
Comparison and Construction of
Phylogenetic Trees and Networks

Konstantinos Mampentzidis

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Comparison and Construction of
Phylogenetic Trees and Networks

A Dissertation
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Konstantinos Mampentzidis

November 7, 2019

Abstract

In this thesis we consider three algorithmic problems that appear in com-
putational biology and are mainly about comparing and constructing rooted
phylogenetic trees and networks. A rooted phylogenetic tree is a rooted un-
ordered tree that is used to represent evolutionary relationships among species.
A rooted phylogenetic network is a rooted directed acyclic graph, and is able
to represent more complex evolutionary relationships that arise because of
reticulation events such as horizontal gene transfer and hybridization.

The first problem is about computing the rooted triplet distance between
two rooted phylogenetic trees that are built on the same leaf label set. We
provide two new algorithms that are cache oblivious, one optimized for bi-
nary trees and another that works for trees of arbitrary degree. Our algo-
rithms achieve the best time and space bounds in the RAM model, and at
the same time are the first to scale to external memory. We implement our
algorithms and compare them experimentally against previous state-of-the-
art algorithms, and show that our algorithms achieve the best performance in
practice.

The second problem is about computing the rooted triplet distance be-
tween two rooted phylogenetic networks that are built on the same leaf la-
bel set. Previous algorithms were either based on a trivial approach or only
worked under certain restrictions on the degrees of the nodes of the two input
networks. We provide algorithms that have no such restrictions, as well as im-
plementations and extensive experiments on both simulated and real datasets
illustrating their practical performance.

Finally, the third problem is about constructing rooted phylogenetic trees,
where the input is a set of binary trees on three leaves over a leaf label set, and
the objective is to construct a rooted phylogenetic tree that has as embedded
subtrees the largest number of input trees. This turns out to be an NP-Hard
problem. Previous approximation algorithms produced trees with an arbitrary
number of internal nodes, some even always produced binary trees. We study
the computational complexity of the version of this problem, where there is a
constraint on the number of internal nodes that the output tree is allowed to
have. We provide several inapproximability results, approximation algorithms,
as well as implementations and extensive experiments on both simulated and
real datasets.

i

Resumé

I denne afhandling studeres tre algoritmiske problemstillinger fra Computa-
tional Biology, hvor man ønsker at sammenligne og konstruere rodede fylo-
genetiske træer og netværk. Et rodfæstet fylogenetisk træ er et rodfæstet ikke-
ordnet træ som anvendes til at repræsentere evolutionære relationer mellem
arter. Et rodfæstet fylogenetisk netværk er en rodfæstet acyklisk graf, som
kan repræsentere mere komplekse evolutionære relationer som opstår på grund
af reticulation hændelser, som f.eks. horisontal genoverførsel og hybridisering.

Det første problem er at beregne tripletafstanden mellem to rodede fy-
logenetiske træer, der er bygget over den samme mængde af bladmærker. I
afhandlingen præsenteres to nye algoritmer som er “cache oblivious”, hvor
den ene algoritme er optimeret til binære træer og til træer af vilkårlig grad.
Algoritmerne opnår de bedst kendte udførselstider og pladsforbrug i RAM
modellen, og er de første algoritmer der skalerer til ekstern hukommelse. Al-
goritmerne er blevet implementeret og sammenlignet eksperimentelt med de
hidtil bedste algoritmeimplementeringer. De præsenterede algoritmer opnår i
praksis den bedste performance.

Det andet problem er at beregne tripletafstanden mellem to rodede fy-
logenetiske netværk, der er bygget over den samme mængde af bladmærker.
De hidtidige algoritmer var enten baseret på en triviel tilgang eller kunne
kun håndtere netværk med begrænsninger på graderne af knuderne i de to
netværk. I afhandlingen præsenteres algoritmer der undgår sådanne input-
begrænsninger, og algoritmerne er blevet implementeret og omfangsrigt eval-
ueret på både simulerede og virkelige datasæt for at illustrere deres praktiske
performance.

Endelig, så er det tredje problem at konstruere rodede fylogenetiske træer,
hvor inputtet er en mængde af binære træer med tre blade, hvor bladene er
markeret med mærker fra en mængde af bladmærker, og hvor målet er at kon-
struere et fylogenetisk træ, som har det største antal inputtæer som indlejrede
deltræer. Dette problem er NP-hårdt. Hidtidige approksimationsalgoritmer
producerede træer med et vilkårligt antal indre knuder, nogle algoritmer så-
gar altid binære træer. I afhandlingen studeres beregningskompleksiteten for
varianten af problemet, hvor der er en begrænsning på hvor mange interne
knuder outputtræet må have. Der gives en række ikke-approksimere resul-
ter, approksimationsalgoritmer præsenteres, og algoritmerne er blevet imple-
menteret og omfangsrigt evalueret på både simulerede og virkelige datasæt.

iii

Preface

This thesis is based on the following three papers, one for each problem stated
in the abstract:

[11] Gerth Stølting Brodal and Konstantinos Mampentzidis. Cache Oblivi-
ous Algorithms for Computing the Triplet Distance Between Trees. In
25th Annual European Symposium on Algorithms (ESA 2017), volume
87 of Leibniz International Proceedings in Informatics (LIPIcs), pages
21:1–21:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 2017.

[52] Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and
Wing-Kin Sung. Computing the Rooted Triplet Distance Between Phy-
logenetic Networks. In Combinatorial Algorithms, pages 290–303. Sprin-
ger International Publishing, 2019.

[51] Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpa-
dan Puthiyaveedu. Building a Small and Informative Phylogenetic Su-
pertree. In 19th International Workshop on Algorithms in Bioinformat-
ics (WABI 2019), volume 143 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 1:1–1:14. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. 2019.

In Chapter 1 we start by giving a concise statement about the algorith-
mic problems considered in this thesis. Then, we provide an introduction to
algorithms, models of computation, and algorithm engineering. Finally, for
every paper listed above, we provide a survey of previous results as well as an
overview of our contributions. Chapters 2, 3, and 4 contain the full versions
of our papers and are currently submitted to journals for review. Finally,
in the appendix we include additional algorithms and experiments related to
Chapters 2, 3, and 4.

v

Acknowledgments

There are a lot of people who supported me during my PhD, and for that I
am very thankful. It would probably take several pages to list all of them, and
tomorrow, when the submission deadline has passed, I will most likely realize
that I forgot someone and then feel bad about it. This is why I would like to
mention the ones who I feel have had a significant impact.

I would like to thank Gerth Stølting Brodal for being the best advisor
anyone could ever hope for. Without Gerth, none of this would be possible.
Moreover, I would like to thank Lars Arge for creating MADALGO and giving
me the opportunity to join the group as a PhD student. Such a great atmo-
sphere in the group, so many activities, talks, and seminars to get inspired
from. I feel very lucky to have been a member of such an amazing group.
I would also like to thank Trine Ji Holmgaard Jensen for the many years of
support she has provided to me as the center manager of MADALGO.

I would like to thank my professors from Greece Anastasios Gounaris,
Kostas Tsichlas, and Yannis Manolopoulos for their support when applying
for my PhD program. I am especially very thankful to Kostas Tsichlas for
forwarding me an email he received from Gerth when Gerth was looking for
new PhD students, which would then lead to me applying.

I would like to thank my co-authors Gerth Stølting Brodal, Jesper Jansson,
Wing-Kin Sung, Sandhya Thekkumpadan Puthiyaveedu, and Ramesh Rajaby
for all the fun research we have conducted together. In particular, I would like
to thank Jesper Jansson for accepting me to come visit him in Hong Kong.
My 5 month stay in Hong Kong has been the best experience of my life. Our
meetings and discussions in Hong Kong with Jesper and our collaboration in
the remaining year of my PhD education have been invaluable.

I would like to thank Martin Storgaard Dieu for the several course related
projects we worked on together during my first two years as a PhD student.
Our collaboration was very fruitful and most importantly fun.

I would like to thank Aarhus University for providing such a great learning
environment at the Computer Science Department. I am especially thankful
for giving me the opportunities to be a teaching assistant in the undergraduate
course on algorithms and data structures.

I would like to thank Christian Nørgaard Storm Pedersen and Aslan
Askarov for being in my PhD support group and for all the advice they have

vii

viii

given to me since the beginning of my PhD education.
I would like to thank all my friends for their support, especially Kallidoros

Chatzopoulos and Giorgis Nomikos for all the fun times together and for
regularly reminding me that life is not only about work.

I would like to thank my dear grandmother Nina Sachno and aunt Louiza
Mampentzidou for being very close to my family and their moral support all
these years.

Finally and most importantly, I would like to thank my parents Liountmila
Mampentzidou and Ioannis Mampentzidis, as well as my brothers Dimitrios
Mampentzidis and Alexandros Mampentzidis, for being such a great family,
for always supporting me, and always believing in me.

Konstantinos Mampentzidis,
Aarhus, July 31, 2019.

Post-submission updates – November 7, 2019

1. Updated reference [51] after the proceedings were published.
2. Clarified the definition of the consistency of a triplet with a network

or a block to cover a special case. Places affected: second paragraph of
pages 15 and 63, first paragraph of page 79, and the items A and B in
the concluding remarks of page 88.

3. Fixed a reference in the second paragraph of page 17.
4. In the statement of Lemma 2, it should be |T | instead of n.
5. In the proof of Lemma 2: removed the unnecessary dependency that

existed before for T to be left-heavy.
6. In page 37 and the sentence before Theorem 1: emphasized the connec-

tion between |T | and n.
7. In the list of page 54: changed the steps to emphasize that in our imple-

mentation we first create the components comp(T1(ul)) and comp(T2(ul))
and recurse on them, then after we return from the recursive call we
create the components comp(T1(ur)) and comp(T2(ur)) and recurse on
them, and finally, after we return from the recursive call we create the
components comp(T1(up)) and comp(T2(up)) and recurse on them.

8. In the second list of page 55: clarified the choice for |Λl|.
9. Corrected the statements of Lemmas 14 and 15, to require the lowest

common ancestor of every pair of leaves (x, y), (x, z), and (y, z) to be w.
Before we had that the lowest common ancestor of x, y, and z is w.
Similarly, the captions of Algorithms 7 and 8 were updated.

10. The rest of the updates are typos and language corrections.

Contents

Abstract i

Resumé iii

Preface v

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Algorithms and Models of Computation 2
1.2 Algorithm Engineering . 4
1.3 Comparing Phylogenetic Trees 5
1.4 Comparing Phylogenetic Networks 13
1.5 Building Small and Informative Supertrees 22

2 Cache Oblivious Algorithms for Computing the Triplet
Distance Between Trees 29
2.1 Introduction . 30
2.2 Previous Approaches . 33
2.3 The New Algorithm for Binary Trees 34
2.4 The New Algorithm for General Trees 43
2.5 Implementation . 53
2.6 Experiments . 55
2.7 Conclusion . 59

3 Computing the Rooted Triplet Distance between Phylo-
genetic Networks 61
3.1 Introduction . 62
3.2 A First Approach . 66
3.3 A Second Approach . 71
3.4 Implementation and Experiments 85
3.5 Concluding Remarks . 88

ix

x Contents

4 Building a Small and Informative Phylogenetic Supertree 91
4.1 Introduction . 92
4.2 Computational Complexity of q-MAXRTC 95
4.3 Approximability of q-MAXRTC 96
4.4 Implementation and Experiments 103
4.5 Motivation for q-MAXRTC: Faster Rooted Triplet Distance 107
4.6 Concluding Remarks . 113

A Additional Experiments for Chapter 2 117

B Additional Algorithms and Experiments for Chapter 3 135

C Additional Algorithms and Experiments for Chapter 4 143

Bibliography 149

Chapter 1

Introduction

In this thesis we consider three algorithmic problems that appear in com-
putational biology and are mainly about comparing and constructing rooted
phylogenetic trees and networks.

In biology, the evolutionary relationships that exist between species are
commonly represented by a rooted phylogenetic tree. The leaves in such a
tree can correspond to species that exist today and internal nodes to ancestor
species that used to exist in the past. When studying the evolution of a
fixed set of species, because of the different available data and algorithms
that are used to construct the phylogenetic trees, it is possible to obtain two
trees with the same leaf label set that look structurally different. Quantifying
this structural difference is essential to improve the quality of evolutionary
inferences. Hence, it becomes natural to ask the following: Given two rooted
phylogenetic trees that are built on the same leaf label set, how different are
they? A popular distance measure that is used in the literature, and we also
consider in this thesis, is the rooted triplet distance [25].

Trees are simple data structures that only model the transfer of genes
from ancestors to their direct descendants, i.e., from parents to their children.
However, evolution consists of more complicated events, called reticulation
events [43], that can make it possible for genes to be transferred between
unrelated species (e.g., hybrid species). A tree is by definition an undirected
graph with no cycles, thus it cannot be used to represent reticulation events.
Instead, a rooted phylogenetic network that has a rooted directed acyclic graph
as an underlying structure is used. Such a network can represent both the
events that a tree represents, as well as the reticulation events. Note that
a tree can be thought of as a network with no reticulation events. For the
same reasons as with trees, it becomes useful to define distance measures for
the comparison of two rooted phylogenetic networks that are built on the
same leaf label set. In this thesis, we consider the extension by Gambette
and Huber [33] of the rooted triplet distance measure from the case of rooted
phylogenetic trees to the case of rooted phylogenetic networks.

1

2 Chapter 1. Introduction

Finally, we consider the problem of constructing rooted phylogenetic trees
from a given set of observations. This is commonly referred to in the litera-
ture as the supertree problem [9]. There are many different variations of this
problem. We propose and study the computational complexity of a natural
combination of the two problems considered in [48] and [13].

1.1 Algorithms and Models of Computation

Algorithms are recipes for solving all kinds of problems. Different algorithms
lead to different solutions, some more preferred over others. For example, let
us say that you want to travel from Aarhus to Copenhagen by plane. One
possible algorithm is to fly from Aarhus to Athens, and then fly from Athens
to Copenhagen. Another algorithm is to fly from Aarhus to Copenhagen
directly. Which of the two algorithms is better and why? If time is the
main concern and assuming good enough flight conditions, then obviously the
latter algorithm is better. If cost is the main concern, then the answer to this
question depends on the plane tickets’ prices.

In Computer Science and in this thesis, we consider problems that are
computational, i.e., problems that can be solved by a computer and the algo-
rithms of which would typically require a lot more time to execute by hand
instead of by a computer (e.g., sorting 1 million numbers in ascending order).
Such a problem consists of a description of the input (e.g., n numbers), as
well as a description of the output (e.g., the n numbers sorted in ascending
order). Then, given a valid input, an algorithm consists of a sequence of in-
structions/operations that are intended for the computer to perform in order
to produce the desired output.

The process of creating a new algorithm to solve a problem consists of
three phases. In the first phase, we design the algorithm, where the sequence
of operations to be performed by the computer is described. An important
aspect of algorithm design is to also decide how the data should be organized
in memory, i.e., which data structure to use, in order to be able to support
the operations as efficiently as possible. In the second phase, we prove the
correctness of the algorithm, where we show that for any valid input, the
algorithm will produce an output, and that the output produced will always
be the desired output. In the third and final phase, we analyze the algorithm
where we prove some guarantees about the algorithms’ resource requirements,
for example time (how long will we have to wait for the output?) and space
(how much memory will the algorithm need to use?) requirements.

Algorithms are designed and analyzed following a model of computation,
where the information about the operations that an algorithm is allowed to
perform, and the amount of memory that an algorithm is allowed to use is
precisely defined. In this thesis, we mainly consider the word RAM model and
the cache oblivious model.

1.1. Algorithms and Models of Computation 3

1.1.1 Word RAM Model

The word RAM (word random access machine) model [31] is an extension
of the RAM (random access machine) model [75], and resembles closely how
modern computers work. The RAM model dates back to the work of Von Neu-
mann in the 1940s. In this model, the computer has access to an unlimited
amount of main memory, and every typical operation that can be performed
by a processor on a register (e.g., +, ∗, −, =, /, load, store) is said to require 1
unit of time. One drawback of this model is the assumption that the size of a
register is assumed to be unlimited, meaning that for e.g., adding two numbers
of arbitrary size would only require 1 unit of time. However, in modern com-
puters a typical register can only hold 32 or 64 bits. To capture this, in the
word RAM model the main memory is divided into cells, called words. Each
word can hold w bits, and every typical operation, including bit-shift opera-
tions, is applied on words and assumed to require 1 unit of time. What makes
this model more realistic is the fact that the size of a word is limited. More
precisely, if n is the number of words in a given input, then w is large enough
so that we are able to at least index any word in the input, i.e., w ≥ c logn,
where c is a large enough non-negative constant.

When analyzing algorithms in this model, we are interested in the time
and space analysis. For the time analysis, one approach is to count exactly
how many operations an algorithm performs as a function t(n), where n is
the input size. This however would be both tedious and mainly useful for
small n, as when n becomes large enough, constants and lower-order terms
of t(n) have an insignificant impact to the growth of t(n). For this reason, we
consider the asymptotic behavior [21, Chapter 3] of t(n) as n increases, instead
of its exact behavior. For the space analysis we follow a similar approach,
except now we define a function s(n) that is the maximum number of words
allocated at any given point of time during the execution of an algorithm.
Note that a trivial relationship between t(n) and s(n) is t(n) ≥ s(n).

It is common in the literature with the RAM model to imply the word
RAM model. From here on, we also do the same. Moreover, unless otherwise
stated, every algorithm is designed and analyzed in this model. Finally, in the
analysis we do not explicitly refer to words, and we assume that by default
operations are performed on words of size w. For example, if we say that
we store an array of n integers in memory, we imply that we have an array
of n words containing the integers in memory, i.e., any number used by an
algorithm in this thesis can fit in a word.

1.1.2 Cache Oblivious Model

In the RAMmodel, we assume that there is one type of memory that is infinite,
and accessing any element in memory has the same unit cost. However, in
a typical modern computer the memory is finite and consists of a multiple

4 Chapter 1. Introduction

hierarchy of memories (e.g., L1/L2/L3 cache, RAM (random access memory),
disk), where the cost of accessing one level differs to the cost of accessing
another. This difference can be quite big, for example accessing a typical RAM
is in the order of nanoseconds, while accessing a hard disk drive is in the order
of milliseconds, i.e., 1 million times slower [4]. This means that two algorithms
in the RAM model might have the same O(n) time complexity, but in practice
their running times might be completely different if one of the algorithms relies
heavily on random memory access. This was a main motivating factor behind
introducing new models of computation, like the I/O model [1] and the cache
oblivious model [32].

The I/O model, introduced by Aggarwal and Vitter [1], is motivated by
problems that rely a lot on processing massive amounts of data, i.e., data that
cannot fit in RAM. The main bottleneck for these problems lies in the time it
takes to transfer data between the disk and RAM. In this model, the memory
hierarchy is assumed to consist of a main memory (RAM) of fixed size M and
an external memory (disk) of unlimited size. An algorithm can read/write B
consecutive elements from/to the disk, the cost of which corresponds to one
I/O operation (or simply I/O). The goal of an algorithm in this model is to
minimize the number of I/Os that are incurred during its execution.

The cache oblivious model, introduced by Frigo et al. [32], is the same as
the I/O model, except the parametersM and B are unknown to the algorithm.
An algorithm in this model is described just like it would be described in the
RAM model. The analysis however is performed in the I/O model with the
assumption that there is an optimal cache replacement strategy for transfering
the blocks of sizeB between the main memory and the external memory. What
makes this model exciting is the fact that since the analysis holds for any block
and memory size, it also holds for all levels in a multi-level memory hierarchy,
thus making algorithms in this model very useful for architectures that have
a large memory hierarchy, e.g., modern computers.

1.2 Algorithm Engineering

The I/O and cache oblivious models have been quite successful at addressing
central issues, e.g., the cost of accessing different levels of memory being signif-
icantly different, that the RAM model could not sufficiently address. However,
as computer architecture continues to become more and more complicated and
this complexity is not precisely captured by the theoretical models, it can of-
ten be difficult for the theoretical algorithmic results to carry over to practice.
One seemingly obvious attempt at a solution to this problem could be to cre-
ate more complex theoretical models that capture this increase in architecture
complexity. However, this would result in the design of algorithms becoming
more tedious and complicated. Instead, we use algorithm engineering [69].

The term algorithm engineering was first used by Giuseppe F. Italiano

1.3. Comparing Phylogenetic Trees 5

in 1997 who organized the “Workshop on Algorithm Engineering” in Venice,
Italy. An early survey appeared two years later by Cattaneo et al. [35], and an
attempt at a definition of algorithm engineering as a general methodology for
algorithmic research was given by Peter Sanders [69] in 2009. The main goal
in algorithm engineering is to bridge the gap that exists between algorithm
theory and practice. We achieve this by focusing not just on the theory behind
the algorithms but also the implementation and experimentation. Both theory
and practice work together in a feedback loop fashion: algorithms are designed,
then implemented, experiments are performed, and the practical results are
used as guideline to change the original design, which, if and when changed,
the implementations also change, experiments are rerun, and the same cycle
is repeated until we get a satisfying theoretical and practical performance.

In this thesis, the main objective is to present novel algorithms for central
problems in the area of algorithms and data structures that are efficient both in
theory and in practice. Algorithms improving significantly upon previous ap-
proaches, their implementations, and experiments illustrating their practical
performance are provided.

1.3 Comparing Phylogenetic Trees
The first problem we consider in this thesis is the computation of the triplet
distance between trees, which is a distance measure for comparing rooted trees.
Trees are data structures that are used in many different fields to represent
relationships. One example comes from evolutionary biology, where a type of
a tree called phylogenetic tree is used to represent evolutionary relationships
between species. The leaves in such a tree can correspond to species that are
currently alive today, and internal nodes to ancestor species that used to exist
in the past. When studying the evolutionary history of a fixed set of n species,
different available data and construction methods can result in phylogenetic
trees that look structurally different. To make better inferences about the
evolutionary relationships of the species, it becomes crucial to know whether
the structural difference that exists between the trees is statistically significant
or not. For this reason, several different tree distance measures have been
proposed in the literature. A class of them includes distance measures that
count how many times certain features do not appear in both input trees, e.g.,
the Robinson-Foulds distance [64], the triplet distance [25] for rooted trees,
and the quartet distance [26] for unrooted trees. In this section, we formally
define the triplet distance problem, we present a detailed survey of previous
results, an overview of our contributions, and finally, some open problems.

1.3.1 Preliminaries and Problem Definition

In the problem of computing the triplet distance between two trees, we con-
sider rooted unordered trees that are distinctly leaf labeled. For such a tree T ,

6 Chapter 1. Introduction

a1

a5 a6

a4 a3 a2

T1

a2

a6 a5

a4 a1

a3

T2

Figure 1.1: Two trees with leaf label set {a1, a2, a3, a4, a5, a6}. Examples of
shared triplets are a5a6|a3, a2|a3|a4. Examples of triplets that are only induced
by one tree are a6a2|a3, a1|a3|a2. Here, D(T1, T2) = 15.

a triplet is defined by three leaf labels x, y, and z, as well as their induced
tree topology in T . If the lowest common ancestor between any pair of leaves
happens to be the same internal node in T , we say that x, y, and z form
a fan triplet, and we represent that triplet with x|y|z. Some examples of fan
triplets are a1|a3|a2 and a4|a3|a5 in T2 of Figure 1.1. The remaining case of a
triplet is called a resolved triplet, and is represented with xy|z when the lowest
common ancestor of x and y is further from the root than the lowest common
ancestor of x (or y) and z. Some examples of resolved triplets are a2a6|a1
and a5a6|a2 in T2 of Figure 1.1.

Given two trees T1 and T2 that are built on the same leaf label set of size n,
the triplet distance D(T1, T2) is defined as the total number of leaf triples
whose tree topology differs in the two trees. Most algorithms in the litera-
ture compute the total number of shared triplets S(T1, T2), i.e., total number
triplets that appear in both trees. Then, we have D(T1, T2) =

(n
3
)
− S(T1, T2),

where
(n

3
)
is the total number of subsets of size 3 from the leaf label set. Fig-

ure 1.1 contains examples of shared and non-shared triplets between two trees.

1.3.2 Previous Results

A naive algorithm to compute S(T1, T2) would go through all the 4
(n

3
)
triplets

and for each triplet check whether it is shared or not. To check efficiently if
a triplet appears in a tree, we can use the data structure in [7]. For a tree T
with n leaves this data structure can, after spending O(n) preprocessing time
and space, answer lowest common ancestor queries between any pair of leaves
in O(1) time. The time taken by the naive algorithm would then be O(n3),
and the space O(n).

The first improvement over the naive approach was given in 1996 by
Critchlow et al. [23], but only for the case where both T1 and T2 are binary
trees. Their algorithm uses O(n2) time and space, and works by exploiting the
information about the depth of the leaves’ ancestors. More precisely, for T1 a
generational table A of size n×n is defined such that A[i, j] stores the depth of

1.3. Comparing Phylogenetic Trees 7

a1

a3 a5

a4 a2

T1

1

2 2

3
a3

a4 a1

a2a5

T2

1

2 2

3

a1

a2
a3
a4
a5

a1 a2 a3 a4 a5
-

-

-

-

-

1

2

1

2

1 2 1 2

1 2 1

1 1 3

2 1 1

1 3 1

A

a1

a2
a3
a4
a5

a1 a2 a3 a4 a5
-

-

-

-

-

2

1

3

1

2 1 3 1

1 2 1

1 1 2

2 1 1

1 2 1

B

Figure 1.2: Two binary trees with leaf label set {a1, a2, a3, a4, a5}. The
corresponding generational tables [23] are depicted below each tree. The
leaf a1 associates with the generational pattern (2, 1) twice due to the shared
triplet a3a5|a1. Similarly, a2 associates with (1, 1) because of a3a5|a2, a3 be-
cause of a2a4|a3, a4 because of a3a5|a4, and a5 because of a2a4|a5. Hence,
S(T1, T2) = 5

(2
2
)

= 5 and D(T1, T2) =
(5

3
)
− S(T1, T2) = 10− 5 = 5.

the lowest common ancestor of the leaves with labels i and j. Similarly, a gen-
erational table B is defined for T2. Then, we have that the resolved triplet jk|i
is shared between T1 and T2 if and only if A[i, j] = A[i, k] and B[i, j] = B[i, k].
To compute S(T1, T2) efficiently, a generational pattern that is associated with
the leaf labels i and j is defined as the pair (A[i, j], B[i, j]). Note that
if i is associated with the two generational patterns p1 = (A[i, j], B[i, j]),
p2 = (A[i, k], B[i, k]), and p1 = p2, then jk|i is a shared triplet between
T1 and T2. Generally, if i associates with X generational patterns, then
there are exactly

(X
2
)
shared triplets represented as xy|i, where x and y

are leaf labels. Thus, if f(m, i) is defined as the total number of times
that a leaf with label i associates with the m-th generational pattern, we
have S(T1, T2) =

∑
i

∑
m

(f(m,i)
2
)
. An example can be found in Figure 1.2.

More than a decade later and in 2011, Bansal et al. [5], provided an algo-
rithm that used O(n2) time and space, but now worked for both binary and
non-binary trees. The information that this algorithm exploits is the common
leaves that can exist between a subtree of T1 and a subtree of T2. To compute
D(T1, T2) in the given time and space bounds, the algorithm mainly relies
on a subroutine that uses dynamic programming to find the total number of
common leaves between any pair of subtrees, one from T1 and one from T2.

In 2013, Sand et al. [66] provided the first subquadratic algorithm for

8 Chapter 1. Introduction

a1

a3 a5

a4 a2

T1

u

a3

a4 a1

a2a5

T2
v

Figure 1.3: Counting the shared triplets anchored in a node u of T1, according
to [66]. The triplets anchored in u are a1a3|a4, a1a3|a2, a1a5|a4, a1a5|a2,
a3a5|a4, a3a5|a2, a4a2|a1, a2a4|a3, and a2a4|a5. The shared triplets a3a5|a2,
a3a5|a4, a2a4|a3, and a2a4|a5 are captured in the node v of T2. We have
vlr = 2, vlb = 0, vrr = 1, vrb = 2, and Suv(T1, T2) =

(2
2
)
2+
(0

2
)
1+
(1

2
)
0+
(2

2
)
2 = 4.

computing D(T1, T2). The algorithm however works only for the case where
both T1 and T2 are binary trees, and uses O(n log2 n) time and O(n) space.
This improvement is achieved by extending a new algorithm that is also pro-
vided in [66] and uses O(n2) time and O(n) space. This O(n2)-time algorithm
is fairly simple and defines a coloring of the leaves in order to capture and
count triplets. More precisely, every triplet ij|k in T1 and T2 is anchored in
the lowest common ancestor of i, j, and k. To capture the triplets that are an-
chored in a node u of T1, the leaves in the left subtree of u are colored red and
the leaves in the right subtree of u are colored blue. Then, every triplet xy|z
such that both x and y are red and z is blue, or both x and y are blue and z is
red, is anchored in u. Let Suv(T1, T2) be the number shared triplets anchored
in a node u of T1 and a node v of T2. To compute Suv(T1, T2), the coloring
of the leaves in T1 is transferred to the leaves in T2. Let vlr and vlb be the
number of red and blue leaves in the left subtree of v. Similarly, let vrr and vrb
be the number of red and blue leaves in the right subtree of v. We then have:

Suv(T1, T2) =
(
vlr
2

)
vrb +

(
vlb
2

)
vrr +

(
vrr
2

)
vlb +

(
vrb
2

)
vlr .

An example can be found in Figure 1.3. Note that given a coloring defined
by a node u in T1, the values Suv(T1, T2) for any node v in T2 can be computed
in O(n) time. Then, given that S(T1, T2) =

∑
u∈T1

∑
v∈T2 Suv(T1, T2), i.e., for

every node u in T1 we can spend O(n) time in T2 to compute S(T1, T2), the
running time becomes O(n2), with the space being only O(n) as we only store
the two trees in memory plus O(1) additional counters in every node of T2.

To reduce the time, Sand et al. [66] proposed an order of coloring the
leaves of T1, so that every leaf changes color O(logn) times. This is achieved
by using the smaller half trick as follows. During a depth first traversal of T1,
the following two invariants are maintained:

1.3. Comparing Phylogenetic Trees 9

1. When exploring a node u, the leaves in the subtree of u are red, and
every other leaf in T1 has no color.

2. When returning from u, the leaves in the subtree of u have no color.
The algorithm starts by coloring every leaf of T1 red. Then, it applies a depth
first traversal starting from the root of T1. For every node u that is explored,
it chooses the smallest child subtree, denoted S(u), to recursively color blue
before computing

∑
v∈T2 Suv(T1, T2). Then, every leaf with color blue gets un-

colored before recursing to the largest child subtree of u, denoted L(u). When
the processing of L(u) is finished, by the second invariant the leaves in L(u)
have no color, so the algorithm colors S(u) red and recurses to S(u). For
the analysis one observes that a leaf changes color when there is an ancestor
node u′ that belongs to the smallest child subtree of u, where u is a parent
of u′. A leaf can only have O(logn) such ancestors, thus every leaf changes
color O(logn) times.

So far, the algorithm has managed to reduce the time spent in T1. More
precisely, we went from O(n2) time, because a naive order of coloring the
leaves of T1 will in the worst case change a color of a leaf O(n) times, down
to O(n logn) by using the smallest half trick. However, if we act as be-
fore and spend O(n) time in T2 for every node u in T1, the running time
will still be O(n2). To reduce the time spent in T2, Sand et al. [66] pro-
vided a tree-like data structure, called hierarchical decomposition (HDT),
for storing T2. From a high level perspective, the HDT of T2 can be con-
structed in O(n) time, while using O(n) space, and it can maintain the
value

∑
v∈T2 Suv(T1, T2) by only spending O(logn) time for every leaf color

change in T1. Since there are O(n logn) leaf color changes, the total running
time becomes O(n log2 n). An implementation of the algorithm is also pro-
vided in [66] and shown to be more efficient in practice compared to the O(n2)-
time algorithm by Critchlow et al. [23].

In the same year, Brodal et al. [12] managed to reduce the time of the
algorithm in [66] from O(n log2 n) to O(n logn). Moreover, in the same paper
the first subquadratic algorithm was also presented for general non-binary
trees, with the running time being O(n logn) but now with the space increased
to O(n logn). This improvement in the running time was achieved by using a
careful contraction scheme for the HDT of T2. More specifically, every time a
node u is explored during the depth first traversal of T1, both T2 and the HDT
of T2 are contracted so that their sizes are proportional to the size the subtree
of u in T1, while at the same time maintaining all necessary triplet information
to properly detect future shared triplets (the exact details are presented in
the paper). The algorithms in [12] were also implemented and added to the
library tqDist [68].

Interestingly, in 2014 it was shown by Holt et al. [40] that for binary
trees, in practice the O(n log2 n) algorithm in [66] is faster than the O(n logn)
algorithm in [12]. A year later and in 2015, Jansson and Rajaby [45] gave
an even slower theoretically algorithm, using O(n log3 n) time and O(n logn)

10 Chapter 1. Introduction

Table 1.1: Previous and new results for computing D(T1, T2), where T1 and T2
are trees that are built on the same leaf label set of size n. In the previous
papers, no analysis in the cache oblivious model was provided, so here we give
an upper bound for the number of I/Os incurred.

Year Reference Time IOs Space Non-Binary
Trees

1996 Critchlow et al. [23] O(n2) O(n2) O(n2) No
2011 Bansal et al. [5] O(n2) O(n2) O(n2) Yes
2013 Sand et al. [66] O(n log2 n) O(n log2 n) O(n) No
2013 Brodal et al. [12] O(n logn) O(n logn) O(n logn) Yes
2015 Jansson & Rajaby [45] O(n log3 n) O(n log3 n) O(n logn) Yes
2017 New [Chapter 2] O(n logn) O(nB log2

n
M) O(n) Yes

space, for computingD(T1, T2) for both binary and non-binary trees. However,
experiments were also provided showing that their O(n log3 n)-time algorithm
was actually the most efficient in practice. This was achieved by using a less
complicated HDT for T2, based on a heavy-light decomposition of T2.

1.3.3 Our Contributions

In Table 1.1 we provide a list of previous and new results. From previous
results, the theoretically fastest algorithm by Brodal et al. [12] is not the fastest
algorithm in practice. On the other hand, the O(n log3 n)-time algorithm by
Jansson and Rajaby [45], even though slower in theory by a log2 n factor, in
practice it was documented on a reasonable tree generation model to achieve
the best performance. Thus, there is a theoretical and practical gap for the
problem of computing D(T1, T2).

We bridge this gap by providing two new algorithms, one optimized for
the case where T1 and T2 are restricted to be binary trees and the other for
the unrestricted case. Both algorithms have an O(n logn) running time, they
use O(n) space, and at the same time have the best practical performance. We
achieve this by also making our algorithms cache oblivious. More precisely,
in the cache oblivious model, the total number of I/Os incurred by both
algorithms is O(nB log2

n
M). We emphasize that our algorithms are also the

first in the literature that can scale to external memory. To see why this is
the case, consider any previous O(n polylogn)-time algorithm. They all work
by building an HDT for T2 and then performing an operation to this HDT,
which corresponds to a leaf to root path traversal of the HDT, every time a
leaf changes color. However, a leaf changes color O(n logn) times because of
the smallest half trick, thus for large enough trees the algorithms would need
to access the disk at least once in order to update the HDT of T2. Hence, the
total number of I/Os incurred is Ω(n logn).

1.3. Comparing Phylogenetic Trees 11

Finally, we provide an implementation of our algorithms that is publicly
available at https://github.com/kmampent/CacheTD, as well as extensive
experiments that illustrate their practical performance. In the remaining part
of this subsection, we give a high level overview of our algorithms. Details can
be found in Chapter 2 and Appendix A.

Binary Trees. Our algorithm can be considered as an extended version
of the O(n2)-time algorithm in [66] that we also described above, with two
main differences. First, we define a new order of visiting the nodes of T1 that
is not based on the smallest half trick, but on a hierarchical decomposition
of T1. As we show in Section 2.3.2, this decomposition can be computed
recursively by scanning heavy paths of T1. Second, we do not store T2 in
a data structure, and instead we process it by scanning it for two different
reasons, one to contract T2 into a smaller tree whose triplet topologies are
all induced by T2 and the other to count shared triplets that are anchored
at the node that is currently visited in T1. Notice that the word scanning
is used to describe the main operations on both input trees. We manage
to completely remove the need of data structures and scanning is the basic
primitive in the algorithm. Scanning is very efficient in the external memory
models, i.e., scanning s consecutive elements in memory in the cache oblivious
model takes O(s/B) I/Os, which is optimal.

The order of visiting the nodes of T1 is specified by a depth first traver-
sal of a decomposition of T1, called modified centroid decomposition and de-
noted MCD(T1). MCD(T1) is a tree, the nodes of which, also called centroids,
are the same as the nodes of T1 and each node corresponds to a connected part
of T1, also called component of T1 (see Figure 1.4(a)). We show that every
such component has at most one edge crossing its boundary from below, and
in Lemma 2 we prove that the height of the decomposition is O(logn). It is
important to have only one edge going out from below, because the goal is for
every node u in MCD(T1), to compute the number of shared triplets anchored
in u. More than one edges from below, would make counting shared triplets
complicated and potentially the running time of the algorithm much worse.

For every node u in MCD(T1), if we scan the entire T2 to compute the
shared triplets anchored in u, the running time of the algorithm will still
be O(n2). We show that we can instead scan a smaller version of T2. More pre-
cisely and as also illustrated in Figure 1.4(b), if Lu is the set of leaves belong-
ing to the component of u in MCD(T1), we scan the contracted version T2(u),
which is a tree on Lu with all triplet topologies induced by Lu in T2 maintained.
As shown in Section 2.3.3, for a given level of MCD(T1) and every node in that
level, the corresponding contracted versions of T2 are disjoint. Moreover, for
two nodes u, up in MCD(T1) where up is the parent of u in MCD(T1), T2(u)
can be computed by scanning T2(up). Hence, we only spend O(n) time for
every level of MCD(T1), giving an O(n logn) time overall. For the space, we
only need to maintain in memory for a root to leaf path u1, . . . , uk in MCD(T1)
the corresponding contracted versions T2(u1), . . . , T2(uk) (see Figure 1.4(c)).

https://github.com/kmampent/CacheTD

12 Chapter 1. Introduction

u

Lu

T1

(a)

T2(u)

Lu

(b)

MCD(T1)

O(log n)

u1
T2(u1)

T2(u2)

T2(u3)

T2(u4)

T2(uk−3)

T2(uk−2)

T2(uk−1)

T2(uk)

u2

u3

u4

uk−3
uk−2

uk−1

uk

u

(c)

Figure 1.4: (a) The corresponding component (black polygon) in T1 of a node u
in MCD(T1). (b) The contracted version of T2, which is a tree on the same
leaf label set Lu defined by the component of u in T1, with all triplet topologies
induced by Lu in T2 maintained. (c) A root to leaf path in MCD(T1) and the
corresponding contracted versions of T2. We have

∑k
i=1 |T2(ui)| = O(n).

If for a given tree T , we denote by |T | the size of tree (internal nodes and
leaves), we prove in Lemma 3 that

∑k
i=1 |T2(ui)| = O(n), thus making the

space of our algorithm O(n).
To make our algorithm scale to external memory, we have a preprocessing

step where we make T1 left-heavy, i.e., for every node u of T1 the children are
swapped if necessary in order to make the left child’s subtree larger than the
right child’s subtree. Moreover, we store the left-heavy version of T1 following
the preorder layout in main memory, so that later when scanning a heavy
path of size s during the construction of MCD(T1), we only spend O(s/B)
I/Os. Afterwards, we relabel the leaves in T1 according to their visiting time
in a depth first traversal of T1. This relabeling is also transferred to the leaves
in T2. Then, because any subtree of T1 will contain a continuous range of

1.4. Comparing Phylogenetic Networks 13

leaf labels, the coloring of any subtree in T1 becomes very easy to transfer
between T1 and T2. The tree T2 and its contractions are stored in memory
following the postorder layout. In Section 2.3.4 we provide a formal analysis
of the algorithm to argue why it only performs O(nB log2

n
M) I/Os in the cache

oblivious model.
Non-binary Trees. When T1 and T2 have no restrictions on their degrees,

fan triplets can appear in the trees, which must also be captured and properly
counted. In Section 2.4.1, we extend the O(n2)-time algorithm for the binary
case, to the non-binary case. The time and space bounds remain the same,
i.e., O(n2) and O(n) respectively. This is achieved by anchoring the triplets in
edges instead of nodes, and using four colors to capture every triplet instead
of two. In Section 2.4.2 we show how to reduce the time to O(n logn). To
achieve this, we binarize T1 to obtain b(T1), by having for every node u with k
children in T1, a binary tree below u with the k children as leaves. Each node
in b(T1) corresponds to one edge of T1. We then use the same ideas as before,
i.e., we build the MCD(b(T1)) and apply a depth first traversal to find an
order in which to visit the edges of T1. Every node of b(T1) corresponds to a
contracted version of T2 that we use to count shared triplets that are anchored
in the corresponding edge of T1. To make the algorithm scale to external
memory, we make sure that b(T1) is a left-heavy tree, we store it in memory
following a preorder layout, and we also relabel the leaves similarly to the case
of binary trees. Like in the binary case, T2 and its contractions are stored in
memory following the postorder layout. Finally, similarly to Section 2.3.4, in
Section 2.4.3 we provide a formal analysis in the cache oblivious model.

1.3.4 Open Problems and Future Work

Amajor open problem is whether or not it is possible to create an algorithm for
computing D(T1, T2) with a better running time than O(n logn) in the RAM
model. An approach that might work is to exploit the size of the word by
storing additional information in it with word packing techniques. A possible
extension for our algorithm is the following: If there exists an algorithm that
can in O(n) time count shared triplets anchored in O(logε n) centroids and
create all contractions of T2 for O(logε n) centroids, where ε is a small enough
non-negative constant, then the running time of the resulting algorithm will
be O(n logn

log logn). Another open problem is to prove a non-trivial lower bound.
The trivial lower bound for this problem is O(n). Finally, in the I/O and
cache oblivious models, is it possible to achieve the sorting bound, i.e., create
an algorithm that requires O(nB log M

B

n
M) I/Os?

1.4 Comparing Phylogenetic Networks
In this section we consider the second problem studied in this thesis, which is
about computing the triplet distance between more complex structures than

14 Chapter 1. Introduction

trees, called phylogenetic networks [43]. A phylogenetic tree over a set of
species only models and captures the transfer of genes from ancestors to
their direct descendants, i.e., from parents to their children. However, it
has been observed that more complex evolutionary events, called reticulation
events [43], can even make it possible for genes to transfer between unrelated
species. One such event is called horizontal gene transfer [14], where genetic
material is passed to an unrelated organism, e.g., via organ transplantation,
viruses, and bacteria. Another is called hybridization [6], which happens when
genes are transferred between two different breeds or species e.g., through in-
terbreeding. Other examples include genetic recombination [71], when genetic
information is transfered between two different chromosomes, and gene dupli-
cation and loss [22] through which new genetic material is created.

A tree cannot represent reticulation events, since a reticulation event im-
plies species with potentially more than one direct ancestors, i.e., the existence
of cycles in the undirected version of the tree. In the previous section, we con-
sidered rooted trees with implied directions on the edges going from ancestors
to descendants. In this section, we will be more explicit with these directions.
More precisely, a rooted phylogenetic network uses a rooted directed acyclic
graph (rooted DAG) to represent both the transfer of genes from the parents
to their children and the reticulation events. Like with phylogenetic trees, we
can have unrooted phylogenetic networks as well, but since here we consider
the triplet distance measure that can only be defined for rooted phylogenetic
trees and networks, we only focus on the rooted case of phylogenetic networks.

In 2009, Cardona et al. [18] gave a generalization of the rooted triplet
distance from phylogenetic trees to phylogenetic networks. However in 2012,
Gambette and Huber [33] gave another generalization that is closer to the
definition of the extensively studied triplet distance for trees. Moreover and as
we will see below, the latter has already been used to create efficient algorithms
for computing the triplet distance between phylogenetic networks, which is
why in this thesis we consider the generalization in [33]. From here on in this
section, when we use the word “tree” we imply a “rooted phylogenetic tree”,
and similarly when we use the word “network” we imply a “rooted phylogenetic
network”. In the remaining part of this section, we formally define the problem,
we give a survey of previous results, and finally we provide our contributions.

1.4.1 Preliminaries and Problem Definition

A network N ′ = (V,E) is a rooted directed acyclic graph that is unordered,
with distinctly labeled leaves and with no nodes that have both in-degree 1
and out-degree 1. For a node u in a given network N ′, let in(u) and out(u)
be the in-degree and out-degree of u. We distinguish the nodes of N ′ into the
following types:

1. A node u is a root node if in(u) = 0 and out(u) ≥ 1. There is exactly
one such node in N ′.

1.4. Comparing Phylogenetic Networks 15

a4 a6

a1 a5

a2 a3

u

a4 a6

a1 a5

a2 a3

u

v

Figure 1.5: A network on the leaf label set {a1, a2, a3, a4, a5, a6}. The node
illustrated with a circle is a reticulation node. (a) The leaves a1, a2, a3 can be
used to induce the fan triplet a1|a2|a3 (indicated by the bold dashed lines).
(b) The same leaves can also be used to induce the resolved triplet a2a3|a1
(indicated by the bold dashed lines).

2. A node u is an internal node if out(u) ≥ 1. Note that the root node is
also an internal node.

3. A node u is a leaf node, if out(u) = 0 and in(u) = 1.
4. A node u is a reticulation node, if in(u) ≥ 2 and out(u) ≥ 1.

By definition, N ′ cannot have a node u with in(u) > 1 and out(u) = 0.
We say that the fan triplet x|y|z is consistent with N ′, if there exists a tree

topology induced by the leaves x, y, and z in N ′ with a node u in N ′ being the
only internal node of this tree. In other words, there exists an internal node u
in N ′ and three directed paths of non-zero length from u to x, y, and z that
are node-disjoint except for in u. Similarly, we say that a resolved triplet xy|z
is consistent with N ′, if there exists a binary tree topology induced by the
leaves x, y, and z in N ′ with u and v in N ′ being the two internal nodes of
this tree. In other words, there exist two different internal nodes u and v in N ′,
such that there are four directed paths of non-zero length from u to v, from v
to x, from v to y, and from u to z that are node-disjoint except for in u and v,
and furthermore, the path from u to z does not pass through v. Note that if N ′
is a tree, the definition of a triplet is equivalent to the one in Section 1.3.1.
In Figure 1.5 we have an example network, as well as two different triplets, a
fan triplet and a resolved triplet, that are induced by the same set of three
leaves. Observe that this is impossible in a tree, i.e., in a tree any set of three
leaves can be used to form either a resolved triplet or a fan triplet.

Given two networks N1 and N2 that are built on the same leaf label set of
size n, the triplet distance D(N1, N2) is defined as the number of triplets that
are induced by only one of the two networks. More formally, if S(N1, N2) is
the total number of shared triplets between N1 and N2, we have:

D(N1, N2) = S(N1, N1) + S(N2, N2)− 2S(N1, N2) . (1.1)

16 Chapter 1. Introduction

a5 a3
a1

a4

a2

N1

a5

a3

a1

a2

a4

N2

Figure 1.6: Two networks N1 and N2 that are built on the same leaf la-
bel set {a1, a2, a3, a4, a5}. Here, D(N1, N2) = 11. Some examples of shared
triplets are a1a2|a5, a1|a2|a5, a1a4|a3, a3a4|a2, and a2|a4|a5. All the 11 triplets
consistent with only one network are a1|a2|a4, a1a2|a4, a1|a3|a5, a1a3|a5,
a2a3|a4, a2|a3|a5, a2a3|a5, a4a5|a2, a2a5|a4, a3|a4|a5, and a3a4|a5.

This definition of the triplet distance differs from the definition we used
for trees in Section 1.3.1. More precisely, when N1 and N2 are trees, the value
for D(N1, N2) is twice the value we would get if we were to use the definition
in Section 1.3.1. However, as shown in Figure 1.5 and also discussed in more
detail in [44, Section 3.2], three leaves can appear as both a resolved triplet
and a fan triplet in a given network, and Equation 1.1 takes that into account.
An example can be found in Figure 1.6.

Gambette and Huber, in their extension of the triplet distance from trees
to networks in [33], used a parameter called level to measure the tree-likeness
of a network, i.e., a parameter to measure how close a network is to being
a tree. As the algorithms below use this parameter in their analysis, we
formally define the level of a network here. We call an undirected graph H
biconnected if it is not possible to remove exactly one node from H to make
it disconnected. Let U(N ′) be the graph created by removing the directions
of the edges in N ′. We say that H ′ is a biconnected component of U(N ′)
if H ′ is a maximal biconnected subgraph of U(N ′). Finally, we say that the
level of N ′ is k, or N ′ is a level-k network, if there are at most k reticulation
nodes in any biconnected component of U(N ′). By definition a level-0 network
corresponds to a tree and a level-1 network corresponds to a galled tree [36].
In the example of Figure 1.6, the level of N1 is 3 and the level of N2 is 4.

In all algorithms for computing D(N1, N2), the main focus is time. To help
with the overview provided below, the following notation is used. We assume
that the input networks are N1 = (V1, E1) and N2 = (V2, E2). The time anal-
ysis is then performed on the following parameters. N1 and N2 have the same
leaf label set Λ of size n. Let N = max(|V1|, |V2|) and M = max(|E1|, |E2|).
If k1 is the level of N1 and k2 is the level of N2, we have k = max(k1, k2).
Finally, if d1 is the maximum in-degree of any node in N1 and similarly we
have d2 for N2, then d = max(d1, d2).

1.4. Comparing Phylogenetic Networks 17

1.4.2 Previous Results

When k = 0, both N1 and N2 are trees, and we considered this case in Sec-
tion 1.3. As a reminder, we managed to bridge the theoretical and practical
gap that existed for this problem before in the literature, by providing two
new algorithms in Chapter 2, one optimized for the case where the two trees
are binary, and the other for the general unrestricted case. Both algorithms
run in O(n logn) time and are the first to scale to external memory by in-
curring O(nB log2

n
M) I/Os in the cache oblivious model. We also provided an

implementation of the algorithms, as well as extensive experiments illustrating
their practical performance.

When k = 1, we have that N1 and N2 are galled trees. Moreover, we
have N = Θ(n) and M = Θ(n). There are two major results for this case
in the literature. In 2014, Jansson and Lingas [44] gave the first non-trivial
algorithm that has an O(n2.687) running time, by reducing the problem of
computing D(N1, N2) to the problem of counting triangles in a graph. A few
years later in 2017, Jansson et al. [49], gave an O(n logn)-time algorithm, by
reducing the problem to combining the outputs of an algorithm on a constant
number of instances when k = 0. An implementation of the O(n logn)-time
algorithm was given in the journal version of the paper in [53]. Note that both
algorithms do not impose any restrictions on the degrees of the nodes in the
input networks.

When k > 1, Byrka et al. [15] considered networks with restrictions on
the degrees of their nodes. More precisely, according to [15, Section 2], a net-
work N ′ = (V,E) is defined such that there is one root node with in-degree 0
and out-degree 2, and all other nodes have either in-degree 1 and out-degree 2,
or in-degree 2 and out-degree 1, or in-degree 1 and out-degree 0. By defini-
tion, nodes with either in-degree or out-degree larger than 2 are not allowed,
i.e., N ′ cannot have any fan triplets. Moreover, nodes with both in-degree 2
and out-degree 2 are not allowed either. Because of the degree constraints
in N ′, we have |V | = Θ(|E|). For such a network N ′, a data structure is
given in [15, Lemma 2], call it Ds, that can be constructed in O(|V |3) time,
and then be used to answer any query about the consistency of a resolved
triplet with N ′ in O(1) time. This result was then extended to exploit the
level of N ′. More precisely, if the level of N ′ is k, a new data structure is
given in [15, Lemma 3], call it D′s, that can support the same queries while
only requiring O(|V | + |V |k2) preprocessing time. Algorithm 1 shows how
we can use these data structures to compute D(N1, N2). The input is the
two networks N1 and N2. There is a preprocessing step (lines 2–4), where
we construct for both N1 and N2, either Ds or D′s. In lines 6–13 we use
either Ds or D′s to count the total number of shared triplets. The main pro-
cedure is D(), and it uses Equation 1.1 to compute D(N1, N2). Notice that
the procedure S() only focuses on resolved triplets, since as we also mentioned
above, fan triplets cannot be induced by the networks considered in [15]. As

18 Chapter 1. Introduction

Algorithm 1 Computing D(N1, N2) using the data structures presented by
Byrka et al. [15].
1: procedure preprocessing(N1, N2) . Building the data structures
2: build the data structure of [15, Lemma 2 or Lemma 3] for N1 and N2
3: let D1 and D2 be the data structures for N1 and N2
4: return (D1, D2)

5: procedure S(N1, N2, D1, D2) . Finding the shared triplets
6: shared = 0
7: for three different leaves x, y and z do
8: for τ ∈ {xy|z, xz|y, yz|x} do
9: Using D1 check the consistency of τ with N1

10: Using D2 check the consistency of τ with N2
11: if τ is consistent with both N1 and N2 then
12: shared = shared + 1
13: return shared
14: procedure D(N1 = (V1, E1), N2 = (V2, E2)) . Computing D(N1, N2)
15: (D1, D2) = preprocessing(N1, N2)
16: return S(N1, N1, D1, D1) +S(N2, N2, D2, D2) − 2S(N1, N2, D1, D2)

for the running time of the algorithm, first, there is an O(n3) term because of
the procedure S(). If Ds is used in the preprocessing step, the total running
time becomes O(|V1|3 + |V2|3 + n3). By the definition of N , the total running
time is then simplified to O(N3 +n3). If D′s is used in the preprocessing step,
the total running time becomes O(|V1|+ k2

1|V1|+ |V2|+ k2
2|V2|+ n3). By the

definition of k and N , the total running time becomes O(N + k2N + n3).
To the best of our knowledge, no implementations of the above algorithms
currently exist.

When k > 1 and without having any restrictions on the degrees of the
nodes in N1 and N2, no non-trivial algorithms are available in the literature.
Even an algorithm that is based on enumerating over all 4

(n
3
)
triplets and

checking their consistency with N1 and N2, turns out to be not so trivial.
As also shown in Section 1.3.2, the main reason why it is easy to naively
check the consistency of a triplet with a tree is because of how simple a
tree as a structure is, e.g., any two leaves have exactly one lowest common
ancestor, and that ancestor has exactly one path to each leaf. In a network
and following [44], a lowest common ancestor between two nodes u and v is
defined to be a node w that is an ancestor of both u and v, and there does not
exist any descendant of w that is also an ancestor of u and v. Then, it is trivial
to see that two nodes can have more than one lowest common ancestors (see
Figure 1.7). However, it turns out there is a result from 1980 by Fortune et
al. [29] that, for a given directed acyclic graph G can check in polynomial
time if a pattern graph P , that is also acyclic and directed, is homeomorphic

1.4. Comparing Phylogenetic Networks 19

u v

. . .

Figure 1.7: An example of a network. Every internal node, except the root,
is a lowest common ancestor of the leaves u and v.

to a subgraph of G. The time complexity of the algorithm depends on the
structure of G and P . Using this result on our problem, we can check the
consistency of a fan triplet in Ω(N5) time and the consistency of a resolved
triplet in Ω(N7) time. Thus, the total running time of the naive algorithm
that enumerates over all possible triplets and checks their consistency with N1
and N2 becomes Ω(N7n3).

1.4.3 Our Contributions

In Table 1.2 we have a summary of previous and new results. Our con-
tributions are two algorithms for computing the triplet distance between
two phylogenetic networks that work for any k ≥ 0 while not imposing
any restrictions on the degrees of the input networks. This means that
unlike the result in [15], our algorithms can also detect fan triplets that
might exist in the input networks. The running time of the first algorithm
is O(N2M + n3), and the second algorithm O(M + k3d3n + n3). Finally, we
provide implementations of the two algorithms in C++, that is publicly avail-
able at https://github.com/kmampent/ntd, as well as extensive experiments
on both simulated and real datasets illustrating their practical performance.

Table 1.2: Previous and new results for computing D(N1, N2), where N1
and N2 are two level-k networks built on the same leaf label set of size n.

Year Reference k Degrees Time

1980 Fortune et al. [29] arbitrary arbitrary Ω(N7n3)
2010 Byrka et al. [15] arbitrary binary O(N3 + n3)
2010 Byrka et al. [15] arbitrary binary O(N + k2N + n3)
2017 Brodal et al. [11, 12] 0 (trees) arbitrary O(n logn)
2019 Jansson et al. [53] 1 (galled trees) arbitrary O(n logn)
2019 new [Chapter 3] arbitrary arbitrary O(N2M + n3)
2019 new [Chapter 3] arbitrary arbitrary O(M + k3d3n+ n3)

https://github.com/kmampent/ntd

20 Chapter 1. Introduction

In the remaining part of this subsection, we give a high level overview of our
algorithms. Details can be found in Chapter 3 and Appendix B.

The First Algorithm. The first algorithm is described in Section 3.2.
It consists of a preprocessing step and a triplet distance computation step.
In the preprocessing step, for a network Ni = (Vi, Ei) we construct another
graph Nf

i in O(|Vi|2|Ei|) time. This graph has the property that the fan
triplet x|y|z is consistent with Ni if and only if there is a path from the node s
to the node (x, y, z) in Nf

i . Similarly, we construct another graph called N r
i

in O(|Vi|2|Ei|) time that has a similar property but now for resolved triplets.
More precisely, the resolved triplet x|yz is consistent with Ni if and only if
there is a path from the node s to the node (x, y, z) in N r

i . Given these two
graphs, we build two n× n× n tables Afi and Ari , such that Afi [x][y][z] = 1 if
there is a path from the node s to the node (x, y, z) in Nf

i , and 0 otherwise.
Similarly, Ari [x][y][z] = 1 if there is a path from the node s to the node (x, y, z)
in N r

i , and 0 otherwise. Building these two tables is done by a depth first
traversal of the two graphs Nf

i and N r
i , thus requiring O(|Vi|2|Ei|) time as

well. Finally and in the triplet distance computation step, for two given
networks N1 and N2, the algorithm enumerates over all 4

(n
3
)
triplets and uses

the Af1 , Ar1, A
f
2 , and Ar2 tables to determine in O(1) time the consistency of a

triplet with N1 and N2.
For the time analysis, the preprocessing step takes O(|V1|2|E1|+ |V2|2|E2|)

time and the triplet distance computation step O(n3). By the definition
of N and M , the total running time becomes O(N2M + n3). The space
is also O(N2M + n3).

The Second Algorithm. In Section 3.3, we extend the algorithm from
Section 3.2 to also take into consideration the level of the input networks
and thus make the running time adaptive to the levels of the networks. The
general approach is the same, i.e., there is a preprocessing step, where all the
necessary data structures are built that let us later in the triplet distance
computation step determine in O(1) time the consistency of any triplet with
either of the two input networks.

In Lemma 8 we prove that the biconnected components of a network Ni are
edge-disjoint but not node-disjoint. The biconnected components of a network
following the degree constraints in [15] would not only be edge-disjoint, but
node-disjoint as well. This extra feature of the biconnected components being
node-disjoint was directly exploited in [15, Lemma 3] when building the data
structure D′s, which is why D′s cannot be used to work for the unrestricted
networks that we consider in our paper.

In the preprocessing step, for a network Ni = (Vi, Ei) we build a tree called
block tree with leaf label set Λ. This tree is created by carefully contracting
every biconnected component (a “biconnected component” is referred to as
a “block” in the paper, hence the name of the tree) of Ni into a node. An
example can be found in Figure 3.5. Every node of this tree corresponds to

1.4. Comparing Phylogenetic Networks 21

a biconnected component of Ni and vice versa, following a 1-to-1 correspon-
dence. Roughly speaking, for every biconnected component of Ni we create
a small network, called a contracted block network, that has almost the same
structure as the biconnected component (e.g., see Figure 3.6). For every con-
tracted block network, we then build the data structures that we had in the
preprocessing step of the first algorithm. In Lemma 10 we show that building
the block tree can be done in O(|Ei|) time. In Lemma 12 we show how to build
every contracted block network of Ni in O(|Ei|+n2) time. We pay the extra n2

factor so that we can then in Lemma 13 have an algorithm that builds all data
structures for every contracted block network of Ni in O(n(k3

i d
3
i +1)) time. Fi-

nally and in the triplet distance computation step, in Lemmas 14, 15, 16, and
17 we show how given the data structures from the preprocessing step, we can
determine in O(1) time the consistency of any fan and resolved triplet with Ni.
From a high level perspective, if x, y, and z are the leaves of the triplet, we
check the lowest common ancestors of every pair (x, y), (x, z), and (y, z) in the
block tree. To be able to find these lowest common ancestors efficiently, we
also build an n × n table in O(n3) time in the preprocessing step. There are
ways in the literature to perform this step faster, e.g., by only using the LCA
data structure in [7] and thus only spending O(n) time and space. However
as we will see below, this approach would not improve the final time bound
of our algorithm. Depending on the lowest common ancestors in the block
tree, we can then either directly report whether or not the triplet is consistent
with the network, or we have to make queries to the data structures of the
contracted block networks that correspond to the lowest common ancestors.

For the time analysis, just like with the first algorithm we build the data
structures for both N1 and N2. Hence, the total preprocessing time is bounded
by O(|E1|+ |E2|+ n(k3

1d
3
1 + k3

2d
3
2) + n3). In the triplet distance computation

step, we get an extra n3 factor which does not make the previous bound
worse. By the definition of N , M , k, and d the total running time then
becomes O(M + k3d3n+ n3). Similarly to the first algorithm, the space does
not change, i.e., it is O(M + k3d3n+ n3).

1.4.4 Open Problems and Future Work

Future work involves creating algorithms that are more efficient than the ones
we presented in this thesis. This could mean coming up with more efficient
data structures that can still answer triplet consistency queries in O(1) time,
or use a completely different approach. Iterating over every possible triplet
will immediately incur a O(n3) term in the running time, which is very slow
for many practical purposes. For the case of trees, i.e., when k = 0, the
O(n logn)-time algorithms are based on completely different techniques. It
would be useful to see if we could extend those techniques to the case of
networks. A main reason why this is not trivial is because the algorithms for
trees exploit the fact that the lowest common ancestor between a pair of leaves

22 Chapter 1. Introduction

in a tree always corresponds to exactly one node. As we argued above and
gave an example in Figure 1.7, this is not necessarily the case for networks,
i.e., in a given network Ni two leaves can even have an arbitrary number of
lowest common ancestors.

Finally, it might be useful to create more biologically meaningful defini-
tions for the rooted triplet distance in networks. As discussed in the concluding
remarks of Section 3.5, the definition of D(N1, N2) does not consider the total
number of different occurrences of a given triplet in a network, i.e., a triplet
appearing once in a network or 1000 times has the exact same meaning. How-
ever, the number of occurrences says something about the structure of the
two networks that is currently not captured by the definition of D(N1, N2).
One even needs to carefully define the number of occurrences of a triplet in a
network, since different definitions can lead to different outcomes (for a more
detailed discussion on this see Section 3.5).

1.5 Building Small and Informative Supertrees

In the previous two sections, we assumed that the phylogenetic trees to be
compared are available. However when studying the evolutionary history of
species, usually during the early stages of a study only basic biological data is
available (e.g., DNA or morphological data, triplets). This data is then used
by algorithms to construct a phylogenetic tree, commonly referred to in the
literature as a supertree [9], that represents the data as much as possible. The
third and final problem considered in this thesis is about algorithms that can
construct such supertrees efficiently.

In a supertree problem the input can be a set of small, accurate trees
over overlapping subsets of n species, and the goal is to construct one large
tree that has the n species as leaves and at the same time preserves the most

a3 a1

a2

a1

a5

a4

a2 a4

a5

(a)
a4

a3

a2

a5

a1

(b)

Figure 1.8: An input/output example for a supertree problem. (a) A set
R = {a3a1|a2, a1a4|a5, a2a4|a5} of resolved triplets. (b) A tree inducing R.

1.5. Building Small and Informative Supertrees 23

information possible induced by the small trees in the input. Depending on
the type of input and information that we want to preserve in the output tree,
there are several different versions of this problem. For example, in one version
the input can be a set of rooted binary trees with three leaves, i.e., resolved
triplets, and the output a tree, if it exists, that induces every resolved triplet
in the input. Figure 1.8 contains a concrete example. In another version,
we could have the same requirements but now with fan triplets also allowed
in the input. Efficient algorithms that build these supertrees are necessary,
since the trees produced can then be used as input for the tree comparison
algorithms presented in the previous two sections, which in turn can help with
evolutionary inferences. In the remaining part of this section, we provide a
precise definition of the supertree problem considered in this thesis, we give a
survey of previous results, and finally we provide our contributions.

1.5.1 Preliminaries and Problem Definition

We consider rooted phylogenetic trees, i.e., rooted unordered trees that are dis-
tinctly leaf labeled. In this section, when referring to a “tree” or a “supertree”
we imply a “rooted phylogenetic tree”. The definition of a resolved and fan
triplet follows from Section 1.3. For a tree T , let rt(T) be the set of all triplets
induced by T . We say that T is consistent with a set of triplets R, or equiva-
lently the set of triplets R is consistent with T , if every triplet in R is induced
by T . By definition, if R is consistent with T we have R ⊆ rt(T). Finally, we
assume that any set R contains triplets over a leaf label set of size n.

We consider the supertree problem called q-maximum rooted triplets con-
sistency (q-MAXRTC). The input is a set R of resolved triplets, as well as a
parameter q, and the objective is to find a tree with exactly q internal nodes
that is consistent with the maximum number of resolved triplets from R. Part
of the motivation behind q-MAXRTC is a new algorithm for computing the
triplet distance D(T1, T2) between two trees T1 and T2 that are built on the
same leaf label set of size n (for a formal definition see Section 1.3), so we will
revisit this problem again below.

Below, we present several polynomial-time approximation algorithms for q-
MAXRTC. As a reminder, let P be a maximization problem and I any input
instance for P . Let A be an algorithm that solves P , VA(I) the value of the
solution returned by A on the input I, and OPT (I) the value of the optimal
solution on the input I. Let 0 ≤ r ≤ 1. We say that A is an r-approximation
algorithm with relative ratio r, if VA(I) ≥ r ·OPT (I). We also say that A is
an r-approximation algorithm with absolute ratio r, if VA(I) ≥ r|I| for any
input I. By definition, an approximation algorithm with absolute ratio r,
immediately implies an approximation algorithm with relative ratio r. For
the q-MAXRTC problem we have I = R. In our results below, we mainly
present approximation algorithms with absolute ratios, thus unless otherwise
stated, when we refer to any ratio r we imply an absolute ratio.

24 Chapter 1. Introduction

b c d e f g

a

(a)

a

b c d e f g

(b)

Figure 1.9: Let R = {bc|a, bd|a, ef |a, eg|a} be the example from [13]. (a) The
tree with three internal nodes returned by the BUILD algorithm [2]. (b) A
tree with two internal nodes that is consistent with R.

a0
. . .

a1 a2 a3 a4 a2i−1 a2i

(a)

a1 a2

a0

a3 a4

. . .

a2i−1 a2i

(b)

Figure 1.10: Let R = {a1a2|a0, a3a4|a0, . . . , a2i−1a2i|a0} be the example
from [48]. (a) The tree with i + 1 internal nodes returned by the BUILD
algorithm [2]. (b) A tree with two internal nodes that is consistent with R.

1.5.2 Survey of Previous Results

The q-MAXRTC problem is essentially a combination of the minimally re-
solved supertree (MINRS) [48] problem and the maximum rooted triplets con-
sistency (MAXRTC) [13] problem. In MINRS, for a set of resolved triplets R
the objective is to find, if it exists, a tree with the minimal number of internal
nodes that is consistent with the entire set R. In MAXRTC we are given a
set R of resolved triplets and the goal is to find a tree that is consistent with
the largest number of triplets from R.

For the version of MINRS without the minimality constraint on the in-
ternal nodes, Aho et al. [2] gave a polynomial-time algorithm called BUILD.
The BUILD algorithm receives as input a set L of lowest common ancestor
constraints on pairs of leaves, e.g., the pair 〈i, j〉 < 〈i, k〉 means that the lowest
common ancestor of the leaves with labels i and j is a proper descendant of
the lowest common ancestor of the leaves with labels i and k. We can easily
translate R into such a set L, for which |L| = 2|R|, by adding to L for every
triplet ij|k in R the pairs 〈i, j〉 < 〈i, k〉 and 〈i, j〉 < 〈j, k〉. Bryant [13] showed
that for R = {bc|a, bd|a, ef |a, eg|a} the BUILD algorithm will return a tree
with three internal nodes, even though it is possible to construct a tree with
only two internal nodes that induces every triplet from R (see Figure 1.9).
Jansson et al. [48] simplified the example to R = {bc|a, ef |a}, and extended

1.5. Building Small and Informative Supertrees 25

it to show that for some input instances the tree returned by BUILD can
have Ω(n) internal nodes more than necessary (see Figure 1.10).

An internal node in a tree implies that at the point of time indicated by
the internal node, something happened in the evolutionary history of species.
A common criticism on the supertree construction algorithms is that they
tend to make statements about the evolutionary history of species which is
not directly supported by the data, thus creating false groupings of the leaves,
commonly referred to as “spurious novel clades” [9]. Moreover, in science we
generally prefer simple explanations for a set of given observations, thus if we
can create a smaller tree that induces all triplets from a triplet set R, then
due to its simplicity this tree is commonly more preferred over another larger,
more complex, tree. MINRS tried to address these concerns by having the
minimality constraint on the internal nodes. Jansson et al. showed in [48]
that the decision version of MINRS is NP-complete for q ≥ 4 and polynomial-
time solvable for q ≤ 3, where q denotes the number of internal nodes in the
produced output tree.

Both MINRS and its version without the minimality constraint have the
problem that they are very sensitive to outliers. For example, it could be
that every triplet from R except for one triplet can be induced by a single
tree. However, in both problems the corresponding algorithms would not re-
port any tree in the output. This is what motivated MAXRTC. Bryant [13]
proved that MAXRTC is NP-hard. In 1999 Ga̧sieniec et al. [34] gave the
first polynomial-time approximation algorithm that for any input set R re-
turns a caterpillar tree, i.e., a tree in which every internal node has at most
one non-leaf child, that induces at least 1

3 |R| triplets from R. Hence, their
algorithm is a polynomial-time 1

3 -approximation algorithm. The number of
internal nodes in the output tree is arbitrary and in the worst case it can be
as big as n− 1, i.e., the supertree produced is a binary tree. In 2004, Wu [77]
gave a bottom-up algorithm for MAXRTC and showed that it performs well
in practice. However, the approximation ratio of this algorithm was left as an
open problem. Several years later and in 2010, Byrka et al. [15] modified the
algorithm by Wu [77] to create an polynomial-time algorithm that has an ap-
proximation ratio of 1

3 . This algorithm always produces a binary tree, meaning
that the number of internal nodes of the supertree produced is exactly n− 1.
In the same year of 2010, Byrka et al. [15] gave another polynomial-time 1

3 -
approximation algorithm, based on a randomized approach, that also always
returns a binary tree as an output.

1.5.3 Our Contributions

Note that every previous algorithm for MAXRTC produces trees with an ar-
bitrary number of internal nodes, some even always produce binary trees, i.e.,
trees with the maximum number of internal nodes. However, due to the issue
of spurious clades described above, we might still want to have small and sim-

26 Chapter 1. Introduction

Table 1.3: Previous and new results for computing q-MAXRTC. The abbrevi-
ations “abs.” and “rel.” correspond to “absolute” and “relative” respectively.

Year Reference Deterministic q Approximation Type

1999 Ga̧sieniec et al. [34] yes unbounded 1/3 abs.
2010 Byrka et al. [15, 16] yes n− 1 1/3 abs.
2019 new [Section 4.3.1] no 2 1/2 rel.
2019 new [Section 4.3.1] yes 2 1/4 rel.
2019 new [Theorem 5] yes 2 4/27 abs.
2019 new [Theorem 7] yes q ≥ 3 1

3 −
4

3(q+q mod 2)2 abs.

ple trees that induce a large number of triplets from the input set R. Finally,
as we will see below, in the design of phylogenetic tree comparison algorithms,
trees with fewer internal nodes can admit faster running times. More precisely,
in Section 4.5 we give an algorithm for computing the rooted triplet distance
between two rooted trees that runs in O(qn) time, where q is the number of
internal nodes in the smaller tree. Note that this new algorithm is faster than
the algorithm we presented in Chapter 2, whenever q = o(logn). Interestingly,
this algorithm even happens to be optimal when q = O(1). In Table 1.3 we list
previous and new results for computing q-MAXRTC. An implementation of q-
MAXRTC is publicly available at https://github.com/kmampent/qMAXRTC.
An implementation of our new O(qn)-time triplet distance algorithm is avail-
able at https://github.com/kmampent/qtd. Finally, we provide extensive
experiments illustrating the practical performance of both algorithms. In the
remaining part of this subsection, we give a more detailed overview of our pa-
per and results. Additional details can be found in Chapter 4 and Appendix C.

In Section 4.2 we study the computational complexity of q-MAXRTC,
and present some inapproximability results. More precisely, in Theorem 4 we
prove that q-MAXRTC is NP-hard for any fixed q ≥ 2. We achieve this by a
reduction from MAX q-CUT [55]. This in turn yields some inapproximability
results, presented in Corollaries 4 and 5.

In Section 4.3 we present our approximation algorithms for q-MAXRTC.
We consider the problem MAX 3-AND, where we are given a logical formula
consisting of a set of clauses S, each being a conjunction of three literals from
a set of Boolean variables, and the goal is to find an assignment of values
to the variables that satisfies the maximum number of clauses from S. We
then prove in Lemma 19 that if MAX 3-AND can be approximated within
a factor of r, then 2-MAXRTC can also be approximated within a factor
of r. Because of Lemma 19, we can then use any approximation algorithm for
MAX 3-AND to directly obtain an approximation algorithm for 2-MAXRTC.
Hence, using the result in [78] we obtain a randomized polynomial-time 1

2 -
approximation algorithm with relative ratio for 2-MAXRTC. Moreover, using
the result in [74] we obtain a deterministic polynomial-time 1

4 -approximation

https://github.com/kmampent/qMAXRTC
https://github.com/kmampent/qtd

1.5. Building Small and Informative Supertrees 27

algorithm with relative ratio for 2-MAXRTC. In Lemma 20 we give a random-
ized polynomial-time 4

27 -approximation algorithm for q-MAXRTC and then
show in Theorem 5 how to derandomize in order to obtain a deterministic
O(|R|)-time algorithm that achieves the same 4

27 approximation ratio. Inter-
estingly, we show in Theorem 6 that this algorithm is optimal for 2-MAXRTC
when considering absolute approximation ratios. Finally, in Theorem 7 we
show how to extend the algorithm from Theorem 5 to obtain a determinis-
tic O(q|R|)-time algorithm that scales with q and achieves the approximation
ratio (1

3 −
4

3(q+q mod 2)2).
In Section 4.4 we provide an implementation of our new algorithms for

q-MAXRTC with absolute approximation ratios, as well as experiments, on
both simulated and real datasets, illustrating their practical performance. As
an extreme example, we show that with only nine internal nodes our algo-
rithms can capture on average 80% of the rooted triplets from some recently
published trees, each having between 760 and 3081 internal nodes.

Finally, in Section 4.5 we give our new O(qn)-time algorithm for computing
the rooted triplet distance between two trees, built on the same leaf label set of
size n and with q being the number of internal nodes in the smaller tree. Let T1
be the tree with the q internal nodes. From a high level, this algorithm has a
preprocessing step and a counting of shared triplets step. In the preprocessing
step, we change the labels of the leaves in T2 according to their discovery time
in a depth first traversal of T2. We then transfer this change of labels to the
leaves in T1. Then for T1, we build an q×n table C in O(qn) time that can later
be used to answer in O(1) time any query asking for the total number of leaves
in a subtree defined by a node v in T2 that are also in a subtree defined by an
internal node u in T1. In the counting step, we use the idea of anchoring the
triplets in edges, introduced in Chapter 2 and Section 2.4.2 for high degree
trees. In Lemma 22 we show that we can use the C table to compute all
shared triplets that are anchored in a fixed edge of T2 in O(q)-time. Since
there are O(n) edges in T2, the running time of the algorithm becomes O(qn).
To conclude, in Section 4.5.3 we provide some experimental results, where we
compare the space and time performance of our algorithm against previous
algorithms. Our experiments indicate that our implementation uses less space
and is faster than the state-of-the-art algorithms [11, 46] for this problem for
large inputs, e.g., when n = 1, 000, 000 and q ≤ 50.

1.5.4 Open Problems and Future Work

In Theorem 6 we prove that when q = 2, the optimal absolute approximation
ratio is 4

27 . In Theorem 5 we give a polynomial-time deterministic algorithm
achieving that ratio. The optimal absolute approximation ratio for q ≥ 3 is
an open problem, as well as the existence of corresponding algorithms achiev-
ing the optimal ratio. Another open problem and possible direction for fu-
ture work, is the existence of approximation algorithms in the weighted case

28 Chapter 1. Introduction

of q-MAXRTC, where a weight is assigned to every triplet in the input and
the objective is to build a tree that maximizes the total weight of the triplets
induced from R. This would address the case where some triplets in R are
more important than others. Another possible interesting future research di-
rection would be to consider the following combination of the problem studied
in [47] and MAXRTC: Given a set of triplets R on a leaf label set of size n and
a parameter `, build a tree T with ` leaves such that |rt(T)∩R| is maximized.
Finally, it would be interesting to know whether or not it is possible to create
an algorithm for computing the rooted triplet distance between two trees that
are built on the same leaf label set of size n in O(q1q2 + n) time, where q1 is
the number of internal nodes in T1 and q2 the number of internal nodes in T2.

Chapter 2

Cache Oblivious Algorithms
for Computing the Triplet
Distance Between Trees

[11] Gerth Stølting Brodal and Konstantinos Mampentzidis. Cache Oblivious
Algorithms for Computing the Triplet Distance Between Trees. In 25th An-
nual European Symposium on Algorithms (ESA 2017), volume 87 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1–21:14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. 2017.

We consider the problem of computing the triplet distance between two
rooted unordered trees with n labeled leaves. Introduced by Dobson in 1975,
the triplet distance is the number of leaf triples that induce different topologies
in the two trees. The current theoretically fastest algorithm is an O(n logn)
algorithm by Brodal et al. (SODA 2013). Recently Jansson and Rajaby pro-
posed a new algorithm that, while slower in theory, requiring O(n log3 n) time,
in practice it outperforms the theoretically faster O(n logn) algorithm. Both
algorithms do not scale to external memory.

We present two cache oblivious algorithms that combine the best of both
worlds. The first algorithm is for the case when the two input trees are binary
trees, and the second is a generalized algorithm for two input trees of arbitrary
degree. Analyzed in the RAM model, both algorithms require O(n logn) time,
and in the cache oblivious model O(nB log2

n
M) I/Os. Their relative simplicity

and the fact that they scale to external memory makes them achieve the best
practical performance. We note that these are the first algorithms that scale
to external memory, both in theory and in practice, for this problem.

29

30 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

2.1 Introduction

Trees are data structures that are often used to represent relationships. For
example in the field of Biology, a tree can be used to represent evolutionary
relationships, with the leaves corresponding to species that exist today, and
internal nodes to ancestor species that existed in the past. For a fixed set
of n species, different data (e.g., DNA, morphological) or construction meth-
ods (e.g., Q* [8], neighbor joining [65]) can lead to trees that look structurally
different. An interesting question that arises then is, given two trees T1 and T2
over n species, how different are they? An answer to this question could po-
tentially be used to determine whether the difference is statistically significant
or not, which in turn could help with evolutionary inferences.

Several distance measures have been proposed in the past to compare two
trees that are unordered, i.e., trees in which the order of the siblings is not
taken into account. A class of them includes distance measures that are based
on how often certain features are different in the two trees. Common distance
measures of this kind are the Robinson-Foulds distance [64], the triplet dis-
tance [25] for rooted trees and the quartet distance [26] for unrooted trees.
The Robinson-Foulds distance counts how many leaf bipartitions are different,
where a bipartition in a given tree is generated by removing a single edge from
the tree. The triplet distance is only defined for rooted trees, and counts how
many leaf triples induce different topologies in the two trees. The counterpart
of the triplet distance for unrooted trees, is the quartet distance, which counts
how many leaf quadruples induce different topologies in the two trees.

Algorithms exist that can efficiently compute these distance measures. The
Robinson-Foulds distance can be optimally computed in O(n) time [24]. The
triplet distance can be computed in O(n logn) time [12]. The quartet distance
can be computed in O(dn logn) time [12], where d is the maximal degree of
any node in the two input trees.

The above bounds are in the RAM model. Previous work did not consider
any other models, for example external memory models like the I/O model [1]
and the cache oblivious model [32]. Typically when hearing about algorithms
for external memory models, one might (sometimes incorrectly) think of only
algorithms that have to deal with large amounts of data. Hence, any practical
improvement that comes from an algorithm that scales to external memory
compared to an equivalent that does not, can only be noticed if the inputs
are large. However, this is not necessarily the case for cache oblivious al-
gorithms. A cache oblivious algorithm, if built and implemented correctly,
can take advantage of the L1, L2, and L3 caches that exist in the vast ma-
jority of computers and give a significant performance improvement even for
small inputs.

A trivial modification of the algorithm in [24], can give a cache oblivi-
ous algorithm for computing the Robinson-Foulds distance that achieves the
sorting bound, by requiring O(nB log M

B

n
M) I/Os instead of O(n) I/Os for the

2.1. Introduction 31

x y z

(a) xy|z

x z y

(b) xz|y

y z x

(c) yz|x
x y z

(d) xyz

Figure 2.1: All possible topologies of a triplet with leaves x, y, and z.

standard implementation. For the triplet and quartet distance measures, no
such trivial modifications exist.

In this paper we focus on the triplet distance computation and present
the first non-trivial algorithms for computing the triplet distance between
two rooted trees, that for the first time for this problem, also scale to exter-
nal memory.

2.1.1 Problem Definition

For a given rooted unordered tree T where each leaf has a unique label, a triplet
is defined by a set of three leaf labels x, y, and z and their induced topology
in T . The four possible topologies are illustrated in Figure 2.1. The nota-
tion xy|z is used to describe a triplet where the lowest common ancestor of x
and y is at a lower depth than the lowest common ancestor of z with either x
or y. Note that the triplet xy|z is the same as the triplet yx|z because T
is considered to be unordered. Similarly, notation xyz is used to describe a
triplet for which every pair of leaves has the same lowest common ancestor.
This triplet can only appear if we allow nodes with degree three or larger in T .
From here on, when using the word “tree” we imply a “rooted unordered tree”.

For two given trees T1 and T2 that are built on n identical leaf labels,
the triplet distance D(T1, T2) is the number of triplets the leaves of which
induce different topologies in T1 and T2. Let S(T1, T2) be the number of shared
triplets in the two trees, i.e., leaf triples with identical topologies in the two
trees. We then have the relationship D(T1, T2) + S(T1, T2) =

(n
3
)
.

Previous and new results for computing the triplet distance are shown in
Table 2.1. Note that the papers [5, 12, 23, 45, 66] do not provide an analysis
of the algorithms in the cache oblivious model, so here we provide an upper
bound. From here on and unless otherwise stated, any asymptotic bound
refers to time.

2.1.2 Related Work

The triplet distance was first suggested as a method of comparing the shapes
of trees by Dobson in 1975 [25]. The first non-trivial algorithmic result dates
back to 1996, when Critchlow et al. [23] proposed an O(n2) algorithm that
however works only for binary trees. Bansal et al. [5] introduced an O(n2)

32 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

Year Reference Time IOs Space Non-Binary
Trees

1996 Critchlow et al. [23] O(n2) O(n2) O(n2) no
2011 Bansal et al. [5] O(n2) O(n2) O(n2) yes
2013 Sand et al. [66] O(n log2 n) O(n log2 n) O(n) no
2013 Brodal et al. [12] O(n logn) O(n logn) O(n logn) yes
2015 Jansson & Rajaby [45] O(n log3 n) O(n log3 n) O(n logn) yes
2017 new O(n logn) O(nB log2

n
M) O(n) yes

Table 2.1: Previous and new results for computing the triplet distance between
two trees that are built on the same leaf label set of size n.

algorithm that works for general (binary and non-binary) trees. Both of these
algorithms use O(n2) space. Sand et al. [66] introduced a new O(n2) algo-
rithm using only O(n) space for the case of binary trees, that they showed
how to optimize to reduce the time to O(n log2 n). This algorithm was also
implemented and shown to be the most efficient in practice. Soon after,
Brodal et al. [12] managed to extend the O(n log2 n) algorithm to work for
general trees, and at the same time brought the time down to O(n logn)
but now with the space increased to O(n logn). The space for binary trees
was still O(n). The algorithms from [66] and [12] were implemented and
added to the library tqDist [68]. Interestingly, it was shown in [40] that for
binary trees the O(n log2 n) algorithm had a better practical performance
than the O(n logn) algorithm. Jansson and Rajaby [45, 46] showed that an
even slower theoretically algorithm requiring worst case O(n log3 n) time and
O(n logn) space could give the best practical performance, both for binary and
non-binary trees. A survey of previous results until 2013 can be found in [67].

2.1.3 Contribution

The common main bottleneck with all previous approaches is that the data
structures used rely intensively on Ω(n logn) random memory accesses. This
means that all algorithms are penalized by cache performance and thus do
not scale to external memory. We address this limitation by proposing new
algorithms for computing the triplet distance on binary and non-binary trees,
that match the previous best O(n logn) time and O(n) space bounds in the
RAM model, but for the first time also scale to external memory. More
specifically, in the cache oblivious model, the total number of I/Os required
is O(nB log2

n
M). The basic idea is to essentially replace the dependency of

random access to data structures by scanning contracted versions of the input
trees. A careful implementation of the algorithms is shown to achieve the
best performance in practice, thus essentially documenting that the theoretical
results carry over to practice.

2.2. Previous Approaches 33

2.1.4 Outline of the Article

In Section 2.2 we provide an overview of previous approaches. In Section
2.3 we describe the new algorithm for the case where T1 and T2 are binary
trees. In Section 2.4 we extend the algorithm to also work for general trees.
In Section 2.5 we provide some implementation details. Section 2.6 contains
our experimental evaluation. Appendix A contains more experimental results.
Finally, in Section 2.7 we provide our concluding remarks.

2.2 Previous Approaches
A naive approach would enumerate over all

(n
3
)
sets of three leaf labels and find

for each set whether the induced topologies in T1 and T2 differ or not, giving
an O(n3) algorithm. This algorithm does not exploit the fact that the triplets
are not completely independent. For example, the triplets xy|z and yx|u share
the leaves x and y and the fact that the lowest common ancestor of x and y
is at a lower depth than the lowest common ancestor of z with either x or y
and the lowest common ancestor of u with either x or y. Dependencies like
this can be exploited to count the number of shared triplets faster.

Critchlow et al. [23] exploit the depth of the leaves’ ancestors to achieve the
first improvement over the naive approach. Bansal et al. [5] exploit the shared
leaves between subtrees and reduce the problem to computing the intersection
size (number of shared leaves) of all pairs of subtrees, one from T1 and one
from T2, which can be solved with dynamic programming.

2.2.1 The O(n2) Algorithm for Binary Trees in [66]

The algorithm for binary trees in [66] is the basis for all subsequent improve-
ments [12, 45, 66], including ours as well, so we will describe it in more detail
here. The dependency that was exploited is the same as in [5] but the proce-
dure for counting the shared triplets is completely different. More specifically,
each triplet in T1 and T2, defined by three leaf labels i, j, and k, is implicitly
anchored in the lowest common ancestor of i, j, and k. For two nodes u in T1
and v in T2, let s(u) and s(v) be the set of triplets that are anchored in u
and v respectively. For the number of shared triplets S(T1, T2) we then have:

S(T1, T2) =
∑
u∈T1

∑
v∈T2

|s(u) ∩ s(v)| .

For the algorithm to be O(n2) the value |s(u) ∩ s(v)| must be computed
in O(1) time. This is achieved by a leaf colouring procedure as follows: Fix
an internal node u in T1 and color the leaves in the left subtree of u red, the
leaves in the right subtree of u blue, let every other leaf have no color and then
transfer this coloring to the leaves in T2, i.e., identically labeled leaves get the
same color. The triplets anchored at u are exactly the triplets xy|z where x, y

34 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

are blue and z is red, or x, y are red and z is blue. To compute |s(u) ∩ s(v)|
we do as follows: let l and r be the left and right children of v, and let wred
and wblue be the number of red and blue leaves in a subtree rooted at a node w
in T2. We then have:

|s(u) ∩ s(v)| =
(
lred
2

)
rblue +

(
lblue

2

)
rred +

(
rred

2

)
lblue +

(
rblue

2

)
lred (2.1)

2.2.2 Subquadratic Algorithms

To reduce the time, Sand et al. [66] applied the smaller half trick, which spec-
ifies a depth first order to visit the nodes u of T1, so that each leaf in T1
changes color at most O(logn) times. To count shared triplets efficiently
without scanning T2 completely for each node u in T1, the tree T2 is stored
in a data structure denoted a hierarchical decomposition tree (HDT). This
HDT of T2 maintains for the current visited node u in T1, according to (2.1)
the sum

∑
v∈T2 |s(u) ∩ s(v)|, so that each leaf color change in T1 can be up-

dated efficiently in T2. In [66] the HDT is a binary tree of height O(logn)
and every update can be done by a leaf to root path traversal in the HDT,
which in total gives O(n log2 n) time. In [12] the HDT is generalized to also
handle non-binary trees, each query operates the same, and now due to a con-
traction scheme of the HDT the total time is reduced to O(n logn). Finally,
in [45] as an HDT the so called heavy-light tree decomposition is used. Note
that the only difference between all O(n polylogn) results that are available
right now is the type of HDT used.

In terms of external memory efficiency, every O(n polylogn) algorithm
performs Θ(n logn) updates to an HDT data structure, which means that for
sufficiently large input trees every algorithm requires Ω(n logn) I/Os.

2.3 The New Algorithm for Binary Trees

In this section, we provide a cache oblivious algorithm that for two binary
trees T1 and T2, built on the same leaf label set of size n, computes D(T1, T2)
using O(n logn) time and O(n) space in the RAM model, and O(nB log2

n
M)

I/Os in the cache oblivious model.

2.3.1 Overview

We use the O(n2) algorithm from Section 2.2.1 as a basis. The main difference
between this algorithm and our new algorithm is in the order that we visit
the nodes of T1, and how we process T2 when we count. We propose a new
order of visiting the nodes of T1, which is found by applying a hierarchical
decomposition on T1. Every component in this decomposition corresponds to
a connected part of T1 and a contracted version of T2. In simple terms, if Λ is

2.3. The New Algorithm for Binary Trees 35

the set of leaves in a component of T1, the contracted version of T2 is a binary
tree on Λ that preserves the topologies induced by Λ in T2 and has size O(|Λ|).
To count shared triplets, every component of T1 has a representative node u
that we use to scan the corresponding contracted version of T2 in order to
find

∑
v∈T2 |s(u) ∩ s(v)|. Unlike previous algorithms, we do not store T2 in a

data structure. We process T2 by contracting and counting, both of which can
be done by scanning. At the same time, even though we apply a hierarchical
decomposition on T1, the only reason why we do so, is so we can find the order
in which to visit the nodes of T1. This means that we do not need to store T1
in a data structure either. Hence, we completely remove the need of data
structures (and thereby random memory accesses), and scanning becomes the
basic primitive in the algorithm. To make our algorithm I/O efficient, all that
remains to be done is to use a proper layout to store the contracted trees in
memory, so that every time we scan a tree of size s we spend O(s/B) I/Os.

2.3.2 Modified Centroid Decomposition

For a given binary tree T let |T | denote the number of nodes in T (internal
nodes and leaves). For a node u in T let l and r be the left and right children
of u, and p the parent of u. Removing u from T partitions T into three
(possibly empty) connected components Tl, Tr, and Tp containing l, r, and p,
respectively. A centroid is a node u in T such that max{|Tl|, |Tr|, |Tp|} ≤ |T |/2.
A centroid always exists and can be found by starting from the root of T and
iteratively visiting the child with a largest subtree, eventually we will reach
a centroid. Finding the size of every subtree and identifying u takes O(|T |)
time in the RAM model. By recursively finding centroids in each of the three
components, we in the end get a ternary tree of centroids, which is called
the centroid decomposition of T , denoted CD(T). We can generate a level
of CD(T) in O(|T |) time, given the decomposition of T into components by
the previous level. Since CD(T) has at most 1+log2(|T |) levels, the total time
required to build CD(T) is O(|T | log |T |), thus we get Lemma 1.

Lemma 1. For any given binary tree T with n leaves, there exists an algorithm
that builds CD(T) using O(n logn) time and O(n) space in the RAM model.

A component in a centroid decomposition CD(T), might have several edges
crossing its boundaries (connecting nodes inside and outside the component).
An example of creating a component that has two edges from below can be
found in Figure 2.2. It is trivial to see that by following the same pattern
of generating components as depicted in Figure 2.2(d), CD(T) can have a
component with an arbitrary number of edges from below. The below modified
centroid decomposition, denoted MCD(T), generates components with at most
two edges crossing the boundary, one going towards the root and one down to
exactly one subtree.

36 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

T1

c1
c1r

(a) Picking the first centroid c1 of T1.

c1r

c1

c2 c2p

T1

(b) Recursing to the component defined
by c1r and picking the centroid c2 of that
component.

c2
c3

c3p

c1r

c1

c2p

T1

(c) Recursing to the component defined
by c2p and picking the centroid c3 of that
component.

c2
c3
c3p

c1r

c1

c2p

T1

(d) , Recursing to the component defined
by c3p.

Figure 2.2: Generating a component in CD(T1) that has two edges from below.
The black polygon is the component.

An MCD(T) is built as follows: The first component is defined by T , just
like in CD(T). To find recursively the rest of the components, if a compo-
nent C has no edge from below, we select the centroid c of C as a splitting
node, just like when building CD(T). Otherwise, let (x, y) be the edge that
crosses the boundary from below, where x is in C, y is a child of x and y is
not in C, and let c be the centroid of C (possibly x = c). As a splitting node
choose the lowest common ancestor of x and c (possibly x or c). By induction
every component has at most one edge from below and one edge from above.
A useful property of MCD(T) is captured by the following lemma:

Lemma 2. For any given binary tree T , we have h(MCD(T)) ≤ 2+2 log2 |T |,
where h(MCD(T)) denotes the height of MCD(T).

Proof. In MCD(T) if a component C does not have an edge from below then
the centroid of C is used as a splitting node, thus generating three compo-
nents Cl, Cr, and Cp such that |Cl| ≤ |C|

2 , |Cr| ≤ |C|
2 , and |Cp| ≤ |C|

2 .
Otherwise, C has one edge (x, y) from below, with x being the node that
is part of C. Let c be a centroid of C. We have to consider the following
two cases: if c happens to be the lowest common ancestor of c and x, then
our algorithm will split C according to the actual centroid, so we will have
that |Cl| ≤ |C|

2 , |Cr| ≤ |C|
2 , and |Cp| ≤ |C|2 . Otherwise, the splitting node will

produce components Cl, Cr, and Cp, where Cl contains x and Cr contains c,

2.3. The New Algorithm for Binary Trees 37

i.e., we have |Cl| + |Cp| ≤ |C|
2 and |Cr| ≥ |C|

2 . From the first inequality, we
have that |Cl| ≤ |C|2 and |Cp| ≤ |C|2 . Notice that Cr is going to be a component
corresponding to a complete subtree of T , so it will have no edges from below.
This means that in the next recursion level when working with Cr the actual
centroid of Cr will be chosen as a splitting node, thus in the following recursion
level the three components produced from Cr will be such that their sizes are
at most half the size of C. From the analysis given so far, it becomes clear that
when we have a component of size |C| with one edge from below, then we will
need at most 2 levels in MCD(T) before producing components all of which
will have a guaranteed size of at most |C|2 . Hence, the statement follows.

Since every level of MCD(T) can be constructed in O(|T |) time and we
have that |T | = 2n− 1, we obtain the following:

Theorem 1. For any given binary tree T with n leaves, there exists an al-
gorithm that constructs MCD(T) using O(n logn) time and O(n) space in
the RAM model.

2.3.3 The Main Algorithm

There is a preprocessing step and a counting (of shared triplets between T1
and T2) step.

In the preprocessing step, first we apply a depth first traversal on T1 to
make T1 left-heavy, by swapping children so that for every node u in T1 the
left subtree is larger than the right subtree. Second, we change the leaf labels
of T1, which can also be done by a depth first traversal of T1, so that the leaves
are numbered 1 to n from left to right. Both steps take O(n) time in the RAM
model. The second step is performed to simplify the process of transferring the
leaf colors between T1 and T2. The coloring of a subtree in T1 will correspond
to assigning the same color to a contiguous range of leaf labels. Determining
the color of a leaf in T2 will then require one if-statement to find in what
range (red or blue) its label belongs to. Finally, we build MCD(T1) according
to the description after Lemma 1.

In the counting step, we visit the nodes of T1, given by the depth first
traversal of the ternary tree MCD(T1), where the children of every node u
in MCD(T1) are visited from left to right. For every such node u we com-
pute

∑
v∈T2 |s(u) ∩ s(v)|. We achieve this by processing T2 in two phases, the

contraction phase and the counting phase.
Contraction Phase of T2. Let L(T2) denote the set of leaves in T2

and Λ ⊆ L(T2). In the contraction phase, T2 is compressed into a binary tree
of size O(|Λ|) whose leaf set is Λ. The contraction is done in a way so that
all the topologies induced by Λ in T2 are preserved in the compressed binary
tree. This is achieved by the following three sequential steps:

– Prune all leaves of T2 that are not in Λ,

38 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

– Repeatedly prune all internal nodes of T2 with no children, and
– Repeatedly contract unary internal nodes, i.e., nodes having exactly
one child.

Let u be a node of MCD(T1) and Cu the corresponding component of T1.
For every such node u we have a contracted version of T2, from now on re-
ferred to as T2(u), where L(T2(u)) = L(Cu). The goal is to augment T2(u) with
counters (see counting phase below), so that we can find

∑
v∈T2 |s(u) ∩ s(v)|

by scanning T2(u) instead of T2. One can imagine MCD(T1) as being a tree
where each node u is augmented with T2(u). To generate all contractions of T2
for level i of MCD(T1), which correspond to a set of disjoint connected com-
ponents in T1, we can reuse the contractions of T2 at level i− 1 in MCD(T1).
This means that we can generate the contractions of level i in O(n) time, thus
we can generate all contractions of T2 in O(n logn) time. Note that by explic-
itly storing all contractions, we will also need to use O(n logn) space. For our
problem, because we traverse MCD(T1) in a depth first manner, we only need
to store the contractions corresponding to the stack of nodes of MCD(T1) that
we have to remember during the traversal of MCD(T1). Since the components
at every second level of MCD(T1) have at most half the size of the components
two levels above, Lemma 3 states that the size of this stack is always O(n).

Lemma 3. Let T1 and T2 be two binary trees with n leaves and u1, u2, . . . , uk
a root to leaf path of MCD(T1). For the sizes of the corresponding contracted
versions T2(u1), T2(u2), . . . , T2(uk) we have that

∑k
i=1|T2(ui)| = O(n).

Proof. For the root u1 we have T2(u1) = T2, thus |T2(u1)| ≤ 2n. From the
proof of Lemma 2 we have that for every component of size x, we need at
most two levels in MCD(T1) before producing components all of which have a
size of at most x

2 . This means that
∑k
i=1|T2(ui)| ≤ 2n+ 2n+ 2n

2 + 2n
2 + 2n

4 +
2n
4 + · · ·+ 2n

2i + 2n
2i + · · · = 2

∑∞
j=0

2n
2j ≤ 8n = O(n).

Counting Phase of T2. In the counting phase, we find the value of∑
v∈T2 |s(u) ∩ s(v)| by scanning T2(u) instead of T2. This makes the total time

of the algorithm in the RAM model O(n logn), with the space being O(n)
because of Lemma 3. We consider the following two cases:

– Cu has no edges from below.
In this case Cu corresponds to a complete subtree of T1. We act

exactly like in the O(n2) algorithm (Section 2.2) but now instead of
scanning T2 we scan T2(u).

– Cu has one edge from below.
In this case Cu does not correspond to a complete subtree of T1,

since the edge from below Cu, points to a subtree Xu, that is located
outside of Cu (see Figure 2.3). Note that because in the preprocessing
step T1 was made to be left-heavy, Xu is always rooted at a node on
the leftmost path from u. The leaves in Xu are important because they
can be used to form triplets that are anchored in u. Acting in the exact

2.3. The New Algorithm for Binary Trees 39

u
T1 Cu

Xu

u
T1 Cu

Xu

u
T1 Cu

Xu

Figure 2.3: MCD(T1): Triplets (red and blue) that can be anchored in u with
the leaves not being in the component Cu.

v

pv

T2(u)

v

pv

s1
s2

s3

sk−1

sk

v

pv

s1
s2

s3

sk−1

sk

v

pv

s1
s2

s3

sk−1

sk

Figure 2.4: Contracted subtrees on edges in T2(u) and shared triplets rooted
at contracted nodes.

same manner as in the previous case is not sufficient because we need to
count these triplets as well.

To address this problem, every edge (pv, v) in T2(u) between a node v
and its parent pv, is augmented with some counters about the leaves
from Xu that were contracted away in T2. If v is the root of T2(u), we
add an extra edge to store this information. For every such edge (pv, v),
let s1, s2, . . . , sk be the contracted subtrees rooted at the edge (see Fig-
ure 2.4). Every such subtree contains either leaves with no color or leaves
from Xu that have the color red (the color cannot be blue because T1
was made to be left-heavy). For every node v in T2(u) the counters that
we have are the following:
– vred: total number of red leaves in the subtree of v (including those

coming from Xu).
– vblue: total number of blue leaves in the subtree of v.
– vts: total number of red leaves in s1, s2, . . . , sk.
– vps: total number of pairs of red leaves in s1, s2, . . . , sk such that

each pair comes from the same contracted subtree, i.e.,
∑k
i=1

(ri
2
)

where ri is the number of red leaves in si.
The number of shared triplets that are anchored in a non-contracted

node v of T2(v) can be found like in the O(n2) algorithm using the
counters vred and vblue in (2.1). As for the number of shared triplets

40 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

that are anchored in a contracted node on edge (pv, v), this value is
exactly

(v.blue
2
)
· vts + vblue · vps.

2.3.4 Scaling to External Memory

We now describe how to make the algorithm scale to external memory. The
tree T1 is stored in an array of size 2n − 1 by following a preorder layout,
i.e., if a node w of T1 is stored in position p, the left child of w is stored in
position p+ 1 and if x is the size of the left subtree of w, the right child of w
is stored in position p + x + 1. The components of T1 are connected parts
of T1, so they can be identified in T1 without having to make a unique copy
for each one of them. For T2 and its contractions, we use the proof of Lemma 3
to initialize a large enough array that can fit T2 and every contraction of T2
that we need to remember while traversing MCD(T1). This array is used as
a stack that we use to push and pop the contractions of T2. The tree T2 and
its contractions are stored in memory following a post order layout, i.e., if a
node w is stored in position p and y is the size of the right subtree of w, the
left child of w is stored in position p− y− 1 and the right child of w is stored
in position p− 1.

In the preprocessing step, T1 can be made left-heavy with two depth first
traversals. The first traversal computes for every node u in T1 the size of
the subtree rooted at u. The second traversal starts from the root of T1,
recursively visits the children by first visiting a largest child, and prints all
nodes visited along the way to an output array. This output array will at the
end of the traversal contain the left-heavy version of T1 in a preorder layout.
From the following Lemma 4 we have that both the first and second depth
first traversal of T1 require O(n/B) I/Os in the cache oblivious model, i.e.,
making T1 left-heavy requires O(n/B) I/Os in the cache oblivious model.

In Lemma 4 we consider the I/Os required to apply a depth first traversal
on a binary tree T that is stored in memory following a local layout, i.e., the
nodes of every subtree of T are stored consecutively in memory and every
node has O(1) occurrences in memory. From here on, when we refer to an
edge (u, v), we imply that u is the parent of v in T . During a depth first
traversal of T , an edge (u, v) is either processed to discover v or to backtrack
from v to u. In any case, w.l.o.g. we assume that when an edge is processed,
both u and v are visited, i.e., both u and v are accessed in memory.

Lemma 4. Let T be a binary tree with n leaves that is stored in an array
following a local layout, i.e., the nodes of every subtree of T are stored consec-
utively in memory and every node has O(1) occurrences in memory. Any depth
first traversal that starts from the root of T , and in which for every internal
node u in T the children of u are discovered in any order, requires O(n/B)
I/Os in the cache oblivious model.

2.3. The New Algorithm for Binary Trees 41

u u u · · ·· · ·
Tul

Tur{ {x y z

Figure 2.5: Position of a node u in memory with respect to the two children
subtrees of u.

Proof. For a node u in T , let Tu denote the set of nodes in the subtree defined
by u. From here on, Tu will be referred to as a subtree of T . Let ul and ur
be the two children of u. In Figure 2.5 we illustrate the three possibilities
for the position of u in memory with respect to Tul

and Tur . W.l.o.g. and
to simplify the presentation of the proof, in our analysis we assume that u
is stored in all these three possible positions, denoted x, y, and z. This as-
sumption is w.l.o.g. because in any local layout one or more of these positions
is used, thus the number of I/Os is upper bounded by the number of I/Os
incurred if we follow our assumption. This placement of u in memory im-
plies that when u is visited in a depth first traversal of T , all the three copies
of u are accessed in memory. Note that according to the definition of a lo-
cal layout, Tul

and Tur can be interchanged in Figure 2.5. In the following,
the aim is to bound the number of I/Os implied.

Define a node u in T to be B-light if 3|Tu| ≤ B − 2, otherwise the node is
said to be B-heavy. Observe that the children of a B-light node are all B-light.
We consider the following disjoint sets of nodes from T :
S1: Every B-light node
S2: Every B-heavy node with only B-light children
S3: Every B-heavy node with two B-heavy children
S4: Every B-heavy node with one B-heavy child and one B-light child.
For a B-light node u in T , let w be the first B-heavy node we reach in

the path from u to the root of T . An I/O incurred by visiting the node u
in T is charged to w. This node w can be either in S2 or S4. Let w′ be the
child of w such that Tw′ contains u. Since 3|Tw′ | ≤ B − 2, at most 1 I/O is
sufficient to visit all nodes in Tw′ . We say that Tw′ is a subtree that is B-
light. In Figure 2.6(a) we have an example of a tree, where the gray subtrees
denote B-light subtrees.

We now argue that |S2| = O(n/B) and |S3| = O(n/B). Let T ′ be the
binary tree created by pruning every B-light node from T and their incident
edges, and subsequently contracting nodes with in-degree of 1 and out-degree
of 1. An example for T and the corresponding tree T ′ can be found in Fig-
ures 2.6(a) and 2.6(b). Let l1, l2, . . . , lk be the leaves of T ′ and Tl1 , . . . , Tlk
the corresponding subtrees in T . Since all these subtrees are disjoint and for
every 1 ≤ i ≤ k we have |Tli | > B−2

3 , for the total number of leaves x in T ′ we
have x ≤ 3|T |/(B−2). Hence, we have |S2| = x = O(n/B). By construction T ′
is a binary tree, thus we have that |T ′| ≤ 2x ≤ 6|T |/(B − 2) = O(n/B). Since

42 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

a

b

c

d

e

f

g

h

i
j

k

l

m

n

o p

q

1

2

3

4

5 6 7

8 9

T

11
12

10

18

13 14

15 16

17

(a)

a

h

i k

n

o q

T ′

(b)

a b 1 b c d 2 d e f 3 f g 4 g h i 5 6i i h j 7 j k 8 k 9 k j h g f e 10 e d c 11 c b a l m 12 m n o 13 o 14 o n p q 15 q 16 q p 17 p nm l l18 a

b b c d d e f f g g· · · · · · g f e e d c c b · · ·1 2 4 10 113

L R

(c)

Figure 2.6: (a) A tree T . The gray subtrees are B-light subtrees and every
node not in aB-light subtree is aB-heavy node. (b) The corresponding tree T ′
according to the proof of Lemma 4. (c) How T is stored in memory, the two
segments of memory (in dashed lines) that correspond to the edge (a, h) in T ′
and how the nodes in P(a,h) are visited (defined by the one directional lines)
during a depth first traversal of T .

2.4. The New Algorithm for General Trees 43

the nodes in S3 correspond to internal nodes in T ′, we have |S3| = O(n/B).
We now argue that the total number of I/Os incurred by the nodes in S4

is O(n/B), thus proving the statement. Let (u, v) be an edge in T ′. This
edge corresponds to a unique path, denoted P(u,v) in T that contains every B-
heavy node, except u and v, that is in the path from u to v. For example the
edge (a, h) in Figure 2.6(b) corresponds to P(a,h) = b→ c→ d→ e→ f → g.
Let C(u,v) contain all B-light and B-heavy nodes, except u and v, rooted at the
path from u to v in T . By the local layout followed to store T in memory, the
nodes in C(u,v) are stored in two segments of memory (e.g., see Figure 2.6(c)).
Let L be the left segment and R the right segment. During a depth first
traversal of T , visiting all nodes in P(u,v) corresponds to visiting L from left
to right and then from right to left, and visiting R from right to left and
then from left to right. Since each of the B-light subtrees in L and R use at
most B − 2 positions in memory, by accessing all three copies of a node w
in P(u,v) every time w is visited in a depth first traversal of T , we guarantee
that the corresponding B-light subtree rooted at w is in cache, i.e., it can be
accessed in memory for free. Hence, the total number of I/Os that are sufficient
to pay for traversing all nodes in C(u,v) is 4+d3|C(u,v)|/Be, where the +4 comes
from the 4 I/Os we need to pay (in the worst case) to visit the first and last
node of L and R. In total, the total number of I/Os we need to spend for all
paths of T that correspond to edges of T ′ is

∑
(u,v)∈T ′(4 + d3|C(u,v)|/Be) =

O(n/B). Together with the fact that for every node of T that corresponds to
a node of T ′ we only spend O(1) I/Os and there are O(n/B) such nodes, the
statement follows.

Changing the labels of T1 can be done in O(nB log2
n
M) I/Os with a cache

oblivious sorting routine, e.g., with merge sort. Overall, the preprocessing
step requires O(nB log2

n
M) I/Os.

When building MCD(T1), by scanning the leftmost path that starts from
the root of a component Cu, we can find the splitting node of Cu in 1 +
d|Cu|/Be I/Os. In T2(u) we spend 1 + Θ(d|Tu|/Be) I/Os for the contraction
and counting phase. Since |T2(u)| = Θ(|Cu|), overall for a given (Cu, T2(u))
pair the algorithm requires 2 + Θ(d|Cu|/Be) I/Os. However, after O(log2

n
M)

levels in MCD(T1), any (Cu, T2(u)) pair will fit in a cache of size M . All such
pairs together incur O(n/B) I/Os. By using a stack to store the contractions
of T2, the remaining pairs incur O(nB log2

n
M) I/Os. Overall, the algorithm

requires O(nB log2
n
M) I/Os in the cache oblivious model.

2.4 The New Algorithm for General Trees

Unlike a binary tree, a general tree can have internal nodes with an arbitrary
number of children. By anchoring the triplets of T1 and T2 in edges instead of
nodes, we show that with only four colors we can count all the shared triplets

44 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

between the two trees. We start by describing a new O(n2) algorithm for gen-
eral trees. We then show how we can use the same ideas presented in the pre-
vious section to extend the O(n2) algorithm and reduce the time to O(n logn).

2.4.1 Quadratic Algorithm

For a given tree T , let t be a triplet with leaves i, j, and k that is either a
resolved triplet ij|k or an unresolved triplet ijk, where i is to the left of j and
for the triplet ijk, k is also to the right of j. Let w be the lowest common
ancestor of i and j and (w, c) the edge from w to the child c whose subtree
contains j. We anchor t in edge (w, c). Let s′(w, c) be the set containing all
triplets anchored in edge (w, c). For the number of shared triplets S(T1, T2)
we have:

S(T1, T2) =
∑

(u,c)∈T1

∑
(v,c′)∈T2

|s′(u, c) ∩ s′(v, c′)| .

For the efficient computation of S(T1, T2) we use the following coloring pro-
cedure: Fix a node u in T1 and a child c. Color the leaves of every child
subtree of u to the left of c red, the leaves of the child subtree defined by c
blue, the leaves of every child subtree to the right of c green and give the
color black to every other leaf of T1. We then transfer this coloring to the
leaves of T2. For the resolved triplet ij|k, i corresponds to the red color, j
corresponds to the blue color and k corresponds to the black color. For the
unresolved triplet ijk, i corresponds to the red color, j corresponds to the
blue color and k corresponds to the green color.

Suppose that the node v in T2 has k children. We are going to compute
all shared triplets that are anchored in the k children edges of v in O(k) time.
This will give an O(n2) total running time, because for every edge in T1 we
spend O(n) time in T2 and there are O(n) edges in T1. In v we have the
following counters:

– vred: total number of red leaves in the subtree of v.
– vblue: total number of blue leaves in the subtree of v.
– vgreen: total number of green leaves in the subtree of v.
– vblack: total number of black leaves not in the subtree of v.
While scanning the k children edges of v from left to right, for the child c′

that is the m-th child of v, we also maintain the following:
– ared: total number red leaves from the first m− 1 children subtrees.
– ablue: total number blue leaves from the first m− 1 children subtrees.
– agreen: total number of green leaves from the firstm−1 children subtrees.
– pred,green: total number of pairs of leaves from the first m − 1 children
subtrees, where one is red, the other is green, and they both come from
different subtrees.

– pred,blue : total number of pairs of leaves from the first m − 1 children
subtrees, where one is red, the other is blue, and they both come from
different subtrees.

2.4. The New Algorithm for General Trees 45

– pblue,green : total number of pairs of leaves from the first m− 1 children
subtrees, where one is blue, the other is green, and they both come from
different subtrees.

– tred,blue,green: total number of leaf triples from the first m− 1 children
subtrees, where one is red, one is blue and one is green, and all three
leaves come from different subtrees.

Before scanning the children edges of v, every variable is initialized to 0. Then
for the child c′ every variable is updated in O(1) time as follows:

– ared = ared + c′red
– ablue = ablue + c′blue
– agreen = agreen + c′green
– pred,green = pred,green + agreen · c′red + ared · c′green
– pred,blue = pred,blue + ablue · c′red + ared · c′blue
– pblue,green = pblue,green + agreen · c′blue + ablue · c′green
– tred,blue,green = tred,blue,green + pred,green · c′blue + pred,blue · c′green +
pblue,green · c′red

After finishing scanning the k children edges of v, we can compute the
shared triplets that are anchored in every child edge of v as follows: for
the total number of shared resolved triplets, denoted totres, we have that
totres = pred,blue · vblack and for the total number of shared unresolved
triplets, denoted totunres, we have that totunres = tred,blue,green. We are
now ready to describe the O(n logn) algorithm.

2.4.2 Subquadratic Algorithm

Similarly to the case of binary trees in Section 2.3, there is a preprocessing
step and a counting step. The counting step is divided into two phases, the
contraction and counting phase of T2.

In the preprocessing step of the algorithm, we start by transforming T1
into a binary tree, denoted b(T1). Let w be a node of T1 that has exactly k
children, where k > 2. The k edges that connect w to its children in T1 are
replaced in b(T1) by a so called orange binary tree. The root of this binary tree
is w and the leaves are the k children of w in T1. Every internal node (except
the root) and edge is colored orange, hence the given name. We assume that
node w and its k children in T1, in b(T1) have the color black. This binary
tree is built in a way so that every orange node is on the leftmost path that
starts from w, and its leftmost leaf stores the heaviest child of w in T1 (i.e., the
child whose subtree is the largest among all other children subtrees of w, when
transformed in b(T1)), thus making b(T1) left-heavy. The order in which the
other children of w in T1 are stored in the remaining leaves does not matter,
however for the notation below to be mathematically correct, we assume that
after constructing b(T1), the left to right order of the children of w in T1 is
implicitly updated, so that it matches the left to right order in which they
appear in the leaves of the orange binary tree below w in b(T1).

46 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

u

b(T1)

up

ul

Cu

XuYu Yu

up

ul

T1

Xu

Cu

YuYu

u

Figure 2.7: How a component in b(T1) translates to a component in T1.

Let u be a node in b(T1) and c its right child. By construction, c must
be a black node. If u is orange, then let uroot be the root of the orange
binary tree that u is part of. If u is black, then let uroot = u. Again by con-
struction, uroot must be the parent of c in T1. For the edge (u, c) in b(T1), we
define s′′(u, c) to be the set of triplets that are anchored in edge (uroot, c) of T1,
i.e., s′′(u, c) = s′(uroot, c). Note that for an edge (u′, c′) in b(T1) connecting u′
with its left child c′, we have s′′(u′, c′) = 0.

For the number of shared triplets we then have:

S(T1, T2) =
∑

(u,c)∈b(T1)

∑
(v,c′)∈T2

|s′′(u, c) ∩ s′(v, c′)| .

We can capture all triplets in T1 by coloring b(T1) instead of T1. For the
nodes u and c where c is the right child of u, the leaves of b(T1) are colored
according to edge (u, c) as follows: the leaves in the left subtree of u are colored
red, the leaves in the right right subtree of u are colored blue. If u is an orange
node, then the black leaves in the remaining subtrees of the orange binary tree
that u is part of are colored green. All other leaves of b(T1) maintain their
color black.

The reason behind transforming T1 into the binary tree b(T1), is because
now we can use exactly the same core ideas described in Section 2.3. The
tree b(T1) is a binary tree, so we apply the same preprocessing step, except
we do not need to make it left-heavy because by construction it already is.
However, we change the labels of the leaves in b(T1) and T2, so that the leaves
in b(T1) are numbered 1 to n from left to right. The order in which we visit the
nodes of b(T1) is determined by a depth first traversal of MCD(b(T1)), where
the children of every node u in MCD(b(T1)) are visited from left to right.

In Figure 2.7 we see that a component Cu of b(T1) structurally looks like
a component of T1 in the binary algorithm of Section 2.3. However, the edges
crossing the boundary can now be orange edges as well, which in T1 translates
to more than one consecutive subtrees.

Like in the case of binary input trees, while traversing MCD(b(T1)) we
process T2 in two phases, the contraction phase and the counting phase. The

2.4. The New Algorithm for General Trees 47

v

pv v

pv

1 2 k

T2(u)

Figure 2.8: T2(u): Contracted children subtrees rooted at node v and con-
tracted subtrees rooted at contracted nodes (gray color) on the edge (pv, v).

only difference after this point between the algorithm for binary trees and the
algorithm for general trees, is in the counters that we have to maintain in the
contracted versions of T2. Otherwise, the same analysis from Section 2.3 holds.

Contraction Phase of T2. The contraction of T2 with respect to a set of
leaves Λ ⊆ L(T2), happens in the exact same way as described in Section 2.3,
i.e., we start by pruning all leaves of T2 that are not in Λ, then we prune all
internal nodes of T2 with no children, and finally, we contract the nodes that
have exactly one child.

Let u be a node of MCD(b(T1)) and Cu the corresponding component
of b(T1). For every such node u we have a contracted version of T2, de-
noted T2(u), where L(T2(u)) = L(Cu). Like in the binary algorithm of
Section 2.3, the goal is to augment T2(u) with counters, so that we can
find

∑
(v,c′)∈T2 |s

′′(u, c) ∩ s′(v, c′)| by scanning T2(u) instead of T2.
Because of the location where the triplets are anchored, every leaf that was

contracted when constructing T2(u) must have a color and be stored in some
way. The color of each such leaf depends on the type of the corresponding
component that we have in b(T1) and the splitting node that is used for that
component. For example, in Figure 2.7 the contracted leaves from Xu will
have the red color because b(T1) is left-heavy. The contracted leaves from the
children subtrees of up in T1 can either have the color green or black. If u
in b(T1) happens to be orange and part of the orange binary tree that up is
the root of, then the color must be green, otherwise black. Finally, every leaf
that is not in the subtree defined by up, and thus is in Yu, must have the
color black. The way we store this information is described in the counting
phase below.

Counting Phase of T2. In Figure 2.8 we illustrate how a node v in T2(u)
can look like. The contracted subtrees are illustrated with the dark gray color.
Every such subtree contains some number of red, green, and black leaves. The
counters that we maintain should be so that if v has k children in T2(u), then
we can count all shared triplets that are anchored in every child edge (including
those of the contracted children subtrees) of v in O(k) time. At the same time,
in O(1) time we should be able to count all shared triplets that are anchored

48 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

in every child edge of every contracted node that lies on the edge (pv, v).
Then, the time required by the counting phase becomes O(|T2(u)|), giving the
same time bounds as in the binary algorithm of Section 2.3. In v we have the
following counters:

– vred: total number of red leaves (including the contracted leaves) in the
subtree of v.

– vblue: total number of blue leaves in the subtree of v.
– vgreen: total number of green leaves (including the contracted leaves) in
the subtree of v.

– vblack: total number of black leaves (including the contracted leaves)
not in the subtree of v.

We divide the rest of the counters into two categories. The first category
corresponds to the leaves in the contracted children subtrees of v and each
counter is stored in a variable of the form vA.x. The second category corre-
sponds to the leaves in the contracted subtrees on the edge (pv, v), and each
counter is stored in a variable of the form vB.x. For the first category A we
have the following counters:

– vA.red: total number of red leaves in the contracted children subtrees
of v.

– vA.green: total number of green leaves in the contracted children subtrees
of v.

– vA.black: total number of black leaves in the contracted children subtrees
of v.

– vA.red,green: total number of pairs of leaves where one is red, the other
is green, and one leaf comes from one contracted child subtree of v and
the other leaf comes from a different contracted child subtree of v.

While scanning the k children edges of v from left to right, for the child c′
that is the m-th child of v, we also maintain the following:

– ared: total number of red leaves from the first m − 1 children subtrees,
including the contracted children subtrees.

– ablue: total number of blue leaves from the first m−1 children subtrees.
– agreen: total number of green leaves from the firstm−1 children subtrees,
including the contracted children subtrees.

– pred,green: total number of pairs of leaves from the first m − 1 children
subtrees, including the contracted children subtrees, where one is red,
the other is green, and they both come from different subtrees (one might
be contracted and the other non-contracted).

– pred,blue : total number of pairs of leaves from the first m − 1 children
subtrees, including the contracted children subtrees, where one is red,
the other is blue, and they both come from different subtrees (one might
be contracted and the other non-contracted).

– pblue,green : total number of pairs of leaves from the first m− 1 children
subtrees, including the contracted children subtrees, where one is blue,
the other is green, and they both come from different subtrees (one might

2.4. The New Algorithm for General Trees 49

be contracted and the other non-contracted).
– tred,blue,green: total number of leaf triples from the first m− 1 children
subtrees, including the contracted children subtrees, where one is red,
one is blue and one is green, and all three leaves come from different
subtrees (some might be contracted, some might be non-contracted).

Every variable is updated in O(1) time in exactly the same manner like in
the O(n2) algorithm of Section 2.4.1. The main difference is in the values of
the variables before we begin scanning the children edges of v. Every variable
is initialized as follows:

– ared = vA.red
– ablue = 0
– agreen = vA.green
– pred,green = vA.red,green
– pred,blue = pblue,green = tred,blue,green = 0
After finishing scanning the k children edges of v, we can compute the

shared triplets that are anchored in every child edge of v (including the chil-
dren edges pointing to contracted subtrees) as follows: for the total num-
ber of shared resolved triplets, denoted totA.res, we have that totA.res =
pred,blue · vblack and for the total number of shared unresolved triplets, de-
noted totA.unres, we have that totunres = tred,blue,green.

The second category B of counters help us count triplets involving leaves
(contracted and non-contracted) from the subtree of v and leaves from the
contracted subtrees rooted at the edge (pv, v). We maintain the following:

– vB.red: total number of red leaves in all contracted subtrees rooted at
the edge (pv, v).

– vB.green: total number of green leaves in all contracted subtrees rooted
at the edge (pv, v).

– vB.black: total number of black leaves in all contracted subtrees rooted
at the edge (pv, v).

– vB.red,green: total number of pairs of leaves where one is red and the other
is green such that one leaf comes from a contracted child subtree of a
contracted node v′ and the other leaf comes from a different contracted
child subtree of the same contracted node v′.

– vB.red,black: total number of pairs of leaves where one is red and the other
is black such that the red leaf comes from a contracted child subtree of
a contracted node v′ and the black leaf comes from a contracted child
subtree of a contracted node v′′, where v′′ is closer to pv than v′.

For the total number of shared unresolved triplets, denoted totB.unres,
that are anchored in the children edges of every contracted node that exists
in edge (pv, v), we have that totB.unres = vblue · vB.red,green. For the total
number of shared resolved triplets, denoted totB.res, that are anchored in the
children edges of every contracted node that exists in edge (pv, v), we have
that totB.res = vblue · vB.red,black + vblue · vB.red · (vblack − vB.black).

50 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

2.4.3 Scaling to External Memory

The analysis is the same as in Section 2.3, except for minor details. The
proof of Lemma 3 can be trivially modified to apply to general trees as well.
Finally, Lemma 4 is generalized to non-binary trees in the following Lemma 5.
In Lemma 5, we consider the I/Os required to apply a depth first traversal
on a non-binary tree T that is stored in memory following a local layout, i.e.,
the nodes of every subtree of T are stored consecutively in memory and every
node has O(1) occurrences in memory. Similarly to the assumptions we made
for Lemma 4, w.l.o.g. we assume that when an edge (u, v) of T is processed in
a depth first traversal of T , both u and v are visited, i.e., both u and v are
accessed in memory.

Lemma 5. Let T be a non-binary tree with n leaves that is stored in an
array following a local layout, i.e., the nodes of every subtree of T are stored
consecutively in memory and every node has O(1) occurrences in memory.
Any depth first traversal that starts from the root of T and in which for every
internal node u in T , after the discovery of the first child of u the remaining
children are discovered in order that they appear in memory from left to right,
requires O(n/B) I/Os in the cache oblivious model.

· · · · · ·
Tu1

Tu2
Tu3

Tu6
Tu7

u u

Tu4{ { { { {

w w

{ {Tu8{ Tu5

Figure 2.9: Position of a node u in memory with respect to the 8 subtrees
defined by the children of u, with Tu5 being a largest subtree.

Proof. This proof can be thought of as an extension of the proof of Lemma 4.
Following the proof of Lemma 4, for a node u in T , let Tu denote the set of
nodes in the subtree defined by u. For i ≥ 2, let u1, . . . , ui be the children
of u and let Tu1 , . . . , Tui be the corresponding subtrees. We assume that these
subtrees are ordered from left to right in order that they appear in memory.
In the proof of Lemma 4, we implicitly assumed that the positions of the two
children of u are stored together with u in memory. For general trees, together
with u we need to store a list of arbitrary size i ≥ 2 containing the positions
in memory of every child of u. To avoid complicating the presentation of the
proof, we assume that we can find the position in memory of every child of u
without this list, i.e., this list is not stored together with u, thus finding the
position of any child of u incurs no I/Os. An easy way to support this is
to store in every node u in T , one pointer to the first child to be discovered
and one pointer to the sibling appearing next in memory. For every node u
in T , we allow a constant number of occurrences in memory. For any given
placement of the copies of u in memory, we add two copies of u before the
first child subtree and after the last child subtree. W.l.o.g. we assume that u

2.4. The New Algorithm for General Trees 51

is only stored before the first child subtree and after the last child subtree (see
Figure 2.9 for an example).

Define a node u in T to be B-light if 2|Tu| ≤ B − 2, otherwise the node
is said to be B-heavy. Observe that the children of a B-light node are all
B-light. We consider the following disjoint sets of nodes from T :
S1: Every B-light node
S2: Every B-heavy node with only B-light children
S3: Every B-heavy node with at least two B-heavy children and an arbitrary

number of B-light children
S4: Every B-heavy node with exactly one B-heavy child and at least 1 B-

light children.
For a B-light node u in T , let w be the first B-heavy node we reach in the

path from u to the root of T . An I/O incurred by visiting the node u in T is
charged to w. This node w can be either in S2, S3 or S4. Let w′ be the child
of w such that Tw′ contains u. Since 2|Tw′ | ≤ B−2, at most 1 I/O is sufficient
to visit all nodes in Tw′ . We say that Tw′ is a subtree that is B-light. In
Figure 2.10(a) we have an example of a tree, where the gray subtrees denote
B-light subtrees.

Similarly to the proof of Lemma 4, we have that |S2| = O(n/B) and
|S3| = O(n/B). Since T is non-binary, we have to argue that the number of
I/Os spent traversing the B-light subtrees that are rooted at every node in S2
and S3 is O(n/B). For a node u in T , let Gu be the size of all gray subtrees
rooted at u. For every node u in S2 we spend at most 1 I/O to traverse the first
chosen child subtree and 1 + |Gu|/B I/Os to traverse the remaining subtrees,
thus 2+ |Gu|/B I/Os in total. Since |S2| = O(n/B) and the gray subtrees in T
are disjoint, i.e.,

∑
u∈T |Gu| = O(n), we spend O(n/B) I/Os traversing the B-

light subtrees rooted at every node in S2. For every node u in S3, let d′(u)
denote the number of B-heavy children of u. For this node u, we spend at
most 1 I/O to traverse the first chosen child subtree that could be B-light
and 1 + d′(u) + |Gu|/B I/Os to traverse the remaining gray subtrees rooted
at u. Since |S3| = O(n/B), we have

∑
u∈T ′ d′(u) = O(n/B). Together with

the fact that
∑
u∈T |Gu| = O(n), we spend O(n/B) I/Os traversing the B-

light subtrees rooted at every node in S3.
We now argue that the total number of I/Os incurred by the nodes in S4

is O(n/B), thus proving the statement. Let T ′ be defined as in the proof of
Lemma 4, as well as P(u,v) and C(u,v) for an edge (u, v) in T ′. By the local
layout followed to store T in memory, the nodes in C(u,v) are stored in two
segments of memory (e.g., see Figure 2.10(c)). Let w be a node in P(u,v)
and Gw be the total size of the gray subtrees rooted at w. We say that w
is G-light if 2Gw ≤ B − 2, otherwise G-heavy. There can be O(n/B) G-
heavy nodes in T , thus by the same argument as in the previous paragraph,
scanning the gray subtrees for all G-heavy nodes together incurs O(n/B) I/Os.
For the G-light nodes we follow a similar argument as in the proof of lemma 4.
Let L be the left chunk and R the right chunk and w.l.o.g assume that every

52 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

a

b

c

e

f

g h

i

j

k

l

1 2

4

5

6 7

9

11 12

8

3

10

T

d

(a)

a

f

g h

k l

T ′

(b)

c d e· · · f1 2 3 4 5 6 7 8 · · · c b9 10 11 12 · · ·b f e d

L R

(c)

Figure 2.10: (a) A general tree T . The gray subtrees are B-light subtrees and
every node not in a B-light subtree is a B-heavy node. (b) The corresponding
tree T’ according to the proof of Lemma 5. (c) How T is stored in memory
and the two segments of memory that correspond to the edge (a, f) in T ′.

2.5. Implementation 53

ParserInput
T1

T2

Algorithm

Figure 2.11: Implementation overview.

node in P(u,v) is G-light. During a depth first traversal of T , visiting all nodes
in P(u,v) corresponds to visiting L from left to right and then from right to left,
and visiting R from right to left and then from left to right. Let c be the child
of w that is B-heavy. Since for every node w in P(u,v) we have 2Gw ≤ B−2, by
accessing all two copies of w and c when c is visited in a depth first traversal
of T , we guarantee that all the gray subtrees rooted at w are in cache i.e., they
can be accessed in memory for free. Hence, O(n/B) I/Os are sufficient to pay
to traverse the gray subtrees of all G-light nodes. Overall, by havingM ≥ 5B,
where two blocks are used to hold copies of a node w in T , two blocks are used
to hold copies of a child of w and one block is used to scan gray subtrees, the
statement follows.

2.5 Implementation
The algorithms of Sections 2.3 and 2.4 have been implemented in the C++
programming language. A high level overview of each implementation is illus-
trated in Figure 2.11. The source code is publicly available and can be found
at https://github.com/kmampent/CacheTD.

2.5.1 Input

The two input trees T1 and T2 are stored in two separate text files following the
Newick format. Both trees have n leaves and the label of each leaf is assumed
to be a number in {1, 2, . . . , n}. Two leaves cannot have the same label.

2.5.2 Parser

The parser receives the files that store T1 and T2 in Newick format, and
returns T1 and T2 but now with T1 stored in an array following the pre-
order layout and T2 in an array following the postorder layout. The parser
takes O(n) time and space in the RAM model and O(n/B) I/Os in the cache
oblivious model.

2.5.3 Algorithm

Having T1 and T2 stored in memory following the desired layouts, we proceed
with the main part of the algorithm. Both implementations (binary, general)
follow the same approach. There exists an initialization step and a distance
computation step.

https://github.com/kmampent/CacheTD

54 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

Initialization. In the initialization step, the preprocessing parts of the
algorithms are performed (see Sections 2.3.3 and 2.4.2), where the first com-
ponent of T1 is built, and the corresponding contracted version of T2, from
now on referred to as corresponding component of T2, is built as well. After
this step, the first component of T1 is stored in an array (different than the one
produced by the parser) following the preorder layout. Similarly, the corre-
sponding component of T2 is stored in an array following the postorder layout.

Distance Computation. Let comp(T1) and comp(T2) be the component
of T1 and the corresponding component of T2 produced by the initialization
step. Having these two components available, we can begin counting shared
triplets in order to compute S(T1, T2). The following steps are recursively
applied:

– Starting from the root of comp(T1) and according to Section 2.3.2, scan
the leftmost path of comp(T1) to find the splitting node u.

– Scan comp(T2) to compute for the binary algorithm
∑
v∈T2 |s(u) ∩ s(v)|

(see counting phase of T2 in Section 2.3.3), or for the general algorithm∑
(v,c′)∈T2 |s

′′(u, c) ∩ s′(v, c′)| (see counting phase of T2 in Section 2.4.2).
– Using the splitting node u, generate the next three components of T1.
Let comp(T1(ul)), comp(T1(ur)), and comp(T1(up)) be the components
determined by the left child, right child, and parent of u respectively.
Let comp(T2(ul)), comp(T2(ur)) and comp(T2(up)) be the corresponding
contracted versions of T2 with all the necessary counters properly main-
tained (see contraction phase of T2 in Section 2.3.3 for the binary case
and in Section 2.4.2 for the general case).

– Scan and contract comp(T2) to generate comp(T2(ul)) and then recurse
on the pair defined by comp(T1(ul)) and comp(T2(ul)).

– Scan and contract comp(T2) to generate comp(T2(ur)) and then recurse
on the pair defined by comp(T1(ur)) and comp(T2(ur)).

– Scan and contract comp(T2) to generate comp(T2(up)) and then recurse
on the pair defined by comp(T1(up)) and comp(T2(up)).

As a final step, print
(n

3
)
− S(T1, T2), which is equal to the triplet distance

D(T1, T2).
Correctness. The correctness of our implementations was extensively

tested by generating hundreds of thousands of random trees of varying size
and varying degree and comparing the output of our implementations against
the output of the implementations of the O(n log3 n) algorithm in [45] and
the O(n logn) algorithm in [68].

Changing the Leaf Labels. To get the right theory bounds, changing
the leaf labels of T1 and T2 must be done with a cache oblivious sorting routine,
e.g., merge sort. In the RAM model this approach takes O(n logn) time and in
the cache oblivious model O(nB log2

n
M) I/Os. A second approach is to exploit

the fact that each label is between 1 and n and use an auxiliary array that
stores the new labels of the leaves in T1, which we then use to update the leaf
labels of T2. In the RAM model this second approach takes O(n) time but in
the cache oblivious model O(n) I/Os. In practice, the problem with the first
approach is that the number of instructions it incurs eliminates any advantage

2.6. Experiments 55

that we expect to get due to its cache related efficiency for L1, L2, and L3
cache. For the input sizes tested, the array of labels easily fits into RAM, so
in our implementation of both algorithms we use the second approach.

2.6 Experiments

In this section we provide an extensive experimental evaluation of the practical
performance of the algorithms described in Sections 2.3 and 2.4.

2.6.1 The Setup

The experiments were performed on a machine with 8GB RAM, Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz, 32K L1 cache, 256K L2 cache and 6144K
L3 cache. The operating system was Ubuntu 16.04.2 LTS. The compilers used
were g++ 5.4 and g++ 4.7, together with cmake 3.5.1. The experiments
were performed in text mode, i.e., by booting into the terminal of Ubuntu, to
minimize the interference from other programs running at the same time.

Generating Random Trees. We use two different models for generating
input trees. The first model is called the random model. A tree T with n leaves
in this model is generated as follows:

– Create a binary tree T with n leaves as follows: start with a binary
tree T with two leaves. Iteratively pick n − 1 times a leaf l uniformly
at random. Make l an internal node by appending a left child node and
a right child node to l, thus increasing the number of leaves in T by
exactly 1.

– With probability p contract every internal node u of T , i.e., make the
children of u be the children of u’s parent and remove u.

The second model is called the skewed model. In this model, we can control
more directly the shape of the input trees. A tree T with n leaves in this model
is generated as follows:

– Create a binary tree T with n leaves as follows: let 0 ≤ α ≤ 1 be
a parameter, u some internal node in T , l and r the left and right
children of u, and T (u), T (l), and T (r) the subtrees rooted at u, l,
and r respectively. Create T so that for every internal node u we have
|T (l)|
|T (u)| ≈ α, i.e., if n′ is the number of leaves below T (u), and |Λl|
and |Λr| are the number of leaves in T (l) and T (r) respectively, first
choose |Λl| = max(1,min(bα · n′c, n′ − 1)) and then let |Λr| = n′ − |Λl|.

– With probability p contract every internal node u of T ′ like in the ran-
dom model.

In both models and after creating T , we shuffle the leaf labels by using
std::shuffle1 together with std::default_random_engine2.

1http://www.cplusplus.com/reference/algorithm/shuffle/
2http://www.cplusplus.com/reference/random/default_random_engine/

http://www.cplusplus.com/reference/algorithm/shuffle/
http://www.cplusplus.com/reference/random/default_random_engine/

56 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

Implementations Tested. Let p1 and p2 denote the contraction proba-
bility of T1 and T2 respectively. When p1 = p2 = 0, the trees T1 and T2 are
binary trees, so in the experiments we use the algorithm from Section 2.3. In
every other case, the algorithm from Section 2.4 is used. Note that the algo-
rithm from Section 2.4 can handle binary trees just fine, however there is an
extra overhead (factor 1.8 slower, see Figure A.1) compared to the algorithm
from Section 2.3 that comes due to the additional counters that we maintain
in the contractions of T2.

We compared our implementation with the implementations that are pro-
vided in [45] and [12, 66], and are available at http://sunflower.kuicr.
kyoto-u.ac.jp/~jj/Software/Software.html and http://users-cs.au.
dk/cstorm/software/tqdist/ respectively. The implementation of the algo-
rithm in [45] has two versions, one that uses unordered_map3, which we refer
to as CPDT, and another that uses sparsehash4, which we refer to as CPDTg. For
binary input trees the hash maps are not used, thus CPDT and CPDTg are the
same. The tqdist library [68], which we refer to as tqDist, has an implemen-
tation of the binary O(n log2 n) algorithm from [66] and the general O(n logn)
algorithm from [12]. If the two input trees are binary the O(n log2 n) algorithm
is used. We refer to our new algorithm as CacheTD.

Statistics. We measured the execution time of the algorithms with the
clock_gettime function in C++. Due to the different parser implementa-
tions, we do not consider the time taken to parse the input trees. We used the
PAPI library5 for statistics related to instructions, L1, L2, and L3 cache ac-
cesses and misses. Finally, we count the space of the algorithms by considering
the Maximum resident set size returned by /usr/bin/time -v.

2.6.2 Results

The experiments are divided into two parts. In the first part, we consider
the performance of the algorithms when their memory requirements do not
exceed the available main memory (8G RAM). In the second part, we consider
the performance when the memory requirements exceed the available main
memory (by limiting the available RAM to the operating system to be 1GB),
thus forcing the operating system to start using the swap space, which in turn
yields the very expensive disk I/Os. All figures can be found in Appendix A.

RAM experiments in the RandomModel. In Figure A.2 we illustrate
a time comparison of all implementations for trees of up to 221 leaves (∼ 2
million) with varying contraction probabilities. Every experiment is run 10
times, and each time on a different tree. All 10 data points are depicted
together with a line that goes over their median. The compilers used were
g++ 5.4 with cmake 3.5.1 for tqDist and g++ 5.4 for CPDT, CPDTg, and

3http://en.cppreference.com/w/cpp/container/unordered_map
4https://github.com/sparsehash/sparsehash
5http://icl.utk.edu/papi/

http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/Software.html
http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/Software.html
http://users-cs.au.dk/cstorm/software/tqdist/
http://users-cs.au.dk/cstorm/software/tqdist/
http://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/sparsehash/sparsehash
http://icl.utk.edu/papi/

2.6. Experiments 57

CacheTD. In all cases, CacheTD achieves the best performance. We note that
for the case where p1 = 0.95 and p2 = 0.2, CPDT behaves in a different way
compared to the experiments in [45]. The same can be observed for the case
where p1 = 0.8 and p2 = 0.8. The reason is because of the differences in the
implementation of unordered_map that exist between the different versions
of the g++ compilers. In Figure A.3 we compare the performance of CPDT
when compiled with g++ 4.7 and g++ 5.4. When p1 is large, i.e., p1 = 0.8
and p1 = 0.95, we observe that the older version of g++ achieves a better
performance. For all other values of p1, the version of the compiler has no
effect on the performance. In Figure A.4 we have another time comparison
of all implementations but now with CPDT compiled in g++ 4.7. The new
algorithm achieves the best performance again, but now the behaviour of
CPDT is more stable when p1 is large. From now on, in every RAM experiment
CPDT is compiled in g++ 4.7.

In Figure A.5 we show the space consumption of the algorithms. CacheTD
is the only algorithm that uses O(n) space for both binary and general trees.
In theory we expect that the space consumption is better and this is also what
we get in practice.

In Figures A.6 and A.7 we can see how the contraction parameter affects
the running time and the space consumption of the algorithms respectively.

Finally, in Figures A.8, A.9 and A.10 we compare the cache performance
of the algorithms, i.e., how many cache misses (L1, L2 and L3 respectively)
the algorithms perform for increasing input sizes and varying contraction pa-
rameters. As expected, the new algorithm achieves a significant improvement
over all previous algorithms.

RAM experiments in the Skewed Model. The main interesting ex-
perimental results are illustrated in Figure A.11, where we plot the alpha
parameter against the execution time of the algorithms, when n = 221. The
alpha parameter has the least effect on CacheTD, with the maximum running
time in every graph of Figure A.11 being only a factor of 1.15 larger than
the minimum. As mentioned in Section 2.2, CPDT and CPDTg use the heavy
light decomposition for T2. For binary trees, when α approaches 0 or 1, the
number of heavy paths that have to be updated because of a leaf color change
decreases, thus the total number of operations of the algorithm decreases as
well. We can verify this in Figure A.12, where we have the plots of the alpha
parameter against the instructions. The same cannot be said for all general
trees, since the contraction parameters have an effect on the shape of the trees
as well. In Figures A.13, A.14, and A.15 we have the same graphs but for L1,
L2, and L3 cache misses respectively.

I/O experiments. In Figures A.16 and A.17 we illustrate the time, space,
and I/O performance in the random and skewed model respectively. Every
implementation was compiled with g++ 5.4. Every experiment is run 5 times,
each on a different tree. Like in the RAM experiments, all 5 data points are
displayed together with a line that goes over their median. To measure the

58 Chapter 2. New Triplet Distance Algorithms for Phylogenetic Trees

Table 2.2: Random model: Time performance when limiting the available
RAM to be 1GB. For the left table we have p1 = p2 = 0 and for the right
table p1 = p2 = 0.5.

n CPDT tqDist CacheTD

215 0m:01s 0m:01s 0m:01s
216 0m:01s 0m:02s 0m:01s
217 0m:01s 0m:04s 0m:01s
218 0m:02s 1m:03s 0m:01s
219 0m:04s 1h:21m 0m:01s
220 0m:09s 0% 0m:01s
221 13m:12s - 0m:03s
222 0% - 0m:09s
223 - - 3m:37s
224 - - 10m:35s

n CPDT CPDTg tqDist CacheTD

215 0m:01s 0m:01s 0m:01s 0m:01s
216 0m:01s 0m:01s 0m:01s 0m:01s
217 0m:01s 0m:01s 0m:03s 0m:01s
218 0m:03s 0m:03s 0m:07s 0m:01s
219 0m:07s 0m:07s 5m:20s 0m:01s
220 3m:43s 1h:13m 0% 0m:02s
221 15% 0% - 0m:20s
222 - - - 2m:02s
223 - - - 10m:42s
224 - - - 42m:06s

Table 2.3: Skewed model: Time performance when limiting the available RAM
to be 1GB. For both tables we have α = 0.5. For the left table we have
p1 = p2 = 0 and for the right table p1 = p2 = 0.5.

n CPDT tqDist CacheTD

215 0m:01s 0m:01s 0m:01s
216 0m:01s 0m:02s 0m:01s
217 0m:01s 0m:05s 0m:01s
218 0m:02s 0m:54s 0m:01s
219 0m:05s 50m:38s 0m:01s
220 0m:13s 0% 0m:01s
221 20m:02s - 0m:03s
222 0% - 0m:09s
223 - - 3m:46s
224 - - 13m:36s

n CPDT CPDTg tqDist CacheTD

215 0m:01s 0m:01s 0m:01s 0m:01s
216 0m:01s 0m:01s 0m:01s 0m:01s
217 0m:01s 0m:01s 0m:03s 0m:01s
218 0m:03s 0m:03s 0m:06s 0m:01s
219 0m:07s 0m:07s 3m:21s 0m:01s
220 6m:24s 2h:31m 7h:51m 0m:02s
221 12% 0% - 0m:19s
222 - - - 1m:58s
223 - - - 9m:42s
224 - - - 38m:19s

execution time, we used the time function of Ubuntu and thus also took into
account the time taken to parse the input trees. For the input trees of size 223

and 224 we used the 128 bit implementation of the new algorithms in order to
avoid overflows.

Unlike CacheTD, the performance of CPDT, CPDTg, and tqDist deteriorates
significantly from the moment they start performing disk I/Os. Only CacheTD
managed to finish running in a reasonable amount of time for all input sizes.
For every other algorithm, some data points are missing because the execution
time required was too big. To get an idea of how big, in Tables 2.2 and 2.3 we
again have the time performance of the algorithms in the random and skewed
models respectively. This is the exact same time performance as depicted

2.7. Conclusion 59

in Figures A.16 and A.17, however we also include some information about
how well the algorithms performed on the extra data point that is missing
from the figures. We set a time limit of 10 hours, and only for one pair
of input trees T1 and T2 we measured for how many nodes of T1 the value
of
∑
v∈T2 |s(u)∩s(v)| was found. Some algorithms managed to process only 0%

of the total nodes in T1, which means that they had to spend most of the time
in the preprocessing step (e.g. building the HDT of T2). The only algorithm
that managed to produce a result was tqDist, requiring close to 8 hours for
trees with 220 leaves (see Table 2.3).

2.7 Conclusion
In this paper we presented two cache oblivious algorithms for computing the
triplet distance between two rooted unordered trees, one that works for binary
trees and one that works for arbitrary degree trees. Both require O(n logn)
time in the RAM model and O(nB log2

n
M) I/Os in the cache oblivious model.

We implemented the algorithms in C++ and showed with experiments that
their performance surpasses the performance of previous implementations for
this problem. In particular, our algorithms are the first to scale to exter-
nal memory.

Future work and open problems involve the following:
– Could the new algorithms be improved so that in the analysis, the base
of the logarithm becomes M/B, thus giving the sorting bound in the
cache oblivious model? Would the resulting algorithm be even more
efficient in practice?

– Is it possible to compute the triplet distance in O(n) time?
– For the quartet distance computation, could we apply similar techniques
to those described in Section 2.3 and 2.4 in order to get an algorithm
with better time bounds in the RAM model that also scales to exter-
nal memory?

Chapter 3

Computing the Rooted
Triplet Distance between
Phylogenetic Networks

[52] Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-
Kin Sung. Computing the Rooted Triplet Distance Between Phylogenetic
Networks. In Combinatorial Algorithms, pages 290–303. Springer Interna-
tional Publishing, 2019.

The rooted triplet distance measures the structural dissimilarity of two
phylogenetic trees or networks by counting the number of rooted trees with
exactly three leaf labels that occur as embedded subtrees in one, but not
both of them. Suppose that N1 = (V1, E1) and N2 = (V2, E2) are rooted
phylogenetic networks over a common leaf label set of size n, that Ni has
level ki and maximum in-degree di for i ∈ {1, 2}, and that the networks’ out-
degrees are unbounded. Denote N = max(|V1|, |V2|), M = max(|E1|, |E2|),
k = max(k1, k2), and d = max(d1, d2). Previous work has shown how to
compute the rooted triplet distance between N1 and N2 in O(n logn) time
in the special case k ≤ 1. For k > 1, no efficient algorithms are known;
a trivial approach leads to a running time of Ω(N7n3) and the only existing
non-trivial algorithm imposes restrictions on the networks’ in- and out-degrees
(in particular, it does not work when non-binary vertices are allowed). In this
paper, we develop two new algorithms that have no such restrictions. Their
running times are O(N2M+n3) and O(M+k3d3n+n3), respectively. We also
provide implementations of our algorithms and evaluate their performance in
practice. Our prototype implementations have been packaged into the first
publicly available software for computing the rooted triplet distance between
unrestricted networks of arbitrary levels.

61

62 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

3.1 Introduction

Background. Trees are commonly used in biology to represent evolutionary
relationships, with the leaves corresponding to species that exist today and in-
ternal vertices to ancestor species that existed in the past. When studying the
evolution of a fixed set of species, different available data and tree construction
methods [27] can lead to trees that look structurally different. Quantifying
this difference is essential to make better evolutionary inferences, which has led
to the proposal of several tree distance measures in the literature. Examples
of distance measures that are based on counting how many times certain fea-
tures differ in the two trees are the Robinson-Foulds distance [64], the rooted
triplet distance [25] for rooted trees, and the unrooted quartet distance [26] for
unrooted trees. Other distance measures are the nearest-neighbor interchange
distance, introduced independently in [60] and [63], the path-length-difference
distance [62], the subtree prune-and-regraft distance [38], the maximum agree-
ment subtree [28], and the tree edit distance [73].

A rooted phylogenetic network is an extension of a rooted phylogenetic tree
(i.e., a rooted, unordered, distinctly leaf-labeled tree with no degree-1 vertices)
that allows internal vertices to have more than just one parent. Such networks
are designed to capture more complex evolutionary relationships when reticu-
lation events such as horizontal gene transfer and hybridization are involved.
Similarly to phylogenetic trees, it becomes useful to have distance measures
for comparing phylogenetic networks. In this paper, we study a natural exten-
sion of the rooted triplet distance from the case of rooted phylogenetic trees
to the case of rooted level-k phylogenetic networks, suggested by Gambette
and Huber [33].

Problem Definitions. A rooted phylogenetic network N ′ = (V,E) is a
rooted, directed acyclic graph with one root (a vertex with in-degree 0), dis-
tinctly labeled leaves, and no vertices with both in-degree 1 and out-degree 1.
Below, when referring to a “tree” we imply a “rooted phylogenetic tree” and
when referring to a “network” we imply a “rooted phylogenetic network”. For a
vertex u in N ′, let in(u) and out(u) be the in-degree and out-degree of u. The
network N ′ can have three types of vertices. A vertex u is an internal vertex
if out(u) ≥ 1, a leaf vertex if in(u) = 1 and out(u) = 0, and a reticulation
vertex if out(u) ≥ 1 and in(u) ≥ 2. By definition, N ′ cannot have a vertex u
with in(u) > 1 and out(u) = 0. Let r(N ′) be the root of N ′ and L(N ′) the
set of leaves in N ′. A directed edge from a vertex u to a vertex v in N ′ is
denoted by u → v. A path from u to v in N ′ is denoted by u ; v. Let the
height h(u) be the length (number of edges) of the longest path from u to a
leaf in N ′. By definition, if v is a parent of u in N ′, we have h(v) > h(u).

Let U(N ′) be the undirected graph created by replacing every directed edge
in N ′ with an undirected edge. An undirected graph H is called biconnected
if it has no vertex whose removal makes H disconnected. We call H ′ a bicon-
nected component of U(N ′) ifH ′ is a maximal subgraph of U(N ′) that is bicon-

3.1. Introduction 63

a3
a1

a4

a2

N1

a2
a3

a1

a4

N2

Figure 3.1: N1 is a level-2 network and N2 is a level-3 network with L(N1) =
L(N2) = {a1, a2, a3, a4}. In this example, D(N1, N2) = 6. Some shared
triplets are: a1|a2|a4, a3a4|a2, a1a3|a2. Some triplets consistent with only one
network are: a1|a3|a4, a2a3|a1.

nected. The biconnected components of U(N ′) are edge-disjoint but not nec-
essarily vertex-disjoint. We say that N ′ is a level-k network, or equivalently N ′
has level k, if every biconnected component of U(N ′) contains at most k retic-
ulation vertices. The level of a network was introduced by Choy et al. [20] as a
parameter to measure the treelikeness of a network, with the special case of a
level-0 network corresponding to a tree and a level-1 network a galled tree [36].
Fig. 3.1 shows a level-2 and a level-3 network.

A rooted triplet τ is a tree with three leaves. If it is binary we say that τ
is a rooted resolved triplet, and if it is non-binary we say that τ is a rooted fan
triplet. For a network N ′ we say that the rooted fan triplet x|y|z is consistent
with N ′, if and only if there exists an internal vertex u in N ′ such that there
are three directed paths of non-zero length from u to x, from u to y, and from u
to z that are vertex-disjoint except for in the vertex u. Similarly, we say that
the rooted resolved triplet xy|z is consistent with N ′, if and only if N ′ contains
two internal vertices u and v (u 6= v), such that there are four directed paths of
non-zero length from u to v, from v to x, from v to y, and from u to z that are
vertex-disjoint except for in the vertices u and v, and furthermore, the path
from u to z does not pass through v. See Fig. 3.1 for an example. From here
on, by “disjoint paths” we imply “vertex-disjoint paths of non-zero length”.
Moreover, when referring to a “triplet” we imply a “rooted triplet”.

Given two networksN1 = (V1, E1) andN2 = (V2, E2) built on the same leaf
label set Λ of size n, the rooted triplet distance D(N1, N2), or triplet distance
for short, is the number of triplets over Λ that are consistent with exactly
one of the two input networks [33] (see also [44, Section 3.2] for a discussion).
Let S(N1, N2) be the total number of triplets that are consistent with both N1
and N2, commonly referred to as shared triplets. We then have:

D(N1, N2) = S(N1, N1) + S(N2, N2)− 2S(N1, N2) (3.1)

Note that a shared triplet contributes a +1 to S(N1, N1), S(N2, N2), and

64 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

Table 3.1: Previous and new results for computing D(N1, N2), where N1
and N2 are two level-k networks built on the same leaf label set of size n.

Year Reference k Degrees Time

1980 Fortune et al. [29] arbitrary arbitrary Ω(N7n3)
2010 Byrka et al. [15] arbitrary binary O(N3 + n3)
2010 Byrka et al. [15] arbitrary binary O(N + k2N + n3)
2017 Brodal et al. [11, 12] 0 arbitrary O(n logn)
2019 Jansson et al. [53] 1 arbitrary O(n logn)
2019 new arbitrary arbitrary O(N2M + n3)
2019 new arbitrary arbitrary O(M + k3d3n+ n3)

S(N1, N2), e.g., the triplet a1|a2|a4 in Fig. 3.1. On the other hand, a triplet
from either network that is not shared contributes a +1 to either S(N1, N1)
or S(N2, N2), and a 0 to S(N1, N2), e.g., a1|a3|a4 from Fig. 3.1 contributes
a +1 to S(N1, N1) and a 0 to S(N2, N2) and S(N1, N2). Let Sr(N1, N2)
and Sf (N1, N2) be the total number of resolved and fan triplets respectively
that are consistent with both N1 and N2. We then have that S(N1, N2) =
Sr(N1, N2) + Sf (N1, N2).

We define the following notation that we use from here on. A network Ni

is built on a leaf label set of size n and is defined by the vertex set Vi and the
edge set Ei. Moreover, Ni has level ki and the maximum in-degree of every
vertex in Ni is di. Two given networks N1 and N2 are built on the same leaf
label set Λ and N = max(|V1|, |V2|), M = max(|E1|, |E2|), k = max(k1, k2),
and d = max(d1, d2).

Related Work. Table 3.1 lists the running times of different algorithms
for computing D(N1, N2). When k = 0, both N1 and N2 are trees. This case
has been extensively studied [5, 11, 12, 23, 25, 45, 68, 72] in the literature, with
the fastest algorithm in theory and practice by Brodal et al. [11, 12] running
in O(n logn) time. For k = 1, an O(n2.687)-time algorithm based on count-
ing 3-cycles in an auxiliary graph was given in [44], and a faster, O(n logn)-
time algorithm that transforms the input to a constant number of instances
with k = 0 was given in [53]. All algorithms mentioned above allow ver-
tices of arbitrary degree in the input networks. Moreover, software packages
implementing the O(n logn)-time algorithms are available.

For k > 1, Byrka et al. [15] considered the special case of networks whose
roots have out-degree 2 and whose other non-leaf vertices have in-degree 2 and
out-degree 1 or in-degree 1 and out-degree 2. For such a network N ′ = (V,E),
they defined a data structure D that can be constructed in O(|V |3) time by
dynamic programming and then used to determine in O(1) time if any resolved
triplet xy|z is consistent withN ′. This result was then strengthened by obtain-
ing a new data structure D′ that requires O(|V |+ k2|V |) construction time,
where k is the level of N ′. If N1 and N2 have arbitrary levels and follow the

3.1. Introduction 65

a3

a1

a5

a4

a2
u

B1

B2

N

Figure 3.2: A network N ′ that follows the degree constraints of Byrka et
al. [15] except the vertex u which has out-degree 2 instead of 1. The two
biconnected components B1 and B2 share the vertex u, i.e., B1 and B2 are
not vertex-disjoint.

degree constraints of N ′, D can be used to compute D(N1, N2) in O(N3 + n3)
time and D′ can be used to compute D(N1, N2) in O(N + k2N + n3) time.

Contribution. The data structures D and D′ of Byrka et al. [15] can
only support consistency queries for resolved triplets. However, a network
with vertices of arbitrary degree may contain fan triplets. Moreover, D′ ex-
ploits the fact that given the degree constraints in N ′, all biconnected com-
ponents of U(N ′) are vertex-disjoint. However, even a small change in these
constraints, e.g., if we allow vertices with in-degree 2 to have an out-degree 2
instead of 1, could produce a network with biconnected components that are
not vertex-disjoint (e.g., see Fig. 3.2), thus making the application of D′ im-
possible.

Without any degree constraints in N1 and N2 and when k1 and k2 are
arbitrary, an algorithm for computing D(N1, N2) that iterates over all 4

(n
3
)

triplets and for each triplet applies the pattern matching algorithm in [29] to
determine its consistency with N1 and N2, has a Ω(N7n3) running time. In
this paper we give two algorithms that improve significantly upon this ap-
proach. The running time of the first algorithm is O(N2M +n3) and the sec-
ond algorithm O(M + k3d3n+ n3). For networks N1 and N2 that satisfy the
degree constraint in Byrka et al. [15], we prove that our algorithms can com-
pute D(N1, N2) using the same time complexity as that of Byrka et al. [15].
To determine the efficiency of the two algorithms in practice, we provide an
implementation as well as extensive experiments on both simulated and real
datasets. We note that our prototype implementations have been packaged
into the first publicly available software for computing the triplet distance
between two unrestricted networks of arbitrary levels.

66 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

Organization of the Article. In Section 3.2 we present the first al-
gorithm and in Section 3.3 the second algorithm. Section 3.4 presents an
implementation of the two algorithms as well as experiments illustrating their
practical performance. Finally, Section 3.5 presents our concluding remarks.

3.2 A First Approach

In this section we describe an algorithm that for two given networks N1 and N2
can compute D(N1, N2) in O(N2M + n3) time.

Overview. The algorithm consists of a preprocessing step and a triplet
distance computation step. In the preprocessing step, we extend a technique
introduced by Shiloach and Perl [70] in 1978 that was used to solve the problem
of finding two disjoint paths between two pairs of vertices, to construct suit-
ably defined auxiliary graphs that compactly encode disjoint paths within N1
and N2. Two graphs, the fan graph and resolved graph, are created that en-
able us to check the consistency of any fan triplet and any resolved triplet,
respectively, with N1 and N2 in O(1) time. In the triplet distance computa-
tion step, we compute D(N1, N2) by iterating over all possible 4

(n
3
)
triplets

and using the fan and resolved graphs to check the consistency of each triplet
with N1 and N2 efficiently.

3.2.1 Preprocessing

Let G = (V,E) be a directed acyclic graph and s1, t1, s2, and t2 four vertices
inG. Shiloach and Perl [70] gave an algorithm that can find two vertex-disjoint
paths, one from s1 to t1 and one from s2 to t2, in O(|V ||E|) time or determine
that no such pair of paths exists. They achieve this by creating a directed
graph G′ = (V ′, E′) in O(|V ||E|) time, with the property that the existence
of such a pair of vertex-disjoint paths in G is equivalent to the existence
of a directed path from 〈s1, s2〉 to 〈t1, t2〉 in G′, where 〈s1, s2〉 and 〈t1, t2〉
are vertices in G′. A fan triplet or resolved triplet involves more than two
vertex-disjoint paths, and below we show exactly how to extend the technique
by Shiloach and Perl [70] to determine if a given network has the necessary
vertex-disjoint paths that would imply the consistency of a given triplet with
the network.

Fan Graph. For any network Ni, let the fan graph Nf
i = (V f

i , E
f
i) be

a graph such that V f
i = {s} ∪ {(u, v, w) | u, v, w ∈ Vi, u 6= v, u 6= w, v 6= w}

and Efi includes the following edges:
1. {(u1, v1, w1)→ (u2, v1, w1) | u1 → u2 ∈ Ei, h(u1) ≥ max(h(v1), h(w1))}
2. {(u1, v1, w1)→ (u1, v2, w1) | v1 → v2 ∈ Ei, h(v1) ≥ max(h(u1), h(w1))}
3. {(u1, v1, w1)→ (u1, v1, w2) | w1 → w2 ∈ Ei, h(w1) ≥ max(h(u1), h(v1))}
4. {s→ (u, v, w) | u→ v ∈ Ei, u→ w ∈ Ei}

3.2. A First Approach 67

a5

a1 a3

a6

a2

a4

Ni

b, 4

c, 3

d, 2 f, 2

g, 1e, 1

h, 3

i, 2

(a)

(c, f, h)

(e, f, h)

(e, f, i)

(c, f, i)

(d, f, h)

(d, f, i)

Nf
i

(b)

Figure 3.3: (a) An example network Ni. On top of every internal vertex
we have a name and the height. (b) A small part of the fan graph Nf

i is
drawn. For the triplet a3|a6|a4 we draw two steps, (c, f, h) → (e, f, h) and
(e, f, h) → (e, f, i) of the following path that exists in Nf

i : s → (b, f, h) →
(c, f, h)→ (e, f, h)→ (e, f, i)→ (e, a6, i)→ (e, a6, a4)→ (a3, a6, a4).

Fig. 3.3 has an example. Note that Nf
i contains O(|Vi|3) vertices, O(|Vi|2|Ei|)

edges, and also has the property described in the following lemma:

Lemma 6. Consider a network Ni and its fan graph Nf
i = (V f

i , E
f
i). For

any three different leaves x, y, and z in Ni, vertex s can reach vertex (x, y, z)
in Nf

i if and only if x|y|z is a fan triplet in Ni.

Proof. The below proof is a generalization of the proof of Theorem 3.1 in [70].
(←) Let x|y|z be a fan triplet in Ni. This means that there exists an inter-

nal vertex q in Ni and three disjoint paths, except for q, one from q to x, one
from q to y, and one from q to z. Let those three paths be (q, x0, x1, . . . , xa),
(q, y0, y1, . . . , yb) and (q, z0, z1, . . . , zc), where xa = x, yb = y, and zc = z. We
construct a path P in Nf

i from s to (x, y, z) as follows:
– s→ (q, y0, z0) since q → y0 ∈ Ei and q → z0 ∈ Ei.
– (q, y0, z0)→ (x0, y0, z0) since q → x0 ∈ Ei and h(q) > h(y0), h(z0).
– As h(x0) > h(x1) > · · · > h(xa), h(y0) > h(y1) > · · · > h(yb) as

well as h(z0) > h(z1) > · · · > h(zc), and (x0, . . . , xa), (y0, . . . , yb) and
(z0, . . . , zc) are paths in Ni, there exists a path in Nf

i from (x0, y0, z0)
to (xa, yb, zc).

By combining the above three paths, we have a path in Nf
i from s to (x, y, z).

An example can be found in Fig. 3.3.
(→) Because s can reach (x, y, z) in Nf

i , there exists a path P in Nf
i

for which we have that P = (s, (x1, y1, z1), (x2, y2, z2), . . . , (xt, yt, zt)), where
xt = x, yt = y, and zt = z. Let P1 = (x1, . . . , xt), P2 = (y1, . . . , yt), and
P3 = (z1, . . . , zt), where xt = x, yt = y, and zt = z. By the definition of the

68 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

fan graph Nf
i , for every j ∈ {1, . . . , t− 1} we have either of the following three

cases: (1) xj 6= xj+1 only, (2) yj 6= yj+1 only, and (3) zj 6= zj+1 only. We
show by induction that P1, P2, and P3 are disjoint paths, meaning that x|y|z
is a fan triplet in Ni. When i = t, all three vertices xt, yt, and zt are different
by the definition of V f

i . For j ≥ 1, by the inductive hypothesis we have that
(xj+1, . . . , xt), (yj+1, . . . , yt) and (zj+1, . . . , zt) are disjoint paths. Again by the
definition of Nf

i , we have either one of the following three cases: (1) xj 6= xj+1
only, (2) yj 6= yj+1 only, and (3) zj 6= zj+1 only. For (1), note that yj = yj+1,
zj = zj+1, which means that (xj+1, . . . , xt), (yj , . . . , yt) and (zj , . . . , zt) are
disjoint paths. We now show that xj does not appear in any of the three
previous paths. We have h(xj) ≥ max(h(yj), h(zj)), thus for µ ≥ j + 1 and
yµ 6= yj we have h(xj) > h(yµ). Similarly, for µ ≥ j + 1 and zµ 6= zj we have
h(xj) > h(zµ). Together with the fact that xj , yj , and zj are different, we
have that the paths (xj , . . . , xt), (yj , . . . , yt) and (zj , . . . , zt) are disjoint. The
cases (2) and (3) can be argued similarly, thus P1, P2, and P3 are disjoint
paths, which means that x|y|z is a fan triplet in Ni.

Corollary 1. Let Ni be a given network and r′ a dummy leaf attached to r(Ni).
For any two different leaves x and y in Ni that are not r′, there are two paths
from r(Ni) to x and y that are disjoint, except for in the vertex r(Ni), if and
only if s can reach (r′, x, y) in Nf

i .

Resolved Graph. For any network Ni, let the resolved graph N r
i =

(V r
i , E

r
i) be a graph such that V r

i = {s}∪{(u, v) | u, v ∈ Vi, u 6= v}∪{(u, v, w) |
u, v, w ∈ Vi, u 6= v, u 6= w, v 6= w} and Eri includes the following edges:

1. {s→ (u, v) | u→ v ∈ Ei}
2. {(u1, v1)→ (u2, v1) | u1 → u2 ∈ Ei, h(u1) ≥ h(v1)}
3. {(u1, v1)→ (u1, v2) | v1 → v2 ∈ Ei, h(v1) ≥ h(u1)}
4. {(u, v)→ (u, v, w) | v → w ∈ Ei, h(v) ≥ h(u)}
5. {(u1, v1, w1)→ (u2, v1, w1) | u1 → u2 ∈ Ei, h(u1) ≥ max(h(v1), h(w1))}
6. {(u1, v1, w1)→ (u1, v2, w1) | v1 → v2 ∈ Ei, h(v1) ≥ max(h(u1), h(w1))}
7. {(u1, v1, w1)→ (u1, v1, w2) | w1 → w2 ∈ Ei, h(w1) ≥ max(h(u1), h(v1))}

Note that N r
i contains O(|Vi|3) vertices, O(|Vi|2|Ei|) edges, and also has the

property described in the following lemma:

Lemma 7. Consider a network Ni and its resolved graph N r
i = (V r

i , E
r
i). For

any three different leaves x, y, and z in Ni, vertex s can reach vertex (x, y, z)
in N r

i if and only if x|yz is a resolved triplet in Ni.

Proof. (←) If x|yz is a resolved triplet in Ni, the following three paths exist in
Ni: (1) (x0, x1, . . . , xa), (2) (x0, y1, . . . , yj , yj+1, . . . , yb), and (3) (yj , z1, . . . , zc)
where xa = x, yb = y, and zc = z, that are disjoint except for x0 and yj . Let xµ
be a vertex such that that h(xµ−1) > h(yj) ≥ h(xµ). Then, we obtain the
path: s→ (x0, y1)→ · · · → (xµ, yj)→ (xµ, yj , z1)→ · · · → (xa, yb, zc).

3.2. A First Approach 69

(→) If there is a path from s to (x, y, z) in N r
i , by definition that path

has the following form: s → (x1, y1) → · · · → (xq, yq) → (xq+1, yq+1, zq+1) →
. . . (xt, yt, zt) for which we have xt = x, yt = y, and zt = z. By defini-
tion we have x1 → y1 ∈ Ei, xq = xq+1, yq = yq+1, and yq → zq+1 ∈ Ei.
Define the following three paths P1 = (x1, . . . , xt), P2 = (y1, . . . , yt), and
P3 = (zq+1, . . . , zt). We claim that these three paths are disjoint, meaning
that x|yz is a resolved triplet in Ni. We prove this claim, by showing that the
following paths are disjoint:
(a) (x1, . . . , xq) and (y1, . . . , yq)
(b) (xq+1, . . . , xt), (yq+1, . . . , yt), and (zq+1, . . . , zt)
(c) (x1, . . . , xq) and (yq+1, . . . , yt)
(d) (x1, . . . , xq) and (zq+1, . . . , zt)
(e) (y1, . . . , yq) and (zq+1, . . . , zt)
(f) (y1, . . . , yq) and (xq+1, . . . , xt)
To show that the paths in (a) are disjoint we use induction. By the defini-

tion of N r
i , we know that xq 6= yq. For the inductive hypothesis, assume that

the paths (xj+1, . . . , xq) and (yj+1, . . . , yq) are disjoint. Again by definition we
have either of the two following cases: (1) xj 6= xj+1 only and (2) yj 6= yj+1
only. For case (1), we have yj = yj+1 and h(xj) ≥ h(yj), thus for µ > j + 1
and yµ 6= yj we have h(xj) > h(yµ). Together with the fact that xj 6= yj we
have that xj does not appear in (yj , . . . , yq). Case (2) can be argued similarly,
so the paths in (a) are disjoint. To show that the paths in (b) are disjoint,
the same proof by induction as in Lemma 6 can be used.

To show that the paths in (c) are disjoint, let j ∈ {1, . . . , q} be the largest
index such that xj 6= xq. We know from the paths in (b) that xq = xq+1
does not appear in (yq+1, . . . , yt), so we only need to prove that (x1, . . . , xj) is
disjoint from (yq+1, . . . , yt). Because xj 6= xq, there exists some µ ∈ {1, . . . , q}
such that (xj , yµ) → (xq, yµ) is in the path from s to (x, y, z). By defi-
nition xj 6= yµ and h(xj) ≥ h(yµ). We consider the following two cases:
(1) h(xj) > h(yµ) and (2) h(xj) = h(yµ). For (1), because we have that
h(x1), . . . , h(xj) > h(yµ), . . . , h(yt), the paths in (c) are disjoint. For (2),
let g ∈ {1, . . . , j} be the maximum index such that xg 6= xj . Since we have
that h(xg) > h(xj) = h(yµ), using the same argument as in case (1) we obtain
that (x1, . . . , xg) and (yµ, . . . , yt) are disjoint. It only remains to show that xj
does not appear in (yµ, . . . , yt). If we assume that xj appears in (yµ, . . . , yt),
then because yµ 6= xj we have h(yµ) > h(xj), which leads to a contradiction.

For the paths in (d) similar arguments can be used as in (c), since we
have yq → zq+1 ∈ Ei and by definition xq = xq+1 and xq+1 6= zq+1. To show
that the paths in (e) are disjoint as well, because yq → zq+1 ∈ Ei, we have
that h(y1), . . . , h(yq) > h(zq+1), . . . , h(zt), meaning that the paths in (e) are
disjoint. Finally, to show that the paths in (f) are disjoint, by definition we
have xq = xq+1 and h(yq) ≥ h(xq). So for every µ > q + 1 and xµ 6= xq we
have h(yq) > h(xµ). Since, we also have that xq 6= yq, the paths in (f) are
disjoint.

70 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

Algorithm 2 Computing D(N1, N2) using the data structures from Sec-
tion 3.2.
1: procedure preprocessing(N1, N2) . Building the data structures
2: for i ∈ {1, 2} do
3: build Nf

i = (V f
i , E

f
i) and N r

i = (V r
i , E

r
i)

4: let Afi , Ari be n× n× n arrays initialized with 0 entries
5: for x, y, z ∈ Λ do
6: Afi [x][y][z] = 1 if s can reach (x, y, z) in Nf

i

7: Ari [x][y][z] = 1 if s can reach (x, y, z) in N r
i

8: return (Ar1, A
f
1 , A

r
2, A

f
2)

9: procedure Sf (Af1 , A
f
2) . Finding the shared fan triplets

10: sharedF = 0
11: for x, y, z ∈ Λ do
12: if Af1 [x][y][z] = Af2 [x][y][z] = 1 then sharedF = sharedF + 1
13: return sharedF
14: procedure Sr(Ar1, Ar2) . Finding the shared resolved triplets
15: sharedR = 0
16: for x, y, z ∈ Λ do
17: if Ar1[x][y][z] = Ar2[x][y][z] = 1 then sharedR = sharedR + 1
18: if Ar1[x][z][y] = Ar2[x][z][y] = 1 then sharedR = sharedR + 1
19: if Ar1[y][z][x] = Ar2[y][z][x] = 1 then sharedR = sharedR + 1
20: return sharedR
21: procedure S(Ar1, A

f
1 , Ar2, A

f
2) . Finding the shared triplets

22: return Sf (Af1 , A
f
2) + Sr(Ar1, Ar2)

23: procedure D(N1 = (V1, E1), N2 = (V2, E2)) . Computing D(N1, N2)
24: (Ar1, A

f
1 , A

r
2, A

f
2) = preprocessing(N1, N2)

25: return S(Ar1, A
f
1 , A

r
1, A

f
1) + S(Ar2, A

f
2 , A

r
2, A

f
2) − 2S(Ar1, A

f
1 , A

r
2, A

f
2)

Corollary 2. Let Ni be a given network and r′ a dummy leaf attached to r(Ni).
For any two different leaves x and y in Ni that are not r′, there are two paths
from some internal vertex z 6= r(Ni) in Ni, to x and y that are disjoint, except
for in the vertex z, if and only if s can reach (r′, x, y) in N r

i .

GivenNf
i andN r

i , we define the n×n×n fan table Afi and the n× n× n re-
solved table Ari as follows. For three different leaves x, y, and z, A

f
i [x][y][z] = 1

if the fan triplet x|y|z is consistent with Ni and Afi [x][y][z] = 0 otherwise.
Similarly, Ari [x][y][z] = 1 if the resolved triplet x|yz is consistent with Ni

and Ari [x][y][z] = 0 otherwise. Due to Lemmas 6 and 7, both Afi and Ari
can be computed by a depth first traversal (starting from s) of Nf

i and N r
i .

3.3. A Second Approach 71

More precisely, Afi [x][y][z] = 1 if s can reach (x, y, z) in Nf
i and 0 otherwise.

Finally, Ari [x][y][z] = 1 if s can reach (x, y, z) in N r
i and 0 otherwise.

3.2.2 Triplet Distance Computation

Algorithm 2 summarizes all the procedures needed to compute the triplet
distance between two given networks N1 and N2. For every i ∈ {1, 2} the ta-
bles Afi and Ari are built in lines 2-7. These tables are then used in lines 11-12
and 16-19 to determine in O(1) time if a triplet is consistent with N1 or N2.
Procedures Sf () and Sr() count the number of shared fan and resolved triplets.
Both procedures enumerate over all possible triplets and use the tables Afi
and Ari to determine their consistency with either network. The correctness
is ensured by Lemmas 6 and 7. Procedure S() reports the number of shared
triplets, which is the sum of the number of shared fan triplets and shared
resolved triplets. The main procedure is D(). It uses Equation 3.1 to deter-
mine D(N1, N2).

To analyze the running time, after the preprocessing is finished, the proce-
dures Sf () and Sr() require O(n3) time. For the total preprocessing time, by
definition, building the data structures N r

i and Nf
i for i ∈ {1, 2} in line 3, re-

quires O(|V1|2|E1|+ |V2|2|E2|) time. Building the auxiliary arrays Ari and A
f
i

in lines 5-7 is performed by a depth first traversal of N r
i and Nf

i , thus requir-
ing O(|V1|2|E1|+ |V2|2|E2) time as well. Hence, the total time of the algorithm
becomes O(|V1|2|E1| + |V2|2|E2| + n3). By the definition of N and M from
Section 3.1, the running time becomes O(N2M + n3). Hence, we obtain the
following theorem:

Theorem 2. There exists an algorithm that computes the triplet distance
between two networks N1 and N2 in O(N2M + n3) time.

Let N1 and N2 follow the degree constraints of Byrka et al. [15]. We then
have N = Θ(M) and the bound becomes O(N3 + n3), thus matching the
bound achieved by the first data structure of Byrka et al. [15].

3.3 A Second Approach
In this section we extend the algorithm from Section 3.2 in order to exploit
the information about the level of the two input networks. More specifically,
we describe an algorithm that for two given networks N1 and N2 can com-
pute D(N1, N2) in O(M + k3d3n+ n3) time.

Overview. In the first approach, for a given network Ni we built the fan
and resolved graph presented in Lemmas 6 and 7. In this second approach, for
every biconnected component of U(Ni) we define a network of approximately
the same size as the biconnected component, which we call contracted block
network. For this contracted block network we then build the corresponding

72 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

fan and resolved graph. By carefully contracting every biconnected component
of U(Ni) into one vertex we obtain a tree, which we call block tree. We finally
show how to combine the block tree and all the fan and resolved graphs of the
contracted block networks of Ni to count triplets efficiently.

3.3.1 Preprocessing

Let Ni be a given network. From here on, we call a biconnected component
of U(Ni) a block. For simplicity, when we refer to a block of Ni, we imply
a block of U(Ni). We say that for a block B of Ni, vertex r(B) is the root
of B, if r(B) has the largest height in Ni among all vertices in B. Note that
because Ni has one root that can reach every vertex of Ni and B corresponds
to a maximal subgraph of U(Ni) that is biconnected, B can only contain one
root. If B contains only one edge u → v such that v ∈ L(Ni), then B is
called a leaf block, otherwise B is called a non-leaf block. Lemma 8 presents a
property of all blocks of Ni.

Lemma 8. All blocks of a given network Ni are edge-disjoint.

Proof. Assume for contradiction thatNi has two different blocksB1 = (V1, E1)
and B2 = (V2, E2) that share an edge u→ v. Let B = (V1 ∪ V2, E1 ∪ E2). By
the definition of a block, U(B1) and U(B2) are connected graphs, where U(B1)
and U(B2) are the undirected versions of the graphs defined by B1 and B2.
Since B1 and B2 share an edge, then U(B) is also connected. If any vertex w
in V1 − {u, v} or V2 − {u, v} is removed from B, U(B) will still be connected.
If u is removed from B, U(B) will remain connected because of the vertex v
that it shared between B1 and B2. Finally, if v is removed from B, U(B)
will remain connected because of the vertex u that it shared between B1
and B2. We have thus shown that U(B) is a block of Ni, thus B1 and B2 are
not maximal subgraphs of Ni that are biconnected, meaning that B1 and B2
cannot be blocks of Ni. Hence, we reach a contradiction.

Block Tree. From a high level perspective, we want to remove the cycles
in U(Ni) that are formed by the non-leaf blocks to obtain a directed tree on
the leaf label set L(Ni). Let Ti = (V ′, E′) be a directed tree, from now on
referred to as block tree, with the vertex set V ′ and edge set E′ defined by
the following steps:

– For every block Bj in Ni create a vertex bj in Ti.
– Let B1, B2 be two blocks in Ni with r(B1) 6= r(B2). If r(B2) is also a

vertex in B1 then create the edge b1 → b2 in Ti.
– Create a root vertex ρ in Ti. For every block Bj that has r(Ni) as a

root, create the edge ρ→ bj in Ti.
– If Bj is a leaf block, rename bj in Ti by the label of the leaf in Bj .

Figures 3.4 and 3.5 give example networks Ni and the corresponding block
tree Ti. The set of all blocks of Ni and the vertex set V ′ − r(Ti), i.e., the

3.3. A Second Approach 73

v1

v2
v3

v4
v5

v6

v10

v7

v8

v9

v11

v12
v13

v14

a1 a2

a3
a4a5 a6 a7

a8 a9
a10

a11
a12

a13

a14

a15

a16

a17

a18

a19

v′

a20

v15

(a) Ni

r

b1

a1 a2

a3 a4

a12

a13

a14

a16

a17

a18

a8 a9
a10

a11

b

a20

a15

a5 a7a19

v′

a6

(b) Ti

Figure 3.4: (a) Ni is a level-3 network, which contains one block B rooted
at v2 (the block is in thick edges). (b) The block tree Ti.

set of all vertices of Ti except the root, are bijective. An edge b1 → b2 in Ti
means that the corresponding blocks B1 and B2 in Ni do not have the same
root and the root vertex r(B2) is a shared vertex between B1 and B2. Note
that by the definition of a block, an edge connecting two vertices can define
a block of its own (e.g., block B9 in Fig. 3.5). The following lemma presents
some properties of Ti:

Lemma 9. Let Ti = (V ′, E′) be the block tree of a given network Ni. The
block tree Ti is a directed tree that has n leaves, |V ′| = O(n), and |E′| = O(n).

Proof. We start by showing that Ti is a directed tree. Since every edge of Ti
is directed, Ti is a directed graph. Let U(Ti) be the undirected version of
that graph. Since U(Ni) is connected, then by the definition of E′ we have
that U(Ti) is connected as well. We now claim that there is no cycle in U(Ti),
thus showing that Ti is a directed tree. A cycle in U(Ti) would imply the
existence of a vertex b in Ti such that in(b) > 1. If B is the corresponding
block of b in Ni and by the definition of E′, this in turn implies the existence of
two different blocks B1 and B2 in Ni such that r(B) 6= r(B1), r(B) 6= r(B2),
and r(B) is a vertex in both B1 and B2. By the definition of Ni, the root r(Ni)
has a path to every vertex of Ni. This means that the two blocks B1 and B2

74 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

a2 a3
a9 a10

a14

a1

B4

a17 a18 a19 a20

a4
a5 a6

a15 a16

B2

B3

B6

B1

B8

B12

B13

a21

B10

a23

a24

a25

a13
a11

a7

B9

B11

a8
a12

B1

B7

a22

a26

(a)

r

b1

a12a11

b11

b12 b13

a10a9a8a7

a6a5

b1

b6a4

a3a2

b4

b3a1

b2
b7 b8

a15 a16 a17 a18 a19 a20

b9

b10

a13 a14

a21a22

a23

a24 a25

a26

(b)

Figure 3.5: (a) An example network Ni. The blocks containing leaves are high-
lighted in red. Every other block is highlighted in gray. (b) The corresponding
block tree Ti.

could be merged to create an even larger block that contains both, thus con-
tradicting the assumption that B1 and B2 are blocks of Ni.

Let B be a block in Ni and b the corresponding vertex in Ti. By the
definition of Ni, if b has an outgoing edge then B is a non-leaf block. Other-
wise, a leaf exists in B, thus B is a leaf block. Hence, Ti has exactly n leaves
when |L(Ni)| = n. In Ti we allow vertices, from now on referred to as extra
vertices, with in-degree 1 and out-degree 1. A vertex with this property, cor-

3.3. A Second Approach 75

responds to a non-leaf block of Ni consisting of only 1 edge. If we contract the
extra vertices, i.e., remove every such vertex u from Ti and add edges pointing
from the parent of u to every child of u, we will obtain a tree T ′′i = (V ′′, E′′)
with n leaves in which every internal vertex has in-degree 1 and out-degree
at least 2. This means that |V ′′| = O(n) and |E′′| = O(n). By the definition
of Ni, (1) no vertex u exists in Ni such that in(u) = out(u) = 1. Hence,
by the construction of Ti, (2) every extra vertex in Ti points to at least 1
non-extra vertex. Because Ti is a tree, (3) no two extra vertices point to the
same non-extra vertex. From (1), (2), and (3) together, we have that there
are O(n) extra vertices in Ti. This means that for the total number of vertices
and edges in Ti we have |V ′| = O(n) and |E′| = O(n).

Since the set of all blocks of Ni and the set V ′ − r(Ti) are bijective, we
obtain:

Corollary 3. A network Ni contains O(n) blocks.

The following lemma presents an algorithm for constructing the block
tree Ti:

Lemma 10. Let Ti = (V ′, E′) be the block tree of a given network Ni. There
exists an algorithm that builds Ti in O(|Ei|) time.

Proof. Constructing Ti when the blocks of Ni are given is performed by scan-
ning the vertices of Ni and the list of components that every vertex be-
longs to, while adding edges to Ti according to the definition of V ′ and E′,
thus requiring O(|Vi|) time. Finding the blocks can be performed in O(|Ei|)
time, by applying the algorithm by Hopcroft and Tarjan in [41]. Since by
definition |Ei| ≥ |Vi|, i.e., U(Ni) is connected, given Ni we can build Ti
in O(|Ei|) time.

Contracted Block Network. For a given network Ni, a block B in Ni,
and a vertex u in B, define LuB to be the set of leaves that can be reached
from u without using edges in B. For example, for the block in Fig. 3.4(a) we
have Lv3

B = {a5, a19, a6, a7} and Lv10
B = {a15}. Let CB = (V ′, E′) be a network,

with the vertex set V ′ and edge set E′ defined by the following steps:
– Let CB = Ni. All operations from now on are applied on CB.
– Remove every edge and vertex not in B.
– For every edge u1 → u2 in B, if in(u1) = out(u1) = in(u2) = out(u2) = 1
contract the edge as follows: let u2 → u3 be the other edge in B, then
create the edge u1 → u3, remove u2 from B, and set Lu1

B = Lu1
B ∪ L

u2
B .

– For every vertex u1 in CB such that Lu1
B 6= ∅, we add a child leaf with

label s1 representing all leaves in Lu1
B . We also add another child leaf s′1

as a copy leaf that will help later on to count triplets.
– Include an artificial leaf r′ which is attached to the root r(CB).

76 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

v2
v3

v5

v6

v10

v7

v8 v11

v12
v13

v14

a5 a6

a10

a11
a12

a13 a14

a15

a16

a17

a18

a19

a7 a9a8

s3

s7

s8

s10

s5

s6

s12

s13

s14

r′
s′3

s′7

s′8

s′10

s′6

s′14

s′13

s′12

a20

(a) CB

Figure 3.6: The contracted block network CB for the block B that we have
in Fig. 3.4(a). Note that in CB, the internal vertices v3 and v4 are merged,
as well us v8, v9, and v15. Moreover, {si, s′i : i ∈ {3, 5, 6, 7, 8, 10, 12, 13, 14}} is
the set of leaves in CB.

An example for constructing CB from a given block B of a network Ni can
be found in Fig. 3.6. Every vertex in CB corresponds to a vertex in B and
every edge between two internal vertices in CB corresponds to a compressed
path in B. For example, the edge v8 → v14 in Fig. 3.6(a) corresponds to the
path v8 → v9 → v15 → v14 in Fig. 3.4(a). We call CB the contracted block
network of Ni, corresponding to block B. The following lemma presents a
property of CB:

Lemma 11. Let Ni be a network, B a block in Ni, and CB = (V ′, E′) the
contracted block network of Ni that corresponds to block B. We then have
that |L(CB)| = O(kidi + 1), |V ′| = O(kidi + 1), and |E′| = O(kidi + 1).

Proof. By the definition of a block, block B contains at most ki reticulation
vertices. Each such vertex has an arbitrary out-degree, however the in-degree
is bounded by the parameter d.

If ki = 0, then B consists of a single edge of Ni, meaning that by construc-
tion CB is a binary tree on 3 leaves, thus |E′| = |V ′| = |L(CB)| = O(1).

3.3. A Second Approach 77

For any ki ≥ 1, we generalize the argument in the first paragraph of the
proof of Lemma 3 in [15] as follows. We claim that |V ′| ≤ 3(ki + kidi) + 1,
|L(CB)| ≤ 2(ki + kidi) + 1, and |E| ≤ 2ki(1+2di)+1. If B contains one edge,
then since CB is a binary tree on 3 leaves and di ≥ 1 the claim holds. Oth-
erwise, by definition CB contains at most ki reticulation vertices. Every non-
reticulation internal vertex can have an arbitrary out-degree, however every
outgoing edge from a non-reticulation internal vertex generates a directed path
that has to end in a reticulation vertex. Since there are at most ki reticulation
vertices and each reticulation vertex can end at most di such paths in CB, the
total number of non-reticulation internal vertices is at most kidi. Two leaves
can be attached under every reticulation vertex and non-reticulation internal
vertex, plus we have the artificial leaf in CB, thus |L(CB)| ≤ 2(ki + kidi) + 1
and |V ′| ≤ 3(ki + kidi) + 1. For the edges, we have at most kidi edges point-
ing to reticulation vertices, |L(CB)| edges pointing to leaves and at most kidi
edges pointing to non-reticulation internal vertices. Adding all these edges
together, we get |E| ≤ 2ki(1 + 2di) + 1.

Hence, for any ki ≥ 0 the statement follows.

Constructing All Contracted Block Networks Efficiently. For a
given network Ni and a block B in Ni, a leaf x in Ni is said to associate
with B if there exists a vertex u in B such that u 6= r(B) and x ∈ LuB.
For example in Fig. 3.4(a), the leaf a16 associates with B while the leaves a3
and a2 do not associate with B. For any leaf x associated with some block B
of Ni, let qB(x) be the vertex in B that has a path to x without using edges
in B, i.e., x ∈ L

qB(x)
B , pB(x) the leaf in CB representing x and p′B(x) the

copy leaf of pB(x). In the example in Fig. 3.4, qB(a5) = v3, pB(a5) = s3,
p′B(a5) = s′3, qB(a8) = v4, and pB(a8) = s3.

Lemma 8 implies an algorithm for constructing every block network CB
of Ni in O(|Ei|) time. As shown in the lemma below, by properly relabeling
the leaves of Ni and with an additive O(n2) time, it is possible to build every
block network CB so that we can afterwards compute for every leaf l ∈ L(Ni)
the functions qB(l) and pB(l) in O(1) time.

Lemma 12. For a network Ni, there exists an O(|Ei|+n2)-time algorithm that
builds all the contracted block networks CB of Ni, such that for all blocks of Ni

and leaf l ∈ L(Ni) the functions qB(l) and pB(l) are computed in O(1) time.

Proof. The algorithm consists of the following steps:
1. Find all the blocks of Ni. Let B1 . . . , Bs be the blocks of Ni and let

the corresponding vertex sets be V (B1), . . . , V (Bs). Note that for ev-
ery j ∈ {1, . . . , s} we have V (Bj) ⊆ Vi.

2. The leaves of Ni are relabeled as follows. A leaf receives the label i
where i ∈ {1, 2, . . . , n}, if it is the i− th leaf in order that is discovered
by a depth first traversal of Ni. This traversal starts from r(Ni). Let u
be a vertex in Ni and part of the blocks B1, . . . , Bj . Let B′ be the

78 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

block from B1, . . . , Bj , such that r(B′) has the largest height among all
roots of B1, . . . , Bj . During the traversal, every child u′ of u that is not
part of B′ is visited first. This is to ensure that the labels in LuB′ are
consecutive and defined by a range of numbers [uleft , uright].

3. For every j ∈ {1, . . . , s} the process of building CBj = (Vj , Ej) is initial-
ized as follows. Set Vj = V (Bj). For every edge u → v in Ei, if both u
and v are in Vj then add that edge to Ej . Finally, for any vertex u1
in Vj , if Lu1

Bj
6= ∅ create the leaf s1 representing Lu1

Bj
, the copy leaf s′1,

add the edges u1 → s1 and u1 → s′1 to Ej , and set QBj [l] = u1 for
every l ∈ {uleft , . . . , uright}.

4. For every j ∈ {1, . . . , s} the edges of CBj are contracted, following the
definition of a contracted block network. While performing the contrac-
tion, for every j ∈ {1, . . . , s} we build the table PBj [1, . . . , n], defined
so that for every l ∈ {1, . . . , n} we have PBj [l] = pBj (l). The value
of PBj [l] is updated once the final set in which the leaf l will reside in
is determined. After contracting all the edges we also add the artificial
leaf r′j .

To analyze the running time, step 1 is performed by using the algorithm
from [41], thus requiring O(|Ei|) time. Step 2 of the algorithm is performed
by a depth first traversal of Ni, thus requiring O(|Ei|) time as well. Since the
blocks of Ni are edge disjoint (see Lemma 8), we have

∑s
j=1 |Ej | ≤ |Ei|, thus

the time spent on adding and contracting vertices and edges in steps 3 and 4
is O(|Ei|) time. For every block network CB, we spend O(n) time to update
the Q and P tables. From Corollary 3 there can be O(n) such block networks,
thus the time required to update every Q and P table is O(n2). Hence, the
total running time of the algorithm is O(|Ei|+ n2).

For the block network CB, we denote CfB the fan graph of CB and CrB the
resolved graph of CB. Moreover, we denote AfB the fan table of CB and ArB the
resolved table of CB (see Section 3.2.1 for the definition of a fan graph & table
and resolved graph & table). The following lemma shows the time required
to build CfB, CrB, A

f
B, and ArB for every block B of a given network Ni.

Lemma 13. For a network Ni, building CfB, CrB, A
f
B, and ArB for every

block B of Ni requires O(n(k3
i d

3
i + 1)) time.

Proof. From Lemma 11 and when ki > 0, for every block network CB =
(V ′, E′) we have |V | = O(kidi) and |E| = O(kidi). By the definition of
a fan and resolved graph in Section 3.2, CfB and CrB contain O(k3

i d
3
i) ver-

tices and edges. Since |L(CB)| = O(kidi) the size of AfB and ArB is O(k3
i d

3
i).

When ki = 0 we have |V | = |E| = O(1), thus CfB and CrB contain O(1) vertices
and edges and the size of AfB and ArB is O(1). From Corollary 3, Ni has O(n)
blocks. Hence the total time required to build CfB, CrB, A

f
B, and ArB for every

block B of Ni is O(n(k3
i d

3
i + 1)) for any ki ≥ 0.

3.3. A Second Approach 79

3.3.2 Triplet Distance Computation

Let B be a block of a network Ni. We say that x|y|z is a fan triplet consistent
with B, if and only if there exists a vertex u in B such that there are three
directed paths in Ni from u to x, from u to y, and from u to z that are disjoint
except for in the vertex u. We also say that x|y|z is rooted at u in B. Since u
is also in Ni, this means that x|y|z is rooted at u in Ni as well. Similarly,
we say that xy|z is a resolved triplet consistent with B, if and only if there
exist two vertices u and v (u 6= v) in B, such that there are four directed
paths in Ni from u to v, from v to x, from v to y, and from u to z that are
disjoint except for in the vertices u and v, and furthermore, the path from u
to z does not pass through v. Moreover, we say that xy|z is rooted at u and v
in B or Ni (similarly to the fan triplet). Note that if x|y|z is a fan triplet
consistent with B, then it will also be consistent with Ni. Similarly, if xy|z is
a resolved triplet consistent with B, it will also be consistent with Ni.

Given the data structures from the preprocessing step, Lemmas 14, 15,
16, and 17 together show how to determine the consistency of a fan and
resolved triplet with Ni in O(1) time. From a high level perspective to achieve
this, for three different leaves x, y, and z, we consider all the possible cases
for the location of the lowest common ancestor of every pair (x, y), (x, z),
and (y, z) in Ti. Since every vertex in Ti except r(Ti) corresponds to a block
in Ni, we can then use the available data structures to determine efficiently
if Ni has the necessary disjoint paths that would imply the consistency of
the fan triplet x|y|z or resolved triplet xy|z with Ni. We start by showing in
Lemmas 14 and 15 how to determine the consistency of a fan and resolved
triplet with a block B of Ni. Afterwards, we show in Lemma 16 how to use
Lemma 14 to determine the consistency of a fan triplet with Ni. Similarly,
we show in Lemma 17 how to use Lemma 15 to determine the consistency of
a resolved triplet with Ni.

Lemma 14. Let Ni be a network, Ti its block tree, and suppose that the prepro-
cessing of Lemma 13 has been applied on Ni. Consider any x, y, z ∈ Λ with the
lowest common ancestor of every pair (x, y), (x, z), and (y, z) being a node w
in Ti. If w 6= r(Ti), Algorithm 7 determines whether or not the fan triplet x|y|z
is consistent with the block B in Ni corresponding to w in O(1) time.

Proof. For every l ∈ {x, y, z} we let pl = pB(l), p′l = p′B(l), ql = qB(l), and hl
be the height of ql in Ni. By construction (see Lemmas 10 and 12), we know
that px, py, and pz are not the root of CB. The algorithm uses the tables Q
and P to check all the possible cases for the values of px, py, pz, qx, qy, and qz,
and return a true or false value, indicating a positive and a negative answer
respectively. We have the following cases:

1. px = py = pz:
a) hx = hy = hz: We have qx = qy = qz and x|y|z is rooted at qx.

Hence, x|y|z is consistent with B (e.g., a5|a6|a7 in Fig. 3.4).

80 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

b) ((hx = hy) ∧ (hx > hz)) ∨ ((hx = hz) ∧ (hx > hy)) ∨ ((hy =
hz) ∧ (hy > hx)). W.l.o.g. assume truth for (hx = hy ∧ hx > hz):
Then, (qx = qy) ∧ (qx 6= qz) and x|y|z is rooted at qx. Hence, x|y|z
is consistent with B (e.g., a5|a6|a8 in Fig. 3.4).

c) hx 6= hy 6= hz: Then qx 6= qy 6= qz, thus x|y|z is not consistent
with B (e.g., a13|a14|a20 in Fig. 3.4).

2. ((px = py)∧(px 6= pz))∨((px = pz)∧(px 6= py))∨((py = pz)∧(py 6= px)).
W.l.o.g. assume truth for (px = py ∧ px 6= pz):
a) hx = hy: We have qx = qy. If p′x|px|pz is a fan triplet in CB,

then x|y|z is rooted at qx, thus x|y|z is consistent with B (e.g.,
a8|a9|a15 in Fig. 3.4). If p′x|px|pz is not a fan triplet in CB, x|y|z
is not rooted at any vertex in B, thus x|y|z is not consistent
with B (e.g., a8|a9|a11 in Fig. 3.4).

b) hx 6= hy: Then qx 6= qy and either qx or qy was contracted when
creating CB. Moreover, both x and y are now in the set of leaves
defined by px. Since we also have that pz 6= px, the triplet x|y|z is
not consistent with B (e.g., a7|a8|a15 in Fig. 3.4).

3. px 6= py 6= pz: If px|py|pz is consistent with CB, then there exists a
vertex u in B such that x|y|z is rooted at u. Hence, x|y|z is consis-
tent with B (e.g., a8|a11|a16 in Fig. 3.4). If px|py|pz is not consistent
with CB, x|y|z is not rooted at any vertex in B, thus x|y|z is not con-
sistent with B (e.g., a14|a16|a17 in Fig. 3.4).

Note that in every case above, testing if a fan triplet is consistent with CB
translates to finding a path that starts from s in CfB and ends in a vertex
of CfB defined by the leaves of the fan triplet. Hence, every case can be
handled in O(1) time. In Algorithm 7 in Appendix B we have the above cases
summarized in a procedure.

Lemma 15. Let Ni be a network, Ti its block tree, and suppose that the prepro-
cessing of Lemma 13 has been applied on Ni. Consider any x, y, z ∈ Λ with the
lowest common ancestor of every pair (x, y), (x, z), and (y, z) being a node w
in Ti. If w 6= r(Ti), Algorithm 8 determines whether or not the resolved triplet
xy|z is consistent with the block B in Ni corresponding to w in O(1) time.

Proof. Similarly to the case of fan triplets in Lemma 14, for every l ∈ {x, y, z}
we let pl = pB(l), p′l = p′B(l), ql = qB(l), and hl be the height of ql in Ni.
By construction (see Lemmas 10 and 12), we know that px, py, and pz are
not the root of CB. The algorithm uses the tables Q and P to check all the
possible cases for the values of px, py, pz, qx, qy, and qz, and return a true or
false value, indicating a positive and a negative answer respectively. We have
the following cases:

1. px = py = pz:
a) (hz > hx) ∧ (hz > hy). W.l.o.g. let hx ≥ hy: Then, xy|z is rooted

at qz and qx, thus xy|z is a resolved triplet in B (e.g., a8a9|a6 in

3.3. A Second Approach 81

Fig. 3.4).
b) (hz ≤ hx)∨ (hz ≤ hy): Because px = py = pz, xy|z is not rooted at

any pair of vertices in B, thus xy|z is not consistent with B (e.g.,
a8a6|a9 in Fig. 3.4).

2. (px = py) ∧ (px 6= pz) and w.l.o.g. assume hx ≥ hy: If p′xpx|pz is con-
sistent with CB, there exists u 6= qx in B such that xy|z is rooted at u
and qx in B. Hence, xy|z is consistent with B (e.g., a5a8|a17 in Fig. 3.4).
If p′xpx|pz is not consistent with CB, xy|z is not rooted at any pair of ver-
tices in B, thus xy|z is not consistent with B (e.g., a5a8|a15 in Fig. 3.4).

3. ((px = pz) ∧ (px 6= py)) ∨ ((py = pz) ∧ (py 6= px)). W.l.o.g. assume that
(px = pz) ∧ (px 6= py):
a) hz > hx: If p′x|px|py is a fan triplet in CB, then xy|z is rooted

at qz and qx, thus xy|z is consistent with B (e.g., a14a17|a13 in
Fig. 3.4). If p′x|px|py is not consistent with CB, xy|z is not rooted
at any pair of vertices in B, thus xy|z is not consistent with B
(e.g., a14a16|a13 in Fig. 3.4.).

b) hz ≤ hx: Since px = pz, the resolved triplet xy|z cannot be consis-
tent with B (e.g., a14a17|a20 in Fig. 3.4).

4. px 6= py 6= pz: If pxpy|pz is consistent with CB, then there exist two
different vertices u, v inB such that xy|z is rooted at u and v, thus xy|z is
consistent withB (e.g., a12a13|a18 in Fig. 3.4). If pxpy|pz is not consistent
with CB, xy|z is not rooted at any pair of vertices in B, thus xy|z is not
consistent with B (e.g., a12a18|a13 in Fig. 3.4).

Similarly to fan triplets, testing if a resolved triplet is consistent with CB
translates to finding a path that starts from s in CrB and ends in a vertex
of CrB defined by the leaves of the resolved triplet. Hence, every case can be
handled in O(1) time. In Algorithm 8 in Appendix B we have the above cases
summarized in a procedure.

Lemma 16. Let Ni be a given network and Ti its block tree, and suppose
that the preprocessing from Lemma 13 has been performed on Ni. For any
x, y, z ∈ Λ, Algorithm 9 determines whether or not the fan triplet x|y|z is
consistent with Ni in O(1) time.

Proof. For a block B of Ni and a vertex u in B that can reach a leaf x of Ni,
define hB(x) to be the height of qB(x) in Ni. In Algorithm 9 in Appendix B
we have the procedure for testing the consistency of the fan triplet x|y|z. We
consider the following cases:

1. x|y|z is consistent with Ti: Let w be the lowest common ancestor of x,
y, and z in Ti.
a) w = r(Ti): x|y|z is rooted at r(Ni), thus x|y|z is consistent with Ni

(e.g., a23|a9|a20 in Fig. 3.5).
b) w 6= r(Ti): w corresponds to a block B inNi, thus we use Lemma 14

to determine if x|y|z is consistent with B. If x|y|z is consistent

82 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

with B, then it is also consistent with Ni. If x|y|z is not consistent
with B, then it is not consistent with Ni (e.g., a3|a9|a12 in Fig. 3.5).

2. xy|z ∨ xz|y ∨ yz|x is consistent with Ti. Assume w.l.o.g. that xy|z is
consistent with Ti. Let w = lca(x, y) in Ti and µ = lca(x, z) in Ti, and
let B be the block in Ni corresponding to w and F the block in Ni

corresponding to µ:
a) µ is not the parent of w in Ti: then x|y|z is not rooted at any

vertex in Ni, thus x|y|z is not consistent with Ni (e.g., a2|a4|a13 in
Fig. 3.5).

b) µ is the parent of w in Ti. By the definition of Ti, B is rooted at a
vertex u of F that is not r(F):
i. pB(x) = pB(y): then x|y|z is not rooted at any vertex in Ni,

thus x|y|z is not consistent with Ni (e.g., a2|a3|a4 in Fig. 3.5).
ii. (pB(x) 6= pB(y)) ∧ (µ = r(Ti)): If r′|pB(x)|pB(y) is consistent

with CB, where r′ is the dummy leaf in CB (see Corollary 1),
then x|y|z is rooted at r(Ni), thus x|y|z is consistent with Ni

(e.g., a1|a11|a15 in Fig. 3.5). Otherwise, x|y|z is not rooted at
any vertex in Ni, thus x|y|z is not consistent with Ni (e.g.,
a11|a13|a15 in Fig. 3.5).

iii. (pB(x) 6= pB(y)) ∧ (µ 6= r(Ti)):
A. (pF (x) = pF (z))∧ (hF (z) ≤ hF (x)): Since B is rooted at a

vertex of F , we have qF (x) = qF (y), thus hF (x) = hF (y).
Using Corollary 1, if r′|pB(x)|pB(y) is a fan triplet in CB,
where r′ is the dummy leaf in CB, then x|y|z is rooted
at qF (x), thus x|y|z is a fan triplet in Ni (e.g., a1|a4|a8
in Fig. 3.5). Otherwise, x|y|z is not rooted at any vertex
in Ni, thus x|y|z is not consistent with Ni (e.g., a1|a24|a8
in Fig. 3.5).

B. (pF (x) = pF (z)) ∧ (hF (z) > hF (x)): Since B is rooted at
a vertex of F , we have qF (x) = qF (y) and hF (x) = hF (y).
Hence, x|y|z is not consistent with Ni (e.g., a1|a4|a21 in
Fig. 3.5).

C. pF (x) 6= pF (z): Using Corollary 1, if r′|pB(x)|pB(y) is
a fan triplet in CB, where r′ is the dummy leaf in CB,
and pF (x)|p′F (x)|pF (z) is a fan triplet in CF , then x|y|z
is rooted at qF (x). Hence, x|y|z is consistent with Ni

(e.g., a1|a4|a9 in Fig. 3.5). Otherwise, x|y|z is not rooted
at any vertex of Ni, thus x|y|z is not consistent with Ni

(e.g., a1|a4|a12 in Fig. 3.5).

Lemma 17. Let Ni be a given network and Ti its block tree, and suppose
that the preprocessing from Lemma 13 has been performed on Ni. For any
x, y, z ∈ Λ, Algorithm 10 determines whether or not the resolved triplet xy|z

3.3. A Second Approach 83

is consistent with Ni in O(1) time.

Proof. For a block B of Ni and a vertex u in B that can reach a leaf x of Ni,
define hB(x) to be the height of qB(x) in Ni. In Algorithm 10 in Appendix B
we have the procedure for testing the consistency of the resolved triplet xy|z.
We consider the following cases which are very similar to the cases for the fan
triplet in Lemma 16:

1. x|y|z is consistent with Ti: Let w be the lowest common ancestor of x,
y, and z in Ti.
a) w = r(Ti): xy|z is not rooted at any pair of vertices in Ni, thus xy|z

is not consistent with Ni (e.g., a23a9|a20 in Fig. 3.5).
b) w 6= r(Ti): w corresponds to a block B inNi, thus we use Lemma 15

to determine if xy|z is consistent with B. If xy|z is consistent
with B, then it is also consistent with Ni. If xy|z is not consistent
with B, then it is not consistent with Ni (e.g., a1a9|a12 in Fig. 3.5).

2. xy|z ∨ xz|y ∨ yz|x is consistent with Ti. Assume w.l.o.g. that xy|z is
consistent with Ti. Let w = lca(x, y) in Ti and µ = lca(x, z) in Ti, and
let B be the block in Ni corresponding to w and F the block in Ni

corresponding to µ:
a) µ is not the parent of w in Ti: then there exists a vertex u in B

and a vertex v in F such that xy|z is rooted at v and u, thus xy|z
is consistent with Ni (e.g., a2a4|a13 in Fig. 3.5).

b) µ is the parent of w in Ti. By the definition of Ti, B is rooted at a
vertex u of F that is not r(F). We consider the following cases:
i. pB(x) = pB(y): w.l.o.g. assume hB(x) > hB(y). Then, xy|z is

rooted at either r(B) and qB(x), or qF (z) and qB(x), or r(F)
and qB(x). Hence, xy|z is consistent with Ni (e.g., a2a3|a4 in
Fig. 3.5).

ii. (pB(x) 6= pB(y)) ∧ (µ = r(Ti)): Using Corollary 2, if we
have that pB(x)pB(y)|r′ is consistent with CB, where r′ is the
dummy leaf in CB, then there exists a vertex u in B such
that xy|z is rooted at r(Ni) and u. Hence, xy|z is consistent
with Ni (e.g., a11a13|a15 in Fig. 3.5). Otherwise, xy|z is not
rooted at any pair of vertices in Ni, thus xy|z is not consistent
with Ni (e.g., a1a11|a15 in Fig. 3.5).

iii. (pB(x) 6= pB(y)) ∧ (µ 6= r(Ti)):
A. (pF (x) = pF (z))∧ (hF (z) ≤ hF (x)): Since B is rooted at a

vertex of F , we have qF (x) = qF (y), thus hF (x) = hF (y).
Using Corollary 2, if pB(x)pB(y)|r′ is consistent with CB,
where r′ is the dummy leaf in CB, then there exists a
vertex u in B such that xy|z is rooted at qF (x) and u.
Hence, xy|z is consistent with Ni (e.g., a1a4|a8 in Fig. 3.5).
Otherwise, xy|z is not rooted at any pair of vertices in
Ni, thus xy|z is not consistent with Ni (e.g., a1a25|a22 in

84 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

Fig. 3.5).
B. (pF (x) = pF (z)) ∧ (hF (z) > hF (x)): Since B is rooted at

a vertex of F , we have qF (x) = qF (y) and hF (x) = hF (y).
Then, there exists a vertex u in block B such that xy|z is
rooted at qF (z) and u, thus xy|z is consistent with Ni (e.g.,
a1a4|a21 in Fig. 3.5).

C. pF (x) 6= pF (z): Using Corollary 2, if pB(x)pB(y)|r′ is
consistent with CB, where r′ is the dummy leaf in CB,
then there exists a vertex u in B such that xy|z is rooted
at either r(B) and u, or qF (z) and u, or r(F) and u.
If pF (x)p′F (x)|pF (z) is consistent with CF , then w.l.o.g.
if hF (x) > hF (y) we have that xy|z is rooted at some
vertex u of F and qF (x). In both cases, xy|z is consis-
tent with Ni (e.g., a1a4|a12 in Fig. 3.5). If both cases are
false, xy|z is not rooted at any pair of vertices in Ni, thus
it is not consistent with Ni (e.g., a1a25|a26 in Fig. 3.5).

Algorithm 11 in Appendix B includes all the procedures needed to com-
pute the triplet distance between two given networks N1 and N2. It is similar
to Algorithm 2, the main difference is in the preprocessing step. In this step
(lines 3-9), for every i ∈ {1, 2} we start by building the block tree Ti. Then, we
build a n×n table for Ti in order to be able later to answer lowest common an-
cestor queries between pairs of leaves in Ti in O(1) time. Afterwards, we build
all the contracted block networks of Ni. Finally, for every block B in Ni and
the corresponding contracted block network CB, we build the fan graph CfB
and the resolved graph CrB, as well as the corresponding AfB and ArB tables.

From Lemma 10, building Ti for every i ∈ {1, 2} takes O(|E1|+ |E2|) time.
Building the two tables for answering lowest common ancestor queries re-
quires O(n3) time. From Lemma 11, building all the contracted block networks
requires O(|E1|+ |E2|+n2) time. From Lemma 13, the time required to build
CfB, CrB, A

f
B, and ArB for every block B of N1 and N2 is O(n(k3

1d
3
1 + k3

2d
3
2 + 2)).

Then, the total preprocessing time becomes O(|E1|+|E2|+n(k3
1d

3
1+k3

2d
3
2)+n3).

Using the results from Lemmas 16 and 17, after the preprocessing step
we can determine the consistency of a triplet with N1 or N2 in O(1) time.
Since the number of triplets that need to be checked is exactly 4

(n
3
)
, the total

running time of the algorithm remains O(|E1|+ |E2|+ n(k3
1d

3
1 + k3

2d
3
2) + n3).

By the definition ofN ,M , k, and d from Section 3.1, the running time becomes
O(M + k3d3n+ n3). Hence, we obtain the following theorem:

Theorem 3. There exists an algorithm that computes the triplet distance
between between two networks N1 and N2 in O(M + k3d3n+ n3) time.

Let Ni be a network that follows the degree constraints of Byrka et al. [15].
If for a block Bs = (Vs, Es) of Ni we define ks to be the number of reticulation

3.4. Implementation and Experiments 85

vertices in Bs, where ks ≤ ki, using the same arguments as those used in the
proof of Lemma 11, we get for CBs = (V ′, E′) that |V ′| = |E′| = O(ks + 1).
The time to build CfB, CrB, A

f
B, and ArB for every block B of Ni then be-

comes
∑
s O(k3

s + 1). Note that Lemma 13 would give a O(nk3
i + 1) time

instead, because it uses n to upper bound (from Corollary 3) the number
of blocks we can have in Ni. Since

∑
s ks = O(|Vi|), the preprocessing time

required by our algorithm for Ni would be O(|Vi| + k2|Vi|). Then, the time
to compute D(N1, N2) becomes O(N + k2N + n3), thus matching the time
bound required by using the second data structure of Byrka et al. [15].

3.4 Implementation and Experiments

This section provides an implementation of the algorithms described in Sec-
tions 3.2 and 3.3, as well as experiments illustrating their practical per-
formance. From here on, the algorithm from Section 3.2 is referred to as
NTDfirst and the algorithm from Section 3.3 as NTDsecond.

The Setup. We implemented the two algorithms in C++ and the source
code is publicly available at https://github.com/kmampent/ntd. The exper-
iments were performed on a machine with 16GB RAM and Intel(R) Core(TM)
i5-3470 CPU @ 3.20GHz. The operating system was Ubuntu 16.04.2 LTS. The
compiler used was g++ 5.4 with cmake 3.11.0.

Correctness. Since no other implementation is available for computing
the rooted triplet distance between two networks of arbitrary level, correct-
ness was ensured by comparing the output of NTDfirst, which is simple to
implement, and the output of NTDsecond, on a large number of pairs of input
networks under varying parameters.

The Input. We consider both simulated and real datasets. For the simu-
lated datasets, we create tree-based networks [30] by inserting edges at random
locations in a tree. From here on, random implies uniformly at random. More
precisely, an input network N ′ is built as follows:

1. Build a random rooted binary tree T on n leaves in the uniform model
[59].

2. LetN ′ = T . Given a parameter 0 ≤ p ≤ 1, contract every internal vertex
of N ′ except r(N ′) with probability p. For a vertex w in N ′, let d(w) be
the total number of edges on the path from r(N ′) to w in N ′.

3. Given a parameter e ≥ 0, add e random edges in N ′ as follows. An
edge u→ v is created in N ′ if d(u) < d(v). If the total number of edges
that can be added happens to be y, where y < e, then we only add
those y edges.

For the real datasets, we consider networks that have been published in the
literature, which are not necessarily tree-based. More precisely, we consider
the 6 trees and the corresponding networks in [58, Table S4]. For the sixth
network in [58, Table S4], we use the non-tree based version given in [54,

https://github.com/kmampent/ntd

86 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

NTDfirst, p=0

0

10

20

10 50 90 130 170 210
n

cp
u

tim
e

(s
ec

on
ds

)
e 10 20 30 40 50

(a)

NTDsecond, p=0

0

10

20

30

40

50

0 100 200 300 400 500
n

cp
u

tim
e

(s
ec

on
ds

)

e 10 20 30 40 50

(b)

Figure 3.7: Simulated Datasets: Running time of the two algorithms NTDfirst
and NTDsecond for different values of e and when p = 0.

s S(Ts, Ts)S(Ns, Ns)S(Ts, Ns)D(Ts, Ns)
A 560 716 443 390
B 1140 1870 840 1330
C 1330 2185 965 1585
D 1330 2205 964 1607
E 1540 1996 983 1570
F 19600 43710 16553 30204

NANB NC ND NE

NA 0 20 19 20 10
NB 20 0 1 0 10
NC 19 1 0 1 9
ND 20 0 1 0 10
NE 10 10 9 10 0

Table 3.2: Experiments on the real datasets. The networks NA, . . . , NE have
identical leaf label sets. The leaf label set of NF is different, which is why NF

is not included in the table on the right. Note that D(NB, ND) = 0.

Fig. 19]. The trees, named TA, TB, TC , TD, TE , and TF below, are given
in the standard Newick format, and the networks, named NA, NB, NC , ND,
NE , and NF below, in the extended Newick format [17]. Note that we use the
graph-theoretic standard adjacency list to store the input networks, making
it easy to support different input formats at the same time.

Experiments. For the simulated datasets, every data point in the graphs
corresponds to the average of 30 different runs under the same set of parame-
ters. To make the experiments more realistic, because reticulation events are
considered to be rare [10], we tried relatively small values for e, i.e., e ≤ 50
when n ≤ 500.

In Fig. 3.7 we have the CPU time in seconds required by the two algorithms
when p = 0 and e ∈ {10, 20, 30, 40, 50}. For NTDfirst we have 10 ≤ n ≤ 230
and for NTDsecond we have 10 ≤ n ≤ 500. Space is the reason behind the

3.4. Implementation and Experiments 87

different restrictions on n. More precisely, as seen in Fig. B.1, for n = 230 the
memory usage of NTDfirst approaches the limits of the available 16GB RAM.
When n ≥ 240, the memory requirements exceed these limits, so the operating
system initiates the highly time consuming communication with the disk. In
Fig. 3.7, we observe the effect of e on the running time of the two algorithms.
The main purpose of extending the algorithm from Section 3.2 in Section 3.3,
was to avoid building the highly time and space consuming fan and resolved
graph on the entire input network and instead, build several such graphs on
the smaller blocks of the network. As shown in Fig. B.3, larger values for e
imply both fewer non-leaf blocks in N ′ and a larger value for k, which in turn
implies more time spent by NTDsecond building the fan and resolved graphs. A
bad scenario is when e is so large that N ′ has a very small number of non-leaf
blocks, making them approximately as large as N ′ itself. Then, given that the
preprocessing of NTDsecond is more complicated than that of NTDfirst, the
performance of NTDsecond will be worse than NTDfirst. An example of such
a scenario can be found in Fig. B.2(a), where for p = 0, n = 110, and e = 50,
the time performance of NTDfirst is better than that of NTDsecond. When p
is large, e.g., p = 0.8 in Fig. B.2(b), the effect of e on the running time is
decreased because the number of internal vertices in the networks becomes
small, thus the number of possible edges we can add (defined by e) becomes
small as well. More information on the effect of p on the running times of the
two algorithms can be found in Fig. B.4.

For the real datasets and for every s ∈ {A,B,C,D,E, F}, we denote by Ts
the tree and Ns the corresponding network, where s is a scenario in [58, Ta-
ble S4], with F corresponding to scenario “E, CHAM and MELVIO resolved”.
For the network NF , we use its non-tree based version from [54, Fig. 19]. NB

is shown in Fig. 3.8(a) and Fig. 3.9(a), and ND in Fig. 3.8(b) and Fig. 3.9(b).
For the other four networks’ branching structures, see [58]. From Equation 3.1
we have the following: D(Ts, Ns) = S(Ts, Ts)+S(Ns, Ns)−2S(Ts, Ns). When
computing D(Ts, Ns) and to have L(Ts) = L(Ns), if a leaf x in Ns appears as
several leaves x.1, . . . , x.i in Ts, we replace x in Ns with the leaves x.1, . . . , x.i
that we attach under the parent of x. For the size of the leaf label sets,
in TA, TB, TC , TD, and TE we have 16, 20, 21, 21, 22, and 50 leaves, in
every network Ns where s ∈ {A,B,C,D,E} we have 8 leaves and in NF

we have 16 leaves.
In Table 3.2 we include the experimental results. On the left table we

compute for every s ∈ {A,B,C,D,E, F}, the values of S(Ts, Ts), S(Ns, Ns),
S(Ts, Ns), and D(Ts, Ns). On the right table we compute for every s, s′ ∈
{A,B,C,D,E} the triplet distance D(Ns, Ns′). The maximum time spent
was when computing D(TF , NF), with NTDfirst requiring only 0.18 seconds
to run and NTDsecond 0.05 seconds. Interestingly, while the two networks NB

and ND look structurally different, their triplet distance is 0. This suggests
that alternative definitions may be useful in practice, as discussed in the con-
cluding remarks below.

88 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

3.5 Concluding Remarks
In this paper, we presented two new algorithms for computing the rooted
triplet distance between two phylogenetic networks that are built on the same
leaf label set. We provided an implementation of the algorithms, as well as
extensive experiments illustrating their performance on both simulated and
real datasets.

Future work involves creating new algorithms that are more efficient than
the algorithms presented in this paper, as well as research variants of the
problem studied in this paper that might provide more biologically meaningful
ways for comparing networks. An example of such a variant is motivated by
the experiments on the real dataset, where the two networks NB and ND are
structurally different but their triplet distance is 0. Unlike in the case of trees,
a triplet can appear several times in a network. For two networks N1 and N2
that we wish to compare, if a triplet appears 1000 times in N1 and only once
in N2, it means that the structures of the two networks are different, which is
not captured by the current definition of D(N1, N2). Should the definition of
the triplet distance for networks be extended to capture the information about
the frequency in which triplets appear in the networks, and if so, could the
algorithms presented in this paper be extended to support this new definition?
For the number of occurrences of a triplet in a network, it is crucial to find a
biologically meaningful definition, as different definitions can lead to different
outcomes. For example, consider the following two definitions of multiplicity
for a resolved triplet xy|z, where u and v are the vertices used in the definition
of the consistency of a resolved triplet with a network in Section 3.1.
A. total number of quadruples of paths of the form ((u; v), (v ; x), (v ;

y), (u ; z)) that are disjoint except for in u and v, and furthermore,
the path from u to z does not pass through v.

B. total number of pairs of vertices (u, v) such that there exist paths of the
form ((u; v), (v ; x), (v ; y), (u; z)) that are disjoint except for in
u and v, and furthermore, the path from u to z does not pass through v.

The definitions for the case of fan triplets are analogous. In Fig. 3.8 we draw
the two networks NB and ND. If we follow definition A of multiplicity, the
resolved triplet Chilenium CHAM_clade | Andinium appears 4 times in NB

and 5 times in ND. On the other hand, if we follow definition B, this resolved
triplet appears three times in both networks. In Fig. 3.9 we have the same two
networks but now consider the resolved triplet Tridens Chilenium | Andinium.
With definition A of multiplicity, this triplet appears 18 times in NB and 28
times in ND, and with definition B it appears 7 times in NB and 9 times inND.

Finally, Cardona et al. [18] gave an alternative generalization of the rooted
triplet distance from trees to networks. While the extension proposed by
Gambette and Huber [33] is closer to the definition of the extensively studied
tree triplet distance, efficient algorithms for this extension could be useful to
create as well.

3.5. Concluding Remarks 89

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

1, 1

1, 1

2, 1

(a) The network NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

1, 1
2, 1

2, 1

(b) The network ND.

Figure 3.8: The two networks NB and ND from the real datasets with
D(NB, ND) = 0. On top of every vertex illustrated with a circle we have
the number of different pairs of disjoint paths from the vertex to the leaves
with labels Chilenium and CHAM_clade, and the number of different disjoint
paths to the vertex from the root of the corresponding network. With defini-
tion A of multiplicity for resolved triplets described in Section 2.7, the resolved
triplet Chilenium CHAM_clade | Andinium appears (1 + 2 + 1) · 1 = 4 times in
NB and (2+2+1) ·1 = 5 times in ND. With definition B, this triplet appears
three times in both networks.

90 Chapter 3. New Triplet Distance Algorithms for Phylogenetic Networks

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

6, 1

2, 1

1, 2

1, 1

2, 11, 1

4, 1

(a) The network NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

1, 2

1, 1

2, 1

2, 1

1, 1

2, 1

8, 1

5, 1

5, 1

(b) The network ND.

Figure 3.9: The two networks NB and ND from the real datasets with
D(NB, ND) = 0. On top of every vertex illustrated with a circle we have
the number of different pairs of disjoint paths from the vertex to the leaves
with labels Tridens and Chilenium, and the number of different disjoint
paths to the vertex from the root of the corresponding network. With defini-
tion A of multiplicity for resolved triplets described in Section 2.7, the resolved
triplet Tridens Chilenium | Andinium appears (4+6+2+1+2+1)·1+1·2 = 18
times in NB and (5 + 5 + 8 + 2 + 2 + 2 + 1 + 1) · 1 + 1 · 2 = 28 times in ND.
With definition B, this triplet appears 7 times in NB and 9 times in ND.

Chapter 4

Building a Small and
Informative Phylogenetic
Supertree

[51] Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpad-
an Puthiyaveedu. Building a Small and Informative Phylogenetic Supertree. In
19th International Workshop on Algorithms in Bioinformatics (WABI 2019),
volume 143 of Leibniz International Proceedings in Informatics (LIPIcs), pages
1:1–1:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 2019.

We combine two fundamental, previously studied optimization problems
related to the construction of phylogenetic trees calledmaximum rooted triplets
consistency (MAXRTC) andminimally resolved supertree (MINRS) into a new
problem, which we call q-maximum rooted triplets consistency (q-MAXRTC).
The input to our new problem is a set R of resolved triplets (rooted, binary
phylogenetic trees with three leaves each) and the objective is to find a phy-
logenetic tree with exactly q internal nodes that contains the largest possible
number of triplets fromR. We first prove that q-MAXRTC is NP-hard even to
approximate within a constant ratio for every fixed q ≥ 2, and then develop
various polynomial-time approximation algorithms for different values of q.
Next, we show experimentally that representing a phylogenetic tree by one
having much fewer nodes typically does not destroy too much triplet branch-
ing information. As an extreme example, we show that allowing only nine in-
ternal nodes is still sufficient to capture on average 80% of the rooted triplets
from some recently published trees, each having between 760 and 3081 internal
nodes. Finally, to demonstrate the algorithmic advantage of using trees with
few internal nodes, we propose a new algorithm for computing the rooted triplet
distance between two phylogenetic trees over a leaf label set of size n that runs
in O(qn) time, where q is the number of internal nodes in the smaller tree, and
is therefore faster than the currently best algorithms for the problem (with
O(n logn) time complexity [SODA 2013, ESA 2017]) whenever q = o(logn).

91

92 Chapter 4. Building a Small and Informative Phylogenetic Supertree

5

4 2

3 1

1 2 4

5

3

Figure 4.1: Let L = {1, 2, 3, 4, 5} and R = {45|3, 25|3, 13|5, 24|5, 23|1}. In
this example no tree T such that |R ∩ rt(T)| = 5 exists. Left figure: optimal
solution for MAXRTC with value 4. Right figure: optimal solution for 3-
MAXRTC with value 3.

4.1 Introduction

Background. Phylogenetic trees are used in biology to represent evolutionary
relationships [27]. The leaves in such a tree correspond to species that exist
today and internal nodes to ancestor species that existed in the past. An
important problem when studying the evolution of species is, given some data
describing the species, to construct a phylogenetic tree that supports the input
data as much as possible. The supertree approach [9, 19, 39] deals with the
challenging problem of constructing a reliable phylogenetic tree for a large set
of species by combining several accurate trees for small, overlapping subsets of
the species into one final tree. Depending on the type of data that is available
and the type of trees that we want to construct, we obtain several variants of
the same problem. Phylogenetic trees are also used in linguistics to deduce
and visualize evolutionary relationships between natural languages [61].

Problem Definition. A rooted phylogenetic tree is a rooted unordered
tree in which every leaf has a distinct label and every internal node has at
least two children. In this article, for simplicity we use the word “tree” to
refer to a “rooted phylogenetic tree”. A resolved triplet is a binary tree with
three leaves. The resolved triplet with leaf labels x, y, and z where z is
closest to the root is denoted by xy|z. From now on when referring to a
“triplet” we mean a “resolved triplet”. Let T be a tree on a leaf label set L
of size n. For a node u ∈ T , deg(u) is the number of children of u and T (u)
is the subtree induced by u and all the proper descendants of u. For two
nodes u and v in T , lca(u, v) is the lowest common ancestor node of u and v
in T . We say that the triplet xy|z is induced by T if lca(x, z) = lca(y, z)
and lca(x, y) 6= lca(x, z). Let rt(T) be the set of all triplets induced by T .
Given a set R of triplets, we say that R is consistent with T , or equivalently T
is consistent with R, if R ⊆ rt(T).

Given a set R of triplets on a leaf label set L of size n, in the q-maximum
rooted triplets consistency problem, denoted q-MAXRTC, the goal is to find
a tree T with exactly q internal nodes such that |R ∩ rt(T)| is maximized,
i.e., the total number of triplets induced by T that are also in R is as large as
possible. An example can be seen in Figure 4.1.

4.1. Introduction 93

Let A be an algorithm for any maximization problem. Given an in-
put instance I, let opt(I) be the value of an optimal solution and A(I)
the value of the solution returned by A. Let 0 ≤ r ≤ 1. We say that A
is an r-approximation algorithm with relative ratio r, if A(I) ≥ r · opt(I)
for any I. Similarly, A is an r-approximation algorithm with absolute ra-
tio r, if A(I) ≥ r · |I| for any I. In particular, for q-MAXRTC we have
that A(I) ≥ r · |R|. From here on and unless otherwise stated, when we refer
to any ratio r, we imply an absolute ratio.

Previous Work. Aho et al. [2] proposed a polynomial-time algorithm,
called BUILD, that can determine if there exists a tree inducing all triplets
from an input R, and if such a tree exists, output it. As observed by Bryant
[13], the BUILD algorithm does not always produce a tree with the minimal
number of internal nodes. In fact, BUILD might return a tree with Ω(n) more
internal nodes than needed [48], which is undesirable because unnecessary in-
ternal nodes may suggest false groupings of the leaves, also known as spurious
novel clades [9]. Moreover, scientists typically look for the simplest possible
explanation for some given observations and would prefer a tree that makes
as few additional statements as possible about evolutionary relationships that
are not supported by the input data. This motivates the minimally resolved
phylogenetic supertree (MINRS) problem, where the output is a tree (if one
exists) inducing all triplets from R while having the minimum number of in-
ternal nodes. The decision version of MINRS is NP-complete for q ≥ 4 and
polynomial-time solvable for q ≤ 3 [48], where q is the total number of internal
nodes in the output tree. An exact exponential-time algorithm for MINRS and
experimental results for the non-optimality of BUILD for MINRS were given
in [50]. For the special case of caterpillar trees (trees in which every internal
node has at most one non-leaf child), MINRS is polynomial-time solvable [48].

The above problems only consider finding trees that induce all triplets
from R. However, in situations where such a tree cannot be constructed,
e.g., due to a single error in the input triplets, it is still useful to build a
tree that induces as many of the triplets from R as possible. This has been
formalized as the maximum rooted triplets consistency problem (MAXRTC).
Bryant [13] showed that MAXRTC is NP-hard and Ga̧sieniec et al. [34] pro-
posed a polynomial-time top-down 1

3 -approximation algorithm that always re-
turns a caterpillar tree. Byrka et al. [16] showed that a bottom-up algorithm
by Wu [77] can be modified to also obtain a polynomial-time 1

3 -approximation
algorithm. In [15], Byrka et al. gave a polynomial-time 1

3 -approximation al-
gorithm by derandomizing a randomized algorithm. In Section 3.4 below, we
refer to the algorithm in [34] as One-Leaf-Split (OLS) and the algorithm in [16]
as the modified Wu algorithm (Mod-Wu). For more results related to the com-
putational complexity of MAXRTC, see [16].

Motivation. The existing approximation algorithms for MAXRTC typi-
cally produce trees with an arbitrary number of internal nodes. For example,
the algorithms in [15, 16] always produce a tree with n − 1 internal nodes

94 Chapter 4. Building a Small and Informative Phylogenetic Supertree

Table 4.1: Previous and new results for computing q-MAXRTC. The abbrevi-
ations “abs.” and “rel.” correspond to “absolute” and “relative” respectively.

Year Reference Deterministic q Approximation Type

1999 Ga̧sieniec et al. [34] yes unbounded 1/3 abs.
2010 Byrka et al. [15, 16] yes n− 1 1/3 abs.
2019 new [Section 4.3.1] no 2 1/2 rel.
2019 new [Section 4.3.1] yes 2 1/4 rel.
2019 new [Theorem 5] yes 2 4/27 abs.
2019 new [Theorem 7] yes q ≥ 3 1

3 −
4

3(q+q mod 2)2 abs.

and the algorithm in [34], n − 1 for certain R. However, due to the issue of
spurious novel clades [9] mentioned above, biologists may prefer to build a
supertree with few internal nodes that is still consistent with a large number
of input triplets, which leads to the new problem q-MAXRTC introduced in
this paper. More precisely, q-MAXRTC can be regarded as a combination of
MINRS and MAXRTC that models how well the triplet branching informa-
tion contained in the set of input triplets can be preserved while forcing the
size of the output tree to be bounded by a user-specified parameter q. Note
that by the problem definition, some input branching structure typically has
to be discarded and the objective is to do it in a least destructive way.

On a high level, q-MAXRTC is comparable to the problem of compressing
a large data file into a small data file. As an analogy, consider the widely
used JPEG compression method for images. Both JPEG and q-MAXRTC are
examples of lossy compression where the user controls a parameter yielding
a trade-off between the size of the compressed data (the number of bits for
JPEG and the number of internal nodes for q-MAXRTC) and the amount of
preserved information (the image quality for JPEG and the number of induced
triplets in R for q-MAXRTC).

Finally, in the design of phylogenetic tree comparison algorithms, trees
with fewer internal nodes sometimes admit faster running times. For exam-
ple, given two trees built on the same leaf label set of size n, the fastest
known algorithms for computing the so-called rooted triplet distance between
the two trees takes O(n logn) time [11, 12], but if at least one of the in-
put trees has O(1) internal nodes then the time complexity can be reduced
to O(n); see Section 4.5. As the available published trees get larger and
larger (the total number of species on Earth was recently estimated to be
1 trillion [57]), to make their comparison practical, it may become neces-
sary to approximate them using trees with fewer internal nodes while keeping
enough triplet branching structure to represent them accurately.

New Results and Outline of the Article. In Section 4.2 we show that
q-MAXRTC is NP-hard for every fixed q ≥ 2 and give some inapproximability
results. Section 4.3 describes our new approximation algorithms. In Section

4.2. Computational Complexity of q-MAXRTC 95

4.4 we provide implementations, and present some experimental results show-
ing that representing a tree by one having much fewer nodes typically does
not destroy too much triplet branching information. As an extreme example,
we show that allowing only nine internal nodes is still sufficient to capture
on average 80% of the rooted triplets from some recently published trees,
each having between 760 and 3081 internal nodes. Section 4.5 presents our
new O(qn)-time algorithm, as well as provides an implementation of it, for
computing the rooted triplet distance between two trees, where n is the size
of the leaf label set in the two trees and q the number of internal nodes in the
smaller tree. Finally, Section 4.6 contains some concluding remarks and open
problems. For a summary of previous and new results related to q-MAXRTC,
refer to Table 4.1.

4.2 Computational Complexity of q-MAXRTC

In this section, we study the computational complexity of q-MAXRTC. We
first establish the NP-hardness of q-MAXRTC, and then present some inap-
proximability results.

Theorem 4. q-MAXRTC is NP-hard for every fixed q ≥ 2.

Proof. We consider the known NP-hard problem MAX q-CUT [55], in which
the input is an undirected graph G = (V,E) and the goal is to find a par-
tition (A1, A2, . . . , Aq) of V such that the total number of edges connecting
two nodes residing in different sets, i.e., the size of the cut, is maximized. We
prove that q-MAXRTC is NP-hard by reducing MAX q-CUT to q-MAXRTC
as follows: let L = V ∪ {z} and R = {xz|y, yz|x : {x, y} ∈ E}. We claim that
there exists a cut (A1, A2, . . . , Aq) of size k in G if and only if there exists a
solution to q-MAXRTC that is consistent with k triplets from R. We now
prove the claim.

First, assume that there exists a cut (A1, A2, . . . , Aq) of size k in G. We
construct a tree T that is rooted at the vertex a1 with additional internal
nodes a2, . . . , aq such that ai+1 is a child of ai for 1 ≤ i ≤ q − 1. For i ∈
{1, 2, . . . , q}, we attach |Ai| leaves bijectively labeled by Ai as children of ai,
and the vertex z is added as a child of aq. Consider any edge {x, y} in the
cut. By the definition of a cut, x ∈ Ai and y ∈ Aj for two different i, j ∈
{1, 2, . . . , q}. If i < j, then yz|x will be consistent with T , since lca(y, z) = aj is
a proper descendant of lca(x, y) = lca(x, z) = ai. Similarly, if i > j, then xz|y
will be consistent with T . For every edge in the cut, exactly one triplet will
be consistent with T , so T will be consistent with exactly k triplets from R.

Conversely, assume that there exists a tree T that has q internal nodes
a1, a2, . . . , aq and is consistent with k triplets from R. Define Ai = {x :
x is a child of ai} \ {z, a1, a2, . . . , aq} for 1 ≤ i ≤ q. Define S = R ∩ rt(T).
For each xz|y ∈ S, clearly x and y belong to different sets Ai and Aj for some

96 Chapter 4. Building a Small and Informative Phylogenetic Supertree

u, deg(u) = 5

u1 u2

u, deg(u) = 4
u12

u1 u2

Figure 4.2: Increasing the number of internal nodes by one without destroying
any triplets.

i, j ∈ {1, 2, . . . , q}, and thus the corresponding edge {x, y} contributes one to
the size of the cut, making the size of the cut |S| = k.

From the inapproximability of MAXCUT [37], we obtain the following:

Corollary 4. Unless P=NP, 2-MAXRTC cannot be approximated in polyno-
mial time within a relative ratio of 16/17 + ε, for any constant ε > 0.

From the inapproximability of MAX q-CUT [55], we obtain the following:

Corollary 5. Unless P=NP, for any q ≥ 3, it holds that q-MAXRTC cannot
be approximated in polynomial time within a relative ratio of 1− 1/(34q) + ε,
for any constant ε > 0.

Remark 1. Recall from Section 3.1 that MINRS is polynomial-time solvable
if restricted to caterpillar trees [48]. In contrast, the proof of Theorem 4 shows
that q-MAXRTC remains NP-hard even in this special case.

4.3 Approximability of q-MAXRTC

Intuitively, a tree with a larger number of internal nodes should be able to
induce more triplets from a givenR. The next lemma shows that this is indeed
so, and upper bounds the total number of triplets that can be induced. Define
opt(q) to be the maximum number of triplets that can be consistent with a
tree T with q internal nodes.

Lemma 18. Let 2 ≤ q′ ≤ q ≤ n − 1. We then have opt(q′) ≤ opt(q) ≤
d q−1
q′−1eopt(q′).

Proof. We start by showing that opt(q′) ≤ opt(q). Let T ′ be the tree with q′
internal nodes that induces opt(q′) triplets from R. We can create a tree T
with q internal nodes that induces at least as many triplets from R as follows.
Let T = T ′. While T does not have q internal nodes, let u ∈ T such that
deg(u) > 2 and u1, u2 be two children of u. Create an internal node u12, make
u1 and u2 the children of u12 and u12 the child of u. An example can be found
in Figure 4.2.

4.3. Approximability of q-MAXRTC 97

a

b
c

d
e f

g

h

1 2 3

4 5 6 7 8

9

10 11 12 13

T

a

d g1 2 3

4 5 6 7 8 9 10 11 12 13

T ′

Figure 4.3: An example. Let T be the tree on the left with 9 internal nodes.
The tree T ′ on the right with 3 internal nodes is created by deleting all internal
nodes in T except W = {a, d, g}.

To show the second half of the inequality, proceed as follows. Define the
delete operation on any non-root node u in a tree as the operation of making
the children of u become children of the parent of u, and then removing u
and all edges incident to u. Let T be the tree that induces opt(q) triplets
from R. Let t = ab|c be a triplet induced in T that is also in R. Anchor t in
lca(a, b). Let W = {u1, u2, . . . , uq′} be any set of q′ internal nodes in T such
that the root of T is included in W . Create a tree T ′ with q′ internal nodes by
letting T ′ be a copy of T and applying the delete operation to every internal
node of T ′ not in W . Note that for a node u in T such that u ∈ W , every
triplet anchored in u will also be induced by T ′. An example can be found in
Figure 4.3.

Let T ′1, T ′2, . . . , T ′λ be trees that are built like T ′, but in a way such that
every internal node u ∈ T except r(T), corresponds to an internal node of
exactly one such tree. Observe that λ = d q−1

q′−1e.We can create these trees with
the following procedure:

– Store all internal nodes of T except r(T) in the ordered set S, in any
order from left to right and set j = 1.

– If |S| ≥ q′ − 1, pick and remove from S the first q′ − 1 internal nodes to
define W , and construct T ′j . Otherwise, pick the remaining nodes in S
to define W and create T ′j just like T ′ but with |S| = |W | nodes instead
of q′ − 1. Set j = j + 1.

– if |S| = 0 stop. Otherwise go to the previous step.
We then have: |rt(T) ∩ R| = opt(q) ≤

∑λ
i=1 |rt(T ′i) ∩ R| ≤ λopt(q′) =

d q−1
q′−1eopt(q′).

4.3.1 Polynomial-time Approximation Algorithms Based on
MAX 3-CSP

MAX 3-AND is a Boolean satisfiability problem in which we are given as input
a logical formula consisting of a set of clauses, each being a conjunction (AND)
of three literals formed from a set of Boolean variables, and the goal is to assign

98 Chapter 4. Building a Small and Informative Phylogenetic Supertree

each Boolean variable a True/False-value so that the total number of satisfied
clauses is maximized. Both MAX 3-AND and the well-known MAX 3-SAT
problem are special cases of the MAX 3-CSP problem [78], where a clause
can be an arbitrary function over three literals. The following lemma shows
that 2-MAXRTC can be reduced to MAX 3-AND in polynomial time while
preserving the approximation ratio.

Lemma 19. If MAX 3-AND can be approximated within a factor of r, then
2-MAXRTC can also be approximated within a factor of r.

Proof. We present a reduction from 2-MAXRTC to MAX 3-AND. Given a set
of triplets R built on the leaf label set L, we construct an instance of MAX 3-
AND as follows: let V = L be the set of variables and C = {x∧y∧z̄ : xy|z ∈ R}
the set of clauses. We claim that there exists a solution to MAX 3-AND that
satisfies k clauses from C if and only if there exists a solution to 2-MAXRTC
that is consistent with k triplets from R. We now prove this claim.

First, suppose that there exists an assignment φ on V that satisfies a
set S of clauses from C, where |S| = k. Let A = {z : x ∧ y ∧ z̄ ∈ S} and
B = {x, y : x ∧ y ∧ z̄ ∈ S}. Observe that A ∩ B = ∅, which can be argued as
follows. Let c ∈ A ∩ B. Then c ∈ A implies that c = False in φ and c ∈ B
implies that c = True in φ, leading to a contradiction. Next, we construct a
tree T with root a and an internal node b that is a child of a that is consistent
with k triplets fromR. The elements in A and B are added as the children of a
and b respectively. The set of all k triplets of the form {xy|z : x ∧ y ∧ z̄ ∈ S}
is consistent with T , since lca(x, y) = b and lca(x, z) = lca(y, z) = a.

Conversely, assume that T is a tree that is consistent with the set S′ of k
triplets fromR. Let a be the root of T and b the other internal node of T that is
the child of a. Let B = {x : x is a child of b} and A = {x : x is a child of a} \
{b}. We set x = True, for every x ∈ B and x = False, for every x ∈ A. For
every x, y ∈ A and z ∈ B, the corresponding clause x ∧ y ∧ z̄ is satisfied.
Hence, all clauses corresponding to the triplets in S′ are satisfied.

Lemma 19 allows every approximation algorithm for MAX 3-AND to be
used to approximate 2-MAXRTC. For MAX 3-AND, Zwick [78] presented a
randomized polynomial-time 1

2 -approximation algorithm with relative ratio
based on semi definite programming. Trevisan [74] presented a determinis-
tic polynomial-time 1

4 -approximation algorithm with relative ratio based on
linear programming. A deterministic polynomial-time algorithm based on lo-
cal search by Alimonti [3], would satisfy ≥ 1

8 |C| number of clauses, giving
a 1

8 -approximation ratio for 2-MAXRTC. Since this ratio is absolute, from
Lemma 3 this algorithm also gives a 1

8 -approximation ratio for q-MAXRTC,
where q ≥ 3.

4.3. Approximability of q-MAXRTC 99

4.3.2 Polynomial-time Approximation Algorithms Based on
Derandomization

Reducing 2-MAXRTC to MAX 3-AND can produce a polynomial-time deter-
ministic 1

8 -approximation algorithm for q-MAXRTC, however from Lemma 3,
we should be able to capture more triplets by allowing more internal nodes.
The algorithms based on MAX 3-AND cannot be directly extended to support
Lemma 3. We propose a new deterministic polynomial-time algorithm for q-
MAXRTC that achieves a 4

27 -approximation ratio, based on a randomized
algorithm for 2-MAXRTC, and then show how to extend it to get better ap-
proximation ratios for higher values of q. Note that the only available related
algorithm based on derandomization by Byrka et al. [15], always constructs a
binary tree on n leaves, i.e., the case q < n − 1 is not considered. Moreover,
as we will show below, our derandomization procedure is highly optimized for
trees instead of the more complex phylogenetic networks (for a definition, see
Section 2 of [15]).

Lemma 20. There exists a randomized polynomial-time 4
27 -approximation

algorithm for q-MAXRTC.

Proof. Let R = {r1, . . . , r|R|} be the set of triplets and L = {x1, . . . , xn}
the leaf label set. Build a tree T with two internal nodes, with a being the
root and b the child of the root. Make every leaf xi ∈ L with probability 2

3
a child of b and probability 1

3 a child of a. Let Yj be a random variable
that is 1 if rj ∈ rt(T) and 0 otherwise. Let W =

∑|R|
j=1 Yj . For the expected

number of triplets consistent with T we have E[W] =
∑|R|
j=1E[Yj] =

∑|R|
j=1

4
27 =

4
27 |R|.

Theorem 5. There exists a deterministic polynomial-time 4
27 -approximation

algorithm for q-MAXRTC that runs in O(|R|) time.

Proof. We derandomize the algorithm in Lemma 20 with the method of con-
ditional expectations [76] in a way that differs from Byrka et al. [15], where
the main focus is the general case of phylogenetic networks. In our method,
the leaves x1, . . . , xn are scanned from left to right, and each leaf is determin-
istically assigned to either be the child of b, denoted xi ← b, or the child of a,
denoted xi ← a. The leaves are assigned in a way, such that after every assign-
ment the expected value of the solution is preserved. From probability theory
we have E[W] = 1

3E[W |x1 ← a] + 2
3E[W |x1 ← b]. We then choose n1 = a

or n1 = b such that E[W |x1 ← n1] = max(E[W |x1 ← a], E[W |x1 ← b]). This
gives E[W |x1 ← n1] ≥ E[W] = 4

27 |R|. Suppose that the first i leaves have
been assigned to n1, . . . , ni. Let Ni contain those assignments, i.e., we have
that Ni = {x1 ← n1, . . . , xi ← ni}. To find the assignment for xi+1 we fol-
low the same approach as that for x1 as follows. We have E[W |Ni] =
1
3E[W |Ni, xi+1 ← a] + 2

3E[W |Ni, xi+1 ← b] and then ni+1 is chosen so that

100 Chapter 4. Building a Small and Informative Phylogenetic Supertree

Algorithm 3 O(n|R|)-time 4
27 -approximation algorithm for q-MAXRTC

based on 2-MAXRTC (Theorem 5)
1: procedure PR2(xy|z) . Computing Pr[xy|z ∈ rt(T)|Ni]
2: if x← a or y ← a or z ← b then return 0
3: p = 4/27
4: if x 6= ∅ and x← b then p = 3p/2 . x 6= ∅, thus x has been assigned
5: if y 6= ∅ and y ← b then p = 3p/2
6: if z 6= ∅ and z ← a then p = 3p
7: return p

8: procedure 2-MAXRTC-SLOW(R) . The main procedure
9: for i = 1 to n do

10: aValue = 0 . To compute E[W |Ni−1, xi ← a]
11: bValue = 0 . To compute E[W |Ni−1, xi ← b]
12: for j = 1 to |R| do
13: xi ← a
14: aValue = aValue + PR2(R[j])
15: xi ← b
16: bValue = bValue + PR2(R[j])
17: xi ← b
18: if aValue > bValue then xi ← a

E[W |Ni+1] = max(E[W |Ni, xi+1 ← a], E[W |Ni, xi+1 ← b]). By induction, we
then get that E[W |Ni+1] ≥ E[W |Ni] ≥ · · · ≥ 4

27 |R|.
To compute E[W |Ni], we use the fact that E[W |Ni] =

∑|R|
j=1 Pr[rj ∈

rt(T)|Ni], where Pr[rj ∈ rt(T)|Ni] can be computed in O(1) time (see the
procedure PR2() of Algorithm 3). A trivial implementation that scans all the
leaves and for every possible assignment of a leaf xi, computes the expected
value E[W |Ni] by scanning the entire set R (see the procedure 2-MAXRTC-
SLOW() of Algorithm 3) would require O(n|R|) time.

We can achieve a more efficient implementation (see the procedure 2-
MAXRTC-FAST() of Algorithm 4) that would require O(|R|) time, by main-
taining for every leaf xi ∈ L, a list of all the triplets that xi is part of,
denoted R[xi]. At the beginning of the i-th iteration of the first for loop
in Algorithm 4, the value of the variable prev is E[W |Ni−1]. To deter-
mine the assignment for leaf xi, we need to compute E[W |Ni−1, xi ← a] and
E[W |Ni−1, xi ← b], and for this we use the second for loop. At the end of the
execution of the second for loop, we have that the value of E[W |Ni−1, xi ← a]
will be stored in the variable aValue and the value of E[W |Ni−1, xi ← b] in
the variable bValue. To compute aValue (resp. bValue), we initialize it to
the value of prev, and then for every triplet in the list R[xi], we subtract the
contribution of that triplet to the value of prev when xi ← ∅, and add its new

4.3. Approximability of q-MAXRTC 101

Algorithm 4 O(|R|) 4
27 -approximation algorithm for q-MAXRTC based on

2-MAXRTC
1: procedure PR2(xy|z) . Computing Pr[xy|z ∈ rt(T)|Ni]
2: if x← a or y ← a or z ← b then return 0
3: p = 4/27
4: if x 6= ∅ and x← b then p = 3p/2 . x 6= ∅ meaning that x has been

assigned
5: if y 6= ∅ and y ← b then p = 3p/2
6: if z 6= ∅ and z ← a then p = 3p
7: return p

8: procedure 2-MAXRTC-FAST(R) . The main procedure
9: prev = 4|R|/27 . Storing E[W |N0], where N0 = ∅
10: for i = 1 to n do
11: aValue = prev . To compute E[W |Ni−1, xi ← a]
12: bValue = prev . To compute E[W |Ni−1, xi ← b]
13: for j = 1 to |R[xi]| do
14: xi ← ∅
15: aValue = aValue −PR2(R[xi][j])
16: bValue = bValue −PR2(R[xi][j])
17: xi ← a
18: aValue = aValue + PR2(R[xi][j])
19: xi ← b
20: bValue = bValue + PR2(R[xi][j])
21: xi ← b
22: prev = bValue
23: if aValue > bValue then
24: xi ← a
25: prev = aValue

contribution by having xi ← a (resp. xi ← b). Since every triplet in R will
be part of 3 lists, every triplet will induce O(1) calls to the procedure PR2()
of Algorithm 4, giving the O(|R|) final bound of the algorithm.

In the following theorem, we prove that the best possible absolute approx-
imation ratio for 2-MAXRTC is 4

27 , making the approximation algorithm in
Theorem 5 optimal when considering algorithms with absolute approximation
ratios.

Theorem 6. For any ε > 0, there exists some n and set R of triplets on a leaf
label set of size n, such that the approximation ratio ≥ 4

27 + ε for 2-MAXRTC
is impossible.

102 Chapter 4. Building a Small and Informative Phylogenetic Supertree

Proof. For any n, let Ln = {1, 2, . . . , n} and Rn = {ab|c, ac|b, bc|a : a, b, c ∈
L, |{a, b, c}| = 3}. Since |Ln| = n, we have |Rn| = 3

(n
3
)
. Next, we construct a

tree T with two internal nodes, which is rooted at the vertex a with an internal
node b (b is a child of a). Let A = {x : x is a child of a} \ {b} and B = {x :
x is a child of b}. Assume thatm = |A|. Then |B| = n−m and |rt(T)∩Rn| =
m(m−1

2)(n −m). By taking derivatives, we obtain that T is consistent with
the largest number of triplets when m = n+1+

√
n2−n+1
3 . For that given m,

we then have |rt(T) ∩ Rn| =
(
n+1+

√
n2−n+1
3

)(
n−2+

√
n2−n+1
6

)(2n−1−
√
n2−n+1

3
)

and lim
n→∞

|rt(T)∩Rn|
|Rn| = 4

27 .

To obtain an algorithm (see Algorithm 12 in Appendix C) with a better
approximation ratio for q ≥ 3, we allow the output tree T to have q inter-
nal nodes {u1, . . . , uq}. Every internal node uj ∈ T has a probability p(uj),
which is the probability of a fixed leaf being assigned to that node. Given
that

∑q
j=1 p(uj) = 1, we can obtain a randomized algorithm, the analysis of

which follows from Lemma 20. Let E[W] be the expected value of that ran-
domized algorithm. Like in Theorem 5, we can derandomize the algorithm to
obtain a E[W]

|R| -approximation ratio. The only difference in the proof is that
the total number of possible assignments is q instead of 2, i.e., given Ni, we
choose ni+1 for xi+1 such that E[W |Ni, xi+1 ← ni+1] = max(E[W |Ni, xi+1 ←
u1, . . . , E[W |Ni, xi+1 ← uq). The problem is thus reduced to finding a tree
with q internal nodes and a choice of probabilities p(u1), . . . , p(uq) such that
E[W] > 4

27 |R|.

Theorem 7. Given q ≥ 3, there exists a randomized polynomial-time algo-
rithm for q-MAXRTC that achieves a (1

3 −
4

3(q+q mod 2)2)-approximation. The
algorithm can be derandomized while preserving the approximation ratio. The
running time of the deterministic algorithm is O(q|R|).

Proof. Let R = {r1, . . . , r|R|} and L = {x1, . . . , xn}. If q = 2k + 1 for some
k ∈ N, build a binary tree T with q nodes in total. By construction, T has k+1
leaves and k internal nodes. Assign the probability 1/(k+1) to every leaf and 0
to every internal node. For the expected value of the randomized algorithm
we then obtain:

E[W] =
|R|∑
j=1

Pr[rj ∈ rt(T)] =
|R|∑
j=1

k(k + 1) + 2
(k+1

3
)

(k + 1)3 =
(1

3 −
1

3(k + 1)2

)
|R| .

By setting k = q−1
2 , we get E[W] =

(1
3 −

4
3(q+1)2

)
|R|. If q = 2k, we

follow the same approach but by building a binary tree T with 2k − 1 nodes
instead. The tree T has k leaves and k − 1 internal nodes. Every leaf has the
probability 1/k and every internal node the probability 0. After finding the
assignment of the leaves according to the chosen probabilities, we pick one

4.4. Implementation and Experiments 103

internal node u for which deg(u) ≥ 3 to add a new internal node as shown in
Figure 4.2. This would give E[W] ≥

(1
3 −

4
3q2
)
|R|. Hence, for any q ≥ 3 we

have E[W] ≥
(1

3 −
4

3(q+q mod 2)2
)
|R|.

To obtain a deterministic algorithm that preserves the approximation ra-
tios, we use the method of conditional expectations. We now describe how to
achieve the O(q|R|) time bound, given any binary tree T with q internal nodes
and a probability assignment as described above. For any internal node u in T ,
let d(u) be the number of edges on the path from the root of T to u. Define
the following counters:

– u↓ = total number of leaves in T (u).
– u↑s = total number of pairs of leaves x, y such that x 6= y, x and y are
not in T (u), and d(lca(u, x)) = d(lca(u, y)).

– u↑d = total number of pairs of leaves x, y such that x 6= y, x and y are
not in T (u), and d(lca(u, x)) < d(lca(u, y)).

After building T , all these counters can be trivially computed in O(q) time
by applying two depth first search traversals on T . The procedure PRQ() of
Algorithm 12 shows how to compute Pr[xy|z ∈ rt(T)|Ni]. The most expensive
operation is computing the lowest common ancestor of two nodes. However,
data structures exist [7], that can answer such queries in O(1) time, while
only requiring O(q) preprocessing time. Given such a data structure, the
time complexity of PRQ() becomes O(1). The main procedure Q-MAXRTC()
of Algorithm 12 is a direct extension of the main procedure 2-MAXRTC-
FAST() of Algorithm 4, with the only difference being that we have q possible
assignments for a leaf instead of 2. Hence, every triplet in R induces O(q)
calls to PRQ() of Algorithm 12, making the entire complexity of the algorithm
O(q) + O(q|R|) = O(q|R|).

4.4 Implementation and Experiments

We used the C++ programming language to implement the algorithm from
Theorem 5 for 2-MAXRTC, and the deterministic algorithm from Theorem 7
for q-MAXRTC when q > 2. The implementation is publicly available at
https://github.com/kmampent/qMAXRTC. For simplicity in our implemen-
tation, given two nodes u and v, a trivial O(q) time algorithm is used to
compute lca(u, v). To evaluate our algorithms experimentally, we also imple-
mentedOne-Leaf-Split (OLS) [34] and the modified Wu algorithm (Mod-Wu) [16].
Below, we describe some experiments on both simulated and real datasets and
the results.

Simulated Dataset. The input to q-MAXRTC is a set of triplets R and
a parameter q. We define the following types of sets for R:

– dense consistent (abbreviated dc): if |R| =
(n

3
)
and R is consistent with

a tree T containing n − 1 internal nodes. The tree T is created using
the uniform model [59].

https://github.com/kmampent/qMAXRTC

104 Chapter 4. Building a Small and Informative Phylogenetic Supertree

●

●
●●

●

●●●
●● ● ● ●

●

●
● ● ●

●
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 250 500 750 1000
n

ra
tio

● 3−MAXRTC
5−MAXRTC

7−MAXRTC
9−MAXRTC

Mod−Wu
OLS

dc model

●

●

●
●●

●●●●
●

●
● ●

●

● ●
● ● ●

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 250 500 750 1000
n

ra
tio

● 3−MAXRTC
5−MAXRTC

7−MAXRTC
9−MAXRTC

Mod−Wu
OLS

prob50 model

Figure 4.4: Performance of {3, 5, 7, 9}-MAXRTC compared to OLS and Mod-Wu
in the dc and prob50 models. Every data point corresponds to the mean of
100 runs. Observe that the performance of 9-MAXRTC is very close to that of
OLS & Mod-Wu, even though 9-MAXRTC uses only 9 internal nodes, while OLS
uses at most n− 1 internal nodes and Mod-Wu exactly n− 1.

– probabilistic: if |R| = n2 and R is a set of triplets on n leaf labels
created as follows. After building a binary tree T on n leaves following
the uniform model, start extracting triplets from T to add into R. For
every extracted triplet xy|z, permute the leaves uniformly at random
with probability p. Depending on whether p = 0.25, p = 0.50 or p = 0.75
the abbreviations we use are prob25, prob50, and prob75 respectively.

– noisy: if |R| = n2 and R is a set of triplets on n leaf labels that is
created at random.

In the experiments of this dataset, the performance of an algorithm for any
fixed q, n, and dataset model is defined as its mean approximation ratio, taken
over 100 randomly generated instances of size n. Figure 4.4 compares the per-
formance of q-MAXRTC, OLS, and Mod-Wu in the dc and prob50 models, for
small values of q and n at most 1000. In both models, the larger the value
of q, the better the performance of q-MAXRTC. Moreover, the rate of improve-
ment in performance decreases as the value of q increases, which is expected.
For the dc dataset, which contains no conflicting triplets, the performance is
much better. Significantly, a tree with just nine internal nodes (obtained by
setting q = 9) can induce close to 80% of the triplets even if the input tree
contains as many as 1000 leaves. When compared against OLS & Mod-Wu, we
can see that while OLS & Mod-Wu perform better, the difference in performance
is small compared to the difference in the number of internal nodes used by
the algorithms.

In Figure C.1 we have the performance of q-MAXRTC for q ∈ {3, 5, 7, 9},

4.4. Implementation and Experiments 105

q poS1(761) poS2(761) poS4(841) nmS4(1869) nmS2(3082) Average

2 0.27 0.36 0.43 0.41 0.29 0.35
3 0.67 0.54 0.48 0.41 0.46 0.51
5 0.77 0.81 0.67 0.66 0.72 0.73
7 0.82 0.75 0.76 0.62 0.73 0.74
9 0.86 0.71 0.87 0.80 0.79 0.81
11 0.91 0.89 0.87 0.79 0.87 0.87

Table 4.2: Accuracy of q-MAXRTC on real datasets. Every entry corresponds
to the best accuracy over 100 runs. The size of each leaf label set is written
inside the parenthesis.

OLS and Mod-Wu on the noisy, prob25 and prob75 models. In Figure C.2 we
have the performance of q-MAXRTC for q ∈ {2, 5, 7, 9} on every simulation
model. In every experiment, the larger the value of q, the better the per-
formance. As expected, the performance deteriorates when the number of
conflicting triplets in R is increased.

Real Dataset We considered five trees from recently published papers
([42] and [56]). From [42] we used the trees from the supplementary datasets
2 and 4, denoted nmS2 and nmS4 respectively. From [56] we used the trees
from the supplementary datasets 1, 2, and 4, denoted poS1, poS2, and poS4
respectively. All trees are binary except nmS2 and nmS4. However, we removed
the leaf that is a child of nmS2’s root to make nmS2 binary. Similarly, we
removed the two leaves that are children of nmS4’s root to make nmS4 binary
as well. The total number of leaves in nmS2, nmS4, poS1, poS2, and poS4 is
1869, 3082, 761, 761, and 841. Since the trees are binary, the total number of
internal nodes is 1868, 3081, 760, 760, and 840.

For a tree T ∈ {nmS2, nmS4, poS1, poS2, poS4} with n leaf labels, let Tq be
the tree produced by the new algorithm from Theorem 7. Let D(T, Tq) be
the rooted triplet distance between T and Tq (for a definition see Section 4.5
below). The accuracy of q-MAXRTC in the experiments of this dataset is
then defined by the ratio S(T, Tq)/

(n
3
)
, where S(T, Tq) =

(n
3
)
−D(T, Tq). To

compute this ratio efficiently, we used the rooted triplet distance implementa-
tion in [11]. We measured the accuracy of q-MAXRTC for q ∈ {2, 3, 5, 7, 9, 11}.
Every experiment consisted of 100 runs, and in each run n2 triplets were picked
at random from the corresponding tree to define the set R. We made sure
that each leaf from a given tree appeared in R so that the size of the leaf label
set was as big as the leaf label set of the tree.

Table 4.2 shows the best ratios achieved, and the corresponding trees in
Newick format can be found at https://github.com/kmampent/qMAXRTC. As
can be seen from the results, a larger number of internal nodes tends to im-
prove the accuracy. Significantly, with only 9 nodes we can induce between

https://github.com/kmampent/qMAXRTC

106 Chapter 4. Building a Small and Informative Phylogenetic Supertree

●

●

●
●

●

●

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

3 5 7 9 11
q

ra
tio

● nmS2 nmS4 poS1 poS2 poS4

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

3 5 7 9 11
q

ra
tio

●● nmS2 nmS4 poS1 poS2 poS4

Figure 4.5: Graphical representation of Table 3.2. Performance of q-MAXRTC
on real datasets. Left figure: Every data point corresponds to the mean of
100 runs. Right figure: All 100 data points appear in the figure.

q poS1(761) poS2(761) poS4(841) nmS4(1869) nmS2(3082)

2 0.06 0.06 0.07 0.40 1.16
3 0.32 0.32 0.39 1.96 5.38
5 0.47 0.47 0.58 2.92 7.85
7 0.63 0.62 0.76 3.83 10.53
9 0.78 0.79 0.96 4.85 13.15
11 0.94 0.94 1.14 5.71 15.56

Table 4.3: The execution time in seconds, to generate every tree produced
by q-MAXRTC on the real datasets. Every entry corresponds to the mean
of 100 runs. The experiments were performed on a machine with 8GB RAM,
Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, and having Ubuntu 16.04.2 LTS
as an operating system.

71% and 86% of the triplets in each case, and with 11 nodes between 79%
and 91%. When q > 11, we did not observe a significant improvement in ac-
curacy. Figure 4.5 has graphical representations of Table 4.2, with all points
plotted on the right graph. Because of the large sample size, i.e., n2 triplets
were picked at random to define R, the quality of the trees does not differ sig-
nificantly between the different runs. Finally, Table 4.3 gives the average
number of seconds needed for q-MAXRTC to generate each tree from Ta-
ble 4.2. The practicality of the algorithm can be seen from the fact that the
largest amount of time spent for a tree is 15.56 seconds, and that is for the
nmS2 dataset which contains 3082 leaves and 3081 internal nodes.

4.5. Motivation for q-MAXRTC: Faster Rooted Triplet Distance 107

4.5 Motivation for q-MAXRTC: Faster Rooted
Triplet Distance

Finally, we give an example of the algorithmic advantage of using phylogenetic
trees with few internal nodes. More precisely, we develop an algorithm for
computing the rooted triplet distance between two phylogenetic trees in O(qn)
time, where q is the number of internal nodes in the smaller tree and n is
the number of leaf labels. Finally, we provide an implementation of our new
algorithm, as well as experimental results comparing the practical performance
of our algorithm against previous state-of-the-art algorithms.

4.5.1 Problem Definition

The rooted triplet distance between two trees T1 and T2 built on the same
leaf label set, is the total number of trees with three leaves that appear as
embedded subtrees in T1 but not in T2. Intuitively, two trees with very similar
branching structure will share many embedded subtrees, so the rooted triplet
distance between them will be small.

Formally, let T1 and T2 be two trees built on the same leaf label set of size n.
We need to distinguish between two types of triplets. The first type is the
resolved triplet, previously defined in Section 4.1. In addition, since T1 and T2
can be non-binary, we also need to define the fan triplet. We call t = x|y|z a
fan triplet, if t is a tree with the three leaves x, y, and z, and one internal node
that is the root of t. The definition of when a resolved triplet is consistent
with a tree T follows from Section 4.1. Similarly to a resolved triplet, we say
that the fan triplet x|y|z is consistent with a tree T , where x, y, and z are
leaves in T , if lca(x, y) = lca(x, z) = lca(y, z). In this section only, we use
the word triplet to refer to both fan and resolved triplets. Moreover, when we
refer to a fan triplet x|y|z or a resolved triplet xy|z induced by a tree T , there
exists a left to right ordering of x, y, and z in T .

Let D(T1, T2) be the rooted triplet distance between T1 and T2. Define
S(T1, T2) to be the total number of triplets that are consistent with both T1
and T2, commonly referred to as shared triplets. For the rooted triplet distance
we then have that D(T1, T2) =

(n
3
)
− S(T1, T2).

4.5.2 The Algorithm

It is known how to compute D(T1, T2) in O(n logn) time [11, 12]. Below, we
show how to compute D(T1, T2) in O(qn) time, which is faster than [11, 12]
when q = o(logn). There is a preprocessing step and a counting step.

Preprocessing. The leaves in T2 are relabeled according to their discovery
time by a depth first traversal of T2, in which the children of a node are
discovered from left to right. Notice that for a node v in T2, the labels of the
leaves in T2(v) will correspond to a continuous range of numbers. Afterwards,

108 Chapter 4. Building a Small and Informative Phylogenetic Supertree

4

3 2

5 1

d

T1
a

b

c

1 2 3

4

5

T2

v

1 1 1 1 1

0 1 1 1 0

0 1 1 0 0

1 0 0 0 1

a

b

c

d

1 2 3 4 5

A

1 2 3 4 5

0 1 2 3 3

0 1 2 2 2

1 1 1 1 2

a

b

c

d

1 2 3 4 5

C

0

0

0

0

0

Figure 4.6: Changing the leaf labels of the trees from Figure 4.1 according to
the preprocessing step of the rooted triplet distance algorithm in Section 4.5.
The leaves in T2(v) are defined by the range of leaf labels [1, 3]. The number
of leaves appearing in both T2(v) and T1(b) is C[b][3]− C[b][0] = 2.

we transfer the new labels of the leaves in T2 to the leaves in T1. For T1,
we define the q × n table A such that for an internal node u in T1 we have
A[u][`] = 1 if ` is a leaf in T1(u), and A[u][`] = 0 otherwise. We construct
another table C to answer one dimensional range queries as follows. For
1 ≤ i ≤ n we have C[u][i] =

∑i
j=1A[u][j] and C[u][0] = 0. The C table will

be used to answer queries asking for the total number of leaves in T2(v) that are
also in T1(u) in O(1) as follows. Let [l, . . . , r] be the continuous range of leaf
labels in T2(v). The answer to the query will be exactly C[u][r]−C[u][l−1] (see
Figure 4.6 for an example).

Counting. We extend the technique introduced in [11]. Let t = xy|z or
t = x|y|z be a triplet induced by a tree T , which in our problem can be
either T1 or T2. We anchor t in the edge {v, c}, where v = lca(x, y) and c
is the child of v such that T (v) contains y. The following lemma shows that
every triplet induced by T is anchored in exactly one edge of T .

Lemma 21. Let T be a tree in which every triplet t with the three leaves
x, y, and z is anchored in the edge {u, c}, such that u = lca(x, y) and T (c)
contains y. Every triplet induced by T is anchored in exactly one edge of T .

Proof. Assume by contradiction that t is anchored in i edges where i ≥ 2.
Let those edges be {u1, v1}, . . . , {ui, vi}. By definition, u1 = lca(x, y). For the
same reason, we have u2 = lca(x, y), . . . , ui = lca(x, y). Because T is a tree, it
must hold that u1 = u2 = . . . = ui. Again by definition, v1, . . . , vi must all be
the children of u1 such that every subtree in S = {T (v1), . . . , T (vi)} contains
leaf y. Because T is a tree, there can only be one such child of u1, meaning
that |S| = 1, which leads to a contradiction.

Suppose that a node v in T2 has the children v1, . . . , vj , . . . , vi, where
1 < j ≤ i. To detect all triplets anchored in edge {v, vj} of T2, we color the
leaves of T2 as follows. Let every leaf in T2(v1), . . . , T2(vj−1) have the color
red, every leaf in T2(vj) have the color blue, every leaf in T2(vj+1), . . . , T2(vi)
have the color green and every other leaf in T2 have the color white. The
red, blue, and green colors will be used to detect fan triplets and the red,
blue, and white colors, resolved triplets. An illustrative example can be found

4.5. Motivation for q-MAXRTC: Faster Rooted Triplet Distance 109

.

red blue greenwhite white

x y z w

v1 vj vi

T2

v

Figure 4.7: Using colors to detect triplets in T2. Three leaves x, y, and z that
have the color red, blue, and green respectively, define the fan triplet x|y|z.
Three leaves x, y, and z that have the color red, blue, and white respectively,
define the resolved triplet xy|z.

in Figure 4.7. By the relabeling scheme of the leaves, we have that the red,
blue, and green colors correspond to exactly one continuous range of leaf
labels each. Let those ranges be R = [ared, . . . , a

′
red], B = [ablue, . . . , a

′
blue],

and G = [agreen, . . . , a
′
green], for the colors red, blue, and green respectively.

Note that we have ablue = a′red + 1 and if G is non-empty, agreen = a′blue + 1.
Finally, note that a leaf has the color white if and only if it does not have any
other color.

We are now going to describe how to compute the total number of triplets
anchored in some edge {v, v′} in T2, where v is the parent of v′, that are
also consistent with T1, denoted S{v,v

′}(T1, T2). Let S{v,v
′}

r (T1, T2) denote the
shared resolved triplets anchored in {v, v′} and similarly let S{v,v

′}
f (T1, T2) de-

note the shared fan triplets. For the value of S{v,v′}(T1, T2) we then have that
S{v,v

′}(T1, T2) = S
{v,v′}
r (T1, T2) + S

{v,v′}
f (T1, T2). The following lemma gives

an algorithm for computing S{v,v′}(T1, T2) efficiently.

Lemma 22. Given the ranges R, B, and G that define a coloring of the leaves
in T2 according to an edge {v, v′} of T2, there exists a O(q)-time algorithm for
computing S{v,v′}(T1, T2).

Proof. Since both T1 and T2 are built on the same leaf label set, a coloring of
the leaves of T2 defines a coloring of the leaves of T1. Suppose that a node u
in T1 has the m children u1, . . . , um, where m ≥ 2. Some children could be
leaves and others, internal nodes. Let I denote the set containing the children
that are internal nodes and L the children that are leaves. Let T (I) = {T (u) :
u ∈ I}. Define the following counters:

1. uwhite: total number of leaves with the white color in T1 but not in T1(u).

110 Chapter 4. Building a Small and Informative Phylogenetic Supertree

Algorithm 5 Computing S{v,v
′}

f (T1, T2) and S{v,v
′}

r (T1, T2) in O(q) time.

1: procedure S{v,v
′}

f (T1, T2)
2: fans = 0
3: for every internal node u in T1 do
4: fans = fans + ured,blue,green
5: fans = fans+ ured,blue · ugreenL + ured,green · ublueL + ublue,green · uredL
6: fans = fans+uredI ·ublueL ·ugreenL +ublueI ·uredL ·ugreenL +ugreenI ·
uredL · ublueL

7: fans = fans + uredL · ublueL · ugreenL

8: return fans
9: procedure S{v,v

′}
r (T1, T2)

10: resolved = 0
11: for every internal node u in T1 do
12: resolved = resolved + ured,blue · uwhite
13: resolved = resolved + uredI · ublueL · uwhite + ublueI · uredL · uwhite
14: resolved = resolved + uredL · ublueL · uwhite
15: return resolved

2. ui, for i ∈ {red, blue, green}: total number of leaves with color i in T1(u).
3. uiI , for i ∈ {red,blue, green}: total number of leaves with color i in T (I).
4. uiL, for i ∈ {red, blue, green}: total number of leaves with color i in L.
5. ui,j , for (i, j) ∈ {(red, blue), (red, green), (blue, green)}: total number

of pairs of leaves in T (I), such that one has color i, the other has color
j and both come from different subtrees attached to u.

6. ured, blue, green: total number of leaf triples in T (I), such that one leaf
has the color red, another the color blue, another the color green and
they all come from different subtrees attached to u.

Algorithm 13 in Appendix C shows how to compute these counters for every
internal node of T1 efficiently. A depth first traversal is applied on T1 while
making sure that we only visit internal nodes. For every node u in I we apply a
dynamic programming procedure (lines 17-37) to compute the counters. Since
in every recursive call we spend O(|I|) time, the total time of the algorithm
is O(q).

After computing all counters in T1 by applying Algorithm 13, Algorithm 5
shows how to compute S{v,v

′}
f (T1, T2) and S{v,v

′}
r (T1, T2) in O(q) time as well.

It counts shared triplets by considering for every internal node u in T1, all
possible cases for the location of the leaves of a shared triplet anchored in any
edge {u, u′} in T1, where u is the parent of u′. More precisely, for the leaves of
a fan triplet anchored in any edge {u, u′} in T1, we have the following cases:

1. all three leaves come from T (I) (line 4, e.g., 8|3|7 in Figure 4.8).
2. two leaves come from T (I) and one from L (line 5, e.g., 7|3|2 in Fig-

4.5. Motivation for q-MAXRTC: Faster Rooted Triplet Distance 111

.

8 3 7

5 2 4

u

u1 u2 uk uk+1
uk+2 um

9 6

1

Figure 4.8: Rooted triplet distance computation: an internal node u in T1,
having m children k of which are internal nodes. In Algorithm 5 we have
I = {u1, . . . , uk} and L = {uk+1, . . . , um}.

ure 4.8).
3. one leaf comes from T (I) and two from L (line 6, e.g., 3|5|4 in Figure 4.8).
4. all three leaves come from L (line 7, e.g., 4|2|5 in Figure 4.8).

Similarly, for the leaves of a resolved triplet we have the following cases:
1. two leaves come from T (I) and one not from T1(u) (line 11, e.g., 38|6 in

Figure 4.8).
2. one leaf comes from T (I), one from L, and one not from T1(u) (line 12,

e.g., 35|1 in Figure 4.8).
3. two leaves come from L and one not from T1(u) (line 13, e.g., 52|9 in

Figure 4.8).
Since we have that S{v,v′}(T1, T2) = S

{v,v′}
r (T1, T2) + S

{v,v′}
f (T1, T2), the

statement follows.

In Algorithm 6 we show how to computeD(T1, T2). From the preprocessing
step, line 2 requires O(qn) time. Line 3 is performed by a depth first traversal
of T1, thus requiring O(n) time. From Lemma 22, lines 7-9 require O(q)
time. Since we also have that

∑
v∈T2 deg(v) = O(n), the total time required to

compute D(T1, T2) is O(qn). The correctness is ensured by Lemma 21, thus
we obtain the following theorem:

Theorem 8. The rooted triplet distance between two rooted phylogenetic trees
T1 and T2 built on the same leaf label set of size n, can be computed in O(qn)
time, where q is the total number of internal nodes in T1.

4.5.3 Implementation and Experiments

We have implemented the O(qn)-time triplet distance algorithm in the C++
programming language. The source code is available at https://github.
com/kmampent/qtd. The experiments were performed on a machine with

https://github.com/kmampent/qtd
https://github.com/kmampent/qtd

112 Chapter 4. Building a Small and Informative Phylogenetic Supertree

Algorithm 6 O(qn)-time algorithm for computing D(T1, T2)
1: procedure D(T1, T2)
2: Compute the q × n table C.
3: For every u in T1 compute the parameter ul, which is the number of

leaves in T (u).
4: shared = 0
5: for every internal node v in T2 do
6: for every child v′ of v do
7: Let R, B, and G be the color ranges defined by edge {v, v′}
8: Counters(T1, C,R,B,G) . From Lemma 22
9: shared = shared + S

{v,v′}
f (T1, T2)+S{v,v

′}
r (T1, T2)

10: return
(n

3
)
− shared

8GB RAM, Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, and having Ubuntu
16.04.2 LTS as an operating system. For the space usage we considered the
Maximum resident set size parameter returned by /usr/bin/time -v. We run
the experiments using the following two different models for generating in-
put trees:

– Model A: Generate a binary tree with n leaves for T2 following the uni-
form model [59]. For T1, first create a tree with q internal nodes as
follows: start with a tree containing one internal node, iteratively pick
an internal node u uniformly at random and add a new internal node w
to be a child of u. To assign the leaves, start by assigning one leaf to
every internal node that has only one child and assign every other leaf
by picking internal nodes uniformly at random.

– Model B: Generate a binary tree with n leaves for T2 following the uni-
form model [59]. For T1, start by generating a binary tree with n leaves
following the uniform model. Let S be a set containing the root and q−1
internal nodes picked uniformly at random. Contract every other inter-
nal node u that is not in S by having the children of u become the
children of u’s parent.

We compared our algorithm against the O(n logn)-time algorithm in [11]
and the O(n log3 n)-time algorithm in [46]. We call our algorithm qtd and the
algorithm in [11] cachetd. In [46] two different implementations are provided,
one that uses unordered_map1, which we refer to as cpdt, and one that uses
sparsehash2, which we refer to as cpdtg.

Every data point in the figures corresponds to the mean of 50 different
runs, each run on a different pair of input trees. In Figure 4.9 we have the
execution time in seconds as well as the space usage of the algorithms in model
A and when n = 105. In Figure 4.10 we have the same experiments except

1http://en.cppreference.com/w/cpp/container/unordered_map
2https://github.com/sparsehash/sparsehash

http://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/sparsehash/sparsehash

4.6. Concluding Remarks 113

● ● ● ● ● ● ● ● ● ● ●

0.1

0.2

0.3

0.4

0 25 50 75 100
q

se
co

nd
s

● cachetd cpdt cpdtg qtd

n=100k

● ● ● ● ● ● ● ● ● ● ●

30

50

70

90

0 25 50 75 100
q

sp
ac

e
(M

B
)

● cachetd cpdt cpdtg qtd

n=100k

Figure 4.9: Model A: Running time and space usage of the different triplet
distance algorithms when n = 105.

● ● ● ● ● ● ● ● ● ● ●

1

2

3

4

5

0 25 50 75 100
q

se
co

nd
s

● cachetd cpdt cpdtg qtd

n=1m

● ● ● ● ● ● ● ● ● ● ●

400

600

800

1000

0 25 50 75 100
q

sp
ac

e
(M

B
)

● cachetd cpdt cpdtg qtd

n=1m

Figure 4.10: Model A: Running time and space usage of the different triplet
distance algorithms when n = 106.

now n = 106. Figures C.3 and C.4 have the previous experiments but in model
B. The results indicate that our implementation uses less space and is faster
than the previous algorithms when q ≤ 50.

4.6 Concluding Remarks

In this paper, we introduced the problem of building a phylogenetic tree with q
internal nodes that induces the largest number of triplets from an input triplet

114 Chapter 4. Building a Small and Informative Phylogenetic Supertree

1 2 4

3 5

(a)
1 2

3

4

5

(b)
1 2 3

4 5

(c)

Figure 4.11: Let R = {12|3, 13|4, 24|5}. (a) The optimal tree for 2-MAXRTC
induces 2 triplets from R. (b) The tree returned by the BUILD algorithm
from [2]. (c) The best tree obtainable by contracting all internal edges except
one in the tree from (b) induces only 1 triplet from R, so this method is not
optimal for 2-MAXRTC.

set R, denoted q-MAXRTC. We showed that q-MAXRTC is NP-hard for
every fixed q ≥ 2. For 2-MAXRTC, no polynomial-time approximation algo-
rithm with a relative (resp. absolute) approximation ratio better than 16

17 + ε
(resp. 4

27 + ε) can exist. When q ≥ 3, the inapproximability bound be-
comes 1−1/(34q)+ε. We reduced 2-MAXRTC to MAX 3-AND and obtained
several polynomial-time approximation algorithms that, however, could not
scale with q. We then proposed a simple polynomial-time 4

27 -approximation
algorithm that could be extended to scale with any q ≥ 3. Finally, for two
trees with one having q internal nodes and both being built on the same leaf
label set of size n, we presented a O(qn)-time algorithm for the rooted triplet
distance computation. We have also implemented the O(qn)-time algorithm
described in Section 4.5. Our experiments indicate that our prototype im-
plementation uses less space and is faster than the state-of-the-art, optimized
implementation of the O(n logn)-time algorithm from [11] for large inputs,
e.g., when n = 1, 000, 000 and q ≤ 50.

4.6.1 Open Problems

The optimal polynomial-time approximation ratio for any fixed q ≥ 3 is an
open problem, as well as the existence of algorithms achieving that ratio.
Moreover, for the special case where all the triplets in R are consistent with
a tree T , the computational complexity of q-MAXRTC is an open problem as
well. Note that just applying BUILD [2] to obtain such a T and then trying
every bipartition of L induced by an edge of T fails to produce an optimal
solution to 2-MAXRTC (see Figure 4.11 for a counterexample). Another open
problem is the existence of approximation algorithms for q-MAXRTC in the
weighted case, where each triplet inR has a weight and the objective is to build
a tree that maximizes the total weight of the triplets induced from R. This
addresses the case where some triplets in R are more important than others.

4.6. Concluding Remarks 115

Moreover, another open problem is the following: given a set of triplets R
on a leaf label set of size n and a parameter `, build a tree T with ` leaves
such that |rt(T) ∩ R| is maximized. Just like q-MAXRTC is a combination
of MINRS and MAXRTC, this new problem is a combination of the maximum
agreement supertree problem studied in [47] and MAXRTC. Finally, for the
rooted triplet distance computation, a major open problem [11, 12] is whether
it can be computed in O(n) time. When q = O(1), our proposed algorithm
runs in O(n) time. If q1 is the total number of internal nodes of one tree
and q2 of the other, is it possible to obtain an algorithm with a O(q1q2 + n)
running time?

Appendix A

Additional Experiments for
Chapter 2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●
●●●

0

1

2

3

4

5

6

7

8

4 6 8 10 12 14 16 18 20 22

log2n

se
co

nd
s

● general binary

p1 = 0, p2 = 0

Figure A.1: CacheTD: performance of binary (Section 2.3) and general (Sec-
tion 2.4) implementation on binary trees. All data points of the 10 runs are
visible in the figure. Each run is on a different tree and the line connects the
median of the runs.

117

118 Appendix A. Additional Experiments for Chapter 2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n
● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●
●
●
●
●●●●
●
● ●●●●●●●●●● ●●

●●
●
●
●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●
●
●●●●●● ●

●
●
●●●
●
●
●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●
● ●●●●●●●●●● ●●●●

●
●●●●● ●●●●●●●●

●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n
● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.2: Random model: time performance, where CPDT is compiled in
g++ version 5.4.

119

●
●
●

●

●

●

●●
●
●

●●●●●●●●●●

●●●
●●●●●●●

●●●●

●●
●●●●

●●●
●
●
●
●
●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●

●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0, p2 = 0

●
●
●
●

●

●
●
●

●

●

●●
●●●●●●●●

●●●●●

●

●●●●

●

●
●

●
●

●●●●● ●
●●●
●
●
●
●
●●

●●
●●
●●
●●●●

●
●●●●●●●●● ●●●●●●●

●
●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.95, p2 = 0.2

●

●●●●

●

●●
●
●

●●●●●●●●
●
●

●●●●●●●

●●

●

●

●
●

●
●
●
●●●●

●●●
●
●●●

●●
● ●●●●●●●

●●
● ●

●

●●●●●●●● ●●●●●●●
●
●
● ●

●
●●●●●●●● ●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●
●
●●●●●

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.5, p2 = 0.5
●●●●
●
●●●●
●

●

●

●●●●●●●●

●

●
●●
●
●●●●

●

●●●●●●●●●● ●
●
●
●
●
●●
●●
●

●●●
●
●●●
●
●● ●

●●
●●
●
●
●●
● ●

●●●●●●●
●● ●●●●

●●●●●
● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

1e−05

2e−05

3e−05

4e−05

5e−05

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.8, p2 = 0.8

●●●

●
●

●●

●●●

●
●

●

●●●●●●●

●
●●●●●●●●● ●

●
●
●

●●

●●
●

●

●●●
●●●●●●●

●●
●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

0

50

100

150

200

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.95, p2 = 0.2

Figure A.3: Random model: time performance of CPDT when compiled with
g++ 4.7 and g++ 5.4.

120 Appendix A. Additional Experiments for Chapter 2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n
● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●
●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●

●
●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●
● ●●●●●●●●

●● ●●●●●●●●●● ●●●●
●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●
●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e−05

4e−05

6e−05

8e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n
● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●
●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.4: Random model: time performance, where CPDT is compiled in
g++ version 4.7.

121

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.5: Random model: space performance.

122 Appendix A. Additional Experiments for Chapter 2

●
●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●●●

●
●
●●
●

●
●
●●
●
●
●

●

●●
●
●●●●
●

●

●
●●

●●●●
●●●●●●

●
●
●●●●●

●
●
●

●
●●
●
●
●●
●●●

●●

●

●●
●●●
●
●

●●●●●
●●●●●

5.0e−06

1.0e−05

1.5e−05

2.0e−05

12 14 16 18 20

log2(n)

se
co

nd
s

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDT

●●

●

●
●

●

●

●
●●

●●●●

●

●

●●

●● ●●

●●

●

●

●
●●●

●
●●
●
●
●●
●●
●

●●●●
●
●
●
●●●

●●
●●
●
●●
●
●●

●
●
●●●●●
●●
●

●
●●
●
●
●●●●
●

●●
●

●●●●●

●
●

●●
●●
●
●●
●●●

5.0e−06

1.0e−05

1.5e−05

2.0e−05

12 14 16 18 20

log2(n)

se
co

nd
s

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDTg

●●●●●

●

●

●●
● ●●●

●

●●

●
●●

●
●
●
●
●●●●●●●

●
●
●
●
●●●
●
●●

●●●●
●●●●●●

●

●
●●●●●
●
●●

●
●●●●●
●●
●●

●●●

●●●●
●
●●

●
●
●
●●●

●●●

●

●
●

●●
●
●

●

●●

●

2e−05

4e−05

6e−05

12 14 16 18 20

log2(n)

se
co

nd
s

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

tqDist
●

●

●●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●●●
●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●
●●●
●

●●●●●●●●●●

●●●●●●●
●
●
●

●●
●
●●●●●●
●

●●●●
●●
●●●●

●●●●●●
●●
●
●

1.0e−06

1.5e−06

2.0e−06

12 14 16 18 20

log2(n)

se
co

nd
s

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CacheTD

Figure A.6: Random model: how the contraction parameter affects execution
time.

123

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

1.0

1.5

2.0

2.5

12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDT
●●●●●●●●
●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

1.0

1.5

2.0

2.5

12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDTg

●●●●●●●●●●

●●●●●●●●●●

●●
●

●●

●

●●
●
●

●

●●●●●
●●●●

●●●●●●●●
●●

●

●●●●●●

●

●●

●●●●
●●●
●●
●

●●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●
●
●●
●
●
●

●

●
●

2

3

4

5

6

12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

tqDist
●●

●

●
●
●●
●●●

●●●

●●●

●
●

●
●

●
●●
●●●●●●

●

●●●●

●
●

●
●
●●

●
●●
●
●●
●
●
●
● ●

●

●●
●●
●●
●● ●●●●

●
●●●
●●

●
●●
●●●
●●●
● ●

●●●
●
●
●●●●

●
●
●●
●
●
●

●
●
●

0.5

1.0

1.5

12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CacheTD

Figure A.7: Random model: how the contraction parameter affects space.

124 Appendix A. Additional Experiments for Chapter 2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

1000

2000

3000

4000

5000

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

1000

2000

3000

4000

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

alg ● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

1000

2000

3000

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

alg ● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

500

1000

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

alg ● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

500

1000

1500

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

alg ● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●

0

250

500

750

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

alg ● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.8: Random model: L1 cache misses.

125

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

1000

2000

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

1500

2000

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

1500

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

200

400

600

800

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

250

500

750

1000

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

200

400

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.9: Random model: L2 cache misses.

126 Appendix A. Additional Experiments for Chapter 2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

1500

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

250

500

750

1000

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

100

200

300

400

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

200

400

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

100

200

300

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.10: Random model: L3 cache misses.

127

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

50

100

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

30

60

90

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

25

50

75

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

10

20

30

40

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

10

20

30

40

50

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

10

20

30

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.11: Skewed model: running time (n = 221).

128 Appendix A. Additional Experiments for Chapter 2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0e+00

5.0e+10

1.0e+11

1.5e+11

2.0e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

5.0e+10

1.0e+11

1.5e+11

2.0e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

5.0e+10

1.0e+11

1.5e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●

1e+10

2e+10

3e+10

4e+10

5e+10

6e+10

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

2.5e+10

5.0e+10

7.5e+10

1.0e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●
●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●

●● ●
●●●
●●
●
●●●

●●
●●●●
●●●● ●●

●
●●
●
●●●●

●●●●●●●●●
●

2.0e+10

2.5e+10

3.0e+10

3.5e+10

4.0e+10

4.5e+10

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.12: Skewed model: instructions (n = 221).

129

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

3e+09

6e+09

9e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0e+00

2.5e+09

5.0e+09

7.5e+09

1.0e+10

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e+09

4e+09

6e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

1e+09

2e+09

3e+09

4e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.13: Skewed model: L1 cache misses (n = 221).

130 Appendix A. Additional Experiments for Chapter 2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e+09

4e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

4e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s
● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

5e+08

1e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.14: Skewed model: L2 cache misses (n = 221).

131

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

3e+08

6e+08

9e+08

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e+08

4e+08

6e+08

8e+08

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Figure A.15: Skewed model: L3 cache misses (n = 221).

132 Appendix A. Additional Experiments for Chapter 2

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

0

20

40

60

80

100

120

140

15 16 17 18 19 20 21 22 23 24

log2(n)

m
in

ut
es

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

0

10

20

30

40

50

60

70

80

15 16 17 18 19 20 21 22 23 24

log2(n)

m
in

ut
es

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

● ● ●

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

● ● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●
●

●

●

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2.0e+06

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

Figure A.16: Random model: I/O experiments.

133

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

0

5

10

15

20

25

30

35

40

45

50

15 16 17 18 19 20 21 22 23 24

log2(n)

m
in

ut
es

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●
●

●

●

0

20

40

60

80

100

120

140

160

15 16 17 18 19 20 21 22 23 24

log2(n)

m
in

ut
es

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●
● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●
●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2.0e+06

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

Figure A.17: Skewed model: I/O experiments with α = 0.5.

Appendix B

Additional Algorithms and
Experiments for Chapter 3

Algorithm 7 Checking if there exists a fan triplet x|y|z consistent with B, as-
suming that the lowest common ancestor of every pair (x, y), (x, z), and (y, z)
in Ti corresponds to B.
1: procedure IsFanInBlock(x|y|z, Ni, B, CfB)
2: For every l ∈ {x, y, z} we let pl = pB(l), p′l = p′B(l), ql = qB(l), and hl
3: be the height of ql in Ni.
4: if px = py = pz then
5: if hx = hy = hz then return true . e.g., a5|a6|a7 in Fig. 3.4.
6: if ((hx = hy) ∧ (hx > hz)) ∨ ((hx = hz) ∧ (hx > hy)) ∨ ((hy =
hz) ∧ (hy > hx)) then return true . e.g., a5|a6|a8 in Fig. 3.4.

7: if hx 6= hy 6= hz then return false . e.g., a13|a14|a20 in Fig. 3.4.
8: if ((px = py)∧ (px 6= pz))∨ ((px = pz)∧ (px 6= py))∨ ((py = pz)∧ (py 6=
px)) then w.l.o.g. assume (px = py) ∧ (px 6= pz)

9: if hx = hy then
10: if ∃s; (p′x, px, pz) in CfB then
11: return true . e.g., a8|a9|a15 in Fig. 3.4.
12: else return false . e.g., a8|a9|a11 in Fig. 3.4.
13: else return false . e.g., a7|a8|a15 in Fig. 3.4.
14: if px 6= py 6= pz then
15: if ∃s; (px, py, pz) in CfB then
16: return true . e.g., a8|a11|a16 in Fig. 3.4.
17: else return false . e.g., a14|a16|a17 in Fig. 3.4.

135

136 Appendix B. Additional Algorithms and Experiments for Chapter 3

Algorithm 8 Checking if there exists a resolved triplet xy|z consistent
with B, assuming that the lowest common ancestor of every pair (x, y), (x, z),
and (y, z) in Ti corresponds to B.
1: procedure IsResolvedInBlock(xy|z, Ni, B, CrB, C

f
B)

2: For every l ∈ {x, y, z} we let pl = pB(l), p′l = p′B(l), ql = qB(l), and hl
3: be the height of ql in Ni.
4: if px = py = pz then
5: if (hz > hx) ∧ (hz > hy) then return true . e.g., a8a9|a6 in

Fig. 3.4.
6: else return false . e.g., a8a6|a9 in Fig. 3.4.
7: if px = py ∧ px 6= pz then
8: if ∃s; (pz, px, p′x) in CrB then
9: return true . e.g., a5a8|a17 in Fig. 3.4.
10: else return false . e.g., a5a8|a15 in Fig. 3.4.
11: if ((px = pz) ∧ (px 6= py)) ∨ ((py = pz) ∧ (py 6= px)) then
12: w.l.o.g. assume (px = pz) ∧ (px 6= py)
13: if hz > hx then
14: if ∃s; (px, p′x, py) in CfB then
15: return true . e.g., a14a17|a13 in Fig. 3.4.
16: else return false . e.g., a14a16|a13 in Fig. 3.4.
17: else return false . e.g., a14a17|a20 in Fig. 3.4.
18: if px 6= py 6= pz then
19: if ∃s; (pz, px, py) in CrB then
20: return true . e.g., a12a13|a18 in Fig. 3.4.
21: else return false . e.g., a12a18|a13 in Fig. 3.4.

137

Algorithm 9 Checking if the fan triplet x|y|z is consistent with Ni.
1: procedure isFan(x|y|z, Ni, Ti)
2: if x|y|z is consistent with Ti then
3: w ← lca(x, y, z)
4: if w is the root of Ti then return true . e.g., a23|a9|a20 in
5: Fig. 3.5.
6: else let B be the block of w
7: return IsFanInBlock(x|y|z, Ni, B, CfB) . e.g., a3|a9|a12
8: in Fig. 3.5.
9: if xy|z or xz|y or yz|x is consistent with Ti then
10: Assume w.l.o.g. that xy|z is consistent with Ti
11: w ← lca(x, y)
12: µ← lca(x, z)
13: if µ is the parent of w in Ti then
14: Let B be the block of w
15: Let M be the block of µ
16: if pB(x) = pB(y) then
17: return false . e.g., a2|a3|a4 in Fig. 3.5.
18: else
19: if µ is the root of Ti then
20: if ∃s; (r′, pB(x), pB(y)) in CfB then
21: return true . e.g., a1|a11|a15 in Fig. 3.5.
22: else return false . e.g., a11|a13|a15 in Fig. 3.5.
23: else
24: if pF (x) = pF (z) then
25: if hF (z) ≤ hF (x) then
26: if ∃s; (r′, pB(x), pB(y)) in CfB then
27: return true . e.g., a1|a4|a8 in Fig. 3.5.
28: else return false . e.g., a1|a24|a8 in Fig. 3.5.
29: else return false . e.g., a1|a4|a21 in Fig. 3.5.
30: else
31: if ∃s; (r′, pB(x), pB(y)) in CfB
32: and ∃s; (pF (x), p′F (x), pF (z)) in CfF then
33: return true . e.g., a1|a4|a9 in Fig. 3.5.
34: else return false . e.g., a1|a4|a12 in Fig. 3.5.
35: else return false . e.g., a2|a4|a13 in Fig. 3.5.

138 Appendix B. Additional Algorithms and Experiments for Chapter 3

Algorithm 10 Checking if the resolved triplet xy|z is consistent with Ni.
1: procedure isResolved(xy|z, Ni, Ti)
2: if x|y|z is consistent with Ti then
3: w ← lca(x, y, z)
4: if w is the root of Ti then return false . e.g., a23a9|a20 in
5: Fig. 3.5.
6: else let B be the block of w
7: return IsResolvedInBlock(xy|z, Ni, B, CrB) . e.g.,
8: a1a9|a12 in Fig. 3.5.
9: if xy|z or xz|y or yz|x is consistent with Ti then

10: Assume w.l.o.g. that xy|z is consistent with Ti
11: w ← lca(x, y)
12: µ← lca(x, z)
13: if µ is the parent of w in Ti then
14: Let B be the block of w
15: Let F be the block of µ
16: if pB(x) = pB(y) then
17: return true . e.g., a2a3|a4 in Fig. 3.5.
18: else
19: if µ is the root of Ti then
20: if ∃s; (r′, pB(x), pB(y)) in CrB then
21: return true . e.g., a11a13|a15 in Fig. 3.5.
22: else return false . e.g., a1a11|a15 in Fig. 3.5.
23: else
24: if pF (x) = pF (z) then
25: if hF (z) ≤ hF (x) then
26: if ∃s; (r′, pB(x), pB(y)) in CrB then
27: return true . e.g., a1a4|a8 in Fig. 3.5.
28: else return false . e.g., a1a25|a22 in Fig. 3.5.
29: else return true . e.g., a1a4|a21 in Fig. 3.5.
30: else
31: if ∃s; (r′, pB(x), pB(y)) in CrB
32: or ∃s; (pF (z), pF (x), p′F (x)) in CrF then
33: return true . e.g., a1a4|a12 in Fig. 3.5.
34: else return false . e.g., a1a25|a26 in Fig. 3.5.
35: else return true . e.g., a2a4|a13 in Fig. 3.5.

139

Algorithm 11 Computing D(N1, N2) using the data structures from Section
3.3.
1: procedure preprocessing(N1, N2) . Building the data structures
2: for i ∈ {1, 2} do
3: build Ti using Lemma 10
4: build a n× n table to support lca queries between pairs of leaves
5: in Ti
6: build all contracted block networks of Ni as shown in Lemma 12
7: for every contracted block network CB, build the CfB and CrB graphs
8: from Lemmas 6 and 7 respectively, as well as the two tables
9: AfB and ArB, like Af and Ar from Algorithm 2 to be able to

10: answer path existence queries in the algorithms 7, 8, 9, and 10
11: in O(1) time.
12: procedure Sf (N1, N2) . Finding the shared fan triplets
13: sharedFan = 0
14: for x, y, z ∈ Λ do
15: if IsFan(x|y|z, N1) ∧ IsFan(x|y|z, N2) then
16: sharedF = sharedF + 1
17: return sharedF
18: procedure Sr(N1N2) . Finding the shared resolved triplets
19: sharedR = 0
20: for x, y, z ∈ Λ do
21: if IsResolved(xy|z, N1) ∧ IsResolved(xy|z, N2) then
22: sharedR = sharedR + 1
23: if IsResolved(xz|y, N1) ∧ IsResolved(xz|y, N2) then
24: sharedR = sharedR + 1
25: if IsResolved(yz|x, N1) ∧ IsResolved(yz|x, N2) then
26: sharedR = sharedR + 1
27: return sharedR
28: procedure S(N1, N2) . Finding the shared triplets
29: return Sf (N1, N2) + Sr(N1, N2)
30: procedure D(N1 = (V1, E1), N2 = (V2, E2)) . Computing D(N1, N2)
31: preprocessing(N1, N2)
32: return S(N1, N1) + S(N2, N2) - 2S(N1, N2)

140 Appendix B. Additional Algorithms and Experiments for Chapter 3

NTDfirst, p=0

9

12

15

190 200 210 220 230
n

sp
ac

e
(G

B)
e 10 20 30 40 50

(a)

NTDsecond, p=0

0

3

6

9

12

0 100 200 300 400 500
n

sp
ac

e
(G

B)

e 10 20 30 40 50

(b)

Figure B.1: Simulated Datasets: Space usage of the two algorithms for dif-
ferent values of e and when p = 0, as shown by the Maximum Resident Size
parameter when calling the executable of each algorithm with /usr/bin/time
-v.

p=0

0

5

10

15

20

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

e 10 20 30 40 50

(a)

p=0.8

0.0

2.5

5.0

7.5

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

e 10 20 30 40 50

(b)

Figure B.2: Simulated Datasets: Subtracting the running time of NTDsecond
from the running time of NTDfirst for different values of e and when p =
{0, 0.8}. (a) For n = 110 and e = 50, NTDfirst is faster than NTDsecond.
(b) When p is large, the number of possible edges we can add (determined
by e) is small.

141

p=0

10

20

30

40

50

0 100 200 300 400 500
n

k

e 10 20 30 40 50

(a)

p=0

50

100

150

200

10 20 30 40 50
e

nu
m

be
r o

f n
on

-le
af

 b
lo

ck
s

n 150 230 310

(b)

Figure B.3: Simulated Datasets: The effect of e on the parameter k and the
amount of non-leaf blocks.

142 Appendix B. Additional Algorithms and Experiments for Chapter 3

e=10

0

5

10

15

20

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

p 0 0.2 0.5 0.8

(a)

e=30

0

5

10

15

20

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

p 0 0.2 0.5 0.8

(b)

e=50

0

5

10

15

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

p 0 0.2 0.5 0.8

(c)

Figure B.4: Simulated Datasets: The effect of p for e ∈ {10, 30, 50} when sub-
tracting the running time of NTDsecond from the running time of NTDfirst.
As expected, the larger the value of p, the closer become the running times of
the two algorithms.

Appendix C

Additional Algorithms and
Experiments for Chapter 4

143

144 Appendix C. Additional Algorithms and Experiments for Chapter 4

Algorithm 12 The O(q|R|)-time algorithm for q-MAXRTC when q > 2
(Theorem 7)
1: procedure PRQ(xy|z, q, k) . Computing Pr[xy|z ∈ rt(T)|Ni]
2: if x← ∅ and y ← ∅ and z ← ∅ then return 1/3− 4/(3(q + 1)2)
3: if x← u and y ← ∅ and z ← ∅ then return (u↑d + k)/(k + 1)2

4: if x← ∅ and y ← v and z ← ∅ then return (v↑d + k)/(k + 1)2

5: if x← ∅ and y ← ∅ and z ← w then return (k + 2w↑s)/(k + 1)2

6: if x← u and y ← v and z ← ∅ then
7: p = lca(u, v)
8: return (k + 1− p↓)/(k + 1)
9: if x← u and y ← ∅ and z ← w then

10: p = lca(u,w)
11: if p == u then return 0
12: m = child of p whose subtree contains u
13: return m↓/(k + 1)
14: if x← ∅ and y ← v and z ← w then
15: p = lca(v, w)
16: if p == v then return 0
17: m = child of p whose subtree contains v
18: return m↓/(k + 1)
19: if x← u and y ← v and z ← w then
20: return (lca(x, z) == lca(y, z) and lca(x, y) 6= lca(x, z))

21: procedure Q-MAXRTC(R, q, k) . The main procedure
22: prev = |R|(1/3− 4/(3(q + 1)2)) . Storing E[W |N0], where N0 = ∅
23: for i = 1 to n do
24: for m = 1 to k + 1 do
25: nValue[m] = prev
26: for j = 1 to |R[xi]| do
27: for m = 1 to k + 1 do
28: xi ← ∅
29: nValue[m] = nValue[m]−PRQ(R[xi][j])
30: xi ← um
31: nValue[m] = nValue[m] + PRQ(R[xi][j])
32: xi ← u1
33: curBest = nValue[1]
34: for j = 2 to k + 1 do
35: if nValue[j] > curBest then
36: curBest = nValue[j]
37: xi ← uj
38: prev = curBest

145

●

●

●

●
●
●●

●●●

●
● ● ● ● ● ● ● ●

0.25

0.30

0.35

0.40

0.45

0 250 500 750 1000
n

ra
tio

● 3−MAXRTC
5−MAXRTC

7−MAXRTC
9−MAXRTC

Mod−Wu
OLS

noisy model

●

●●●
●

●
●●

●
● ●

● ● ●
● ● ● ● ●0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 250 500 750 1000
n

ra
tio

● 3−MAXRTC
5−MAXRTC

7−MAXRTC
9−MAXRTC

Mod−Wu
OLS

prob25 model

●

●

●

●
●●

●●●
● ● ● ● ● ● ● ● ● ●

0.30

0.35

0.40

0.45

0.50

0.55

0 250 500 750 1000
n

ra
tio

● 3−MAXRTC
5−MAXRTC

7−MAXRTC
9−MAXRTC

Mod−Wu
OLS

prob75 model

Figure C.1: Performance of {3, 5, 7, 9}-MAXRTC with the performance of
OLS and Mod-Wu on the noisy, prob25, and prob75 models. Every data point
corresponds to the mean of 100 runs. The larger the value of q, the better
the performance of q-MAXRTC. For q = 9, the performance approaches that
of OLS & Mod-Wu. Observe that in the noisy model, the performance of q-
MAXRTC approaches the theoretical guarantee.

146 Appendix C. Additional Algorithms and Experiments for Chapter 4

●

●

●●

●●
●
●
●●

● ● ● ● ● ● ● ● ●

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 250 500 750 1000
n

ra
tio

● dc noisy prob25 prob50 prob75

2−MAXRTC

●

●●

●
●
●
●
●
●● ● ● ● ●

● ●
● ●

●

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 250 500 750 1000
n

ra
tio

● dc noisy prob25 prob50 prob75

5−MAXRTC

●

●

●●

●
●●

●
●● ● ● ●

●

●
● ● ●

●

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 250 500 750 1000
n

ra
tio

● dc noisy prob25 prob50 prob75

7−MAXRTC

●

●
●
●●●●●●● ●

● ● ● ● ● ● ● ●

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0 250 500 750 1000
n

ra
tio

● dc noisy prob25 prob50 prob75

9−MAXRTC

Figure C.2: Performance of {2,5,7,9}-MAXRTC on the different simulated
models. Every data point corresponds to the mean of 100 runs.

147

Algorithm 13 O(q)-time algorithm for computing the counters of every in-
ternal node u in T1 (see Lemma 22).
1: procedure CountersHelper(u,C,R,B,G)
2: Let R = [ared, . . . , a

′
red], B = [ablue, . . . , a

′
blue], G = [agreen, . . . , a

′
green]

3: Let ul denote the total number of leaves in T1(u)
4: totalWhite = n−(a′red−ared+1)−(a′blue−ablue+1)−(a′green−agreen+1)
5: if u has no children that are internal nodes then . Base case
6: for every color i ∈ {red, blue, green} do
7: ui = C[u][a′i]− C[u][ai − 1]
8: uiI = 0, uiL = ui

9: uwhite = totalWhite− ul + ured + ublue + ugreen
10: ured,blue = ured,green = ublue,green = 0
11: ured,blue,green = 0
12: return
13: Let I denote the set of children of u that are internal nodes in T1
14: for every node w in I do
15: CountersHelper(w,C,R,B,G)
16: pick some node w from I
17: for every color i ∈ {red, blue, green} do . Base case for dynamic
18: programming
19: ui = C[u][a′i]− C[u][ai − 1]
20: uiI = wi, uiL = ui
21: for every node w′ in I do
22: uiL = uiL − (C[w′][a′i]− C[w′][ai − 1])
23: uwhite = totalWhite− ul + ured + ublue + ugreen
24: ured,blue = ured,green = ublue,green = 0
25: ured,blue,green = 0
26: remove w from I
27: while I is not empty do
28: pick some node w from I
29: ured,blue,green = ured,blue,green + ured,blue · wgreen + ured,green · wblue +

ublue,green · wred
30: ured,blue = ured,blue + uredI · wblue + ublueI · wred
31: ured,green = ured,green + uredI · wgreen + ugreenI · wred
32: ublue,green = ublue,green + ublueI · wgreen + ugreenI · wblue
33: uredI = uredI + wred
34: ublueI = ublueI + wblue
35: ugreenI = ugreenI + wgreen
36: remove w from I
37: procedure Counters(T1, C,R,B,G)
38: let r be the root of T1
39: CountersHelper(r, C,R,B,G)

148 Appendix C. Additional Algorithms and Experiments for Chapter 4

● ● ● ● ● ● ● ● ● ● ●

0.1

0.2

0.3

0 25 50 75 100
q

se
co

nd
s

● cachetd cpdt cpdtg qtd

n=100k

● ● ● ● ● ● ● ● ● ● ●

30

50

70

90

0 25 50 75 100
q

sp
ac

e
(M

B
)

● cachetd cpdt cpdtg qtd

n=100k

Figure C.3: Model B: Running time and space usage of the different triplet
distance algorithms when n = 105.

● ● ● ● ● ● ● ● ● ● ●

1

2

3

0 25 50 75 100
q

se
co

nd
s

● cachetd cpdt cpdtg qtd

n=1m

● ● ● ● ● ● ● ● ● ● ●

400

600

800

1000

0 25 50 75 100
q

sp
ac

e
(M

B
)

● cachetd cpdt cpdtg qtd

n=1m

Figure C.4: Model B: Running time and space usage of the different triplet
distance algorithms when n = 106.

Bibliography

[1] A. Aggarwal and J. S. Vitter. The Input/Output Complexity of Sorting
and Related Problems. Communications of the ACM, 31(9):1116–1127,
1988. 4, 30

[2] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a Tree
from Lowest Common Ancestors with an Application to the Optimization
of Relational Expressions. SIAM Journal on Computing, 10(3):405–421,
1981. 24, 93, 114

[3] P. Alimonti. New Local Search Approximation Techniques for Maximum
Generalized Satisfiability Problems. Information Processing Letters, 57
(3):151–158, 1996. 98

[4] L. Arge. Efficient External-Memory Data Structures and Applications.
PhD thesis, Aarhus University, Denmark, 1996. 4

[5] M. S. Bansal, J. Dong, and D. Fernández-Baca. Comparing and Aggre-
gating Partially Resolved Trees. Theoretical Computer Science, 412(48):
6634–6652, 2011. 7, 10, 31, 32, 33, 64

[6] N. H. Barton. The Role of Hybridization in Evolution. Molecular Ecology,
10(3):551–568, 2001. 14

[7] M. A. Bender and M. Farach-Colton. The LCA Problem Revisited. In
LATIN 2000: Theoretical Informatics, pages 88–94. Springer Berlin Hei-
delberg, 2000. 6, 21, 103

[8] V. Berry and O. Gascuel. Inferring Evolutionary Trees with Strong Com-
binatorial Evidence. Theoretical Computer Science, 240(2):271–298, 2000.
30

[9] O. R. P. Bininda-Emonds. The Evolution of Supertrees. Trends in Ecology
and Evolution, 19(6):315–322, 2004. 2, 22, 25, 92, 93, 94

[10] M. Bordewich and C. Semple. Computing the Minimum Number of Hy-
bridization Events for a Consistent Evolutionary History. Discrete Ap-
plied Mathematics, 155(8):914–928, 2007. 86

149

150 Bibliography

[11] G. S. Brodal and K. Mampentzidis. Cache Oblivious Algorithms for
Computing the Triplet Distance Between Trees. In 25th Annual Euro-
pean Symposium on Algorithms (ESA 2017), volume 87 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 21:1–21:14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. v, 19, 27, 29, 64, 94,
105, 107, 108, 112, 114, 115

[12] G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, T. Mailund, and A. Sand.
Efficient Algorithms for Computing the Triplet and Quartet Distance Be-
tween Trees of Arbitrary Degree. In Proceedings of the Twenty-fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 1814–1832.
Society for Industrial and Applied Mathematics, 2013. 9, 10, 19, 30, 31,
32, 33, 34, 56, 64, 94, 107, 115

[13] D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees -
Theory and Methods in Phylogenetic Analysis. PhD thesis, University of
Canterbury, New Zealand, 1997. 2, 24, 25, 93

[14] A. R. Burmeister. Horizontal Gene Transfer. Evolution, Medicine, and
Public Health, 2015(1):193–194, 2015. 14

[15] J. Byrka, P. Gawrychowski, K. T. Huber, and S. Kelk. Worst-case
Optimal Approximation Algorithms for Maximizing Triplet Consistency
Within Phylogenetic Networks. Journal of Discrete Algorithms, 8(1):
65–75, 2010. 17, 18, 19, 20, 25, 26, 64, 65, 71, 77, 84, 85, 93, 94, 99

[16] J. Byrka, S. Guillemot, and J. Jansson. New Results on Optimizing
Rooted Triplets Consistency. Discrete Applied Mathematics, 158(11):
1136–1147, 2010. 26, 93, 94, 103

[17] G. Cardona, F. Rosselló, and G. Valiente. Extended Newick: It Is Time
For a Standard Representation of Phylogenetic Networks. BMC Bioin-
formatics, 9(1):532, 2008. 86

[18] G. Cardona, M. Llabres, F. Rossello, and G. Valiente. Metrics for Phy-
logenetic Networks II: Nodal and Triplets Metrics. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 6(3):454–469, 2009.
14, 88

[19] B. Chor, M. Hendy, and D. Penny. Analytic Solutions for Three Taxon
ML Trees with Variable Rates Across Sites. Discrete Applied Mathemat-
ics, 155(6):750–758, 2007. 92

[20] C. Choy, J. Jansson, K. Sadakane, and W.-K. Sung. Computing the
Maximum Agreement of Phylogenetic Networks. Theoretical Computer
Science, 335(1):93–107, 2005. 63

Bibliography 151

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. 3

[22] J. A. Cotton and R. D. Page. Rates and Patterns of Gene Duplication
and Loss in the Human Genome. Proceedings of Biological Sciences, 272
(1560):277–283, 2005. 14

[23] D. E. Critchlow, D. K. Pearl, and C. L. Qian. The Triples Distance
for Rooted Bifurcating Phylogenetic Trees. Systematic Biology, 45(3):
323–334, 1996. 6, 7, 9, 10, 31, 32, 33, 64

[24] W. H. E. Day. Optimal Algorithms for Comparing Trees with Labeled
Leaves. Journal of Classification, 2(1):7–28, 1985. 30

[25] A. J. Dobson. Comparing the Shapes of Trees. In Combinatorial Mathe-
matics III, pages 95–100. Springer Berlin Heidelberg, 1975. 1, 5, 30, 31,
62, 64

[26] G. F. Estabrook, F. R. McMorris, and C. A. Meacham. Comparison of
Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary
Units. Systematic Zoology, 34(2):193–200, 1985. 5, 30, 62

[27] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunder-
land, Massachusetts", 2004. 62, 92

[28] C. R. Finden and A. D. Gordon. Obtaining Common Pruned Trees.
Journal of Classification, 2(1):255–276, 1985. 62

[29] S. Fortune, J. Hopcroft, and J. Wyllie. The Directed Subgraph Homeo-
morphism Problem. Theoretical Computer Science, 10(2):111–121, 1980.
18, 19, 64, 65

[30] A. R. Francis and M. Steel. Which Phylogenetic Networks are Merely
Trees with Additional Arcs? Systematic Biology, 64(5):768–777, 2015. 85

[31] M. L. Fredman and D. E. Willard. BLASTING Through the Information
Theoretic Barrier with FUSION TREES. In Proceedings of the Twenty-
second Annual ACM Symposium on Theory of Computing, STOC ’90,
pages 1–7. ACM, 1990. 3

[32] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
Oblivious Algorithms. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, FOCS ’99, pages 285–297. IEEE
Computer Society, 1999. 4, 30

[33] P. Gambette and K. T. Huber. On Encodings of Phylogenetic Networks
of Bounded Level. Journal of Mathematical Biology, 65(1):157–180, 2012.
1, 14, 16, 62, 63, 88

152 Bibliography

[34] L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. On the Complexity
of Constructing Evolutionary Trees. Journal of Combinatorial Optimiza-
tion, 3(2):183–197, 1999. 25, 26, 93, 94, 103

[35] C. Giuseppe and I. Giuseppe. Algorithm Engineering. ACM Computing
Surveys, 31(3es):3, 1999. 5

[36] D. Gusfield, S. Eddhu, and C. Langley. Optimal, Efficient Reconstruction
of Phylogenetic Networks with Constrained Recombination. Journal of
Bioinformatics and Computational Biology, 2(1):173–213, 2004. 16, 63

[37] J. Håstad. Some Optimal Inapproximability Results. Journal of the ACM,
48(4):798–859, 2001. 96

[38] J. Hein, T. Jiang, L. Wang, and K. Zhang. On the Complexity of Com-
paring Evolutionary Trees. Discrete Applied Mathematics, 71(1):153–169,
1996. 62

[39] M. R. Henzinger, V. King, and T. Warnow. Constructing a Tree from
Homeomorphic Subtrees, with Applications to Computational Evolution-
ary Biology. Algorithmica, 24(1):1–13, 1999. 92

[40] M. K. Holt, J. Johansen, and G. S. Brodal. On the Scalability of Com-
puting Triplet and Quartet Distances. In Proceedings of the Meeting on
Algorithm Engineering and Expermiments, pages 9–19. Society for Indus-
trial and Applied Mathematics, 2014. 9, 32

[41] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient Algorithms for Graph
Manipulation. Communications of the ACM, 16(6):372–378, 1973. 75, 78

[42] L. A. Hug, B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst,
C. J. Castelle, C. N. Butterfield, A. W. Hernsdorf, Y. Amano, K. Ise,
Y. Suzuki, N. Dudek, D. A. Relman, K. M. Finstad, R. Amundson, B. C.
Thomas, and J. F. Banfield. A New View of the Tree of Life. Nature
Microbiology, 1:16048, 2016. 105

[43] D. H. Huson and D. Bryant. Application of Phylogenetic Networks in
Evolutionary Studies. Molecular Biology and Evolution, 23(2):254–267,
2005. 1, 14

[44] J. Jansson and A. Lingas. Computing the Rooted Triplet Distance Be-
tween Galled Trees by Counting Triangles. Journal of Discrete Algo-
rithms, 25:66–78, 2014. 16, 17, 18, 63, 64

[45] J. Jansson and R. Rajaby. A More Practical Algorithm for the Rooted
Triplet Distance. In Algorithms for Computational Biology, pages 109–
125. Springer International Publishing, 2015. 9, 10, 31, 32, 33, 34, 54, 56,
57, 64

Bibliography 153

[46] J. Jansson and R. Rajaby. A More Practical Algorithm for the Rooted
Triplet Distance. Journal of Computational Biology, 24(2):106–126, 2017.
27, 32, 112

[47] J. Jansson, J. H.-K. Ng, K. Sadakane, andW.-K. Sung. Rooted Maximum
Agreement Supertrees. Algorithmica, 43(4):293–307, 2005. 28, 115

[48] J. Jansson, R. S. Lemence, and A. Lingas. The Complexity of Inferring a
Minimally Resolved Phylogenetic Supertree. SIAM Journal on Comput-
ing, 41(1):272–291, 2012. 2, 24, 25, 93, 96

[49] J. Jansson, R. Rajaby, and W.-K. Sung. An Efficient Algorithm for the
Rooted Triplet Distance Between Galled Trees. In Algorithms for Compu-
tational Biology, pages 115–126. Springer International Publishing, 2017.
17

[50] J. Jansson, R. Rajaby, and W.-K. Sung. Minimal Phylogenetic Supertrees
and Local Consensus Trees. AIMS Medical Science, 5(medsci-05-02-181):
181, 2018. 93

[51] J. Jansson, K. Mampentzidis, and S. T. Puthiyaveedu. Building a Small
and Informative Phylogenetic Supertree. In 19th International Workshop
on Algorithms in Bioinformatics (WABI 2019), volume 143 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 1:1–1:14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. v, viii, 91

[52] J. Jansson, K. Mampentzidis, and R. Rajaby W.-K. Sung. Computing
the Rooted Triplet Distance Between Phylogenetic Networks. In Com-
binatorial Algorithms, pages 290–303. Springer International Publishing,
2019. v, 61

[53] J. Jansson, R. Rajaby, and W.-K. Sung. An Efficient Algorithm for the
Rooted Triplet Distance Between Galled Trees. Journal of Computational
Biology, to appear (2019), 2019. 17, 19, 64

[54] L. Jetten and L. van Iersel. Nonbinary Tree-Based Phylogenetic Net-
works. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 1(1):205–217, 2018. 85, 87

[55] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the Hardness of
Approximating Max k-Cut and Its Dual. Chicago Journal of Theoretical
Computer Science, 1997. 26, 95, 96

[56] J. M. Lang, A. E. Darling, and J. A. Eisen. Phylogeny of Bacterial and
Archaeal Genomes Using Conserved Genes: Supertrees and Supermatri-
ces. PLoS ONE, 8(4):e62510, 2013. 105

154 Bibliography

[57] K. J. Locey and J. T. Lennon. Scaling Laws Predict Global Microbial
Diversity. Proceedings of the National Academy of Sciences, 113(21):
5970–5975, 2016. 94

[58] T. Marcussen, L. Heier, A. K. Brysting, B. Oxelman, and K. S. Jakobsen.
From Gene Trees to a Dated Allopolyploid Network: Insights from the
Angiosperm Genus Viola (Violaceae). Systematic Biology, 64(1):84–101,
2015. 85, 87

[59] A. McKenzie and M. Steel. Distributions of Cherries for Two Models of
Trees. Mathematical Biosciences, 164(1):81–92, 2000. 85, 103, 112

[60] G. W. Moore, M. Goodman, and J. Barnabas. An Iterative Approach
from the Standpoint of the Additive Hypothesis to the Dendrogram Prob-
lem Posed by Molecular Data Sets. Journal of Theoretical Biology, 38(3):
423–457, 1973. 62

[61] L. Nakhleh, T. Warnow, D. Ringe, and S. N. Evans. A Comparison
of Phylogenetic Reconstruction Methods on an Indo-European Dataset.
Transactions of the Philological Society, 103(2):171–192, 2005. 92

[62] D. Penny, E. E. Watson, and M. A. Steel. Trees from Languages and
Genes are Very Similar. Systematic Biology, 42(3):382–384, 1993. 62

[63] D. F. Robinson. Comparison of Labeled Trees with Valency Three. Jour-
nal of Combinatorial Theory, Series B, 11(2):105–119, 1971. 62

[64] D. F. Robinson and L. R. Foulds. Comparison of Phylogenetic trees.
Mathematical Biosciences, 53(1):131–147, 1981. 5, 30, 62

[65] N. Saitou and M. Nei. The Neighbor-Joining Method: A New Method
for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution,
4(4):406, 1987. 30

[66] A. Sand, G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and T. Mailund.
A practical O(n log2 n) time algorithm for computing the triplet distance
on binary trees. BMC Bioinformatics, 14(2):S18, 2013. 7, 8, 9, 10, 11,
31, 32, 33, 34, 56

[67] A. Sand, M. K. Holt, J. Johansen, R. Fagerberg, G. S. Brodal, C. N. S.
Pedersen, and T. Mailund. Algorithms for Computing the Triplet and
Quartet Distances for Binary and General Trees. Biology - Special Issue
on Developments in Bioinformatic Algorithms, 2(4):1189–1209, 2013. 32

[68] A. Sand, M. K. Holt, J. Johansen, G. S. Brodal, T. Mailund, and C. N. S.
Pedersen. tqDist: A Library for Computing the Quartet and Triplet
Distances Between Binary or General Trees. Bioinformatics, 30(14):2079,
2014. 9, 32, 54, 56, 64

Bibliography 155

[69] P. Sanders. Efficient algorithms. chapter Algorithm Engineering — An
Attempt at a Definition, pages 321–340. Springer-Verlag, 2009. 4, 5

[70] Y. Shiloach and Y. Perl. Finding Two Disjoint Paths Between Two Pairs
of Vertices in a Graph. Journal of the ACM, 25(1):1–9, 1978. 66, 67

[71] J. Stapley, P. G. D. Feulner, S. E. Johnston, A. W. Santure, and C. M.
Smadja. Recombination: The Good, the Bad and the Variable. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 372
(1736), 2017. 14

[72] T. Griebel and M. Brinkmeyer and S. Böcker. EPoS: a Modular Software
Framework for Phylogenetic Analysis. Bioinformatics, 24(20):2399–2400,
2008. 64

[73] K.-C. Tai. The Tree-to-Tree Correction Problem. Journal of the ACM,
26(3):422–433, 1979. 62

[74] L. Trevisan. Parallel Approximation Algorithms by Positive Linear Pro-
gramming. Algorithmica, 21(1):72–88, 1998. 26, 98

[75] J. von Neumann. First Draft of a Report on the EDVAC. IEEE Annals
of the History of Computing, 15(4):27–75, 1993. 3

[76] D. P. Williamson and D. B. Shmoys. The Design of Approximation Al-
gorithms, pages 108–109. Cambridge University Press, 1st edition, 2011.
99

[77] B. Y. Wu. Constructing the Maximum Consensus Tree from Rooted
Triples. Journal of Combinatorial Optimization, 8(1):29–39, 2004. 25, 93

[78] U. Zwick. Approximation Algorithms for Constraint Satisfaction Prob-
lems Involving at Most Three Variables Per Constraint. In Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’98, pages 201–210. Society for Industrial and Applied Mathematics, 1998.
26, 98

	Abstract
	Resumé
	Preface
	Acknowledgments
	Contents
	Introduction
	Algorithms and Models of Computation
	Algorithm Engineering
	Comparing Phylogenetic Trees
	Comparing Phylogenetic Networks
	Building Small and Informative Supertrees

	Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees
	Introduction
	Previous Approaches
	The New Algorithm for Binary Trees
	The New Algorithm for General Trees
	Implementation
	Experiments
	Conclusion

	Computing the Rooted Triplet Distance between Phylogenetic Networks
	Introduction
	A First Approach
	A Second Approach
	Implementation and Experiments
	Concluding Remarks

	Building a Small and Informative Phylogenetic Supertree
	Introduction
	Computational Complexity of Lg-MAXRTC
	Approximability of Lg-MAXRTC
	Implementation and Experiments
	Motivation for Lg-MAXRTC: Faster Rooted Triplet Distance
	Concluding Remarks

	Additional Experiments for Chapter 2
	Additional Algorithms and Experiments for Chapter 3
	Additional Algorithms and Experiments for Chapter 4
	Bibliography

