level of refinement. This is not the case in the
source code, because the algorithm keeps refining triangles until a 1

r -cutting is
obtained. Again, this may degrade the quality of the cutting but will improve
on the running time seeing that the algorithm does not have to start over.

5.5 Testing and robustness
The cutting algorithms presented in this chapter are closely related to the ar-
rangement algorithm and share most of the hassles the arrangement introduces.
Basically, if anything goes wrong during the construction of the arrangement,
be it numerical issues or some other degeneration, the resulting cutting may be
faulty or loop forever. Unfortunately, the cutting algorithms can do nothing to
remedy any of these problems and it therefore remains an occupational hazard.

To add insult to injury, the additional algorithmic layer of the cutting al-
gorithms add even more numerical instability. When triangles are verified the
intersection procedure can cause numerical errors and result in an erroneous
crossing number. This may cause either a total rebuild or an additional re-
finement step depending on the algorithm, which is not desirable. Unlike the
arrangement algorithm the additional algorithmic layer is much less prone to
infinite loops. The naive algorithm will simply try again if it fails but with a
fresh sampled set, avoiding problems caused by the previous sample. The fix-
ing algorithm will refine and eventually build an arrangement of relatively small
size. Thus, if the construction of the arrangement does not loop forever, both
cutting algorithms will most likely never loop indefinitely. A possible solution
to these issues is to use rational numbers but that still comes with a heavy
reduction in running time.

The cutting algorithms gives rise to an additional headache. The problem
is that the arrangement cannot handle lines that coincide with the edges of
the bounding triangle or lines the coincide with the hybrid edges in a semi-
bounded arrangement. The algorithm is simply not able to determine a unique
starting point for such lines since they will intersect anything on the boundary
of the arrangement. With infinite precision, these lines will never be added
to the arrangement, but numerical errors makes it possible. This is especially
problematic since many of the triangles from the triangulation will have edges
that originates from lines inserted into the arrangement.

55

Luckily there is an obvious solution to prevent these lines from being added,
namely by equipping all lines with an unique id. When the arrangement is built,
the edges created by a given line stores its id for future reference. The triangle
intersection procedures can then use these id’s in order to avoid inserting a line
into an arrangement bounded by an edge originating from this line. This does
not eliminate the problem entirely because input lines may still coincide with
some of the edges created by the triangulation.

As a final remark, the testing situation for the cutting algorithms are sub-
optimal, just as it was for the arrangement. We implemented an automatic
test that verifies the properties of the doubly-connected edge list produced by
the cutting. Unfortunately, performing more sophisticated automatic tests is
more or less impossible since no local feature of the edge list can prove that the
corresponding cutting is correct. The remaining tests are performed manually
by drawing the cutting and counting the number of triangles created by the
algorithm.

5.6 Fine-tuning the cutting algorithms
In general, a cutting algorithm has two main features that are worth experi-
menting with. First of all is the building time because it directly affects any
application depending on the algorithm. Secondly, the size of the cutting, also
referred to as the quality, is also relevant since the goal is to divide the input
into as few sub-problems as possible. Trivially, the best of both worlds is ideal
but one property might exclude the other because there is no obvious relation
between them. Knowing this relation, and how it applies to the cutting algo-
rithms presented in this chapter, is therefore of high interest and we will in
this section experiment with the running time and the quality for both cutting
algorithms in order to reason about it and consequently announce a winner.

5.6.1 The naive cutting

Both cutting algorithms make use of unknown constants that determine their
sampling rate, therefore it makes sense to experiment with these constants be-
fore comparing them. The naive algorithm only has a single constant c scaling
the number r log r of lines used to created the cutting. Hence, the objective
of the first experiment is to identify the relation between c and the construc-
tion time of the naive cutting algorithm. The experiment consists of running
CUTTING_NAIVE with varying c to compute a 1

10 -cutting of 1000 lines while
measuring the building time. Multiple runs are performed and the average is
plotted. Note that this setup is similar for the remaining experiments of this
chapter unless otherwise specified. The result of the experiment is visible in
Figure 5.5.

Before we analyze the results of the experiment it makes sense to discuss
the expected outcome. Sampling few lines will result in a small arrangement
being build and triangulated. Clearly, this is desirable since the arrangement
algorithm takes order O(n2) to build and a small n will result in a fast building
time. The problem with a small sampling rate is that it restrict the number of

56

triangles, thus it may require many attempts before a suitable cutting is found.
On the other hand, sampling to many lines will potentially waste time building
a much to big arrangement. Based on this it seems reasonable to assume there
will be a sweet spot when the arrangement is of adequate size to produce a
valid cutting.

Figure 5.5: The build time in ms when constructing a 1
10 -cutting using the naive

cutting.

Looking at Figure 5.5 such a sweet spot is evident. The building time prior
to the sweet spot is dominated by the fact that it requires many trials with a
relatively small sample before a valid cutting is found. The decline in building
towards the sweet spot also makes sense because the growing arrangement will
have a higher probability of generating a valid cutting. After the sweet spot,
the building time worsens again because the time it takes to construct the
arrangement is dominating the build time. In other words, the algorithm saves
the cost of rebuilding, but pays the price due to the arrangement construction.
One might suspect that the sweet spot takes place when the algorithm succeeds
by creating a single arrangement on average. This is somewhat true, but by
rerunning the experiment and counting the number of rebuilds performed by
the algorithm, the sweet spot actually takes place when the algorithm creates
between 1 and 2 arrangements on average. This is to be expected because the
complexity of building an arrangement is quadratic, hence it is faster to make
a few trials with a slightly smaller input rather than succeeding in the first try
every time.

Having analysed the building time of the naive cutting algorithm, the next
experiment measures the influence c has on the quality of the cutting. The
result of the second experiment is presented in Figure 5.6 where the average
number of triangles are plotted. Again it makes sense to discuss the expected
result before moving on to the analysis. Unlike the building time, the quality of
the naive algorithm should have an obvious quality progression. The algorithm
does nothing fancy with the generated arrangement and the number of triangles

57

is simply bounded by the total number of vertices in the arrangement. Because
of this, the number of generated triangles should therefore be minimal when
the number of sampled lines is minimal.

Figure 5.6: The number of triangles when constructing a 1
10 -cutting using the

naive cutting.

This trend is clearly visible in Figure 5.6 as smaller values of c results in
better quality. Interestingly, the quality appears to be constant up until c = 3.
This is most likely an artifact caused by the algorithm incrementing the number
of sampled lines when a trial fails, i.e. it converges towards a fixed number of
sampled lines that successfully creates an 1

10 -cutting. This also supports the
drop in running time in Figure 5.5 between c = 1 and c = 2 since the algorithm
will reach this number within fewer iterations. Rerunning the experiment with
a focus on the number of sampled lines that causes a successful cutting to be
created, verifies that this claim is correct. These two experiments also supports
the fact that some trade-off between building time and quality exists. Even
though the algorithm seems to be relatively fast and produce a relatively small
sized cutting at c = 3, the best of both worlds cannot be obtained as a cutting
with high quality will incur a building time penalty, and vice verse.

5.6.2 The fixing cutting

Similar experiments must be conducted for CUTTING_FIX which is the subject of
this section. In this case there are two constants affecting the size and building
time of the algorithm, i.e. the constant c1 that scales the initial sampling
size r and c2 that scales the excess sampling size. Since there is no apparent
connection between these two constants we simply start by fixing c1 and perform
the first experiment by varying c2. Thus, the first experiment performed for
CUTTING_FIX is the same as the first experiment for CUTTING_NAIVE except that
the effect of c2 is measured. The results of this experiment is visible in Figure
5.7.

Since c2 is used to determine the sampling size for triangles that violate

58

the crossing number, it will affect the number of refinements performed by the
algorithm. If the constant is low, it might cause additional refinement steps
to be performed resulting in more arrangements being build and consequently
a slower algorithm. Likewise, a large constant could cause the construction
of unnecessarily large arrangements resulting in the same effect. This gives
rise to a trade-off between the number of refinement steps and the size of the
refinement arrangements, which is reminiscent of the situation for the naive
algorithm. Based on this it is expected that c2 should also have a sweet spot
with respect to the building time.

Figure 5.7: The build time in ms when constructing a 1
10 -cutting using the

fixing cutting.

Looking at Figure 5.7 this expectation is clearly fulfilled. Counting the
number of refinements performed for the different values of c2 during the ex-
periment confirms, that prior to the sweet spot the algorithm performs a lot of
refinements by creating small arrangements. This number decreases as c2 gets
bigger and becomes optimal in terms of building time for c2 = 1.3. Performing
the experiment beyond what is visible in Figure 5.7, we also experience that
the number of refinements performed converges towards the number of trian-
gles in the initial cutting with two many lines crossing it. This makes sense
because the constant c2 becomes so large that a single refinement is sufficient.
After this point, increasing the constant will only spend more time on building
unnecessary large arrangements resulting in much worse building times. Unlike
the constant c for the naive algorithm, the price paid for using a small value is
more subtle. It is more evident that using a too large value of c2 will cause a
much more significant slowdown.

Having seen the effects of c2 in terms of building time, we turn our attention
to the quality. The setup is identical to the former, except that we measure
the number of triangles created. The result is depicted in Figure 5.9. For
this experiment, it is rather difficult to predict how smaller values of c2 will
affect the quality. In the extreme case, a single line is chosen when sampling

59

the excess, i.e. triangles are simply cut into two parts and triangulated as
shown in Figure 5.8a where two lines are sampled using four refinement steps
resulting in 9 triangles. Sampling the same two lines in a single refinement
step yields a better cutting with 7 triangles as illustrated in Figure 5.8b and
provides evidence that sampling fewer lines is not always optimal. So, if we
are to expect anything it must be that there will be be sweet spot where the
quality is optimal, since we trivially expect an upper bound on c2 where too
many lines are sampled causing the quality to degrade.

(a) Sampling in four refinement steps. (b) Sampling in one refinement steps.

Figure 5.8: Sampling two lines crossing a triangle in four and one refinement
steps respectively.

Figure 5.9: The number of triangles when constructing a 1
10 -cutting using the

fixing cutting.

The result of Figure 5.9 shows that such a sweet spot exists at around
c2 = 1.7. Measuring the number of refinement steps during the experiment, we
see that the number of refinements gradually decreases from around 1500 to 250
as c2 gets bigger. This is in line with our expectation and makes sense because a
low sampling rate will have a lower probability of partitioning invalid triangles
into valid triangles, thus additional steps are required which can produce a

60

lower quality cutting as depicted in Figure 5.8. In the other extreme, too
many lines are sampled and the cutting created by sampling the excess becomes
unnecessarily large. In contrast to the naive cutting algorithm, it seems that
there is a smaller trade-off between building time an quality. Picking c2 between
1.3 to 1.8 produces a cutting of high quality without increasing the building
time significantly, which suggests that this algorithm has the upper hand.

In addition to the results in Figure 5.9, we also implemented a version
that stops whenever the cutting is not valid after one level of refinement, i.e.
the algorithm does not keep refining triangles that exceeds the threshold. This
implementation is analogous to the one explained in Section 5.3. The motivation
for this experiment is that our implementation might produce a larger cutting
of lower quality. Even though we tweaked the parameters for this version, we
were not able to produce a 1

10 -cutting of 1000 lines with less than 6000 triangles.
Comparing this with 2200 triangles, we can conclude that even though our
implementation diverges from the theory, it seems to perform well in practice.
We excluded the graph with the results since it did not provide further insight.

What remains to cover is the effect of the initial sampling constant c1. For
this purpose the building time and number of triangles are measured with c2
set to an optimal value based on the former experiments. In terms of expecta-
tions, there is nothing new under the sun because too small values should cause
many refinements which degrades the quality. Too large values should build an
excessive arrangement causing both the quality and building time to degrade.
The results are depicted in Figure 5.10 and Figure 5.11.

Figure 5.10: The build time in ms when constructing a 1
10 -cutting using the

fixing cutting.

The results from the graphs simply emphasizes what we already discovered
from the previous experiments: There exists a sweet spot in terms of building
time and quality. Fortunately, these spots seems to overlap in a large range. In
conclusion, setting c1 = 1 seems appropriate and in line with the theory.

61

Figure 5.11: The number of triangles when constructing a 1
10 -cutting using the

fixing cutting.

5.7 Comparing the cutting algorithms
Having established optimal constants for both algorithms in terms of building
time and quality, we are now able to compare them against each other and
verify the theory on the subject. Based on the discoveries from Section 5.6.1 and
Section 5.6.2 we let c = 3.0, c1 = 1.0 and c2 = 1.6 in the following experiments.
Naturally, the first experiment measures the building time for the two cutting
algorithms on input of varying size. In terms of the outcome, we expect that
the naive algorithm will be inferior due to the bounds stated in Theorem 5.1
and Theorem 5.2. The result is shown in Figure 5.12. Note that the running
time is divided by n, thus both algorithms should converge towards a constant
value seeing that the sampling factors does not depend on n.

The resulting figure clearly shows that the naive algorithm is indeed inferior.
The algorithm actually dominates the building time in such a degree that it is
left out in Figure 5.13 in order to better reason about the fixing algorithm.
Looking at the measured data we can see that the fixing algorithm is a factor
26 faster than the naive algorithm for n = 214, which is a significant slowdown
for a relatively small input.

62

Figure 5.12: The build time in ms when constructing a 1
10 -cutting using both

algorithms.

Figure 5.13: The build time in ms when constructing a 1
10 -cutting using the

fixing cutting.

The figures also reveal that the building time of both algorithms converges
as expected. One peculiarity is that the curves does not converge until the
input has a substantial size. We believe that this is an effect of the initial
sampling factor. In order to clarify, we have that r = 10 hence the naive
algorithm samples 3 · 10 · log 10 ≈ 100 lines. This will cause the algorithm to
make a relatively large sample compared to small values of n, and explains why
the building time of the naive algorithm evidently starts converging around
n = 210 = 1024 in Figure 5.12. This also explains why the fixing algorithm
converges faster than the naive algorithm because the initial sampling factor is
merely 10 which is relatively low compared to any n.

The final experiment of this chapter compares the quality using the stated

63

optimal constants. The expectation is unchanged because the fixing algorithm
should be superior due to the bounds stated in Theorem 5.1 and Theorem 5.2.
The result of running both algorithms is depicted in Figure 5.14 whereas the
naive algorithm is left out in Figure 5.15.

Figure 5.14: The number of triangles when constructing a 1
10 -cutting using both

algorithms.

Figure 5.15: The number of triangles when constructing a 1
10 -cutting using the

fixing cutting.

Looking at Figure 5.14 it is evident that the naive algorithm is inferior in
terms of quality as well. For n = 214 the naive algorithm creates 10586 triangles
on average. Comparing this with the 2259 triangles that the fixing algorithm
creates we get a factor 4.6 difference in quality, which is substantial given that
the quality directly affects the number of recursions in a divide and conquer
context. In terms of the theoretic bound, the naive algorithm is expected to

64

create in the order of 102 · log2 10 ≈ 1103 triangles meaning that it is off by an
approximate factor of 10. The fixing algorithm is off by an approximate factor
of 22 by an analogous argument. These constants are hidden in the asymptotic
notation and shows that the bounds on the size of the cutting are relatively
loose.

The peculiarity mentioned for the building time also applies for the quality
experiment. The naive algorithm starts converging at n = 210 and up until
this point, the number of sampled lines gradually increases. As mentioned,
100 lines are sampled with replacement, thus the created arrangement grows
steadily until 100 distinct lines are sampled each time. Furthermore, this causes
the 1

10 -cutting to fail more often and the algorithm retries with an incremented
sample size resulting in more triangles. Evidently, the number of trials becomes
constant on average at n = 210 where the curve starts converging. A similar
phenomenon affects the fixing cutting in Figure 5.15. Measuring the number of
refinements that the algorithm issues during the experiment, we observe that
they becomes constant at around n = 210 where the number of triangles starts
converging. In conclusion, the experiments conducted is in line with the theory
and the fixing algorithm is superior in terms of building time and quality.

5.8 Conclusion
In this chapter we presented and compared two algorithms for creating a 1

r -
cutting in R2. The first algorithm CUTTING_NAIVE runs in O(nr2 log2 r) time
and creates a cutting of size O(r2 log2 r) whereas the more advanced algorithm
CUTTING_FIX runs in O(nr2) time and creates a cutting of size O(r2). Both
algorithms depends on random sampling and must be fine-tuned in order to
perform optimally. For the fixing cutting it appears that c1 = 1 and c2 =
1.6 is optimal, but that still produces a cutting that is 22 times larger than
what is expected. From a theoretical point of view, the latter algorithm is
superior in terms of building time and quality, which we have shown also holds
in practice. As a final remark, both algorithms inherit the robustness issues
from the arrangement algorithm, thus the same trade-off between running time
and precision is still relevant in this context.

65

Chapter 6

Halfspace median

In this chapter we study the problem of finding the halfspace median in R2. In
Section 6.1 we present a simple naive algorithm with an impractical running
time. In Section 6.2 and Section 6.3 we describe a more sophisticated divide
and conquer algorithm using the concepts of arrangements of lines and cut-
tings as presented in Chapter 4 and Chapter 5. For this purpose we assume
that the input is in general position, i.e. there exists no coinciding points and
there are no more than two points on a line. In Section 6.4 we present a brief
description of the tests performed and some considerations about robustness.
The experiments presented in Section 6.5 are aimed at fine-tuning the improved
algorithm and in Section 6.6 we seek to verify the theoretical running time and
test how well the algorithm performs in a practical setting. We also illustrate
the robustness properties of the halfspace median in Section 6.7. Finally, the
chapter is concluded in Section 6.8.

6.1 The naive algorithm
The halfspace median is simply the point with maximum halfspace depth as
formalized in Definition 1.3. This definition immediately proposes a naive al-
gorithm that computes the depth of any interesting point and maximizes the
depth. The notion of interesting points is clarified below and ensures that it
suffices to check a finite number of points in the plane.

The algorithm is denoted MAX_HS_NAIVE and computes a point at maximum
depth by forming all possible lines from any two points from the input P using
two nested loops. With these lines, the algorithm computes all possible inter-
section points q, using two additional nested loops, and determines Dhs(P, q) by
calling QUERY_HS_NAIVE. The point q is an interesting point and the resulting
median is the one with maximum depth. This is a very simple algorithm but
as Theorem 6.1 shows, it is extremely slow which makes it useless in practice.

Theorem 6.1. Given a set P ⊂ R2 of size n, MAX_HS_NAIVE computesMhs(P)
in O(n6) time and uses O(n) space.

Proof. First we argue that the algorithm is correct. To see that the interesting
points represent the only possible solutions, we consider the arrangement of

66

lines built from the O(n2) lines going through any two input points. Clearly,
every point inside a face of this arrangement must have equal depth, i.e. the
depth can only change by crossing a boundary of a face. Furthermore, any two
points on an edge in the arrangement trivially has the same depth as they lie
on the same line. Combining these two facts, it suffices to check the depth of
the vertices of the arrangement because they correspond to all possible depths.
Since the intersections of the O(n2) pairs of lines corresponds to the O(n4)
vertices in the arrangement, the above algorithm is correct.

In terms of running time, we know that the depth of a point can be cal-
culated in O(n2) time by Theorem 3.3. Since there are n input points, the
algorithm forms O(n2) lines which results in O(n4) intersection points. Hence,
the running time of the algorithm is O(n6) in total. Looking at the space con-
sumed, the algorithm iteratively stores a single pair of lines in memory along
with the corresponding intersection point. Seeing that this is constant and the
input points must be stored at all times, we can conclude that the algorithm
uses O(n) space.

From a practical point of view, the naive algorithm is useless and the only
real advantage lies in the simplicity of the implementation. Given algorithms
that can compute the depth Dhs(P, q), the algorithm is straight forward and
does not introduce any interesting implementation details. An obvious opti-
mization may be applied by using QUERY_HS_SORT as a subroutine instead of
QUERY_HS_NAIVE and reduces the running time to O(n5 logn), though this has
little effect on its practical use.

6.2 The level algorithm
The main motivation for improving on the naive algorithm is the horrifying
running time. For a small input consisting of 100 points, the algorithm executes
in the order of 1006 = 1012 instructions. This is considered infeasible on most
systems, but improvements can be achieved by more sophisticated techniques.

We presented several algorithms that improve on the naive algorithm in
Section 1.1 in the introduction. The best proposal is an optimal randomized
algorithm by Chan [A22] which runs in O(n logn) in R2. Unfortunately, the
algorithm is conceptually difficult and Chan suspects that it has very large
constants. In the following we describe a slightly simpler algorithm that has a
larger asymptotic bound, but still improves over the naive solution and some
of the referenced algorithms from Section 1.1.

Consider the slightly simpler problem of determining whether a point of
halfspace depth k + 1 exists. By dualizing the input P into a set of lines L,
this problem is equivalent to determining whether there exists a separating
hyperplane between the upper and lower k-level in the arrangement of lines
induced by L. This is a classic optimization problem and may be solved by the

67

following minimization

arg min
a,b

ax+ b

subject to axi + b ≤ yi ∀(xi, yi) ∈ Uk
yi ≤ axi + b ∀(xi, yi) ∈ Lk

(6.1)

where Uk and Lk denotes the set of vertices on the upper and lower k-level
respectively.

The correctness of the dual problem follows from Definition 2.1, which states
that the dual transform is incidence and order preserving. Assume that there
exists a point p = (x, y) with halfspace depth k + 1 in the primal plane. This
means that all halfspaces going through p has at least k + 1 points on both
sides of it. Note that we can safely ignore the vertical halfspace because there
always exists a non-vertical halfspace infinitely close to it resulting in the same
depth. The point p dualizes to a line l = (x,−y) and the halfspaces dualizes
to points on l by the incidence preserving property. By the order preserving
property, any point on l must have at least k + 1 lines above and below it.
Note that l cannot be a vertical line, thus above and below are well defined.
Hence, deciding whether there exists a point with halfspace depth k+ 1 or not,
is equivalent to asking whether there exists a line in dual space where all points
on it have least k+ 1 lines above and below them. By Definition 2.2, all points
on a separating line between the upper and lower k-level vertices have k + 1
lines above and below them, since the k-level is a contour consisting of lines
from the input. Thus, the decision problem reduces to finding such a separating
line which the minimization problem 6.1 expresses. An example of the relation
between the primal and dual problem can be seen in Figure 6.1.

The problem of finding the halfspace median simply requires a search in
k+1 and an efficient way of finding k-level vertices. Unfortunately, the number
of vertices on the k-level may be super-linear as stated in Lemma 2.1. For
simplicity, we will assume that the size of the k-level is O(n) which is not an
unfair assumption in practice. We will return to the validity of this assumption
in Section 6.6.

The level algorithm denoted MAX_HS_LEVEL is inspired by the idea sketched
above and computes the halfspace median by a binary search in k which ranges
from 0 to dn2 e. The algorithm follows a divide and conquer scheme. It takes a
parameter r, which defines the size of the cuttings created, and a parameter b,
which defines the size of the base case, and builds a cutting tree with fanout
O(r2). Initially, the input P is dualized into a set of lines L using equation 2.1
and for each value of k, the root of the cutting tree is built using a 1

r -cutting
on L using a specialized version of CUTTING_FIX. The cutting is special in the
sense that triangles are discarded when they do not contain vertices from the
upper or lower k-level, i.e. the algorithm prunes children that cannot contain
any constraints.

Assume that the cutting algorithm encounters a valid triangle ∆i that con-
tains vertices from the upper or lower k-level. If the crossing number is larger
than the base case size the algorithm performs an inductive step and creates

68

(0.5, 0)

(1, 1)

(−1,−1)

(−1, 1)

(1,−1)

(a) The primal problem defined on a
set of points. The region at maximum
halfspace depth is marked as a red con-
vex hull and is bounded by the lines go-
ing through any two input points. Any
point in this convex hull is a halfspace
median with depth 2.

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

(0.5, 0)

(b) The dual problem defined on a set
of lines. The region that separates the
vertices on the upper 1-level (black)
and the vertices on the lower 1-level
(blue) is marked red. Any line in this
region dualizes to a halfspace median
with depth 2.

Figure 6.1: The primal and dual interpretation of the same halfspace median
problem.

a new 1
r -cutting on the crossing lines. Otherwise, the base case is encountered

and the vertices on the upper and lower k-level are recorded. This is done by
computing the intersection points of the lines crossing ∆i, checking whether
these intersection points are inside ∆i and determining their level by counting
the number of lines strictly above and below. For this purpose the cutting algo-
rithm records the number of lines strictly above and below ∆i when computing
the crossing number. We denote the lines strictly above ∆i as ai and the lines
strictly below ∆i as bi.

The procedure above provides two sets of constraints, one consisting of
the upper k-level vertices and another consisting of the lower k-level vertices.
The minimization problem 6.1 is solved using a randomized incremental linear
programming algorithm as described in [A13]. If the program is not infeasible,
the algorithm retries the entire procedure with a larger value of k defined by
the binary search. Otherwise, a lower value of k is chosen. When the search
stops the resulting depth k + 1 is returned together with the point p = (a,−b)
at maximum halfspace depth.

Theorem 6.2. Given a set P ⊂ R2 of size n, MAX_HS_LEVEL computesMhs(P)
in O(n1+ε) time and uses O(max(r2 logr n, n)) space.

Proof. Clearly, the algorithm is correct by the construction explained above
and by the correctness proof of the linear programming algorithm presented in
[A13]. What remains is to prove the running time and space consumed.

In terms of running time, the binary search enforces a O(logn) slowdown.
For each k in the search, a pruned cutting tree is built and a linear program
is solved, hence the slowest of these two procedures will dominate the total

69

running time, along with the binary search. The linear program takes expected
O(n) time because there are O(n) constraints. The proof is presented in [A13].
Building the cutting tree requires us to solve the recurrence

T (n) =
{
O(1) if n = 1
c1nr

2 + c2rT (nr) otherwise

where b = 1. In the base case the problem can be solved in constant time.
Otherwise, the algorithm builds a 1

r -cutting in O(nr2) time by Theorem 5.2 and
calls recursively on any triangle that contains vertices from the upper or lower
k-level. For this purpose we introduce another assumption that may be absurd
in the worst case but is fair in practice, namely that O(r) triangles contain
vertices from the k-level. By unrolling the recurrence we get the following sum

T (n) = c1nr
2 + c2rT

(
n

r

)
= c1nr

2 + c2r

(
c1nr + c2rT

(
n

r2

))
= c1nr

2 + c1c2nr
2 + c2

2r
2T

(
n

r2

)
= c1nr

2 + c1c2nr
2 + c2

2r
2
(
c1n+ c2rT

(
n

r3

))
= c1nr

2 + c1c2nr
2 + c1c

2
2nr

2 + c3
2r

3T

(
n

r3

)
= c1nr

2 + c1c2nr
2 + c1c

2
2nr

2 + c3
2r

3
(
c1
n

r
+ c2rT

(
n

r4

))
= c1nr

2 + c1c2nr
2 + c1c

2
2nr

2 + c1c
3
2nr

2 + c4
2r

4T

(
n

r4

)
...

= c1nr
2 + c1c2nr

2 + c1c
2
2nr

2 + c1c
3
2nr

2 + . . .+ c1c
logr n−1
2 nr2 + c

logr n
2 rlogr n.

The recurrence bottoms out after logr n steps because n
rlogr n = n

n = 1 and
the base case takes constant time to solve. Continuing the derivation we can
simplify the term by

T (n) = c1nr
2 + c1c2nr

2 + . . .+ c1c
logr n−1
2 nr2 + c

logr n
2 n

= c1c
logr n
2 nr2

(
n

c
logr n
2 n

+ c2n

c
logr n
2 n

+ . . .+ c
logr n−1
2 n

c
logr n
2 n

+ 1
c1r2

)

= c1c
logr n
2 nr2

(
1

c
logr n
2

+ 1
c

logr n−1
2

+ . . .+ 1
c2

+ 1
c1r2

)
= O

(
c

logr n
2 n

)
.

Note that all but the last term inside the parenthesis is the geometric series
obtained by multiplying by 1

c2
, which is less than 1, hence it converges towards

a constant. The last term is also a constant. Thus the parenthesis is dominated
by the c1c

logr n
2 nr2 term.

70

At this point, we know that c2 is a constant given by the cutting algorithm,
but we are free to choose r as we want. Thus, by defining ε = 1

logc2 r
> 0 we

can determine the bound on the running time as

T (n) = O

c logc2 n

logc2 r

2 n

 = O

(
n

1
logc2 rn

)
= O

(
n1+ε

)
.

This results in a running time of O(n1+ε logn) because ε > 0, i.e. building the
pruned cutting tree takes more time than solving the linear program. In total
the bound becomes O(n1+ε′) because there exists an ε′ > 0 that removes the
logn factor.

In terms of space, the algorithm needs to dualize the input and keep it in
memory which uptakes O(n) space. The linear program does not change the
bound as we assume there are O(n) constraints. Finding the constraints using
the pruned cutting tree only requires the initial cutting along with one path
from the root to a leaf. We already know that the height is O(logr n), hence this
uptakes O(r2 logr n) space. Depending on how r is chosen, the space complexity
becomes O(max(r2 logr n, n)).

6.3 Details of the level algorithm
The algorithm MAX_HS_LEVEL is in theory relatively simple, it is a binary search
wherein constraints are found and a linear program is solved, but it relies on
several other algorithms that may cause problems. The cutting algorithm for
example, produces open triangles that counts the number of lines that intersect
the interior of the triangle in order to avoid degeneracies. From the perspective
of the level algorithm, this is insufficient because vertices on the upper and lower
k-level may be on such border lines, i.e. the algorithm needs closed triangles. To
incorporate this in the implementation, the algorithm keeps track of the border
lines in a set separate from the lines crossing a triangle. These border lines
are not considered when refining triangles but are considered when handling
the base case of MAX_HS_LEVEL. This potentially adds a given constraint several
times since triangles share border lines. We will investigate the practical number
of constraints in Section 6.6.

A vital detail that ensures efficiency of the algorithm is the procedure that
prunes triangles that does not contain vertices from the upper and lower k-
level. This check is relatively straight forward but introduces a subtle special
case that must be handled in order to ensure correctness. Ignoring the lower
k-level vertices, a triangle ∆i cannot be pruned if the upper k-level vertices are
not above and not below the triangle. The first condition holds when k ≥ ai
and the second condition holds when n− bi ≥ k and can easily be verified using
the illustration in Figure 6.2a. In this case the upper 0-level vertices are above
the triangle, because 0 ≥ 1 does not hold, and the upper 5-level vertices are
below the triangle, because 5 − 1 ≥ 5 does not hold. The remaining upper
level vertices intersect the triangle and is consistent with the two conditions.
The special case is depicted in Figure 6.2b where the triangle ∆i is a four

71

sided unbounded triangle with both of its hybrid edges pointing upwards. The
structure of this triangles pushes the upper 4-level vertices down below the
triangle causing the second condition to fail. In order to remedy the error,
this case is handled by an extended condition where the level is incremented
n − bi ≥ k + 1. A symmetric argument handles the first condition for four
sided unbounded triangles with both of its hybrid edges pointing downwards,
where the check becomes k− 1 ≥ ai. Furthermore, checking whether a triangle
contains vertices from the lower k-level is done by exchanging ai with bi in the
first condition and bi with ai in the second condition.

01 1
1

2 23

3 4 3
4 5 4
(a) The general case.

0 11

2 21

3 2 3
4 3 4

(b) The special case.

Figure 6.2: Checking whether a triangle may be pruned.

The careful reader may notice that the pruning check does not test whether
points with k − 1 lines strictly above or below them are contained in a given
triangle. By Definition 2.2 these vertices are a part of the upper or lower k-level
and must be considered. Such a check is unnecessary due to the construction of
the cutting algorithm, because it does not create new vertices. Hence, a vertex
with k−1 lines strictly above it will be included in a triangle with a vertex with
k lines strictly above it. If a line at some point separates the two, it means that
their upper and lower level changes which contradicts that their levels are k−1
and k respectively. The vertices in the upper and lower k-level are therefore
correctly determined seeing that the base case procedure includes vertices with
upper and lower level k and k − 1.

A rather large implementation detail is the linear programming algorithm.
In general, the algorithm is straight forward given that the linear program is
not unbounded. Fortunately, that is easy to verify because we are minimizing
the slope of a line which is unbounded if and only if the upper and lower k-
level can be separated by a vertical line. When that is not the case, the initial
solution may be determined by choosing a constraint from both k-levels. Having
permuted the constraints, they may be checked one by one against the current
solution. In case a constraint ci causes a violation the algorithm initiates a
one-dimensional search on ci - a general property of linear programming. The
result of this search has two outcomes: Either the program is infeasible or a
new solution is found. The algorithm determines this by bounding the solution
using ci and the previous constraints c1, . . . , ci−1. In our case, this boils down to
a case analysis depending on three binary values. The first two values depend

72

on whether ci and the previous constraint cj belongs to the upper or lower k-
level. The third value depends on which of the two constraints has the largest
x-coordinate. In total, this produces 23 = 8 cases where 4 bounds the minimum
slope of the solution and the remaining 4 bounds the maximum slope of the
solution. For the sake of completeness we present two cases that bounds the
minimum and maximum slope of the solution in Figure 6.3.

ci

cj

(a) Two constraints on the upper k-
level bounding the maximum slope of
the solution.

ci

cj

(b) Two constraints on the lower k-level
bounding the minimum slope of the so-
lution.

Figure 6.3: Bounding the solution during a one-dimensional search.

6.4 Testing and robustness
We have proven that the algorithms presented in the previous sections are
correct. Even though these proofs ensure theoretical correctness it still makes
sense to test the algorithms in order to verify their implementation. Like the
arrangement and cutting algorithms, automatically asserting that the returned
halfspace median is correct on any input is basically impossible. Instead, we
made a select suite of tests that verifies the result on a fixed input along with
an automatic test that compares their results on random input. Unfortunately,
the naive algorithm is so slow that it restricts the test to relatively small inputs.
None the less, it does provide a foundation for arguing that both algorithms
are correctly implemented and calculate the halfspace median.

In regards to robustness, the naive algorithm is basically only affected by
the numerical issues of the corresponding depth algorithm used to calculate the
depth of a point. The level algorithm on the other hand inherits all the problems
associated with the cutting and the arrangement algorithms, which occasionally
results in infinite loops. The additional layers on top of the cutting algorithm
does not introduce any new interesting numerical or robustness issues. At this
point, infinite precision libraries are not really an option. The constants are
so big that the running time degrades in such a degree that even the smallest
inputs are infeasible in practice.

6.5 Fine-tuning the level algorithm
The algorithm MAX_HS_LEVEL depends on two hyper-parameters that must be
supplied by the caller, namely r and b. The value of r controls the size of the
cutting which is built in every inductive step and b defines the base case which

73

is executed whenever less than b lines cross a triangle. There seems to be no
obvious values for these parameters and in this section we will reason about
them and attempt to determine their optimal values.

The value of r is the subject of the first experiment, which consists of com-
puting the halfspace median of 4000 random normal distributed points while
measuring the running time. The base case size b is kept fixed and multiple
runs are performed for each value of r. The result is depicted in Figure 6.4.

Figure 6.4: The running time in ms when calculating the halfspace median.

Since r directly affects the number of generated triangles in the cutting,
and these triangles are used to prune disjoint areas that does not contain any
vertices from the k-level, the more triangles that can be pruned the better.
Additionally, a sufficiently large r will produce a very shallow cutting tree where
almost everything except the k-level vertices can be pruned in the first step and
no additional refinements are needed. Following this logic, the value of r must
be large enough for the algorithm to efficiently prune large parts of the input
space such that the least number of inductive steps are performed. However,
this is accompanied by a large penalty because each triangle ∆i requires O(n)
work in order to determine the crossing number, ai and bi which will degrade
the running time if the cutting creates too many triangles. Based on this, it is
most reasonable to assume that a sweet spot for r exists where the number of
triangles is relatively low in order to prevent this penalty.

Inspecting Figure 6.4 it is apparent that this sweet spot occurs around r = 5.
As expected, the spot takes place for a relative low value of r where the cor-
responding number of triangles being tested for containing k-level vertices is
small. After r = 5, the penalty caused by calculating the crossing number, ai
and bi for each triangle dominates the running time and outgrows the perfor-
mance gained by building a more shallow cutting tree. For small values of r, we
also experience that the running time degrades because a deeper cutting tree
is built. Again, the bottleneck is caused by iterating trough a subset of lines
for each triangle to calculate the crossing number. For very small values of r

74

the price gained on a single level is simply dominated by the many extra levels
produced since a minimal part of the input space can be pruned for each new
cutting. Worth noting is that the building time of the cutting is minuscule com-
pared to the worst-case linear cost for each created triangle. Thus, a large fan
out of the cutting tree is rarely preferable since the running time will degrade
because of the many triangles created on each level. Basically, this experiment
tells us that a relatively small value of r is better because that results in the
least number of triangles without generating a too large cutting tree.

Having established an understanding of how r affects the algorithm, we
move on to experimenting with how the size of the base case affects the running
time. The second experiment performed is identical to the first with a single
exception, namely r is a fixed value and the base case size b is varied. The
result is displayed in Figure 6.4.

Figure 6.5: The running time in ms when calculating the halfspace median.

The value of b determines when the number of crossing lines ∆c associated
with a triangle becomes constant. Once the base case is reached, an O(∆3

c)
algorithm is applied in order to compute the k-level vertices. Since the running
time of this naive base case algorithm is cubic, running it for a large set of
crossing lines is not desirable. On the contrary, a large base case causes fewer
levels in the cutting tree. Based on these observations, it makes sense to expect
a sweet spot for b where the size of the cutting tree is relatively low and the
base case algorithm is not executed on a too large set of lines.

From Figure 6.4 there is an evident optimal base case size at around b = 40.
For smaller values of b, the main reason for the slowdown is the fact that
additional levels in the cutting tree causes more triangles to be created which we
know is expensive based on the previous experiment. Continuously increasing
the value of b does reduces the size of the produced cutting tree, but after the
sweet spot the time spend on solving the base case starts outweighing the gain
from the smaller cutting tree. One might suspect that cache misses influences
the optimal value of b, but that does not appear to be the case. A line consumes

75

24 bytes which means that 24 · 40 = 0.96 KB’s are needed to store the store
lines when b = 40. Seeing that the L1 data cache is 32 KB and the running
time starts degrading at b = 50, we suspect that the structure of the cutting
tree and number of triangles created dominates the running time.

6.6 Verification of the running time
From a theoretical point of view it is safe to assume that MAX_HS_LEVEL is the
superior algorithm when compared with MAX_HS_NAIVE. The objective of this
section is to support this assumption along with verifying that the theoretic
running time is sound and determine which value of ε applies in practice.

Before investigating the practical running time of the level algorithm, a
slight detour is required. The complexity arguments depend on the assump-
tion that the k-level is linear in size. Since this is a conjecture, there is no
theoretic guarantee that it holds and the number could dominate the running
time resulting in a slower practical bound. A proof of the conjecture is beyond
the scope of this thesis, instead we seek to verify the conjecture empirically
by measuring the number of generated constraints. The experiment consists of
computing the halfspace median for an increasing number of normal distributed
points and counting the number of generated constraints. For each possible n,
multiple runs are performed and the average number of generated constraints
is calculated. The result of this experiment is plotted in Figure 6.6.

Figure 6.6: The number of constraints gathered when calculating the halfspace
median.

Looking at Figure 6.6 we see that the number of constraints converges to-
wards a constant factor when divided by n. If the size of the k-level depended
on k, as stated by the best known upper bound in Lemma 2.1, we would ex-
pect to see a gradual increase because k gets bigger alongside the input size
n. Hence, we conclude that the k-level is linear in this practical setting. Fur-
thermore, the fact that the constant is 3 strongly indicates that the generated

76

constraints does not contain too many duplicates. We mentioned earlier that
this was a potential problem, but seeing that both the lower and upper k-level
is accounted for, the total number of constraints generated for both levels is
close to linear in practice.

Regarding the second assumption introduced in the proof of Theorem 6.2,
where we assume that the k-level vertices are contained in O(r) triangles, we
measured the average number of recursive steps on each level of the cutting
tree during the above experiment. The number stabilizes as the input reaches
a substantial size and the only thing that changes is the number of levels in the
cutting tree, which is natural seeing that n increases.

Based on the empirical evidence of the assumptions made so far, we seek
to verify the theoretic running time and determine which value of ε applies in
practice. The setup of this experiment is identical to the former, except that
we measure the running time instead of the number of constraints. The result
is depicted in Figure 6.7.

Figure 6.7: The running time in ms when calculating the halfspace median.

Trying different values of ε we found that ε = 0.24 is close to the smallest
value where the running time converges. This concludes that the theoretic
bound is valid and relatively tight. Surprisingly, this makes the O(n logn)
optimal solution proposed by Chan not as far fetched as one might suspect.
Unfortunately, we were not able to test the algorithm on larger inputs than
n = 218 because the algorithm loops indefinitely from time to time due to
numeric instability. This is one of the main disadvantages of the algorithm and
is a natural problem in relation to its practical use.

In order to make sense of the constants hidden in the asymptotic notation,
we present the running times in Table 6.1 along with that of the naive algorithm.
Given the relatively of all things, it is impossible to conclude whether this is
efficient or not, but the speedup is significant. For an input of size n = 218 =
262144 the algorithm finds the halfspace median in around 16-17 minutes, which
is not that bad given the severity of the problem.

77

n MAX_HS_NAIVE MAX_HS_LEVEL n MAX_HS_LEVEL

16 43.526 0.328 4096 5349
32 3021.380 1.431 8192 13 225
64 193 854.000 7.537 16 384 32 279

128 28.159 32 768 76 795
256 94.099 65 536 186 317
512 276.237 131 072 434 505

1024 776.812 262 144 1 012 390
2048 2084.340

Table 6.1: The running time in ms when calculating the halfspace median.

In relation to the question of efficiency there are some optimizations that
could improve the running time of the algorithm. Seeing that the cutting pro-
duces a disjoint partition of the plane and queries this partition, the algorithm
is suited for parallelization. The triangles can simply be processed in parallel
which should result in a speedup on a multiprocessor systems.

Furthermore, the base case procedure is a cubic algorithm that computes
the level of intersections between crossing lines of a triangle. This problem
can be solved in quadratic time by constructing the arrangement induced by
the lines inside the triangle and process the vertices on each line from left to
right. This can be done by finding the leftmost intersection of a line l with
the bounding box, compute its level in linear time and traverse the remaining
vertices on the line. Depending on the slope of the line li creating a vertex on
l the next level can be determined in constant time, i.e. if li has a larger slope
the level increases and if li has a smaller slope the level decreases.

Another suggestion is based on sacrificing some space in return of time. The
level algorithm has very good space complexity, which is linear in most cases
because the pruned cutting tree is rebuilt for each value of k, meaning that
the entire tree is never stored explicitly. We can avoid this either by building
the entire cutting tree prior to the binary search, or simply extend the tree on
demand whenever triangles that contain k-level vertices needs to be handled.
This should result in an improvement since a lot fewer cuttings are created, but
increases the space complexity to O(n2+ε) in the worst case.

Finally a trivial speedup can be achieved by uniformly sampling the input
as was done in Chapter 3 for single points. The theory of ε-approximations
should still apply seeing that the median is the point with maximum halfspace
depth, hence we would expect approximations to produce very good results
even though a very small sample is used.

78

6.7 Verification of the breakdown point
In the previous section we verified the theoretic bound of MAX_HS_LEVEL and
saw that ε = 0.24 seems to be realistic in practice. With a working median
algorithm we are able to visualize the result of our endeavours and may return
to Definition 1.1 and verify the robustness properties of the halfspace median.
Recall that the theoretic breakdown point is 1

3 in R2, thus we would expect
the median to deviate from the true center of the data cloud when at least 1

3
of the data points are noisy. In the extreme case, the noise is a dense cluster
which pulls the median away from its center in a single direction. We present
three such examples by running the level algorithm on 2000 normal distributed
points with varying levels of noisy points, which is shown in Figure 6.8. These
examples contain 0, n

3 and n
2 noisy data points respectively, and we see that

the noise gradually affects the median and consequently causes it to be right
between the two clusters. These examples show that the halfspace median is
indeed very robust and the algorithm works as expected.

(a) 0 noisy data points. (b) n
3 noisy data points. (c) n

2 noisy data points.

Figure 6.8: Examples of the halfspace median with 0, n3 and n
2 noisy data points

respectively.

6.8 Conclusion
In this chapter we have studied the problem of calculating the halfspace median
and verified its robustness against outliers. The naive algorithm is very simple
and easy to implement but the bound on the running time is a whopping O(n6)
which makes it useless in practice. The level algorithm is an improved algorithm
that reduces the running time to O(n1+ε) using various techniques such as ge-
ometric divide and conquer, arrangements of lines, 1

r -cuttings, pruning, binary
search and linear programming. This algorithm is in theory simple, but takes
a lot of effort to implement due to the number of algorithmic tools it utilizes.
The algorithm takes two hyper-parameters r and b and experiments illustrate
that r = 5 and b = 40 is optimal and results in a running time of O(n1.24).
The constants still appear to be rather large seeing that it takes around 16-17
minutes to compute the halfspace median for 218 points. Nevertheless, the im-
provement over the naive algorithm is substantial and the algorithm has great
optimization potential. In conclusion, our solution makes it feasible to com-
pute the halfspace median in R2, though the algorithm suffers from numeric
instability which causes it to loop indefinitely on rare occasions.

79

Chapter 7

Conclusion

In this thesis we have studied the problem of computing the simplicial and
halfspace depth in R2 and tested how sampling affects the result. We also
studied the problem of computing the halfspace median in R2, using various
computational techniques, and tested its efficiency and practical use.

We conclude that the simplicial and halfspace depth of a point can be de-
termined in O(n logn) as presented in Chapter 3. This can further be improved
by uniformly sampling the input within a tolerable error. Such an approxima-
tion works best for points deep in the data cloud, whereas the error of outlying
points is larger. This does not pose a problem in practice as the error does
not change the fact that outlying points has a low normalized depth and points
deep inside the data cloud has a large normalized depth. The approximation
method works well and can improve the algorithm for ranking a set of n points
to a O(nk log k) algorithm where k << n.

In Chapter 4 we described a versatile implementation of an arrangement of
lines, which is a necessary data-structure for computing the halfspace median
efficiently. We conclude that this structure can be built in O(n2) time and
uses O(n2) space and may be implemented by introducing the concept of a
bounding box at infinity, such that bounded, semi-bounded and unbounded
arrangements can be constructed. Unfortunately, the algorithm suffers from
numeric instability which we were unable to resolve.

In Chapter 5 we described two algorithms for creating a 1
r -cutting, which

is used for doing geometric divide and conquer when computing the halfspace
median. The better implementation creates a O(r2) size cutting in O(nr2) time
and takes two hyper-parameters c1 and c2. Experiments shows that c1 = 1 and
c2 = 1.6 is optimal and produces the fastest algorithm. Unfortunately, the
cutting algorithm also suffers from the numeric stability issues, some of which
are inherited from the arrangement algorithm.

In relation to the halfspace median studied in Chapter 6, we conclude that
our algorithm solves the problem in O(n1+ε) in dual space using various algo-
rithmic techniques. We found that optimal hyper-parameters are r = 5 and
b = 40 and results in a running time of O(n1.24). The implementation is not
simple as such, but the ideas behind it are relatively straightforward. In terms
of efficiency, the algorithm finds the halfspace median in around 16-17 minutes

80

on a point set of size 218, which is a great improvement over the naive imple-
mentation. The algorithm may be optimized for improved performance, but
suffers from numeric instability caused by the arrangement and cutting algo-
rithms. These instabilities causes the algorithm to loop indefinitely from time
to time, which is a disadvantage in relation to its practical use.

7.1 Future work
The numeric instability issues mentioned above provides a basis for future re-
search and solving these will naturally make the algorithm more useful in prac-
tice. We suspect that our approach of checking intersections, by reconstructing
lines from segments, is numerically unstable and alternative intersection meth-
ods may prove to be more reliable. An obvious approach is to save a pointer on
each edge to the line that created it and use its parameters in the intersect pro-
cedure. Our implementation already saves and id, but a pointer to the line itself
may provide more information without increasing the space consumed. There
may be other parts of the code that contribute to these errors and determining
them may require a great deal of work.

The optimizations suggested for the improved algorithm in Section 6.6 also
gives rise to future work. These optimizations and the main ideas behind the
algorithm are not restricted to R2 and it could be interesting to implement a
version that handles d-dimensional data in order to test its efficiency in higher
dimensions.

A more theoretical line of work may be partaken by removing the assump-
tion that the k-level is linear and that it is contained in O(r) triangles of a
cutting partition. This may require more sophisticated theoretic tools and we
suspect that the gain is questionable in practice, at least in R2.

81

Bibliography

[A1] A. Weber. Uber den Standort der Industrien, Tubingen. English transla-
tion by C. Friedrich (1929): Alfred Webers theory of location of industries
In University of Chicago Press, 1909.

[A2] B. Chazelle. Sampling. In The Discrepancy Method, 169–202, 2000.

[A3] D. Donoho and M. Gasko. Breakdown Properties of Location Estimates
Based on Halfspace Depth and Projected Outlyingness. in The Annals of
Statistics 20, 1803–1827, 1992.

[A4] D. Haussler and E. Welzl Epsilon-Nets and Simplex Range Queries. In
Proc. of the second annual symposium on Computational geometry, 61–71,
1986.

[A5] G. Aloupis, S. Langerman, M. Soss and G. Toussaint. Algorithms for
Bivariate Medians and a Fermat-Torricelli Problem for Lines. In Comput.
Geom. Theory Appl. 26(1), 69–79, 2003.

[A6] H. Hotelling. Stability in Competition. In Economic Journal 39, 41–57,
1929.

[A7] J. Hayford. What is the Center of an Area, or the Center of a Population?
In Journal of the American Statistical Association 8, 47–58, 1902.

[A8] J. Matoušek. Computing the Center of Planar Point Sets. In Compu-
tational Geometry: Papers from the DIMACS special year (J. Goodman,
R. Pollack, and W. Steiger, eds), American Mathematical Society, vol 6,
221–230, 1991.

[A9] J. Matoušek. Number of Faces in Arrangements. In Lectures on Discrete
Geometry, 2002.

[A10] J. Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates. In Discrete and Computational Geometry,
18(3), 305–363, 1997.

[A11] J. Tukey. Mathematics and the Picturing of Data. In Proc. Int. Congress
of Mathematicians 2 523–531, 1975.

[A12] M. Berg, O. Cheong, M. Kreveld and M. Overmars Arrangements and
Duality. In Computational Geometry, Algorithms and Applications, 173–
190, 2008.

82

[A13] M. Berg, O. Cheong, M. Kreveld and M. Overmars Linear Programming.
In Computational Geometry, Algorithms and Applications, 63–93, 2008.

[A14] P. Afshani. On Approximate Simplicial Depth Queries, 2008.

[A15] P. Agarwal, B. Aronov, T. Chan and M. Sharir. On Level in Arrange-
ments of Lines, Segments, Planes and Triangles. In Discrete Comput.
Geom., 19:315–331, 1998.

[A16] P. Rousseeuw. Multivariate Estimation with high Breakdown Point. In
Mathematical Statistics and Applications (Dordrecht), vol. B, 283–297,
1985.

[A17] P. Rousseeuw and H. Lopuhaa. Breakdown Points of Affine Equivariant
Estimators of Multivariate Location and Covariance Matrices. In The
Annals of Statistics, vol. 19, no. 1, 229–248, 1991.

[A18] P. Rousseeuw and I. Ruts Bivariate Location Depth. In Applied Statistics,
vol. 45, no. 1, 516–526, 1996.

[A19] P. Rousseeuw and I. Ruts. Constructing the Bivariate Tukey Median. In
Statistica Sinica 8, 828–839, 1998.

[A20] R. Liu On a Notion of Simplicial Depth. In Proc. Natl. Acad. Sci, vol.
85, 1732–1734, 1988.

[A21] S. Langerman and W. Steiger. The Complexity of Hyperplane Depth in
the Plane. In Japan Conference on Discrete and Computational Geometry,
November 2000.

[A22] T. Chan. An optimal Randomized Algorithm for Maximum Tukey Depth.
In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA),
423–429, 2004.

[A23] T. Dey. Improved Bounds on Planar k-sets and Related Problems. In
Discrete Comput. Geom., 19:373–382, 1998.

[A24] Z. Chen. Bound for the Breakdown Point of the Simplicial Median. In
Journal of Multivariate Analysis 55, 1–13, 1995.

83

Appendices

7.2 Convex sets
In this section we recap the basic definition of convex sets and proof a simple
proposition about convex combinations which is used in Theorem 2.4.

A convex set is a set where the line between any two points in the set does
not cross the boundary. Examples of a convex and non-convex set are depicted
in Figure 7.1a and 7.1b. Formally, convex sets are defined by the set of all
convex combinations of any two points in the set. The points in such a convex
combination lies exactly on the line segment between the two points, which is
in line with the intuition. This notion is formalized in Definition 7.1 and 7.2.

p

q

(a) A convex set.

p

q

(b) A non-convex
set.

Figure 7.1: A convex and non-convex set.

Definition 7.1. Given p, q ∈ P the set of all convex combinations of p and q
is defined by:

{(1− a)p+ aq : 0 ≤ a ≤ 1}.

Definition 7.2. The set P is convex provided that the set of all convex com-
binations of any two points p, q ∈ P is a subset of P .

A property about convex sets is that any convex combination of k points
from the set remains inside the set. In other words, convex sets are closed under
linear combinations of points from the set where all coefficients are non-negative
and sum to one. The proof of the statement is by induction and concludes this
section.

84

Proposition 7.1. Let p1, . . . , pk be points in a convex set P and let a1, . . . , ak ≥
0 be coefficients such that

∑k
i=1 ai = 1 then

q =
k∑
i=1

aipi ∈ P.

Proof. The base case k = 1 holds because a1 = 1 and q = p1 is already in P .
Since P is convex the case k = 2 holds by Definition 7.2 and 7.1 because q
is convex combination of two points from P . In the inductive step we assume
that the statement holds for k and need to prove that the convex combination
q =

∑k+1
i=1 aipi ∈ P . We define the coefficient a =

∑k
i=1 ai and observe that

1− a =
k+1∑
i=1

ai −
k∑
i=1

ai = ak+1

which holds because q is convex combination so
∑k+1
i=1 ai = 1. We now use this

coefficient to rewrite the last part of q

q =
k+1∑
i=1

aipi =
k∑
i=1

aipi + ak+1pk+1 =
k∑
i=1

aipi + (1− a)pk+1

and rewrite the first part by multiplying and dividing by a

q = a
k∑
i=1

ai
a
pi + (1− a)pk+1.

Observe that the coefficients ai
a are larger than or equal to zero and

∑k
i=1

ai
a = 1

because of the way a is defined. By the induction hypothesis
∑k
i=1 aipi ∈ P ,

which gives us that q is a convex combination of two points since pk+1 ∈ P ,
the coefficients a and 1 − a are larger than or equal to zero and sums to one
a+ (1− a) = 1. The inductive step then holds by Definition 7.2 and 7.1.

85

	Abstract
	Acknowledgments
	List of tables
	List of figures
	Introduction
	Background and related work
	Thesis statement
	Computer specifications and source code
	Overview

	Preliminaries
	Duality and arrangements
	Levels
	Range space, -approximations and -nets
	Query depth
	Cuttings
	Geometric functions

	Query depth
	Simplicial query depth algorithms
	Halfspace query depth algorithms
	Testing and robustness
	Efficiency of calculating the query depth
	Approximating the query depth
	A query in the center
	A query near an outlier
	Approximations on average
	Ranking points in practice

	Conclusion

	Arrangements
	The bounded arrangement
	Details of the bounded arrangement
	The unbounded arrangement
	Details of the unbounded arrangement
	The combined arrangement
	Testing and robustness
	Verification of the space complexity
	Verification of the building time
	Conclusion

	Cuttings
	The naive cutting
	Details of the naive cutting
	The fixing cutting
	Details of the fixing cutting
	Testing and robustness
	Fine-tuning the cutting algorithms
	The naive cutting
	The fixing cutting

	Comparing the cutting algorithms
	Conclusion

	Halfspace median
	The naive algorithm
	The level algorithm
	Details of the level algorithm
	Testing and robustness
	Fine-tuning the level algorithm
	Verification of the running time
	Verification of the breakdown point
	Conclusion

	Conclusion
	Future work

	Bibliography
	Appendices
	Convex sets

