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Abstract

Modern computers are far more sophisticated than simple sequential programs can lead
one to believe; instructions are not executed sequentially and in constant time. In
particular, the memory of a modern computer is structured in a hierarchy of
increasingly slower, cheaper, and larger storage. Accessing words in the lower, faster
levels of this hierarchy can be done virtually immediately, but accessing the upper
levels may cause delays of millions of processor cycles.

Consequently, recent developments in algorithm design have had a focus on
developing algorithms that sought to minimize accesses to the higher levels of the
hierarchy. Much experimental work has been done showing that using these algorithms
can lead to higher performing algorithms. However, these algorithms are designed and
implemented with a very specific level in mind, making it infeasible to adapt them to
multiple levels or use them efficiently on different architectures.

To alleviate this, the notion of cache-oblivious algorithms was developed. The goal
of a cache-oblivious algorithm is to be optimal in the use of the memory hierarchy, but
without using specific knowledge of its structure. This automatically makes the
algorithm efficient on all levels of the hierarchy and on all implementations of such
hierarchies. The experimental work done with these types of algorithms remain sparse,
however.

In this thesis, we present a thorough theoretical and experimental analysis of known
optimal cache-oblivious sorting algorithms. We develop our own simpler variants and
present the first optimal sub-linear working space cache-oblivious sorting algorithm.
These algorithms are implemented and highly optimized to yield high performing
sorting algorithms. We then do a thorough performance investigation, comparing our
algorithms with popular alternatives.

This thesis is among the first to provide evidence that using cache-oblivious
algorithm designs can indeed yield superior performance. Indeed, our algorithms are
able to outperform popular sorting algorithms using cache-oblivious sorting algorithms.

We conclude that cache-oblivious techniques can be applied to yield significant
performance gains.
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Chapter 1

Introduction

Sorting algorithms are perhaps the most applied, well studied, and optimized of
algorithms in computer science; however, there is a notable lack of experimental results
when it comes to algorithms designed for the cache-oblivious model. This thesis is a
study of the feasibility of algorithms designed for the cache-oblivious model in the
context of sorting.

This chapter provides an overview of the relation between theoretical and
experimental algorithm analysis, and gives insight in, to what degree popular
theoretical tools can give accurate results, why and why not, and establishes newly
developed tools, that aim to mend the shortcomings of the more popular ones.

1.1  Algorithm Analysis

An important goal of algorithm design is efficiency. When an algorithm is said to be
efficient it often refers to the algorithm being fast in the sense that it requires no more
computational work to complete than necessary. There are at least three established
ways to argue that an algorithm is efficient [JohO1]: through experimental analysis,
worst-case analysis, or average-case analysis. The first being a practical approach and
the latter two being purely theoretical. Each has its own merits and shortcomings;
experimental analysis mimics real-world applications of the algorithm but there are
often many factors not relating to the algorithm that pollute the result. While worst-case
analysis provides very useful and insightful guaranties of the maximum amount of time
the algorithm takes to execute, it may not resemble typical execution times. Average-
case analysis attempts to capture typical execution times but provide no guaranties
other than the specific case of uniform input.

Experimental results are often gathered from benchmarks that consist of making a
computer work as hard as it can on hopefully representative problems, and simply
measure the time it took to solve them on a physical clock. The argument here is that if
the problems used in the benchmark are the same as or in some sense close to the ones
used in real life, the times measured will be close to the time it takes to run the
algorithm. If the execution time depends on one or more parameters, such as the input
size, the dependency may be extrapolated through usual statistical methods. However,
the result may be highly dependent on the hardware on which the benchmark is run.

On the other hand, theoretical analysis seeks to extract properties of the algorithm
that are independent of what hardware should be chosen to run it on. To that end
theoreticians use computational models to approximate the work done by the algorithm,
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often focusing on a single type of operation performed, e.g. floating-point operations or
comparisons. The result of the analysis is then correct for all computers that work like
the model. Furthermore, computational models allow for proof of lower bounds of the
time it will take to run any algorithm that solves a given problem. Along with a worst-
case analysis, this can lead to a proof that a particular algorithm is, short of a constant
factor, the best possible.

Designing a good model is a non-trivial balancing act; aside from having to
resemble the complex inner workings of a typical computer accurately, it also needs to
be sufficiently simple to make the analysis feasible. The model must be sufficiently
accurate; results obtained from a model that has nothing to do with an actual real-life
computer, have no practical relevance.

1.1.1 The Random-Access Machine Model

The most popular model for describing and analyzing algorithms has been the Random-
Access Machine (RAM) model [Sav98]. Its chief virtues are that it is very simple and
that it indeed seems to behave like typical computers. It states that elements can be
stored and retrieved from anywhere in the memory of the computer in unit time and all
operations on machine words take unit time regardless of the size of the word. This
allows us to analyze the runtime by simply counting the operations performed by the
algorithm. Combined with asymptotical analysis, this can lead to very precise
statements that are sufficient and relevant for most practical purposes.

Let us, for example, consider a simple algorithm, namely one that computes the
product of two matrices A and B. For simplicity, let A be a 1xn matrix and B be an nx500
matrix. A function written in C that computes the product could look like this:

Algorithm 1-1. void mprod(int n, const float *A, const float *B, float *u)

{
for(int i=0; i'=500; ++i)
{
uli] = 0.0f;
for(int j=0; j'=n; ++j)
uli] += A[j]*B[j*500+i];

}

The actual runtime of this function depends on how long it takes the computer to do
index calculations, comparisons, integer increments, floating-point additions and
multiplications, and many other factors. Some hardware is capable of performing
several floating-point additions and multiplication at once, which we would have to
consider also.

In an asymptotical analysis in the RAM model, however, we can simply say that for
sufficiently large n, the runtime is proportional to n. This is because all of the above-
mentioned operations take unit time, and that for large enough n, the time to set up the
loops are negligible. Now, if the model is accurate, the result should match that of any
experimental analysis. A benchmark that measures the average execution time of the
function over 30 invocations with n ranging from 50 to 540, run on a 175MHz MIPS
R10000 processor gave the result shown in Figure 1-1.
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Figure 1-1: Average execution time of matrix multiplication.

We can see that the analysis carried out in the RAM model seem to be in
correspondence with what is observed in practice on a MIPS R10000. If the model is
correct, the execution time is always linear and should thus continue along the trend
line. The power of a good theoretical understanding of an algorithm also lies in an
ability to predict the behavior of the algorithm under different circumstances, e.g.
change of input parameters. Figure 1-2 shows what happens when even larger matrices

are multiplied, the trend line being the same as in Figure 1-1.
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Figure 1-2: Average execution time of matrix multiplication for larger n.

It is clear that the analysis does not correctly describe and predict the real world
execution time. Either the analysis is incorrect the model does not reflect reality

adequately. It turns out the latter is the case.
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1.1.2 Storage Issues

Consider the statement that an analysis is correct for all sufficiently large n. If the
algorithm deals with at least » elements, these elements need to be stored somewhere.
However, a very real practical issue applies here, namely that storage space in
computers is limited. A statement, which applies for all sufficiently large problem sizes,
cannot be true in practice; the problem size cannot exceed the capacity of the computer.

Savage formalizes the memory of the RAM as having m = 2" storage locations each
containing a b-bit word, with ;. and b integers [Sav98], so we may revise the statement
to say, the RAM model is accurate for all sufficiently large », but no larger than 2". As
it became necessary to be able to work with larger sets of data, engineers developed
means for supporting this by using layers of storage. We will describe these ideas in the
next chapter. Suffice it to say, that it is the effect of these layers, we see influencing the
runtime in Figure 1-2. We may then say that 4 = 14 for Algorithm 1-1 and revise the
conclusion of the analysis accordingly, however that severely limits the power of the
analysis. Only if ¢ was large enough to cover all practical applications of our algorithm
could we get a relevant result from the analysis.

An algorithm that can store the problem in one layer of storage can be accurately
described by the RAM model. However, when an algorithm begins to make use of the
next layer of storage, the execution times start to deviate from what the model predicts.
One may argue that memory access still takes unit time for some suitable unit, but it
only does so, on exactly one level. If we were to make any guaranties about the
execution time, we would have to assume that a/l memory accesses might take the unit
of time it takes on the slowest level. Since this might involve operating a mechanical
arm to get to magnets on a rotating disk, the unit might be several millions times greater
than that of any other operation. The RAM model may be hap hazardously forced to
describe algorithms in this way, but doing so will never bring us any insights into
problems of dealing with a memory hierarchy so that we may alleviate them.

1.2 Sorting in the Memory Hierarchy

In light of the fact that the analysis of some algorithms in the RAM model may not
reflect their real-life performance it is not clear whether algorithms designed to be
efficient in the RAM model, are indeed so. Some algorithms may not exhibit the
behavior illustrated in Figure 1-2 or may do so, but to a lesser degree. In particular, we
are in this thesis interested in the behavior of sorting algorithms, since they are the
foundation upon which many other algorithms are built.

As will be described in Chapter 3, computational models have been developed
specifically to take into account, the structure of storage of modern computers. In
addition, sorting algorithms have been developed that are proven optimal in the sense
of these new models. The External Memory model [AV88], formalized the effects of
secondary storage, in a way that allows the algorithms to use the parameters that
describes the storage. These algorithms are known as cache-aware algorithms.
Conversely, cache-oblivious algorithms are analyzed in essentially an external memory
model, but are unaware of the storage parameters. They are optimal in the External
Memory model, while they are designed for the Random Access Memory model.
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Being cache-oblivious first seems to be a disadvantage; a cache-oblivious algorithm
can clearly not be more efficient than the optimum cache-aware algorithm. However,
cache-aware algorithms are in practice often designed with two specific levels of the
memory hierarchy in mind, making them suboptimal on any other level. They often
need to be implemented with specific knowledge of the parameters describing these
two levels — knowledge that is not in general available — leading to implementations
that are only optimal on those two levels. This is in a way similar to Algorithm 1-1
being limited to multiplying 1xn with nx500 matrices and not with general nxm matrices.

Cache-oblivious algorithms do not suffer from these shortcomings; they are optimal
on a level of the hierarchy, regardless of the parameters describing it, which
automatically makes them optimal on any level of the hierarchy. It gives them the
ability to adapt to changes in the environment, be it due to a memory upgrade, other
processes needing storage, or an upgrade to an operating system with a more aggressive
memory management policy. In addition, users of the algorithm sees just another
sorting algorithm; no need to tell it e.g. how much memory there will be in the
computer it is running on. Optimal RAM sorting algorithms enjoy these features too;
however, they are not in general optimal in the use of the memory hierarchy. On the
other hand, optimal cache-oblivious algorithms are in general more complex than their
optimal RAM counterparts are, and the higher memory performance may not make up
for the increased instruction count. With sorting in particular, very popular algorithms
exist with extremely low instruction count, namely quicksort, mergesort, and heapsort.
They are all cache-oblivious algorithms, albeit not optimal in the memory hierarchy.
Indeed, it turns out, that at least quicksort and mergesort come very close to also being
optimal in the use of memory.

So, is it feasible to employ cache-oblivious algorithms for sorting compared to
algorithms that have detailed knowledge of the memory system, and compared to
classic sorting algorithms designed for RAMs to have low instruction count, and
optimized and tuned over several decades?

1.3 Previous Work

It is widely accepted that quicksort [Hoa61] is the fastest comparison based sorting
algorithm on typical datasets. Sedgewick did a thorough analysis and suggested several
improvements to lower the instruction count, including using a final insertion sort pass,
instead of using quicksort all the way to the bottom of the recursion [Sed78]. More
recently, Musser presented a worst-case optimal variant of quicksort, dubbed introsort,
using heapsort as a fallback, in case quicksort is going quadratic [Mus97].

LaMarca and Ladner further improves on Sedgewicks quicksort to get better cache
performance by doing the insertion sort at the bottom of the recursion, while elements
are in cache [LL99]. In the same paper, they present memory optimizations for most all
popular RAM sorting algorithms, making them cache-aware, however. Most
implementations of the sorting algorithm std::sort in The Standard Template Library
(STL), a part of the C++ programming language standard, now incorporate
optimizations from [Sed78], [Mus97], and [LL99]. [XZKO00] improves on their result
by taking into account direct mapped caches and translation look-aside buffers.
[ACV'00] presents a cache-aware R-merge sort algorithm utilizing registers, that is
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superior to the mergesorts of [LL99], while [RROO] presents cache-aware
improvements of flashsort [Neu98]. All four articles back their claims with
experimental results and are able to show significant improvements. [XZKO00] and
[ACV'00] does an experimental comparison of their algorithms with those of [LL99],
however [LL99] sets out to only demonstrate improvements and thus compares
algorithms with reference implementations, not highly tuned ones typically found in
standard libraries.

TPIE [TPI02] and LEDA [NM95] with the LEDA-SM extension [CM99] are
frameworks for developing cache-aware optimal algorithms. Both provide optimal
sorting algorithms.

[FPLR99] concludes the introduction of the cache-oblivious model with
experimental results showing stable matrix transposition and matrix multiplication
using cache-oblivious algorithms. [LFNO2] compares cache-aware static search trees
with cache-oblivious trees while [BFR02] presents cache-oblivious dynamic search
trees and analyzes them experimentally with different layouts.

[0OS02] implements and studies cache-oblivious heaps. For that, they also
implement a cache-oblivious sorting algorithm; however, using that algorithm made
heap operations up to eight times slower, compared to using the optimized stl::sort,
hinting at poor performance of cache-oblivious sorting algorithms. Using stl:sort,
performance of the heaps was comparable to cache-aware implementations, though. No
other practical studies have been done on cache-oblivious sorting algorithms.

1.4 This Thesis

As discussed in section 1.2, the performance benefits of cache-oblivious algorithms are
not at all clear. The goal of this thesis is to investigate the feasibility of using cache-
oblivious algorithms for sorting. Some very well established algorithms, most notably
quicksort [Hoa61] has been fine-tuned, optimized [Sed78], and refined [Mus97] to
achieve very high performance. In order to establish conclusively the feasibility of
cache-oblivious sorting algorithms, we must expect to match that level of optimization
and fine-tuning.

Many of the above-mentioned uncertainties can only be clarified through thorough
experimental analysis. In this thesis, we use practical experimentation as an important
guideline for achieving optimal performance.

The focus is on general-purpose generic algorithms, because we seek to maximize
applicability. No algorithm will exploit the binary pattern of keys, nor will they use
parallel processing or parallel disks. In addition, there will be no programmatic
assumption on how elements are stored. The main competitor will be the gold standard
of the RAM model, quicksort, which is also comparison based, and memory tuned
variants of other algorithms.

1.4.1 Main Contributions

We provide a thorough analysis of a new and improved variant of funnelsort, one of
two known optimal cache-oblivious sorting algorithms. The new variant has a number
of free parameters and design choices, which are all implemented and explored to yield
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an optimized implementation, in the process providing important insights in how to
achieve maximal performance from cache-oblivious sorting algorithms.

We also exhibit a novel cache-oblivious sorting algorithm that requires only low-
order working space, the Low-order Working Space Cache-oblivious Sorting
Algorithm, LOWSCOSA. This is achieved through a space recycling mechanism in
merger data structures that can also be applied to optimal external memory sorting
algorithms such as multiway mergesort, to reduce their working space requirements.

All algorithms are implemented, optimized, and thoroughly studied through
experiments. Finally, feasibility is established through comparison with other popular
and fast sorting algorithms, answering the important question: can cache-oblivious
algorithms be used as a viable alternative to existing sorting algorithms?

1.4.2 Structure

Chapters 2 and 3 consider the realities of modern day computing from two different
perspectives. Chapter 2 presents important aspects of modern processors and the
memory hierarchy that are relevant in implementing efficient sorting algorithms, from a
hardware architectural point of view, while Chapter 3 presents the theoretical setting in
which we may understand how to deal with these new aspects. We formally present the
theoretical models designed to capture the effects of the memory hierarchy, along with
lower bound on sorting and algorithms that meet that bound. Both chapters provide a
basis for the rest of the thesis.

1

Figure 1-3. Structure of the thesis.

Chapter 4 introduces cache-oblivious sorting algorithms. It exhibits new important
simplifications to existing algorithms as well as a thorough analysis of these algorithms.
This chapter also exhibits the new optimal sub-linear working space cache-oblivious
sorting algorithm.

Chapter 5 is dedicated to the engineering of the algorithms discussed in Chapter 4.
Guided by Chapter 2, we develop, optimize, and fine-tune the algorithms to achieve
optimal sorting algorithms.
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Chapter 6 presents a comparative experimental study of the performance of the
developed algorithms and other popular and efficient algorithms. Finally, Chapter 7
provides the conclusion.

Figure 1-3 above illustrates which chapter builds on which; Chapter 3 builds only to
a small extend on information provided in Chapter 2, while Chapter 4 continues along
the theoretical track of Chapter 3. Chapter 5 builds to a large extend the on the contents
of Chapters 2 and 4.



Chapter 2
Modern Processor and Memory

Technology

Computation and the storage of data are inseparable concepts. In this chapter, we give a
background on how they have evolved and how storage and processors are
implemented in computers today. It presents aspects of modern computers that are
important for achieving high performance.

We will use knowledge of these aspects when we begin the engineering effort in
Chapter 5. We will use it both as guidelines for how to improve performance and to
help us understand why performance was or was not improved.

The information provided in this chapter has been gathered from [Tan99], [Tan01],
and [HP96] as well as from information available from hardware manufactures on the
World Wide Web, such as [HSU01], [AMDO02], and [MPS02]. There will be a lot of
detailed information, so the chapter ends in a brief summary of considerations
important when implementing high performance sorting algorithms.

2.1 Historical Background

Storage has been the limiting factor on computing, in a much stronger sense than actual
raw processing power. Up until the early 1970’s computers used magnetic core
memory, invented by Jay Forrester in 1949. It was slow, cumbersome, and expensive
and thus appeared in very limited quantities, usually no more than 4KB. Algorithms too
complex to run in such a limited environment could not be realized and programmers
were forced to use simpler and slower algorithms [Tan99, Sect. 6.1]. The solution was
to provide a secondary storage. Programmers needing more space for their programs
had to split them up manually in so-called overlays and explicitly program loading and
storing of these overlays between secondary storage and main memory. Needless to
say, much work was involved with the management of overlays.

The situation improved somewhat with the introduction of transistor-based dynamic
random-access memory (DRAM, invented at IBM in 1966) by Intel® Corp. and static
random-access memory (SRAM) by Fairchild Corp. both in 1970, however high price
of memory still made code size an issue. A trend thus arose that useful functionality
would be implemented directly in the CPU core; features should rather be implemented
in hardware than software. Designs like this, for example, provided single instructions
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capable of doing what small loops does in higher level languages, such as copying
strings.

Through the 1980’s storage of large programs in memory became a non-issue. The
complex instruction sets of the 1970’s were still used, but they required several
physically separate chips to implement (e.g. one for integer operations, one dedicated to
floating-point math, and one memory-controller). This complexity prompted a change
in design philosophy, toward moving features from hardware to software. The idea was
that much of the work done by the more complex instructions in hardware, at the time,
could be accomplished by several simpler instructions. The result was the Reduced
Instruction Set Computer (RISC). After the RISC term had been established the term
Complex Instruction Set Computer (CISC) was used rather pejoratively about
computers not following this philosophy.

2.2 Modern Processors

Today’s processors can rightfully be called neither RISC nor CISC; at the core, they are
in essence all RISC-like. However, whether the processor is based on RISC design or
not, have implications we may have to consider to this day. Though the RISC approach
is architecturally compelling, the most popular architecture used today is the IA32. The
key to its popularity is that it is backwards compatible with all its predecessors,
commonly named x86, the first of which was the 8086. The 8086, in turn, was
assembly-level compatible with its predecessor, the 8080, which was compatible with
Intel’s first “computer-on-chip”, the 4004. The 4004, 8080, and the 8086 was all
designed before the RISC philosophy became prevalent, so the successors of the 8086
are all, what we would call CISC. Today, the x86 processors are the only widely
employed CISC processors so they have become synonymous in some sense with the
CISC design philosophy. We will use the term RISC to denote processors with roots in
the RISC design philosophy, such as the MIPS R4000-R16000, the IBM/Motorola
PowerPC, the Digital/HP/Compaq Alpha, and the Sun Ultra Sparc and use the term
CISC about processors implementing the IA32.

Common for all processors, RISC or CISC, since the 4004 are the designs with
registers, arithmetic/logic unit (ALU) and clocks; each clock tick, operands stored in
registers are passed through the ALU, producing the result of some operation
performed on them that is then stored in a target register. The particular operation to be
performed is decided by the instructions that make up the executing program.

221 Instruction Pipelining

When looking for ways to enhance performance of a processor, an important
observation to make is that each instruction undergoes several steps during its
execution. In a typical lifecycle of an instruction it is first fetched from the part of
memory the code is stored, then decoded to determine which registers keep the needed
operands or if operands are in memory. The instruction is then executed, and finally
memory operations are completed and write-back of the result o