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Abstract

The main goal of this master thesis is to solve the following problem: Given a
set of n points P in the plane called sites, draw polygons around the sites such
that none of the polygons’ interiors overlap, every polygon contains only one
site, and such that the distance from every point inside a polygon is closer to
the site inside the polygon with respect to the Euclidean distance, than it is
to any of the other sites. Such a collection of polygons is called an Euclidean
Voronoi diagram for the set of sites P.

We will work towards presenting an algorithm which runs in O(nlogn) time,
which is called Fortune’s algorithm. This is a sweep line algorithm, which sweeps
a hypothetical horizontal line down through the plane, uncovering the structure
of the Voronoi diagram along the way.

First we look at some theory, where we prove some local and global proper-
ties of Euclidean Voronoi diagrams, and how they interact with the sweep line.
Afterwards we describe some data structures that we will use, and during this
we will describe and prove some properties about treaps, which are random-
ized binary search trees. Finally, we put everything together and describe the
algorithm in detail.
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Chapter 1

Introduction

Let ||| : R? — R be a norm. Then we define the distance function as

dist(p,q) = [[p — qll- (1.1)

For 1 < p < oo we define the L? norm by

@ )l = (l” + lyP )", (1.2)

and we note that ||-||, is the well-known Euclidean distance. For p = 1, the
above reduces to

1z, )lly = l2| + [yl (1.3)

Letting p — oo, we also obtain the norm

(2, )l = max (|=], [y]). (1.4)

Definition 1.1 (Voronoi diagram). Let P = {p1,p2,...,pn} C R% The cells
corresponding to each point are denoted by

V(p:) = {q € R? | dist(q,p;) < dist(g,p;) for all i # j}.

The Voronoi diagram of P, denoted Vor(P), is the subdivision of R? consisting
of the union of the cells V(p1),V(p2), ..., V(pn).

The following figure shows how the Voronoi diagram for 9 random points
looks like with regards to some different LP norms:

1



2 CHAPTER 1. INTRODUCTION

‘ ‘
p=1 p=2
‘ ‘
p=5 p =00

Figure 1.1: Vor(P) of 9 random points using different || - [|,

The above figures were generated using a very naive algorithm, which for
each each pixel determinates which of the 9 points is the closest with regards
to the chosen norm.

Note that some of the cells may be unbounded, for example the bottom left
green cell in the above figure. For p = 1 and p = oo the boundaries of the cells
V(p;) are characterised by lines, rays and segments that can only point in the 8
compass directions. For p = 2 the boundaries consist of lines, rays and segments
which can point in any direction. Interestingly, for 2 < p < oo it seems that the
boundary consists of smooth curves that are not necessarily part of a line.

We now want to look at the graph structure of the Voronoi diagram. For
P= {p17p27 e 7p'n,} C ]RZ the set

Vorg(P) = R? — Vor(P) = {q € R? | dist(¢, p;) = dist(g, p;) for some i # j}

turns out to be an embedding of a graph, where some of the edges are infinite,
here’s a visualization:



N
PP

Figure 1.2: Vorg(P) of the 9 random points using different || - [| ..

The above figures were generated by first generating the images from Figure
1.1 and then performing the following algorithm: For each pixel, we look at
the surrounding pixels within a small disk about that point, and if it contains
exactly 2 different colors, we know that we’re looking at an edge, so we color
the pixel black, and if we see 3 colors or more, we know that we’re at a vertex.
If we only see 1 color, then we just color the pixel white.

Note that it’s the black vertices and edges which make up the graph, the
gray points from P are just there for visualization. Rather than computing
Vor(P), our algorithms will actually compute Vorg(P), and from there be able
to compute Vor(P).
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Chapter 2

Properties of Euclidean
Voronoi Diagrams

We follow the presentation in Section 7.1 in [2].
In this chapter we will consider Voronoi diagrams for the L? norm, also
known as the Euclidean norm. The norm is given by

Iz, 9)lly = Va2 +y2,

for all x,y € R. Here is the example diagram with this norm from earlier:

We note that the diagram consists of straight lines, rays and line segments.
In the following sections we will describe the shape of the diagram in detail.

2.1 Bisectors, halfplanes and Voronoi cells
From linear algebra we know that ||v||, = \/(v,v), where (-, -) is the usual dot

product on R?. Given two points p,q € R? then the bisector of p and ¢ is
denoted by bi(p,q) C R? and denotes the set of points on a line ¢ which passes

5



6 CHAPTER 2. PROPERTIES OF EUCLIDEAN VORONOI DIAGRAMS

through the midpoint of p and ¢ and is orthogonal (w.r.t. (-, -)) to the vector
p—aq.

bi(ps, py)

A bisector bi(p, ¢) splits the plane into two half-planes H, and H, such that
p € H, and ¢ € H;. We define h(p, q) to be the open half-plane which contains
p, that is the interior of Hy,. So we have that

R* = h(p,q) Ubi(p, q) U (g, p)-
Proposition 2.1. r € h(p,q) if and only if dist(r, p) < dist(r, q).
Proof. Let r € h(p,q) and let s be the projection of r onto the line segment pg.

r

bi(p, q)

The Pythagorean theorem and the fact that ps is shorter than g then gives us
2 2 2
lp=7l" =llp—slI” + [Is — 7l
2 2
<llg—slI” +[ls = |
2
=llg—rl,

which gives us that dist(r, p) < dist(r, ¢). The other direction is symmetrical.
O

Corollary 2.2. For every Voronoi cell we have

Vpi)= [ hlpip)-
1<j<n
i
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Proof. “C”: Let r € V(p;). Then dist(r,p;) < dist(r, p;) for all ¢ # j. Prop 2.1
then gives us that this is equivalent to r € h(p;,p;) for all i # j.
“D”: This argument is symmetrical to the above argument. O

A Voronoi cell is thus the intersection of convex sets and is therefore convex.
We conclude that the Voronoi cells are open and convex (possibly unbounded)
polygons with at most n — 1 vertices and n — 1 edges.

2.2 Shape of the entire diagram

We now look at the shape of the entire Voronoi diagram. From Corollary 2.2 it
follows that the edges of Vorg(P) are made up of parts of straight lines, namely
the bisectors between different points of P. We now classify these based on the
structure of the points in P:

Theorem 2.3. If the points in P are collinear then Vorg(P) consists of n — 1
parallel lines. Otherwise, Vorg (P) is connected and its edges are either segments
or half-lines.

Proof. Assume that the points in P are collinear. By applying an isometry to
P, we may assume without loss of generality that the points of P lie on the
r-axis:

P= {(I1,0), (1'270)7 R (an,())},

where we assume that z1 < o < --- < x,, by rearranging the points if necessary.
By definition, we have that p € Vorg(P) if and only if p & V(x;,0) for all . Let
(z,y) € R? such that z; < < x;41. Then (x,y) € Vorg(P) if

dist((z,y), (z;,0)) = dist((z,y), (z;+1,0)).
If furthermore (z,y) € Vorg(P) then we get

1z, y) = (24, 0)[| = [[(z,y) = (wit1,0)]]

= V(e —2)2+y? = V(e - 2i11)? + ¢
= |z — x| = |z — ®iy1]-

Thus if (z,0) € Vorg(P) then (z,y) € Vorg(P) for all y € R. This shows that
bi((x;,0), (zi+1,0)) C Vorg(P) for all i < n. Every point of Vorg(P) is on one
of these bisectors, and the bisectors are all parallel, which proves the claim.
Assume that the points in P are not collinear. First, we show that the
edges of Vorg(P) are either segments or half-lines. Suppose for a contradiction
that there is an edge e of Vorg(P) that is a full line and assume that e C
OV(p;) N OV(p;j). Let pp € P be a point which is not collinear with p; and
pj. Then the line bi(p;,px) is not parallel to the line e, hence they have an
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intersection point. Then there exists a point v € e N °h(px,p;). The situation
is visualized here:

v h(p;, pr)

Pk

bi(Pj,pk)

We have that v € 0V(p;) by definition of e. Now note that

1
V(p;) =0 | () rpjpa) | < | 0h(pspa) = | bip;, pa)-
aj aj atj

As v € h(pk,p;) we have that dist(v,pr) < dist(v,p;), hence v & bi(p;, px), so
v & OV (v;) by the above characterization of 9V (p;). This is a contradiction,
so e can’t be a full line. Now we show that Vorg(P) is connected. Assume for
the sake of a contradiction that Vorg(P) is not connected. Then there exists
a 0V(p;) which is not path connected. This can only happen if 9V (p;) consists
of two parallel lines. This contradicts the fact that Vorg(P) contains no lines.
Thus Vorg(P) is connected. O

Finally, we show that that the complexity of the vertices and edges is O(n):

Theorem 2.4. For n > 3, the number of vertices in Vorg(P) is at most 2n — 5
and the number of edges is at most 3n — 6.

Proof. If the points in P are collinear, then Theorem 2.3 implies the claim. Now
assume that the points in P are not collinear. As a first preprocessing step, we
start by transforming Vorg(P) into an actual plane graph, as some of the edges
in Vorg(P) may be half-lines. Let vy,...,v; denote the vertices of Vorg(P).
Let p = %(vl +vg + - +v;) € R? and let

r = 1 + max{dist(p, v1), dist(p, v2), . .., dist(p, vg)}.

Then let B,(p) C R? denote the open ball with center p and radius r. We have
that B,(p) contains every vertex v; and that every half-line edge e of Vorg(P)
intersects OB,.(p) exactly once. Now define vy, € R? as any point in R? — B,.(p)
and transform every half-line edge e into a path with finite length by connecting
the half-lines to the point v.. This is possible since R? — B,(r) only contains
these half-lines, and every half-line is pointing in a unique direction so we may

1Here we used that (AN B) C OA U OB.
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then transform the half-lines in order by starting with those which are closest
t0 Voo. An example of this construction is given here:

In this way we can turn Vorg(P) into a planar graph. For a planar graph G,
Euler’s polyhedra formula from topology states that

V-E+F=2 (2.1)

where V' is the number of vertices, E is the number of edges and F' is the number
of faces of G. Let n, denote the number of vertices of the original Vorg(P), and
let n. denote the number of edges. In our modification, we only added a single
vertex, so by plugging into (2.1) we obtain the following relationship:

(ny+1)—ne+n=2. (2.2)

Note that n is the number of faces, since we have a Voronoi cell for each point
in P. Every vertex v in G has deg(v) > 3, otherwise there would be a V(p;)
which is not convex. This means that

> deg(v) > 3[V(G)| = 3(n, +1).
veEV(G)

Now we want to compute the left side of the above inequality. Given a vertex v
we have that deg(v) counts the number of edges which touch v, and in G every
edge touches exactly 2 vertices, which gives us that ZvGV(G) deg(v) = 2n..
Combining these facts, we obtain the inequality:

2ne > 3(ny, +1). (2.3)
Multiplying (2.2) by 2, isolating 2n. and then applying (2.3) we get:

2ny+1) —2n.+2n=4 < 2n,=2n, +1)+2n—4
= 3(ny,+1) <2(n, +1)+2n—4
= Ny < 2n — 5.
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Multiplying (2.2) by 3, isolating 3(n, + 1) and then applying (2.3) we get:

3(ny+1)—3n.+3n=6 < 3(n,+1)=3n.—3n+6
= 2N, > 3N, —3n+6
== n., < 3n—6.

This proves the theorem. O

2.3 Characterizing bisectors in the diagram

We have seen that we have a linear number of vertices and edges Vorg(P),
but we have a quadratic number of bisectors bi(p;,p;) of which every edge of
Vorg(P) is a subset of, and every vertex in Vorg(P) is an intersection point
of two such bisectors. Thus it would be interesting to characterize when a
particular bisector is a part of Vorg(P). First, we need a definition:

Definition 2.5 (Largest empty circle). For a ¢ € R? we define Cp(q) to be the

largest empty circle of q with respect to P, which is the largest empty circle with
q as its center that does not contain any point of P in its interior. Formally,

Cp(q) = B.(q), where r=sup{A€R"|By(q)NP =2}

0 Q

Theorem 2.6. The bisectors and their intersections are characterized by:
(i) q € R? is a vertex of Vorg(P) if and only if

|0Cp(q) N P| = 3.

(ii) bi(p;,p;) defines an edge of Vorg(P) if and only if

Jq € bi(pi, p;): 0Cp(q) NP = {pi,p;}.
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Proof. We prove each statement individually:

(i):

“<”: Let ¢ € R? and assume that |0Cp(q) N P| > 3. Let p;,pj, pr be
three distinct points from dCp(g) N P. Since Cp(q)NP = & by definition,
this means that g is equally close to p;, p;, pr but not closer to any other
points in P, so ¢ € 0V(p;) NOV(p;)NOV(px) C Vore(P), and it is a vertex
since it is at an intersection of 3 or more bisectors.
“=": Let ¢ € R? be a vertex of Vorg(P). A vertex of Vorg(P) touches at
least 3 different edges, and thus touches at least 3 distinct Voronoi cells
V(pi), V(p;) and V(pg). So g € OV(p;) N OV(p;) N OV(px). This gives us
that

dist(g, p;) = dist(g, p;) = dist(q, px)-
Denote the above distance by D. Now assume for the sake of a contra-
diction that there exists p, € P such that dist(¢q,ps) < D. Then there
are parts of the bisectors bi(pa,p;), bi(pPa, p;), bi(pa, px) contained inside
Bp(q), which means that V(p;), V(p;), V(px) do not all meet at ¢, a con-
tradiction. This means that Cp(¢) N P = @ and p;,pj;, pr € 0Cp(q).

: “<": Let ¢ € bi(p;, p;) such that 9Cp(q) NP = {p;,p;}. So Cp(q) NP =

@, which by definition of Cp(g) means that
dist(q, p;) = dist(q, p;) < dist(q, pk)

for all k. So ¢ € Vorg(P) and is either a vertex or an edge. Since
|0Cp(q) N P| < 3 part (i) gives us that ¢ is not a vertex, hence it must be
an edge, which is a subset of bi(p;,p;).

“=7: Let e C bi(p;, p;) be an edge of Vorg(P). For ¢ € e we have that
dist(g, p;) = dist(q, p;), and that ¢ touches V(p;) and V(p;). By applying
the same contradiction proof as in (i) “=” we have that there is no point
in P which is closer to ¢ than p; and p;, thus 0Cp(q) N P = {p;, p,}.

O
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2.4 The DCEL data structure

The basic idea in this section is based on Section 2.2 in [2].

We want to write an algorithm to compute the Voronoi diagram, which leads
us to a natural question: how do we store Voronoi diagrams on a computer?
We'll need the following geometric data structure:

Definition 2.7 (DCEL). A double connected edge list (DCEL) is a data struc-
ture which represents a subdivision of R2. A DCEL consists of a lists of vertices,
faces and edges. For every edge we will have two copies of it, with opposite ori-
entations, so we will refer to each copy as a directed edge and call it a half-edge,
so we actually store a list of half-edges. These three structures are represented
as follows:

Vertex v — represents a vertex of the subdivision. Properties:

e v.position € R?: Describes the position of v.
e v.edge is a HalfEdge: Points to a half-edge which has v as its start
vertex.

Face f — represents a face of the subdivision. Properties:

e f.edge is a HalfEdge: Points to a half-edge which lies on Jf, and
which is a part of a cycle of half-edges which goes around f in coun-
terclockwise order.

HalfEdge e — represents a half-edge of the subdivision. Properties:

e c.origin is a Vertex: Since the half-edge is directed, we have a first and
a second vertex in relation to the edge’s direction, and this points to
the first vertex.

e c.twin is a HalfEdge: Points to the half-edge with the same vertices
as e, but pointing in the opposite direction.

e c.face is a Face: Points to the face which lies to the left of e.

e c.next is a HalfEdge: Around e.face we have a cycle half-edges which

is oriented counterclockwise, and given e in this cycle, e.next gives us
the next edge.

e.prev is a HalfEdge: Around e.face we have a cycle half-edges which
is oriented counterclockwise, and given e in this cycle, e.prev gives us
the previous edge.

Remark 2.8. In the CompGeo book the DCEL structure allows a face to have
holes, but since Voronoi diagrams and Delaunay triangulations don’t have holes
in their faces, we have chosen to omit this feature.
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Example 2.9. Consider a graph G with 9 vertices and 10 edges embedded into
R2, which is given as the black figure in the following:

/\/ fs

TN TN

Then this induces a subdivision of R? which we represent as a DCEL. The half-
edges are given as the blue arrows, the faces as f1, fo, f3 and the vertices are
the vertices of G. Some of the pointers are visible on the figure.

Remark 2.10. Note that the DCEL does not support infinite edges, so what we
do is put a bounding box B with some padding around the vertices of Vor(P),
and then intersect the infinite edges and faces with the boundary of B and only
keep the part inside the bounding box.

The aim of our algorithms will then be to calculate the DCEL in the right figure.
How does intersecting the edges of Vor(P) with such a bounding box B affect
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the number of edges?

In the worst case, as depicted on the left figure, 4 new edges may be added to
a single unbounded face. In the general case however, as depicted on the right
figure, we only introduce between 1-3 edges per face. Thus Theorem 2.4 implies
that the complexity is still linear.



Chapter 3

Theory for Fortune’s
algorithm

This chapter is based on Section 7.2 in [2], the sorting argument is original
however.

In this chapter we start our treatment on Fortune’s algorithm, and it will
be our focus for the next three chapters. It is an algorithm for computing the
Euclidean Voronoi diagram which has a running time of O(nlogn). Before we
describe the steps of the algorithm, we have to do some theoretical ground work
which will help explain why the algorithm works.

3.1 Voronoi diagrams can be used to sort

Before we begin, we show that:

Theorem 3.1. The optimal worst-case running time for computing Vor(P) is
O(nlogn).

Proof. Let A= {ay,as,...,a,} C R and assume that n > 3. Define p: R — R?
given by ¢(z) = (z,2?). Now assume we have used an algorithm to compute a
Voronoi diagram of the points

P = o(A) = {(a1,a?), (as,a3), ..., (an,a?)}.

15
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We obtain a diagram which looks similar to this:

We may assume without loss of generality that a; > 0 for all ¢, since we may
just add
max{—a|a € AU{0} and a < 0}

to every number in A. Now we claim that

dist(i2(c), (b)) < dist((c), p(a))
0<a<b<c<d<e = and (3.1)

dist(p(c), p(d)) < dist(p(c), o(c)).
We have
dist (¢ (), o(1))* = () — eW)II° = (@ — v)* + (@ — y*)°

dist(p(c), p(b)) < dist(io(c), ¢(a))

if and only if
(c—a)> = (c=b)2+(* —a®)? = (2 = bv*)? > 0.

A Iz

The fact that z + 22 is strictly increasing on [0,00) and 0 < a < b < ¢
implies that A > 0 and g > 0. Using a similar argument, we obtain that
dist(p(c), p(d)) < dist(e(c), ¢(e)). Thus (3.1) holds.

Now let B = (by,bs,...,b,) denote A in sorted order, i.e. i < j implies
b; < b;. We'll now see how we can recover B using Vor(P). We assume that
the algorithm outputs a DCEL A of Vor(P). The property (3.1) implies that
OV(p(b;)) and OV(p(b;)) share an edge when ¢ = j + 1. This means that given
V(e(b;)) for i < n we may find b;11 by traversing the edges of V(¢(b;)) in A
until we find the face which belongs to b; 1. We identify this face as the one
which minimizes a; — b; > 0 where V(¢(a;)) is an adjacent face. In linear time
we may find ¢ such that ay < a; for all ¢ # ¢. Let by := ay. Now assume that
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b; = a; for i < n and some j, and that we have the face F' = V(p(a;)) € A. We
traverse the edges of F until we find the face F/ = V(p(ax)) € A which belongs
to b;4+1, and we let b;41 := ag. In the worst case we iterate through every edge
of every face of A, but Remark 2.10 gives us that there is O(n) edges in total,
so we find all the b; in linear time. This means we can use an algorithm which
computes Vor(P) to sort, which proves the claim. O

This means that the promised running time of Fortune’s algorithm is opti-
mal.

3.2 Theoretical assumptions

In order to make proving some theoretical properties easier, and to avoid not
every enlightening edge cases, we will start out by making some assumptions:

Assumption 3.2. The points in P are in general position, which we define
to mean that no two points in P have the same z-coordinate or the same y-
coordinate.

Assumption 3.3. The points in P do not all lie on the same line.
Assumption 3.4. No more than 3 points from P lie on the same circle.

Remark 3.5. We may make Assumption 3.2 without loss of generality, because
if © C R is the set of all of the angles that p;p; make with the z-axis for all
p; # p; in P, then © is finite and R \ © is infinite, so generating a random
number 0 € R\ O and letting

o) = (o oomn?) () = teost0)a — sin@)y.sn(0)a -+ cos(0))

sinf  cosf y

be the rotation about the origin with the angle 6, then the set

o(P) ={p(p) | p € P}

is in general position with probability 1. After having computed the Voronoi
diagram for ¢(P), we may then rotate the diagram by the angle —6 to obtain
Vor(P).

Remark 3.6. If P is collinear then every point p € P lies on a line £. Theorem
2.3 gives us that Vorg (P) consists of parallel lines and Theorem 2.6 gives us that
these parallel lines are the bisectors of pairs of adjacent points on £. By sorting
the points on P along ¢ and then marking all the bisectors between adjacent
points we then compute the Voronoi diagram of Vorg(P) in O(nlogn) time.
With this out of the way, it is now reasonable to assume Assumption 3.3.
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3.3 The beach line

In Computational Geometry a sweep line algorithm is an algorithm which incre-
mentally computes some geometric structure, by continuously sweeping a line
from one end of the plane to the other. Fortune’s algorithm is such an algorithm,
and it works by maintaining a horizontal sweep line £: y = ¢, and £ sweeps the
plane from top to bottom in order to uncover the structure of the Voronoi dia-
gram. In Fortune’s algorithm there is also a secondary device, determined from
the current position of the sweep line in relation to the points of P. It is called
the beach line, and we describe it as follows:

For a point p = (ps, py) € R? and a sweep line £: y = £, the distance between
p and £ is

dist(p, £) = [py — 4y| -

Define
B; = {q € R? | dist(q,p;) = dist(q, £)}

for all 4. If (p;), > ¢, it turns out we may parametrize B; by a parabola:

l

Let p = (ps,py) denote p; and let ¢ = (x,y) € B;. Since distances are non-
negative, instead of looking at the original definition of B;, it is equivalent to
look at satisfying dist(q, p)? = dist(q, £)?. We have:

dist(g,p)? = dist(q, €)> <= (o —2)* + (py —9)* = (y — £,)*.
This can be transformed into the equation
2(py — 4y)y = @* = 2p,x + P} + py — £y, (3:2)
Since py # ¢, by assumption, we obtain the parabola:

1
Y=s7——"7~
2(py — 4y)

which parametrizes B; if (p;), > ¢,. Now we look at the situation where (p;), =
£,. Then

(2% = 2pox + P} + 1y — £3), (3.3)

dist(q,p)* = dist(q,£)* <= (p= —2)> + (py —¥)* = (py —v)*.
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i

Then it must be the case that p, = x, so B; is a subset of a vertical line, and
is a line segment if there is some Bj above B; and a half-line which starts at
p; otherwise. Finally, if (p;), < ¢y, we let B; = @. We now for all ¢ define the
maps
&® = 2(pi)at + ()2 + (pi); — €5
Bi(z) = 2((pi)y — £y)

00 otherwise.

Let LB(z) denote the map which takes the minimum of each 3;, i.e.

LB(z) = min{B;(x), B2(x),. .., Bn(z)}.

Definition 3.7 (Beach line). The beach line for the points P with regards to
the sweep line ¢ is given by the following subset of R?:

GUV,
where G is the graph of LB when it is finite
G = {(=,LB(z)) € R? | LB(z) < oo},

and V is all the vertical parts not hidden behind other parabolas
V ={B; —{(pi)a} x (LB((pi)z),00) | i =1,...,n where (p;), = £y}

In the figure below the beach line is illustrated by the blue curves:

Remark 3.8. From the definition we see that the beach line consists of parts
of parabolas, and vertical line segments or half-lines. For this reason, it is easy
to see that the intersection between any vertical line and the beach line has at
most one component.
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Remark 3.9. For a sweep line £ which does not intersect any of the points in
P, it follows from the definition of beach line that the map LB(z) parametrizes
the beach line. This was used in the demo to visualize the beach line.

Definition 3.10 (Breakpoint). Every point ¢ on the beach line such that ¢ €
B; N B; for two different 4, j is called a breakpoint.

bj
[ ]

Pr

Figure 3.1: The red dots indicate the breakpoints.

3.4 Breakpoints make out the Voronoi diagram

Now we show that the breakpoints exactly trace out Vorg(P) as the sweep line
¢ moves from top to bottom.

Proposition 3.11. We have the following:
(i) For every sweep line ¢: y = ¢, each breakpoint lies on Vorg(P).

(ii) For every point g in Vorg(P) there is a position of the sweep line ¢ such
that ¢ is a breakpoint.

Proof. We prove each statement individually:

(i): Let £ be the sweep line, and assume that it has one or more breakpoints.
Let ¢ € R? be such a breakpoint. Then ¢ € B; N B; for some i # j, which
means that

dist(q, £) = dist(q, p;) = dist(g, p;)-
The last equality gives us that ¢ & V(py) for all k, hence ¢ € Vorg(P).

(ii): Let ¢ = (gx,qy) € Vorg(P). Since g is either an edge or a vertex, Theorem
2.6 gives us that 0Cp(q) N P has at least two elements, so let p;,p; €
0Cp(g) NP be two different elements. We have dist(q, p;) = dist(g,p;) by
definition of Cp(q), and then we may set

‘€y =gy — dist(q,pi),
and obtain
dist(q, £) = dist(q, p;) = dist(g, p;)-
Then B; and B; intersect at g, and g is on the beach line since there is
no By, with a point py closer to ¢ than p; and p;, by definition of Cp(g).
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3.5 Site and circle events

As the sweep line ¢ sweeps the plane from top to bottom, the combinatorial
structure of the beach line changes. We’ll categorize these changes into events.

First we will consider when new arcs appear on the beach line. As ¢ sweeps
down and hits a point, a vertical segment is added to the beach line, and then
as ¢ continues to move, the vertical line spreads out into a new parabolic arc,
as seen in this figure:

Definition 3.12 (Site event). When ¢ encounters a point p; € P, that is when
L, = (p;)y, we say that we encounter a site event.

Lemma 3.13. The only way in which a new arc can appear on the beach line
is through a site event.

Proof. The only other alternative is for new arcs to arise due to changes in the
shape and position of existing parabolas, that is due to some parabola overtaking
the beach line and breaking through it. Assume for the sake of a contradiction
that a new arc appears on the beach line but ¢, # p; for all . Let /3; denote
the parabola which contains the new arc, associated to the point p; € P, which
appears on the beach line. We have that §; is a full parabola since ¢, # p;.
Now, we look at the two cases in which 3; can appear as a new arc on the beach
line.

¢ T
The first possibility is that §; breaks through the middle of an another arc which
is a part of the parabola [3;. For this to happen, there is a time at which §; and

B; either coincide, or they are tangent which means they intersect in exactly one
point which is on the beach line. They cannot coincide, since p; # p;, so they
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must intersect in exactly one point. By Assumption 3.2 we have (p;)y # (p;)y
so fBi(x) — Bj(x) is a second degree polynomial with discriminant

p_ P =)+ (y—q)* (3.4)

(py - gy)((Iy - gy)

Since py,qy > ¢, the denominator is strictly positive, and since p; # p; the
numerator is also strictly positive, so D > 0. This means that §; and f;
intersect in two different points, a contradiction.

The second possibility is that 3; appears in between two arcs. Let these arcs
be part of parabolas 8; and B;. Let ¢ be the intersection point between 3;, §;
and (i, and we assume that the arc on the beach line from f; is to the left of
q, and the arc from [y, is to the right of g, as in this figure:

Bj

Bi

Now let C' denote the circle Cp(q) and note that it has p;, p;, pr on its bound-
ary, and it is tangent to ¢. The cyclic order on C, starting at the point of
tangency with ¢ and going clockwise is p;, pj, pr. Now, we imagine an infinites-
imal downward motion of ¢ while keeping C' tangent to £ and p;, call the new
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circle C".

Now either p; or p, will be contained in the interior of C’, say it’s py, like on the
figure. Let ¢ denote the center of C’. Then dist(c, p;) is equal to dist(c, £), but
since py is contained in the interior of C’ then dist(c, px) is strictly smaller than
dist(c, p;), which means that ps is closer to ¢ than p;, which means §; cannot
be on the beach line, a contradiction. O]

Corollary 3.14. At any time the beach line consists of at most 2n — 1 arcs.

Proof. We prove this by induction. The first site event adds a single arc, so for
n = 1 there is at most 2n — 1 = 1 arcs on the beach line. Now assume during
the execution of the algorithm that we’ve seen k < n of the n site events, and
that the beach line consists of at most 2k — 1 arcs. When we encounter a new
site, we have seen that there are two cases:

A - g
(b) (a)

In case (a) the have that an arc appears inbetween 2 existing arcs, increasing
the total number by one. In case (b) an existing arc is split into two, and a new
arc appears in between, which increases the total number by two. This means
that after having seen k + 1 site events, there can be at most

2k—1)+2=2(k+1)—-1
parabolic arcs, which proves the claim. O

Now we’ve characterized exactly when new arcs appear on the beach line. We
now turn to the question of when arcs disappear from the beach line. Assume
we have at least 3 arcs on the beach line, name them «, o/, @” and assume that
a is adjacent to o/, and o’ is adjacent to o”’. We assume that o' is the arc
which is about to disappear. We first note that « and o cannot be a part of
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the same parabola. If this case the case, we’d be in the following situation:

Let 8 denote the parabola which « and o” are a part of, and let 5’ be the
parabola which o is a part of. When o’ is about to disappear, then there will
be a time at which 8 and 3’ are tangent, and then we can reuse the contradiction
argument from the first part of the proof of Lemma 3.13. Thus «,a’ and o’
are defined by 3 distinct sites p;, p;, pr € P. At the moment that o’ disappears,
then the three parabolas 3; D «, 8; D o’ and S D « intersect in a single point
q. We note that

So there is a circle C' with center ¢ passing through p;, p;, pr which is tangent
to £ at its lowest point. The situation is illustrated as follows:

Bj

Bi

We claim that C = Cp(q). Assume for the sake of a contradiction that there is
a site p inside the interior of C'. Then

dist(p, q) < dist(g, £). (3.5)

Now note the following characterization of being on the beach line: A point r is
on the beach line if dist(r, ¢) = dist(r, p;) for all ¢ € Z and dist(r, ¢) < dist(r, p;)
for all j € J, where Z describes those indices ¢ where r € 3; and J describes
those indices where r ¢ ;. By assumption ¢ is on the beach line, since it is a
point on all of o, @', @ but (3.5) contradicts the characterization we just gave
of the beach line. So it must be the case that C = Cp(q). Now note that

{pi,pj,pr} C 0Cp(q),
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so Theorem 2.6 (i) gives us that ¢ is a vertex of Vorg(P). Compare this to the
fact that breakpoints trace out Vorg(P) as we proved earlier. This means that
when two breakpoints meet and an arc disappears from the beach line, then two
edges of Vor(P) meet at a vertex. We call the event when ¢ reaches the lowest
point of a circle through three sites defining consecutive arcs on the beach line
a circle event. We have thus just proven:

Lemma 3.15. The only way in which an existing arc can disappear from the
beach line is through a circle event.

Finally, we make sure that the circle events are the tool we need:
Lemma 3.16. Every Voronoi vertex is detected by means of a circle event.

Proof. Let g be a Voronoi vertex. Theorem 2.6 (i) and Assumption 3.4 then
gives us that there exists exactly 3 sites p;,p;, pr such that ¢ is the center of
the circle C'(p;, pj, pr;) which has the sites on its boundary, and no other sites in
its interior or on its boundary. For simplicity we assume that the lowest point
of C(pi,pj,pr) is not one of the defining sites p;, pj, px. Finally, assume with-
out loss of generality that from the lowest point of C(p;,p;,px), the clockwise
traversal of C'(p;, pj, pr) encounters the sites p;, p;, px in this order.

We must show that just before the sweep line reaches the lowest point of
C(pi,pj,px), there are three consecutive arcs a,a’ and o on the beach line
defined by the sites p;, p;, and pi. Only then will the circle event take place.

Consider the sweep line an infinitesimal amount before it reaches the lowest
point of C(p;, p;, px). Since C(p;, p;,pr) doesn’t contain any other sites inside
or on it, there exists a circle through p; and p; that is tangent to the sweep
line, and doesn’t contain sites in the interior. So there are adjacent arcs on the
beach line defined by p; and p;. Similarly, there are adjacent arcs on the beach
line defined by p; and py.

Now, note that the two arcs defined by p; are actually the same arc, and it
follows that there are three consecutive arcs on the beach line defined by p;, p;,
and pg. Therefore, the corresponding circle event is in Q just before the event
takes place, and the Voronoi vertex is detected. O
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Chapter 4

Data structures for
Fortune’s algorithm

This chapter explains some of the details in Section 7.2 in [2]. The treap section
is based on the original treap paper, which is referenced in the section.

During the algorithm we will need three data structures:
e A priority queue Q for keeping track of the site and circle events.

e A doubly-connected edge list (DCEL) D for keeping track of the
current state of the Voronoi diagram. See Definition 2.7. This will be
updated after each site and circle event.

e A self-balancing binary search tree (BST) T for keeping track of the
breakpoints and arcs on the beach line.

We explain them in detail in the next sections.

4.1 Priority queue

The priority queue stores the site and circle events, and enables the algorithm
to handle them in order. Each element in the priority queue has a priority. For
a site event the y-value of the point describes the priority, and for a circle event
the priority is given by the y-value of the lowest point of the center of the circle
which describes the event. Site events also store a pointer to the site, and circle
events also store the center of its definining circle and a pointer to the arc in 7
which is disappearing.

For the implementation of the priority queue we will use a binary heap.
These are described in CLRS [3].

27
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4.2 Binary search tree

We will store the current configuration of the beach line in a binary search tree,
which has some additional information stored:

e Leaves correspond to arcs on the beach line. Every leaf has a pointer to a
site in P, and it also has a pointer to a potential circle event at which the
arc will disappear. If no circle event has been detected yet, the pointer
will simply be NIL. Every arc will also store .leftArc and .rightArc pointers
to the two arcs that surround it, so that we get a doubly linked list of arcs
that are currently on the beach line. These pointers are NIL if the leaf has
no neighbour in that particular direction. In our figures the leaves will be
depicted by squares.

e Internal nodes correspond to breakpoints on the beach line. Every break-
point stores an ordered pair (p, ¢), where p and ¢ are sites in P. The order
is important since the intersection of the hyperbolas defined by p and ¢
consists of two points, and the order lets us tell these breakpoints apart.
If we consider the beach line as running from the left to the right, then
at every breakpoint an arc is leaving, and another is entering it. Thus
the tuple (p, ¢) tells us that we are interested in the breakpoint at which
an arc pointing to p leaves, and an arc pointing to ¢ is entering. In our
figures the internal nodes will be depicted by circles.

The binary tree will only be updated at site and circle events. First we
describe what happens at a site event.

4.2.1 Inserting at site events

During the first site event, the tree will be empty (we say it is NIL), so to add
an arc « to it, we simply turn the tree into a leaf, which describes the new arc,
and we have it point to the first site p, illustrated as follows:

NIL . «

Now we look at the general case. We assume that « is an arc on the beach line,
which points to a point p, and that we at a site event discover a new point ¢
which is located below the arc «a (e.g. a vertical line going through ¢ intersects
«). At this site event, the arc a will be split into two arcs a; to the left, and as
to the right, and two breakpoints = and y with x < y will be introduced. We
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update the tree locally as illustrated in the figure below:

T (p,q)
@ — | T y (¢,p)
\ \\
v RV
P P 5 [ =i
.«
q p

The leaf o gets replaced by the tree on the right. The dashed arrows represent
the pointers for our doubly linked lists of arcs, and not depicted but also neces-
sary is that we need to connect a; to a.leftArc and connect as to a.rightArc by
setting the appropriate pointers.

4.2.2 Deleting at circle events

At a circle event two breakpoints x and y, with = < y, converge into a single
breakpoint z and an arc v disappears. We assume that x points to the tuple
(pi,pj) and y points to the tuple (pj;, pr). Then we make z point to the tuple
(i Pro)-

In terms of the tree we must modify, the fact that the breakpoints z and
y are converging means that y is the successor of x. What this means for the
structure of the tree depends on whether = is an ancestor of y, or if y is an
ancestor of x. First, we assume that = is an ancestor of y. Then y is the lowest
internal node on the left spine of x.right, and our modification is as illustrated:

0%
)i

We replace y by T = y.right, effectively removing y and . Then we replace =
by z. This way the tree stays a binary tree, and the new structure of the beach
line is now rightfully represented.
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On the other hand, if y is an ancestor of z, then «x is the lowest internal node
on the right spine of y.left. We then make the following modification:

We replace « by T = x.left, effectively removing = and . Then we replace y
by z. Again, this way the tree stays a binary tree, and the new structure of the
beach line is now rightfully represented.

We would like the tree to be balanced in order for search to be fast, so we
need to balance the tree after inserting and deleting. We’ll look at an approach
to do this in the next section.

4.3 Balancing the BST by using a treap

There are multiple viable strategies for balancing a binary search tree. In this
section we look at a particular strategy which utilizes randomness. We will
introduce the treap data structure, which is a randomized self-balancing binary
search tree. The presentation follows the paper [1], but only describes the things
that we will need.

Definition 4.1 (Treap). Let T be a tree where each node « € T has properties
e z.left is the left subtree of x,
e x.right is the right subtree of x,
o z.key € R,
e z.priority € [0, 1].
We say that T is a treap if

(i) T is a binary tree with respect to .key. That is, for every x € T we have

Vy € x.left: y.key < x.key,
Yy € x.right: y.key > z.key.



4.3. BALANCING THE BST BY USING A TREAP 31

(ii) T is a max-heap with respect to .priority, that is for each x,y € T

x is the parent of y = =z.priority > y.priority.

Definition 4.2 (Left and right rotations). Given a tree T' and two nodes z,y €
T with subtrees A, B, C the operations rotate left and rotate right are given as
follows:

Rotate left

Rotate right

From the diagram it is immediate that rotations preserve the binary tree
property, but if T has a .priority property then the order on x.priority and
y.priority is reversed. Given a binary tree T with priorities we may then make
sure it also has the max-heap property by making a finite sequence of left and
right rotations, and thus we may turn it into a treap.

The basic operations on a treap are as follows:

e SEARCH(x): This is the same as for a binary tree.

e INSERT(x): At first the insertion is identical to that of a binary tree: first
we search for a spot to insert the new element, such that it stays a binary
tree after insertion. Once inserted however, it may be the case that the
max-heap property is violated. To remedy this, we may rotate x up in the
tree until the max-heap property is reestablished, or until we reach the
root.

e DELETE(z): The strategy is to rotate  down until it becomes a leaf in
a manner which preserves the property that every subtree is a treap, and
then we remove the leaf. This is done as follows: when rotating down
we have a choice of rotating z with the root y of the left subtree A,
or the root z of the right subtree B. We choose to rotate = and y if
y.priority > z.priority, otherwise we rotate x and z, and then it follows by
recursion that the treap property eventually is preserved in the entire tree
once z is a leaf, and then we clip away x.

Definition 4.3 (Randomized search tree). We define a randomized search tree
to be a treap T where the priorities are independent, identically distributed
continuous random variables.
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The main result we will work towards in this section is the following:

Theorem 4.4. A randomized search tree storing n items has the expected
performance characteristics listed in the table below:

Performance measure Bound on expectation
Search O(logn)
Insertion O(logn)
Deletion O(logn)

Number of rotations per update < 2

To prove this we will introduce some random variables and then we will
work towards proving upper bounds for their expectations. The first random
variables we introduce are:

e D(x): the number of nodes on the path from z to the root.

o SL(z) and SR(z): the length of the right spine of the left subtree of z
and the length of the right spine of the right subtree of z. By length of
the left spine of a tree we mean the number of nodes we pass if we keep
following the left pointer from the root, and similarly for the right spine.

Throughout this section we will deal with a treap T with nodes z1,x2,..., 2,
where node x; has associated key k; and priority p;, and k1 < ko < --- < ky,.
We now introduce the following indicator random variables:

A 1 if x; is an ancestor of x; in T,
iy = .
0 otherwise.

c 1 if z; is a common ancestor of x, and x,, in T,
ilom — .
0 otherwise.

Note that we consider each node an ancestor of itself. We then have:

Theorem 4.5. Let 1 </ <n. Then

(i) D(xe) = 37, Aie.

(i) SL(ze) = 3321 (Aiemr — Cire—1,0).
(iii) SR(xe) = Y7 py1(Aier1 — Ciper)-

Proof. (i): Nodes on the path from z;, to the root are exactly the nodes which
x¢ has as ancestors.

(ii): First we assume that x, has a left subtree L. This has the nodes x; with
t < £. The lowest node on the right spine of L is xy_;. This means that every
node on the right spine of L is an ancestor of zy_;. Nodes in L outside the right
spine are not ancestors of xy_;. Since none of the nodes in L are ancestors of
x¢ we have that C.¢_1, = 0 for all ¢ < £, and hence the formula holds.
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Now assume that z, has no left subtree. If £ = 1 then the sum correctly
evaluates to 0. If £ > 1 then it must be the case that x,_; is an ancestor of xy,
and then every ancestor of xy_; is a common ancestor of xy_; and x,, so the
formula again correctly evaluates to 0.

(iii): This argument is symmetrical to the one for (ii). O

If we let a; ; = E[A; ;] and ¢;;¢.m = E[Cj.r,m] then by linearity of expectation
we get:

Corollary 4.6. Let 1 < ¢ <n and let £ < m. Then
(i) E[D(xe)] = 3252 i
(i) E[SL(ze)] = iz (@01 = Cise1,0)-

(iii) E[SR(W)] = ZZL:@H(GMH - Ci;£,€+1)-

Our analysis has now been reduced to determining the expectations a; ; and
Cize,m- Now, if X is an indicator random variable, then

E[X] =Pr(X =1),
so we get that
a;; = Pr(4; ; =1) = Pr(z; is an ancestor of z;)
and
Cise,m = Pr(Ciom = 1) = Pr(z; is a common ancestor of =, and z,,).
Determining these probabilities is made possible through the ancestor lemma:

Lemma 4.7 (Ancestor lemma). Assuming that all priorities are distinct, then
z; is an ancestor of x; in T if and only if p; > pp, for all h in between and
including ¢ and j.

Proof. Let x,, be the item with the highest priority in 7. Let
L={z,|1<v<m} and R={z,|m<p<n}

Note that since z,, is the node with the highest priority in T it is actually the
root, so we may consider L and R as the left and right subtrees of x,,. Note
that L and R are treaps also.

For every x, € L we have that z,, is an ancestor of z, and p,, > pp for
all £ < h < m. Thus it follows that any pair with x,, and x;, € L satisfy
the ancestor characterization. Similarly every pair with z,, and any node in R
satisfies the characterization. Now, note that a pair with z; € L and z; € R
trivially satisfy the characterization, as they are not ancestor related.

We may then by recursion use the same argument on L and R, and this way
we end out showing that the characterization is true for all pairs in T O
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Lemma 4.8 (Common ancestor lemma). Let 1 < £,m,i < n with £ < m.
Assuming that all priorities are distinct, then x; is a common ancestor of z,
and z,, in T if and only if

p; = max{p, | min{z,{,m} < v < max{i,{,m}}. (4.1)
Proof. Equation (4.1) is equivalent to the following cases:
e p;=max{p, |[i<v<m}ifl<i</.
e p; =max{p, | L <v<m}ifl<i<m.
e p; =max{p, |[{<v<ilifm<i<n.

The fact that the lemma is true for each of these cases is a direct consequence
of the ancestor lemma. O

1

Corollary 4.9. Qi3 = W
i—j

Proof. By the ancestor lemma x; is an ancestor of x; if and only if
pi = max{py, | min{7, j} <h < max{i,j}}.

Since the p; are independent and identically distributed continuous random
variables, this happens with probability

1 1
{h € N|min{i,j} <h <max{i,j}}| [|i—j]+1

1

Corollary 4.10. ¢;.q,, — : __ .
orotaty cit, max{i,¢,m} — min{i,{,m} + 1

Proof. By the common ancestor lemma x; is a common ancestor of x; and x,,
if and only if

p; = max{p, | min{i,¢,m} < v < max{i,{,m}}.

Like in the proof of Lemma 4.9 we then use that the p; are i.i.d to conclude that
the probability is the reciprocal of the cardinality of the set we are taking the
maximum of, and this cardinality is max{i, ¢, m} — min{s, £, m} + 1. O

Now we are ready to find upper bounds on the expectations of the quantities
we are interested in. In order to do this, we will need the harmonic numbers,
which are are given by H,, = > 1", % Their crucial property is the inequalities

Inn< H, <1+1nn

for all n > 1.
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Theorem 4.11. Let 1 < /¢ < m. In a randomized search tree with n nodes the
following expectations hold:

(i) E[D(z¢)]=He+ Hyy1-¢—1<14+2-1Inn = O(logn).
(i) E[SL(ze)] =1 -

1

(i) E[SR(z)] =1~ —5—.

Proof. For (i) we get
N=> ai
i=1
_ z": L
i+

1 - 1
= e e— 1
€ —i+1 Z i—0+1
n+1— Z
= Z Z — —1 (Reverse left sum and swap index in right)

:H£+Hn+lfl_ 1
<14+l +(1+Inn+1-10)—
<1+4+2-Ilnn.

For (ii) we have

~
—

E[SL(zo)] = ) _(aie—1 — cize—1,0)

i=1
_e 1 1
_Z i—( Efl +1 max{i,¢— 1,0} —min{i, 0 — 1,0} + 1

i=1

-1
:z=1( z+1>

1
( —w-1 1 (The above is a telescoping sum)

!
= 7

For (iil) we note that the proof is basically the same as for (ii) so we omit it. [

By combining Lemma 4.12 and Lemma 4.13 below we obtain a proof of
Theorem 4.4, which will complete our analysis of treaps:
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Lemma 4.12. The operations SEARCH, INSERT and DELETE take expected
O(logn) time.

Proof. Searching for the spot for an element = takes expected
E[D(PrED(z)) + D(Succ(z))] = O(logn)

time, where PRED(z) finds a predecessor for z, e.g. finding the element in T
with the largest key less than or equal to x.key, and Succ(z) finds a successor
for z, e.g. finding the element in T" with the smallest key greater than or equal
to x.key.

For insertion we first need to perform a search, and then afterwards the
number of times we rotate is at most the length of the path traversed during
search. The bound thus follows from the bound for search.

Since a deletion is basically just the reversal of an insertion the bounds
follow. O

Lemma 4.13. Let z;, be an element of a treap which is to be deleted, or an
element which has just been inserted into a treap. Let R(xy) be the number of
rotations which were needed during the update of the treap. Then E[R(z,)] < 2.

Proof. First, we note that since in terms of rotations a deletion is an exact re-
versal of an insertion it suffices to analyze the number of rotations that occur
during a deletion. First, we note that if a node z is right-rotated down, then
SL(x) decreases by one, and if a node x is left-rotated down, then SR(z) de-
creases by one. Once x has been rotated down such that it is a leaf y, we have
SL(y) = SR(y) = 0. Tt follows by recursion that R(z) = SL(z)+ SR(x). Then
linearity of expectation and Theorem 4.11 gives us that

E[R(z()] = E[SL(z,)] + E[SR(z)] = 2 — (2 + n+11_£> <2.
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4.4 Doubly-connected edge list

To store the actual Voronoi diagram we use a DCEL, which we defined in Chap-
ter 2. We the details of how we intersect the half-infinite edges with a bounding
box are explained in the next chapter, since it relies on how the general algo-
rithm is described.

When initializing D we create a face for every p; € P, and this face will
describe V(p;). We now describe how we modify the DCEL D at site and circle
events.

4.4.1 Updating DCEL at site event

For the first site event where T is empty we do nothing. Now, consider a
site event where a new point p; is introduced, and assume that a previously
discovered point p; describes the arc which p; is under. Just above p; we create
two new breakpoints leftBreakpoint and rightBreakpoint which initially are at
the same point, but as the sweep line continues its downward motion, a new
edge of the Voronoi diagram starts being traced out:

halfEdge.twin

rightBreakpoint
fromVertex

halfEdge
leftBreakpoint
toVertex

To describe this in D we create two new vertices fromVertex and toVertex, one
for each breakpoint, and for now we have the breakpoints dictate the position
of the vertices — that is we attach fromVertex to rightBreakpoint, and we attach
toVertex to leftBreakpoint. We then create a new half-edge halfEdge, which has
fromVertex as its .origin, and then we create a matching twin for halfEdge which
has toVertex as its .origin property. We also connect halfEdge to the face which
describing V(p;), and halfEdge.twin to the face describing V(p;).

The orientations have been chosen such that halfEdge and its future prede-
cessors and successors will form a counterclockwise cycle around the Voronoi
cell V(p;).
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4.4.2 Updating DCEL at circle event

Consider the circle event defined by the sites p;,p;, pr where two breakpoints
have just intersected each other, the first breakpoint sliding along bi(p;, p;) and
the second sliding along bi(p;, px). Let vertexl describe the DCEL vertex which
was following the breakpoint along bi(p;, p;) and let vertex2 describe the DCEL
vertex which was following the breakpoint along bi(p;,pr). Let edgel denote
vertexl.edge and let edge2 denote vertex2.edge.

edge?
edgel
. A‘ | o fromVertex
Pi | : Pk
i
oppHalfEdge i halfEdge
o toVertex
LY

Note edgel and edge? in the figure. Now, since vertexl and vertex2 are colliding,
they will combine into a new breakpoint, and therefore we must detach them
from the breakpoints they were following before. We must also delete one of
them from our list of vertices, say vertex2, and then copy vertexl to be the new
.origin of edge2.

Let fromVertex denote vertexl, and create a new DCEL vertex toVertex and
a new twin pair of half-edges halfEdge and oppHalfEdge. Attach toVertex to the
new breakpoint, and let fromVertex be the origin of halfEdge, and let toVertex
be the origin of oppHalfEdge.

Now, since edgel and edge2 have been connected, we need to set some .next
and .prev pointers to make sure they’re also connected in the DCEL structure.
We will say that we pair two DCEL edges (u,v) by setting u.next = v and
v.prev = u. We make the following pairs:

(edgel.twin, edge2), (oppHalfEdge, edgel) and (edge2.twin, halfEdge).

Finally, we connect halfEdge to the face describing V(px) and oppHalfEdge to
the face describing V(p;).

Again, the orientations have been chosen such that the half-edges will be
part of counterclockwise cycles around their associated Voronoi cell.



Chapter 5

Description of Fortune’s
algorithm

This chapter continues our treatment of Section 7.2 in [2]. Some details are
original, as the book has left a lot of details to the reader.

We are now ready to describe Fortune’s algorithm. We start with describing
an overview of the algorithm, and then in the next section we describe some of
the details thoroughly — so anytime the algorithm says “see detail n”, then this
detail can be found in the next section.

Algorithm 5.1. VORONOIDIAGRAM(P)

Input: A set P = {p1,...,p,} of point sites in the plane.

Output: The Voronoi diagram Vor(P) given inside a bounding box in a doubly-
connected edge list D.

1. Initialize the event queue Q with a site event for every point in P, initialize
the beach line tree 7 to be NIL, and let the DCEL D be empty.

2. Repeat the following until Q is empty:

i. Remove the event e with the largest y-coordinate from Q.
ii. If e is a site event call HANDLESITEEVENT(e).
ili. If e is a site event call HANDLECIRCLEEVENT(e).

3. At this point the internal nodes in T represent the infinite edges of Vor(P).
Compute a bounding box B which contains all points in P, as well as all
the vertices of Vor(P), which are contained in D. Intersect the infinite
edges in 7 with B and let these intersection points be new vertices in D.

Add new edges and pointers to make sure we still have a proper DCEL
structure.

Procedure 5.2. HANDLESITEEVENT(e)

1. Let p; denote the site that e points to.

39
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If 7 = NIL then let 7 store the single arc that is described by p; and
return.

Otherwise, 7 # NIL. Search in T for the arc « vertically above p;, that
is the arc at which the vertical line through p; intersects the beach line.
(See Detail 3)

If @ has a pointer to a circle event €', then remove €’ from Q, as this circle
event is now a false alarm since « is about to disappear earlier than we
initially thought.

Create the new arc 8 defined by p; and insert it into 7 as described in
Section 4.2.1. Update D by creating the new half-edges which will be
traced out by the two new breakpoints as described in Section 4.4.1.

Check the triple of consecutive arcs where the new arc for p; is the left
arc to see if the breakpoints converge. If so, insert the circle event into Q
and add pointers between the node in 7 and the node in Q. Do the same
for the triple where the new arc is the right arc. (See Detail 4 and 7)

Procedure 5.3. HANDLECIRCLEEVENT(e)

1.

Let o be the arc pointed to by e, which is about to disappear from the
beach line.

Delete all circle events from QO which involve o: The one where « is the
middle arc has already been deleted, and the other two possible circle
events where « is the left and right arc respectively can be found through
a’s .leftArc and .rightArc pointers. (See Detail 6)

Delete o from T, how this is done is described in Section 4.2.2.

Add the center c¢ of the circle describing e as a new vertex of D. Connect
the half-edges in D that converge at e, and create a new half-edge which
starts at ¢ and setup the appropriate pointers. The details are given in
Section 4.4.2.

As « disappears from the beach line, we get new triples of consecutive arcs
which might have converging breakpoints that can lead to a circle event.
Check these and add circle events if needed. (See Detail 7)

5.1 Details

Detail 1: Intersecting lines, rays and segments

As a subroutine in several steps during the algorithm we will need to intersect
line segments or rays with each other. We start by describing a solution to
this in general. This detail assumes that the reader is familiar with basic linear
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algebra. We want to find the intersection between 2 lines. We parametrize the
lines as follows:

() =p+tdi and 72(s) =q+ sdo,

where p and ¢ are points on the lines, and d; and dy are direction vectors which
tells us which way the lines point. The situation is illustrated as follows:

To find an intersection point, we must find s,t € R such that

That is, we want to solve
p+tdy = q+ sds.

This can be rewritten into the matrix equation
s
A (_t) =q—p,
|

where A = | dy do | is the 2 x 2 matrix which has d; and d> as left and right
|

columns, respectively. The equation system has a unique solution if dy and ds

are linearly independent, and if they are, the solution is given by

(_St) =A"a—p)

This linear independence property is equivalent to checking that the determinant
det(A) is non-zero. So, in order to check if two lines intersect, we first check if
det(A) # 0. If not, we say the lines don’t intersect. Otherwise, they intersect,
and we use the above solution to find the intersection point.

Now in the case of line segments and rays, we also need some constraints on
s and t, it is not enough that the lines themselves intersect.

To intersect line segments, where the first line segment is given as the points
between p; and p2, and the second line segment is given as the points between ¢;
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and q2, then we let p = p; and ¢ = ¢; and thenset dy =ps—p1 and do = o — 1
and then we solve the equation system as above. If there is a solution to the
equation system, then we also need to check that s € [0,1] and ¢ € [0, 1] in order
for the intersection point to lie on both of the line segments.

Finally, we look at intersecting two rays. We describe the rays as the lines
at the start of this detail, but now we have the requirement that s,¢ > 0, which
gives us that the rays start at p and ¢, and then they shoot out in the direction
of di; and ds, respectively.

Detail 2: Choose breakpoint based on the ordering of tuple

Let p; and p; be two sites and let 3; and 8; be the hyperbolas that they describe.
If a breakpoint stores the tuple (p;, p;) then we want a way to find the « coordi-
nate of that breakpoint. Since the intersection of two hyperbolas may contain 2
intersection points, we need to pick the correct one. We already described this
when discussing internal tree nodes at the start of Section 4.2, but let’s recap:
The order is important since the intersection of the hyperbolas defined by p;
and p; consists of two points, and the order lets us tell these breakpoints apart.
If we consider the beach line as running from the left to the right, then at every
breakpoint an arc is leaving, and another is entering it. Thus the tuple (p;,p;)
tells us that we are interested in the breakpoint at which an arc pointing to p;
leaves, and an arc pointing to p; is entering the beach line. We will need the
following result:

Proposition 5.4. Let f(x) = ax?® + bx + ¢ be a polynomial with discriminant

d
D > 0 with roots 11 < ry. Then r = %(rl +19) is the only solution to d—f(r) =0
x

d d
and the expressions d—f(rl) and d—f(rg) are non-zero and have opposite signs.
x x

This fact can be visualized as follows:

A f

ro— T1tre
r="5




5.1. DETAILS 43

Proof of Proposition 5.4. It is well-known that we may factor f as follows:

f=alx—7r)(x—ry) =azx® —a(r, + ro)x + arro.

Since two polynomials are equal if and only if their coefficients are equal we get
b= —a(ry +r2), which gives us

d, +
%(7‘) =2ar +b=2a (71127?) —a(ry + 1) =0.

d

This is the only solution since d—f is a first degree polynomial. Now note that
x

df

F(Z‘) =2a # 0 and r; < r < ry which gives us that
x

an (L) = s (L) 0.

When intersecting two of the paraboals of the beach line, we will find two
intersection points, because of our assumptions. Proposition 5.4 then gives us
that at these intersection points 71,7y we have that

d(Bi — B)

T(rk) #0fork=1,2

sen <d(ﬂ¢ ) (T1)> ~ sen <d(ﬂid$ B;) (7,2))

O

dzx

We then want to locate a specific breakpoint between two arcs, and the above
will help us to do this.
To intersect the two parabolas 8; and 3; we write

(Bi — Bj)(x) = az® + bz +c,

where (for p = p;, ¢ =pj, hp =py — £, and hy = ¢, — £,))

y_ 0 Do
hq hp,
. ay (02 + py) — py(ai + ay) + Ly(aF + q; — P2 —py) + 5 (py — )

2h,hg

The square root of the discriminant is then

(px qgc)Z (p1 q )2
=Vb%2 —4dac = Y CEA
d b ac \/ Ny
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The z-values of the intersection points are then given by the well-known formulas

—-b—d ., _ —b+d
2a ' 2= 2a

r =

which gives us the intersection points ¢1 = (r1, 5;(r1)) and ¢a = (r2, Bi(r2)).
Now, we want to find the breakpoint which at which an arc of (; exits the
beach line, and an arc of §; enters the beach line. Proposition 5.4 gives us a
way of picking which one of ¢; and ¢, is the breakpoint that we need. For §; to
exit and 3; to enter, we need to pick k such that

dp; dB;
& ™ > g )
This is illustrated in the following figure, with a slight abuse of notation:
dg; ,
i?(’f’g) Bz
dx

Bi

Proposition 5.4 guarantees that either

dp; dp; dp; dg;
dﬁx (r1) > %(rl) and di (rq) < %(rg)

or

dp;
dzr

so it is possible to make the right choice. Now, note that by some simple
algebraic manipulations we have that

dp;
i ) > Wiy

(r) < ‘%(m) and ((izi (r2) > ‘%(rg),

if and only if

(rie = pa)(ay — by) > (rk — qa)(py — Ly).
This gives us a criterion for deciding which intersection point describes the
breakpoint in question, and this is the criterion used in the implementation.
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Detail 3: How to find the arc vertically above a point

At a site event when we discover a new point p we want to find the arc «
vertically above p, as illustrated here:

S g

Let x1,x2,..., 2, denote the breakpoints on the beach line. These are stored
as internal nodes in our BST 7. Since the keys for the internal nodes are the
x-values of the breakpoints, we may locate the arc v using binary search in 7.
Starting at an internal node z in T we visit its left subtree if x.key < p,, and
we visit its right subtree if x.key > p,. The key property is computed at every
check, since it is a function of the current position of the sweep line, see Detail
2 for how the key is computed. Eventually we will reach the leaf which stores
the arc a.

Detail 4: How to check if two breakpoints are converging

Let p,q,r be three sites from P which define 3 consecutive arcs on the beach
line. Let x and y be two breakpoints, where x is sliding along bi(p, ¢) and y is
sliding along bi(q, r) as we vary £. We want to check whether z and y converge,
and if so, what is the location of their intersection, and when during the sweep
of ¢ will this occur. The two possible scenarios are illustrated below:

In the divergent case we include the case where the bisectors are collinear.
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To check for convergence, we transform the problem into a problem of inter-
secting two rays. Let x and y denote the current location of the breakpoints,
and let ' and ¢’ denote the breakpoints new positions after moving the sweep
line some arbitrary amount downwards, and then let d; = 2’ —z and dy = 3’ —y.
Then s — x+ sdy and ¢ — y+tdy parametrize bi(p, ¢) and bi(g, ), respectively.
The setup, in the case where the rays do intersect, looks like this:

Now, as we saw in Detail 1, then the two rays converge if £ > 0 and s > 0.

This can be interpreted as follows: If s is positive, then that means that
2 will hit y in the future, and likewise if ¢ is positive, then y will hit = in the
future. This is important as we are treating the events chronologically, and if
x and y already intersected in the past (or the lines they describe, rather) then
they can define no future circle event.

Detail 5: Finding a circle through 3 points

As a part of the algorithm, we need to find the circle C' through 3 points p, g, .
It turns out if we intersect bi(p, ¢) and bi(g, r) we find the center of C, and then
to find the radius we just need to find the distance from the center to one of
the points. This is because if « € bi(p, q) N bi(g,r) then

dist(x, p) = dist(x, q) = dist(z,r),
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so x is exactly the center of a circle through p,q,r. This is illustrated in this
figure:

bi(p, q)

To intersect the bisectors, we form the midpoints

1 1
mp = 5(?‘“]) and mg = §(Q+7")

and then we let d; and ds denote ¢ —p and r — g rotated 90 degrees counterclock-
wise. Then s — my + sdy and t — mg + tdy parametrize bi(p, ¢) and bi(q, r),
respectively. Then we solve the linear system as in Detail 1.

Detail 6: Deleting false alarms during a circle event

At a circle event an arc disappears from the beach line, along with two break-
points. Consider the following example, where at one point in time we have the
arcs ai,Qo,...,ay on the beach line along with the breakpoints x and y that
as lies inbetween, and then after a circle event the arc as disappears after the
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breakpoints x and y intersect and get replaced by a new breakpoint z:

When this happens, we have to remove the circle events that involve the break-
points x and y merging with any other breakpoints. Since we set up a linked list
of arcs, we can find the arcs ay and ag through the .leftArc and .rightArc point-
ers that as has, and if these arcs point to a circle event, then we remove those
circle events from @ if they exist. These are of course found before deleting .
This covers removing the false alarms, since we have removed circle events from
every arc that surrounds x and y. This example is general enough to explain
the general case.

Detail 7: Checking consecutive arcs for circle events

First we consider the case of a site event. Assume the beach line is made out of
the arcs a, 8,7,0 and €, and assume that  is the new arc we just created. Just
a moment later the beach line looks something like this:

The arcs we need to check for converging breakpoints are then (¢, 3,~) and
(7,0,€). To be more precise, if pa, pg, Py, ps and p. denote the associated sites,
then we need to check the convergence of the breakpoints defined by (pa,ps)
and (pg,py), and to check the convergence of the breakpoints defined by (p-, ps)
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and (ps, pe), and in case of convergence we must add the corresponding circle
events to Q.

Now we consider the case of a circle event. Assume the beach line just
before the circle event contained the consecutive arcs «, 3,7, and €. At the
circle event the arc « then disappears, now connecting 8 and §, leaving us with
the following picture:

We now have triples of consecutive arcs which were not triples before, namely
(o, B,6) and (B, d,¢). We must check these, and in case of convergence we must
add the corresponding circle events to Q.

5.2 Conclusion

Theorem 5.5. Algorithm 5.1 as described computes Vor(P) if P satisfies our
theoretical assumptions, and the algorithm can be implemented such that it
runs in O(nlogn) time and uses O(n) storage.

Proof. The first claim follows from the lemmas we proved in Chapter 3.

For the running time, we note that the primitive operations on 7 and Q
take O(logn) time. For n site events we have O(nlogn) processing time. Now,
how many circle events do we process? Note that every circle event defines a
vertex of the Voronoi diagram, and we know from earlier that there are O(n)
edges in the diagram. Also, note that false alarms are deleted from Q before
they are processed. It follows that the number of circle events is linear, so the
time and storage bounds follow. O
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Chapter 6

Demo

A demo of our JavaScript implementation of Fortune’s algorithm is available at
http://funbyjohn.com/voronoi/. In general you can add points by clicking
with the mouse, and if you click on a point while holding down shift you delete
the point.

| ® O ® @ ThesisDemo X 4+ v

| ¢« C A NotSecure | funbyjohn.com/voronoi/ M % O [l 8B »* 0O gf’

IDemo 1: Voronoi diagram - instantVI Click to add a point

The first demo can be seen above. Here the Voronoi diagram is enclosed in a
bounding box, and you may hide the bounding box by pressing the 6 key, and
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you can change its size by pressing the 7 and 8 keys.

®C ® @ ThesisDemo X + v

& C A NotSecure | funbyjohn.com/voronoi/ h Y @O [l ® » 0O ,,?f’ :

IDemo 2: Voronoi diagram - events v| Your mouse controls the sweep line, press space to
lock/unlock it

The second demo can be seen above. It shows the beach line, and you can move
it up and down using the mouse. If you hold down shift the sweep line will move
slower.

® O ® @ ThesisDemo x 4+ v

& C A NotSecure | funbyjohn.com/voronoi/ ™ w* O [l 8 » 0O ,,?f’

[Demo 3: Delaunay triangulation  v| Click to add a point
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The final demo showcases the Delaunay triangulation, which is computed by
taking the dual of the Voronoi graph.

Key legend

Here is an overview displaying what every key does:

=
5
<

Effect

0O Ut Wi+

9
Space
Shift

Toggle drawing the binary search tree in Demo 2

Toggle showing names of breakpoints in Demo 2

Toggle showing the oriented edges in the DCEL in Demo 2
Toggle showing face pointers in the DCEL in Demo 2
Toggle showing .next/.prev pointers in the DCEL in Demo 2
Toggle bounding box display in both Demo 1

Make bounding box smaller in Demo 1

Make bounding box bigger in Demo 1

Toggle showing circle events in Demo 2

Lock/unlock sweep line in Demo 2

Hold down to make sweep line move slower in Demo 2

Note that the face pointers and the .next/.prev pointers needs the oriented
edges to be visible in order to work.

Warnings

There are some bugs and numerical issues in the implementation at the time of
writing. For a good time make sure to keep the following rules:

e Make sure no points have the same y-value.

e Make sure that at most 3 points lie on the same circle.

e Don’t place more than one point in the same spot.
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Appendix A

Notation

X-Y
| X
=
=
R

Rn
I- |

11l

||

dist(p, q)

<'7'>

C
P
2
n

Vor(P)

V(pi)

Vorg(P)
O(f(n))
bi(p, )

h(p,q)

X
°X
0X
BT(
B (

r

B,(p)
)

p

0B,

V(
B(
deg

G)
@)

(

(

v

)

)

Set difference

The number of elements in a finite set X.

If and only if

Implication

The real numbers.

The vector space of n-tuples of real numbers.

Norm.

The LP norm.

Absolute value if x is a number.

The distance between p and g, given by ||p — ¢||.

An inner product.

Subset (not strict, e.g. A=B = A C B).

A set of points {p1,pa,...,pn} that we want to apply an algorithm to.

A point in P (see above).

If not otherwise specified, n is the number of points in P (see above).

The Voronoi diagram of P.

The ith Voronoi cell.

Refers to R? — Vor(P).

Big O-notation.

Bisector of p and gq.

Open half-plane containing p with bi(p, ¢) as boundary.

The closure of a set X C R™, given by the union of X with its limit points.
The interior of a set X C R™, given by the union of all interior points of X.
The boundary of a set X C R", given by X — °X.

= {x € R™ | dist(x, p) < r}, the closed ball with center p and radius r.

= {x € R™ | dist(z, p) < r}, the open ball with center p and radius r.

= {z € R™ | dist(x, p) = r}, the circle with center p and radius r.

The set of vertices for the graph G.

The set of edges for the graph G.

The degree of a vertex v in a graph, e.g. the number of edges that touch v.
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