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Abstract

In this thesis various data-oblivious sorting algorithms are discussed with a
focus on practical and concise descriptions promoting ease of implementation.

Furthermore, general performance concerns of data-oblivious sorting algo-
rithms are explored, along with demonstrations of both SSE and CUDA imple-
mentation variants of major data-oblivious sorting algorithms. This is further
expanded by presenting a technique for automatic vectorization of general sort-
ing networks.

Finally, several data-oblivious sorting algorithms are compared experimen-
tally based on several parameters, many of which have a direct and measurable
effect on real-life performance of the aforementioned algorithms. Along with
these findings, we also present actual performance measurements for optimiza-
tion techniques applied to the data-oblivious sorting algorithms, including both
SSE, CUDA and OpenMP, alongside algorithm-specific optimizations.
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Resumé

I dette speciale diskuteres forskellige data-oblivious sorteringsalgoritmer, med
fokus på korte, praktiske beskrivelser for at fremme letheden ved deres imple-
mentation.

Derudover udforskes generelle performance-problemer for data-oblivious sor-
teringsalgoritmer sammen med præsentationer af SSE og CUDA implementa-
tioner af vigtige data-oblivious sorteringsalgoritmer. Dette udvides yderligere
med præsentationen af en teknik til automatisk vektorisering af generelle sor-
teringsnetværk.

Endeligt sammenlignes flere data-oblivious sorteringsalgoritmer baseret på
varierende parametre, hvoraf mange har en direkte og målbar effekt på den prak-
tiske udførselstid. Sammen med disse resultater præsenteres også målinger for
forskellige optimeringsteknikker for data-oblivious sorteringsalgoritmer inklusiv
SSE, CUDA og OpenMP, sammen med algoritmespecifikke optimeringer.

v



vi



Acknowledgements

I’d like to express my gratitude to my supervisor Gerth Stølting Brodal for his
guidance and helpful comments along the writing process.

I’d like to thank my fellow students Jan Knudsen and Roland Larsen, for
their patience whenever I would rant incessantly in the office.

A big thank you to Søren Sørensen for keeping the Wednesday homework
session alive.

Thank you to my parents, without their continued support I’d have lost my
mind long before even beginning my thesis.

Kris Vestergaard Ebbesen,
Aarhus, April 15, 2015.

vii



viii



Contents

Abstract iii

Resumé v

Acknowledgments vii

1 Introduction 3
1.1 Data-Oblivious Algorithms . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Motivations for Using Data-Oblivious Algorithms . . . . . 4
1.1.2 Data-Oblivious Sorting Algorithms . . . . . . . . . . . . . 5
1.1.3 Other Data-Oblivous Algorithms . . . . . . . . . . . . . . 8

2 Data-Oblivious Sorting Algorithms 11
2.1 Randomized Shellsort . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Region Comparison . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 The Main Algorithm . . . . . . . . . . . . . . . . . . . . . 12

2.2 Annealing Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 The Main Algorithm . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Annealing Schedule . . . . . . . . . . . . . . . . . . . . . 16

2.3 Bitonic Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Bitonic Merging . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 The Main Algorithm . . . . . . . . . . . . . . . . . . . . . 17

2.4 Odd-Even Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Odd-Even Merging . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 The Main Algorithm . . . . . . . . . . . . . . . . . . . . . 19

2.5 Shellsort Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Pratt’s Shellsort . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Shaker Sort . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Algorithms Recap . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Survey of Additional Algorithms . . . . . . . . . . . . . . . . . . 22

2.7.1 The AKS sorting network . . . . . . . . . . . . . . . . . . 23
2.7.2 The Θ(n log2 n) Sorting Networks . . . . . . . . . . . . . . 24

3 Implementing Data-Oblivious Sorting Algorithms 27
3.1 Algorithm-Specific Implementation Notes . . . . . . . . . . . . . 27

3.1.1 Randomized Shellsort . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Annealing Sort . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



3.1.3 Bitonic Sort . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 Odd-Even Mergesort . . . . . . . . . . . . . . . . . . . . . 29
3.1.5 Shellsort Variants . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 SIMD for Sorting Networks . . . . . . . . . . . . . . . . . . . . . 30
3.3 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Shellsort Variants . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Bitonic Sort . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Odd-Even Mergesort . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Randomized Shellsort . . . . . . . . . . . . . . . . . . . . 37

3.4 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Engineering a Branch-Free Compare-Exchange . . . . . . . . . . 39
3.7 The Recursive Sorting Network Layout for Modern Hardware . . 42

3.7.1 Merging Multiple Recursive Calls for Cache Efficiency . . 42

4 Pre-Processing SIMD Instructions 45
4.1 Encoding Sorting Networks . . . . . . . . . . . . . . . . . . . . . 45
4.2 Vectorizing Transformations . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Aligned Consecutive Vectorization . . . . . . . . . . . . . 46
4.2.2 Unaligned Consecutive Vectorization . . . . . . . . . . . . 47
4.2.3 Shuffled Access Vectorization . . . . . . . . . . . . . . . . 48
4.2.4 Vectorization Results . . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Compilers and Vectorization . . . . . . . . . . . . . . . . 50
4.2.6 Rearranging Sorting Networks for Depth-wise Ordering . 51

5 Experiments 55
5.1 Experimentation Setup and Details . . . . . . . . . . . . . . . . . 55
5.2 Performance of the newer Algorithms Compared to Classical

Sorting Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Running Time and Comparisons . . . . . . . . . . . . . . 57
5.2.2 Instructions and Cache Misses . . . . . . . . . . . . . . . 59
5.2.3 Branch Mispredictions . . . . . . . . . . . . . . . . . . . . 60
5.2.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . 61

5.3 Evaluating Shellsort Variants . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Running Time and Comparisons . . . . . . . . . . . . . . 62
5.3.2 Instructions and Cache Misses . . . . . . . . . . . . . . . 63
5.3.3 Branch Mispredictions . . . . . . . . . . . . . . . . . . . . 64
5.3.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . 64

5.4 Finding Good Constants for Annealing Sort . . . . . . . . . . . . 66
5.4.1 Sorting Effectiveness . . . . . . . . . . . . . . . . . . . . . 66
5.4.2 Running Time . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 Large n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . 69

5.5 Cache Performance of Odd-Even Merge Sort . . . . . . . . . . . . 69
5.5.1 Running Time and Cache Misses . . . . . . . . . . . . . . 70
5.5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . 71

5.6 Branch Behaviour of Compare-Exchange Variants . . . . . . . . . 72

x



5.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . 73

5.7 SIMD Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7.1 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 CUDA Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8.1 Improvements in Running Time . . . . . . . . . . . . . . . 78
5.8.2 Experiment Conclusion . . . . . . . . . . . . . . . . . . . 83

5.9 OpenMP Experiments . . . . . . . . . . . . . . . . . . . . . . . . 83
5.9.1 Running Time . . . . . . . . . . . . . . . . . . . . . . . . 83
5.9.2 Instructions, Cache Misses and Branch Mispredictions . . 84
5.9.3 Experiment Conclusions . . . . . . . . . . . . . . . . . . . 86

5.10 Experimental Results Summary . . . . . . . . . . . . . . . . . . . 87

6 Conclusion 89
6.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Primary Bibliography 90

Secondary Bibliography 93

Appendices 97

A Shared Memory for CUDA-Based Bitonic Sort 99

B Fixed Sizes for Bitonic Sort 101

C PRNG Effect on Performance 103

1



2



Chapter 1

Introduction

1.1 Data-Oblivious Algorithms

Data-oblivious algorithms belong to a certain class of algorithms whose method
of operation is almost entirely independent of the input data. Such algorithms
rely on suitably small atomic operations to modify the data, and in order to
maintain independence from the input data, the results of these operations are
not known by the algorithm.

This restriction naturally makes the development of such algorithms some-
what complicated, and outside of certain examples, most of the field is fairly
new. Despite their innate restrictions, this class of algorithms has seen inter-
esting developments in recent years, especially in data-oblivious sorting, where
new algorithms have recently been developed following a renewed interest in
the field. Along with these developments in data-oblivious sorting, several
algorithms that rely heavily on sorting have been adapted to work in a data-
oblivious way, due to the high demand for data-oblivious algorithms for dis-
tributed secure computations.

Data-oblivious algorithms generally fall into two distinct categories, those
that are based on circuits, and those that are randomized. The circuit-based
data-oblivious algorithms model their atomic oblivious operations as gates in a
network of data-transporting wires, and achieve data-obliviousness from the fact
that this network is fixed, and no change in the ordering of operations can occur
based on the content of the input. Randomized data-oblivious rely on applying
their atomic oblivious operations in a randomized manner that is completely
independent of the input, and use this fact to achieve data-obviousness, but
often cannot be guaranteed to succeed.

It should be noted that the size of the atomic oblivious component can vary
widely between applications. The components used in problems concerning
sorting will rarely be sufficient for graph algorithms, and vice versa. Choosing
the right size of the data-dependent components depends highly on the context
of their use. The atomic operations can vary from simple bitwise or arithmetic
operations, to putting two elements in the correct order, and might even consist
of sorting a chunk of the input.

Unfortunately, few experiments have been done on the actual performance
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of these data-oblivious algorithms, which leaves them in a fairly sad state when
it comes to implementation details. However, this thesis will provide real-world
measurements to alleviate this issue.

1.1.1 Motivations for Using Data-Oblivious Algorithms

Despite their complications, data-oblivious algorithms have several interesting
properties that make them an interesting field of work, and the current devel-
opment into distributed systems is especially driving a new wave of research in
this field.

The main motivations are as follows.

Integrated circuits

Since any deterministic data-oblivious algorithm can be modelled as a network,
using the atomic operation as a network component. If the atomic operation
is sufficiently simple, this allows for construction of an electrical circuit that
performs the operations of the algorithm. This implies that for any such al-
gorithm, an integrated component can be developed that, for a fixed input
size, will compute the exact same output as the original algorithm. The con-
stantly increasing demand for smart devices combined with the decreasing cost
of electronics make data-oblivious algorithms obvious targets for usage in such
components. This was a large part of the motivation for early research into
sorting networks, as exemplified in [A2] and [A16].

Secure multi-party computations

When developing systems based on the cooperation of several parties that may
not wish to disclose the content of their data, oblivious operations become
important. Secure multi-party computations often rely on modelling circuits for
any operation that is dependent on input data, which means that reducing the
size of the input-dependent components is critical. Luckily, secure multi-party
computations schemes already contain good solutions for generating shared
random numbers, which makes randomized data-oblivious algorithms a suitable
target for such calculations. In the literature we find this usage in papers such
as [B27] and [B31].

Outsourced private data

When storing private information in an outsourced database, one might wish to
hide the content stored from curious observers. Fortunately there exist excellent
protocols for encrypting such data, but if the algorithms operating on the data
changes its data access patterns based on the content of the data, an observer
might infer information about what we are trying to hide. Since the sequence
of operations of data-oblivious algorithms is only dependent on the input size,
we leak no information when performing important computations. This use of
data-oblivious algorithms forms the basis for [B34] and [B28].
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Parallel computing

In some cases, data-oblivious algorithms can be reduced to a circuit network
of low depth. Such networks make great targets for parallel computing. The
area of parallel computing is in rapid growth due to the difficulty in construct-
ing faster processors, while the amount of cores in most machines grow, and
oblivious algorithms make interesting targets for parallel computation. This
however requires special considerations in the algorithmic design, in order to
maintain low depth to keep synchronization costs at a minimum. Research
into the applications of parallel execution of data-oblivious are often focused on
GPU-assisted sorting algorithms, such as those presented in [A17] and [A24].

Operations on external data

Systems in which latency for data access is high can benefit heavily from data-
oblivious algorithms, as such algorithms can perform their entire workload as
a series of atomic operations. These operations can be computed based on the
size of the data, and shipped to the external controller, who will then be able
to perform these operations. This removes any need for waiting for external
latency, while still allowing for a great number of algorithms to be applied.
It is especially of note, that while the external party will need to perform a
great amount of operations, they will each be of low complexity. Examples of
this usage are hard to find, as most research, such as [B34] and [B28], focuses
on preventing information leakage through analysis of data access patterns.
It can be argued that sorting networks, and integrated circuits would also be
applicable to this use case.

1.1.2 Data-Oblivious Sorting Algorithms

Sorting algorithms are among the oldest researched topics of computer science,
and given the importance of efficient sorting algorithms in the design of a wide
variety of other algorithms, it is natural to apply great weight to the topic of
data-oblivious sorting algorithms.

In the case of data-oblivious sorting, the oblivious atomic operation that
is allowed on the input is the Compare-Exchange operation, which, given two
indices of the input, will compare the values of the input at the indices and
swap them if they are out of order.

The corresponding pseudo-code can be seen in Algorithm 1.
Note the simplicity of this operation is entirely in line with the data-oblivious

mentality of keeping data-dependent components as small as possible, and that
unless we explicitly look at the input, we are leaking no information about the
results of the procedure.

Using only this operation, a variety of sorting algorithms can be constructed.
As mentioned earlier, these algorithms can be divided into randomized and
deterministic algorithms.

Data-oblivious sorting is especially well suited for integrated circuits, due to
the ease of constructing sorting networks in hardware. Figure 1.1 shows a simple
1-bit Compare-Exchange circuit. Also, any N-bit Compare-Exchange operation
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Algorithm 1 Compare-Exchange
A: Array input of Compare-Exchange compatible elements
i: Index of first element of comparison
j: Index of second element of comparison

1: procedure Compare-Exchange(A, i, j)
2: Amin ← min(A[i], A[j])
3: Amax ← max(A[i], A[j])
4: A[min(i, j)]← Amin

5: A[max(i, j)]← Amax

6: end procedure

Figure 1.1: 1-bit hardware Compare-Exchange

can be constructed from an N-bit comparator and two 2N:N multiplexers, both
of which can be easily constructed, or bought ready-made for most small powers
of 2.

Sometimes it might be necessary to employ a reverse Compare-Exchange
operation, which will swap the elements such that they are in reverse sorted
order. Such an operation is obviously just as viable and data-independent as the
regular Compare-Exchange operation, but may sometimes give a larger degree
of freedom in the description of algorithms.

Deterministic Data-oblivious Sorting Algorithms

Deterministic data-oblivious sorting algorithms form a large group of algo-
rithms, though many of them are not known by their data-oblivious qualities,
but instead as sorting networks.

Figure 1.2: 4-wire sorting network, equivalent to Compare-Exchange for inputs
(0, 2), (1, 3), (0, 1), (2, 3), (1, 2)
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It is important to note that any fixed sorting network is a data-oblivious
sorting algorithm, and can be modelled using Compare-Exchange operations, by
performing such an operation for each comparison on the wires of the networks,
as seen in Figure1.2. Additionally, any deterministic sorting algorithm depend-
ing entirely on Compare-Exchange operations can be viewed as a sorting net-
work that runs a wire for each element of the input, and perform a comparison
between wire contents wherever the algorithm performs a Compare-Exchange
operation.

Due to their roots in sorting networks, data-oblivious sorting algorithms
have a long history, and many algorithms have been developed to perform as
sorting networks.

The historical algorithms of Bubble Sort [B26] and the original Shellsort [A18]
are both examples of simple algorithms that can easily be made data-oblivious
by removing any checks for sortedness. This leaves them at their Θ(n2) worst-
case running time, but makes them easily understandable as data-oblivious
algorithms.

Optimal sorting networks have been constructed, running in Θ(n log n) time.
The most famous of these networks is the AKS sorting network of [A1], which
is widely known, and form the basis of a great deal of research in the sorting
networks field. Worth mentioning is also Zig-Zag Sort [A9] which is especially
interesting due to its simplicity. These optimal sorting networks are all entirely
dependent on the usage of E-halvers; a construction that is complicated to
produce deterministically, and has a very high constant factor to their number
of comparison. The problem of constructing E-halvers makes these optimal
sorting networks of little use in practical implementations.

Pratt presents a more efficient variant of Shellsort in his thesis [A16], that
is not only Θ(n log2 n) in the amount of comparisons, but also easily translates
into a sorting network. The main idea of Pratt’s variant Shellsort, is using a
special Θ(log2 n)-length jump sequence, instead of the old-fashioned geometric
sequences that are often used in Shellsort.

A final interesting family of sorting networks are the algorithms stemming
from Batcher’s paper on sorting networks [A2], known as Bitonic Sort and
Odd-Even Mergesort, along with the Pairwise Sorting Network [A14]. These
sorting networks achieve sorting at Θ(n log2 n) comparisons, while maintain-
ing a Θ(log2 n) depth, and are simple enough to be implemented on standard
hardware, though their asymptotical complexity makes them somewhat lacking
when compared to non-oblivious sorting algorithms.

Randomized Data-Oblivious Sorting Algorithms

Randomized data-oblivious sorting algorithms are a fairly new development,
primarily introduced by [A7] and [A8], but an interesting one. Unfortunately,
the list of algorithms performing data-oblivious sorting using a randomized
sequence of Compare-Exchange is somewhat short. They are however useful
due to the fact that they are simple in their method of operations.

From [A8] we get Spin-the-bottle Sort and Annealing Sort. The former
of which is a Θ(n2 log n) data-oblivious sorting algorithm, of interest only in
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setting the stage for Annealing Sort, which will with very high probability,
sort any given input obliviously in Θ(n log n) time. It is worth noting that
the amount of comparisons performed by Annealing Sort has a high constant
coefficient if the values given in [A8] are used, but this could easily be the result
of overly pessimistic analysis, as is also the case of [A7].

A variant of Shellsort, called Shaker Sort is presented in [A11], and can be
implemented as a Θ(n log n) sorting network. Shaker Sort’s main deviance from
Shellsort is replacing the subsequence sorting with so-called h-shakes, which are
linear-complexity applications of Compare-Exchange operations up and down
the subsequence. Despite having certain bad input permutations, Shaker Sort
shows great potential in sorting randomized input data. By shuffling the input
sequence to break up inputs that have been carefully constructed as adver-
sary inputs, we can obtain a randomized variant of Shaker Sort, that will show
excellent performance characteristics, though this requires data-oblivious con-
structs beyond the Compare-Exchange operation, and will make the algorithm
unsuitable for construction as a pure sorting network.

Finally, from [A7] we get Randomized Shellsort, an algorithm that will sort
with very high probability in Θ(n log n) time by performing Compare-Exchange
among random matching pairings taken from regions of the input in regions of
sizes matching the subsequence jumps of the original Shellsort algorithm.

Sorting networks can be constructed from randomized data-oblivious al-
gorithms by recording the sequence of operations the algorithm would per-
form, and constructing the corresponding network. This will lead to net-
works that use the same amount of comparator components as the amount
of Compare-Exchange operations used in algorithm, but the network might not
adapt well in terms of depth.

Algorithms Tabular

Since the previous subsection includes a great amount of different algorithms,
we here present them in short tabular form, as a quick reference sheet. The
table in question is Table 1.1.

1.1.3 Other Data-Oblivous Algorithms

Most of the work done in the field of data-oblivious algorithms concerns itself
with the sorting of numbers. This stems from the existence of sorting networks
as an already established field, and the nature of sorting giving itself easily to
the concept of data obliviousness. There are however other classes of data-
oblivious algorithms, though they are scarce, and not always easily adaptable
to modern hardware.

In order to construct a probabilistic sorting network probabilistic data-
oblivious algorithms for merging and selection are presented in [B38]. Data-
oblivious merging is already made possible by [A2] in Θ(n log n) time, and this
running time is not asymptotically improved, but the paper shows that the
problem of data-oblivious selection is faster than any known solution to data-
oblivious sorting.
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Name Source Running Time Keywords
Bubble Sort [B26] Θ(n2) Simple
Shellsort [A18] varies Customizable, Well-researched

AKS Sorting Network [A1] Θ(n log n) Optimal, Theoretical, Depth-optimal
Zig-Zag Sort [A9] Θ(n log n) Optimal

Pratt’s Shellsort [A16] Θ(n log2 n) Shellsort-based
Bitonic Sort [A2] Θ(n log2 n) Well-known, Practical

Odd-Even Mergesort [A2] Θ(n log2 n) Merge Sort
Pairwise Sorting Network [A14] Θ(n log2 n) Simple

Spin-the-bottle Sort [A8] Θ(n2 log n) Randomized, Unused
Annealing Sort [A8] Θ(n log n) Randomized, Impractical
Shaker Sort [A11] Θ(n log n) Shellsort-Based, Possible Randomization

Randomized Shellsort [A7] Θ(n log n) Randomized, Shellsort-based

Table 1.1: Table of algorithms

Selection, along with compaction and sorting, is also explored in [B34] using
the external memory model, as a means to provide a solution for such problems,
when one must perform privacy-preserving computations on externally located
data. Note that for data-oblivious algorithms in the external memory model,
any computations are allowed in internal memory, and only the accesses to
external memory needs to be kept oblivious.

A great number of set operations are shown to be computable in an oblivious
and privacy-preserving manner in [B27]. These algorithms can become the
fundamental building blocks for later algorithms, and are therefore of great
significance to the field of data-oblivious algorithms.

Several crucial graph algorithms, namely breath-first search, single-source
shortest distance, maximum flow and minimum spanning tree, have efficient
data-oblivious algorithms for dense graphs presented in [B28]. These are espe-
cially interesting, as they venture far from the well-known area of sorting, and
can be useful for doing multi-party network routing computations, where one
might wish to keep the algorithm oblivious due to privacy concerns.

A number of geometric problems, convex hull, quadtree construction, closest
pair and all-nearest-neighbours have data-oblivious solutions presented in [B31].
These serve as useful building blocks for applications that are privacy-preserving,
distributed and location-aware.

Finally, it should be noted that the existence of the concept Oblivious RAM
is often mentioned in the data-oblivious literature. Oblivious RAM is an in-
genious concept originating from [B33] that allows the execution of arbitrary
algorithms in a manner that prevents an adversary from obtaining useful in-
formation about the input from the memory accesses of the algorithm. This
is especially useful for privacy-preserving computations, but imposes a non-
constant overhead on the complexity of the program, which means that the
development of optimal data-oblivious algorithms is still relevant.
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Chapter 2

Data-Oblivious Sorting
Algorithms

Throughout this thesis, several data-oblivious sorting algorithms will be dis-
cussed, and their properties relating to efficiency and optimization techniques
will be studied. Before we can continue on to this work, we must however en-
sure that we have established the structure of these algorithms, and most of
this chapter will devote itself to brief descriptions of the individual algorithms
that form the basis of any further work being done.

Let us begin by immediately describing these algorithms.

2.1 Randomized Shellsort

Randomized Shellsort [A7] is a randomized data-oblivious sorting algorithm no-
table for its ability to sort data with very high probability, using only Θ(n log n)
comparisons.

The algorithm itself is fairly simplistic, consisting entirely of applications
of a special region comparison function, whose method of operation will be de-
scribed shortly. This can then optionally be followed by clean-up phase entirely
constructed from already known data-oblivious sorting algorithms.

It is especially important to note that the size and location of regions being
compared will be entirely dependent on the size of the data, and that matchings
between elements is determined randomly with no knowledge of the input.

The analysis showing the low failure rate of the algorithm is unfortunately
rather lengthy, and somewhat complex, but can be found in [A7].

2.1.1 Region Comparison

The comparison between regions is done by computing a random matching
between elements of the two regions, and performing a Compare-Exchange op-
eration between each pair of matched indices. This procedure will be repeated
c times to perform a full comparison of regions. [A7] shows that when c ≥ 4 the
full region comparison will have properties closely related to those of E-halvers.

The pseudo-code for the region comparison is shown in Algorithm 2.
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For a graphical representation of the region comparison, see Figure 2.1.

Algorithm 2 Region Compare
A: Array input of Compare-Exchange compatible elements
i: Index of first region
j: Index of second region
size: Size of regions to compare

1: procedure RegionCompare(A, i, j, size)
2: for 1 . . . c do . c is a predetermined constant
3: matching ← shuffle([0 . . . size− 1])
4: for k = 0 . . . size− 1 do
5: Compare-Exchange(A, i + k, j + matching[k])
6: end for
7: end for
8: end procedure

2.1.2 The Main Algorithm

Having constructed the region comparison operation, we move on to the main
algorithm.

The important part of Randomized Shellsort consist of applying the region
comparison on the input data in ever decreasing region sizes, starting at n/2,
and halving in size until they reach 1. Note that there will be only log(n) such
region sizes, and that n is assumed to be a non-trivial power of 2.

For each region size, six different runs through the data are performed.
These runs fall into two distinct groups, a shaker phase and a brick phase.

In the shaker phase we run through the regions, comparing them with the
next region in ascending order, and then do the same for descending order. This
resembles the variant of Shellsort called Shaker Sort [A11], and is intended to
quickly move misplaced elements to the correct end of the input.

The brick phase will first run through the regions comparing them to the
regions 3 places further up, then a run comparing 2 places up, and then finally
it will perform runs comparing first the even regions with their next neighbour,
and then the odd regions with their next neighbour. This somewhat resembles
the Brick Sort mentioned in [B42], and it is important for the analysis that this
sequence of comparisons creates a complete 4-tournament of any 4 adjacent
regions. This phase serves the purpose of moving elements short distances
among nearby regions of the input.

Finally, following the main part of the algorithm, a clean-up step is taken
to move a polylogarithmic amount of stray elements into place. [A7] notes that
this can be done by repeated applications of Pratt’s variant of Shellsort [A16],
but states that this final clean-up step is most likely needed only as an artefact
from the analysis of the sorting probability.

It is fairly easy to see that if we can perform the region comparison in linear
time, then the main algorithm will perform Θ(n log n) operations. Using the
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Figure 2.1: Region Compare with c = 1 of size 8 on 16 elements of data. i and
j are the first and last halves of the shown arrays respectively. Note that the
Before region shows the matching with the same array.
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region comparison of Section 2.1.1, we can easily guarantee linear time region
comparisons, leading to the desired running time.

Given this sequence of region comparisons, and the RegionCompare pro-
cedure from Algorith 2, it is clearly seen that the Randomized Shellsort will
perform at most 5cn log n comparisons in addition to the clean-up phase, which
is low compared to the huge constants of [A1], if c is kept at a reasonable level.

The exact structure of the algorithm is best described in pseudo-code, as
seen in Algorithm 3.

Algorithm 3 Randomized Shellsort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure RandomizedShellsort(A, n)
2: for jump = n/2, n/4, n/8 . . . 1 do
3: for i = 0 . . . n/jump− 2 do . Shaker pass part 1
4: RegionCompare(A, i · jump, (i + 1) · jump, jump)
5: end for
6: for i = n/jump− 1 . . . 1 do . Shaker pass part 2
7: RegionCompare(A, (i− 1) · jump, i · jump, jump)
8: end for
9: for i = 0 . . . n/jump− 4 do . Brick pass part 1

10: RegionCompare(A, i · jump, (i + 3) · jump, jump)
11: end for
12: for i = 0 . . . n/jump− 3 do . Brick pass part 2
13: RegionCompare(A, i · jump, (i + 2) · jump, jump)
14: end for
15: for i = 0, 2, 4 . . . n/jump− 2 do . Brick pass part 3
16: RegionCompare(A, i · jump, (i + 1) · jump, jump)
17: end for
18: for i = 1, 3, 5 . . . n/jump− 3 do . Brick pass part 4
19: RegionCompare(A, i · jump, (i + 1) · jump, jump)
20: end for
21: end for
22: Clean− Up(A)
23: end procedure

2.2 Annealing Sort

Annealing Sort [A8], like Randomized Shellsort, is a randomized data-oblivious
sorting algorithm that will sort data with very high probability in Θ(n log n)
Compare-Exchange operations.

Annealing Sort borrows its name from Simulated Annealing [B35], the al-
gorithmic paradigm that inspired the algorithm, but since sorting is not an
optimization problem, the basic pattern of Simulated Annealing is only slightly
related to the actual operations of the algorithm.
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When considering this algorithm, keep in mind that the algorithm performs
a random pattern of Compare-Exchange operations based entirely on the size
of the input, which qualifies it as a randomized data-oblivious algorithm.

2.2.1 The Main Algorithm

Annealing Sort relies on a sequence of temperatures and repetitions, referred
to as the annealing schedule. This schedule is entirely dependent on input size,
and picking a good sequence for this schedule is crucial to both the performance
and correctness of the algorithm.

For each entry in the annealing schedule, consisting of a temperature t and
a repetition count r, the algorithm will perform a run through the input data,
performing r Compare-Exchange operations between the current index, and
elements at most t further up the input. This is followed by a similar run,
going backwards, comparing elements to those further down the input.

In loose terms, this is similar to the shaker phases of Randomized Shellsort,
and the analysis of the algorithm closely follows that of [A7], but instead of hav-
ing fixed borders betweens regions, they slide up and down the input following
the current element.

Note that the algorithm will perform at most 2n ·
∑

ri Compare-Exchange
operations, where ri specifies the number of repetitions in the entry i of the
annealing sequence.

The algorithm in described using pseudo-code in Algortihm 4. If nothing
else, the algorithm is beautifully simple, once the annealing sequence is known.

Algorithm 4 Annealing Sort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure AnnealingSort(A, n)
2: for (t, r) in Annealing Sequence do
3: for i = 0 . . . n− 2 do
4: for j = 1 . . . r do
5: Compare-Exchange(A, i, random-choice([i + 1 : min(i + t, n−

1)]))
6: end for
7: end for
8: for i = n− 1 . . . 1 do
9: for j = 1 . . . r do

10: Compare-Exchange(A, random-choice([max(i−t, 0) : i−1]), i)
11: end for
12: end for
13: end for
14: end procedure
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2.2.2 Annealing Schedule

As mentioned in Section 2.2.1, finding the right Annealing Schedule plays a big
role in Annealing Sort. Luckily [A8] shows how to construct a 3-part schedule
that will both keep the number of Compare-Exchange operations at Θ(n log n),
and make the algorithm sort with very high probability.

The annealing schedule is as follows;

Phase one: [(n/2, c), (n/2, c), (n/4, c), (n/4, c) . . . (q log6 n, c), (q log6 n, c)] for some
q ≥ 1 and c > 1

Phase two: [(q log6 n, r), ((q/2) log6 n, r), ((q/4) log6 n, r) . . . (g log n, r)] using q
from phase one, g ≥ 1, and r being Θ( log n

log log n)

Phase three: [(1, 1), (1, 1) . . . (1, 1)] of length g log n

Concatenating these three sequences, we get the desired annealing schedule.
In the analysis, it is hinted that we want c ≥ 9 and g = 64e2, but little effort

is done in determining q and a suitable factor for r. Though these constant
factors seem impractically large, they may easily be the result of an overly
pessimistic analysis, and an experimental evaluation of the proper scale of these
factors is presented in Section 5.4.

When using this annealing schedule, the total number of Compare-Exchange
operations per n will be

2c max(0, log 2n− log(q log6 n)) + r max(0, log(q log6 n)− log(g log n)) + g log n

Since we have c, q, g all constants bigger than 0, and r = Θ( log n
log log n) this

gives us:

2c max(0, log 2n− log(q log6 n))+r max(0, log(q log6 n)− log(g log n))+g log n

≤ 2c log 2n + r log(q log6 n) + g log n = Θ(log n)

This gives the algorithm a total running time of Θ(n log n).

2.3 Bitonic Sort

Bitonic Sort is one of the earliest sorting networks, and was presented in [A2].
The algorithm is based on the concept of bitonic sequences, which is a sequence
constructed as the juxtaposition of an ascending and a descending sequence,
and the operation of the algorithm is based on constructing and merging bitonic
sequences.

The algorithm suffers from a running time of Θ(n log2 n), but it works well
in practice due to having small constants, and being suitable for compile-time
optimisation.
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2.3.1 Bitonic Merging

The one basic idea behind Bitonic Sort, is that any bitonic sequence can be
sorted with relative ease by a sorting network.

The main part of this sorting consist of a bitonic split∗, which given a bitonic
sequence A of length N creates

HI = {max(a1, an/2+1), max(a2, an/2+2), max(a3, an/2+3) . . . max(an/2, an)}

LO = {min(a1, an/2+1), min(a2, an/2+2), min(a3, an/2+3) . . . min(an/2, an)}
(2.1)

where HI and LO are bitonic sequences of length N/2, and any element in HI
is bigger than all elements LO. These properties of HI and LO are determined
in [A2].

Since the bitonic split moves the elements to a low and a high half, and both
halves are still bitonic sequences, we can sort a bitonic sequence by recursively
applying bitonic split. The recursive operation is described in Algorithm 5

Algorithm 5 Bitonic Merge
A: Bitonic array input of Compare-Exchange compatible elements
n: Size of A

1: procedure BitonicMerge(A, n)
2: if n > 1 then
3: for i = 0 . . . n/2− 1 do
4: Compare-Exchange(A, i, i + n/2)
5: end for
6: BitonicMerge(A[0 . . . n/2− 1], n/2)
7: BitonicMerge(A[n/2 . . . n− 1], n/2)
8: end if
9: end procedure

2.3.2 The Main Algorithm

Given the bitonic merge operation, we can construct a sorting algorithm by
exploiting the fact that the concatenation of an ascending and a descending
sequence will be a bitonic sequence.

Theorem 1. If we can sort bitonic sequences, then we can sort any sequence
of length 2k

∗ The bitonic split is also referred to as the bitonic merge in most of this thesis, despite not
actually merging sequences. The merge misnomer originates in the structure of the algorithm,
where the bitonic split takes the role of a merge in a classic mergesort. The bitonic merge
merge may also be seen as merging an ascending and a descending sequence into a single
sorted sequence.
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Proof. Simple induction proof:
Base case - 20: Any sequence of length 20 = 1 is already sorted.
Inductive case - 2k: Let A be the first 2k−1 elements, and B the last 2k−1

elements. Sort A and B, reverse A, let C = A+B. C is now a bitonic sequence
containing the original elements, and since we can sort bitonic sequences using
Algorithm 5, we can sort the original elements.

This gives us a fairly simple way of sorting using the bitonic merging pro-
cedure, as shown in Algorithm 6.

Algorithm 6 Bitonic Sort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure BitonicSort(A, n)
2: if n > 1 then
3: BitonicSort(A[0 . . . n/2− 1], n/2)
4: BitonicSort(A[n/2 . . . n− 1], n/2)
5: Reverse(A[0 . . . n/2− 1])
6: BitonicMerge(A, n)
7: end if
8: end procedure

The Θ(n log2 n) total amount of Compare-Exchange operations performed
by the algorithm follows from the Master Theorem and exercise 4.6-2 of [B30].

2.4 Odd-Even Mergesort

Odd-Even Mergesort is the sister algorithm of Bitonic Sort, and also comes
from [A2]. The idea of requiring bitonic sequences for merging in Bitonic Sort
seems unintuitive, and Odd-Even Mergesort does away with that requirement,
at the expense of slightly more complicated merging operation. Like Bitonic
Sort, Odd-Even Mergesort performs Θ(n log2 n) comparisons, but the constant
factors involved are slightly lower.

2.4.1 Odd-Even Merging

Given two sorted sequences, it is possible to merge them by dividing them
into their odd and even parts, and then combining them into an interleaved
sequence.

The intuition of this merging scheme follows from the following observation:
Let A and B be sorted sequences of length N .
Let C be the sorted merge of A and B.

C might look something like this:

C = a0, b0, b1, b2, a1, a2, b3 . . .

or
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C = b0, b1, a0, b2, a1, b3, b4 . . .

Now, imagine a grouping of C as follows;

C = a0, (b0, b1), (b2, a1), (a2, b3) . . .

or

C = b0, (b1, a0), (b2, a1), (b3, b4) . . .

What we see here, is that every pair of parenthesized numbers is made up of
one odd-indexed number and one even-indexed. In fact [A2] shows that every
merged sequence of two sorted sequences will follow this rule, and we can use
this to construct C in the following way.

Divide A and B into odd and even indexes, and merge them recursively.
Pick c0 = even0, pick c1 = min(odd0, even1), c2 = max(odd0, even1), c3 =
min(odd1, even2), c4 = max(odd1, even2) . . . and so on. In case there is only
one element in each subsequence, just perform a single Compare-Exchange.
This gives us the following algorithm, shown as pseudo-code in Algorithm 7.

Algorithm 7 Odd-Even Merge
A: Array input of Compare-Exchange compatible elements
B: Array input of Compare-Exchange compatible elements
n: Size of A and B

1: procedure OddEvenMerge(A, B, n)
2: if n = 1 then
3: C ← [A[0], B[0]]
4: Compare− Exchange(C, 0, 1)
5: else
6: odd← OddEvenMerge(odd(A), odd(B), n/2)
7: even← OddEvenMerge(even(A), even(B), n/2)
8: for i = 0 . . . n/2− 1 do
9: C[2i]← even[i]

10: C[2i + 1]← odd[i]
11: end for
12: for i = 0 . . . n/2− 2 do
13: Compare-Exchange(C, 2i + 1, 2i + 2)
14: end for
15: end if
16: end procedure

2.4.2 The Main Algorithm

Given the Odd-Even merge construction, we can perform a straight-forward
merge sort.

The interesting part of Odd-Even Mergesort is perhaps that it is possible
to construct a merging network that has so few prerequisites, which leads to

19



an exceptionally simple algorithm. Unfortunately, the price of having a simple
merge sort, is a more complex merge step.

The exact procedure for merge sorting using Odd-Even Merging is shown
as pseudo-code in Algorithm 8

Algorithm 8 Odd-Even Mergesort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure OddEvenMergeSort(A, n)
2: if n > 1 then
3: OddEvenMergeSort(A[0 . . . n/2− 1], n/2)
4: OddEvenMergeSort(A[n/2 . . . n− 1], n/2)
5: OddEvenMerge(A[0 . . . n/2− 1], A[n/2 . . . n− 1], n)
6: end if
7: end procedure

The running time of Odd-Even Mergesort, like Bitonic Sort follows from the
Master Theorem and exercise 4.6-2 of [B30].

2.5 Shellsort Variants

Shellsort, as described by [A18], has been around for a long time, and a great
deal of research has been dedicated to studying its performance. Shellsort works
by sorting subsequences consisting of every k’th element using Insertion Sort,
for given values of k†. As a sorting network, we can replace the internal Insertion
Sort with Bubble Sort to construct an Θ(n2) data-oblivious sorting algorithm,
though doing so is thoroughly unimpressive, as the final step consists of simply
running Bubble Sort on the entire input.

There are however data-oblivious variants of Shellsort that perform well,
both in theory and practice, and no study of data-oblivious algorithms would
be complete without including at least a few of them.

2.5.1 Pratt’s Shellsort

Pratt’s PhD thesis [A16] not only shows that the most common variants of
Shellsort must use Ω(n3/2) comparisons in the worst case, but also manages to
produce a special sequence for Shellsort most commonly known as the Pratt
Sequence.

The Pratt sequence for Shellsort consists of all the numbers on the form
2i3j < n, in a specially constructed order. This sequence has length Θ(log2 n),
which in itself is long for a Shellsort sequence, but has a desirable property of
bounding the complexity of the internal subsequence sorting to a linear amount
of comparisons, which can be used to produce an Θ(n log2 n) data-oblivious
algorithm.
† The original Shellsort uses n/2, n/4, n/8 . . . 1, but many different sequences of k can be

used.

20



When adapting the Pratt sequence and the reduced inner sort directly, we
can construct a simple algorithm that constructs the sequence, and performs
the necessary comparisons at the same time, as described in the pseudo-code
of Algorithm 9.

Algorithm 9 Pratt’s Shellsort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure PrattSort(A, n)
2: for i = n/2, n/4, n/8 . . . 1 do
3: j ← i
4: do
5: for k = 0 . . . n− j − 1 do
6: Compare− Exchange(A, k, k + j)
7: end for
8: j ← 3j/2
9: whilej%3 == 0 and j < n

10: end for
11: end procedure

2.5.2 Shaker Sort

Shaker Sort‡, as described in [A11] is another interesting variation of Shell-
sort. Shaker Sort replaces the subsequence sorting with a single upwards and
downwards Compare-Exchange scan, called a Shaker Pass. There appears to be
little analytical work done in determining the failure rate of Shaker Sort, but
it is known that certain sequences of length Θ(log n) seem effective at sorting
random data.

The algorithm can be described as seen in Algorithm 10.
It should be noted, that [A22] shows that certain input sequences will make

Shaker Sort fail unless the amount of 1-shakes is linear in the size of the input.
These sequences do not appear to be stable under shuffling, which could solve
this problem, and it is also noted that for sorting random input, Shaker Sort
still seems to have a negligible failure rate.

‡ A certain Bubble Sort variant also goes by the name of (Cocktail) Shaker Short. Any
reference to Shaker Sort in this thesis is to the Shellsort variant of [A11].
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Algorithm 10 Shaker Sort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure ShakerSort(A, n)
2: Shuffle(A) . Shuffle is optional, but advised for general inputs.
3: seq ← ShakerSequence(n)
4: for all s in seq do
5: for i = 0 . . . n− s− 1 do
6: Compare− Exchange(A, i, i + s)
7: end for
8: for i = n− 1 . . . s do
9: Compare− Exchange(A, i− s, i)

10: end for
11: end for
12: end procedure

2.6 Algorithms Recap

Name Running Time Failure Rate Parallelism
Randomized Shellsort Θ(n log n) 1/nb, b ≥ 1 Some

Annealing Sort Θ(n log n) 1/nb, b ≥ 1 Minor
Bitonic Sort Θ(n log2 n) 0 Highest

Odd-Even Mergesort Θ(n log2 n) 0 High/Highest
Pratt’s Shellsort Θ(n log2 n) 0 High

Shaker Sort Θ(n log n) ? § High

Table 2.1: Overview of used algorithms

Due to the high number of algorithms present in this thesis, we provide a
table listing the different algorithms used in the experiments, and their prop-
erties.

One thing that is painfully obvious from Table 2.1 is the lack of an O(n log n)
algorithm with 0 failure rate. Such algorithms do exist, as explained in the
introduction of this thesis, but are both impractical to implement, and have
horrible constant factors involved in their running times.

2.7 Survey of Additional Algorithms

Despite the great number of algorithms presented in the previous sections of
this chapter, there are still many data-oblivious sorting algorithms that have not
yet been described. The reason these algorithms have been omitted until now,
is their exclusion from the already crowded experiments and implementation
§Failure rate is dependent on input permutations, and mostly verified experimentally, but

low in practice with random input data.
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chapters. In short, there are already too many algorithms to keep track of, and
some algorithms simply aren’t suited for the real world.

Many of these algorithms are still interesting from a theoretical point of
view, but often fail to present a proper case for real-world usage. Since these
algorithms are still interesting for a general understanding of the field of sorting
networks, this section will provide a short survey on the work that has been
done in their design and analysis.

2.7.1 The AKS sorting network

The AKS sorting network of [A1] is perhaps one of the most famous sorting
networks ever presented. This network remarks itself by being the first sort-
ing network that is asymptotically optimal in the amount of comparisons and
depth, but also has reputation for having enormous constant factors and being
horrendously difficult to implement.

The basic construction of the AKS sorting network relies on partitioning
the input into halves, quarters, eights and so forth, arranging these partitions
as a binary tree, and applying a constant-depth network called an E-nearsorter
on the triplets formed by a node and its children. This is done for even and odd
nodes one after another, a logarithmic number of times, giving the logarithmic
depth to the network. As these operations proceed, the indices that any node
is responsible for filter down through the tree, until finally all elements have
arrived at 1-element leaf. A much more thorough description is given by [A1],
but little time is devoted to the practicalities of any actual construction of the
network, as the authors wish to focus primarily on theory.

As the interest in optimal sorting networks continues, we see refinements
of the AKS sorting network emerge. One of the most well-known of these is
the sorting network of [B41], known of just as the Paterson sorting network.
The Paterson sorting network follows many of the same ideas as the AKS sort-
ing network, but replaces the E-nearsorters with E-separators, a structure that
requires fewer comparisons by focusing more explicitly on moving extreme el-
ements to the ends of the input. The new structure also simplifies the de-
scription of the destination for wires throughout the network, bringing it closer
to an implementable construction. Given the more rigorous description of the
network, [B41] manages to calculate the amount of comparison performed, and
place the depth of the network at about 6100 log n.

A variation of the Paterson sorting network is further explored in [B43],
leading to a simple description of the network using a slightly less precise de-
scription of separators. Unfortunately the paper does not go into detail in
attempting to keep the constant factors of the network small, and the constant
factors of the depth of the network does not seem to be as firmly defined as
those of the Paterson network..

Further improvements of the AKS sorting network are presented in [B29],
where the tree structure of the AKS sorting network is expanded to support a
much larger branching factor, and useful multi-way separators are constructed
from smaller sorting networks of fixed size. This result puts the depth of the
network at 1830 log n − 58657, requiring n ≥ 278. This depth is impressive in
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the world of optimal sorting networks, but unfortunately still not competitive
with simpler networks for any reasonable n.

The networks based on AKS are all fairly similar, and have few competi-
tors. There is however at least one other sorting network providing optimal
size, though not depth. This new network, called Zig-zag Sort is presented
in [A9], and shows a new approach to optimal sorting networks, as it focuses
more on size and simplicity than depth. Accepting a deep network with fewer
comparisons allows for a network that is easy to construct, and has a much bet-
ter constant factor in practice. A big part of the improvement in the amount
of comparisons comes from using E-halvers with a much lower precision than
those of the previous networks, as the size and depth of such networks grows
quickly as one requires higher precision.

This concludes the observations made on the AKS sorting network and its
variants, and we now move on to less efficient networks.

2.7.2 The Θ(n log2 n) Sorting Networks

Numerous ingenious sorting networks have been developed throughout research
history, many of them achieving a Θ(n log2 n) bound on their number of com-
parisons, but due to a lack of space, only a few of them have been included
in this thesis. While Bitonic Sort, Odd-Even Mergesort and Pratt’s Shellsort
are included in the experiment for their historical significance, practical perfor-
mance and structural simplicity, they are far from the only networks to achieve
some, or all, of these properties, and in this section a few other contenders will
be discussed.

The Pairwise sorting network, described in [A14], remarks itself by being
exactly the same size and depth as the Odd-Even Mergesort network. This
may not seem impressive at first, but at the time of publication, it was claimed
to be the first network to achieve this size in 20 years. The network is fairly
simple, and starts by partitioning the input into sorted pairs, lexicographically
sorting these pairs by recursion, and then merging the pairs into sorted order.
The description of the network relies heavily on the 0-1 principle of [B36], but
is otherwise exceptionally simple, and the resulting sorting network is easily
constructed in practice.

As mentioned, there has not been many successful attempts at construct-
ing a deterministic sorting network having a lower complexity than Odd-Even
Mergesort, while still being constructable in practice, though it is actually possi-
ble. An interesting generalisation of the Odd-Even Mergesort network is shown
in [A21], which can reduce the number of comparisons performed by a Θ(nlogn)
amount, though this is only a minor gain since the algorithm retains the same
constant factor for for it’s nlog2n term. What is most notable about the gen-
eralized network presented in [A21] is the construction of merging networks
for more than two input streams, leading to a multi-way merge sort, which
distinguished the network from its competitors.

The Periodic Balanced Sorting Network of [A5] utilizes a single block of
Θ(log n) depth to achieve sorting in Θ(n log2 n) time by log n applications of
the aforementioned block. Using this construction they create a sorting net-
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work that, if constructed by exact duplicates of the same block, has a higher
constant factor than competing networks. By skipping certain phases of the
basic building block of the network the size of the network is brought close to
that of Bitonic Sort. The repeatable nature of Periodic Sort is what makes it in-
teresting, since it allows for an efficient hardware implementation, where data
is repeatedly cycled through a single hardware component, and additionally
allows for faulty comparators by increasing the amount of cycles.

Finally, if the base element of the sorting network is not the standard net-
work comparators, but instead small k-sorters, [A15] shows how to construct an
Θ(n log2 n) sorting network. The algorithm presented in the paper is a slight
variation of Columnsort from [B37] to recursively construct merging network
from k-sorters, which is utilizing in sorting the entirety of the input data.
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Chapter 3

Implementing Data-Oblivious
Sorting Algorithms

Having given high-level descriptions of the major algorithms involved in this
thesis, let us look at the practicalities of implementing such algorithms.

Special consideration should be given to the optimization techniques used
for general performance increases across several algorithms, though many of the
algorithms have individual peculiarities that are important for efficient imple-
mentations.

3.1 Algorithm-Specific Implementation Notes

3.1.1 Randomized Shellsort

The analysis for Randomized Shellsort given in [A7] requires c ≥ 4, and a
clean-up phase to remove a small amount of straggling elements. It is however
mentioned in the paper, that both the clean-up phase, and the high value of the
constant c are the results of an overly pessimistic analysis, and they show that
the algorithm will sort with very high probability using c = 1 and no clean-
up phase. Our own testing suggests the same, and the Randomized Shellsort
algorithm used in the tests has no clean-up, and a c kept at 1.

Extending the algorithm to arbitrary n consist of picking jump sizes that
are of the form 2k and smaller than n. This makes the last region extend
beyond the input size if it is not also a power of 2, but this is easily negated by
adjusting the loop condition of RegionCompare procedure of Algorithm 2. The
description of the algorithm assumes that n is a power of 2, and that region
sizes can be obtained by repeatedly halving the size. If n is not a power of
two, and one blindly constructs region sizes by halving, the resulting ordering
of elements could contain a larger amount of errors than what is obtained by
using powers of 2.

A practical optimization for Randomized Shellsort consists of replacing the
region comparison for region of size 8 with a sorting network taking 16 inputs,
and skipping region sizes of 4, 2, and 1. This may require more comparisons
than regular Randomized Shellsort for low values of c, but the overhead of a
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predefined sorting network is much lower than that of Randomized Shellsort,
leading to a slight decrease in overall wall-clock time used to sort the input.

3.1.2 Annealing Sort

The Annealing Sort used in the experiments was implemented following the
pseudo-code of [A8] closely. The annealing sequence is constructed anew before
sorting, but this overhead is negligible compared to the time spent performing
comparisons.

As mentioned in the description of Annealing Sort, the constants used in
the annealing sequence are high, but the algorithm is implemented in a way
such that the parameters can be chosen at runtime. In fact, the entirety of
Section 5.4 of the experiments chapter is dedicated to finding good values for
these parameters.

It is also worth noting that the first phase requires 2n ≥ log6 n, assuming q ≥
1, which in turn requires n ≥ 2.29× 108. Inputs of this size, while a possibility
on modern machines, are outside the range of the experiments presented in
Chapter 5. The third phase, requiring 64e2n log n comparisons, is also a likely
target for lowering the amount of comparisons.

3.1.3 Bitonic Sort

The Bitonic Sort used in the experiments is implemented to order Compare-Exchange
operations recursively, mimicking the description from Section 2.3. This spe-
cific ordering of the sorting network is easily adaptable to modern hardware.
Further details on the reasoning for the choice of a recursive layout for Bitonic
Sort being especially important for modern hardware is briefly discussed in
Section 3.7.

Due to the static nature of sorting networks, Bitonic Sort benefits greatly
from compile-time optimization. This is exploited by assuming the input to
be a power of 2k, and supplying k as a template parameter at compile-time,
constructing fixed-size sorters for the first 31 values of k. A simple selection
function can find the suitable power of 2 to use at runtime, and recursive calls
will simply have k′ = k − 1. This allows the compiler to aggressively optimize
loops with impressive performance gains, as shown in Appendix B.

Should n not be a power of two it is possible to construct non-templated
version of Bitonic Sort, where loop parameters and recursive calls are adapted to
work for arbitrary sizes of input. This will however make the algorithm slightly
more complicated, and the compiler will not be able to perform as favourable
optimizations as for input sizes that are powers of 2, and it might be more
beneficial to simply pad the input with enough dummy elements to bring the
input size up to the nearest power of 2 larger than n.

In practice, the descending part of the bitonic sequence is not created by
sorting and then reversing, but instead done by controlling the sorting direction
by another template parameter. This cuts down on the running time, while still
maintaining the easily identifiable structure of the algorithm.

28



3.1.4 Odd-Even Mergesort

Odd-Even Mergesort, when implemented recursively in the same way as Bitonic
Sort, has many of the same properties, and also benefits from having n = 2k

and using templates for aggressive loop unrolling. Additionally, should n not be
a power of two, it is also possible to construct a version of Odd-Even Mergesort
that modifies recursive calls and loop conditions to work with arbitrary n, or
use the methods described for bitonic sorting.

A big drawback of Odd-Even Mergesort is selecting the odd and even se-
quences of for the recursive call during the merging operation. There are two
main solutions to this problem, but neither are without problems.

One solution is to control the distance between elements as a parameter
that doubles at each level of the recursion. This is great for small data sizes,
and can be done in-place, but the moment data moves beyond the size of the
CPU cache performance degrades rapidly due to cache misses from the large
jumps in indexes.

Another solution is using a buffer to hold data for the recursive calls during
the merging. This consist of having a buffer of size n, and moving even elements
to the first half of the buffer, and odd elements to the second half of the buffer.
Recursive calls can now be made on the data of the buffer, using the input
array as the buffer for the recursive call. Data can then be moved back into
the input before comparisons are made. This requires an additional linear
amount of space, but makes memory accesses much more localized, and stops
the algorithm from completely thrashing the CPU cache. When using SIMD
it is also beneficial to have odd and even elements separated to enable 4-by-
4 comparisons. Additional shuffling of elements to achieve 16-byte alignment
was attempted, but the overhead of moving elements quickly overshadowed the
performance gained from aligned SSE loads.

3.1.5 Shellsort Variants

Both variants of Shellsort are implemented as fairly standard loops, following
the pseudo-ALGOL of [A16].

Pratt’s Shellsort executes Compare-Exchange operations as a nested loop
directly within the two loops that compute the jump sequence of the algorithm.
This confines the entire algorithm to a set of nested loops, which should keep any
overhead as low as possible. Unfortunately, the jump sequence is not computed
at compile-time, which might have allowed for more aggressive compile-time
optimization, but the loop conditions are unfortunately not easy to compute
before n is known.

For Shaker Sort, the sequence of b1.7jc+1 < n was chosen, and the amount
of 1-shakes performed as the final phase of the algorithm is fixed at two, to en-
sure data-obliviousness. Note that this gives the algorithm an unknown chance
of failure, as a constant amount of 1-shakes cannot handle all possible input
configurations, based on the experiments performed in [A22]. As mentioned in
Section 3.1.5, the carefully crafted sequences that cause failures in Shaker Sort
could be avoided be shuffling the input, but this is omitted as the experiments
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focus on uniformly random data. To ensure that the algorithm still maintains
a high probability of sorting even when using only two 1-shake passes and no
shuffling, it was tested on samples of size 2k for k from 10 to 23, showing no
failures on 100 random samples of each size.

3.2 SIMD for Sorting Networks
When algorithms are designed to operate independently of the contents of their
input data, which is exactly the case for data-oblivious algorithms, they have a
great potential for a high amount of parallelism.

One scheme for parallel execution of algorithm that has seen rapid devel-
opment in recent years is SIMD. SIMD, meaning Single Instruction Multiple
Data, refers to the ability of modern architectures to perform identical oper-
ations on multiple data elements at once. Properly exploiting this ability to
perform simultaneous operations can provide great performance gains.

One of the most widely available SIMD framework is the SSE instruction
set, which is found in many modern consumer CPUs. Using SSE, one can
perform many operations on up to 128 bits of data at once, which will in
most practical applications will be four 32-bit elements of data. In [A3], SIMD
is shown to greatly improve sorting performance by using SSE instructions
to speed up the merging operation of a multi-threaded variant of merge sort,
and [A6] present an interesting approach to automatically apply generate SIMD
instruction sequences for use in sorting networks. [A23] provides a positive
result in applying SIMD along with multi-core processing, but this involves
using hardware specialized for highly compute-intensive environments.

In the field of sorting networks, the main operations to consider are PMINSD
and PMAXSD, short for Packed MINinimun/MAXinimun of Signed Double-
word integers, which are available from SSE4.1 and onwards. Using these two
operations it is possible to perform four Compare-Exchange operations at once,
but only if the eight input positions are distinct. Applying the 128-bit PMINSD
on a set of 4 integers is equivalent to the following;

PMINSD{(a1, a2, a3, a4), (b1, b2, b3, b4)}
⇒ (min{a1, b1}, min{a2, b2}, min{a3, b3}, min{a4, b4})

(3.1)

The main drawback of using the SSE instruction set is moving data to and
from the SSE registers. If the input positions we are working on are spread out
in memory, we need to load them one element at a time, which often makes the
performance gained from doing four parallel comparisons negligible. If however,
we need to perform a series of Compare-Exchange operations on the form

Compare-Exchange(i, j)
Compare-Exchange(i+1, j+1)
Compare-Exchange(i+2, j+2)
Compare-Exchange(i+3, j+3)

|i-j| >= 4
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it will be possible to load each set of numbers using a single load operation.
Also, SSE load operations that are not aligned at a 16-byte boundary of

memory are supposedly slower than aligned loads, which is another important
consideration when adapting algorithms to work with this particular instruction
set. This requires the i and j of the previous example to be divisible by 4.

When compiled with g++ -Ofast -march=native, an SSE-enabled 4-element
Compare-Exchange will often produce the following assembly:

movdqa (%rdi), %xmm1
movdqa (%rsi), %xmm0
movdqa %xmm1, %xmm2
pminsd %xmm0, %xmm2
pmaxsd %xmm1, %xmm0
movaps %xmm2, (%rdi)
movaps %xmm0, (%rsi)

as opposed to using std::swap, which produces the following assembly ∗ :

movl (%rsi), %edx
movl (%rdi), %eax
cmpl %eax, %edx
jge .L2
movl %edx, (%rdi)
movl %eax, (%rsi)
.L2:
movl 4(%rsi), %edx
movl 4(%rdi), %eax
cmpl %eax, %edx
jge .L3
movl %edx, 4(%rdi)
movl %eax, 4(%rsi)
.L3:

movl 8(%rsi), %edx
movl 8(%rdi), %eax
cmpl %eax, %edx
jge .L4
movl %edx, 8(%rdi)
movl %eax, 8(%rsi)
.L4:
movl 12(%rsi), %edx
movl 12(%rdi), %eax
cmpl %eax, %edx
jge .L1
movl %edx, 12(%rdi)
movl %eax, 12(%rsi)
.L1:

The reliance on data access patterns means that the performance gain of
using SSE instructions can vary widely from algorithm to algorithm. An exam-
ple of excellent access patterns are the comparisons of the bitonic merging used
in Bitonic Sort, while Annealing Sort is a great example of a data-oblivious
algorithm that simply does not lend itself to SIMD. Randomized Shellsort has
access patterns that lie somewhat in-between, having one part of the input be-
ing contiguous, while the other is not. Pratt’s Shellsort and Shaker Sort both
have blocked comparisons, but suffer from a lack of 16-byte alignments. Odd-
Even Mergesort is generally not well suited for SIMD instructions unless one
chooses to separate the odd and even elements before the recursive call, where
it becomes possible to apply unaligned SIMD comparisons before joining the
two sets.
∗ A more thorough discussion on the assembly produced by various implementations of the

Compare-Exchange operation is presented in Section 3.6.
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The experiments in Section 5.7 shows just how important access patterns
for SIMD operations can be for data-oblivious sorting, and how well the SSE4.1
instruction set works in practice.

3.3 CUDA

In recent years we have seen a great rise in the power of consumer graphics
acceleration hardware due to the high demand for beautifully rendered modern
entertainment software. Luckily, this rise in computational power is not only
beneficial for video games developers, but also provide a medium for high levels
of parallel execution in general algorithms.

At first, the use of GPUs as general computation units required mapping
input data to textures, and executing algorithms as shaders. This round-about
way of parallelism is luckily an artefact of early work in the field, and has
now been replaced by CUDA, which is short for Compute Unified Device
Architecture. CUDA enables programmers to write code that is highly sim-
ilar to standard C++ code, and have it executed on the GPU without having to
first map their algorithms to shaders.

There is a lot of ongoing research in the field GPU-assisted sorting algo-
rithms, but there is a lack of older articles as dedicated graphics cards are a
recent development. In [A10] we are presented with an efficient sorting tech-
nique that focuses on the cost-effectiveness of GPU’s as hardware for database
systems. The parallelism of CUDA can be similar to SIMD architecture, as
explored [A17], where different types of sorting algorithms are compared both
for CPU and GPU purposes. Finally, some impressive performance gains are
presented in [A24], though it uses some non-standard hardware.

What makes CUDA so interesting is that the GPU supports a massive
number of threads executing in parallel. Most modern graphics processors
support execution hundreds of threads in parallel, as opposed to the e.g. 16
concurrent threads of a hyperthreaded octocore CPU. Additionally, the GPU
will often have a much higher memory throughput, in order to support this huge
amount of threads. Note that, as opposed to SIMD-parallelism, these threads
can, from the view of the programmer, operate entirely independently.

There are however certain drawbacks to the threading model of CUDA.
Firstly, the threads themselves are not as powerful as CPU threads, as they
must share a small fixed number of processing units that are themselves not
nearly as powerful as a modern CPU. Also, and this is one of the most important
aspect of CUDA parallelism, the CUDA threads are not actually completely
independent of each other, as CPU threads would be. This inter-dependency
between threads requires that threads are grouped together in so-called warps,
often of size 32 or more, and any instruction must be executed in parallel at all
threads sharing a warp †. This hardware peculiarity harshly penalizes branches,
as any branch where two threads in a warp may take different path must have
both paths executed by all threads within the same warp.

†or half-warp, depending on architecture
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With the high number threads available, many classic synchronization con-
structs, notably locks and semaphores become implausible, and tend to be
overly harmful to performance. To combat this problem, CUDA threads are
divided into blocks of 512 or 1024 threads, whose execution can be gated, such
that all threads within the same block must reach a certain point before contin-
uing. This allows for small-scale synchronization. Synchronization on a larger
scale is often achieved by separating the execution of the algorithm into smaller
sections and utilizing the fact that CUDA function calls are executed in the
order they are sent to the GPU.

Data-oblivious algorithms come to mind as a solution to problem of having
highly connected thread execution. Since data-oblivious algorithms do not de-
pend on the input data, no branches are required based on the input. Sorting
networks are especially suited for this, since they can naturally map each wire
of the network to a single thread, and perform each comparison in a step of the
network in parallel.

We now move on to showing how some algorithms have been adapted to
use CUDA. To simplify the description of these algorithms, we will use the
notation Parallel(N, proc) to represent CUDA-parallel execution of proc
on N threads. Additionally, any thread is supposed to be able to obtain its 0-
based thread index as idx inside each procedure. Mostly, this skips the tedious
work of setting up CUDA thread networks and culling excess threads that are
not needed.

The algorithms have all been implemented to work with CUDA architectures
of version 1.2 and up. Despite this version of CUDA being somewhat dated, it
is more than sufficient for implementing these algorithms, and it is the highest
version available on the machine running most of the experiments.

3.3.1 Shellsort Variants

Let us begin by looking at the Shellsort variants, as they have the simplest
schemes for CUDA parallel execution.

In Algorithm 11, we show how to do the upwards part of a h-shake. This
is the inner loop of Pratt’s Shellsort, and half the h-shake of Shaker Sort. The
downwards part of the h-shake for Shaker Sort follows the same idea, so we omit
describing its details. What is interesting is the simplicity of doing a h-wise
parallel h-shake. This translates naturally to the CUDA architecture, and even
has aligned memory accesses for threads in the same warp.

There is however the problem of performing these shakes when h gets rel-
atively small. We recommend switching to sequential execution on the CPU
when h falls below the maximum number of concurrent threads executing on
the GPU. This proves somewhat problematic for Pratt’s Shellsort, where the
jump sequence is not monotonically decreasing, where we recommend switching
back to CPU execution at the first element of the sequence that falls below the
thread limit.
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Algorithm 11 Parallel H-Shakes
A: Array input of Compare-Exchange compatible elements
n: Size of A
h: H a.k.a. jump distance

1: procedure ParallelHShakeWrapperUp(A, n, h)
2: Parallel(h, ParallelHShakeUp{A, n, h})
3: end procedure

A: Array input of Compare-Exchange compatible elements
n: Size of A
h: H aka. jump distance

4: procedure ParallelHShakeUp(A, n, h)
5: i← idx
6: while i < n− h do
7: Compare− Exchange(A, i, i + h)
8: i← i + h
9: end while

10: end procedure

3.3.2 Bitonic Sort

Bitonic Sort has the desirable property of being a classical sorting network
of poly-logarithmic depth. When adapting such networks to parallel execution,
one can often obtain an efficient parallel solution by mapping each input element
to a separate thread, and performing all comparisons of a single layer of the
algorithm in parallel. In fact, we can make do with n/2 threads, since by
necessity, there must be two elements per comparison.

For Bitonic Sort this mapping is fairly simple, as each layer of the network
consists of exactly n/2 comparisons. Algorithm 12 shows how to perform a
Bitonic Sort this way. It should be noted that this way of approaching Bitonic
Sort is completely different to the recursive definition given in the first descrip-
tion of the algorithm, but the resulting sorting networks should be the identical,
exception for the ordering of independent Compare-Exchange operations.

A great benefit of the simplicity in mapping the threads of Bitonic Sort to
their respective wires, and having them perform strictly separated comparisons
even when operating in parallel, is the possibility of mapping smaller problem
instances to a single CUDA thread block. This allows us to switch to shared
‡ memory for sorts and merges of size 1024 or lower, which cuts about a third
of the running time. Appendix A shows the running times for CUDA-based
Bitonic Sort with and without shared memory.

‡ Shared memory is processor-local memory that is shared across a single thread block. It
is considerably faster than the main CUDA memory.
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Algorithm 12 Parallel Bitonic Sort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure ParallelBitonicSort(A, n)
2: for s = 2, 4, 8 . . . n do . Size of sub-problem sorts
3: for m = s, s/2, s/4 . . . 2 do . Size of sub-problem merges
4: Parallel(n/2, ParallelBitonicStep{A, s, m})
5: end for
6: end for
7: end procedure

A: Array input of Compare-Exchange compatible elements
s: Sorting subproblem size
m: Merging subproblem size

8: procedure ParallelBitonicStep(A, s, m)
9: ascending ← idx%s < s

2 . Odd-numbered sub-sort or not?
10: i← idx%m

2 + m · b idx
m/2c . Position within merge

11: if ascending then
12: Compare− Exchange(A, i, i + m

2 )
13: else
14: Reverse− Compare− Exchange(A, i, i + m

2 )
15: end if
16: end procedure
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3.3.3 Odd-Even Mergesort

Odd-Even Mergesort follows the same general principle as Bitonic Sort, as they
share many of the same properties, being sorting networks of low depth. It is
however slightly more difficult to map the threads of the sorting network to
CUDA threads in the case of Odd-Even Mergesort, as not all threads are active
at all times.

Instead of doing the thread mapping once again, we use the parallel Odd-
Even Mergesort of [A24], originally developed to show off the performance of
OpenCL. It does not provide the same n/2 upper limit on the number of threads,
and as such will have a slightly higher number of threads not performing com-
parisons. The algorithm makes up for this by having a much simpler structure
within the parallel code, which can be important, depending on the computing
power available to the GPU.

The algorithm, as adapted from the description in [A24] § , can be seen in
Algorithm 13.

Algorithm 13 Parallel Odd-Even Mergesort
A: Array input of Compare-Exchange compatible elements
n: Size of A

1: procedure ParallelOddEvenMergesort(A, n)
2: for p = n/2, n/4, n/8...1 do
3: (d, r)← (p, 0)
4: for q = n/2, n/4, n/8...p do
5: Parallel(n− d, ParallelOddEvenStep{A, p, r, d})
6: (d, r)← (q − p, p)
7: end for
8: end for
9: end procedure

A: Array input of Compare-Exchange compatible elements
p: Subproblem size
r: Wire selector
d: Offset distance

10: procedure ParallelOddEvenStep(A, p, r, d)
11: if idx&p == r then
12: CompareExchange(A, idx, idx + d)
13: end if
14: end procedure

§ This version of Odd-Even Mergesort may seem strange, as the order of the comparisons
does not at first seem to match a normal Odd-Even Mergesort. In fact, the version from [A24]
has been heavily reordered in order to better support a parallel execution schedule.
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3.3.4 Randomized Shellsort

Finally, we get Randomized Shellsort. Randomized Shellsort seems, at first, an
obvious candidate for parallel execution on the GPU, since the region compar-
ison is essentially large series of parallel random Compare-Exchanges. There is
however, a few catches.

One problem is the lack of a parallel random shuffle. In order to execute
the region comparison, one must generate a random mapping of elements in
one region to another, and doing so in the parallel lock-free environment of
the CUDA architecture is overly complicated, and little work has been done
on the subject. Therefore, the random mapping must be generated on the
CPU. This is however not as bad as it might seem, since the random mapping
can be generated while the GPU is performing comparisons. Additionally, the
permutation mapping can be stored as texture memory, which provides a small
amount of read-only cache.

Another big problem is the random access patterns of region comparisons.
The memory architecture of graphics processors depend heavily on threads
accessing consecutive data elements, and this cannot be guaranteed when doing
Randomized Shellsort. GPU architectures have a high memory throughput that
will slightly mitigate this, and, depending on the architecture, this may still be
preferable to a CPU cache miss.

The parallel region comparison is shown in Algorithm 14

Algorithm 14 Parallel Region Compare
A: Array input of Compare-Exchange compatible elements
i: Index of first region
j: Index of second region
size: Size of regions to compare

1: procedure ParallelRegionCompareWrapper(A, i, j, size)
2: for 1 . . . c do
3: matching ← shuffle([0 . . . size− 1])
4: Parallel(size, ParallelRegionCompare{A, i, j, matching})
5: end for
6: end procedure

A: Array input of Compare-Exchange compatible elements
i: Index of first region
j: Index of second region
matching: Array specifying of region pairings

7: procedure ParallelRegionCompare(A, i, j, matching)
8: Compare− Exchange(A, i + idx, j + matching[idx])
9: end procedure
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3.4 OpenMP

Having seen some extensive schemes for utilizing the intrinsic parallelism of
data-oblivious sorting networks, let us go back to one of the most basic concepts
of parallel programming, multi-threading. Often multi-threading requires a
great amount of tedious work being done keeping threads synchronized, and
preventing data races, but as growth in processor capabilities has shifted away
from higher clock frequencies and onto additional cores, the demand for high-
level interfaces to multi-threading has increased.

OpenMP is a high-level multiprocessing API that allows for easy access to
multi-threading while keeping most of the underlying structures and synchro-
nization mechanics out of sight. This allows for ease of implementation, and
data-oblivious sorting algorithms seem like a prime candidate for such a system.
The main ideas behind OpenMP are described briefly in [A4].

One of the main draws of the OpenMP framework is the ability to distribute
work across multiple threads without making major changes to existing code by
annotating existing structures in the program with pragma commands. These
pragmas generally allow for two distinct strategies for multi-threading in the
algorithms presented earlier, each with their own distinct area of use. The first
method loop-level multi-threading, where for-loops can be split into sizeable
chunks and distributed among thread, which is excellent for algorithm highly
reliant on linear passes through the input. The second method is task-based
multi-threading, in which separate parts of the algorithm can be executed in
parallel, and synchronization can be handled by a task queue, which is useful
when multiple recursive calls can be handled separately.

For the purposes of the experiments and optimization techniques presented
in this section and Section 5.9, we will focus on OpenMP version 3.1. This
version is fairly recent, but is support by compilers for most modern system. ¶
The full specifications are available at [B39].

In general, it may seem that multi-threading and OpenMP is not as specif-
ically suited for data-oblivious algorithms as the other schemes for parallelism
presented. It is however worth including, if nothing else, then for comparison.

The performance implications of using OpenMP is experimentally explored
in Section 5.9.

Let us briefly discuss how OpenMP can be used for the individual algo-
rithms.

Randomized Shellsort: Randomized Shellsort utilizes loop-based multi-threading
in the region comparison operation when the size is sufficiently big, allowing
for multi-threaded execution when generating matching indexes and performing
comparisons, through the use of the OpenMP for construct from Section 2.5
of [B39]. A static scheduling policy proved to provide the best performance.
Shuffling indexes are unfortunately restricted to a single thread, and are there-
fore marked single.
¶g++ and clang both support OpenMP up to and including version 3.1. Microsoft’s Visual

Studio unfortunately only supports version 2.0 at the time of writing.
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Bitonic Sort and Odd-Even Mergesort: Bitonic Sort and Odd-Even Merge-
sort are structurally similar, and follow the same exact strategy for multi-
threading. Whenever the algorithms are merging two sequences of sufficient
size, the recursive calls are queued as a OpenMP task structure, as described
in Section 2.7 of [B39]. This allows for lightweight scheduling of tasks, that
should fully utilize CPU resources.

Shellsort Variants: Both variants of Shellsort work on separate sub-sequences
of the input, which can all be handled in parallel. Special care must be taken
in distributing these sequences among threads, as to avoid low-level cache colli-
sions when indices of the sub-sequences fall into the same cache line. A solution
to this problem is to group sub-sequences into chunks that are as big as possible
to reduce the number of sequences falling into the same cache line being split
across CPU cores. Manually handling thread behaviour, as opposed to using
the built-in loop structures of OpenMP is an undesirable property, but was
found necessary to avoid L1 cache thrashing. The problem of low-level cache
sharing is covered in great detail in [A19].

3.5 Random Numbers

Randomized data-oblivious sorting algorithms require a great amount of ran-
dom numbers, which can turn out to be a major factor in their running time if
care is not taken to make generation of random numbers as quick as possible.

Both Randomized Shellsort and Annealing Sort require Θ(n log n) random
numbers to be generated, and if std::rand is used to generate these numbers,
calls to std::rand can take up most of the time used by the algorithm. Instead
of std::rand, the algorithms implemented for this thesis use the Linear Con-
gruent Genenerator PRNG presented in [B40], specifically the non-SSE version,
as SSE turned out to be slightly slower.
std::rand often delivers only 16 bits of randomness, requiring two calls per

index for larger data sizes. The implementation from [B40] will also deliver
only 16 bits of randomness by throwing away extra bits, but this step is easily
removed. Newer versions of C++ come with much better pseudo-random number
generators, but these are still fairly slow, as can be seen by the quick experiment
of Appendix C.

It should be noted that the cryptographic security of this pseudo-random
number generator is not of great concern, as we care mostly about its perfor-
mance.

3.6 Engineering a Branch-Free Compare-Exchange

One of the main advantages of data-oblivious sorting are the algorithms’ com-
plete independence off the result of comparisons. In order to fully exploit this
fact, we need to engineer the Compare-Exchange operation carefully to avoid
any branches. Doing so should greatly improve pipelining in modern CPUs, in
addition to being closer in spirit to a sorting network.
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Table 3.1 shows three variants of the Compare-Exchange operation, as they
are written in C++ and the assembly produced by the compiler.

The first variant has a clearly visible branch, both in the C++ code and
the resulting assembly, leading to a data-dependent comparisons, which should
naturally be avoided.

The second variant is much more subtle, as it discards branches in favour
of conditional moves. Conditional moves are the cmovle and cmovl assem-
bly instructions, which will store data only if certain register flags are set by
previous comparison operations. These will actually not show up as branch
mispredictions when profiling the algorithm, but their performance is some-
what unpredictable, since they can tie up the pipeline until the result of the
comparison is known. Whether these instructions belong in a data-oblivious
algorithms is also debatable.

The final variant exploits the fact that the inputs are integers and the re-
sult of comparisons in C++ is either 0 or 1, to create a mask that will xor
the minimum and maximum values from the input. This clever little trick is
shown at [B25], and produces assembly code without branches, and where the
memory operations performed are completely independent on the result of the
comparison.

The performance of the different variants depend on the application and
underlying architecture, but to be safe we have chosen the third variant for
all implementations used in the tests, since this variant is completely free of
branches, and not dependent on the performance of conditional moves. In
order to show how much the amount of branches per comparisons can change
from algorithm to algorithm, a test was devised, the results of which can be
found in Section 5.6.
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C++ code GAS Assembly

void CompareExchange(int& A, int& B){
if(B<A){
std::swap(A,B);

}
}

movl (%rsi), %edx
movl (%rdi), %eax
cmpl %eax, %edx
jge .L1
movl %edx, (%rdi)
movl %eax, (%rsi)

.L1:
ret

void CompareExchange(int& A, int& B){
auto C = A;
A = std::min(A, B);
B = std::max(C, B);

}

movl (%rdi), %eax
cmpl %eax, (%rsi)
movl %eax, %edx
cmovle (%rsi), %edx
movl %edx, (%rdi)
movl (%rsi), %edx
cmpl %edx, %eax
cmovl %edx, %eax
movl %eax, (%rsi)
ret

void CompareExchange(int& A, int& B){
auto mask = ((A ^ B) & -(A < B));
auto C = A;
A = B ^ mask;
B = C ^ mask;

}

movl (%rdi), %eax
xorl %ecx, %ecx
movl (%rsi), %edx
movl %eax, %r8d
cmpl %edx, %eax
setl %cl
xorl %edx, %r8d
negl %ecx
andl %r8d, %ecx
xorl %ecx, %edx
xorl %ecx, %eax
movl %edx, (%rdi)
movl %eax, (%rsi)
ret

Table 3.1: Compare-Exchange variants
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3.7 The Recursive Sorting Network Layout for Mod-
ern Hardware

When working with modern hardware, it is often the case that memory latency
plays a large part in determining the running time, which should be taken into
consideration when designing algorithms. This is especially important when
attempting to adapt older algorithms to the multi-layered memory-hierarchies
of modern computers.

Let us briefly discuss why this idea of multi-layered memory helps justify
the recursive layout of Bitonic Sort from Section 6, as opposed to the layer-wise
execution scheme of Algorithm 12.

The model we will be looking at consists of a main memory of infinite size
holding the input data, a cache memory of size M , partitioned into cache lines
of size B, and we will be giving estimates for the amount of times main memory
must be accessed for both the layer-wise and the recursive execution scheme.
For a deeper explanation of the subject, see [B32].

When using the layer-wise execution order, the algorithm will need to touch
each element once each layer. Touching each element requires Θ(n/B) main
memory accesses, and since the algorithm has Θ(n log2 n) depth this will incur
Θ(n/B log2 n) cache misses. Even a strategy that kept elements in memory
between layers would use Θ(n−M

B log2 n), a minor saving when n >> M .
If we instead use a recursive layout, we get an amount of cache loads C per

execution of:

CMERGE(n) =
{

n/B n < M

n/B + 2 ∗ CMERGE(n/2) otherwise

CSORT (n) =
{

n/B n < M

CMERGE(n) + 2 ∗ CSORT (n/2) otherwise

for Bitonic Merge and Bitonic Sort respectively. Following this recursion puts
CSORT = Θ( n

B log2 n
M ), which is a much more favourable number and takes

greater advantage of increases in cache memory size.
Odd-Even Mergesort favours a similar strategy for many of the same reasons,

but numbers are not as simple as for Bitonic Sort, as we can no longer rely on
layers being completely filled with elements, and the fact that elements have to
be reordered before initiating the recursive call.

3.7.1 Merging Multiple Recursive Calls for Cache Efficiency

The benefits of a recursive layout for Bitonic Sort and Odd-Even Mergesort are
clear, and are explored experimentally in Section 5.5.

We can further improve cache efficiency by merging layers of recursive calls
into a single pass though the input. This does not affect the amount of cache
misses asymptotically, but it improves performance in experiments on modern
hardware.
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A problem with this approach is to avoid breaking of Compare-Exchange
ordering for each individual input index. For Bitonic Sort, this proves problem-
atic, as each index is dependent on indices that are far apart, and this makes the
strategy not feasible for Bitonic Sort. For Odd-Even Mergesort, the distance
between dependent indices is small, and due to element reordering to avoid
rapid growth of cache misses, the amount of cache misses normally made by
each layer is high, making this a favourable strategy for Odd-Even Mergesort.

In Section 5.5 we experimentally verify the reduction in cache misses when
performing two layers of recursion instead of one, between each re-ordering of
data for Odd-Even Mergesort.
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Chapter 4

Pre-Processing SIMD
Instructions

In Section 3.2 we discussed the act of manually applying SIMD operations to
speed up execution of sorting networks on modern hardware, and briefly touched
on the subject of when and how such operations are suitable. In this chapter
we further extend the work in applying SIMD operations on sorting networks,
and describe a method of automatically determining where SIMD operations
can be applied, in any given sorting network.

Since the order of operations in a sorting network can be completely de-
termined at compile-time, any compiler optimizing for vector-based instruction
sets should be able to achieve a high level of parallel execution. When working
with randomized data-oblivious sorting algorithms, where the order of opera-
tions cannot be determined at compile-time, it is still possible to vectorize exe-
cution of operations by using just-in-time compilation. In fact, the description
we give of an automatic vectorizer is highly applicable to just-in-time compila-
tion using a queue of operations of the same length as the width of the vector
operations available at the local hardware.

In the literature we find a great deal of investigation into the possibility of
compilers outputting SIMD-compatible programs. Vectorizing compilers have
a long and interesting history, as shown in [A12] where different compilers for
Fortran are compared based on their ability to automatically generate SIMD-
enabled programs. Lately this ability in compilers have been re-evaluated, as
shown by [A13], where the results show that modern compilers are not always
impressive in their applications SIMD instructions. Some techniques that allow
compilers to transform programs into efficient vectorized programs are pre-
sented in [A20], where it is also explained how SIMD instructions can be used
without the wide registers normally reserved for such purposes.

4.1 Encoding Sorting Networks

In order to programmatically analyse sorting networks efficiently, we must first
condense them into an easily workable format. Since data-oblivious sorting al-
gorithms only affect the input data through the application of the Compare-Exchange
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0: CE(0, 1)
1: CE(3, 2)
2: CE(0, 2)
3: CE(1, 3)
4: CE(0, 1)
5: CE(2, 3)
6: CE(7, 6)
7: CE(4, 5)

8: CE(7, 5)
9: CE(6, 4)
10: CE(7, 6)
11: CE(5, 4)
12: CE(0, 4)
13: CE(1, 5)
14: CE(2, 6)
15: CE(3, 7)

16: CE(0, 2)
17: CE(1, 3)
18: CE(0, 1)
19: CE(2, 3)
20: CE(4, 6)
21: CE(5, 7)
22: CE(4, 5)
23: CE(6, 7)

Figure 4.1: Bitonic Sort Encoded

operation, we can describe such algorithms as a series of Compare-Exchange
operations, and perform our vectorization independently of the actual structure
of the algorithm.

Let us encode a single Compare-Exchange operation as CE(i, j), where i <
j ≤ n, and a reverse Compare-Exchange operation in much the same way, but
as CE(i, j), where j < i ≤ n. This allows us to easily record any sorting network
for analysis. As an example, Bitonic Sort, for n = 8, using a recursive ordering
of comparisons, can be represented as shown in Figure 4.1.

Constructing such encodings from working implementations of data-oblivious
sorting algorithms is easy, as one can simply record the calls made to the
Compare-Exchange operation, and store the calls in order. These recordings
can then be played back at a later time to execute another run of the same
sorting algorithms, though this is of little practical use since the recordings
quickly grow much larger than the input data.

Instead, we will focus on analysing these recorded executions of sorting net-
works to find sequences of operations that can be replaced by a single vectorized
operation.

4.2 Vectorizing Transformations
There are a wide variety of SIMD architectures available in modern hardware,
and as such there are many possible ways of applying vectorization if one wishes
to accommodate all possible architectures. In order to keep this chapter at a
reasonable length, we will focus on keeping the operations as similar to those
available in the SSE4.1 instruction set, but keep the width of the SIMD instruc-
tions variable, to accommodate for changing data types and newer, wider vector
instructions. For the next few subsections, let k be the width of a vectorizing
Compare-Exchange operation.

4.2.1 Aligned Consecutive Vectorization

The first automatic vectorization technique we will describe, is an aligned vec-
torized Compare-Exchange.

Such an operation, encoded as CEkA(i, j) performs a vectorized series of
Compare-Exchange operations equivalent to CE(i, j), CE(i + 1, j + 1) . . . CE(i +
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0: CE(0, 1)
1: CE(3, 2)
2: CE(0, 2)
3: CE(1, 3)
4: CE(0, 1)
5: CE(2, 3)
6: CE(7, 6)

7: CE(4, 5)
8: CE(7, 5)
9: CE(6, 4)
10: CE(7, 6)
11: CE(5, 4)
12: CE4A(0, 4)
13: CE(0, 2)

14: CE(1, 3)
15: CE(0, 1)
16: CE(2, 3)
17: CE(4, 6)
18: CE(5, 7)
19: CE(4, 5)
20: CE(6, 7)

Figure 4.2: Bitonic Sort Vectorized

0: CE(0,25)
1: CE(1,26)
2: CE(2,27)
3: CE(3,28)
4: CE(4,29)
5: CE(5,30)
6: CE(6,31)
7: CE(6,31)

8: CE(5,30)
9: CE(4,29)
10: CE(3,28)
11: CE(2,27)
12: CE(1,26)
13: CE(0,25)
14: CE(0,15)
15: CE(1,16)

16: CE(2,17)
17: CE(3,18)
18: CE(4,19)
19: CE(5,20)
20: CE(6,21)
21: CE(7,22)
...

Figure 4.3: Shaker Sort Encoded

k− 1, j + k− 1), with the important restriction that i mod k = j mod k = 0.
When we look for candidates for this vectorization technique, we attempt

to find sequences of CE(i1, j1), CE(i2, j2) . . . CE(ik, jk) where

i1 mod k = j1 mod k = 0 Alignment

∀k−1
l=1 (il + 1 = il+1, jl + 1 = jl+1) Sequense

∀k
l1=1∀k

l2=1(il1 6= jl2) Disjoint

If we can find any such sequences, we can safely replace them with a vec-
torized instruction. The result of applying this transformation on the Bitonic
Sort of Figure 4.1, with k = 4, we get the sequence shown in Figure 4.2.

Note that since the Compare-Exchange operations of such a sequence are
completely independent, we can perform the same substitution on a reversed
sequence, which is important for certain algorithms.

4.2.2 Unaligned Consecutive Vectorization

The alignment restriction of the previous subsection is included due to the per-
formance degradation arising from performing an unaligned load in most SIMD
architectures. Unfortunately, certain algorithms do not use this strictly aligned
access pattern. As an example of unaligned access patterns, see Figure 4.3,
where we can see the first 22 operation of a Shaker Sort with n = 32.

Luckily, newer hardware alleviates the performance problems from unaligned
memory accesses during SIMD operation, and we can allow for an unaligned
variant of the vectorized Compare-Exchange operation. This version, let us
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0: CE4U(0, 25)
1: CE(4, 29)
2: CE(5, 30)
3: CE(6, 31)

4: CE4U(3, 28)
5: CE(2, 27)
6: CE(1, 26)
7: CE(0, 25)

8: CE4U(0, 15)
9: CE4U(4, 19)
...

Figure 4.4: Shaker Sort Vectorized

0: CE(0,30)
1: CE(1,20)
2: CE(2,23)
3: CE(3,17)
4: CE(4,24)
5: CE(5,27)
6: CE(6,21)
7: CE(7,29)

8: CE(8,18)
9: CE(9,22)
10: CE(10,25)
11: CE(11,28)
12: CE(12,19)
13: CE(13,31)
14: CE(14,16)
15: CE(15,26)

16: CE(0,17)
17: CE(1,31)
18: CE(2,22)
19: CE(3,23)
20: CE(4,18)
21: CE(5,16)
22: CE(6,21)
...

Figure 4.5: Randomized Shellsort Encoded

name it CEkU(i, j), follows the exact same methodology as CEkA(i, j) , with the
alignment restriction removed.

This allows us to match it against sequence following only two of the three
previous rules, leaving only the following restrictions.

∀k−1
l=1 (il + 1 = il+1, jl + 1 = jl+1) Sequense

∀k
l1=1∀k

l2=1(il1 6= jl2) Disjoint

Applying this transformation to the part of Shaker Sort shown in Figure 4.3
gives us the vectorized sequence of Figure 4.4.

In many ways, this operation functions exactly as the previous vectorization
transformation, except it does not have the seemingly arbitrary restriction on
starting indexes, but at a hardware level there can be a big difference between
how aligned and unaligned loads are handled. In the SSE4.1 instruction set,
aligned and unaligned loads into the vector registers are handled by separate
instructions, whose performance vary depending on the underlying architecture.

4.2.3 Shuffled Access Vectorization

Finally, in order to conform to the requirements of the randomized algorithms,
we present a shuffled vectorization technique. This transformation removes the
requirement of the original comparisons being consecutive elements in memory,
and fits a much broader spectrum of algorithms. As an example encoding of an
algorithm where comparisons are non-consecutive, Figure 4.5 shows the first 23
operations of a run of Randomized Shellsort with n = 32.

The new vectorized operation, encoded as CEkSHUF(i1, i2 . . . ik, j1, j2 . . . jk)
will perform a vectorized series of Compare-Exchange operations equivalent to
CE(i1, j1), CE(i2, j2) . . . CE(ik, jk).
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0: CE4SHUF(0, 1, 2, 3, 31, 26, 30, 19)
1: CE4SHUF(4, 5, 6, 7, 18, 21, 16, 28)
2: CE4SHUF(8, 9, 10, 11, 20, 22, 27, 29)
3: CE4SHUF(12, 13, 14, 15, 17, 23, 25, 24)
4: CE4SHUF(0, 1, 2, 3, 27, 20, 23, 19)
5: CE(4, 18)
6: CE(5, 31)
7: CE(6, 22)
...

Figure 4.6: Randomized Shellsort Vectorized

Finding candidates for this transformation is much less restrictive than other
vectorization transformations, as we need only find sequences CE(i1, j1), CE(i2, j2) . . . CE(ik, jk)
that obey two rules:

∀k
l1=1∀k

l2=l1+1(il1 6= il2 , jl1 6= jl2) Unique

∀k
l1=1∀k

l2=1(il1 6= jl2) Disjoint

Sequences of operations that follow these two rules can be safely vectorized
using shuffled loads. As an example, let us apply the transformation to the
sequence shown in Figure 4.5, with k = 4,which gives us the resulting vectorized
encoding shown in Figure 4.6.

While this transformation is useful for certain algorithms, it suffers from a
lack hardware support, as each input element must be loaded into the vector
register separately. On older hardware, where such loads are always required,
this might not prove to be much of a problem, but on newer CPU’s such op-
erations can be expensive. It should be noted that even on newer hardware,
a slight performance improvement may still be obtainable by using this trans-
formation, as the extra instructions dedicated to manually moving elements to
SSE registers can be performed while waiting for memory loads.

4.2.4 Vectorization Results

Having established this notion of vectorization transformations, let us see how
well these transformations can be applied full traces of data-oblivious sort-
ing algorithms. Table 4.1 shows the results of applying these simple vec-
torisation techniques to full traces of several data-oblivious algorithms, with
n = 4096, k = 4, and form the basis of the following discussion on the results of
these vectorization techniques.

Randomized Shellsort shows a clear reduction in the number of operations
after having been processed, but only if shuffled SIMD operations are allowed.
The reason why we are not seeing an exact reduction to 1/4 of the amount
of instructions is due to the small regions in the final parts of the algorithm
making the sequences overlap.

For the classic sorting networks of Bitonic Sort and Odd-Even Mergesort,
we include two variants; one using recursive ordering of comparisons, much like
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Algorithm Scalar Aligned Unaligned Shuffled
Randomized Shellsort 215048 213758 213617 72182
Recursive Odd-Even MergeSort 139263 139263 139263 57954
Layered Odd-Even Mergesort 139263 67074 67074 34818
Recursive Bitonic Sort 159744 75264 75264 56835
Layered Bitonic Sort 159744 75264 75264 39936
Pratt’s Shellsort 183634 87889 55138 55114
Shaker Sort 125348 121730 55934 55934
Annealing Sort 524160 524160 524160 524160

Table 4.1: Automatic Vectorization Results, number of CE* operations

they are described in their respective pseudo-code, and one using depth-ordering
of comparisons, as described in Section 3.3. For Odd-Even Mergesort, depth-
ordered operations are crucial unless one allows shuffled operations∗, though this
is not the case for Bitonic Sort. We see a predictable full ¼ reduction of the
number of operations for Bitonic Sort, and Odd-Even Mergesort being almost
optimal when allowing shuffled operations and depth-ordering of operations.

Both Pratt’s Shellsort and Shaker Sort see an impressive reduction in their
operation count, but are somewhat reliant on unaligned operations. Both are
notably no dependent on shuffled operations.

Finally, Annealing Sort shows absolute no reduction in the amount of oper-
ations performed by applying vectorisation.

4.2.5 Compilers and Vectorization

These techniques show what it should be possible to do for a proper vectorizing
compiler, yet there is a certain distance between what can be done, and what
is done by compiler.

Perhaps the biggest problem for the actual compiler in automatically vec-
torizing data-oblivious algorithms can be to recognise the Compare-Exchange
operation. As discussed in Section 3.6, there is a selection of different ways to
implement this operation, and whether they can be deemed suitable for replace-
ment with SIMD instructions can be difficult to determine at compile-time.

Though the compiler may have some problems in recognizing the Compare-Exchange
operation, it does have the benefit of being able to re-arrange operations. A
short contrived example is the sequence

0: CE(0,8)
1: CE(2,10)
2: CE(4,12)
3: CE(6,14)

4: CE(1,9)
5: CE(3,11)
6: CE(5,13)
7: CE(7,15)

∗This is somewhat contradictory to what is seen in the experiments, and the SIMD descrip-
tion. Keep in mind that the vectorization of the Odd-Even Mergesort used in the experiments
is made possible due to a rearrangement of the data into a separate buffer, as part of an effort
to reduce cache misses.
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which cannot be vectorized without shuffling, but is equivalent to

0: CE(0,8)
1: CE(1,9)
2: CE(2,10)
3: CE(3,11)

4: CE(4,12)
5: CE(5,13)
6: CE(6,14)
7: CE(7,15)

which is a prime candidate for aligned SIMD operations. A good compiler
should be able to find such sequences and rearrange them to enable vectoriza-
tion.

4.2.6 Rearranging Sorting Networks for Depth-wise Ordering

Having briefly touched on the subject of reordering operations, and having seen
how depth-ordering can be an improvement for vectorization, let us consider a
simple technique for reordering the Compare-Exchange operations.

What is most important when reordering this type of operations is that the
list of Compare-Exchange operations for each wire does not change, but we can
re-order in any way we want, as long as we maintain this ordering. One way
to do this is to fit the operations into the layers that are sometimes shown in
diagrams of sorting networks.

Let us consider a greedy strategy, that inserts Compare-Exchange operations
into the first layer available that has not yet seen any of the indices involved
in the operation. The pseudo-code corresponding to such a strategy is show in
Algorithm 15

Algorithm 15 Layer-Ordering
ops : A list of Compare-Exchange operations
n : Amount of input wires in the sorting network

1: procedure LayerOrdering(ops, n)
2: Depths← [−1,−1, ...,−1] of lenght n
3: Ordering ← []
4: for (i, j) in ops do
5: depth← max(Depths[i], Depths[j]) + 1
6: Depths[i], Depths[j]← depth, depth
7: Ordering += [(depth, i, j)]
8: end for
9: Sort(Ordering)

10: return[(i, j) for (depth, i, j) in Ordering]
11: end procedure

It is easy to see that this short procedure does not break ordering for any
given index, since any operation will be assigned to a depth that is at least one
higher than any previous operation that uses any of the same indices.

If we apply this re-ordering scheme to the trace of Figure 4.1, we get the
depth-ordered trace of Figure 4.7
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0: CE(0,1)
1: CE(3,2)
2: CE(4,5)
3: CE(7,6)
4: CE(0,2)
5: CE(1,3)
6: CE(6,4)
7: CE(7,5)

8: CE(0,1)
9: CE(2,3)
10: CE(5,4)
11: CE(7,6)
12: CE(0,4)
13: CE(1,5)
14: CE(2,6)
15: CE(3,7)

16: CE(0,2)
17: CE(1,3)
18: CE(4,6)
19: CE(5,7)
20: CE(0,1)
21: CE(2,3)
22: CE(4,5)
23: CE(6,7)

Figure 4.7: Bitonic Sort Depth-Ordered

This technique is not the be-all and end-all solution for vectorization or-
dering, but it can help certain algorithms conform better to the requirements
for some transformations. If we apply depth-ordering before the vectorization
techniques, we get the number of operations shown in Table 4.2.

Algorithm Sequential Aligned Unaligned Shuffled
Randomized Shellsort 215048 213773 213560 64520
Recursive Odd-Even Mergesort 139263 71676 70143 34818
Layered OddEven Mergesort 139263 67074 67074 34818
Recursive Bitonic Sort 159744 75264 75264 39936
Layered Bitonic Sort 159744 75264 75264 39936
Pratt’ Shellsort 183634 92467 55312 48217
Shaker Sort 125348 121730 71222 55916
Annealing Sort 524160 524160 524154 197529

Table 4.2: Automatic Vectorization with Depth-Ordering, number of CE* op-
erations

We see a small improvement for Randomized Shellsort, but nothing major.
The most important result, is that the classic sorting networks, Bitonic Sort

and Odd-Even Mergesort, reach exact same amount of operations when allow-
ing shuffled vectorization, not matter how they were originally laid out. Note
that Odd-Even Mergesort does not reach the same number of operations when
sequential operations are required, which happens due to not fully occupying
all layers which leads to the algorithm placing some operations at a too early
depth compared to the originally layered layout, and thereby messing up some
sequences that would otherwise be targets for vectorization.

The two Shellsort variants actually see a certain degradation of performance
from depth-ordering, since it breaks up the sequential access patterns that are
already present in the original traces by interleaving the different elements of
the sequences used by the algorithm.

Finally, we actually see an impressive result for Annealing Sort when allow-
ing shuffled vectorization, as it splits repetitions on identical indices.

As a final remark, we note that this technique is definitely useful, but must
be performed with great care, but it should definitely be considered when work-
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ing with compilers.
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Chapter 5

Experiments

5.1 Experimentation Setup and Details
All the experiments in this chapter are run on a machine with the following
hardware, unless otherwise noted:

CPU: Intel i7-M620, 2.67GHz, 4 MB Cache

RAM: 6GB

GPU: NVIDIA Quadro FX 880M

Operating System: Ubuntu 14.04 LTS

All programs involved were compiled using g++ version 4.9, using the fol-
lowing extra flags;

-Ofast: Use the highest optimization level, and favour speed over executable
size.

-std=c++11: Use the C++11 standard

-march=native: Generate code that utilizes the local machine architecture,
instead of generic x86 CPUs

-fopenmp: Include OpenMP support

Hardware counters for running time, cache misses, branch mispredictions,
and similar performance metrics were obtained using the perf toolset.

All the algorithms are made to sort 32-bit signed integers, as this is represen-
tative for sorting performance and simplifies the Compare-Exchange operation.

In the graphs, the algorithms will be named as follows:

RandShell: Randomized Shellsort

AnnealingSort: Annealing Sort

BitonicSort: Bitonic Sort
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OEMergeSort: Odd-Even Mergesort

std::sort: c++ std::sort ∗

Pratt: Pratt’s Shellsort

ShakerSort: Shaker Sort

_SBuffer: Indicates a variant algorithm using a special buffering strategy,
reordering elements and performing a single of recursion simultaneously

_DBuffer: Indicates a variant algorithm using a special buffering strategy,
reordering elements and performing two layers of recursion simultaneously

_SIMD: Indicates a variant algorithm using the SSE instruction set

_CUDA: Indicates a variant algorithm using the CUDA architecture

_OMP: Indicates a variant algorithm using the OpenMP framework architec-
ture

5.2 Performance of the newer Algorithms Compared
to Classical Sorting Networks

The first set of experiments measure the performance of the newly devel-
oped algorithms Randomized Shellsort and Annealing Sort, respectively of [A7]
and [A8] and compare them to that of the classical sorting networks Bitonic
Sort and Odd-Even Mergesort of [A2].

Input sizes are chosen as a power of 2, in order to allow Bitonic Sort and
Odd-Even Mergesort to exploit known input sizes for compiler optimization.

The algorithms do not use SIMD, CUDA or OpenMP, as these techniques
are the subject of separate experiments. The use of a fixed sorting network
for low sizes of Randomized Shellsort is not used, as it pollutes the number of
comparisons while providing only a small performance gain. Annealing Sort is
run with the parameters (gscale, h, q, c) = (0, 1, 1, 10). The meaning and value
of these parameters is further discussed in Section 3.1.2 and 5.4. Odd-Even
Mergesort uses a buffer to separate odd and even elements, as the performance
degradation of not doing so is massive, and further discussed in Section 5.5.
Additionally, Odd-Even Mergesort will use the strategy of performing two re-
cursive layers per pass through the data.

Pratt’s Shellsort and Shaker Sort will not be shown in this section, but are
instead evaluated in Section 5.3.
std::sort is included as a reference implementation of sorting.

∗ By C++11 std::sort is required to be O(n log n) worst case running time. To our knowl-
edge g++4.9 uses a variant of Introsort.
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5.2.1 Running Time and Comparisons

First and foremost, we must ensure that the algorithms conform to the expected
complexities of O(n log n) and O(n log2 n). If they do not do this, especially in
the case of comparisons, then something hints at an erroneous implementation,
or some other unexpected factor affecting performance.

First, let us consider comparisons. Figure 5.1 shows the number of compar-
isons performed for each algorithm. Keep in mind that the x-axis is logarithmic
and the y-axis is divided by n log n, which makes O(n log n) approach a flat line
and O(n log2 n) approach a straight line.

It is clear that that Randomized Shellsort performs a number of comparisons
that is O(n log n), and the constant factor is slightly below 5, which appears
consistent with theory.

Bitonic Sort and Odd-Even Merge sort both perform O(n log2 n) compar-
isons, as seen by the linear growth in y-axis from exponential growth in x-axis,
and, as expected, we see Odd-Even Mergesort perform slightly fewer compar-
isons than Bitonic Sort. Note that the despite being O(n log2 n), the amount
of comparisons performed by these two algorithms is actually not overly large.

Annealing Sort appears periodic in the number of comparisons, but it also
appears to be constrained between 10 and 12. This periodic behaviour can be
attributed to integer rounding of the r parameter of the annealing sequence, as
this is computed as log n

log log n , in floating point arithmetic, but must by necessity
of the annealing sequence be reduced to an integer.†

Now, let us look at the running times of the algorithms, which are shown
in Figure 5.2. Unfortunately, running times are nowhere near as predictable or
consistent with theory as the amount of comparisons, but they are however of
great practical importance.

Randomized Shellsort appears slow compared to the other algorithms, es-
pecially considering its low amount of comparisons compared to the sorting
networks, and at input sizes larger than 1× 106, it appears to grow faster than
O(n log n). An explanation for the slow running time of Randomized Shellsort
is given in Section 5.2.2. At sizes between 1.6 × 104 and 1 × 106, we see the
expected running time of O(n log n), which is consistent with theory.

Both Bitonic Sort and Odd-Even Mergesort show good performance, but
they are growing in O(n log2 n). We see that Odd-Even Mergesort is slower than
Bitonic Sort, despite performing fewer comparisons, which is interesting. Unlike
Randomized Shellsort and Annealing Sort, there appears to be no immediate
problem of going beyond 1× 106 elements for these two algorithms.

Annealing Sort is slow, as expected from the high number of comparisons.
At sizes between 1.6 × 104 and 1 × 106, the algorithm follows the O(n log n)
expected complexity well, but performance degrades rapidly at the 1 × 106

element mark. This performance degradation will, like that of Randomized
Shellsort, be further discussed in Section 5.2.2.
†

n 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

log n
log log n

3.01 3.18 3.35 3.51 3.68 3.84 4.00 4.16 4.32 4.47 4.63 4.78 4.93 5.08 5.23
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Figure 5.1: Comparison count of the algorithms
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Figure 5.2: Running time of the algorithms
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Figure 5.3: Instructions per Comparison of performed by the algorithms

5.2.2 Instructions and Cache Misses

Having shown that the algorithms behave somewhat reasonably, let us move
on to show why performance is not directly tied to the number of comparisons,
and why some algorithms run into problems at the 1× 106 element mark.

First, let us look at the amount instructions performed per comparison, as
shown in Figure 5.3. Note that all of algorithms converge towards a constant
amount of instructions per comparison, which bodes well for their implementa-
tion.

We see that Randomized Shellsort has a high number of instructions per
comparison, which helps explain why it is outperformed by the O(n log2 n)
sorting networks, despite having a similar or lower number of comparisons.

Bitonic Sort performs a low amount of instructions per comparison, which
is what makes it outperform Odd-Even Mergesort despite using higher number
of comparisons. The high number of instructions performed by the Odd-Even
Mergesort can be atributed to the procedure of moving odd and even elements
around between buffers.

Annealing Sort actually performs relatively few instructions per comparison,
since it is a simple algorithm. This is unfortunately not enough to balance out
the high number of comparisons in terms of final running time.

Now, let us move on to cache misses. Cache misses can be seen in Figure 5.4.
Keep in mind that test are performed on a machine with 4MB cache using signed
32-bit integers, which places the amount of elements fitting into cache at about
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Figure 5.4: Cache Misses of the algorithms

1× 106 elements.
Randomized Shellsort and Annealing Sort both start having major cache

problems around the cache limit, which explains their performance problems
when going above 1×106 elements. The high number fo cache misses is a direct
effect of their random access patter when comparing data, which both prevents
memory preloading, and leads to big jumps in accessed indexed of elements.

Bitonic Sort and Odd-Even Mergesort both perform few cache misses, since
they both work locally in terms of data access, and rely on linear access patterns
allowing the memory prefetcher to lower latency when crossing a cache line
border.

5.2.3 Branch Mispredictions

Throughout this section, we have made many interesting observations about the
data-oblivious algorithms, but unfortunately, they seem to be outperformed by
std::sort on every single performance metric. Though there is still one point
in which they can outperform classic data-dependent sorting algorithms.

Figure 5.5 shows the number of branch mispredictions performed by the
different algorithms.

The data-oblivious algorithms can all be seen to perform a number of branch
mispredictions that is either almost negligible, or O(n), since the Compare-Exchange
operation can be done without branching. std::sort, on the other hand, per-
forms a number of branch mispredictions that is O(n log n), since it is must
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Figure 5.5: Branch Mispredictions of the different algorithms

perform a branch for each comparison, and assuming uniformly random input
data, it will not be possible to reliably predict the result of this branch.

5.2.4 Experiment Results

The experiment shows that both of the new algorithms perform according to
their expected running times of Θ(n log n), for a significant part of the exper-
iment. These newer algorithms are however hindered by a large instruction
overhead and a poor cache performance, and are therefore somewhat slow in
practice.

Randomized Shellsort is notable in that it performs a low number of com-
parisons compared to Bitonic Sort and Odd-Even Mergesort as n increases,
which might prove useful in the field of secure multi-party computations.

Annealing Sort seems entirely unsuited for practical use.

5.3 Evaluating Shellsort Variants

Since Section 5.2 is already crowded, we have chosen to relocate the test for the
different variants of Shellsort to this separate section.

The tests follow an identical set-up to the one presented in Section 5.2,
using inputs that are a power of 2. Note that Shaker Sort, as mentioned in
Section 3.1.5, will use a sequence consisting of numbers b1.7jc + 1 < n and
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Figure 5.6: Comparison count of the algorithms

two 1− shakes to finish, and since the input is randomly generated, the initial
shuffle is omitted.

Bitonic Sort and std::sort are included for reference.

5.3.1 Running Time and Comparisons

Let us first consider the amount of comparisons and time spent in order to
sort the input, in order to verify the expected Θ(n log n) and O(n log2 n) com-
plexities of the algorithms. This will, like the previous performance test, show
us a great deal about the basic properties of the algorithm, and the overhead
associated with execution the algorithm.

Let us begin by considering the number of comparisons performed.
Pratt’s Shellsort can be seen performing a number of comparisons that is

both O(n log2 n) and slightly larger than that of Bitonic Sort. This is a noted
property from [A16], and the experiment confirms this.

Shaker sort performs an impressively low amount of comparisons, espe-
cially when compared to Randomized Shellsort, representing another take at
Θ(n log n) Shellsort variations. Given the b1.7jc + 1 jump sequence of Shaker
Sort, we expect the constant factor for the algorithms to be around 2·log(1.7)−1 ≈
2.6, which fits the experimental results.

Let us then look at the running time of the algorithms, to ensure that no
strange overhead is involved in sorting the data.

We see Pratt’s Shellsort perform slightly worse than Bitonic Sort, but still
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Figure 5.7: Running time of the algorithms

Θ(n log2 n), which can be explained by a higher number of Compare-Exchange
operations.

Shaker Sort shows great potential, performing much better than both the
Θ(n log2 n) algorithms and Randomized Shellsort. This places Shaker Sort in
a favourable position for further optimizations by applying parallel execution
schemes. Keep in mind though, that the unknown failure rate for Shaker Sort
might make it less desirable for practical use.

5.3.2 Instructions and Cache Misses

Now, let us look at the constant factors involved in the two Shellsort variants,
and determine whether cache performance might become a problem for larger
inputs, or if some of the algorithms might have an overly large instruction
overhead.

Let us start by evaluating the amount of instructions per comparisons, in
order to gain an insight into the performance overhead of the algorithms.

We see Pratt’s Shellsort perform an amount of instructions per comparison
that is slightly lower than that of Bitonic Sort, and much lower than Random-
ized Shellsort, while Shaker Sort is almost identical to Bitonic Sort in terms of
instructions per comparison. The low comparison overhead of the two Shellsort
variants is made possible by most of their execution consisting of a few nested
for-loops. They do however suffer from a difficulty in loop unrolling due to
having their jump sequences calculated at run-time.
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Figure 5.8: Instructions per Comparison of performed by the algorithms

When looking at cache misses, we see no immediate rise in the amount of
cache misses per comparison for the Shellsort variants when hitting the cache
limit. This is as expected, since both of these variants of Shellsort relies entirely
on performing one or two linear two-headed scans through memory per offset
in the jump sequence.

5.3.3 Branch Mispredictions

Again, let us look at the number of branch mispredictions for our data-oblivious
algorithms, as they are shown in Figure 5.10.

We see Pratt’s Shellsort and Shaker Sort perform the low amount of branch
mispredictions that we have come to expect from the first experiment. Again,
this is a desirable property of the algorithms when we must consider them for
parallel optimization schemes.

5.3.4 Experiment Results

The experiment shows that both Pratt’s Shellsort and Shaker Sort have excel-
lent performance characteristics.

Pratt’s Shellsort is slightly slower than Bitonic Sort, but this a by a small
margin, which is a symptom of performing a slightly higher amount of compar-
isons.

Shaker Sort is shown to be fast in practical applications, and might be a
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Figure 5.9: Cache Misses of the different algorithms

0

2

4

6

8

10

12

14

1000 10000 100000 1e+06 1e+07 1e+08

#
br

an
ch

m
is

pr
ed

ic
ti

on
s/
n

n

Branch mispredictions

RandShell
ShakerSort
BitonicSort

Pratt
std::sort

Figure 5.10: Branch Mispredictions of the different algorithms
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useful data-oblivious algorithm if one ensures somewhat random input data, or
accepts an unknown failure rate on certain input instances.

5.4 Finding Good Constants for Annealing Sort
Annealing Sort will, in the state that it is described in [A8], sort any given input
with a very high probability, but the parameters given for the different parts of
the annealing sequence result in an exceptionally slow sorting algorithm.

These constants are, like those of Randomized Shellsort, mostly an artefact
of an overly pessimistic analysis, and this section will show an experimental
exploration of suitable parameters.

The two parameters under test are gscale, and h, where gscale directly mod-
ifies g such that the length of the third part of the annealing sequence is⌊
gscale × 64e2 log n

⌋
+1 , and h is used in determining r, so that r =

⌊
h× log n

log log n

⌋
.

The values of c and q are not considered, as they only become relevant at larger
data sizes than those considered in the experiments.

Each test is performed by running the algorithm with a given set of param-
eter on 100 randomly generated inputs of fixed length.

5.4.1 Sorting Effectiveness

At first, let us consider how well the algorithm sorts, as lowering the constants
below the level where the algorithm has a reasonable chance of sorting would
be counter-intuitive.

Figure 5.11 and 5.12 show maps of the failure rate for n = 1024 and n =
8192 using varying values for h and gscale. From this data, we see that both
parameters influence the data in their own way.

For changing values of gscale, we see that for a matching h parameter, there
will be a sweet spot where the failure rate quickly decreases from 100% to 0%,
but this sweet spot moves as we increase n or h. We also find that higher values
of h, the gscale parameter can be set to 0 leading to only a single pass during
the last part of the annealing sequence.

For varying values of h we see that it is highly dependent on flooring after
multiplication by the logarithmic fraction, which leads to ’stepping’ in the fail-
ure rate dependent on n. We also see that choosing a value of h in the high
end of the spectrum of testing values will lead low failure rates. Especially
interesting is the fact that for n = 8192, h values greater than 0.6 leads to a
failure rate of 0 independent of the value of gscale.

5.4.2 Running Time

Having investigated how failure rate depended on h and gscale, let us consider
their effect on running time. Figure 5.13 and 5.14 show a map of running time
with varying values of h and gscale.

From these maps we see that running time is clearly dominated by the
contributions on the last phase, and the lower we scale its length, the better
the running time. In fact, for both data sizes, it is almost impossible to spot
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-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

h

gscale

Failure rate by h and gscale with n = 8192

0

20

40

60

80

100

Figure 5.12: Failure rate of Annealing Sort with n = 8192

67



-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

h

gscale

Time by h and gscale with n = 1024

0

500

1000

1500

2000

2500

Figure 5.13: Running time of Annealing Sort with n = 1024

the minor impact of increasing h, but it should be noted that it is definitely
there, just rather minor compared to the great effect of gscale.

5.4.3 Large n

From the previous experiments we learn two important lessons about the pa-
rameters used in constructing the annealing sequence for Annealing Sort;

1. Keep h high, for a low dependable failure rate.

2. Keep gscale low, for a faster running time.

Using this knowledge, we find the values of h = 1 and gscale = 0 to be likely
candidates for a speedy, reliable version of Annealing Sort. In order to verify
that these values does indeed sort with a high probability, tests were done using
these parameters, and large values of n, which gave the following results:

n 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
errors 0 0 0 0 0 0 0 0 0 0 0

Table 5.1: Annealing Sort errors for large n, from 100 runs

From these results, we assume that these parameters are sufficient in pro-
viding a low failure rate, and their use in other experiments can be accepted.
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Figure 5.14: Running time of Annealing Sort with n = 8192

5.4.4 Experiment Results

The experiment shows that using different parameters for Annealing Sort than
those suggested in [A8] can improve the performance of the algorithm without
negatively affecting the failure rate. This makes for a much faster version of
Annealing Sort for use in practical applications.

5.5 Cache Performance of Odd-Even Merge Sort

In Section 3.1.4 it is claimed that Odd-Even Mergesort benefits heavily from
using an additional Θ(n) storage as a buffer to permute elements into a more
memory-local ordering. Note that any efficient in-place permutation could eas-
ily replace this buffer, but efficient solutions for this problem do not appear
immediately feasible.

Let us quickly reiterate what the problem is. Odd-Even Merging requires
recursive calls to work on odd and even indices separately, which is often repre-
sented by providing a distance between elements to consider at the current level
of the merge. This will however completely thrash the CPU cache by accessing
elements in separate cache lines, leading to a massive performance degradation
when data sizes grow beyond what fits into to last cache layer. Swapping data
back and forth between a buffer easily solves this problem, at the cost of a
higher instruction count and memory usage.

Additionally, we have the opportunity to perform multiple layers of the
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Figure 5.15: Time overlaid with cache misses

recursive calls in each scan through the memory between each permuting step,
which could lead to a reduction in cache misses.

The tests are performed in the same way as those of Section 5.2, but com-
pares three executables, one using a buffer for Odd-Even Mergesort, one using
a buffer and performing 2 layers of operation per re-ordering, and one having
it disabled.

5.5.1 Running Time and Cache Misses

Figure 5.15 shows the running time of the algorithm variants overlaid with the
amount of cache misses per comparison performed. This shows a big difference
in the amount of cache misses incurred between the buffered and unbuffered
variants, and highlights the corresponding increase in running time for the
unbuffered version of Odd-Even Mergesort. Note that the increase in running
time makes the algorithm grow asymptotically faster than O(n log2 n) for inputs
larger than the CPU cache, while the buffered variants shows a running time
that is much more consistent with the running time suggested by the standard
RAM model. There seems to be almost no difference in running time between
the single-layered and double-layered buffering variants.

When looking at Figure 5.15, it is also clear that the unbuffered variant of
Odd-Even Mergesort grows faster than O(n log2 n) even for values well within
the cache limit. This observation might seem strange at first, but Figure 5.16
will show a reasonable explanation for this being the L1 cache layer. In the
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Figure 5.16: Time overlaid with cache misses

aforementioned figure, we can see the running time overlaid with the amount
of L1 cache load misses. The L1 cache is much smaller than the total CPU
cache, and the latency between L1 and the outer cache layer is much smaller
than the main memory latency, but still significant. We see that the unbuffered
variant of Odd-Even Mergesort incurs a lot more L1 load misses, which will
unfavourable affect running time, and helps explaining why it is slower, even
within cache limits.

The single-layered and double-layered variants show a significant difference
in L1 cache load misses, but not much of a difference in running time. This is
caused by the extra complexity required to compute the double-layered indices
counter-acting the performance gained from a slightly reduced number of L1
cache misses.

5.5.2 Experiment Results

The experiment show that moving data around in preparation to the recursive
calls of the Odd-Even Merging does indeed have a large and measurable effect
on performance. This shows that one must take care when implementing sort-
ing networks directly on the CPU and justifies our solution of using buffers.
Additionally, we can see that the two-layered cache-reordering strategy is feasi-
ble, but is not much better than performing a single layer per reordering. The
lower amount of L1 cache misses, combined with an almost identical running
time makes it favourable, but this might change depending on the development
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in cache speed versus instruction speed.

5.6 Branch Behaviour of Compare-Exchange Vari-
ants

In Section 3.6 we describe different ways implementing the Compare-Exchange
operation in such that it is possible to both eliminate the need for branches and
pipeline dependencies on conditional moves.

Measuring the effect of pipeline halts from conditional moves is difficult,
and their impact is heavily dependent on the underlying architecture. As such,
they are to be avoided, but we will unfortunately not be able to base this on
much more than good faith.

Branch mispredictions on the other hand are easily measurable and fitting
for experimentation. We measure the branch misprediction rate by running
the algorithms using both the branching variant and the xor variant of the
Compare-Exchange operation, subtracting the number of branch mispredictions
from the xor variant, and divide by the number of comparisons. The reasoning
for this way of obtaining branch misprediction rate being that using xor, we
obtain the number of branch mispredictions from the overhead instructions
of the algorithms, and any mispredictions that exceed this number should be
caused only by comparisons.

We note that there might be some collisions in predictions between overhead
and comparisons, but on a modern processor, this should be minor, especially
due to the low number of branch mispredictions normally incurred by the over-
head of the algorithms, as observed in Figure 5.5 and 5.10.

We observe that algorithms behave differently in terms of branch mispredic-
tion rates of comparison. Note that an optimal sorting algorithm for unknown
random inputs should mispredict about 50% of all comparisons.

The tests are performed in the same way as those of Section 5.2, but com-
pares two executables, one using the xor-based Compare-Exchange, and the
other using the branching variant based on std::swap.

5.6.1 Results

Figure 5.17 shows how many of the additional branches imposed by having a
data-dependent Compare-Exchange actually result in a branch-misprediction.

Randomized Shellsort shows a constant, but low amount of branch mispre-
dictions. This is likely due to the fact that it makes a large random amount of
comparisons, while being asymptotically optimal.

Annealing Sort also shows a low number of branch mispredictions, most
likely due to performing a large amount of comparisons. As n grows, we see
the misprediction rate grow slightly, which might be caused by the algorithm
moving slightly closer to the minimum amount of comparisons.

Bitonic Sort and Odd-Even Mergesort start off with a high number of branch
mispredictions, but this number decreases as n grows. This drop in mispre-
diction is most likely caused by the additional Θ(log n) factor of comparisons
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Figure 5.17: Branch Mispredictions of the different algorithms

performed. When considering Bitonic Sort, the merging step will be especially
graceful in branch mispredictions, as we should see them only when the two
halves of the bitonic sequences cross.

Pratt’s Shellsort is somewhat strange. It performs a non-optimal amount of
comparisons, yet shows little improvement as n increases, though it also starts
low. What causes this is hard to predict, but it might be due to the way Shellsort
variants often compare far-apart elements, as opposed to the somewhat local
merges of Bitonic Sort and Odd-Even Mergesort

Finally, we have Shaker Sort. Shaker Sort seems to express a high and
slightly growing amount of branch mispredictions. A plausible explanation for
this is the close-to-optimal amount of comparisons made by Shaker Sort, and
as n grows, the impact of the final 1-shakes somewhat gets dampened by the
growing amount of offsets in the jump sequence. Should n grow fairly large, we
would most likely see Shaker Sort converge towards some constant somewhere
between 35 and 50 percent.

5.6.2 Experiment Results

The experiment showed that one must indeed take care when implementing a
Compare-Exchange operation on the CPU, as it will induce a large amount of
branch mispredictions if it is not data-oblivious. With the big pipelines present
in modern CPU architectures, this might become important.

Also, we see that the different algorithms perform a highly variable, and not
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always predictable, amount of branch mispredictions, as input sizes grow.

5.7 SIMD Experiments

Section 3.2 describes how to use the new SSE4.1 instruction set to speed up
the operation of data-oblivious sorting algorithms. In this section, we show
how performance is affected in real-life implementations of the algorithms, and
show how different usages of the SIMD architecture can make or break the
performance gain. These experiments we focus on the instruction count and
running time, as these are the only metrics that change noticeably when using
SSE.

Note that performing two recursive calls in a single scan is not beneficial
when using SIMD, so Odd-Even Mergesort will only use the simple buffering
strategy.

5.7.1 Instructions

The immediate effect of using SSE instructions is a significant reduction in the
amount of operations required per comparison, due to having 4-way compar-
isons and intrinsic min/max operations. Figure 5.18 and 5.19 show the total
amount of instructions, and the number of instructions per comparison.

Both Randomized Shellsort and Odd-Even Mergesort show a reasonable
reduction in instruction count, but overhead from the general operations of the
algorithms overshadow the amount of operations tied up comparisons.

Bitonic Sort shows a massive reduction in instruction count from the appli-
cation of SIMD instructions. The massive gain for Bitonic Sort stems from the
low instruction overhead of the algorithm, since the benefit of using SIMD is
heavily dependent on the amount of operations dedicated to comparisons.

Pratt’s Shellsort and Shaker Sort also both show a big impact from SIMD
in the number of instructions performed. This big reduction in the amount
of instructions is most likely caused by the structure of the algorithms being
based entirely on nested for-loops. No extra instructions are spent setting up
recursive calls. Especially noteworthy is the low instruction count of Shaker
Sort, combined with an O(n log n) running time.

5.7.2 Time

Having shown the impact on the instruction count when using SSE operations,
let us consider the actual performance gain.

In Figure 5.20 we can see the actual running times, while Figure 5.21 shows
the performance gain. Table 5.2 shows the mean performance gain, as obtained
from the data shown in Figure 5.21.

Randomized Shellsort shows a small but noticeable gain from SSE instruc-
tions. The problem of using SIMD with Randomized Shellsort comes from the
need to fetch data into the SSE registers from separate locations in the memory
due to the random nature of the region comparison procedure.
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Odd-Even Mergesort shows a small but noticeable improvement from SSE
instructions. Odd-Even Mergesort has much more linear memory access pat-
terns than Randomized Shellsort, but they are unfortunately often shifted
away from 16-byte boundaries of memory, which prevents optimal SSE load
behaviour.

Bitonic Sort shows a massive improvement in running time when using SSE
instructions. This stems from the low overhead of the algorithm, coupled with
fully linear 16-byte aligned memory access patterns.

Shaker Sort shows a low running time, and a good improvement in run-
ning time from utilizing SSE instructions. Pratt’s Shellsort also shows a good
utilization of SIMD, but degrades rapidly at the cache limit on large inputs.
Figure 5.21 also shows an unstable impact of SIMD to Pratt’s Shellsort. We
have no evidence pointing to a single source causing the degradation in Pratt’s
Shellsort at larger input sizes, but the fact that Shaker Sort shows a similar
but smaller impact at a similar size, which lies close to the cache limit, suggests
un-aligned SIMD accesses outside of the cache as a possible cause. The sizes of
the subsequences processed by Pratt’s Shellsort are not monotonically ascend-
ing, as they are for Shaker Sort, and this causes the algorithm to continously
switch between SIMD and sequential execution, which is another possible cause
for the degradation in performance.

Algorithm Randomized Shellsort Bitonic Sort Odd-Even Mergesort Pratt Shaker Sort
Factor 1.08 2.81 1.12 2.87 2.16

Table 5.2: Mean gain from SSE
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Figure 5.20: Time with and without SIMD
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77



5.8 CUDA Experiments
Section 3.3 discusses the possibility of using CUDA to enable GPU-assisted
execution of sorting networks, to speed up their computations through massive
parallelism. This section shows the actual results of moving large parts of the
program to the GPU, and examines how much of a speed gain is attainable
both on old and new GPUs.

Programs were run on the machine described in Section 5.1, featuring a
graphics card that is targeted at professional GPU-intensive applications, but
is rather dated, and on a newer machine featuring a modern GPU targeted at
computer gaming.

The newer machine has the following specifications:

CPU: Intel i7-4810MQ, 2.8GHz, 6 MB Cache

RAM: 8GB

GPU: NVIDIA GeForce GTX 870M

Operating System: Ubuntu 14.04 LTS

All CUDA implementations were separately compiled objects, and linked
into the main program, to preserve sequential behaviour when CUDA is not
in use. The CUDA objects were written in CUDA C++, and compiled with
the following additional parameters, parameters separated by slashes varied
between GPU architectures.

-O3 Use the highest optimization level

-arch=compute_12 / -arch=compute_30 Optimize compilation for the speci-
fied architecture.

-code=sm_12 / code=sm_30 Optimize code generation for the specified archi-
tecture.

--maxregcount 16 Use a maximum of 16 registers per thread, allowing full
occupancy for all cards from CUDA 1.2 and up.

5.8.1 Improvements in Running Time

Since we are now comparing different architectures, it makes little sense to con-
sider hardware-specific metrics such as branch mispredictions and cache misses,
so let us instead focus entirely on the running time, and what gains can be made
by offloading parts of the program to the GPU.

Figure 5.22 and 5.23 show the running time of the different algorithms when
using CUDA on the different architectures. There are three main things to no-
tice in these, independent of the graphics cards. Firstly, Randomized Shellsort
has a much better time handling cache misses when using the GPU, since we
offload the random memory accesses to the GPU, and since the GPU has a
much higher memory bandwith than the GPU, it seems to cope better with
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Figure 5.22: Time with and without CUDA, Quadro FX 880M

these access patterns. Secondly, the other CUDA-assisted algorithms all seem
to perform well, and even seem to have a running time that is close to O(n log n)
in practice when they can use the GPU for massively parallel computations. Fi-
nally, CUDA-based Bitonic Sort outperforms all other algorithms on the chart.
This shows the power of migrating the entire algorithm to the GPU, and prop-
erly utilizing the memory manipulation options of the CUDA architecture.

In fact, let us further expand the view of the CUDA-enabled algorithms,
Randomized Shellsort excluded.

Figure 5.24 and 5.25 shows a view of a small selection of the included algo-
rithms, with std::sort. The graphs are given the same scale on the y-axis, so
the running times are directly comparable.

What we see here, is that the CUDA-assisted algorithms start out relatively
slow, but provide excellent scalability as the input size increases, and in fact
seem to be nearing an O(n log n) running time due to the massively parallel
execution. This comes as a big surprise in the case of the algorithms that
would normally be Θ(n log2 n), as the CUDA-implementations are supposed to
have similar asymptotic running times. It is hard to explain exactly how the
GPU achieves this, but most likely, the GPU scales well with a large amount of
threads, and the additional logarithmic factor is getting overshadowed by the
GPU scaling to larger input sizes.

Most impressive of all, are the running times presented in Figure 5.25, where
we see the CUDA-assisted sorting networks thoroughly outperform std::sort.

Finally, let us consider how much the individual algorithms benefit from
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allowing CUDA-execution of certain sections. Figure 5.26 and 5.27 shows the
factor with which we can reduce the running times of the algorithms depending
on the graphics card.

For Randomized Shellsort, we see a small but noticeable gain when input
sizes grow, which can be explained by the work sharing between GPU and CPU.
Note that the GPU-assisted verison of Randomized Shellsort does not seem to
be impacted as heavily by the cache limit as as the seqeuntial one.

For the Shellsort variants, we see a respectable gain. This gain is caused
by the adaptability of h-shakes on the GPU, as these exhibit both excellent
parallelism, but also good memory access patterns. The Shellsort variants do
however suffer from not having their entire execution moved to the GPU. Note
that Pratt’s Shellsort benefits more from GPU-acceleration than Shaker sort,
which might be due to either having a larger amount of high-distance h-shakes,
or simply being slightly slower on the CPU.

The last algorithms, Bitonic Sort and Odd-Even Mergsort shows massive
gains from applying CUDA execution. This is due to being moved to the GPU
in their entirety, and having excellent adaptability to parallelism. The newer
graphics card show an exceptional performance gain compared to the specialized
card from the older machine. Note that the slightly larger gain to Bitonic sort
compared to Odd-Even Mergesort due to the utilization of thread-local memory.
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5.8.2 Experiment Conclusion

The experiment showed that many of the algorithms benefit well from GPU-
assisted execution, but the amount of speed-up gained varies widely between
the different algorithms.

We’ve seen that with the Θ(n log2 n) algorithms, the GPU-parallelism seems
the somehow make up for the additional logarithmic factor in execution time,
and make these algorithms approach an O(n log n) running time in practise.

Especially the classic sorting networks of [A2] show a great suitability for
GPU sorting, and even beats std::sort on modern hardware.

5.9 OpenMP Experiments

Section 3.4 describes the possibility of OpenMP-assisted multi-threading in
most of the data-oblivious sorting algorithms used in this thesis. In that sec-
tion, we also describe how each individual algorithm has been modified in order
to support classical multi-threading.

In this set of experiments we extend our findings with experimental data
showing the impacts of multi-threading.

Keep in mind that the Intel i7-M620, is a dual-core CPU using hyper-
threading, which gives us two physical cores, able to run four simultaneous
threads. This should give us an upper limit on the speed-up achieved to be
four, but in practise this will be far from achievable.

The setups of the algorithms are identical to those of Section 5.2 and 5.3.
Annealing Sort is not included, due to being highly serial.

5.9.1 Running Time

Let us start by looking at the actual running time of the algorithms. Figure 5.28
shows the factor gained in execution speed when OpenMP is applied, as a
measure of wall-clock time for each algorithm. The value for the largest input
size is shown are collected in Table 5.3.

Algorithm Randomized Shellsort Bitonic Sort Odd-Even Mergesort Pratt Shaker Sort
Factor 1.07 1.14 1.18 1.50 1.29

Table 5.3: OpenMP gain for largest input size, 224

Randomized Shellsort gets a small improvement from multi-threading, since
some parts of the algorithm can be executed in parallel, though a great deal
synchronization is required.

Both Bitonic Sort and Odd-Even Mergesort show a better application of
multi-threading, and achieve a higher improvement in running time, due to the
recursive calls adapting well to the task-based methodology of OpenMP.

Finally we see the two normal Shellsort variants both achieve a substantial
improvement in running time by using OpenMP. This great benefit of multi-
threading in the simple Shellsort variants stems from the intrinsic separation of
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Figure 5.28: Running Time improvement by OpenMP application

sub-sequences in the algorithms. Pratt’s Shellsort impressively tops the chart
by having many sub-sequences that divide evenly into the amount of threads,
and handling these in a simpler manner than Shaker Sort.

These running times all show that we are far from even utilizing both cores
fully, and even further from the 4-factor speedup that might be possible when
fully utilizing hyper-threading. Let us further investigate why we are not any-
where near maximum utilization.

5.9.2 Instructions, Cache Misses and Branch Mispredictions

In order to explain the non-optimal utilization of CPU time, we must study the
low-level hardware characteristics.

Instructions are a major factor in execution time, and each type of algorithm
is affected differently when applying multi-threading. Randomized Shellsort
sees a slightly increased instruction count due to threading overhead, but the
high baseline instruction count keeps this impact low. Bitonic Sort and Odd-
Even Mergesort both see a minor effect from multi-threading, and there is even
a reduction in instructions. This effect is strange, but is likely due to the low
instruction overhead of OpenMP tasks, and some compiler magic ‡. Finally, we
see Pratt’s Shellsort and Shaker Sort having a high instruction overhead, due
to complicated threading control, and a low baseline.
‡Compilation is done using Ofast, which favours speed over executable size, which may

have an adverse effect on instruction count.
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Figure 5.30: Cache degradation by OpenMP application
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Figure 5.31: Branch degradation by OpenMP application

For the L1 cache misses, we see Randomized Shellsort having a small in-
crease, due to a high baseline. The other algorithms show a moderate increase
in L1 cache misses due to data sharing between the CPU cores.

In branch misses, we see almost no increase for Randomized Shellsort, due to
a high baseline. Bitonic Sort increases slightly, due to thread synchronization,
while Odd-Even Mergesort strangely decreases §. The two variants of Shellsort
see major increase in branch mispredictions, due to having a great amount of
logic applied in the scheduling of threads, and a low baseline.

5.9.3 Experiment Conclusions

This set of experiments shows that OpenMP is a viable strategy for improv-
ing the performance of data-oblivious sorting algorithms, though not nearly
as effective as SIMD and CUDA. We also identify several performance issues
keeping the OpenMP implementation from achieving the maximum possible
performance gain.

§ Explaining a decrease in branch mispredictions when applying multi-threading is difficult.
Possible causes might be changes in the inlining strategy, or a collision in prediction counters
when operating in single-threaded mode. Alternatively, having each recursive call separated
to a single thread might prevent mispredictions across calls.
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5.10 Experimental Results Summary
As a concluding figure for this chapter, we present Table 5.4, that shows the
execution time, in seconds, for each algorithm and optimization scheme for the
largest available input size. Each algorithm has had the fastest optimization
scheme marked in bold. Note that the OpenMP results are slightly skewed
towards a higher value than that of the other optimization schemes, as the
high-precision CPU-time clock is not applicable to multi-threading.

Base SIMD CUDA OpenMP
Randomized Shellsort 22.6 20.2 20.1 21.5
Bitonic Sort 6.41 2.02 1.80 5.61
Odd-Even Mergesort 8.15 7.60 2.76 7.02
Pratt’s Shellsort 8.82 4.50 4.11 5.85
Shaker Sort 3.48 1.75 2.46 2.65
Annealing Sort 67.3 - - -

Table 5.4: Algorithm performance overview
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Chapter 6

Conclusion

6.1 General Conclusions

In this thesis we have shown that data-oblivious sorting algorithms, despite
often being confined either hardware or theory, can easily be implemented in
software while still maintaining both their data-oblivious properties and having
running times that are entirely reasonable.

We also find that several new developments in hardware greatly benefit
the performance of data-oblivious sorting networks, as they often contain high
levels of parallelism. Especially impressive is the performance of classic sorting
networks when properly modified to fully utilize the GPU, where they can
achieve running times beneath that of the highly optimized sorting algorithm
provided by the C++ standard library.

Two common problems for data-oblivious sorting algorithms appear to be
cache misses and sub-optimal asymptotical instruction counts. Most likely we
will see these algorithms improve, as hardware developments focuses on larger
caches as opposed to clock frequency, the problem of cache misses might be
diminished, while the algorithms showing sub-optimal instruction counts can
be migrated to the GPU, where large improvements in pure processing power
is still occurring.

Preliminary results for automatic vectorization techniques show promising
results in reducing the amount of operations required to execute sorting data-
oblivious sorting algorithms, though modern compilers are still not up to the
task of recognising sorting networks in order to apply the required transforma-
tions.

In short, the work of this thesis should show that data-oblivious sorting net-
works, while they might have some problems when implemented in a straight-
forward sequential manner, are still entirely relevant due to modern hardware
developments.

6.2 Further Work

Due to the broad coverage of algorithms and optimization techniques covered
in this thesis, there are a significant number of subjects left open for further
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research.
The automatic vectorization and reordering techniques of Chapter 4 could

be implemented as a compiler module or an extension to an existing language
runtime in order to test the actual effectiveness. This would allow for compar-
isons with already existing techniques, and enable collection of data both on
the performance and detection rate of automatic vectorization.

Several additional algorithms could be included in the experiments, includ-
ing the Pariwise Sorting network of [A5] and the Pairwise Sorting network [A14]
are both easy to implement on modern hardware and might prove to be efficient
in practice. The reduced number of comparisons achieved in [A21] might prove
to have a beneficial effect on performance and experimenting with a greater
amount of merging sequences could give interesting results.

The optimization techniques presented in Chapter 3 are implemented and
tested separately, but it might be beneficial to combine some of these techniques.
When subproblems become too small for efficient CUDA execution, switching to
SIMD or OpenMP is a definite possibility. Additionally, many of the OpenMP-
optimized algorithms still allow for SIMD operations to be used.

90



Primary Bibliography

[A1] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(N log N) Sort-
ing Network. In Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, STOC ’83, pages 1–9, 1983.

[A2] Kenneth E. Batcher. Sorting Networks and Their Applications. In Pro-
ceedings of the April 30–May 2, 1968, Spring Joint Computer Conference,
AFIPS ’68 (Spring), pages 307–314, 1968.

[A3] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy,
Mostafa Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and
Pradeep Dubey. Efficient Implementation of Sorting on Multi-core SIMD
CPU Architecture. Proc. VLDB Endow., 1(2):1313–1324, August 2008.

[A4] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci. Eng.,
5(1):46–55, January 1998.

[A5] Martin Dowd, Yehoshua Perl, Larry Rudolph, and Michael Saks. The
Periodic Balanced Sorting Network. J. ACM, 36(4):738–757, October
1989.

[A6] Timothy Furtak, José Nelson Amaral, and Robert Niewiadomski. Using
SIMD Registers and Instructions to Enable Instruction-level Parallelism
in Sorting Algorithms. In Proceedings of the Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’07, pages
348–357, 2007.

[A7] Michael T. Goodrich. Randomized Shellsort: A Simple Oblivious Sort-
ing Algorithm. In Proceedings of the Twenty-first Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’10, pages 1262–1277, 2010.

[A8] Michael T. Goodrich. Spin-the-Bottle Sort and Annealing Sort: Obliv-
ious Sorting via Round-Robin Random Comparisons. Algorithmica,
68(4):835–858, 2014.

[A9] Michael T. Goodrich. Zig-zag Sort: A Simple Deterministic Data-
oblivious Sorting Algorithm Running in O(N log N) Time. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, STOC ’14,
pages 684–693, 2014.

91



[A10] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha.
GPUTeraSort: High Performance Graphics Co-processor Sorting for
Large Database Management. In Proceedings of the 2006 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’06,
pages 325–336, 2006.

[A11] Janet Incerpi and Robert Sedgewick. Practical Variations of Shellsort.
Inf. Process. Lett., 26(1):37–43, September 1987.

[A12] David Levine, David Callahan, and Jack Dongarra. Paper: A compara-
tive study of automatic vectorizing compilers. Parallel Comput., 17(10-
11):1223–1244, December 1991.

[A13] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and
David A. Padua. An evaluation of vectorizing compilers. In Proceed-
ings of the 2011 International Conference on Parallel Architectures and
Compilation Techniques, PACT ’11, pages 372–382, 2011.

[A14] Ian Parberry. The Pairwise Sorting Network. Parallel Processing Letters,
2(02n03):205–211, 1992.

[A15] Bruce Parker and Ian Parberry. Constructing sorting networks from k-
sorters. Information Processing Letters, 33(3):157–162, 1989.

[A16] Vaughan Ronald Pratt. Shellsort and Sorting Networks. PhD thesis,
Stanford University, 1972. AAI7216773.

[A17] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen,
Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast Sort on CPUs
and GPUs: A Case for Bandwidth Oblivious SIMD Sort. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 351–362, 2010.

[A18] Donald L. Shell. A High-speed Sorting Procedure. Commun. ACM,
2(7):30–32, jul 1959.

[A19] Nils Smeds. OpenMP Application Tuning Using Hardware Performance
Counters. In Proceedings of the OpenMP Applications and Tools 2003
International Conference on OpenMP Shared Memory Parallel Program-
ming, WOMPAT’03, pages 260–270, 2003.

[A20] N. Sreraman and R. Govindarajan. A vectorizing compiler for multimedia
extensions. Int. J. Parallel Program., 28(4):363–400, August 2000.

[A21] David C. Van Voorhis. A Generalization of the Divide-sort-merge Strat-
egy for Sorting Networks. Technical report, 1971.

[A22] Mark A. Weiss and Robert Sedgewick. Bad Cases for Shaker-sort. Inf.
Process. Lett., 28(3):133–136, July 1988.

92



[A23] Tian Xiaochen, Kamil Rocki, and Reiji Suda. Register Level Sort Algo-
rithm on Multi-core SIMD Processors. In Proceedings of the 3rd Work-
shop on Irregular Applications: Architectures and Algorithms, IA3 ’13,
pages 9:1–9:8, 2013.

[A24] Keliang Zhang, Jiajia Li, Gang Chen, and Baifeng Wu. Gpu Accelerate
Parallel Odd-even Merge Sort: An OpenCL Method. In Computer Sup-
ported Cooperative Work in Design (CSCWD), 2011 15th International
Conference on, pages 76–83. IEEE, 2011.

93



94



Secondary Bibliography

[B25] Sean Eron Anderson. Bit Twiddling Hacks.

[B26] Owen Astrachan. Bubble Sort: An Archaeological Algorithmic Analysis.
In Proceedings of the 34th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’03, pages 1–5, 2003.

[B27] Marina Blanton and Everaldo Aguiar. Private and Oblivious Set and
Multiset Operations. In Proceedings of the 7th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS ’12, pages
40–41, 2012.

[B28] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious
Graph Algorithms for Secure Computation and Outsourcing. In Proceed-
ings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, pages 207–218, 2013.
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Appendix A

Shared Memory for
CUDA-Based Bitonic Sort

As mentioned in Section 3.3, utilizing shared memory for Bitonic Sort can be
a big gain, and the graphs in the experiments section take advantage of this
fact. To further strengthen this claim, we have shown the effect of omitting the
usage of shared memory in Figure A.1.

The figure clearly shows a major improvement in running time when utilizing
shared memory.
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Figure A.1: Running time of CUDA-based Bitonic Sort with and without shared
memory, Quadro FX 880M

100



Appendix B

Fixed Sizes for Bitonic Sort

In Section 3.1.3 it is claimed that using fixed sizes for Bitonic Sort improves
performance.

To support this claim, we have Figure B.1, that shows the optimized Bitonic
sort in the experiments, compared to a version of Bitonic Sort that supports
arbitrary input sizes, shown in the graph as BitonicSort_nolimit.
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Figure B.1: Running time for Bitonic Sort, with and without fixed sizes
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Appendix C

PRNG Effect on Performance

Choosing a random number generator with good performance is very important
for Randomized Shellsort, as noted in3.5.

To show how big an effect the choice of PRNG actually has, which is shown
in Figure C.1, where the optimized PRNG used in the experiments is compared
to rand and mt19937 from the C++ standard library, shown in the graph as
respectively as postfixes _rand and _stdrandom.
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Figure C.1: Running time for Randomized Shellsort, with varying PRNGs
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