
Implicit Data Structures,
Sorting, and Text Indexing

Jesper Sindahl Nielsen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Implicit Data Structures,
Sorting, and Text Indexing

A Dissertation
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Jesper Sindahl Nielsen

July 31, 2015

Abstract
This thesis on data structures is in three parts. The first part deals with two fundamental
space efficient data structures: finger search trees and priority queues. The data structures
are implicit, i.e. they only consist of n input elements stored in an array of length n. We
consider the problem in the strict implicit model which allows no information to be stored
except the array and its length. Furthermore the n elements are comparable and indivisible,
i.e. we cannot inspect their bits, but we can compare any pair of elements. A finger search
tree is a data structure that allows for efficient lookups of the elements stored. We present
a strict implicit dynamic finger search strucutre with operations Search, Change-Finger,
Insert, and Delete, with times O(log t), O(nε), O(logn), O(logn), respectively, where
t is the rank distance between the current finger and the query element. We also prove
this structure is optimal in the strict implicit model. Next we present two strictly implicit
priority queues supporting Insert and ExtractMin in times O(1) and O(logn). The first
priority queue has amortized bounds, and the second structure’s bounds are worst case,
however the first structure also has O(1) moves amortized for the operations.

The second part of the thesis deals with another fundamental problem: sorting integers.
In this problem the model is a word-RAM with word size w = Ω(log2 n log logn) bits, and
our input is n integers of w bits each. We give a randomized algorithm that sorts such
integers in expected O(n) time. In arriving at our result we also present a randomized
algorithm for sorting smaller integers that are packed in words. Letting b be the number of
integers per word, we give a packed sorting algorithm running in time O(n

b
(logn+ log2 b)).

The topic of the third part is text indexing. The problems considered are term proximity
in succinct space, two pattern document retrieval problems and wild card indexing. In all of
the problems we are given a collection of documents with total length n. For term proximity
we must store the documents using the information theoretic lower bound space (succinct).
The query is then a pattern and a value k, and the answer is the top-k documents matching
the pattern. The top-k is determined by the Term Proximity scoring function, where the
score of a document is the distance between the closest pair of occurrences of the query
pattern in the document (lower is better). For this problem we show it is possible to answer
queries in O(|P |+k polylog(n)) time, where |P | is the pattern length, and n the total length
of the documents. In the two pattern problem queries are two patterns, and we must return
all documents matching both patterns (Two-Pattern – 2P), or matching one pattern but not
the other (Forbidden Pattern – FP). For these problems we give a solution with space O(n)
words and query time O(

√
nk log1/2+ε n). We also reduce boolean matrix multiplication to

both 2P and FP, giving evidence that high query times are likely necessary. Furthermore
we give concrete lower bounds for 2P and FP in the pointer machine model that prove near
optimality of all known data structures. In the Wild Card Indexing (WCI) problem queries
are patterns with up to κ wild cards, where a wild card matches any character. We give
pointer machine lower bounds for WCI, proving near optimality of known solutions.

i

Resumé
Denne afhandling omhandler datastrukturer og består af tre dele. Den første del er om to
grundlæggende pladseffektive datastrukturer: fingersøgningstræer og prioritetskøer. Datas-
trukturerne er implicit, dvs. består af de n input elementer gemt i en tabel af længde n.
Vi studerer problemerne i den stærke implicitte model, hvor det kun er tilladt at gemme
tabellen og tallet n. Ydermere er det kun muligt at sammenligne alle par af de n elementer,
og ellers er elementerne udelelige, dvs. vi kan ikke tilgå deres bits. Et fingersøgningstræ er
en datastruktur, hvor man effektivt kan søge efter de opbevarede elementer. Vi beskriver
en stærkt implicit dynamisk fingersøgningsstruktur med operationerne Search, Change-
Finger, Insert og Delete, som tager henholdsvis O(log t), O(nε), O(logn) og O(logn)
tid. Her er t rangafstanden mellem et specielt element, fingeren, og det efterspurgte element
blandt de n elementer. Vi beviser også, at disse tider er optimale for strengt implicitte
fingersøgningsstrukturer. Bagefter præsenterer vi to stærkt implicitte prioritetskøer, der
understøtter Insert og ExtractMin i O(1) og O(logn) tid. Den første prioritetskø har
amortiserede grænser, og den anden har værste-falds-grænser (worst case), tilgengæld har
den første kun O(1) flytninger amortiseret per operation.

Den anden del fokuserer på en anden grundlæggende problemstilling: sortering af heltal.
Vi studerer problemet i Random Access Machine modellen hvor antallet af bits per ord
(ordstørelsen) er w = Ω(log2 n log logn), og inputtet er n heltal hver med w bits. Vi giver
en randomiseret algoritme, der sorterer heltallene i forventet linær tid. Undervejs udvikler
vi en randomiseret algoritme til at sortere mindre heltal, der er pakket ind i ord. Lad b
være antallet af heltal pakket i hvert ord, så tager algoritmen for at sortere pakkede heltal
O(n

b
(logn+ log2 b)) tid.
Emnet i tredje del er tekstindeksering. Problemstillingerne der betragtes er Udtryks-

tæthed med koncis plads, To-Mønstret dokumenthentning og dokumenthentning med jokere
i forespørgslen. I alle problemstillingerne har vi en samling af tekstdokumenter med to-
tallængde n. For udtrykstæthed må datastrukturen kun bruge den informationsteoretiske
nedre grænse i plads (koncis/succinct). Forespørgslen er en tekststreng P og en værdi k, og
svaret er de top-k dokumenter, der har P som delstreng, med de bedste vurderingstal. De
top-k dokumenter afgøres udfra tæthedskriteriet: et dokuments vurderingstal er afstanden
mellem de to tætteste forekomster af P (kortere afstand er bedre). Vi viser, at det er muligt
at besvare den slags forespørgsler i O(|P | + k polylogn) tid, hvor |P | er længden P . I To
Mønstre problemerne er forespørgsler to tekststrenge P1 og P2. I den ene variant skal vi
returnere alle dokumenter, der indeholder både P1 og P2, i den anden variant skal vi re-
turnere alle dokumenter, der indeholder P1 men ikke P2. For disse problemer giver vi en
datastruktur med O(n) plads og O(

√
nk log1/2+ε n) forespørgselstid. Vi reducerer desuden

boolsk matrix multiplikation til begge problemer, hvilket er belæg for at forespørgslerne må
tage lang tid. Ydermere giver vi pointermaskine nedre grænser for To Mønstre problemerne,
der viser at alle kendte datastrukturer er næsten optimale. I joker problemet er forespørgsler
tekststrenge med jokere, og resultatet er alle dokumenter, hvor forespørgslen forekommer,
når man lader jokere være et hvilket som helst bogstav. For dette problem viser vi også ne-
dre grænser i pointermaskine modellen, der påviser, at de kendte datastrukturer er næsten
optimale.

iii

Preface

I have always been fond of programming, even from an early age where I
played around with web pages, which later turned into server side scripting,
and landed me a job at a local web development company. In the first year
of my undergraduate I was introduced to algorithms and data structures,
which soon became my primary interest. I met Mark Greve who arranged
programming competitions and practice sessions, which were mostly about
solving problems reminiscent of the ones we encountered at the algorithms
and data structure exams. I enjoyed these programming contests, and as my
abilities grew I became more and more interested in the theory of algorithms
and data structures. When I started my graduate studies, one of the first
courses I took was Computational Geometry with Gerth Brodal teaching it.
He came to learn of my interest in algorithmics and soon suggested I pursue
a PhD degree with him as my advisor, and this thesis is the end result.

My PhD position has been partially at Aarhus University and partially
at the State and University Library. The time at university has been mostly
spent focusing on the theory, where as at the library we have focused on
the practical side. At the library we have developed several tools for quality
assurance in their digital audio archives, which are frequently used by their
digital archiving teams.

During my PhD studies I have been a co-author on 6 published papers,
and 2 papers under submission. In this thesis I have only included 6 of these
papers (one unpublished), but the remaining two still deserve to be mentioned.
The first I will mention is part of the work I did at the State and University
Library with quality assurance of their digital sound archives. The paper is
about a tool used for checking if a migration from one audio file format to
another succeeded. Here succeeded means that the content of the migrated
file sounds the same as the original. This is particularly useful for libraries
since there are standards on how to store digital sound archives and typically
they receive audio formats different from their standard.

1 Bolette Ammitzbøll Jurik and Jesper Sindahl Nielsen. Audio quality
assurance: An application of cross correlation. In International Confer-
ence on Preservation of Digital Objects (iPRES), pages 196–201, 2012

The second paper is on covering points with curves and lines. We give an

v

vi

algorithm for the Line Cover problem, and more generally Curve Cover [6].
In the Curve Cover problem we are given a set of n points in Rd and the task
is to find the minimum number of curves needed to cover all the points. The
curves are from a specific class (e.g. lines, circles, ellipses, parabolas) where
any pair of curves have at most s intersections and d degrees of freedom. We
give an algorithm that runs in time O?

((
k

log k

)k)
where k is the minimum

number of curves needed and the O? hides polynomial factors in n and k.

2 Peyman Afshani, Edvin Berglin, Ingo van Duijn, and Jesper Sindahl
Nielsen. Applications of incidence bounds in point covering problems.
2015. (In submission)

Each chapter of the thesis is based on papers already published or in submis-
sion. To establish the connection between chapters and the papers we now
list the papers each chapter is based on.

Chapter 2

3 Gerth Stølting Brodal, Jesper Sindahl Nielsen, and Jakob Truelsen.
Finger search in the implicit model. In International Symposium
on Algorithms and Computation (ISAAC), pages 527–536, 2012

4 Gerth Stølting Brodal, Jesper Sindahl Nielsen, and Jakob Truelsen.
Strictly implicit priority queues: On the number of moves and
worst-case time. In Algorithms and Data Structures Workshop
(WADS), 2015

Chapter 3

5 Djamal Belazzougui, Gerth Stølting Brodal, and Jesper Sindahl Nielsen.
Expected linear time sorting for word size Ω(log2 n log logn). In
Scandinavian Workshop on Algorithm Theory (SWAT), Proceed-
ings, pages 26–37, 2014

Chapter 4

6 Kasper Green Larsen, J. Ian Munro, Jesper Sindahl Nielsen, and
Sharma V. Thankachan. On hardness of several string indexing
problems. In Annual Symposium on Combinatorial Pattern Match-
ing (CPM), pages 242–251, 2014

7 J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah,
and Sharma V. Thankachan. Top-k term-proximity in succinct
space. In Algorithms and Computation - 25th International Sym-
posium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Pro-
ceedings, pages 169–180, 2014

vii

8 Peyman Afshani and Jesper Sindahl Nielsen. Data structure lower
bounds for set intersection and document indexing problems. 2015
(manuscript, in submission)

Acknowledgments
First I would like to thank my advisor Gerth Stølting Brodal for accepting me as PhD
student. Gerth’s door is always open and we have had many interesting talks on research,
education, and life in general. Secondly, I would like to thank Lars Arge for providing the
means required to maintain an excellent environment of great researchers. Even though
research is the primary force, the environment here is also friendly, good-humoured, and de-
lightful. I would like to thank Jakob Truelsen for working with me on the first publication,
reimplementing the (in?)famous programming language RASMUS, and hosting program-
ming competitions. In a similar vein, my thanks go to Mark Greve who introduced me to
programming competitions that gave the original spark for algorithmic curiousity. I also
thank Mathias Rav for taking over the job of preparing and hosting the programming com-
petitions at Aarhus University, now that my time here is coming to an end. During the last
part of my PhD I have been working a lot with Peyman Afshani and I have learned much
during this time, thank you. Peyman also arranged for a group of the MADALGO PhD
students to visit Otfriend Cheong at KAIST in Daejon, South Korea, for a week. This was
a truly pleasent trip and I highly appreciate being part of Otfried’s and Peyman’s venture.

The great atmosphere at MADALGO is in large part thanks to the PhD students here
and I am grateful to have been a part this group. We have had a wide variety of social
activities such as LAN parties, board game nights, movie nights, Friday bars (a frequent
occurrence), and concerts. I would like to in particular thank Ingo van Duijn and Edvin
Berglin for their great sense of humour that can turn any gathering into a party. I would
also like to thank my previous office mate Casper Kejlberg-Rasmussen for many interesting
conversations and for the fun LAN parties.

From the State and University Library I would foremost like to thank Bjarne Andersen
for finding excellent and interesting topics to work on. I would also like to thank the team I
primarily worked with: Bolette Ammitzbøll Jurik, Asger Askov-Blekinge, and Per Møldrup-
Dalum. We have been to conferences, meetings, and social events that I have all enjoyed.

I spent half a year at the University of Waterloo, Canada, hosted by Ian Munro and
Alex López-Ortiz. When I arrived at Waterloo several people helped me get settled in and
quickly became my friends, thanks to Daniela Maftuleac, Martin Derka, Shahin Kamali and
Edward Lee. We had fun times in the Grad House, where we often shared a pitcher of beer
(or more) on Fridays, so thank you Ian and Alex for inviting me to Waterloo. During my
stay in Waterloo I met Sharma Thankachan, a postdoc who helped me delve deeper into the
world of strings and information retrieval. Sharma also invited me to Louisianna, where we
visited his previous research group, and of course we spent some time in both Baton Rouge
and New Orleans where we had a lot of fun!

Finally I would like to thank my friends and family. First my parents, Inge and Jan, for
encouraging me to follow my interests and believing in me. I would also like to thank my
brother, Jørn, for nerdy discussions on almost any topic and in general great company.

Jesper Sindahl Nielsen,
Aarhus, July 31, 2015.

ix

Contents

Abstract i

Resumé iii

Preface v

Acknowledgments ix

Contents xi

1 Introduction 1

2 Fundamental Implicit Data Structures 7
2.1 The Implicit Model . 7
2.2 Finger Search . 8
2.3 Static Finger Search Structure 11
2.4 Finger Search Lower Bounds 12
2.5 Dynamic Finger Search Structure 14
2.6 Priority Queues . 18
2.7 A Priority Queue with Amortized O(1) Moves 20
2.8 A Priority Queue with Worst Case Bounds 28

3 Interlude: Sorting 35
3.1 Algorithm . 36
3.2 Tools . 39
3.3 Algorithm – RAM details . 41
3.4 Packed sorting . 45
3.5 General sorting . 47

4 Text Indexing 49
4.1 Introduction . 50
4.2 Previous Results . 52
4.3 Our Results . 58
4.4 Preliminaries . 60

xi

xii CONTENTS

4.5 Term Proximity . 66
4.6 The Common Colors Problem 77
4.7 Hardness Results . 83
4.8 Wild Card Indexing Lower Bounds 87
4.9 Two Patterns Reporting Lower Bound 94
4.10 Two Patterns Semi-Group Lower Bound 99
4.11 Lower Bound Implications . 101

Bibliography 105

Chapter 1

Introduction

Computer Science is a very data-centric science, and in this sense the danish
term “datalogi” (the study (or science) of data), is much more accurate. The
availability of data has increased drastically in recent years, everytime we
interact with any kind of electronic system (which is almost all the time) more
data is generated. But what exactly is data? As computer scientists we often
abstract away exactly where the data comes from, and deal with how to process
it instead. For instance we might want to compute a function on some data,
such as finding the median of a set of integers, or sorting a set of reals. In such
a setting we do not care whether those values are temperature measurements,
financial statistics, or birth years. For the fundamental problems (e.g. finding
the median and sorting), we want general solutions that works for any type
of data in order to not reinvent the wheel time and time again, and clearly
there is little differences in sorting a set temperatures and sorting a set of
birth years.

When we have data, we need to store the data such that we can efficiently
manipulate it. However, we also want to store it efficiently, meaning we wish
to not waste space. In the area of data structures we develop schemes to
store data along with procedures for accessing it. We call the procedures
algorithms and the storage scheme a data structure. There are various types
of data structures and algorithms depending on what we want to compute.
We generally have two categories of data: static data and dynamic data.

Static data is never changed once it has been collected or given. For static
data structures (i.e. data structures never receive updates to the data) we
typically have two associated algorithms: a query algorithm and a building
algorithm. The job of the query algorithm is to answer questions about the
data. The building (or preprocessing) algorithm puts the data in the proper
order so that the query algorithm is correct and efficient, i.e. it builds the data
structure. Examples of static data are old newspapers and dictionaries. For
old newspapers we might be interested in retrieving all articles written by a
particular author in a certain period. Alternatively we might be interested in

1

2 CHAPTER 1. INTRODUCTION

all newspaper articles with a headline containing one word but not containing
another word (we will return to this problem in Chapter 4).

Dynamic data changes over time which means our algorithms should sup-
port such operations as well. We usually have two types of updates to our
data, insertions for new arriving data, and deletions for data we no longer
wish to maintain. One example of dynamic data is road networks, where we
insert new roads when they are built and delete roads that have been closed
down. Another example is to maintain a list of vendors selling the same item,
and we want to always know who has the cheapest. Over time the vendors
may change their price, which would correspond to an update. For such a task
we would use a priority queue (we will return to priority queues in Chapter 2).

Many of the basic algorithms and data structures have been known for
years and are now part of the standard libraries of most modern programming
languages. Likewise, many of the search structures developed are implemented
in databases to allow fast lookups. Exactly because of these reasons, any
improvement on the fundamental data structures can have a huge impact,
since it could potentially make nearly all software faster.

We measure how good a static data structure is in terms of space usage
versus query time. The trivial data structure is to simply store the input
elements as is, and when answering queries we inspect every element. Let-
ting n be the number of elements in our data structure, this requires (at
least for the problems considered in this thesis) linear, or O(n), query time
and linear space. For some problems this is actually optimal in some sense,
but for many other problems it is not. An example is to find all newspaper
articles containing a particular phrase. We can find the articles in time pro-
portional to the length of the phrase and to the number of articles containing
the phrase. This is optimal, because we must read the query and we must
list the output. For a number of problems there are many solutions that all
hit different trade-offs between space usage and query times. One problem
where it is possible to achieve any trade-off is the Forbidden Pattern prob-
lem, where we must find all newspaper articles containing one given phrase
but not containing another given phrase. In the Forbidden Pattern problem
it is actually possible to achieve any query time Q(n), and space usage S(n)
approximately O

(
n2

Q(n)

)
(ignoring subpolynomial factors). This means as we

allow for slower queries we can use less space, or vice versa. The interesting
part here is, that we can actually prove, that we cannot do better! More on
this in Chapter 4.

So far we have briefly discussed what data structures are. We typically call
them upper bounds, since a data structure with certain space and time bounds
proves that a problem can be solved using at most that amount of time and
space. When we want to prove that a data structure is optimal, we prove
that any data structure must at least use a certain amount of space or time to
solve the problem correctly. A statement about the least amount of resources

3

required to solve a problem is called a lower bound. Intuitively it should be
difficult to prove lower bounds for data structures, since it requires us to reason
about all possible data structures, also the ones we have not yet discovered,
and make a general statement about them. To prove lower bounds we need
to set the rules and define what an algorithm or data structure is allowed to
do. These definitions are captured in a model. In this thesis we study data
structures in various models: the implicit model, the RAM (Random Access
Machine) model and the pointer machine model. Each model has its own set
of rules, that allows us to reason about their efficiency and correctness. In
each chapter there will be a description of the particular models used.

A prevalent theme of this thesis is space efficiency of data structures.
There are many reasons to care about space efficiency of data structures and
utilizing every bit in the best way possible, we now give a brief motivation.
As data becomes more and more available and we collect more and more of
it, we need to put more focus on space efficiency, since we might simply run
out of memory or space due to the large quantities of data. When we create
data structures based on a model, the model is an abstraction of reality that
allows us to prove properties and give guarantees about the running times
of the algorithms. However, if we wanted to model a computer completely
it would be nearly impossible to prove anything interesting due to its many
layers and complexities. This is why so many different models exist, they
each focus on a particular cost for the algorithms. The word-RAM model
resembles the computer to a high extent, in the sense that we have words
consiting of a number of bits (typically more than c logn so we can encode
any number between 0 and nc), and we can read one word at a time, and
perform any instruction a regular CPU can execute on a register. This model
is quite reasonable, and anything we can compute in the word-RAM model
we can also implement and run on our computers. However, the cost of an
algorithm in the RAM model is the number of operations we execute and the
number of words we read (each costs 1 unit of time). That is only one of
the relevant measures when analyzing running times of algorithms. Another
very important measure is the number of cache misses we perform during the
execution of an algorithm. If an algorithm analyzed in the RAM model has
running time O(n), that might be very good. However it may suffer in other
ways because it might rely too heavily on random accesses, i.e. every time a
cell is read it may incur a cache miss. Then we suddenly have O(n) cache
misses, where if we could just scan the input from one end to the other, we
would only incur a cache miss every B reads since a cache miss makes the
computer fetch the B following records, giving O(n/B) cache misses. The
models that deal with the transfer of records from various levels of cache or
external memory to internal memory are the Cache-Oblivous model and the
External Memory model (or I/O model).

We will not spend much time on these two models, but here they serve
a purpose: to illustrate the usefulness of space efficient data structures. In-

4 CHAPTER 1. INTRODUCTION

ternal memory space efficient data structures and algorithms synergize well
with external memory algorithms due to the following reasons. Sometimes
the problem to be solved in external memory has a core problem, which might
be significantly smaller, but still on the verge of what we can handle inter-
nally. If we develop space efficient solutions and minimize the overhead for
the internal algorithm, this may very well be enough to actually have an ef-
ficient solution in practice. To illustrate this with an example, we consider
one assumption that is very useful in practice, which concerns the well-known
sweep line paradigm from computational geometry. The general framework is
that for a set of points or line segments we need to compute some function,
e.g. the intersections of all pairs of line segments. The algorithm works (in-
tuitively) by sweeping a line from top to bottom, inserting line segments into
a search structure when they are encountered and removing a line segment
when the sweep line reaches its end point. As the line sweeps down, the search
structure is used to find neighbouring line segments, checking if they intersect
and reorder them when their intersection point has been passed. Each end
point of a line segment or point of intersection between two line segments is
called an event, and we need to process these events in order. One method of
processing them in the right order is to insert all end points of line segments
into a priority queue, and insert intersection points as we discover them. To
move on to the next event we simply extract the maximum value from the
priority queue (if we are sweeping top to bottom). It works well in practice to
assume that the number of line segments that intersect the sweep line fit in
internal memory. It turns out that for inputs that are encountered in practice
this assumption is true, though clearly we can design input instances where it
is not true: put all line segments such that they all cross the same horizontal
line. If the search structure or event handling structure that we use to main-
tain these lines and event points have too much overhead, it might not fit in
internal memory and then this algorithm becomes very slow due to needing
I/O operations. Even if we then use an external memory structure for the
line segements intersecting the sweep line, it still takes too long compared to
having a fast internal structure, simply because I/O operations are so much
more expensive. If we want to optimize our algorithm in practice we should
take into account all the facets, both internal and external computation. As
the example illustrates, sometimes what can make or break an algorithm’s
efficiency comes down to the space usage of its data structures.

In the rest of this thesis we have three chapters, each covering a slightly
different area. We start in Chapter 2 with space efficient fundamental data
structures developed in the implicit model. The data structures are search
trees with the finger search property, Sections 2.3 and 2.5 and priority queues
in Sections 2.7 and 2.8. Since the structures are implicit they are optimal in
regards of space. Their query times are also theoretically optimal. We note it
is difficult to get a good working implementation of the dynamic finger search
tree presented in Section 2.2, since it relies on a very complicated implicit

5

dictionary as a black box. The static version however is straight forward to
implement, though it is mostly a theoretical study of the limits of the implicit
model and better implementations with low query overhead are available. In
Chapter 3 we present a linear time algorithm for sorting integers when we
have a RAM with a large word size. The algorithm pushes the boundaries
for which word sizes we can sort in linear time, and it is an improvement on
a more than 15 year old result. However, the question of whether we can
sort in linear time for all word sizes remains open. Concretely the question
is, can we sort integers in linear time on a RAM with w = ω(logn) and
w = o(log2 n log logn)?

Text indexing is the subject of the last chapter where we study a variety of
text indexing problems and prove both upper and lower bounds. We start in
Sections 4.1-4.4 by giving an introduction to the area of document retrieval,
and highlight a few interesting problems and their history as well as some
preliminaries. In Section 4.5 we give an upper bound for the Term Proximity
document retrieval problem. Term proximity is a scoring function where a
document’s score is the distance between the closest pair of occurrences of a
pattern. The task is then to report the top-k documents for a given pattern
and k. We then move on to give an upper bound for the Forbidden Pattern
problem in Section 4.6, which is achieved through a reduction to what is known
as the Common Colors problem. Before we move on to prove lower bounds,
we give evidence that the Forbidden Pattern (and that family of problems)
is hard by giving a reduction from the Boolean Matrix Multiplication. This
is also known as a “conditional lower bounds”, more on that in Section 4.7.
Finally we move on to prove lower bounds in the pointer machine model for
a number of document indexing problems. Firstly, in Section 4.8 we present
two different lower bounds for the Wild Card Indexing problem, where we
are given a collection of documents, and queries are texts with “wild card”
symbols that match any character. Afterwards we turn our attention to the
Two Pattern problems, such as the Forbidden Pattern problem, and prove
almost tight trade-offs between space usage and query times. The Two Pattern
lower bounds are considered both for the reporting version and the counting
version in Sections 4.9-4.10. Finally in Section 4.11 we discuss the implications
of our lower bounds for other core problems in theoretical computer science,
in particular the theory of algorithms and data structures.

Chapter 2

Fundamental Implicit Data
Structures

In this chapter we deal with fundamental data structures developed in the
implicit model which focuses on space efficiency. The implicit model is also
sometimes called in-place, typically used when talking about algorithms rather
than data structures.

In this chapter two fundamental data structuring problems are studied
in the implicit model. The first one is about search trees with the finger
search property. The second problem is priority queues with few element
moves per operation. For these two data structuring problems the elements
are drawn from a totally ordered universe. We first give a description of the
implicit model in Section 2.1. In Sections 2.2-2.5 we present our solutions for
the finger search trees and we present our implicit priority queue results in
Sections 2.6-2.8.

2.1 The Implicit Model

The implicit model is defined as follows. During operations we are only allowed
to use O(1) registers. Each register stores either an element or Θ(logn) bits
(the word size of the computer). The only allowed operations on elements
are comparisons and swaps (i.e. two elements switch their position). Any
operations usually found in a RAM are allowed on registers and n inO(1) time.
The cost of an algorithm (also known as its running time) is the sum of the
number of comparisons, swaps, and RAM operations performed on registers.
Between operations we are only allowed to explicitly store the elements and
the number of elements n. There are variations on the limits of exactly what
we are allowed to store. Some papers store nothing except n and the elements
(see [20, 61]) while others allow O(1) additional words between operations [58,

This chapter includes the two papers on implicit data structures [25, 26]

7

8 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

60, 95]. We denote the version with O(1) additional words the weak implicit
model and the version with no additional words the strict implicit model.
In both models the elements are stored in an array of length n. Performing
insertions and deletions then grows or shrinks the array by one, i.e. the array
increases to have n+ 1 entries or decreases to have n− 1 entries. That means
in order to delete an element, the element to be deleted when the procedure
returns should be located at position n in the array. Similarly for an insertion
the new element appears at position n+ 1.

Note that since (almost) no additional information can be stored between
operations all information must be encoded in the permutation of the elements.
We study the strict implicit model, i.e. no information is retained between
operations and only n and the elements are stored in some permutation. It
is interesting to study this version of the implicit model, since there is no
exact agreement in the litterature as to which model is "the implicit model".
Particularly it is interesting to study the limits of the strict implicit model
versus the weak implicit model.

It is very common for data structures to store pointers, but note that we
cannot store pointers in this model as we are only allowed to have the input
elements and n. Since our elements are drawn from a totally ordered universe
we can encode a 0/1-bit with two distinct elements from the universe by their
order. That is, with an ordered (in terms of their position in memory) pair
of distinct elements (x, y), the pair encodes 1 if x < y and 0 otherwise. E.g.
pointers can be encoded with 2 logn elements and decoded in O(logn) time.

The most widely known implicit data structure is the binary heap of
Williams [121]. The binary heap structure consists of an array of length n,
storing the elements, and no information is stored between operations, except
for the array and the value n. This is therefore an example of a strictly implicit
data structure. We return to a more thorough discussion of priority queues
and heaps in Section 2.6

2.2 Finger Search

In this section we consider the problem of creating an implicit dictionary
[58] that supports finger search. A dictionary is a data structure storing a
set of elements with distinct comparable keys such that an element can be
located efficiently given its key. It may also support predecessor and successor
queries where given a query k it must return the element with the greatest
key less than k or the element with smallest key greater than k, respectively.
A dynamic dictionary also supports insertion the and deletion of elements. A
dictionary has the finger search property if the time for searching is dependent
on the rank distance t between a specific element f , called the finger, and the
query key k. In the static case O(log t) search can be achieved by exponential
search on a sorted array of elements starting at the finger.

2.2. FINGER SEARCH 9

We show that for any strict implicit dictionary supporting finger searches
in q(t) = Ω(log t) time, the time to move the finger to another element is
Ω(q−1(logn)), where t is the rank distance between the query element and
the finger. We present an optimal implicit static structure matching this
lower bound. We furthermore present a near optimal strict implicit dy-
namic structure supporting search, change-finger, insert, and delete
in times O(q(t)), O(q−1(logn) logn), O(logn), and O(logn), respectively, for
any q(t) = Ω(log t). Finally we show that the search operation must take
Ω(logn) time for the special case where the finger is always changed to the
element returned by the last query.

Dynamic finger search data structures have been widely studied outside the
implicit model, e.g. some of the famous dynamic structures that support finger
searches are splay trees, randomized skip lists and level linked (2-4)-trees.
These all support finger search in O(log t) time, respectively in the amortized,
expected and worst case sense. For an overview of data structures that support
finger search see [27]. We consider two variants of finger search structures. The
first variant is the finger search dictionary where the search operation also
changes the finger to the returned element. The second variant is the change
finger dictionary where the change-finger operation is separate from the
search operation.

Note that the static sorted array solution does not fit into the strict implicit
model, since we are not allowed to use additional space to store the index of f
between operations. We show that for a static dictionary in the strict model,
if we want a search time of O(log t), then change-finger must take time
Ω(nε), while in the weak model a sorted array achieves O(1) change-finger
time.

Much effort has gone into finding a worst case optimal implicit dictionary.
Among the first [94] gave a dictionary supporting insert, delete and search
in O(log2 n) time. In [60] an implicit B-tree is presented, and finally in [58]
a worst case optimal and cache oblivious dictionary is presented. To prove
our dynamic upper bounds we use the movable implicit dictionary presented
in [23], supporting insert, delete, predecessor, successor, move-left
and move-right. The operation move-right moves the dictionary laid out
in cells i through j to i+1 through j+1 and move-left moves the dictionary
the other direction.

The running time of the search operation is hereafter denoted by q(t, n).
Throughout the chapter we require that q(t, n) is non decreasing in both t
and n, q(t, n) ≥ log t, and that q(0, n) < log n

2 . We define Zq(n) = min{t ∈
N | q(t, n) ≥ log n

2 }, i.e. Zq(n) is the smallest rank distance t, such that
q(t, n) > log n

2 . Note that Zq(n) ≤ n
2 (since by assumption q(t, n) ≥ log t),

and if q is a function of only t, then Zq is essentially equivalent to q−1(log n
2).

As an example q(t, n) = 1
ε log t, gives Zq(n) =

⌈
(n2)ε

⌉
, for 0 < ε ≤ 1. We

require that for a given q, Zq(n) can be evaluated in constant time, and that
Zq(n+ 1)− Zq(n) is bounded by a fixed constant for all n.

10 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

We will use set notation on a data structure when appropriate, e.g. |X|
will denote the number of elements in the structure X and e ∈ X will denote
that the element e is in the structure X. Given two data structures or sets X
and Y , we say that X ≺ Y ⇔ ∀(x, y) ∈ X × Y : x < y. We use d(e1, e2) to
denote the absolute rank distance between two elements, that is the difference
of the index of e1 and e2 in the sorted key order of all elements in the structure.
At any time f will denote the current finger element and t the rank distance
between f and the current search key.

Our results In Section 2.3 we present a static change-finger implicit dic-
tionary supporting predecessor in time O(q(t, n)), and change-finger
in time O(Zq(n) + logn), for any function q(t, n). Note that by choosing
q(t, n) = 1

ε log t, we get a search time of O(log t) and a change finger time of
O(nε) for any 0 < ε ≤ 1.

In Section 2.4 we prove our lower bounds. First we prove (Lemma 1) that
for any algorithm A on a strict implicit data structure of size n that runs in
time at most τ , whose arguments are keys or elements from the structure,
there exists a set XA,n of at most O(2τ) array entries, such that A touches
only array entries from XA,n, no matter the arguments to A or the content
of the data structure. We use this to show that for any change-finger im-
plicit dictionary with a search time of q(t, n), change-finger will take time
Ω(Zq(n)+ logn) for some t (Theorem 1). We prove that for any change-finger
implicit dictionary search will take time at least log t (Theorem 2). A simi-
lar argument applies for predecessor and successor. This means that the
requirement q(t, n) ≥ log t is necessary. We show that for any finger-search
implicit dictionary search must take at least logn time as a function of both
t and n, i.e. it is impossible to create any meaningful finger-search dictionary
in the strict implicit model (Theorem 3).

By Theorem 1 and Theorem 2 the static data structure presented in
Section 2.3 is optimal w.r.t. search and change-finger time trade-off, for
any function q(t, n) as defined above. In the special case where the restriction
q(0, n) < log n

2 does not hold [58] provides the optimal trade-off.

Finally in Section 2.5 we outline a construction for creating a dynamic
change-finger implicit dictionary, supporting insert and delete in time
O(logn), predecessor and successor in time O(q(t, n)) and change-
finger in time O(Zq(n) logn). Note that by setting q(t, n) = 2

ε log t, we get a
search time of O(log t) and a change-finger time of O(nε/2 logn) = O(nε)
for any 0 < ε ≤ 1, which is asymptotically optimal in the strict model. It
remains an open problem if one can get better bounds in the dynamic case by
using O(1) additional words.

2.3. STATIC FINGER SEARCH STRUCTURE 11

XL S f L XS l1 l2 l3

P O

∆ ∆

Figure 2.1: Memory layout of the static dictonary.

2.3 Static Finger Search Structure

In this section we present a simple change-finger implicit dictionary, achieving
an optimal trade-off between the time for search and changer-finger.

Given some function q(t, n), as defined in Section 2.2, we are aiming for
a search time of O(q(t, n)). Let ∆ = Zq(n). Note that we are allowed to
use O(logn) time searching for elements with rank-distance t ≥ ∆ from the
finger, since q(t, n) = Ω(logn) for t ≥ ∆.

Intuitively, we start with a sorted list of elements. We cut the 2∆ + 1
elements closest to f (f being in the center), from this list, and swap them
with the first 2∆ + 1 elements, such that the finger element is at position ∆+1.
The elements that were cut out form the proximity structure P , the rest of
the elements are in the overflow structure O (see Figure 2.1). A search
for x is performed by first doing an exponential search for x in the proximity
structure, and if x is not found there, by doing binary searches for it in the
remaining sorted sequences.

The proximity structure consists of sorted lists XS ≺ S ≺ {f} ≺ L ≺ XL.
The list S contains the up to ∆ elements smaller than f that are closest
to f w.r.t. rank distance. The list L contains the up to ∆ elements closest
to f , but larger than f . Both are sorted in ascending order. XL contains
a possibly empty sorted sequence of elements larger than elements from L,
and XS contains a possibly empty sorted sequence of elements smaller than
elements from S. Here |XL|+ |S| = ∆ = |L|+ |XS |, |S| = min{∆, rank(f)−1}

Case 1l1

Case 2

Case 3

Case 4

2∆ + 1 O

f f

f

ff

f f

n − (2∆ + 1) P

l1

l3

l3

l3l2

l2

l2

f

Figure 2.2: Cases for the change-finger operation. The left side is the
sorted array. In all cases the horizontally marked segment contains the new
finger element and must be moved to the beginning. In the final two cases,
there are not enough elements around f so P is padded with what was already
there. The emphasized bar in the array is the 2∆ + 1 break point between
the proximity structure and the overflow structure.

12 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

and |L| = min{∆, n−rank(f)}. The overflow structure consists of three sorted
sequences l2 ≺ l1 ≺ {f} ≺ l3, each possibly empty.

To perform a change-finger operation, we first revert the array back to
one sorted list and the index of f is found by doing a binary search. Once f is
found there are 4 cases to consider, as illustrated in Figure 2.2. Note that in
each case, at most 2|P | elements have to be moved. Furthermore the elements
can be moved such that at most O(|P |) swaps are needed. In particular case 2
and 4 can be solved by a constant number of list reversals.

For reverting to a sorted array and for doing search, we need to compute
the lengths of all sorted sequences. These lengths uniquely determine the case
used for construction, and the construction can thus be undone. To find |S|
a binary search for the split point between XL and S, is done within the first
∆ elements of P . This is possible since S ≺ {f} ≺ XL. Similarly |L| and
|XS | can be found. The separation between l2 and l3, can be found by doing
a binary search for f in O, since l1 ∪ l2 ≺ {f} ≺ l3. Finally if |l3| < |O|,
the separation between l1 and l2 can be found by a binary search, comparing
candidates against the largest element from l2, since l2 ≺ l1.

When performing the search operation for some key k, we first determine
if k < f . If this is the case, an exponential search for k in S is performed. We
can detect if we have crossed the boundary to XL, since S ≺ {f} ≺ XL. If
the element is found it can be returned. If k > f we do an identical search
in L. Otherwise the element is neither located in S nor L, and therefore
d(k, f) > ∆. All lengths are then reconstructed as above. If k > f a binary
search is performed in XL and l3. Otherwise k < f and binary searches are
performed in XS, l1, and l2.

Analysis The change-finger operation first computes the lengths of all
lists in O(logn) time. The case used for constructing the current layout is
then identified and reversed in O(∆) time. We locate the new finger f ′ by
binary search in O(logn) time and afterwards the O(∆) elements closest to f ′
are moved to P . We get O(∆ + logn) time for change-finger.

For searches there are two cases to consider. If t ≤ ∆, it will be located by
the exponential search in P in O(log t) = O(q(t, n)) time, since by assumption
q(t, n) ≥ log t. Otherwise the lengths of the sorted sequences will be recovered
in O(logn) time, and a constant number of binary searches will be performed
in O(logn) time total. Since t ≥ ∆ ⇒ q(t, n) ≥ log n

2 , we again get a search
time of O(q(t, n)).

2.4 Finger Search Lower Bounds

To prove our lower bounds we use an abstracted version of the strict implicit
model. The strict model requires that nothing but the elements and the num-
ber of elements are stored between operations, and that during computation

2.4. FINGER SEARCH LOWER BOUNDS 13

elements can only be used for comparison. With these assumptions a decision
tree can be formed for a given n, where nodes correspond to element com-
parisons and reads while leaves contain the answers. Note that in the weak
model a node could probe a cell containing an integer, giving it a degree of n,
which prevents any of our lower bound arguments.

Lemma 1. Let A be an operation on an implicit data structure of length n,
running in worst case τ time, that takes any number of keys as arguments.
Then there exists a set XA,n of size 2τ , such that executing A with any ar-
guments will touch only cells from XA,n no matter the content of the data
structure.

Proof. Before reading any elements from the data structure, A can reach only
a single state which gives rise to a root in a decision tree. When A is in some
node s, the next execution step may read some cell in the data structure, and
transition into another fixed node, or A may compare two previously read
elements or arguments, and given the result of this comparison transition into
one of two distinct nodes. It follows that the total number of nodes A can
enter within its τ steps is

∑τ−1
i=0 2i < 2τ . Now each node can access at most

one cell, so it follows that at most 2τ different cells can be probed by any
execution of A within τ steps.

Observe that no matter how many times an operation that takes at most
τ time is performed, the operation will only be able to reach the same set of
cells, since the decision tree is the same for all invocations (as long as n does
not change).

Theorem 1. For any change-finger implicit dictionary with a search time
of q(t, n) as defined in Section 2.2, change-finger requires Ω(Zq(n) + logn)
time.

Proof. Let e1 . . . en be a set of elements in sorted order with respect to the
keys k1 . . . kn. Let t = Zq(n) − 1. By definition q(t + 1, n) ≥ log n

2 > q(t, n).
Consider the following sequence of operations:

for i = 0 . . . nt − 1:
change-finger(kit+1)
for j = 1 . . . t: search(kit+j)

Since the rank distance of any query element is at most t from the current
finger and q is non-decreasing each search operation takes time at most q(t, n).
By Lemma 1 there exists a set X of size 2q(t,n) such that all queries only touch
cells in X . We note that |X | ≤ 2q(t,n) ≤ 2log(n/2) = n

2 .
Since all n elements were returned by the query set, the change-finger

operations, must have copied at least n − |X | ≥ n
2 elements into X . We

performed n
t change-finger operations, thus on average the change-finger

operations must have moved at least t
2 = Ω(Zq(n)) elements into X .

14 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

For the logn term in the lower bound, we consider the sequence of op-
erations change-finger(ki) followed by search(ki) for i between 1 and n.
Since the rank distance of any search is 0 and q(0, n) < log n

2 (by assumption),
we know from Lemma 1 that there exists a set Xs of size at most 2log(n/2),
such that search only touches cells from Xs. Assume that change-finger
runs in time c(n), then from Lemma 1 we get a set Xc of size at most 2c(n)

such that change-finger only touches cells from Xc. Since every element is
returned, the cell initially containing the element must be touched by either
change-finger or search at some point, thus |Xc|+ |Xs| ≥ n. We see that
2c(n) ≥ |Xc| ≥ n− |Xs| ≥ n− 2log(n/2) = 2log(n/2), i.e. c(n) ≥ log n

2 .

Theorem 2. For a change-finger implicit dictionary with search time q′(t, n),
where q′ is non-decreasing in both t and n, it holds that q′(t, n) ≥ log t.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order.
Let t ≤ n be given. First perform change-finger(k1), then for i between 1
and t perform search(ki). From Lemma 1 we know there exists a set X of
size at most 2q′(t,n), such that any of the search operations touch only cells
from X (since any element searched for has rank distance at most t from the
finger). The search operations return t distinct elements so t ≤ |X | ≤ 2q′(t,n),
and q′(t, n) ≥ log t.

Theorem 3. For finger-search implicit dictionary, the finger-search op-
eration requires at least g(t, n) ≥ logn time for any rank distance t > 0 where
g(t, n) is non decreasing in both t and n.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order.
First perform finger-search(k1), then perform finger-search(ki) for i
between 1 and n. Now for all queries except the first, the rank distance t ≤ 1
and by Lemma 1 there exists a set of memory cells X of size 2g(1,n) such that
all these queries only touch cells in X . Since all elements are returned by the
queries we have |X | = n, so g(1, n) ≥ logn, since this holds for t = 1 it holds
for all t.

We can conclude that it is not possible to achieve any form of meaningful
finger-search in the strict implicit model. The static change-finger implicit
dictionary from Section 2.3 is by Theorem 1 optimal within a constant factor,
with respect to the search to change-finger time trade off, assuming the
running time of change-finger depends only on the size of the structure.

2.5 Dynamic Finger Search Structure
For any function q(t, n), as defined in Section 2.2, we present a dynamic
change-finger implicit dictionary that supports change-finger, search, in-
sert and delete in O(∆ logn),O(q(t, n)),O(logn) and O(logn) time respec-

2.5. DYNAMIC FINGER SEARCH STRUCTURE 15

C1
· · · · · ·

f

D1 Ci Di C` D` O

B1 Bi B`

2i+1 22
i

P

Figure 2.3: Memory layout.

tively, where ∆ = Zq(n) and n is the number of elements when the operation
was started.

The data structure consists of two parts: a proximity structure P which
contains the elements near f and an overflow structure O which contains
elements further from f w.r.t. rank distance. We partition P into several
smaller structures B1, . . . , B`. Elements in Bi are closer to f than elements
in Bi+1. The overflow structure O is an implicit movable dictionary [23] that
supports move-left and move-right as described in the Section 2.2. See
Figure 2.3 for the layout of the data structure. During a change-finger
operation the proximity structure is rebuilt such that B1, . . . , B` correspond
to the new finger, and the remaining elements are put in O.

The total size of P is 2∆+1. The i’th block Bi consists of a counter Ci and
an implicit movable dictionary Di. The counter Ci contains a pair encoded
number ci, where ci is the number of elements in Di smaller than f . The sizes
within Bi are |Ci| = 2i+1 and |Di| = 22i , except in the final block B` where
they might be smaller (B` might be empty). In particular we define:

` = min
{
`′ ∈ N

∣∣∣ `′∑
i=0

(
2i+1 + 22i

)
> 2∆

}
.

We will maintain the following invariants for the structure:

I.1 ∀i < j, e1 ∈ Bi, e2 ∈ Bj : d(f, e1) < d(f, e2)

I.2 ∀e1 ∈ B1 ∪ · · · ∪B`, e2 ∈ O : d(f, e1) ≤ d(f, e2)

I.3 |P | = 2∆ + 1

I.4 |Ci| ≤ 2i+1

I.5 |Di| > 0⇒ |Ci| = 2i+1

I.6 |D`| < 22` and ∀i < ` : |Di| = 22i

I.7 |Di| > 0⇒ ci = |{e ∈ Di | e < f}|

We observe that the above invariants imply:

O.1 ∀i < ` : |Bi| = 2i+1 + 22i (From I.5 and I.6)

16 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

O.2 |B`| < 2`+1 + 22` (From I.4 and I.6)

O.3 d(e, f) ≤ 22k−1 ≤ ∆⇒ e ∈ Bj for some j ≤ k (From I.1 – I.6)

2.5.1 Block operations

The following operations operate on a single block and are internal helper
functions for the operations described in Section 2.5.2.

block_delete(k, Bi): Removes the element e with key k from the
block Bi. This element must be located in Bi. First we scan Ci to find e. If
it is not found it must be in Di, so we delete it from Di. If e < f we decre-
ment ci. In the case where e ∈ Ci and Di is nonempty, an arbitrary element g
is deleted from Di and if g < f we decrement ci. We then overwrite e with g,
and fix Ci to encode the new number ci. In the final case where e ∈ Ci and Di

is empty, we overwrite e with the last element from Ci.
block_insert(e, Bi): Inserts e into block Bi. If |Ci| < 2i+1, e is inserted

into Ci and we return. Else we insert e into Di. If Di was empty we set ci = 0.
In either case if e < f we increment ci.

block_search(k, Bi): Searches for an element e with key k in the
block Bi. We scan Ci for e, if it is found we return it. Otherwise if Di is
nonempty we perform a search on it, to find e and we return it. If the
element is not found nil is returned.

block_predecessor(k, Bi): Finds the predecessor element for the key k
in Bi. Do a linear scan through Ci and find the element l1 with largest key less
than k. Afterwards do a predecessor search for key k on Di, call the result l2.
Return max(l1, l2), or that no element in Bi has key less than k.

2.5.2 Operations

In order to maintain correct sizes of P and O as the entire structure expands
or contracts a rebalance operation is called at the end of every insert and
delete operation. This is an internal operation that does not require I.3 to
be valid before invocation.

rebalance(): Balance B` such that the number of elements in P less
than f is as close to the number of elements greater than f as possible. We
start by evaluating ∆ = Zq(n), the new desired proximity size. Let s be the
number of elements in B` less than f which can be computed as c` + |{e ∈
C` | e < f}|. While 2∆ + 1 > |P | we move elements from O to P . We move
the predecessor of f from O to B` if O ≺ {f} ∨ (s < |B`|

2 ∧ ¬({f} ≺ O)) and
otherwise we move the successor of f to O. While 2∆ + 1 < |P | we move
elements from B` to O. We move the largest element from B` to O if s < B`

2 .
Otherwise we move the smallest element.

change-finger(k): To change the finger of the structure to k, we first
insert every element of B` . . . B1 into O. We then remove the element e with

2.5. DYNAMIC FINGER SEARCH STRUCTURE 17

key k from O, and place it at index 1 as the new f , and finish by performing
rebalance.

insert(e): Assume e > f . The case e < f can be handled similarly.
Find the first block Bi where e is smaller than the largest element li from Bi
(which can be found using a predecessor search) or li < f . Now if li > f for
all blocks j ≥ i, block_delete the largest element and block_insert it
into Bj+1. In the other case where li < f for all blocks j ≥ i, block_delete
the smallest element and block_insert it into Bj+1. The final element that
does not have a block to go into, will be put into O, then we put e into Bi.
In the special case where e did not fit in any block, we insert e into O. In all
cases we perform rebalance.

delete(k): We perform a block_search on all blocks and a search
in O to find out which structure the element e with key k is located in. If it
is in O we just delete it from O. Otherwise assume k < f (the case k > f
can be handled similarly), and assume that e is in Bi, then block_delete e
from Bi. For each j > i we block_delete the predecessor of f in Bj , and in-
sert it into Bj−1 (in the case where there is no predecessor, we block_delete
the successor of f instead). We also delete the predecessor of f from O and
insert it in B`. The special case where k = f , is handled similarly to k < f ,
we note that after this the predecessor of f will be the new finger element. In
all cases we perform a rebalance.

search(k), predecessor(k) and successor(k), all follow the same gen-
eral pattern. For each block Bi starting from B1, we compute the largest and
the smallest element in the block. If k is between these two elements we return
the result of block_search, block_predecessor or block_successor
respectively on Bi, otherwise we continue with the next block. In case k
is not within the bounds of any block, we return the result of search(k),
predecessor(k) or successor(k) respectively on O.

2.5.3 Analysis

By the invariants, we see that every Ci and Di except the last, have fixed
size. Since O is a movable dictionary it can be moved right or left as this final
Ci or Di expands or contracts. Thus the structure can be maintained in a
contiguous memory layout.

The correctness of the operations follows from the fact that I.1 and I.2,
imply that elements in Bj or O are further away from f than elements from Bi
where i < j. We now argue that search runs in time O(q(t, n)). Let e be
the element we are searching for. If e is located in some Bi then at least half
the elements in Bi−1 will be between f and e by I.1. We know from O.1 that
t = d(f, e) ≥ |Bi−1|

2 ≥ 22i−1−1. The time spent searching is O(
∑i
j=1 log |Bj |) =

O(2i) = O(log t) = O(q(t, n)). If on the other hand e is in O, then by I.3
there are 2∆ + 1 elements in P , of these at least half are between f and e
by I.2, so t ≥ ∆, and the time used for searching is O(logn+

∑k
j=1 log |Bj |) =

18 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

O(logn) = O(q(t, n)). The last equality follows by the definition of Zq. The
same arguments work for predecessor and successor.

Before the change-finger operation the number of elements in the prox-
imity structure by I.3 is 2∆ + 1. During the operation all these elements are
inserted into O, and the same number of elements are extracted again by re-
balance. Each of these operations are just insert or delete on a movable
dictionary or a block taking time O(logn). In total we use time O(∆ logn).

Finally to see that both Insert and Delete run in O(logn) time, notice
that in the proximity structure doing a constant number of queries in every
block is asymptotically bounded by the time to do the queries in the last
block. This is because their sizes increase double-exponentially. Since the size
of the last block is bounded by n we can guarantee O(logn) time for doing a
constant number of queries on every block (this includes predecessor/successor
queries). In the worst case, we need to insert an element in the first block
of the proximity structure, and “bubble” elements all the way through the
proximity structure and finally insert an element in the overflow structure.
This will take O(logn) time. At this point we might have to rebalance the
structure, but this merely requires deleting and inserting a constant number
of elements from one structure to the other, since we assumed Zq(n) and
Zq(n+ 1) differ by at most a constant. Deletion works in a similar manner.

Conclusion We have now established both static and dynamic search trees
with the finger search property exist in the strict implicit model. We also
established optimality of the two structures when the desired query time is
close to O(log t). The dynamic structure is based on a scheme where we have a
number of dicionaries with increasing size. The size of the (i+1)-th dictionary
is the square of the i-th, i.e. |Di+1| = |Di|2. This is a rapidly progressing series,
and for an implementation one would have very few dictionaries (starting with
a dictionary of size 2, the 7th dictionary would have up to 264 elements). One
way to slightly increase the number of dictionaries, is to let the (i + 1)-th
structure have size |Di+1| = |Di|1+ε, for some ε > 0. This scheme is potentially
better for elements close to the finger, but worse for elements that are further
away.

2.6 Priority Queues

In 1964 Williams presented “Algorithm 232” [121], commonly known as the
binary heap. The binary heap is a priority queue data structure storing a
dynamic set of n elements from a totally ordered universe, supporting the
insertion of an element (Insert) and the deletion of the minimum element
(ExtractMin) in worst-case O(logn) time.

The binary heap is a complete binary tree structure where each node stores
an element and the tree satisfies heap order, i.e., the element at a non-root

2.6. PRIORITY QUEUES 19

node is larger than or equal to the element at the parent node. Binary heaps
can be generalized to d-ary heaps [78], where the degree of each node is d
rather than two. This implies O(logd n) and O(d logd n) time for Insert and
ExtractMin, respectively, using O(logd n) moves for both operations.

Due to the Ω(n logn) lower bound on comparison based sorting, either
Insert or ExtractMin must take Ω(logn) time, but not necessarily both.
Carlson et al. [31] presented an implicit priority queue with worst-case O(1)
and O(logn) time Insert and ExtractMin operations, respectively. How-
ever, the structure is not strictly implicit since it needs to store O(1) addi-
tional words. Harvey and Zatloukal [105] presented a strictly implicit priority
structure achieving the same bounds, but amortized. Prior to the work in
this section no strictly implicit priority queue with matching worst-case time
bounds was known.

There are many applications of priority queues. The most notable exam-
ples are and finding minimum spanning trees (MST) and Dijkstra’s algorithm
for finding the shortest paths from one vertex to all other vertices in a weighted
(non-negative) graph (Single Source Shortest Paths). Priority queues are also
often used for scheduling or similar greedy algorithms.

Recently Larkin, Sen, & Tarjan, 2014, implemented many of the known
priority queues and compared them experimentally [84]. One of their discov-
eries is that implicit priority queues are almost always better than pointer
based structures. Larkin et al., 2014, also found out that for several applica-
tions (such as sorting and Dijkstra’s algorithm) the fastest times are achieved
by using an implicit 4-ary heap.

A measurement often studied in implicit data structures and in-place al-
gorithms is the number of element moves performed during the execution of a
procedure (separate from the other costs). The number of moves is defined as
the number of writes to the array storing elements, i.e. swapping two elements
costs 2 moves. Franceschini showed how to sort n elements in-place using
O(n logn) comparisons and O(n) moves [57], and Franceschini and Munro
[59] presented implicit dictionaries with amortized O(logn) time updates with
amortized O(1) moves per update. The latter immediately implies an implicit
priority queue with amortized O(logn) time Insert and ExtractMin oper-
ations performing amortized O(1) moves per operation. For a more thorough
survey of previous priority queue results, see [21].

Our Results We present two strictly implicit priority queues. The first
structure (Section 2.7) limits the number of moves to O(1) per operation
with amortized O(1) and O(logn) time Insert and ExtractMin operations,
respectively. However the bounds are all amortized and it remains an open
problem to achieve these bounds in the worst case for strictly implicit priority
queues. We note that this structure implies a different way of sorting in-
place with O(n logn) comparisons and O(n) moves. The second structure

20 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

Table 2.1: Selected previous and new results for implicit priority queues. The
bounds are asymptotic, and ? are amortized bounds.

Extract- Identical
Insert Min Moves Strict elements

Williams [121] logn logn logn yes yes
Carlsson et al. [31] 1 logn logn no yes
Edelkamp et al. [52] 1 logn logn no yes
Harvey and Zatloukal [105] ? 1 ? logn ? logn yes yes
Franceschini and Munro [59] ? logn ? logn ? 1 yes no
Section 2.7 ? 1 ? logn ? 1 yes yes
Section 2.8 1 logn logn yes no

(Section 2.8) improves over [31, 105] by achieving Insert and ExtractMin
operations with worst-case O(1) and O(logn) time (and moves), respectively.
The structure in Section 2.8 assumes all elements to be distinct where as the
structure in Section 2.7 can also be extended to support identical elements
(see Section 2.7.4). See Table 2.1 for an overview of new and previous results.

2.7 A Priority Queue with Amortized O(1) Moves

In this section we describe a strictly implicit priority queue supporting amor-
tized O(1) time Insert and amortized O(logn) time ExtractMin. Both
operations perform amortized O(1) moves. In Sections 2.7.1-2.7.3 we assume
elements are distinct. In Section 2.7.4 we describe how to handle identical
elements.

Overview The basic idea of our priority queue is the following (the details
are presented in Section 2.7.1). The structure consists of four components: an
insertion buffer B of sizeO(log3 n); m insertion heaps I1, I2, . . . , Im each of size
Θ(log3 n), where m = O(n/ log3 n); a singles structure T , of size O(n); and a
binary heap Q, storing {1, 2, . . . ,m} (integers encoded by pairs of elements)
with the ordering i ≤ j if and only if min Ii ≤ min Ij . Each Ii and B is a
logn-ary heap of size O(log3 n). The table below summarizes the performance
of each component:

Insert ExtractMin
Structure Time Moves Time Moves
B, Ii 1 1 logn 1
Q log2 n log2 n log2 n log2 n
T logn 1 logn 1

2.7. A PRIORITY QUEUE WITH AMORTIZED O(1) MOVES 21

It should be noted that the implicit dictionary of Franceschini and Munro
[59] could be used for T , but we will give a more direct solution since we only
need the restricted ExtractMin operation for deletions.

The Insert operation inserts new elements into B. If the size of B be-
comes Θ(log3 n), then m is incremented by one, B becomes Im, m is inserted
into Q, and B becomes a new empty logn-ary heap. An ExtractMin op-
eration first identifies the minimum element in B, Q and T . If the overall
minimum element e is in B or T , e is removed from B or T . If the minimum
element e resided in Ii, where i is stored at the root of Q, then e and log2 n
further smallest elements are extracted from Ii (if Ii is not empty) and all ex-
cept e inserted into T (T has cheap operations whereas Q does not, thus the
expensive operation on Q is amortized over inexpensive ones in T), and i is
deleted from and reinserted into Q with respect to the new minimum element
in Ii. Finally e is returned.

For the analysis we see that Insert takes O(1) time and moves, except
when converting B to a new Im and inserting m into Q. The O(log2 n)
time and moves for this conversion is amortized over the insertions into B,
which becomes amortized O(1), since |B| = Ω(log2 n). For ExtractMin we
observe that an expensive deletion from Q only happens once for every log2 n-
th element from Ii (the remaining ones from Ii are moved to T and deleted
from T), and finally if there have been d ExtractMin operations, then at
most d + m log2 n elements have been inserted into T , with a total cost of
O((d+m log2 n) logn) = O(n+ d logn), since m = O(n/ log3 n).

2.7.1 The implicit structure

et r D1 D2 · · ·q I1 I2 · · · B1 B2

Change in log n since last rebuild (1 bit)

Number of used Di’s

Order maintenance on Di’s

∆3 sized heaps
Binary heap with pointers to Ii’s

Threshold
element

S Qh

Insertion heaps 1-2 Insertion buffers

Qrev

Reverse pointers for Ii’s

b DK Im

Number of
insert buffers istart

T Q I B

Figure 2.4: The different structures and their layout in memory.

We now give the details of our representation (see Figure 2.4). We select
one element et as our threshold element, and denote elements greater than et
as dummy elements. The current number of elements in the priority queue
is denoted n. We fix an integer N that is an approximation of n, where
N ≤ n < 4N and N = 2j for some j. Instead of storing N , we store a bit
r = blognc − logN , encoded by two dummy elements. We can then compute

22 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

N as N = 2blognc−r, where blognc is the position of the most significant bit
in the binary representation of n (which we assume is computable in constant
time). The value r is easily maintained: When blognc changes, r changes
accordingly. We let ∆ = log(4N) = blognc+ 2− r, i.e., ∆ bits is sufficient to
store an integer in the range 0..n. We let M = d4N/∆3e.

We maintain the invariant that the size of the insertion buffer B satisfies
1 ≤ |B| ≤ 2∆3, and that B is split into two parts B1 and B2, each being ∆-ary
heaps (B2 possibly empty), where |B1| = min{|B|,∆3} and |B2| = |B| − |B1|.
We use two buffers to prevent expensive operation sequences that alternate
inserting and deleting the same element. We store a bit b indicating if B2
is nonempty, i.e., b = 1 if and only if |B2| 6= 0. The bit b is encoded using
two dummy elements. The structures I1, I2, . . . , Im are ∆-ary heaps storing
∆3 elements. The binary heap Q is stored using two arrays Qh and Qrev
each of a fixed size M ≥ m and storing integers in the range 1..m. Each
value in both arrays is encoded using 2∆ dummy elements, i.e., Q is stored
using 4M∆ dummy elements. The first m entries of Qh store the binary
heap, whereas Qrev acts as reverse pointers, i.e., if Qh[j] = i then Qrev[i] =
j. All operations on a regular binary heap take O(logn) time, but since
each “read”/”write” from/to Q needs to decode/encode an integer the time
increases by a factor 2∆. It follows that Q supports Insert and ExtractMin
in O(log2 n) time, and FindMin in O(logn) time.

We now describe T and we need the following density maintenance result.

Lemma 2 ([22]). There is a dynamic data structure storing n comparable
elements in an array of length (1+ε)n, supporting Insert and ExtractMin
in amortized O(log2 n) time and FindPredecessor in worst case O(logn)
time. FindPredecessor does not modify the array.

Corollary 1. There is an implicit data structure storing n (key, index) pairs,
while supporting Insert and ExtractMin in amortized O(log3 n) time and
moves, and FindPredecessor in O(logn) time in an array of length ∆(2 +
ε)n.

Proof. We use the structure from Lemma 2 to store pairs of a key and an index,
where the index is encoded using 2∆ dummy elements. All additional space
is filled with dummy elements. However comparisons are only made on keys
and not indexes, which means we retain O(logn) time for FindMin. Since the
stored elements are now an O(∆) = Θ(logn) factor larger, the time for update
operations becomes an O(logn) factor slower giving amortized O(log3 n) time
for Insert and ExtractMin.

The singles structure T intuitively consists of a sorted list of the elements
stored in T partitioned into buckets D1, . . . , Dq of size at most ∆3, where the
minimum element e from bucket Di is stored in a structure S from Corollary 1

2.7. A PRIORITY QUEUE WITH AMORTIZED O(1) MOVES 23

as the pair (e, i). Each Di is stored as a ∆-ary heap of size ∆3, where empty
slots are filled with dummy elements. Recall implicit heaps are complete
trees, which means all dummy elements in Di are stored consecutively after
the last non-dummy element. In S we consider pairs (e, i) where e > et to be
empty spaces.

More specifically, the structure T consists of: q, S, D1, D2, . . . , DK , where
K = d N

16∆3 e ≥ q is the number of Di’s available. The structure S uses
⌈
N

4∆2

⌉
elements and q uses 2∆ elements to encode a pointer. Each Di uses ∆3

elements.
The Di’s and S relate as follows. The number of Di’s is at most the

maximum number of items that can be stored in S. Let (e, i) ∈ S, then
∀x ∈ Di : e < x, and furthermore for any (e′, i′) ∈ S with e < e′ we have
∀x ∈ Di : x < e′. These invariants do not apply to dummy elements. Since Di

is a ∆-ary heap with ∆3 elements we get O(log∆ ∆3) = O(1) time for Insert
and O(∆ log∆ ∆3) = O(∆) for ExtractMin on a Di.

2.7.2 Operations

For both Insert and ExtractMin we need to know N , ∆, and whether
there are one or two insert buffers as well as their sizes. First r is decoded and
we compute ∆ = 2 + msb(n) − r, where msb(n) is the position of the most
significant bit in the binary representation of n (indexed from zero). From this
we compute N = 2∆−2, K = dN/(16∆3)e, and M = d4N/∆3e. By decoding b
we get the number of insert buffers. To find the sizes of B1 and B2 we compute
the value istart which is the index of the first element in I1. The size of B1 is
computed as follows. If (n− istart) mod ∆3 = 0 then |B1| = ∆3. If B2 exists
then B1 starts at n− 2∆3 and otherwise B1 starts at n−∆3. If B2 exists and
(n− istart) mod ∆3 = 0 then |B2| = ∆3, otherwise |B2| = (n− istart) mod ∆3.
Once all of this information is computed the actual operation can start. If
n = N + 1 and an ExtractMin operation is called, then the ExtractMin
procedure is executed and afterwards the structure is rebuilt as described in
the paragraph below. Similarly if n = 4N − 1 before an Insert operation the
new element is appended and the data structure is rebuilt.

Insert If |B1| < ∆3 the new element is inserted in B1 by the standard inser-
tion algorithm for ∆-ary heaps. If |B1| = ∆3 and |B2| = 0 and a new element
is inserted the two elements in b are swapped to indicate that B2 now exists.
When |B1| = |B2| = ∆3 and a new element is inserted, B1 becomes Im+1, B2
becomes B1, m+ 1 is inserted in Q (possibly requiring O(logn) values in Qh
and Qrev to be updated in O(log2 n) time). Finally the new element be-
comes B2.

ExtractMin Searches for the minimum element e are performed inB1,B2, S,
and Q. If e is in B1 or B2 it is deleted, the last element in the array is swapped
with the now empty slot and the usual bubbling for heaps is performed. If B2

24 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

disappears as a result, the bit b is updated accordingly. If B1 disappears as a
result, Im becomes B1, and m is removed from Q.

If e is in Ii then i is deleted from Q, e is extracted from Ii, and the last
element in the array is inserted in Ii. The ∆2 smallest elements in Ii are
extracted and inserted into the singles structure: for each element a search in
S is performed to find the range it belongs to, i.e. Dj , the structure it is to
be inserted in. Then it is inserted in Dj (replacing a dummy element that is
put in Ii, found by binary search). If |Dj | = ∆3 and q = K the priority queue
is rebuilt. Otherwise if |Dj | = ∆3, Dj is split in two by finding the median
y of Dj using a linear time selection algorithm [30]. Elements ≥ y in Dj

are swapped with the first ∆3/2 elements in Dq then Dj and Dq are made
into ∆-ary heaps by repeated insertion. Then y is extracted from Dq and
(y, q) is inserted in S. The dummy element pushed out of S by y is inserted
in Dq. Finally q is incremented and we reinsert i into Q. Note that it does
not matter if any of the elements in Ii are dummy elements, the invariants are
still maintained.

If (e, i) ∈ S, the last element of the array is inserted into the singles
structure, which pushes out a dummy element z. The minimum element y
of Di is extracted and z inserted instead. We replace e by y in S. If y is a
dummy element, we update S as if (y, i) was removed. Finally e is returned.
Note this might make B1 or B2 disappear as a result and the steps above are
executed if needed.

Rebuilding We let the new N = n′/2, where n′ is n rounded to the nearest
power of two. Using a linear time selection algorithm [30], find the element
with rank n− istart, this element is the new threshold element et, and it is put
in the first position of the array. Following et are all the elements greater than
et and they are followed by all the elements comparing less than et. We make
sure to have at least ∆3/2 elements in B1 and at most ∆3/2 elements in B2
which dictates whether b encodes 0 or 1. The value q is initialized to 1. All the
Di structures are considered empty since they only contain dummy elements.
The pointers in Qh and Qrev are all reset to the value 0. All the Ii structures
as well as B1 (and possibly B2) are made into ∆-ary heaps with the usual heap
construction algorithm. For each Ij structure the ∆2 smallest elements are
inserted in the singles structure as described in the ExtractMin procedure,
and j is inserted into Q. The structure now satisfies all the invariants.

2.7.3 Analysis
In this subsection we give the analysis that leads to the following theorem.

Theorem 4. There is a strictly implicit priority queue supporting Insert
in amortized O(1) time, ExtractMin in amortized O(logn) time. Both
operations perform amortized O(1) moves.

2.7. A PRIORITY QUEUE WITH AMORTIZED O(1) MOVES 25

Insert While |B| < 2∆3, each insertion takes O(1) time. When an insertion
happens and |B| = 2∆3, the insertion into Q requires O(log2 n) time and
moves. During a sequence of s insertions, this can at most happen ds/∆3e
times, since |B| can only increase for values above ∆3 by insertions, and each
insertion at most causes |B| to increase by one. The total cost for s insertions
is O(s+ s/∆3 · log2 n) = O(s), i.e., amortized constant per insertion.

ExtractMin We first analyze the cost of updating the singles structure.
Each operation on a Di takes time O(∆) and performs O(1) moves. Locat-
ing an appropriate bucket using S takes O(logn) time and no moves. At
least Ω(∆3) operations must be performed on a bucket to trigger an expensive
bucket split or bucket elimination in S. Since updating S takes O(log3 n) time,
the amortized cost for updating S is O(1) moves per insertion and extraction
from the singles structure. In total the operations on the singles structure
require amortized O(logn) times and amortized O(1) moves. For Extract-
Min the searches performed all take O(logn) comparisons and no moves. If
B1 disappears as a result of an extraction we know at least Ω(∆3) extractions
have occurred because a rebuild ensures |B1| ≥ ∆3/2. These extractions pay
for extracting Im from Qh which takes O(log2 n) time and moves, amortized
this gives O(1/ logn) additional time and moves. If the extracted element was
in Ii for some i, then ∆2 insertions occur in the singles structure each taking
O(logn) time and O(1) moves amortized. If that happens either Ω(∆3) in-
sertions or ∆2 extractions have occurred: Suppose no elements from Ii have
been inserted in the singles structure, then the reason there is a pointer to
Ii in Qh is due to Ω(∆3) insertions. When inserting elements in the singles
structure from Ii the number of elements inserted is ∆2 and these must first
be deleted. From this discussion it is evident that we have saved up Ω(∆2)
moves and Ω(∆3) time, which pay for the expensive extraction. Finally if the
minimum element was in S, then an extraction on a ∆-ary heap is performed
which takes O(∆) time and O(1) moves, since its height is O(1).

Rebuilding The cost of rebuilding is O(n), due to a selection and building
heaps with O(1) height. There are three reasons a rebuild might occur: (i) n
became 4N , (ii) n became N − 1, or (iii) An insertion into T would cause
q > K. By the choice of N during a rebuild it is guaranteed that in the first
and second case at least Ω(N) insertions or extractions occurred since the last
rebuild, and we have thus saved up at least Ω(N) time and moves. For the
last case we know that each extraction incurs O(1) insertions in the singles
structure in an amortized sense. Since the singles structure accommodates
Ω(N) elements and a rebuild ensures the singles structure has o(n) non dummy
elements (Lemma 3), at least Ω(N) extractions have occurred which pay for
the rebuild.

26 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

Lemma 3. Immediately after a rebuild o(n) elements in the singles structure
are non-dummy elements

Proof. There are at most n/∆3 of the Ii structures and ∆2 elements are in-
serted in the singles structure from each Ii, thus at most n/∆ = o(n) non-
dummy elements reside in the singles structure after a rebuild.

The paragraphs above establish Theorem 4.

2.7.4 Handling Identical Elements

The primary difficulty in handling identical elements is that we lose the ability
to encode bits. The primary goal of this section is to do so anyway. The idea
is to let the items stored in the priority queue be pairs of distinct elements
where the key of an item is the lesser element in the pair. In the case where
it is not possible to make a sufficient number of pairs of distinct elements,
almost all elements are equal and this is an easy case to handle. Note that
many pairs (or all for that matter) can contain the same elements, but each
pair can now encode a bit, which is sufficient for our purposes.

The structure is almost the same as before, however we put a few more
things in the picture. As mentioned we need to use pairs of distinct elements,
so we create a mechanism to produce these. Furthermore we need to do some
book keeping such as storing a pointer and being able to compute whether
there are enough pairs of distinct elements to actually have a meaningful
structure. The changes to the memory layout is illustrated in Figure 2.5.

et r I

One pair

Threshold
pair (one pair)

pL Qb

One pair

T LB B′

O(log n)Identical elements

Gray coded pointer Single elements

Figure 2.5: The different structures and their layout in memory.

Modifications The areas L and B′ in memory are used to produce pairs
of distinct elements. The area pL is a Gray coded pointer[66] with Θ(logn)
pairs, pointing to the beginning of L. The rest of the structure is essentially
the same as before, except instead of storing elements, we now store pairs
e = (e1, e2) and the key of the pair is ek = min{e1, e2}. All comparisons
between items are thus made with the key of the pair. We will refer to the
priority queue from Section 2.7 as PQ.

Gray, F.: Pulse code communications. U.S. Patent (2632058) (1953)

2.7. A PRIORITY QUEUE WITH AMORTIZED O(1) MOVES 27

There are a few minor modifications to PQ. Recall that we needed to
simulate empty spaces inside T (specifically in S, see Figure 2.4). The way
we simulated empty spaces was by having elements that compared greater
than et. Now et is actually a pair, where the minimum element is the threshold
element. It might be the case that there are many items comparing equal to et,
which means some would be used to simulate empty spaces and others would
be actual elements in PQ and some would be used to encode pointers. This
means we need to be able to differentiate these types that might all compare
equal to et. First observe that items used for pointers are always located in
positions that are distinguishable from items placed in positions used as actual
items. Thus we do not need to worry about confusing those two. Similarly, the
“empty” spaces in T are also located in positions that are distinguishable from
pointers. Now we only need to be able to differentiate “empty” spaces and
occupied spaces where the keys both compare equal to et. Letting items (i.e.
pairs) used as empty spaces encode 1, and the “occupied” spaces encode 0,
empty spaces and occupied spaces become differentiable as well. Encoding
that bit is possible, since they are not used for encoding anything else.

Since many elements could now be identical we need to decide whether
there are enough distinct elements to have a meaningful structure. As an
invariant we have that if the two elements in the pair et = (et,1, et,2) are equal
then there are not enough elements to make Ω(logn) pairs of distinct elements.
The O(logn) elements that are different from the majority are then stored at
the end of the array. After every lognth insertion it is easy to check if there are
now sufficient elements to make ≥ c logn pairs for some appropriately large
and fixed c. When that happens, the structure in Figure 2.5 is formed, and et
must now contain two distinct elements, with the lesser being the threshold
key. Note also, that while et,1 = et,2 an ExtractMin procedure simply needs
to scan the last < c logn elements and possibly make one swap to return the
minimum and fill the empty index.

Insert The structure B′ is a list of single elements which functions as an
insertion buffer, that is elements are simply appended to B′ when inserted.
Whenever n mod logn = 0 a procedure making pairs is run: At this point we
have time to decode pL, and up to O(logn) new pairs can be made using L
and B′. To make pairs B′ is read, all elements in B′ that are equal to elements
in L, are put after L, the rest of the elements in B′ are used to create pairs
using one element from L and one element from B′. If there are more elements
in B′, they can be used to make pairs on their own. These pairs are then
inserted into PQ. To make room for the newly inserted pairs, L might have
to move right and we might have to update pL. Since pL is a Gray coded
pointer, we only need as many bit changes as there are pairs inserted in PQ,
ensuring O(1) amortized moves. Note that the size of PQ is now the value
of pL, which means all computations involving n for PQ should use pL instead.

28 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

ExtractMin To extract the minimum a search for the minimum is per-
formed in PQ, B′ and L. If the minimum is in PQ, it is extracted and the
other element in the pair is put at the end of B′. Now there are two empty
positions before L, so the last two elements of L are put there, and the last
two elements of B′ are put in those positions. Note pL also needs to be decre-
mented. If the minimum is in B′, it is swapped with the element at position n,
and returned. If the minimum is in L, the last element of L is swapped with
the element at position n, and it is returned.

Analysis Firstly observe that if we can prove the producing of pairs uses
amortized O(1) moves for Insert and ExtractMin and O(1) and O(logn)
time respectively, then the rest of the analysis from Section 2.7.3 carries
through. We first analyze Insert and then ExtractMin.

For Insert there are two variations: either append elements to B′ or
clean up B′ and insert into PQ. Cleaning up B′ and inserting into PQ is
expensive and we amortize it over the cheap operations. Each operation that
just appends to B′ costs O(1) time and moves. Cleaning up B′ requires
decoding pL, scanning B′ and inserting O(logn) elements in PQ. Note that
between two clean-ups either O(logn) elements have been inserted or there
has been at least one ExtractMin, so we charge the time there. Since each
insertion into PQ takes O(1) time and moves amortized we get the same
bound when performing those insertions. The cost of reading pL is O(logn),
but since we are guaranteed that either Ω(logn) insertions have occurred or
at least one ExtractMin operation we can amortize the reading time.

2.8 A Priority Queue with Worst Case Bounds

In this section we present a strictly implicit priority queue supporting Insert
in worst-case O(1) time and ExtractMin in worst-case O(logn) time (and
moves). The data structure requires all elements to be distinct. The main
concept used is a variation on binomial trees. The priority queue is a forest of
O(logn) such trees. We start with a discussion of the variant we call relaxed
binomial trees, then we describe how to maintain a forest of these trees in an
amortized sense, and finally we give the deamortization.

2.8.1 Relaxed binomial tree

Binomial trees are defined inductively: A single node is a binomial tree of size
one and the node is also the root. A binomial tree of size 2i+1 is made by
linking two binomial trees T1 and T2 both of size 2i, such that one root becomes
the rightmost child of the other root. We lay out in memory a binomial tree
of size 2i by a preorder traversal of the tree where children are visited in order
of increasing size, i.e. c0, c1, . . . , ci−1. This layout is also described in [31]. See
Figure 2.6 for an illustration of the layout. In a relaxed binomial tree (RBT)

2.8. A PRIORITY QUEUE WITH WORST CASE BOUNDS 29

each nodes stores an element, satisfying the following order: Let p be a node
with i children, and let cj be a child of p. Let Tcj denote the set of elements in
the subtree rooted at cj . We have the invariant that the element c` is less than
either all elements in Tc` or less than all elements in

⋃
j<` Tcj (see Figure 2.6).

In particular we have the requirement that the root must store the smallest
element in the tree. In each node we store a flag indicating in which direction
the ordering is satisfied. Note that linking two adjacent RBTs of equal size
can be done in O(1) time: compare the keys of the two roots, if the lesser
is to the right, swap the two nodes and finally update the flags to reflect the
changes as just described.

For an unrelated technical purpose we also need to store whether a node
is the root of a RBT. This information is encoded using three elements per
node (allowing 3! = 6 permutations, and we only need to differentiate between
three states per node: “root”, “minimum of its own subtree”, or “minimum
among strictly smaller subtrees”).

1

2 3

4

5

6 7

8

10 11

12

13

14 15

16

a

b

cd e

fg h i

j

k

l

m n

o

p

a j d g e h i k c f b p l m n o
1 2 · · · 169 · · ·

9

Figure 2.6: An example of an RBT on 16 elements (a,b,...,o). The layout in
memory of an RBT and a regular binomial tree is the same. Note here that
node 9 has element c and is not the minimum of its subtree because node 11
has element b, but c is the minimum among the subtrees rooted at nodes 2,
3, and 5 (c0, c1, and c2). Note also that node 5 is the minimum of its subtree
but not the minimum among the trees rooted at nodes 2 and 3, which means
only one state is valid. Finally node 3 is the minimum of both its own subtree
and the subtree rooted at node 2, which means both states are valid for that
node.

To extract the minimum element of an RBT it is replaced by another
element. The reason for replacing is that the forest of RBTs is implicitly
maintained in an array and elements are removed from the right end, meaning
only an element from the last RBT is removed. If the last RBT is of size 1, it
is trivial to remove the element. If it is larger, then we decompose it. We first
describe how to perform a Decompose operation which changes an RBT of
size 2i into i structures Ti−1, . . . , T1, T0, where |Tj | = 2j . Then we describe

30 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

how to perform ReplaceMin which takes one argument, a new element, and
extracts the minimum element from an RBT and inserts the argument in the
same structure.

A Decompose procedure is essentially reversing insertions. We describe
a tail recursive procedure taking as argument a node r. If the structure is of
size one, we are done. If the structure is of size 2i the (i−1)th child, ci−1, of r
is inspected, if it is not the minimum of its own subtree, the element of ci−1
and r are swapped. The (i − 1)th child should now encode “root”, that way
we have two trees of size 2i−1 and we recurse on the subtree to the right in
the memory layout. This procedure terminates in O(i) steps and gives i + 1
structures of sizes 2i−1, 2i−2, . . . , 2, 1, and 1 laid out in decreasing order of size
(note there are two structures of size 1). This enables easy removal of a single
element.

The ReplaceMin operation works similarly to the Decompose, where
instead of always recursing on the right, we recurse where the minimum ele-
ment is the root. When the recursion ends, the minimum element is now in
a structure of size 1, which is deleted and replaced by the new element. The
decomposition is then reversed by linking the RBTs using the Link proce-
dure. Note it is possible to keep track of which side was recursed on at every
level with O(logn) extra bits, i.e. O(1) words. The operation takes O(logn)
steps and correctness follows by the Decompose and Link procedures. This
concludes the description of RBTs and yields the following theorem.

Theorem 5. On an RBT with 3 · 2i elements, Link and FindMin can be
supported in O(1) time and Decompose and ReplaceMin in O(i) time.

2.8.2 How to maintain a forest

As mentioned our priority queue is a forest of the relaxed binomial trees from
Theorem 5. An easy amortized solution is to store one structure of size 3 · 2j
for every set bit j in the binary representation of bn/3c. During an insertion
this could cause O(logn) Link operations, but by a similar argument to that
of binary counting, this yields O(1) amortized insertion time. We are aiming
for a worst case constant time solution so we maintain the invariant that there
are at most 5 structures of size 2i for i = 0, 1, . . . , blognc. This enables us to
postpone some of the Link operations to appropriate times. We are storing
O(logn) RBTs, but we do not store which sizes we have, this information must
be decodable in constant time since we do not allow storing additional words.
Recall that we need 3 elements per node in an RBT, thus in the following we
let n be the number of elements and N = bn/3c be the number of nodes. We
say a node is in node position k if the three elements in it are in positions
3k−2, 3k−1, and 3k. This means there is a buffer of 0, 1, or 2 elements at the
end of the array. When a third element is inserted, the elements in the buffer
become an RBT with a single node and the buffer is now empty. If an Insert
operation does not create a new node, the new element is simply appended

2.8. A PRIORITY QUEUE WITH WORST CASE BOUNDS 31

to the buffer. We are not storing the structure of the forest (i.e. how many
RBTs of size 2j exists for each j), since that would require additional space.
To be able to navigate the forest we need the following two lemmas.

Lemma 4. There is a structure of size 2i at node positions k, k + 1, . . . , k +
2i−1 if and only if the node at position k encodes “root”, the node at position
k + 2i encodes “root” and the node at position k + 2i−1 encodes “not root”.

Proof. It is trivially true that the three mentioned nodes encode “root”, “root”
and “not root” if an RBT with 2i nodes is present in those locations.

We first observe there cannot be a structure of size 2i−1 starting at posi-
tion k, since that would force the node at position k + 2i−1 to encode “root”.
Also all structures between k and N must have less than 2i elements, since
both nodes at positions k and k + 2i encode “root”. We now break the anal-
ysis in a few cases and the lemma follows from a proof by contradiction.
Suppose there is a structure of size 2i−2 starting at k, then for the same rea-
son as before there cannot be another one of size 2i−2. Similarly, there can
at most be one structure of size 2i−3 following that structure. Now we can
bound the total number of nodes from position k onwards in the structure
as: 2i−2 + 2i−3 + 5

∑i−4
j=0 2j = 2i − 5 < 2i, which is a contradiction. So there

cannot be a structure of size 2i−2 starting at position k. Note there can at
most be three structures of size 2i−3 starting at position k, and we can again
bound the total number of nodes as: 3 · 2i−3 + 5

∑i−4
j=0 2j = 2i − 5 < 2i, again

a contradiction.

Lemma 5. If there is an RBT with 2i nodes the root is in position N − 2ik−
x+ 1 for k = 1, 2, 3, 4 or 5 and x = N mod 2i.

Proof. There are at most 5 · 2i − 5 nodes in structures of size ≤ 2i−1. All
structures of size ≥ 2i contribute 0 to x, thus the number of nodes in structures
with ≤ 2i−1 nodes must be x counting modulo 2i. This gives exactly the five
possibilities for where the first tree of size 2i can be.

We now describe how to perform an ExtractMin. First, if there is no
buffer (n mod 3 = 0) then Decompose is executed on the smallest structure.
We apply Lemma 5 iteratively for i = 0 to blogNc and use Lemma 4 to find
structures of size 2i. If there is a structure we call the FindMin procedure
(i.e. inspect the element of the root node) and remember which structure the
minimum element resides in. If the minimum element is in the buffer, it is
deleted and the rightmost element is put in the empty position. If there is no
buffer, we are guaranteed due to the first step that there is a structure with 1
node, which is now the buffer. On the structure with the minimum element
ReplaceMin is called with the rightmost element of the array. The running
time is O(logn) for finding all the structures, O(logn) for decomposing the
smallest structure and O(logn) for the ReplaceMin procedure, in total we
get O(logn) for ExtractMin.

32 CHAPTER 2. FUNDAMENTAL IMPLICIT DATA STRUCTURES

The Insert procedure is simpler but the correctness proof is somewhat
involved. A new element is inserted in the buffer, if the buffer becomes a node,
then the least significant bit i of N is computed. If at least two structures of
size 2i exist (found using the two lemmas above), then they are linked and
become one structure of size 2i+1.

Lemma 6. The Insert and ExtractMin procedures maintain that at most
five structures of size 2i exist for all i ≤ blognc.

Proof. Let N≤i be the total number of nodes in structures of size ≤ 2i. Then
the following is an invariant for i = 0, 1, . . . , blogNc.

N≤i + (2i+1 − ((N + 2i) mod 2i+1)) ≤ 6 · 2i − 1

The invariant states that N≤i plus the number of inserts until we try to
link two trees of size 2i is at most 6 · 2i − 1. Suppose that a new node is
inserted and i is not the least significant bit of N then N≤i increases by
one and so does (N + 2i) mod 2i+1, which means the invariant is maintained.
Suppose that i is the least significant bit in N (i.e. we try to link structures
of size 2i) and there are at least two structures of size 2i, then the insertion
makes N≤i decrease by 2 · 2i − 1 = 2i+1 − 1 and 2i+1 − (N + 2i mod 2i+1))
increases by 2i+1 − 1, since (N + 2i) mod 2i+1 becomes zero, which means
the invariant is maintained. Now suppose there is at most one structure of
size 2i and i is the least significant bit of N . We know by the invariant
that N≤i−1 + (2i − (N + 2i−1 mod 2i)) ≤ 6 · 2i−1 − 1 which implies N≤i−1 ≤
6 · 2i−1 − 1 − 2i + 2i−1 = 5 · 2i−1 − 1. Since we assumed there is at most
one structure of size 2i we get that N≤i ≤ 2i + N≤i−1 ≤ 2i + 5 · 2i−1 − 1 =
3.5 · 2i− 1. Since N mod 2i+1 = 2i (i is the least significant bit of N) we have
N≤i + (2i+1− (N + 2i mod 2i+1)) ≤ 3.5 · 2i− 1 + 2i+1 = 5.5 · 2i− 1 < 6 · 2i− 1.

The invariant is also maintained when deleting: for each i where Ni > 0
before the ExtractMin, Ni decreases by one. For all i the second term
increases by at most one, and possibly decreases by 2i+1−1. Thus the invariant
is maintained for all i where Ni > 0 before the procedure. If Ni = 0 before
an ExtractMin, we get Nj = 2j+1 − 1 for j ≤ i. Since the second term
can at most contribute 2j+1, we get Nj + (2j+1 − ((N + 2j) mod 2j+1)) ≤
2j+1 − 1 + 2j+1 ≤ 6 · 2j − 1, thus the invariant is maintained.

Correctness and running times of the procedures have now been estab-
lished.

Conclusion With the two priority queues presented we now conclude the
chapter on implicit data structures. We note that the priority queue with O(1)
amortized moves is difficult to implement, and probably have some significant
constant factors overhead. However, the worst case efficient priority queue is
fairly easy to implement and has relatively low constant factors, its primary

2.8. A PRIORITY QUEUE WITH WORST CASE BOUNDS 33

drawback is the lack of support for identical elements. We do have a working
implementation of the worst case efficient priority queue, and future work
includes testing if it performs well against other priority queues. One point
that might be slow is when testing if there is a structure of size 2i, since that
may incur several cache misses that are expensive.

Chapter 3

Interlude: Sorting

Sorting is one of the most fundamental problems in computer science and
has been studied widely in many different computational models. Sorting
n integers in the word-RAM model is a fundamental problem and a long-
standing open problem is whether integer sorting is possible in linear time
when the word size is ω(logn). Recall that radix sort takes O(n) time when
the word size is O(logn). The radix sorting procedure with words size w =
O(logn) intuitively works by writing each integer in base bnc, and then stably
sorting the numbers in O(1) rounds, first round by the least significant digit
and the last round by the most significant digit.

In this chapter we give an algorithm for sorting integers in expected linear
time when the word size is Ω(log2 n log logn). Previously expected linear time
sorting was only possible for word size Ω(log2+ε n). Part of our construction
is a new packed sorting algorithm that sorts n integers of w/b-bits packed in
O(n/b) words, where b is the number of integers packed in a word of size w
bits. The packed sorting algorithm runs in expected O(nb (logn+log2 b)) time.

In the comparison based setting both the worst case and average case com-
plexity of sorting n elements is Θ(n logn) comparisons. This O(n logn) bound
is achieved by several algorithms, the most well-known are Mergesort, Ran-
domized Quicksort and Heapsort. The lower bound is proved using decision
trees, see e.g. [48], and is also valid in the average case. Note in Section 2.7
we presented an implicit priority queues that enables us to sort n comparable
items in O(n logn) time and O(n) moves.

In the word-RAM model with word size w = Θ(logn) we can sort n w-bit
integers in O(n) time using radix sort. The exact bound for sorting n inte-
gers of w bits each using radix sort is Θ(n w

logn). A fundamental open prob-
lem is if we can still sort in linear time when the word size is ω(logn) bits.
The RAM dictionary of van Emde Boas [118] allows us to sort in O(n logw)
time. Unfortunately the space usage by the van Emde Boas structure cannot

This chapter is based on the paper Expected Linear Time Dorting for Word Size
Ω(log2 n log logn)[16]

35

36 CHAPTER 3. INTERLUDE: SORTING

be bounded better than O(2w). The space usage can be reduced to O(n)
by using the Y-fast trie of Willard [120], but the time bound for sorting
becomes expected. For polylogarithmic word sizes, i.e. w = logO(1) n, this
gives sorting in time O(n log logn). Kirkpatrick and Reisch gave an algorithm
achieving O(n log w

logn) [81], which also gives O(n log logn) for w = logO(1) n.
Andersson et al. [10] showed how to sort in expected O(n) time for word size
w = Ω(log2+ε n) for any ε > 0. The result is achieved by exploiting word par-
allelism on “signatures” of the input elements packed into words, such that a
RAM instruction can perform several element operations in parallel in con-
stant time. Han and Thorup [69] achieved running time O(n

√
log(w/ logn)),

implying the best known bound of O(n
√

log logn) for sorting integers that
is independent of the word size. Thorup established that maintaining RAM
priority queues and RAM sorting are equivalent problems by proving that if
we can sort in time O(n · f(n)) then there is a priority queue using O(f(n))
time per operation [117].

Our results. We consider for which word sizes we can sort n w-bit integers
in the word-RAM model in expected linear time. We improve the previous
best word size of Ω(log2+ε n) [10] to Ω(log2 n log logn). Word-level paral-
lelism is used extensively and we rely on a new packed sorting algorithm (see
Section 3.4) in intermediate steps. The principal idea for the packed sorting
algorithm is an implementation of the randomized Shell-sort of Goodrich [64]
using the parallelism in the RAM model. The bottleneck in our construction
is O(log logn) levels of packed sorting of O(n) elements each of Θ(logn) bits,
where each sorting requires time O(n log2 n

w). For w = Ω(log2 n log logn), the
overall time becomes O(n).

This chapter is structured as follows: Section 3.1 contains a high level
description of the ideas and concepts used by our algorithm. In Section 3.2
we summarize the RAM operations adopted from [10] that are needed to
implement the algorithm outlined in Section 3.1. In Section 3.3 we give the
details of implementing the algorithm on a RAM and in Section 3.4 we present
the packed sorting algorithm. Finally, in Section 3.5 we discuss how to adapt
our algorithm to work with an arbitrary word size.

3.1 Algorithm

In this section we give a high level description of the algorithm. The input is n
words x1, x2, . . . , xn, each containing a w-bit integer from U={0, 1, . . . , 2w−1}.
We assume the elements are distinct. Otherwise we can ensure this by hashing
the elements into buckets in expected O(n) time and only sorting a reduced
input with one element from each bucket. The algorithm uses a Monte Carlo
procedure, which sorts the input with high probability. While the output is

3.1. ALGORITHM 37

not sorted, we repeatedly rerun the Monte Carlo algorithm, turning the main
sorting algorithm into a Las Vegas algorithm.

The Monte Carlo algorithm is a recursive procedure using geometrically
decreasing time in the recursion, ensuring O(n) time overall. We view the
algorithm as building a Patricia trie over the input words by gradually refin-
ing the Patricia trie in the following sense: on the outermost recursion level
characters are considered to be w bits long, on the next level w/2 bits, then
w/4 bits and so on. The main idea is to avoid considering all the bits of an
element to decide its rank. To avoid looking at every bit of the bit string e at
every level of the recursion, we either consider the MSH(e) (Most Significant
Half, i.e. the |e|2 most significant bits of e) or LSH(e) (Least Significant Half)
when moving one level down in the recursion (similar to the recursion in van
Emde Boas trees).

The input to the ith recursion is a list (id1, e1), (id2, e2), . . . , (idm, em) of
length m, where n ≤ m ≤ 2n − 1, idj is a logn bit id and ej is a w/2i bit
element. At most n elements have equal id. The output is a list of ranks
π1, π2, . . . , πm, where the j’th output is the rank of ej among elements with id
identical to idj using logn bits. There are m(logn + w

2i) bits of input to the
ith level of recursion and m logn bits are returned from the ith level. On the
outermost recursion level we take the input x1, x2, . . . , xn and produce the list
(1, x1), (1, x2), . . . , (1, xn), solve this problem, and use the ranks π1, π2, . . . , πn
returned to permute the input in sorted order in O(n) time.

To describe the recursion we need the following definitions.

Definition 1 ([53]). The Patricia trie consists of all the branching nodes and
leaves of the corresponding compacted trie as well as their connecting edges.
All the edges in the Patricia trie are labeled only by the first character of the
corresponding edge in the compacted trie.

Definition 2. The Patricia trie of x1, x2, . . . , xn of detail i, denoted T i, is the
Patricia trie of x1, . . . , xn when considered over the alphabet Σi = {0, 1}w/2i.

The input to the ith recursion satisfies the following invariants, provided
the algorithm has not made any errors so far:

i. The number of bits in an element is |e| = w
2i .

ii. There is a bijection from id’s to non leaf nodes in T i.

iii. The pair (id, e) is in the input if and only if there is an edge from a node
v ∈ T i corresponding to id to a child labeled by a string in which e ∈ Σi

is the first character.

That the maximum number of elements at any level in the recursion is at
most 2n − 1 follows because a Patricia trie on n strings has at most 2n − 1
edges.

38 CHAPTER 3. INTERLUDE: SORTING

The recursion. The base case of the recursion is when |e| = O(w
logn) bits,

i.e. we can pack Ω(logn) elements into a single word, where we use the packed
sorting algorithm from Section 3.4 to sort (idj , ej , j) pairs lexicographically
by (id, e) in time O(n

logn(logn+ (log logn)2)) = O(n). Then we generate the
ranks πj and return them in the correct order by packed sorting pairs (j, πj)
by j.

When preparing the input for a recursive call we need to halve the number
of bits the elements use. To maintain the second invariant we need to find all
the branching nodes of T i+1 to create a unique id for each of them. Finally
for each edge going out of a branching node v in T i+1 we need to make the
pair (id, e), where id is v’s id and e is the first character (in Σi+1) on an edge
below v. Compared to level i, level i + 1 may have two kinds of branching
nodes: inherited nodes and new nodes, as detailed below (Figure 3.1).

In Figure 3.1 we see T i and T i+1 on 5 binary strings. In T i characters are
4 bits and in T i+1 they are 2 bits. Observe that node a is not going to be
a branching node when characters are 2 bits because “00” are the first bits
on both edges below it. Thus the “00” bits below a should not appear in the
next recursion – this is captured by Invariant iii. A similar situation happens
at the node b, however since there are two different 2-bit strings below it,
we get the inherited node binh. At the node c we see that the order among
its edges is determined by the first two bits, thus the last two bits can be
discarded. Note there are 7 elements in the ith recursion and 8 in the next
– the number of elements may increase in each recursion, but the maximum
amount is bounded by 2n− 2.

By invariant ii) every id corresponds to a node v in T i. If we find all
elements that share the same id, then we have all the outgoing edges of v. We
refine an edge labeled e out of v to have the two characters MSH(e)LSH(e)
both of w/2i+1 bits. Some edges might then share their MSH. The node v will
appear in level i + 1 if and only if at least two outgoing edges do not share
MSH – these are the inherited nodes. Thus we need only count the number of
unique MSHs out of v to decide if v is also a node in level i+1. The edges out
of v at level i + 1 will be the unique MSH characters (in Σi+1) on the edges
down from v at level i.

If at least two edges out of v share the same first character c (MSH), but
not the second, then there is a branching node following c – these are the new
nodes. We find all new nodes by detecting for each MSH character c ∈ Σi+1

going out of v if there are two or more edges with c as their first character. If
so, we have a branching node following c and the labels of the edges are the
LSHs. At this point everything for the recursion is prepared.

We receive for each id/node of T i+1 the ranks of all elements (labels on the
outgoing edges) from the recursion. A relative rank for an element at level i
is created by concatenating the rank of MSH(e) from level i+ 1 with the rank
of LSH(e) from level i + 1. All edges branching out of a new node needs to
receive the rank of their MSH (first character). If the MSH was not used for

3.2. TOOLS 39

a

b c

anew

binh cinh

bnew

Detail i Detail i + 1

0

1
0
0

00

0

0

0
0

0 0

0 0

0
0

1
1

1

1

1

1
1

1

1

1

1 1

1 0

0

0 0

0 0

1

1

1
1

1

1

11

0

Figure 3.1: Example of how nodes are introduced and how they
disappear from detail i to i + 1. The bits that are marked by a
dotted circle are omitted in the recursion.

the recursion, it means it did not distinguish any edges, and we can put an
arbitrary value as the rank (we use 0). The same is true for the LSHs. Since
each relative rank consists of 2 logn bits we can sort them fast using packed
sorting (Section 3.4) and finally the actual ranks can be returned based on
that.

3.2 Tools

This section is a summary of standard word-parallel algorithms used by our
sorting algorithm; for an extensive treatment see [82]. In particular the prefix
sum and word packing algorithms can be derived from [86]. For those familiar
with “bit tricks” this section can be skipped.

We adopt the notation and techniques used in [10]. A w-bit word can be
interpreted as a single integer in the range 0, . . . , 2w − 1 or the interpretation
can be parameterized by (M,f). A word under the (M,f) interpretation uses
the rightmost M(f + 1) bits as M fields using f + 1 bits each and the most
significant bit in each field is called the test bit and is 0 by default.

0 x1 0 x2 · · · xM0

w bits

f + 1 bits test-bits

We write X = (x1, x2, . . . , xM) where xi uses f bits, meaning the word X
has the integer x1 encoded in its leftmost field, x2 in the next and so on. If
xi ∈ {0, 1} for all i we may also interpret them as boolean values where 0 is
false and 1 is true. This representation allows us to do “bit tricks”.

40 CHAPTER 3. INTERLUDE: SORTING

Comparisons. Given a word X = (x1, x2, . . . , xM) under the (M,f) in-
terpretation, we wish to test xi > 0 for 1 ≤ i ≤ M , i.e. we want a word
Z = [X > 0] = (z1, z2, . . . , zM), in the (M,f) interpretation, such that zi = 1
(true) if xi > 0 and zi = 0 (false) otherwise. Let kM,f be the word where the
number k is encoded in each field where 0 ≤ k < 2f . Create the word 0M,f

and set all test bits to 1. Evaluate ¬(0M,f − X), the ith test bit is 1 if and
only if xi > 0. By masking away everything but the test bit and shifting right
by f bits we have the desired output. We can also implement more advanced
comparisons, such as comparing [X ≤ Y] by setting all test bits to 1 in Y
and 0 in X and subtracting the word X from Y . The test bits now equal the
result of comparing xi ≤ yi.

Hashing. We will use a family of hash functions that can hash n elements
in some range 0, . . . ,m − 1 with m > nc to 0, . . . nc − 1. Furthermore a
family of hash functions that are injective on a set with high probability when
chosen uniformly at random, can be found in [51]. Hashing is roughly just
multiplication by a random odd integer and keeping the most significant bits.
The integer is at most f bits. If we just multiply this on a word in (M,f)
interpretation one field might overflow to the next field, which is undesirable.
To implement hashing on a word in (M,f) representation we first mask out
all even fields, do the hashing, then do the same for odd fields. The details can
be found in [10]. In [51] it is proved that if we choose a function ha uniformly
at random from the family Hk,` = {ha | 0 < a < 2k, and a is odd} where
ha(x) = (ax mod 2k) div 2k−` for 0 ≤ x < 2k then Pr[ha(x) = ha(y)] ≤ 1

2`−1

for distinct x, y from a set of size n. Thus choosing ` = c logn + 1 gives
collision probability ≤ 1/nc. The probability that the function is not injective
on n elements is upper bounded by the union bound on all pairs of elements
as Pr[∃x, y : x 6= y ∧ ha(x) = ha(y)] ≤ n2

nc .

Prefix sum. Let A = (a1, . . . , aM) be the input with M = b, f = w/b
and ai ∈ {0, 1}. In the output B = (b1, . . . , bM), bi = 0 if ai = 0 and
bi =

∑i−1
j=1 aj otherwise. We describe an O(log b) time algorithm to accomplish

this task. The invariant is that in the jth iteration ai has been added to its 2j
immediately right adjacent fields. Compute B1, which is A shifted right by f
bits and added to itself: B1 = A+ (A ↓ f). Let Bi = (Bi−1 ↓ 2i−1f) + Bi−1.
This continues for log b steps. Then we keep all fields i from Blog b where
ai = 1, subtract 1 from all of these fields and return it.

Packing words. We are given a wordX = (x1, . . . , xM) in (M,f) = (b, w/b)
representation. Some of the fields are zero fields, i.e. a field only containing
bits set to 0. We want to produce a “packed word”, such that reading from
left to right there are no zero fields, followed only by zero fields. The fields

We use ↑ and ↓ as the shift operations where x ↑ y is x · 2y and x ↓ y is bx div 2yc.

3.3. ALGORITHM – RAM DETAILS 41

that are nonzero in the input must be in the output and in the same order.
This problem is solved by Andersson et al. [10, Lemma 6.4]

Expanding. Given a word with fields using b′ bits we need to expand each
field to using b bits i.e., given X = (x1, . . . , xk) where |xi| = b′ we want
Y = (y1, . . . , yk) such that yi = xi but |yi| = b. We assume there are enough
zero fields in the input word such that the output is only one word. The general
idea is to just do packing backwards. The idea is to write under each field
the number of bits it needs to be shifted right, this requires at most O(log b)
bits per field. We now move items based on the binary representation. First
we move those who have the highest bit set, then we continue with those that
have the second highest bit set and so on. The proof that this works is the
same as for the packing algorithm.

Creating index. We have a list of n elements of w/b bits each, packed in an
array of words X1, X2, . . . , Xn/b, where each word is in (b, w/b) representation
and w/b ≥ dlogne. Furthermore, the rightmost dlogne bits in every field
are 0. The index of an element is the number of elements preceding it and
we want to put the index in the rightmost bits of each field. First we will
spend O(b) time to create the word A = (1, 2, 3, . . . , b) using the rightmost
bits of the fields. We also create the word B = (b, b, . . . , b). Now we run
through the input words, update Xi = Xi +A, then update A = A+B. The
time is O(n/b+ b), which in our case always is O(n/b), since we always have
b = O(logn log logn).

3.3 Algorithm – RAM details
In this section we describe how to execute each step of the algorithm outlined
in Section 3.1. We first we describe how to construct T i+1 from T i, i.e. advance
one level in the recursion. Then we describe how to use the output of the
recursion for T i+1 to get the ranks of the input elements for level i. Finally
the analysis of the algorithm is given.

The input to the ith recursion is a list of pairs: (id, e) using logn + w
2i

bits each and satisfying the invariants stated in Section 3.1. The list is packed
tightly in words, i.e. if we havem input elements they occupyO

(
m·(logn+w/2i)

w

)
words. The returned ranks are also packed in words, i.e. they occupyO(m·logn

w)
words. The main challenge of this section is to be able to compute the neces-
sary operations, even when the input elements and output ranks are packed in
words. For convenience and simplicity we assume in the following that tuples
are not split between words.

Finding branching nodes. We need to find the branching nodes (inherited
and new) of T i+1 given T i. For each character ej in the input list (i.e. T i) we
create the tuple (idj , Hj , j) where idj corresponds to the node ej branches out

42 CHAPTER 3. INTERLUDE: SORTING

of, Hj = h(MSH(ej)) is the hash function applied to the MSH of ej , and j is
the index of ej in the input list. The list L consists of all these tuples and L
is sorted. We assume the hash function is injective on the set of input MSHs,
which it is with high probability if |Hj | ≥ 4 logn (see the analysis below). If
the hash function is not injective, this step may result in an error which we
will realize at the end of the algorithm, which was discussed in Section 3.1.
The following is largely about manipulating the order of the elements in L,
such that we can create the recursive sub problem, i.e. T i+1.

To find Inherited nodes we find all the edges out of nodes that are in both
T i and T i+1 and pair them with unique identifiers for their corresponding
nodes in T i+1. Consider a fixed node a which is a branching node in T i – this
corresponds to an id in L. There is a node ainh in T i+1 if a and its edges satisfy
the following condition: When considering the labels of the edges from a to
its children over the alphabet Σi+1 instead of Σi, there are at least two edges
from a to its children that do not share their first character. When working
with the list L the node a and its edges correspond to the tuples where the id
is the id that corresponds to a. This means we need to compute for each id
in L whether there are at least 2 unique MSHs, and if so we need to extract
precisely all the unique MSHs for that id.

The list L is sorted by (idj , Hj , j), which means all edges out of a particular
node are adjacent in L, and all edges that share their MSH are adjacent in
L (with high probability), because they have the same hash value which is
distinct from the hash value of all other MSHs (with high probability). We
select the MSHs corresponding to the first occurrence of each unique hash
value with a particular id for the recursion (given that it is needed). To
decide if a tuple contains a first unique hash value, we need only consider the
previous tuple: did it have a different hash value from the current, or did
it have a different id? To decide if MSH(ej) should be extracted from the
corresponding tuple we also need to compute whether there are at least two
unique hash values with id idj . This tells us we need to compute two things
for every tuple (idj , Hj , j) in L:

1. Is j the first index such that (idj−1 = idj ∧Hj−1 6= Hj) ∨ idj−1 6= idj?

2. Is there an i such that idi = idj and Hi 6= Hj?

To accomplish the first task we do parallel comparison of idj andHj with idj−1
and Hj−1 on L and L shifted left by one tuple length (using the word-level
parallel comparisons described in Section 3.2). The second task is tedious but
conceptually simple to test: count the number of unique hash values for each
id, and test for each id if there are at least two unique hash values.

The details of accomplishing the two tasks are as follows (keep in mind
that elements of the lists are bit-strings). Let B be a list of length |L| and
consider each element in B as being the same length as a tuple in L. Encode 1
in element j of B if and only if idj−1 6= idj in L. Next we create a list C with

3.3. ALGORITHM – RAM DETAILS 43

the same element size as B. There will be a 1 in element j of C if and only if
Hj 6= Hj−1 ∧ idj = idj−1 (this is what we needed to compute for task 1). The
second task is now to count how many 1s there are in C between two ones in
B. Let CC be the prefix sum on C (described in Section 3.2) and keep only
the values where there is a corresponding 1 in B, all other elements become
0 (simple masking). Now we need to compute the difference between each
non-zero value and the next non-zero value in CC – but these are varying
lengths apart, how do we subtract them? The solution is to pack the list
CC (see Section 3.2) such that the values become adjacent. Now we compute
the difference, and by maintaining some information from the packing we can
unpack the differences to the same positions that the original values had. Now
we can finally test for the first tuple in each id if there are at least two different
hash values with that id. That is, we now have a list D with a 1 in position j
if j is the first position of an id in L and there are at least two unique MSHs
with that id. In addition to completing the two tasks we can also compute
the unique identifiers for the inherited nodes in T i+1 by performing a prefix
sum on D.

Finding the new nodes is simpler than finding the inherited nodes. The
only case where an LSH should be extracted is when two or more characters
out of a node share MSH, in which case all the LSHs with that MSH define the
outgoing edges of a new node. Observe that if two characters share MSH then
their LSHs must differ, due to the assumption of distinct elements propagating
through the recursion. To find the relevant LSHs we consider the sorted list L.
Each new node is identified by a pair (id,MSH) where (idj , h(MSH(ej)), ·)
appears at least twice in L, i.e. two or more tuples with the same id and hash
of MSH. For each new node we find the leftmost such tuple j in L.

Technically we scan through L and evaluate (Hj−1 6= Hj ∨ idj−1 6= idj) ∧
(Hj+1 = Hj ∧ idj+1 = idj). If this evaluates to true then j is a new node
in T i+1. Using a prefix sum we create and assign all ids for new nodes and
their edges. In order to test if LSHj should be in the recursion we evaluate
(Hj−1 = Hj ∧ idj−1 = idj) ∨ (Hj+1 = Hj ∧ idj+1 = idj). This evaluates to
true only if the LSH should be extracted for the recursion because we assume
distinct elements.

Using results from the recursion. We created the input to the recur-
sion by first extracting all MSHs, packing them and afterwards extracting
all LSHs and then packing them. Finally concatenate the two packed ar-
rays. Now we simply have to reverse this process, first for the MSHs, then
the LSHs. Technically after the recursive call the array consisting of tuples
(j, rankMSHj , rankLSHj , Hj , idj , ranknew) is filled out. Some of the fields are
just additional fields to the array L. The three ranks use logn bits each and
are initialized to 0. First rankMSHj is filled out and afterwards rankLSHj . The
same procedure is used for both.

44 CHAPTER 3. INTERLUDE: SORTING

For retrieving rankMSHi , we know how many MSHs were extracted for the
recursion, so we separate the ranks of MSHs and LSHs and now only consider
MSHs ranks. We first expand the MSH ranks as described in Section 3.2 such
that each rank uses the same number of bits as an entire tuple. Recall that the
MSHs were packed and we now need to unpack them. If we saved information
on how we packed elements, we can also unpack them. The information we
need to retain is how many elements each word contributed and for each
element in a word its initial position in that word. Note that for each unique
Hj we only used one MSH for the recursion, thus we need to propagate its
rank to all other elements with the same hash and id. Fortunately the hash
values are adjacent, and by noting where the hash values change we can do
an operation similar to a prefix sum to copy the ranks appropriately.

Returning. As this point the only field not filled out is ranknew. To fill
it out we sort the list by the concatenation of rankMSHj and rankLSHj . In
this sorted list we put the current position of the elements in ranknew (see
Section 3.2 on creating index). The integer in ranknew is currently not the
correct rank, but by subtracting the first ranknew in an id from the other
ranknews with that id we get the correct rank. Then we sort by j, mask away
everything except ranknew, pack the array and return. We are guaranteed the
ranks from the recursion use logn bits each, which means the concatenation
uses 2 logn bits so we can sort the array efficiently.

Analysis. We argue that the algorithm is correct and runs in linear time.

Lemma 7. Let n be the number of integers we need to sort then the maximum
number of elements in any level of the recursion is 2n− 1.

Proof. This follows immediately from the invariants.

Theorem 6. The main algorithm runs in O(n) time.

Proof. At level i of the recursion |e| = w
2i . After log logn levels we switch

to the base case where there are b = 2log logn = logn elements per word.
The time used in the base case is O(nb (log2 b+ logn)) = O(n

logn((log logn)2 +
logn)) = O(n).

At level i of the recursion we have b = 2i elements per word and the
time to work with each of the O(nb) words using the methods of Section 3.2
is O(log b). The packed sorting at each level sorts elements with O(logn)
bits, i.e. O

(
w

logn

)
elements per word in time O

(
n

w/ logn

(
log2 w

logn + logn
))

.

Plugging in our assumption w = Ω(log2 n log logn), we get time O
(

n
log logn

)
.

For all levels the total time becomes
∑log logn
i=0

(
n
2i i+ n

log logn

)
= O(n).

3.4. PACKED SORTING 45

≤ ≤

≤

≤ ≤

≤

≤

≤

≤

· · · ≤

≤

≤

· · ·

· · ·

···

···

···

···

x1,b

x1,2

x1,1 x2,1

x2,2

x2,b x3,b xn/b,b

x3,2

x3,1 xn/b,1

xn/b,2

x1 x2 x3 xn/b

≤

· · ·

· · ·

· · ·

···

···

···

xb,1

x2,1

x1,1 x1,2

x2,2

xb,2 xb,b

x1,b

x2,b

y1 y2 yb

≤
≤

≤
≤

≤

≤
≤

≤ ···

xb+b,1

xb+1,1

xb+2,1

yb+1

≤
≤

≤ ···

xb+b,2

xb+1,2

xb+2,2

yb+2

≤
≤

≤

· · ·

· · ·

· · ·L1

L2

Lb

≤≤

Figure 3.2: Transposing and concatenating blocks.

The probability of doing more than one iteration of the algorithm is the
probability that there is a level in the recursion where the randomly cho-
sen hash function was not injective. The hash family can be designed such
that the probability of a hash function not being injective when chosen uni-
formly at random is less than 1/n2 [51]. We need to choose log logn such
functions. The probability that at least one of the functions is not injective
is O(log logn/n2) < O(1/n). In conclusion the sorting step works with high
probability, thus we expect to repeat it O(1) times.

3.4 Packed sorting
We used a subroutine in the main sorting algorithm for sorting the hash val-
ues. In this section we describe how perform that subroutine. We are given n
elements of wb bits packed into n

b words using (M,f) = (b, w/b) representation
that we need to sort. Albers and Hagerup [8] describe how to perform a deter-
ministic packed sorting in time O(nb logn·log b). We describe a simple random-
ized word-level parallel sorting algorithm running in time O(nb (logn+log2 b)).
Packed sorting proceeds in four steps described in the following sections. The
idea is to implement b sorting networks in parallel using word-level paral-
lelism. In sorting networks one operation is available: compare the elements
at positions i and j then swap i and j based on the outcome of the compar-
ison. Denote the `th element of word i at any point by xi,`. First we use
the `th sorting network to get a sorted list L`: x1,` ≤ x2,` ≤ · · · ≤ xn/b,` for
1 ≤ ` ≤ b. Each L` then occupies field ` of every word. Next we reorder
the elements such that each of the b sorted lists uses n/b2 consecutive words,
i.e. xi,j ≤ xi,j+1 and xi,w/b ≤ xi+1,1, where n/b2 · k < i ≤ n/b2 · (k + 1) and
0 ≤ k ≤ b− 1 (See Figure 3.2). From that point we can merge the lists using
the RAM implementation of bitonic merging (see below). The idea of using
sorting networks or oblivious sorting algorithms is not new (see e.g. [68]), but
since we need to sort in sublinear time (in the number of elements) we use a
slightly different approach.

Data-oblivious sorting. A famous result is the AKS deterministic sorting
network which uses O(n logn) comparisons [7]. Other deterministic O(n logn)
sorting networks were presented in [8, 65]. However, in our application ran-

46 CHAPTER 3. INTERLUDE: SORTING

domized sorting suffices so we use the simpler randomized Shell-sort by Goodrich [64].
An alternative randomized sorting-network construction was given by Leighton
and Plaxton [87].

Randomized Shell-sort sorts any permutation with probability at least
1 − 1/N c (N = n/b is the input size), for any c ≥ 1. We choose c = 2. The
probability that b arbitrary lists are sorted is then at least 1−b/N c ≥ 1−N c−1.
We check that the sorting was correct for all the lists in time O(nb). If not,
we rerun the oblivious sorting algorithm (with new random choices). Overall
the expected running time is O(nb log n

b).
The Randomized Shell-sort algorithm works on any adversarial chosen

permutation that does not know the random choices of the algorithm. The
algorithm uses randomization to generate a sequence of Θ(n logn) comparisons
(a sorting network) and then applies the sequence of comparisons to the input
array. We start the algorithm of Goodrich [64] to get the sorting network. We
run it with N = n/b as the input size. When the network compares i and j,
we compare words i and j field-wise. That is, the first element of the two
words are compared, the second element of the words are compared and so
on. Using the result we can implement the swap that follows. After this step
we have x1,` ≤ x2,` ≤ · · · ≤ xn/b,` for all 1 ≤ ` ≤ b.

The property of Goodrich’ Shellsort that makes it possible to apply it in
parallel is its data obliviousness. In fact any sufficiently fast data oblivious
sorting algorithm would work.

Verification step. The verification step proceeds in the following way: we
have n/b words and we need to verify that the words are sorted field-wise.
That is, to check that xi,` ≤ xi+1,` for all i, `. One packed comparison will
be applied on each pair of consecutive words to verify this. If the verification
fails, then we redo the oblivious sorting algorithm.

Rearranging the sequences. The rearrangement in Figure 3.2 corresponds
to looking at b words as a b× b matrix (b words with b elements in each) and
then transposing this matrix. Thorup [116, Lemma 9] solved this problem
in O(b log b) time. We transpose every block of b consecutive words. The
transposition takes overall time O(nb log b). Finally, we collect in correct order
all the words of each run. This takes time O(nb). Building the ith run for
1 ≤ i ≤ b consists of putting together the ith words of the blocks in the block
order. This can be done in a linear scan in O(n/b) time.

Bitonic merging. The last phase is the bitonic merging. We merge pairs
of runs of n

b2 words into runs of 2n
b2 words, then runs of 2n

b2 words into runs
of size 4n

b2 and so on, until we get to a single run of n/b words. We need to
do log b rounds, each round taking time O(nb log b) making for a total time of
O(nb log2 b) [8].

3.5. GENERAL SORTING 47

3.5 General sorting
In this section we tune the algorithm slightly and state the running time of the
tuned algorithm in terms of the word size w. We see that for some word sizes
we can beat the O(n

√
log logn) bound. We use the splitting technique of [69,

Theorem 7] that given n integers can partition them into sets X1, X2, . . . Xk of
at most O(

√
n) elements each, such that all elements in Xi are less than all ele-

ments in Xi+1 in O(n) time. Using this we can sort in O(n log logn√
w/ logw

) time.
The algorithm repeatedly splits the set S of inital size n0 into smaller subsets of
size nj = √nj−1 until we get lognj ≤

√
w/ logw where it stops and sorts each

subset in linear time using our sorting algorithm. The splitting is performed
log((logn)/(

√
w/ logw)) = 1

2 log log2 n logw
w = O(log log2 n log logn

w) times. An
interesting example is to sort in time O(n log log logn) for w = log2 n

(log logn)c for
any constant c. When w = log2 n

2Ω(
√

log logn)
, the sorting time is Ω(n

√
log logn)

which matches the bound of Thorup and Han. In contrast the exact bound
by Thorup and Han is O

(
n
√

log w
logn

)
which becomes Θ

(
n
√

log logn
)
when

w = Ω
(
log1+ε n

)
and w = logO(1) n. This means the asymptotic of Tho-

rup and Han’s algorithm rises very quickly to O(n
√

log logn) and then stabi-
lizes. Our algorithm converges towards O(n log logn) as w decreases towards
Θ(logn).

Chapter 4

Text Indexing

In this chapter we deal with text indexing. We first briefly state the results
of this chapter. The exact formulation of all the problems considered are
given in the following sections, but we now informally introduce them. We
consider three concrete problems: Term Proximity in succinct space, Two-
Pattern problems and Wild Card Indexing. In all the problems we have a
collection of documentsD = {d1, d2, . . . dD} with a total length of n characters.
In the Term Proximity problem queries are a pattern P and a value k, and we
must return k documents with the best Term Proximity score. We prove it
is possible to create a Term Proximity data structure in succinct space with
O(|P |+k polylogn) query time. We establish upper and lower bounds for the
Two Pattern problems, where queries are two patterns P1 and P2. There are a
couple of variants: the 2P problem where documents matching both patterns
must be returned, and the FP variant where documents matching P1 but not
P2 must be returned. The presented data structure uses O(n) words of space,
and has a query time of O(

√
nk log1/2+ε n) where k is the output size. For the

Two-Pattern problems we show a lower bound trade-off between query time
and space usage for the cases of reporting the documents and for counting
the documents. Both of these lower bounds prove that known structures are
essentially optimal (up to no(1) factors). In the Wild Card Indexing problem,
we show two lower bounds, that show near optimality of some of the known
data structures. The two lower bounds work for different amounts of wild
cards in the query pattern.

The rest of this chapter is structured as follows. In Section 4.1 we give
a more thorough introduction to the text indexing area, and we continue in
Section 4.2 with previous results on the problems we consider. In Section 4.3
we explain more carefully the results presented in this chapter. Before prov-
ing all the results we have some preliminaries in Section 4.4, that covers the
various tools we use to obtain the upper and lower bounds. The first result we
present is the Term Proximity in Section 4.5, afterwards, in Section 4.6, we

This chapter is based on the papers [3, 85, 93].

49

50 CHAPTER 4. TEXT INDEXING

give our upper bounds for the 2P problem, which are easily adapted for the
FP problem. We show how to reduce boolean matrix multiplication to the 2P
problem in Section 4.7, which is also easily adapted for the FP problem. Next
we move on to the lower bounds, first the pointer machine lower bounds for
the Wild Card Indexing problem in Section 4.8, then in Section 4.9 we present
the reporting lower bounds for the Two Pattern problems. We end the lower
bound results in Section 4.10 with a lower bound for the counting variant of
the Two Pattern problems in the semi-group model. It turns out, that the
Two-Pattern problems are very related to the Set Intersection problem, and
we get similar lower bounds this problem. Finally, we end in Section 4.11
with a discussion on the implications of the established lower bounds, and see
that solutions obtained by easy applications of “standard” techniques solve
the Two-Pattern problems almost optimally.

4.1 Introduction

Text indexing is a class of very important problems since it has many applica-
tions in very diverse fields ranging from biology to cyber security. Generally,
the input is a single text or a collection of documents and the goal is to in-
dex them such that given a query P , all the documents where P occurs as
a substring can be either found efficiently (the reporting variant), or counted
efficiently (the searching variant).

The standard document retrieval problem where the query is just one text
pattern was introduced in by Matias et al. [90]. The problem is classical and
well-studied and there are linear space solutions with optimal query time [96].
Not surprisingly, there have been various natural extensions of this problem.
As an example the counting case asks to find the number of documents con-
taining the query pattern rather than its occurences. Many other and more
interesting variations on this problem have also been studied. For an excellent
survey on more results and extensions of document retrieval problems see [97].

Ranked document retrieval, that is, returning the documents that are most
relevant to a query, is the fundamental task in Information Retrieval (IR)
[12, 29]. Muthukrishnan [96] initiated the study of this family of problems in
the general scenario where both the documents and the queries are general
strings over arbitrary alphabets, which has applications in several areas [97].
In this scenario, we have a collection D = {d1, d2, . . . , dD} of D string docu-
ments of total length n, drawn from an alphabet Σ = [σ] = {0, 1, . . . , σ − 1},
and the query is a pattern P [1..p] over Σ. Muthukrishnan considered a family
of problems called thresholded document listing: given an additional parameter
K, list only the documents where some function score(P, i) of the occurrences
of P in di exceeded K. For example, the document mining problem aims to
return the documents where P appears at least K times. Another variant, the

This chapter is based on the text indexing papers [3, 85, 93].

4.1. INTRODUCTION 51

repeats problem, aims to return the documents where two occurrences of P
appear at distance at most K. While document mining has obvious connec-
tions with typical term-frequency measures of relevance [12, 29] (i.e. when the
number of occurences of a pattern determines the document’s importance),
the repeats problem is more connected to various problems in bioinformatics
[17, 67]. Also notice that the repeats problem is closely related to the term
proximity based document retrieval (i.e. when the two closest occurrences
of the pattern determines the document’s importance) in the Information Re-
trieval field [28, 113, 122–124]. Muthukrishnan achieved optimal time for both
the document mining and repeats problems, with O(n) space (in words) if K
is specified at indexing time and O(n logn) if specified at query time. A more
natural version of the thresholded problems, as used in IR, is top-k retrieval:
Given P and k, return k documents with the best score(P, d) values.

A different variation on text indexing is to find all occurrences in a text
that approximately match a pattern. This type of generalisation is very im-
portant in areas where there is a source of noise/error when receiving the bits.
One example where approximate text matching is very useful is audio recog-
nition, since the queries may have various sources of noise. To properly define
approximately match there has to be a distance function between a position in
the text and the query pattern. There are many examples of various distance
functions and each requires a different data structure to solve the problem.
The distance function could for instance be the Hamming distance, where the
distance is the number of characters that mismatch. A different measure is
the edit distance, where the distance between two texts is the number of in-
sertions, deletions, and character substitutions required to turn one text into
the other. Another way to approximately match is the “don’t care” approach,
where either the text, the query, or both contain “wild card” or “don’t care”
symbols. Now when receiving a query pattern, the task is to return all posi-
tions that match, and letting “wild cards” match any character. Each distance
function finds applications in different areas and they are all important both
from a theoretical and a practical stand point.

So far the described problems have dealt with exactly one pattern. A gen-
eralisation that turns out to have deep connections to problems in theoretical
computer science are the two-pattern query problems. One of these types of
problems was introduced in 2001 by Ferragina et al. [54] and since then it
has attracted lots of attention. In the two-pattern problem, each query is
composed of two patterns and a document matches the query if both patterns
occur in the document (2P problem). One can also define the Forbidden Pat-
tern problem (FP problem) [56] where the a document matches the query if it
contains one pattern (the positive pattern) but not the other one (the forbid-
den or negative pattern). For symmetry, we also consider the Two Forbidden
Pattern (2FP) problem where none of the patterns are allowed to match the
document. For each problem one can also consider a searching variant or a
reporting variant. Furthermore, in the searching variant, we can consider the

52 CHAPTER 4. TEXT INDEXING

documents to be either weighted or unweighted; the weighted version is espe-
cially attractive in situations where the weight represents the “importance”
of each document (e.g. the PageRank value of a document). We will work
with the weighted sets where a document di is assigned a weight w(di) from
a semi-group G (more details and motivations to follow) and we call this the
semi-group variant.

In studying the 2P problems we also delve into a problem that we call
set intersection queries (SI). In this problem, the input is m sets, S1, · · · , Sm
of total size n, that are subsets of a universe U . Each query is a pair of
indices i and j. The reporting variant ask for all the elements in Si ∩ Sj . In
the searching variant, the input also includes a weight function w : U → G
where G is a semi-group. The query asks for

∑
x∈Si∩Sj w(x). Finally, in

the decision variant we simply want to know whether Si ∩ Sj = ∅. The set
intersection queries have appeared in many different formulations and variants
(e.g., see [1, 45, 46, 83, 109, 110]). The most prominent conjecture related to
set intersection is that answering the decision variant with constant query
time requires Ω(n2−o(1)) space (see [109] for more details).

4.2 Previous Results

Ranked document retrieval Recall in the Ranked Document Retrieval
problem we are given a set of documents D = {d1, d2, . . . , dD} each over an
alphabet Σ = [σ] = {0, 1, . . . , σ − 1} as input. The queries are pairs (P, k)
where P is a pattern over Σ and k is an integer. The task is then, for a known
scoring function score(P, i), to return k documents with the best score. The
total length of the documents ΣD

i=1|di| = n and we are interested in solutions
that use low space in terms of n.

Hon et al. [70, 75] gave a general framework to solve top-k problems for a
wide variety of score(P, i) functions, which takes O(n) space, allows k to be
specified at query time, and solves queries in O(p+k log k) time. Navarro and
Nekrich reduced the time to O(p + k) [99], and finally Shah et al. achieved
time O(k) given the locus of P in the generalized suffix tree of D [114].

The problem is far from closed, however. Even the O(n) space (i.e.,
O(n logn) bits) is excessive compared to the size of the text collection it-
self (n log σ bits), and in data-intensive scenarios it often renders all these
solutions impractical by a wide margin. Hon et al. also introduced a general
framework for succinct indexes [70], which use o(n) bits1 on top of a com-
pressed suffix array (CSA) [98], which represents D in a way that also provides
pattern-matching functionalities on it, all within space close to that of the
compressed collection (|CSA| bits). A CSA finds the suffix array interval of
P [1..p] in time ts(p) and retrieves any cell of the suffix array or its inverse

1IfD = o(n), which we assume for simplicity in this paper. Otherwise it isD log(n/D)+
O(D) + o(n) = O(n) bits.

4.2. PREVIOUS RESULTS 53

in time tSA. Hon et al. achieved O(ts(p) + k tSA log3+ε n) query time, using
O(n/ logε n) bits. Subsequent work (see [97]) improved the initial result up to
O(ts(p) + k tSA log2 k logε n) [101, 103], and also considered compact indexes,
which may use up to o(n logn) bits on top of the CSA. For example, these
achieve O(ts(p) + k tSA log k logε n) query time using n log σ + o(n) further
bits [74], or O(ts(p) + k log∗ k) query time using n logD + o(n logn) further
bits [102, 103].

Two Pattern Problems We start by formally defining the text indexing
problems we consider where the queries are two patterns.

2P Problem Given a set of strings D = {d1, d2, . . . , dD} with
∑D
i=1 |di| = n,

preprocess D to answer queries: given two strings P1 and P2 report all
i’s where both P1 and P2 occur in di.

FP Problem Given a set of strings D = {d1, d2, . . . , dD} with
∑D
i=1 |di| = n,

preprocess D to answer queries: given two strings P+ and P− report all
i’s where P+ occurs in string di and P− does not occur in string di.

2FP Problem Given a set of strings D = {d1, d2, . . . , dD} with
∑D
i=1 |di| =

n, preprocess D to answer queries: given two strings P1 and P2 report
all i’s neither of P1 or P2 occur.

2DSS Problem (shorthand for the two dimensional substring problem)
Let D = {(d1,1, d1,2), (d2,1, d2,2), . . . , (dD,1, dD,2)}, be a set of pairs of
strings with

∑D
i=1 |di,1| + |di,2| = n. Preprocess D to answer queries:

given two strings P1 and P2 report all i’s where P1 occurs in di,1 and P2
occurs in di,2.

Muthukrishnan presented a data structure for the 2P problem using space
O(n1.5 logO(1) n) (in words) with O(p1+p2+

√
n+k) time for query processing,

where p1 = |P1| and p2 = |P2| and k is the output size1 [96]. Later Cohen
and Porat [46] presented a space efficient structure of O(n logn)-space, but
with a higher query time of O(p1 + p2 +

√
nk logn log2 n). The space and the

query time of was improved by Hon et al. [71] to O(n) words and O(p1 + p2 +√
nk logn logn) time. See [76] for a succinct space solution for this problem

as well as an improved linear space structure with query time O(p1 + p2 +√
nk logn log logn). The FP problem was introduced by Fischer et al. [56],

where they presented an O(n3/2)-bit solution with query time O(p1 + p2 +√
n+ k). Immediately, Hon et al. [73] improved its space occupancy to O(n)

words, but with a higher query time of O(p1 + p2 +
√
nk logn log2 n). They

presented an O(n)-space and O(p1 + p2 +
√
n log logn) query time structure

for the counting version of FP (i.e., just report the value k). We remark
that the same framework can be adapted to handle the counting version of

1Specifically k is the maximum of 1 and the output size.

54 CHAPTER 4. TEXT INDEXING

2P as well. Also the O(log logn) factor in the query time can be removed
by replacing predecessor search queries in their algorithm by range emptiness
queries. In summary, we have O(n)-space and Ω̃(

√
n) query time solutions

for the counting versions of these problems. Later we address the question of
whether these are the best possible bounds.

The 2DSS problem was introduced by Ferragina et al. [54]. They presented
a number of solutions for the 2DSS problem with space and query times that
depend on the “average size” of each document. Their strategy was to reduce
it to another problem known as the common colors query problem, where
the task is to preprocess an array of colors and maintain a data structure,
such that whenever two ranges comes as a query, we can output the unique
colors which are common to both ranges. Based on their solution for this
new problem, they presented an O(n2−ε) space and O(nε + k) query time
solution for 2DSS, where ε is any constant in (0, 1]. Later Cohen and Porat [46]
presented a space efficient solution for the common colors query problem of
space O(n logn) words and query time O(

√
nk logn log2 n). Therefore, the

current best data structure for the 2DSS problem occupies O(n logn) space
and processes a query in O(p1 + p2 +

√
nk logn log2 n) time.

The 2P and 2DSS Problems have been independently studied but we note
that they are actually equivalent up to constant factors. Suppose we have
a solution for 2DSS, and we are given the input for 2P, i.e. a set of strings
D = {d1, d2, . . . , dD}. Now build the data structure for Problem 2DSS with
the input D′ = {(d1, d1), (d2, d2), . . . , (dD, dD)}. The queries remain the same.
This reduction has an overhead factor of two.

Similarly, suppose we have a solution for 2P and we are given the in-
put for 2DSS, i.e. D = {(d1,1, d1,2), (d2,1, d2,2), . . . , (dD,1, dD,2)}. We make
a new alphabet Σ′ such that |Σ′| = 2|Σ|. Now create the set of strings
D′ = {d1, d2, . . . , dD}, where di = di,1d

′
i,2 and d′i,2 is di,2 where each char-

acter s is changed to s+ |Σ|. A query is changed in the same manner: (P1, P2)
is changed to (P1, P

′
2) where P ′2 is P2 with each character s replaced by s+ |Σ|.

This reduction increases the input length by a factor of at most two (one extra
bit per character).

The only lower bound so far says that with query time ofO(poly(logn)+k),
the space must be Ω(n(logn/ log logn)3). This is achieved by showing that one
can solve 4-dimensional range queries using a two-pattern data structure [56].
However this bound is far away from the upper bounds.

There has been some work on hardness results, however. For the FP prob-
lem (reporting variant) Kopelowitz et al. [83] show that assuming there is no
O(n2−o(1)) algorithm for the integer 3SUM problem then P (n)+n

1.5+ε
2−ε Q(n) ≥

n
2

2−ε−o(1) for any 0 < ε < 1/2, where P (n) is the preprocessing time and Q(n)
is the query time. For the best bound, ε should be set close to 1/2. For the 2P
problem (reporting variant), they show a slightly different trade-off curve of
P (n)+n

1+ε
2−εQ(n) ≥ n4/3−o(1), for any 0 < ε < 1/2 (the best bound is achieved

4.2. PREVIOUS RESULTS 55

when ε is close to 0).
Unfortunately, the hardness results tell us nothing about the complexity

of the space usage, S(n), versus the query time which is what we are truly
interested in for data structure problems. Furthermore, even under the rela-
tively generous assumption1 that P (n) = O(S(n)no(1)) the space and query
lower bounds obtained from the above results have polynomial gaps compared
with the current best data structures.

Set Intersection The interest in set intersection problems has grown con-
siderably in recent years and variants of the set intersection problem have
appeared in many different contexts. Cohen and Porat [46] considered the
reporting variant of the set intersection queries (due to connection to 2P prob-
lem) and presented a data structure that uses linear space and answers queries
in O(

√
nk) time, where k is the output size. They also presented a linear-space

data structure for the searching variant that answers queries in O(
√
n) time.

In [80] the authors study set intersection queries because of connections to dy-
namic graph connectivity problems. They offer very similar bounds to those
offered by Cohen and Porat (with a

√
logn factor worse space and query times)

but they allow updates in O(
√
n logn) time. As far as we know, there has

not been further progress on building better data structures and in fact, it is
commonly believed that all set intersection queries are hard. Explicitly stated
conjectures on set intersection problems are used to obtain conditional lower
bounds for diverse problems such as distance oracles in graphs [45, 109, 110].
On the other hand, other well-known problems, such as 3SUM, can be used to
show conditional lower bounds for variants of set intersection problems [1, 83].
For a few other variants of set intersection problems see [18, 50, 107].

Dietz et al. [50] considered set intersection queries in the semi-group model
(a.k.a. the arithmetic model) and they presented near optimal dynamic and
offline lower bounds. They proved that given a sequence of n updates and
q queries one must spend Ω(q + n

√
q) time (ignoring polylog factors); in the

offline version a sequence of n insertions and q queries are used but in the
dynamic version, the lower bound applies to a dynamic data structure that
allows insertion and deletion of points, as well as set intersection queries.

Wild Card Indexing Cole et al. [47] presented a solution for indexing
a text and querying with patterns containing up to κ wild cards. Their
data structure uses O(n logκ n

κ!) words of space and answers queries in O(P +
2κ log logn + t), where t is the number of occurrences. Recently this struc-
ture was generalized to provide a trade-off with increased query time O(P +
βj log logn+ t) and reduced space usage O(n logn logκ−1

β n) for any 2 ≤ β ≤ σ
(σ is the alphabet size), where j is the number of wild cards in the query [19].

1There are problems, such as jumbled indexing [33], where the preprocessing time is a
polynomial factor larger than the space complexity.

56 CHAPTER 4. TEXT INDEXING

In the same paper an index with O(m+t) query time and O(σκ2
n logκ n logn)

space usage was also presented. Another result, which is not easily compara-
ble, is an O(n) space index with query time O(P + α) [111]. Here α is the
number of occurrences of all the subpatterns separated by wild card charac-
ters. This can obviously have worst case linear query time, but it could be a
more practical approach.

There have been no lower bounds for Wild Card Indexing (WCI) queries.
However, the partial match problem is a closely related problem for which
there are many cell-probe lower bounds. One of the main differences is that
there are no hard limits on the number of wild cards in the partial match
problems; because of this, the partial match problem has tight connections
to higher dimensional nearest neighbour search type problems. In [108] it is
proven that a data structure with query time q must use Ω(2m/q) words of
space, under the assumption that the word size is O(n1−ε/q), where m is the
size of the query. In some sense this is the highest lower bound we can hope
to prove with current techniques in the cell probe model. For a discussion of
the cell probe complexity of the partial match problem we refer to [108].

For a summary of the results regarding document indexing for two patterns
and wild cards see Table 4.2. The table also includes the new results we present
in the later sections.

4.2. PREVIOUS RESULTS 57

Table 4.1: (top) Data structures for the two-pattern (2P), the forbidden pat-
tern (FP), and the set intersection (SI) query problems. (bottom) Lower
bounds. Here, M(m) is the time to multiply two m ×m matrices. “Comb-
MM” stands for the assumption that there is no “combinatorial” algorithm
that multiplies two m ×m matrices in time O(n3−o(1)). I3S refers to the as-
sumption that there is no O(n2−o(1)) algorithm that solves an instance of the
3SUM problem with integer input. “PM” refers to the pointer machine model
and “SG” refers to the semi-group model.

Problem Space Query Time Notes

2P (reporting) n2−α logO(1) n nα + t Ferragina et al.’03 [54]
2P (reporting) n logn

√
nt logn log2 n+ t Cohen, Porat’10 [46]

2P (reporting) n
√
nt logn logn+ t Hon et al.’10 [71]

FP (reporting) n3/2/ logn
√
n+ t Fischer et al.’12 [56]

FP (reporting) n
√
nt logn log2 n+ t Hon et al.’12 [73]

2P, FP (reporting) n
√
nt logn logε n+ t new

2P, FP (counting) n
√
n new (Observation)

2P, FP, SI (reporting) n2 log2 n
Q(n) Q(n) + t new (Q(n) = Ω(logn))

2P, FP, SI (counting) n2 log2 n
Q2(n) Q(n) new (Q(n) = Ω(logn))

WCI n logκ n
κ! 2κ log logn+ t Cole et al. ’04 [47]

WCI n logn logκ−1
β n βκ log logn+ t 2 ≤ β ≤ σ,

Bille et al. ’04 [19]
WCI n

∑κ
i=0 occ(pi) + t Rahman et al. ’07 [111]

Problem Lower Bound Notes

2P, FP (counting) P (n) + nQ(n) = Ω(M(
√
n logn)) new

2P, FP (counting) P (n) + nQ(n) = Ω(n1.5−o(1)) [Comb-MM], new
2P (reporting) P (n) + n1+εQ(n) = Ω(n4/3−o(1)) [I3S], [83]
FP (reporting) P (n) + n3/4+εQ(n) = Ω(n4/3−ε)) [I3S], [83]
2P, FP, SI (reporting) S(n)Q(n) = Ω

(
n2−o(1)) [PM], new

2P, FP, SI (reporting) Q(n) = (nk) 1
2−α, S(n) = Ω

(
n

1+6α
1+2α−o(1)

)
[PM], new

2P, FP, SI (counting) S(n)Q2(n) = Ω
(
n2−o(1)) [SG], new

WCI (reporting)
Q(n, κ) = O(2

κ
2)⇒

S(n,m, κ) = Ω
(
n2Θ(k)n

Θ(1
logκ)

)
κ ≥ 3

√
logn, new

WCI (reporting)
Q(n)=f(n)+O(m+t),

S(n)=Ω
(
n
κΘ
(

logQ(n) n

κ

)κ−1
)

κ ≤ logQ(n) n, new

58 CHAPTER 4. TEXT INDEXING

4.3 Our Results
Ranked Document Retrieval All the frameworks that give succinct and
compact indexes discovered so far work exclusively for the term frequency
(or closely related, e.g., tf-idf) measure of relevance. For the simpler case
where documents have a fixed relevance independent of P , succinct indexes
achieve O(ts(p)+k tSA log k logε n) query time [15], and compact indexes using
n logD+o(n logD) bits achieve O(ts(p)+k log(D/k)) time [62]. On the other
hand, there have been no succinct nor compact indexes for the term proximity
measure of relevance. The term proximity measure of relevance is defined as
follows:

tp(P, `) = min{{|i−j| | i 6= j∧d`[i..i+ |P |−1] = d`[j..j+ |P |−1] = P}∪{∞}}

Where d` is the `-th document and P is the pattern. We present the first
succinct and compact indexes for term proximity. Theorem 7 gives a suc-
cinct structure that is competitive with the original succinct term-frequency
results [70]. For example, on a recent CSA [14], this time is O(p + (k log k +
logn) log3+ε n), whereas the original succinct term-frequency solution [70]
would require O(p+ k log4+ε n) time.

Theorem 7. Using a CSA plus o(n) bits data structure, one can answer top-
k term proximity queries in O(ts(p) + (log2 n + k(tSA + log k logn)) log2+ε n)
time, for any constant ε > 0.

We further show how to extend our result to a scenario where score(·, ·)
is a weighted sum of document ranking, term-frequency, and term-proximity
with predefined non-negative weights [123].

Two Pattern Problems We present an improved upper bound for the
common colors query problem, where the space and query time are O(n) and
O(
√
nk log1/2+ε n) respectively, where ε > 0 is any constant. Therefore, we

now have a linear-space and O(p1 + p2 +
√
nk log1/2+ε n) query time index for

the 2DSS problem. Due to the reductions given previously this also gives the
same upper bounds for the 2P problem.

The difficulty of obtaining fast data structures using (near) linear space
has led many to believe that very efficient solutions are impossible to ob-
tain. We strengthen these beliefs by presenting strong connections between
the counting versions of the 2P problem and the boolean matrix multiplication
problem. Specifically, we show that multiplying two

√
n×
√
n boolean matri-

ces can be reduced to the problem of indexing D and answering n counting
queries. However, matrix multiplication is a well known hard problem and
this connection gives us a hardness result for the pattern matching problems
under considerations. We also note that the hardness result also follows for
FP since the reduction are easily adapted.

4.3. OUR RESULTS 59

Letting ω be the best exponent for multiplying two n×n matrices, we show
that P (n)+nQ(n) = Ω̃(nω/2) where P (n) and Q(n) are the preprocessing and
the query times of the data structure, respectively. Currently ω = 2.3728639,
i.e., the fastest matrix multiplcation algorithm runs in O(n2.3728639) time. If
one assumes that there is no “combinatorial” matrix multiplication algorithm
with better running time than O(n3−o(1)), then the lower bound becomes
P (n) + nQ(n) = Ω(n1.5−o(1)). However boolean matrix multiplication can
be solved using a non-combinatorial algorithm (such as Strassen’s algorithm).
Expanding slightly on the result we see that either the preprocessing time must
be high or the query time is high. Essentially we get that either preprocessing
takes time Ω̃(n1.18) or a query takes Ω̃(n0.18) time.

The hardness results obtained by Kopelowitz et al [83] are independent of
the bounds obtained here, and they will hold as long as integer 3SUM is hard
regardless of the difficulty of the boolean matrix multiplication.

We also move away from hardness results and prove lower bounds directly.
The lower bounds we prove are based on the Pointer Machine model and Semi-
Group model (both are described in the preliminaries, Section 4.4). For the
two pattern problems (and Set Intersection) our lower bounds show that all
the known data structures are optimal within no(1) factors:

Theorem (15). In the pointer machine model of computation, any data struc-
ture that solves the reporting variant of the aforementioned problems with S(n)
space and Q(n) +O(k) query time must have

S(n)Q(n) = Ω
(
n2−o(1)

)
As a corollary, we also obtain that there is no data structure that uses near

linear space and has O((nk)1/2−ε + k) query time, for any constant ε > 0. On
the other hand, in the semi-group model of computation (see [42] or Section 4.4
for a description of the semi-group model), we prove that any data structure
that solves the searching variant of the aforementioned problems with S(n)
space and Q(n) query time must have S(n)Q2(n) = Ω(n2/ log4 n). Further-
more, we show that both of the these trade off curves are almost optimal by
providing data structures with space and query time trade-off that match our
lower bounds, up to no(1) factors. We claim no novelty in the upper bounds,
and the data structures mostly follow from standard techniques.

Our results have a few surprising consequences. First, we can establish
that the reporting case of these problems is strictly more difficult than their
searching variant. For example, ignoring no(1) factors, we can count the num-
ber of matching documents using Sc = O(n) space and with Qc = O(

√
n)

query time but reporting them in Qr = O(
√
n+k) time requires Sr = Ω(n3/2)

space. Our lower bounds show that both of these results are the best possible
and thus counting is certainly easier than reporting. Notice that conditional
lower bounds that use reductions from offline problems (such as matrix multi-
plications or 3SUM) cannot distinguish between reporting and counting. For

60 CHAPTER 4. TEXT INDEXING

example, consider the boolean matrix multiplication framework, and for the
best outcome, let us add one assumption that P (n) = S(n)no(1) and another
assumption that no efficient “combinatorial” matrix multiplication exists; this
will yield that Sc + nQc = Ω(n1.5−o(1)) and Sr + nQr = Ω(n1.5−o(1)) which
both are almost tight bounds (i.e., we cannot make the exponent “1.5” any
larger) but they are unable to tell us that for Qr = O(

√
n) we must also

have Sr = Ω(n1.5). The second surprising outcome is that separation between
counting and reporting is a rare phenomenon with often counting being the
difficult variant. The fact that here we observe the reverse is quite interesting.
Third, we provably establish that getting fast queries always requires close to
n2 space.

Remarks. Proving a lower bound for the decision version of the problems
mentioned above is considered a major open problem that needs breakthrough
techniques. While we believe our lower bounds are certainly interesting (par-
ticularly since they separate counting and reporting variants), they do not
make any progress towards resolving this major open problem.

Wild Card Indexing For WCI with κ wild cards, we prove two results,
both in the pointer machine model. First, we prove that for κ ≥ 3

√
logn

and for a binary alphabet (σ = 2), if we want fast queries (specifically, if we
want query time smaller than O(2k/2 +m+ t), where m and t are the pattern
length and the output size respectively), then the data structure must consume
Ω(n2Θ(k)nΘ(1/ log k)) space; For κ = 3

√
logn, this space bound can be written

as Ω(n2Θ(k2/ log k)) which is very close to a structure offered by Bille et al. [19].
Second, we prove that any pointer-machine data structure that answers WCI
queries in time Q(n) + O(m + t) must use Ω

(
n
κΘ

(logQ(n) n

κ

)κ−1)
space, as

long as κ < logQ(n) n. Combined with our first lower bound, these show that
all known WCI data structures are almost optimal, at least for a particular
range of parameters (for more details, see the discussion in Section 4.8.3).

4.4 Preliminaries

In this section we introduce concepts as well as reiterate previous results that
we use as black boxes or building blocks. For readers that are familiar with
the standard succinct data structure techniques and standard string indexes
this section merely serves as a refresher and a description of notation.

Suffix Trees. The suffix tree [119] of a string T is a compact trie con-
taining all of its suffixes, where the ith leftmost leaf, `i, represents the ith
lexicographically smallest suffix. It is also called the generalized suffix tree
of D = {d1, d2, . . . , dD}, GST. Each edge in GST is labeled by a string, and

4.4. PRELIMINARIES 61

path(x) is the concatenation of the edge labels along the path from the GST
root to the node x. Then path(`i) is the ith lexicographically smallest suffix
of T. The highest node x with path(x) prefixed by P [1..p] is the locus of P ,
and is found in time O(p) from the GST root. The GST uses O(n) words of
space.

Suffix Arrays. The suffix array ([88]) of T, SA[1..n], is defined as SA[i] =
n+1−| path(`i)|, the starting position in T of the ith lexicographically smallest
suffix of T. The suffix range of P is the range SA[sp, ep] pointing to the suffixes
that start with P , T[SA[i]..SA[i] + p − 1] = P for all i ∈ [sp, ep]. Also, `sp
(resp., `ep) are the leftmost (resp., rightmost) leaf in the subtree of the locus
of P .

Compressed Suffix Arrays. The compressed suffix array [98] of T, CSA, is
a compressed representation of SA, and usually also of T. Its size in bits, |CSA|,
is O(n log σ) and usually much less. The CSA finds the interval [sp, ep] of P in
time ts(p). It can output any value SA[i], and even of its inverse permutation,
SA−1[i], in time tSA. For example, a CSA using nHh(T) + o(n log σ) bits [14]
gives ts(p) = O(p) and tSA = O(log1+ε n) for any constant ε > 0, where Hh is
the hth order empirical entropy [89].

Compressed Suffix Trees. The compressed suffix tree of T, CST, is a com-
pressed representation of GST, where node identifiers are their corresponding
suffix array ranges. The CST can be implemented using o(n) bits on top of
a CSA [100] and compute (among others) the lowest common ancestor (LCA)
of two leaves `i and `j , in time O(tSA logε n), and the Weiner link Wlink(a, v),
which leads to the node with path label a ◦ path(v), in time O(tSA)1.

Rank/Select The Rank/Select problem is the following. Given a set S ⊆
{0, 1, 2, . . . , n− 1} of size |S| = m support the following operations:

1. Rank(x): Returns the number of elements in S that are less than x and
−1 if x 6∈ S.

2. Select(i): Return the ith smallest element in S.

The set S can be represented as a bit array of length n where the ith bit
is 1 if i ∈ S. That is, there are m ones in the bit string that represents S.
In this setting the Rank operation corresponds to counting the number of 1s
that precede a particular 1 in the bit string. Similarly the Select operation
returns the position of the ith 1.

1Using O(n/ logε n) bits and no special implementation for operations SA−1[SA[i]± 1].

62 CHAPTER 4. TEXT INDEXING

Rank/Select structures have many applications. One of the first applica-
tions was to use it for storing a static tree of arbitrary degree as efficiently as
possible while also being able to traverse it [77].

The particular Rank/Select structure that we use is summarized in the
following lemma [112, Remark 4.2].

Lemma 8. There is a Rank/Select structure using n + O(n log logn/ logn)
bits of space that allows for Rank and Select queries in O(1) time on S and
the complement of S.

Documents Indexing Let T[1..n] = d1 ◦ d2 ◦ · · · dD be the text (from
an alphabet Σ = [σ] ∪ {$}) obtained by concatenating all the documents in
D. Each document is terminated with a special symbol $, which does not
appear anywhere else. A suffix T[i..n] of T belongs to dj iff i is in the region
corresponding to dj in T. Thus, it holds j = 1+rankB(i−1), where B[1..n] is
a bitmap defined as B[l] = 1 iff T[l] = $ and rankB(i− 1) is the number of 1s
in B[1..i− 1]. This operation is computed in O(1) time on a representation of
B that uses D log(n/D) +O(D) + o(n) bits [112]. For simplicity, we assume
D = o(n), and thus B uses o(n) bits.

Two Dimensional Range Maximum Queries

The Range Maximum Query problem in one dimension is the following. Given
a static array A[1..n] of n integers support the following operation: Given a
range [a, b] return the index of the maximum value in A[a..b]. There are
several variations on this problem, sometimes it is not the index that we are
interested in but rather the value. Note that this will actually influence the
space requirements and running time of the queries!

The two dimensional Range Maximum Query problem is the same as before
but extended to matrices instead of arrays. In this two dimensional case we
are given an n×m matrix A[1..n, 1..m] and the queries are two dimensional as
well. That is, the answer to a query [a..b]× [c..d] is the index of the maximum
value in the submatrix A[a..b, c..d].

The bounds that we use for the Two Dimensional Range Maximum Query
problem are given in the following lemma [24, Theorem 3].

Lemma 9. The 2-Dimensional Range Maximum Query problem for an m by
n matrix of size N = n · m is solved in O(N) preprocessing time and O(1)
query time using O(N) bits additional space

This result is in the indexing model where access to the original input
matrix is allowed.

4.4. PRELIMINARIES 63

Range Emptiness Queries

It is often the case that we need to perform some kind of predecessor/successor
query on an element. Sometimes, however, we only need to know if there is an
element in the immediate viscinity and in this case we use the range emptiness
structure. The One Dimensional Range Emptiness problem is the following.
Store a set S of n integers while supporting the query: Given a, b determine
if there is an x ∈ S such that a ≤ x ≤ b. In other words, determine if S has
any values in the interval [a, b], i.e. is S ∩ [a, b] the empty set?

The One Dimensional Range Emptiness structure that we use is summa-
rized in the following lemma [9, Theorem 4].

Lemma 10. Given a set of n integers S, there is a data structure using O(n)
words of space that supports Range-Emptiness queries on S in O(1) time.

Orthogonal Range Successor/Predecessor Queries

The Range Successor/Predecessor problem is also known as range next-value
problem. In this settings we are given a set S of two dimensional points to
preprocess and to answer queries where we are given a range Q = [a,∞]×[c, d]
and must report the point in S∩Q with smallest first coordinate. This problem
is studied in [104] and they achieve the following

Lemma 11. The Range Successor (Predecessor) problem can be solved with
O(n) space and O (logε n) query time where n is the number of points stored.

Combining with a standard range tree partitioning [49], the following result
easily follows.

Lemma 12. Given n′ points in [n]× [n]× [n], a structure using O(n′ log2 n)
bits can support the following query in O(log1+ε n) time, for any constant
ε > 0: find the point in a region [x, x′]× [y, y′]× [z, z′] with the lowest/highest
x-coordinate.

The Pointer Machine Model [115] This models data structures that
solely use pointers to access memory locations1 (e.g., any tree-based data
structure) We focus on a variant that is the popular choice when proving
lower bounds [41]. Consider an abstract “reporting” problem where the input
includes a universe set U where each query q reports a subset, qU , of U . The
data structure is modelled as a directed graph G with outdegree two (and
a root note r(G)) where each vertex represents one memory cell and each
memory cell can store one element of U ; edges between vertices represent

1All known solutions for the 2P query problem use tree structures, such as suffix trees or
wavelet trees. While sometimes trees are can be encoded using bit-vectors with rank/select
structures on top, these tricks can only save polylogarithmic factors in space and query
times.

64 CHAPTER 4. TEXT INDEXING

pointers between the memory cells. All other information can be stored and
accessed for free by the data structure. The only requirement is that given
the query q, the data structure must start at r(G) and explore a connected
subgraph of G and find its way to vertices of G that store the elements of qU .
The size of the subgraph explored is a lower bound on the query time.

An important remark The pointer-machine can be used to prove lower
bounds for data structures with query time Q(n) +O(t) where t is the output
size and Q(n) is “search overhead”. Since we can simulate any RAM algo-
rithm on a pointer-machine with logn factor slow down, we cannot hope to
get high lower bounds if we assume the query time is Q(n) +O(t logn), since
that would automatically imply RAM lower bounds for data structures with
Q(n)/ logn + O(t) query time, something that is hopelessly impossible with
current techniques. However, when restricted to query times of Q(n) +O(t),
the pointer-machine model is an attractive choice and it has an impressive
track record of proving lower bounds that match the best known data struc-
tures up to very small factors, even when compared to RAM data structures;
we mention two prominent examples here. For the fundamental simplex range
reporting problem, all known solutions are pointer-machine data structures
and the most efficient solutions that use S(n) space, and have the query time
Q(n)+O(t) we have S(n) = O((n/Q(n))d+o(1)) [32, 44, 91] on the other hand,
known lower bounds almost match these bounds [2, 43]. For the other funda-
mental orthogonal range reporting, the best RAM algorithms save a o(logn)
factor in space (by “word-packing” techniques) and another o(logn) factor in
the query time (by using van Emde Boas type approaches in low dimensions).
In the pointer-machine model, Chazelle [41] provided tight space lower bounds
and later very high query lower bounds were discovered [4, 5] (the last paper
contains a tight query lower bound for the rectangle stabbing problem).

The Semi-Group Model In this model, each element of the input set
U = {x1, . . . , xn} is assigned a weight, by a weight function w : U → G where
G is a semi-group. Given a query q, let qU be the subset of U that matches q.
The output of the query is

∑
x∈qU w(x). By restricting G to be a semi-group,

the model can capture very diverse set of queries. For example, finding the
document with maximum weight that matches a query can be modelled using
the semi-group R with “max” operation. The lower bound variant of the semi-
group model was first introduced by Chazelle [42] in 1990. In this variant, it is
assumed that the data structure stores “precomputed” sums s1, . . . , sm where
each si =

∑
j∈Ii αi,jw(xj), αi,j ∈ N, and Ii is some subset of [n] and thus m

is a lower bound on space cost of the data structure. While the integers αij
can depend on the weight function w, the set Ii must be independent of w
(they both can depend on U). Finally, the semi-group is required to be faithful

Observe that there is no inverse operation for max.

4.4. PRELIMINARIES 65

which essentially means that if
∑
i∈I αigi =

∑
i∈I′ α

′
igi for every assignment of

semi-group values to variables gi, then we must have I = I ′ and αi = α′i. To
answer a query, the data structure can pick t precomputed values to create
the sum

∑
x∈qU w(x) and thus t is a lower bound on the query time. For

a detailed description and justification of the model we refer the reader to
Chazelle’s paper [42]. Similar to the pointer machine model, this semi-group
model is often used to prove lower bounds that closely match the bounds of
the existing data structures (see e.g., [11, 40, 42]).

66 CHAPTER 4. TEXT INDEXING

4.5 Term Proximity

In this section we present our results for ranked document retrieval. The pri-
mary result is that we can compute the top-k documents when the scoring
function is the proximity measure. We quickly restate the problem definition
and previous result, then move on to an overview of the data structure. Af-
terwards follows more detailed descriptions of the various parts of the data
structure. Then we give an analysis and finally we extend the result for the
case where the scoring function is a weighted sum of term frequency, term
proximity, and static weights (PageRank).

Let D = {d1, d2, . . . , dD} be a collection of D string documents of n char-
acters in total, that are drawn from an alphabet set Σ = [σ]. The top-k doc-
ument retrieval problem is to preprocess D into a data structure that, given
a query (P [1..p], k), can return the k documents of D most relevant to the
pattern P . The relevance is captured using a the predefined ranking function,
which depends on the set of occurrences of P in di. As mentioned we study
term proximity (i.e., the distance between the closest pair of occurrences of
P in di). Linear space and optimal query time solutions already exist for the
standard top-k document retrieval problem (PageRank and term frequency).
Compressed and compact space solutions are also known, but only for a few
ranking functions such as term frequency and importance. However, space
efficient data structures for term proximity based retrieval have been evasive.
In this section we present the first sub-linear space data structure for term-
frequency, which uses only o(n) bits on top of any compressed suffix array of
D and solves queries in O((p + k) polylogn) time. We also show that scores
that consist of a weighted combination of term proximity, term frequency,
and document importance, can be handled using twice the space required to
represent the text collection.

4.5.1 An Overview of our Data Structure

The top-k term proximity is related to a problem called range restricted search-
ing, where one must report all the occurrences of P that are within a text range
T[i..j]. It is known that succinct data structures for that problem are unlikely
to exist in general, whereas indexes of size |CSA| +O(n/ logε n) bits do exist
for patterns longer than ∆ = log2+ε n [72]. Therefore, our basic strategy will
be to have a separate data structure to solve queries of length p = π, for each
π ∈ {1, . . . ,∆}. Patterns with length p > ∆ can be handled with a single suc-
cinct data structure. More precisely, we design two different data structures
that operate on top of a CSA:

• An O(n log logn/(π logγ n))-bits structure for handling queries of fixed
length p = π, in time O(ts(p) + k(tSA + log logn+ log k)π logγ n). This
is described in Section 4.5.2 and the result is summarized in Lemma 14.

4.5. TERM PROXIMITY 67

• An O(n/ logε n + (n/∆) log2 n)-bits structure for handling queries with
p > ∆ in time O(ts(p) + ∆(∆ + tSA) + k log k log2ε n(tSA + ∆ log1+ε n)).
This is described in Section 4.5.3 and the result is summarized in Lemma 16.

By building the first structure for every π ∈ {1, . . . ,∆}, any query can be
handled using the appropriate structure. The ∆ structures for fixed pattern
length add up to O(n(log logn)2/ logγ n) = o(n/ logγ/2 n) bits, whereas that
for long patterns uses O(n/ logε n) bits. By choosing ε = 4ε = 2γ, the space
is O(n/ logε/4 n) bits. As for the time, the structures for fixed p = π are most
costly for π = ∆, where the time is

O(ts(p) + k(tSA + log logn+ log k) ∆ logγ n).

Adding up the time of the second structure, we get

O(ts(p) + ∆(∆ + k(tSA + log k log1+ε n) log2ε n)),

which is upper bounded by

O(ts(p) + (log2 n+ k(tSA + log k logn)) log2+ε n).

This yields Theorem 7.
Now we introduce some formalization to convey the key intuition. The

term proximity tp(P, i) can be determined by just two occurrences of P in di,
which are the closest up to ties. We call them critical occurrences, and a pair
of two closest occurrences is a critical pair. Note that one document can have
multiple critical pairs.

Definition 3. An integer i ∈ [1, n] is an occurrence (or match) of P in dj
if the suffix T[i..n] belongs to dj and T[i..i + p − 1] = P [1..p]. The set of all
occurrences of P in T is denoted Occ(P).

Definition 4. An occurrence mi of P in di is a critical occurrence if there
exists another occurrence m′i of P in di such that |m′i −mi| = tp(P, i). The
pair (mi,m

′
i) is called a critical pair of di with respect to P .

A key concept in our solution is that of candidate sets of occurrences, which
contain sufficient information to solve the top-k query (note that, due to ties,
a top-k query may have multiple valid answers).

Definition 5. Let Topk(P, k) be a valid answer for the top-k query (P, k). A
set Cand(P, k) ⊆ Occ(P) is a candidate set of Topk(P, k) if, for each document
identifier i ∈ Topk(P, k), there exists a critical pair (mi,m

′
i) of di with respect

to P such that mi,m
′
i ∈ Cand(P, k).

Lemma 13. Given a CSA on D, a valid answer to query (P, k) can be com-
puted from Cand(P, k) in O(z log z) time, where z = |Cand(P, k)|.

68 CHAPTER 4. TEXT INDEXING

Proof. Sort the set Cand(P, k) and traverse it sequentially. From the occur-
rences within each document di, retain the closest consecutive pair (mi,m

′
i),

and finally report k documents with minimum values |mi −m′i|. This takes
O(z log z) time.

We show that this returns a valid answer set. Since Cand(P, k) is a can-
didate set, it contains a critical pair (mi,m

′
i) for each i ∈ Topk(P, k), so this

critical pair (or another with the same |mi − m′i| value) is chosen for each
i ∈ Topk(P, k). If the algorithm returns an answer other than Topk(P, k), it is
because some document d ∈ Topk(P, k) is replaced by another i′ /∈ Topk(P, k)
with the same score tp(P, i′) = |mi′ −m′i′ | = |mi −m′i| = tp(i).

Our data structures aim to return a small candidate set (as close to size k as
possible), from which a valid answer is efficiently computed using Lemma 13.

4.5.2 Data Structure for Queries with Fixed p = π ≤ ∆
We build an o(n/π)-bits structure for handling queries with pattern length
p = π.

Lemma 14. For any 1 ≤ π ≤ ∆ = O(polylogn) and any constant γ > 0,
there is an O(n log logn/(π logγ n))-bits data structure solving queries (P [1..p], k)
with p = π in O(ts(p) + k(tSA + log logn+ log k)π logγ n) time.

The idea is to build an array top[1, n] such that a candidate set of sizeO(k),
for any query (P, k) with p = π, is given by {SA[i], i ∈ [sp, ep] ∧ top[i] ≤ k},
[sp, ep] being the suffix range of P . The key property to achieve this is that
the ranges [sp, ep] are disjoint for all the patterns of a fixed length π. We
build top as follows.

1. Initialize top[1..n] = n+ 1.

2. For each pattern Q of length π,

a) Find the suffix range [α, β] of Q.
b) Find the list dr1 , dr2 , dr3 , . . . of documents in the ascending order

of tp(Q, ·) values (ties broken arbitrarily).
c) For each document drκ containing Q at least twice, choose a unique

critical pair with respect to Q, that is, choose two elements j, j′ ∈
[α, β], such that (mrκ ,m

′
rκ) = (SA[j],SA[j′]) is a critical pair of drκ

with respect to Q. Then assign top[j] = top[j′] = κ.

The following observation is immediate.

Lemma 15. For a query (P [1..p], k) with p = π and suffix array range [sp, ep]
for P , the set {SA[j], j ∈ [sp, ep] ∧ top[j] ≤ k} is a candidate set of size at
most 2k.

4.5. TERM PROXIMITY 69

Proof. A valid answer for (P, k) are the document identifiers r1, . . . , rk consid-
ered at construction time for Q = P . For each such document drκ , 1 ≤ κ ≤ k,
we have found a critical pair (mrκ ,m

′
rκ) = (SA[j], SA[j′]), for j, j′ ∈ [sp, ep],

and set top[j] = top[j′] = κ ≤ k. All the other values of top[sp, ep] are larger
than k. The size of the candidate set is thus 2k (or less, if there are less than
k documents where P occurs twice).

However, we cannot afford to maintain top explicitly within the desired
space bounds. Therefore, we replace top by a sampled array top′. The sampled
array is built by cutting top into blocks of size π′ = π logγ n and storing the
logarithm of the minimum value for each block. This will increase the size of
the candidate sets by a factor of O(π′). More precisely, top′[1, n/π′] is defined
as

top′[j] =
⌈
log minF [(j − 1)π′ + 1..jπ′]

⌉
Since top′[j] ∈ [0.. logn], the array can be represented in n log logn/(π logγ n)

bits. We represent top′ with a multiary wavelet tree [55], which maintains the
space in O(n log logn/(π logγ n)) bits, and since the alphabet size is logarith-
mic, supports in constant time operations rank and select on top′. Opera-
tion rank(j, κ) counts the number of occurrences of κ in top′[1..j], whereas
select(j, κ) gives the position of the jth occurrence of κ in top′.

Query Algorithm. To answer a query (P [1..p], k) with p = π using a CSA
and top′, we compute the suffix range [sp, ep] of P in time ts(p), and then do
as follows.

1. Among all the blocks of top overlapping the range [sp, ep], identify those
containing an element ≤ 2dlog ke, that is, compute the set

Sblocks = {j, dsp/π′e ≤ j ≤ dep/π′e ∧ top′[j] ≤ dlog ke}.

2. Generate Cand(P, k) = {SA[j′], j ∈ Sblocks ∧ j′ ∈ [(j − 1)π′ + 1, jπ′]}.

3. Find the query output from the candidate set Cand(P, k), using Lemma 13.

For step 1, the wavelet tree representation of top′ generates Sblocks in time
O(1 + |Sblocks|): All the 2t positions j ∈ [sp, ep] with top′[j] = t are j =
select(rank(sp− 1, t) + i, t) for i ∈ [1, 2t]. We notice if there are no sufficient
documents if we obtain a j > ep, in which case we stop.

The set Cand(P, k) is a candidate set of (P, k), since any j ∈ [sp, ep] with
top[j] ≤ k belongs to some block of Sblocks. Also the number of j ∈ [sp, ep]
with top[j] ≤ 2dlog ke is at most 2 · 2dlog ke ≤ 4k, therefore |Sblocks| ≤ 4k.

Now, Cand(P, k) is of size |Sblocks|π′ = O(kπ′), and it is generated in step
2 in time O(k tSA π

′). Finally, the time for generating the final output using
Lemma 13 is O(kπ′ log(kπ′))) = O(kπ logγ n(log k + log logn + log π)). By
considering that π ≤ ∆ = O(polylogn), we obtain Lemma 14.

Except for t = 0, which has 2 positions.

70 CHAPTER 4. TEXT INDEXING

4.5.3 Data Structure for Queries with p > ∆

We prove the following result in this section.

Lemma 16. For any ∆ = O(polylogn) and any constant ε > 0, there is
an O(n/ logε n+ (n/∆) log2 n)-bits structure solving queries (P [1..p], k), with
p > ∆, in O(ts(p) + ∆(∆ + tSA) + k log k log2ε n(tSA + ∆ log1+ε n)) time.

We start with a concept similar to that of a candidate set, but weaker in
the sense that it is required to contain only one element of each critical pair.

Definition 6. Let Topk(P, k) be a valid answer for the top-k query (P, k).
A set Semi(P, k) ⊆ [n] is a semi-candidate set of Topk(P, k) if it contains
at least one critical occurrence mi of P in di for each document identifier
i ∈ Topk(P, k).

Our structure in this section generates a semi-candidate set Semi(P, k).
Then, a candidate set Cand(P, k) is generated as the union of Semi(P, k) and
the set of occurrences of P that are immediately before and immediately after
every position in Semi(P, k). This is obviously a valid candidate set. Finally,
we apply Lemma 13 on Cand(P, k) to compute the final output.

4.5.4 Generating a Semi-candidate Set

This section proves the following result.

Lemma 17. For any constant δ > 0, a structure of O(n(log logn)2/ logδ n)
bits plus a CSA can generate a semi-candidate set of size O(k log k logδ n) in
time O(tSA k log k logδ n).

Let node x be an ancestor of node y in GST. Let Leaf (x) (resp., Leaf (y))
be the set of leaves in the subtree of node x (resp., y), and let Leaf (x\y) =
Leaf (x) \ Leaf (y). Then the following lemma holds.

Lemma 18. The set Semi(path(y), k)∪{SA[j], `j ∈ L(x\y)} is a semi-candidate
set of Topk(path(x), k).

Proof. Let i ∈ Topk(path(x), k), then our semi-candidate set should contain
mi or m′i for some critical pair (mi,m

′
i). If there is some such critical pair

where mi or m′i are occurrences of path(x) but not of path(y), then `j or `j′
are in L(x\y), for SA[j] = mi and SA[j′] = m′i, and thus our set contains it. If,
on the other hand, both mi and m′i are occurrences of path(y) for all critical
pairs (mi,m

′
i), then tp(path(y), d) = tp(path(x), d), and the critical pairs of

path(x) are the critical pairs of path(y). Thus Semi(y, k) contains mi or m′i
for some such critical pair.

4.5. TERM PROXIMITY 71

Our approach is to precompute and store Semi(path(y), k) for carefully
selected nodes y ∈ GST and k values, so that any arbitrary Semi(path(x), k)
set can be computed efficiently. The succinct framework of Hon et al. [70] is
adequate for this.

Node Marking Scheme. The idea [70] is to mark a set Markg of nodes
in GST based on a grouping factor g: Every gth leaf is marked, and the LCA
of any two consecutive marked leaves is also marked. Then the following
properties hold.

1. |Markg| ≤ 2n/g.

2. If there exists no marked node in the subtree of x, then |Leaf (x)| < 2g.

3. If it exists, then the highest marked descendant node y of any unmarked
node x is unique, and |Leaf (x\y)| < 2g.

We use this idea, and a later refinement [74]. Let us first consider a variant
of Lemma 17 where k = κ is fixed at construction time. We use a CSA and
an o(n)-bit CST on it, see Section 4.4. We choose g = κ log κ log1+δ n and, for
each node y ∈ Markg, we explicitly store a candidate set Semi(path(y), κ) of
size κ. The space required is O(|Markg|κ logn) = O(n/(log κ logδ n)) bits.

To solve a query (P, κ), we find the suffix range [sp, ep], then the locus node
of P is x = LCA(`sp, `ep) (but we do not need to compute x). The node we
compute is y = LCA(`gdsp/ge, `gbep/gc), the highest marked node in the subtree
of x, as it has associated the set Semi(path(y), κ). This takes timeO(tSA logε n)
for any constant ε > 0 (see Section 4.4). Then, by the given properties of
the marking scheme, combined with Lemma 18, a semi-candidate set of size
O(g+κ) = O(κ log κ log1+δ n) can be generated in O(tSAκ log κ log1+δ n) time.

To reduce this time, we employ dual marking scheme [74]. We identify
a larger set Markg′ of nodes, for g′ = g

logn = κ log κ logδ n. To avoid con-
fusion, we call these prime nodes, not marked nodes. For each prime node
y′ ∈ Markg′ , we precompute a candidate set Semi(path(y′), κ) of size κ. Let
y be the (unique) highest marked node in the subtree of y′. Then we store
κ bits in y′ to indicate which of the κ nodes stored in Semi(path(y), κ) also
belong to Semi(path(y′), κ). By the same proof of Lemma 18, elements in
Semi(path(y′), κ)\Semi(path(y), κ) must have a critical occurrence in Leaf (y′\y).
Then, instead of explicitly storing the critical positionsmi ∈ Semi(path(y′), κ)\
Semi(path(y), κ), we store their left-to-right position in Leaf (y′\y). Storing
κ such positions in leaf order requires O(κ log(g/κ)) = O(κ log logn) bits,
using for example gamma codes. The total space is O(|Markg′ |κ log logn) =
O(n log logn/(log κ logδ n)) bits.

Now we can compute CST prime node y′ = LCA(`g′dsp/g′e, `g′bep/g′c) and
marked node y, compute Semi(path(y′), κ) with the help of the precomputed
set Semi(path(y), κ) and the differential information stored at node y′, and

72 CHAPTER 4. TEXT INDEXING

y′

x

y

P

sp ep

root

O(g)O(g)≤ g′ ≤ g′

Semi(path(y,κ))

1 2 κ
(leaf ids)· · ·7 9 2 1 2 κ

(bit array)· · ·0 1 0

Difference from Semi(path(y),κ)

3 4
1 0

≤ κ integers in interval of size O(g)
Space: O(κ log n) bits

Space: O(κ+ log
(
g
κ

)
) = O(κ+ κ log g

κ) bits

And

Leaf(y′ \ y)

Leaf(x \ y′)

Figure 4.1: Scheme using marked and prime nodes. Set Semi(path(x), κ) is
built from Semi(path(y′), κ) and Leaf (x\y′). Set Semi(path(y′), κ) is built
from selected entries of Semi(path(y), κ) and selected elements of Leaf (y′\y).

apply the same technique above to obtain a semi-candidate set from Markg′ ,
yet of smaller size O(g′ + κ) = O(κ log κ logδ n), in O(tSAκ log κ logδ n) time.
Figure 4.1 illustrates the scheme.

We are now ready to complete the proof of Lemma 17. We maintain
structures as described for all the values of κ that are powers of 2, in total

O

(n log logn/ logδ n
)
·

logD∑
i=1

1/i

 = O(n(log logn)2/ logδ n)

bits of space. To solve a query (P, k), we compute κ = 2dlog ke < 2k and return
the semi-candidate set of (P, κ) using the corresponding structure.

4.5.5 Generating the Candidate Set

The problem of obtaining Cand(P, k) from Semi(P, k) boils down to the task:
given P [1..p] and an occurrence q, find the occurrence of P closest to q. In
other words, finding the first and the last occurrence of P in T[q + 1..n] and
T[1..q + p− 1], respectively. We employ suffix sampling to obtain the desired
space-efficient structure. The idea is to exploit the fact that, if p > ∆, then
for every occurrence q of P , there must be an integer j = ∆dq/∆e (a multiple
of ∆) and t ≤ ∆, such that P [1..t] is a suffix of T[1..j] and P [t + 1..p] is a
prefix of T[j + 1..n]. We call q an offset-t occurrence of P . Then, Cand(P, k)
can be computed as follows:

1. Find Semi(P, k) using Lemma 17.

4.5. TERM PROXIMITY 73

2. For each q ∈ Semi(P, k) and t ∈ [1,∆], find the offset-t occurrences of P
that are immediately before and immediately after q.

3. The occurrences found in the previous step, along with the elements in
Semi(P, k), constitute Cand(P, k).

In order to perform step 2 efficiently, we maintain the following structures.

• Sparse Suffix Tree (SST): A suffix T[∆i+ 1..n] is a sparse suffix, and
the trie of all sparse suffixes is a sparse suffix tree. The sparse suffix
range of a pattern Q is the range of the sparse suffixes in SST that are
prefixed by Q. Given the suffix range [sp, ep] of a pattern, its sparse
suffix range [ssp, sep] can be computed in constant time by maintaining
a bitmap B[1..n], where B[j] = 1 iff T[SA[j]..n] is a sparse suffix. Then
ssp = 1 + rankB(sp − 1) and sep = rankB(sp). Since B has n/∆ 1s,
it can be represented in O((n/∆) log ∆) bits while supporting rankB
operation in constant time for any ∆ = O(polylogn) [106].

• Sparse Prefix Tree (SPT): A prefix T[1..∆i] is a sparse prefix, and
the trie of the reverses of all sparse prefixes is a sparse prefix tree. The
sparse prefix range of a pattern Q is the range of the sparse prefixes in
SPT with Q as a suffix. The SPT can be represented as a blind trie [53]
using O((n/∆) logn) bits. Then the search for the sparse prefix range
of Q can be done in O(|Q|) time, by descending using the reverse of Q.
Note that the blind trie may return a fake node when Q does not exist
in the SPT.

• Orthogonal Range Successor/Predecessor Search Structure over
a set of dn/∆e points of the form (x, y, z), where the yth leaf in SST cor-
responds to T[x..n] and the zth leaf in SPT corresponds to T[1..(x− 1)].
The space needed is O((n/∆) log2 n) bits (recall Lemma 12).

The total space of the structures is O((n/∆) log2 n) bits. They allow
computing the first offset-t occurrence of P in T[q + 1..n] as follows: find
[sspt, sept] and [ssp′t, sep′t], the sparse suffix range of P [t+1..p] and the sparse
prefix range of P [1..t], respectively. Then, using an orthogonal range successor
query, find the point (e, ·, ·) with the lowest x-coordinate value in [q + t +
1, n]× [sspt, sept]× [ssp′t, sep′t]. Then, e− t is the answer. Similarly, the last
offset-t occurrence of P in T[1..q − 1] is f − t, where (f, ·, ·) is the point in
[1, q + t− 1]× [sspt, sept]× [ssp′t, sep′t] with the highest x-coordinate value.

First, we compute all the ranges [sspt, sept] using the SST. This requires
knowing the interval SA[spt, ept] of P [t+ 1..p] for all 1 ≤ t ≤ ∆. We compute
these by using the CSA to search for P [∆+1..p] (in time at most ts(p)), which
gives [sp∆, ep∆], and then computing [spt−1, ept−1] = Wlink(P [t], [spt, ept]) for

Using perfect hashing to move in constant time towards the children.

74 CHAPTER 4. TEXT INDEXING

t = ∆−1, . . . , 1. Using an o(n)-bits CST (see Section 4.4), this takes O(∆ tSA)
time. Then the SST finds all the [sspt, sept] values in time O(∆). Thus the
time spent on the SST searches is O(ts(p) + ∆ tSA).

Second, we search the SPT for reverse pattern prefixes of lengths 1 to ∆.
They can all be searched for in time O(∆2). The returned interval [ssp′t, sep′t]
is either the correct interval of P [1..t], or P [1..t] does not terminate any sparse
prefix. A simple way to determine which is the case is to perform the orthog-
onal range search as explained, asking for the successor e0 of position 1, and
check whether the resulting position, e0 − t, is an occurrence of P . That is,
check whether SA−1[e0 − t] ∈ [sp, ep]. This takes O(tSA + log1+ε n) time per
verification. Considering the searches plus verifications, the time spent on the
SPT searches is O(∆(∆ + tSA + log1+ε n)).

Finally, after determining all the intervals [sspt, sept] and [ssp′t, sep′t], we
perform O(|Semi(P, k)|∆) orthogonal range searches for positions q, in time
O(|Semi(P, k)|∆ log1+ε n), and keep the closest one for each q.

Lemma 19. Given a semi-candidate set Semi(P, k), where p > ∆, a candidate
set Cand(P, k) of size O(|Semi(P, k)|) can be computed in time O(ts(p)+∆(∆+
tSA + |Semi(P, k)| log1+ε n)) using a data structure of O((n/∆) log2 n) bits.

Thus, by combining Lemma 17 using δ = 2ε (so its space is o(n/ logε n)
bits) and Lemma 19, we obtain Lemma 16.

4.5.6 Extension

Up to now we have considered only term proximity. In a more general scenario
one would like to use a scoring function that is a linear combination of term
proximity, term frequency, and a document score like PageRank (document
score counts for di only if P appears in di at least once). In this section we
provide the first result on supporting such a combined scoring function in
compact space.

Theorem 8. Using a 2n log σ+o(n log σ) bits data structure, one can answer
top-k document retrieval queries, where score(·, ·) is a weighted sum of a doc-
ument score, term-frequency and term-proximity with predefined non-negative
weights, in time O(p+ k log k log4+ε n)

Proof. The theorem can be obtained by combing our previous results as fol-
lows:

1. Lemma 17 with δ > 0 gives the following: using a |CSA|+o(n) bits struc-
ture, we can generate a sem-candidate set Semi(P, k) of sizeO(k log k logδ n)
in time O(tSAk log k logδ n). Although the ranking function assumed
in Lemma 17 is term-proximity, it is easy to see that the result holds
true for our new ranking function score(·, ·) as well: we precompute
Semi(path(y), κ) for score(·, ·) rather than for tp(·, ·). Any document

4.5. TERM PROXIMITY 75

that is not top-k on node y and does not appear further in Leaf (x\y),
cannot be top-k on node x, because its score cannot increase.

2. We wish to compute tf(P, i) = epi − spi + 1 for each entry of di in
Semi(P, k), where [spi, epi] is the range in the suffix array SAi of di for
the pattern P . However, we do not wish to spend time ts(p), since that
could potentially be expensive. Note we have already computed sp and
ep. By using these and the compressed suffix array CSAi, which we will
store for each document, we can compute spi and epi more efficiently
as follows. The position in T where di begins is selectB(i − 1), and
|di| = selectB(i) − selectB(i − 1). Note that we are already given one
position mi in the region of di in T by the entry in Semi(P, k), and we
compute the corresponding entry solely in di asm′i = mi−selectB(i−1).
We compute the corresponding point to m′i in [spi, epi] as q = SA−1

i [m′i].
We can now define

epi = max{j | j ≥ q ∧ j ≤ |di| ∧ SA−1[selectB(i− 1) + SAi[j]] ≤ ep}

Which is computed by an exponential search starting from q. A similar
equation holds for spd [70]. Computing q costs O(tSA) and the two
exponential searches require O(tSA logn) time each.

3. We need to be able to compute the term proximity distance for each di
in Semi(P, k). This can be computed in time O((tSA + log2 n) log2+ε n)
once we know [spi, epi] of P in CSAi by applying Theorem 7: For each
document di we store the o(|di|) extra bits required by the theorem so
we can answer queries for k = 1. That query will then return the single
tp value for the query pattern.

4. The document rank for each document is easily obtained, as it does not
depend on the pattern. Finally k documents with the highest score(P, i)
are reported.

By maintaining structures of overall space |CSA|+
∑
d |CSAd|+ o(n) bits, any

(P, k) query can be answered in O(ts(p) + k log k logδ n(tSA + log2 n) log2+ε n)
time. Using the version of the compressed suffix array by Belazzougui and
Navarro [14], where |CSA| = n log σ + o(n log σ), ts(p) = O(p) and tSA =
O(logn log logn), the space becomes 2n log σ + o(n log σ) bits and the query
time becomes O(p + k log k log4+ε n). The proof is completed by choosing
0 < δ, ε < ε/2.

4.5.7 Conclusions

We have presented the first compressed data structures for answering top-k
term-proximity queries, achieving the asymptotically optimal |CSA|+o(n) bits,
and query times in O((p + k) polylogn). This closes the gap that separated

76 CHAPTER 4. TEXT INDEXING

this relevance model from term frequency and document ranking, for which
optimal-space solutions (as well as other intermediate-space tradeoffs) had
existed for several years. The plausible hypothesis that term proximity was
inherently harder than the other relevance measures, due to its close relation
with range restricted searching [72], has then been settled on the negative.

For the case where the ranking function is a weighted average of document
rank, term-frequency, and term-proximity, we have introduced a compact-
space solution that requires twice the minimum space required to represent
the text collection. An interesting challenge is to find an efficient space-optimal
data structure that solves this more general problem.

4.6. THE COMMON COLORS PROBLEM 77

4.6 The Common Colors Problem
In this section we deal with the common colors problem. As mentioned in
the introduction giving a data structure for the common colors problem gives
data structures for the 2P and 2DSS problems. We also note that the solution
for the common colors we give here, can be adapted to also work for the FP
problem. The result of this section is captured in the following theorem.

Theorem 9. An array E of n colors can be indexed in O(n)-word space so
that the following query can be answered in O(

√
nk log1/2+ε n) time: report

the unique colors appearing in both E[a...b] and E[c...d], where a, b, c and d
are input values, k is the output size and ε is any positive constant.

4.6.1 The Common Colors Data Structure

First we give an overview, and then present the details of the proposed data
structure. Let Σ = {σ1, σ2, σ3, ..., σ|Σ|} be the set of colors appearing in E.
Without loss of generality we assume |Σ| ≤ n. The main structure is a binary
tree ∆ (not necessarily balanced) of |Σ| nodes, where each color is associated
with a unique node in ∆. Specifically, the color associated with a node u is
given by σino(u), where ino(u) is the in-order rank of u. Also we use Σ(u)
to represent the set of colors associated with the nodes in the subtree of u.
Let [q, r] and [s, t] be two given ranges in E, then Outq,r,s,t denotes the set of
colors present in both [q, r] and [s, t]. We maintain auxiliary data structures
for answering the following subqueries efficiently.

Subquery 1. Given i ∈ [1, |Σ|] and ranges [q, r] and [s, t] is σi ∈ Outq,r,s,t?

Subquery 2. Given u ∈ ∆ and ranges [q, r] and [s, t] is Σ(u) ∩ Outq,r,s,t
empty?

Query Algorithm

To answer the query (i.e., find Outa,b,c,d, where [a, b] and [c, d] are the input
ranges), we perform a preorder traversal of ∆. Upon reaching a node u, we
issue a Subquery 2: Is Σ(u) ∩Outa,b,d,d empty?

• If the answer is yes (i.e., empty), we can infer that none of the color
associated with any node in the subtree of u is an output. Therefore,
we skip the subtree of u and move to the next node in the preorder
traversal.

• On the other hand if Subquery 2 at u returns no, there exists at least one
node v in the subtree of u, where σino(v) is an output. Notice that v can
be the node u itself. Therefore, we first check if σino(u) ∈ Outa,b,c,d using
Subquery 1. If the query returns yes, we report σino(u) as an output and
continue the preorder traversal.

78 CHAPTER 4. TEXT INDEXING

By the end of this procedure, all colors in Outa,b,c,d will have been reported.

Details of the Data Structure

We now present the details. For any node u in ∆, we use nu to represent the
number of elements in E with colors in Σ(u). i.e., nu = |{i|E[i] ∈ Σ(u)}|.
Then, we construct ∆ as follows, maintaining the invariant:

nu ≤ n
(1

2

)d(u)

Here d(u) ≤ logn is the number of ancestors of u (i.e. the depth of u). We
remark that this property is essential to achieve the result in Lemma 21 stated
below. The following recursive algorithm can be used for constructing ∆. Let
fi be the number of occurrences of σi in E. Initialize u as the root node and
Σ(u) = Σ. Then, find the color σz ∈ Σ(u), where

∑
i<z,σi∈Σ(u)

fi ≤
1
2

∑
σi∈Σ(u)

fi and
∑

i>z,σi∈Σ(u)
fi ≤

1
2

∑
σi∈Σ(u)

fi

Partition Σ(u) into three disjoint subsets Σ(uL),Σ(uR) and {σz}, where

Σ(uL) = {σi|i < z, σi ∈ Σ(u)}

Σ(uR) = {σi|i > z, σi ∈ Σ(u)}

If Σ(uL) is not empty, then we add a left child uL for u and recurse further from
uL. Similarly, if Σ(uR) is not empty, we add a right child uR for u and recurse
on uR. This completes the construction of ∆. Since ∆ is a tree of O(|Σ|) =
O(n) nodes, it occupies O(n) words. The following lemmas summarize the
results on the structures for handling Subquery 1 and Subquery 2.

Lemma 20. Subquery 1 can be answered in O(1) time using an O(n)-word
structure.

Proof. For each color a one dimensional range-emptiness structure is stored
(Lemma 10). The points stored in the structure for color σ are all i where
E[i] = σ. The answer to the query is no if and only if at least one of the two
intervals [q, r] and [s, t] is empty for that particular color.

Lemma 21. There exists an O(n)-word structure for handling Subquery 2 in
the following manner:

• If Σ(u) ∩Outq,r,s,t = ∅, then return yes in time O (
√
nu logε n)

• Otherwise, one of the following will happen

– Return no in O(1) time

4.6. THE COMMON COLORS PROBLEM 79

– Return the set Σ(u) ∩Outq,r,s,t in O (
√
nu logε n) time

Proof. See Section 4.6.2.

By putting all the pieces together, the total space becomes O(n) words.

Analysis of Query Algorithm

The structures described in Lemma 20 and Lemma 21 can be used as black
boxes to support our query algorithm. However, we slightly optimize the
algorithm as follows: when we issue Subquery 2 at a node u, and the structure
in Lemma 21 returns the set Σ(u) ∩ Outa,b,c,d (this includes the case where
Subquery 2 returns yes), we do not recurse further in the subtree of u. Next
we bound the total time for all Subqueries.

Let k = |Outa,b,c,d| be the output size and ∆′ be the subtree of ∆ consisting
only of those nodes which we visited processing the query. Then we can bound
the size of ∆′:

Lemma 22. The number of nodes in ∆′ is O(k log(n/k))

Proof. The parent of any node in ∆′ must be a node on the path from the
root to some node u, where σino(u) ∈ Outa,b,c,d. Since the height of ∆′ is at
most logn, the number of nodes with depth at least log k on any path is at
most logn− log k = log(n/k). Therefore, number of nodes in ∆′ with depth at
least log k is O(k log(n/k)). Also the total number of nodes in ∆ with depth
at most log k is O(k).

We spend O(1) time for Subquery 1 in every node in ∆′, which adds up
to O(|∆′|). If a node u is an internal node in ∆′, then Subquery 2 in u must
have returned no in O (1) time (otherwise, the algorithm does not explore
its subtree). On the other hand, if a node u is a leaf node in ∆′, we spend√
nu logε n time. Analyzing the time for Subquery 2 we see

∑
u∈leaves(∆′)

√
nu logε n = O

k log(n/k) + logε n
∑

u∈leaves(∆′)

√
1
2
d(u)

n

= O

k log(n/k) +
√
n logε n

∑
u∈leaves(∆′)

2−d(u)/2

By Cauchy-Schwarz’ inequality we have

∑n
i=1 xiyi ≤

√∑n
i=1 x

2
i

√∑n
i=1 y

2
i ,

which gives us

√
n logε n

∑
u∈leaves(∆′)

2−d(u)/2 = O

√nlogε n
√ ∑
u∈leaves(∆′)

12
∑

u∈leaves(∆′)
2−d(u)

80 CHAPTER 4. TEXT INDEXING

We know from Kraft’s inequality in any binary tree,
∑
`∈leaves 2−d(`) ≤ 1,

which gives us

O

√nlogε n
√ ∑
u∈leaves(∆′)

12
∑

u∈leaves(∆′)
2−d(u)

 = O

(√
n logε n

√
k log(n/k)× 1

)

Thus we finally bound the running time:∑
u∈leaves(∆′)

√
nu logε n+O(∆′) = O

(√
nk log1/2+ε n

)
This completes the proof of Theorem 9.

Corollary 2. The 2P, FP, and 2DSS problems can be solved using O(n)
words of space and having O

(√
nk log1/2+ε n

)
query time, where n is the total

number of characters in the input documents and k is the output size of the
query.

Proof. The reduction from 2DSS to the common colors query problem comes
from [54], and by the discussion in the introduction 2P and 2DSS are equiva-
lent up to constant factors.

4.6.2 Proof of Lemma 21

The following are the building blocks of our O(n)-word structure.

1. For every node u in ∆, we define (but not store) Eu as an array of length
nu, where Eu[i] represents the ith leftmost color in E among all colors
in Σ(u). Thus for any given range [x, y], the list of colors in E[x...y],
which are from Σ(u) appears in a contiguous region [xu, yu] in Eu, where

• xu = 1+ the number of elements in E[1...x − 1], which are from
Σ(u).

• yu = the number of elements in E[1...y], which are from Σ(u).

Notice that xu and yu can be computed as the tree is traversed by storing
3 bit arrays each of length nu and with a rank/select structure in every
node as follows (Lemma 8). Let uL and uR be the left, respectively right,
child of u. Then the first bit array, BL has a 1 in position i if and only
if Eu[i] ∈ Σ(uL), i.e. the colors that are assigned to the left subtree.
Similarly store a bit array, BR, for the colors that are associated with
the right subtree and finally a bit array, B, for the color that is stored at
u. This uses O(nu) bits per node. Since every level then uses O(n) bits
and there are O(logn) levels this gives O(n) words in total. To translate
the ranges from a node u to its left (similarly for right) child uL (uR)
we perform the following computation

4.6. THE COMMON COLORS PROBLEM 81

• xuL = rank(BL, xu − 1) (Right child: xuR = rank(BR, xu − 1))
• yuL = rank(BL, yu) (Right child: yuR = rank(BR, yu))

2. An √nu ×
√
nu boolean matrix Mu, for every node u in ∆. For this,

we first partition Eu into blocks of size √nu, where the ith block is
given by Eu[1 + (i − 1)√nu, i

√
nu]. Notice that the number of blocks

is at most √nu. Then, Mu[i][j] = 1, iff there is at least one color,
which appears in both the ith block and the jth block of Eu. We also
maintain a two-dimensional range maximum query structure (RMQ)
with constant query time (Lemma 9) over each Mu. The total space
required is O(

∑
u∈∆ nu) = O(n

∑
u∈∆ 2−d(u)) = O(n logn) bits.

3. Finding the leftmost/rightmost element in Eu[x...y], which is from Σ(u),
for any given x, y, and u can be reduced to an orthogonal successor/predecessor
query: let S = {(i, σ) | E[i] = σ}. Since Σ(u) is a contiguous range from
some a to some b (a and b are color numbers) the query simply becomes
[x,∞] × [a, b]. We therefore maintain an O(n)-word structure on S for
supporting this query in O(logε n) time (Lemma 11).

We use the following steps to answer if Σ(u) ∩Outq,r,s,t is empty.

1. Find [qu, ru] and [su, tu] in O(1) time.

2. Find [q′u, r′u] and [s′u, t′u], the ranges that correspond to the longest spans
of blocks within Eu[qu, ru] and Eu[su, tu] respectively. Notice that q′u −
qu, ru − r′u, s

′
u − su, tu − t′u ∈ [0,√nu). Check if there is at least one

common in both Eu[q′u, r′u] and Eu[s′u, t′u] with the following steps.

• Perform an RMQ on Mu with R as the input region, where
R = [1 + (q′ − 1)/√nu, r′/

√
nu]× [1 + (s′ − 1)/√nu, t′/

√
nu].

• If the maximum value within R is 1, then we infer that there is one
color common in Eu[q′u, r′u] and Eu[s′u, t′u]. Also we can return no
as the answer to Subquery 2.

The time spent so far is O(1).

3. If the maximum value within R in the previous step is 0, we need to
do some extra work. Notice that any color, which is an output must
have an an occurrence in at least one of the following spans Eu[qu, q′u −
1], Eu[r′u + 1, ru], Eu[su, s′u − 1], Eu[t′u + 1, tu] of length at most 4√nu.
Therefore, these colors can be retrieved using O(√nu) successive or-
thogonal predecessor/successor queries and with Subquery 1, we can
verify if a candidate belongs to the output. The total time required is
O(√nu logε n).

This completes the proof of Lemma 21.

82 CHAPTER 4. TEXT INDEXING

4.6.3 Construction time

The data structure consists of several smaller building blocks and in this sec-
tion we give the construction time for the entire data structure. A range
emptiness structure is used for each color to answer Subquery 1. Construct-
ing a range-emptiness structure on m points takes O (mwε) (w is the word
size) time in expecation [92]. Since that structure is built for each color the
total time becomes O (n logε n).

Next the tree ∆ is built and for each node u ∈ ∆ three rank/select struc-
tures, the matrix Mu as well as the Range Maximum Query structure based
on Mu are constructed. Building a rank/select strucutre on a bit-array with
n bits takes O(n) time [112]. In each node u of ∆ three such structures with
O(nu) bits each are built. For any level of ∆ this adds up to at most n bits,
giving us O(n) time per layer of ∆. Since there are O(logn) levels of ∆ we get
O(n logn) time in total. Note that the 1 bits in the arrays can be computed
by a single scan through the Eu array (which is thrown away after construc-
tion). A Range Maximum Query structure on an √nu by √nu matrix can
be built in O(nu) time [24]. However, the most time consuming part of the
data structure are all the matrices Mu. In the matrix Mu the i, jth entry is
computed by iterating over the interval of length √nu the i corresponds to
and performing range emptiness queries in the interval j corresponds to. The
i, jth bit is 1 if and only if at least one of the queries returns ’non-empty’.
Since each interval is of length √nu and a query takes O(1) time it takes
O
(√
nu
)
time to compute each bit in Mu. In total it takes nu

√
nu time to

built Mu. We get the total time for computing all the Mu matrices:

∑
u∈∆

nu
√
nu ≤

logn∑
i=0

2i
(

1
2

)i
n

√(
1
2

)i
n = n

√
n

logn∑
i=0

(
1√
2

)i
= O(n

√
n)

And this is also the total construction time.

4.7. HARDNESS RESULTS 83

4.7 Hardness Results
The hardness results are reductions from boolean matrix multiplication. Through
this section we use similar techniques to [34, 36, 37]. In the boolean matrix
multiplication problem we are given two n× n matrices A and B with {0, 1}
entries. The task is to compute the boolean product of A and B, that is re-
place multiplication by logical and, and replace addition by logical or. Letting
ai,j , bi,j , ci.j denote entry i, j of respectively A, B and C the task is to compute
for all i, j

ci,j =
n∨
k=1

(ai,k ∧ bk,j). (4.1)

The asymptotically fastest algorithm known for matrix multiplication cur-
rently uses O(n2.3728639) time [63]. This bound is achieved using algebraic
techniques (like in Strassen’s matrix multiplication algorithm) and the fastest
combinatorial algorithm is still cubic divided by some poly-logarithmic factor
[13]. There is not an exact definition on what characterizes and algebraic
algorithm compared to a combinatorial algorithm. The easiest way to think
of these terms in the context of matrix multiplication is that an algebraic al-
gorithm fails when the operations are (min,+) rather than (+,×), since the
min operation does not have an inverse.

In this section, we prove that the problem of multiplying two
√
n ×
√
n

boolean matrices A and B can be reduced to the problem of indexing D (in
2P or FP) and answering n counting queries. This is evidence that unless
better matrix multiplication algorithms are discovered we should not expect
to be able to preprocess the data and answer the queries much faster than
Ω((
√
n)ω)) = Ω(nω/2) (ignoring poly-logarithmic factors) where ω is the ma-

trix multiplication exponent. In other words one should not expect to be able
to have small preprocessing and query time simultaneously. Currently we can-
not achieve better than Ω(n1.18635) preprocessing time and Ω(n0.18635) query
time simultaneously.

We start the next section with a brief discussion on how to view boolean
matrix multiplication as solving many set intersection problems. Then we give
the reductions from the matrix multiplication problem to 2P and describe how
to adapt it for FP.

4.7.1 Boolean Matrix Multiplication

A different way to phrase the boolean matrix multiplication problem is that
entry ci,j = 1 if and only if ∃k : ai,k = bk,j = 1. For any two matrices A and
B let Ai = {k | ai,k = 1} and similarly let Bj = {k | bk,j = 1}. It follows
that ci,j = 1 if and only if Ai ∩ Bj 6= ∅. In this manner we view each row of
matrix A as a set containing the elements corresponding to the indices where
there is a 1, and similarly for columns in B. For completeness we also use
Ai = {k | ai,k = 0} and Bi = {k | bk,j = 0}.

84 CHAPTER 4. TEXT INDEXING

A naive approach to solving 2P would be to index the documents such
that we can find all documents containing a query pattern fast. This way a
query would be to find all the documents that P1 occurs in and the documents
that P2 occurs in separately and then return the intersection of the two result
sets. This is obviously not a good solution in the worst case, but it illustrates
that the underlying challenge is to solve set intersection.

We observed that boolean matrix multiplication essentially solves set inter-
section between rows of A and columns of B, so the idea for the reductions is
to use the fact that queries for 2P and FP essentially also solve set intersection.
We now give the reductions.

4.7.2 The Reductions

We first relax the data structure problems. Instead of returning a list of
documents satisfying the criteria we just want to know whether the list is
empty or not, i.e. return 0 if empty and 1 if nonempty.

Let A and B be two
√
n ×
√
n boolean matrices and suppose we have an

algorithm for building the data structure for the relaxed version of 2P. We now
wish to create a set of strings D based on A and B, build the data structure
on D and peform n queries, one for each entry in the product of A and B.
In the following we need to represent a subset of {0, 1, . . . , 2

√
n} as a string,

which we do in the following manner.

Definition 7. Let X = {x1, x2, . . . , x`} ⊆ {0, 1, . . . , 2
√
n} and bin(·) gives

the binary representation of the number · using
⌈

1
2 logn+ 1

⌉
bits, then we

represent the set X as str(X) = bin(x1)#bin(x2)# · · ·#bin(x`)#.

For the matrix A we define
√
n strings: dA1 , dA2 , . . . , dA√n and similarly for

B we define dB1 , dB2 , . . . , dB√n. Construct dBj = str({k +
√
n | k ∈ BT

j }) and
dAi = str(ATi). We construct the

√
n strings in D as: d` = dA` d

B
` for 1 ≤ ` ≤√

n.

Lemma 23. Each string in D is at most O(
√
n logn) characters long.

Proof. There are at most
√
n elements in AT` and at most

√
n elements in

BT
` . Each element in AT` and BT

` contributes exactly one number to the
string d` and one ’#’. Each number uses exactly

⌈
1
2 logn+ 1

⌉
characters. In

total we get
(
|AT` |+ |BT

` |
)

(
⌈

1
2 logn+ 1

⌉
+ 1) ≤ 2

√
n
⌈

1
2 logn+ 1

⌉
+ 2
√
n =

O(
√
n logn)

Corollary 3. The total length of the strings in D is

√
n∑

i=1
di = O(n logn).

Proof. Follows since there are at most
√
n strings in D and by Lemma 23 each

string is at most O(
√
n logn) characters long.

4.7. HARDNESS RESULTS 85

We have now created the set of strings, D, that we wish to build the data
structure on. We now specify the queries and prove that using these queries
we can solve the matrix multiplication problem.

Lemma 24. The entry ci,j = 1 if and only if the query P1 = bin(i), P2 =
bin(
√
n+ j) returns 1.

Proof. Suppose that ci,j = 1. Then by a previous discussion there must exist
a k such that ai,k = bk,j = 1. Since document dk is constructed from the kth
column of A, we get that bin(i) occurs as a substring in Dk. Similarly, dk
is also constructed from the kth row of B, meaning bin(

√
n + j) occurs as a

substring in Dk. It follows that the string dk satisfies the conditions and the
query returns 1.

Suppose the query (P1, P2) returns 1, then by definition there exists a
d` ∈ D such that bin(i) occurs in d` and bin(

√
n + j) occurs in d`. All

numbers in d` but the first are surrounded by ’#’ and all numbers are of
length |P1|. Furthermore any number in d` less than

√
n is only there because

of a 1 in column ` of A. In particular ai,` = 1, otherwise d` would not satisfy
the conditions. Additionally by construction the binary representation of any
number 2

√
n ≥ m >

√
n appears in d` if and only if b`,m = 1. In particular

bin(j +
√
n) did occur in d`, therefore b`,j = 1. We now have a witness (`)

where ai,` = b`,j = 1, and we conclude ci,j = 1.

We are now able to give the following theorems:

Theorem 10. Let P (n) be the preprocessing time for building the data struc-
ture for 2P on a set of strings of total length n and let Q(n,m) be the query
time for a pattern with lengthm. In time O(P (n logn)+n·Q(n logn,O(logn))+
n logn) we can compute the product of two

√
n×
√
n boolean matrices.

Proof. Follows by the lemmas and the discussion above.

Similarly for FP we obtain:

Theorem 11. Let P (n) be the preprocessing time for building the data struc-
ture for FP on a set of strings of total length n and let Q(n) be the query time.
In time O(P (n logn) + n ·Q(n logn,O(logn)) + n logn) we can compute the
product of two boolean matrices.

Proof. In the reduction above substitute Bj with Bj , P1 and P2 with P+ and
P− respectively.

As a side note, observe that if we replace the problems by their counting
version (i.e. count the number of strings in D that satisfy the condition) then
using the same reductions these problems solve matrix multiplication where
the input is 0/1 matrices and the operations are addition and multiplication.
Also note that if the preprocessing time is small then with current knowledge

86 CHAPTER 4. TEXT INDEXING

there must either be an exponential time dependency on the pattern length
or a polynomial dependency on the total length of the documents.

4.8. WILD CARD INDEXING LOWER BOUNDS 87

4.8 Wild Card Indexing Lower Bounds
In this section we consider the wild card indexing (WCI) problem and prove
both space and query lower bounds in the pointer machine model of compu-
tation. Note that our query lower bound even applies to an alphabet size of
two (i.e., binary strings).

4.8.1 The Query Lower Bound

Our lower bound addresses the following class of data structures. Consider
an algorithm A such that, given any set of documents with total size n,
and parameters and m and κ, it builds a pointer-machine structure D , such
that, D consumes S(n,m, κ) space and it is able to answer any WCI query in
Q(n, κ) +O(m+ t) time, where t is the output size, m is the pattern length,
and κ is the number of wild cards. Here, Q(·) and S(·) are universal functions
that only depend on their parameters. Our main result here is the following.

Theorem 12. Assume κ ≥ 3
√

logn. If Q(n, κ) = O(2κ/2), then S(n,m, κ) =
Ω(n2Θ(κ)nΘ(1/ log κ)).

To prove the lower bound, we build a particular set of documents and
patterns and prove that if the data structure D can answer the queries fast,
then it must consume lots of space, for this particular input, meaning, we get
lower bounds for the function S(·). We now present the details. We assume
Q(n, κ) ≤ 2κ/2, as otherwise the theorem is trivial.

Documents and patterns. We build the set of documents in two stages.
Consider the set of all bit strings of length m with exactly ` = κ/2 “1”s. In
the first stage, we sample each such string uniformly and independently with
probability r−1 where r = 2κ/3. Let D be the set of sampled strings. In the
second stage, for every set of ` + `′ indices, 1 ≤ i1 < i2 < · · · < i`+`′ ≤ m,
where `′ = (log` r)/2 = Θ(κ/ log κ), we perform the following operation, given
another parameter β: if there are more than β strings in D that have “1”s
only among positions i1, · · · , i`+`′ , then we remove all such strings from D.
Consequently, among the remaining strings in D, “1”s in every subset of β
strings will be spread over at least ` + `′ + 1 positions. The set of remaining
strings D will form our input set of documents. Now we consider the set P of
all the patterns of length m that have exactly κ wild cards and m − κ “0”s.
We remove from P any pattern that matches fewer than

(κ
`

)
/(2r) documents

from D. The remaining patterns in P will form our query set of patterns.

Lemma 25. With positive probability, we get a set D of Θ(
(m
`

)
/r) documents

and a set P of Θ(
(m
κ

)
) patterns such that (i) each pattern matches Θ(

(κ
`

)
/r)

documents, and (ii) there are no β = Θ(logκm) documents whose “1”s are
contained in a set of `+ `′ indices.

88 CHAPTER 4. TEXT INDEXING

Proof. Observe that the second stage of our construction guarantees property
(ii). So it remains to prove the rest of the claims in the lemma.

Consider a sampled document (bit string) d. Conditioned on the probabil-
ity that d has been sampled, we compute the probability that d gets removed
in the second stage of our sampling (due to conflict with β − 1 other sampled
documents).

Let I ⊂ [m] be the set of indices that describe the position of “1”s in d.
We know that |I| = ` by construction. Consider a subset I ′ ⊂ [m] \ I with
|I ′| = `′. By our construction, we know that if there are β − 1 other sampled
documents whose “1”s are at positions I ∪ I ′, then we will remove d (as well
as all those β − 1 documents). We first compute the probability that this
happens for a fixed set I ′ and then use the union bound. The total number
of documents that have “1”s in positions I ∪ I ′ is(

`+ `′

`′

)
≤
(
`e

`′

)`′
< ``

′ ≤
√
r (4.2)

and thus we expect to sample at most 1/
√
r of them. We bound the probability

that instead β documents among them are sampled. We use the Chernoff
bound by picking µ = 1/

√
r, and (1 + δ)µ = β and we obtain that the

probability that β of these documents are sampled is bounded by(
eδ

(1 + δ)1+δ

)µ
≤
(O(1)√

rβ

)β
.

We use the union bound now. The total number of possible ways for picking
the set I ′ is

(m−`
`′
)(`
`′
)
< m2`′ which means the probability that we remove

document d at the second stage of our construction is less than

(O(1)√
rβ

)β
m2`′ <

1
r6 = 2−2κ

if we pick β = c logκm for a large enough constant c. Thus, most documents
are expected to survive the second stage of our construction. Now we turn
our attention to the patterns.

For a fixed pattern p ∈ P, there are
(κ
`

)
=
(κ
κ/2
)
≥ 2κ/κ documents that

could match p and among them we expect to sample
(κ
`

)
/r documents. An

easy application of the Chernoff bound can prove that with high probability,
we will sample a constant fraction of this expected value, for every pattern,
in the first stage of our construction. Since the probability of removing every
document in the second stage is at most 2−2κ, the probability that a pattern
is removed at the second stage is less than 22κ/3/(2κ)2−2κ < 2−κ and thus, we
expect a constant fraction of them to survive the second stage.

4.8. WILD CARD INDEXING LOWER BOUNDS 89

To prove the lower bound, we use the pointer machine framework of Af-
shani [2] which was originally designed for “geometric stabbing problems”:
given an input set of n geometric regions, the goal is store them in a data
structure such that given a query point, one can output the subset of regions
that contain the query point. The framework is summarized below.

Theorem 13. [2] Assume one can construct a set of n geometric regions
inside the d-dimensional unit cube such that (i) every point of the unit cube
is contained in at least t regions, and (ii) the volume of the intersection of
every β regions is at most v, for some parameters β, t, and v. Then, for any
pointer-machine data structure that uses S(n) space and can answer geometric
stabbing queries on the above input in time g(n) +O(k), where k is the output
size and g(·) is some increasing function, we must either have g(n) > t, or
S(n) = Ω(tv−12−O(β)).

As remarked by Afshani [2], the framework does not need to be operated
in the d-dimensional unit cube and in fact any measure could be substituted
instead of the d-dimensional Lebesgue measure; we use a discrete measure
here: each pattern is modelled as a “discrete” point with measure 1

|P| , meaning,
the space of all patterns has measure one. Each document forms a range: a
document di contains all the patterns (discrete points) that match di. Thus,
the measure of every document di ∈ D is ti/|P|, where ti is the number
of patterns that match di. We consider the measure of the intersection of
β documents (regions) d1, . . . , dβ. By Lemma 25, there are ` + `′ indices
where one of these documents has a “1”; any pattern that matches all of these
documents must have a wild card in all of those positions. This means, there
are at most

(m−`−`′
κ−`−`′

)
patterns that could match documents d1, . . . , dβ. This

means, when we consider documents as ranges, the intersection of every β
documents has measure at most

(m−`−`′
κ−`−`′

)
/|P| which is an upper bound for

parameter v in Theorem 13. For the two other parameters t and g(n) in the
theorem we have, t = Θ(

(k
`

)
/r) (by Lemma 25) and g(n) = Q(n, κ) + O(m).

Thus, we have satisfied all the requirements of the theorem. Now, we consider
the consequences.

We will maintain the condition that t ≥ Cm, for a large enough constant
C. Since we have assumed that f(n, κ) ≤ 2κ/2 < t, by picking C large enough
we can guarantee that t > g(n), which means Theorem 13 gives us a space
lower bound of Ω(tv−12−O(β)).

We now need to plug in the parameters. Recall that ` = κ/2 and |P| =
Θ(
(m
κ

)
) by Lemma 25. Furthermore, we would like to create an input of

size Θ(n) which means the number of sampled documents must be Θ(n/m).

A curious reader can verify that for this input instance Chazelle’s framework does not
give a lower bound.

In [2] this is stated as “exactly t ranges” but the proof works with only a lower bound
on t.

90 CHAPTER 4. TEXT INDEXING

Thus, we need to pick m such that
(m
`

)
/r = Θ(n/m), or in other words,

m(m−1) . . . (m−`+1) = Θ(n`!2κ/3/m) (a looser bound ism = Θ(κn1/`)). By
carefully simplifying the binomial coefficients that are involved in parameter
v, we get that S(n) = Ω(n/m2κ/3(m/κ)Θ(`′)). By substituting m = Θ(κn2/κ)
and `′ = Θ(κ/ log κ) we get that S(n) = Ω(n2Θ(κ)nΘ(1/ log κ)). It thus remains
to satisfy the condition t ≥ Cm, for a large enough constant C. Since t > 2k/2,
we need to satisfy 2k/2 ≥ Cm or k/2 ≥ O(1) + logm = O(log k) + (2 logn)/k.
It can be seen that this is satisfied as long as κ ≥ 3

√
logn. This concludes the

proof of Theorem 12.

4.8.2 The Space Lower Bound

Here we prove the following theorem.

Theorem 14. Any pointer-machine data structure that answers WCI queries
with κ wild cards in time Q(n) + O(m + t) over an input of size n must use
Ω
(
n
κΘ

(logQ(n) n

κ

)κ−1)
space, as long as κ < logQ(n) n, where t is the output

size, and m is the pattern length.

To prove the lower bound we use the framework of Chazelle and Rosenberg
[43]. However, we will need a slightly improved version of their framework that
is presented in the following lemma. The bounds we need for our construction
to work are tighter than what was needed in [43]. Because of this fact we
have to refine the framework before it can be used.

Lemma 26. Let U be a set of n input elements and Q a set of queries where
each query outputs a subset of U . Assume there exists a data structure that
uses S(n) space and answers each query in Q(n) + ak time, where k is the
output size. Assume

1. The output size of any query q ∈ Q, denoted by |U ∩ q|, is at least t, for
a parameter t ≥ Q(n) and

2. For integers ` and β, and indices, i1, · · · , i`, |U ∩ qi1 ∩ · · · ∩ qi` | < β.

Then,

S(n) = Ω
(|Q|t
` · 2O(aβ)

)
Proof. The proof is very similar to the one found in [43], but we count slightly
differently to get a better dependency on β. Recall the data structure is a
graph where each node stores 2 pointers and some input element. At the
query time, the algorithm must explore a subset of the graph. The main idea
is to show that the subsets explored by different queries cannot overlap too
much, which would imply that there must be many vertices in the graph, i.e.,
a space lower bound.

4.8. WILD CARD INDEXING LOWER BOUNDS 91

By the assumptions above a large fraction of the visited nodes during the
query time will be output nodes (i.e., the algorithm must output the value
stored in that memory cell). We count the number of nodes in the graph by
partitioning each query into sets with β output nodes. By assumption 2 each
such set will at most be counted ` times. We need the following fact:

Fact 1 ([2], Lemma 2). Any binary tree of size ct with t marked nodes can
be partitioned into subtrees such that there are Θ(ctβ) subtrees each with Θ(β)
marked nodes and size Θ(ctβ), for any β ≥ 1.

In this way we decompose all queries into these sets and count them.
There are |Q| different queries, each query gives us ct

β sets. Now we have
counted each set at most ` times, thus there are at least ct|Q|

β` distinct sets
with β output nodes. On the other hand we know that starting from one node
and following at most aβ pointers we can reach at most 2O(aβ) different sets
(Catalan number). In each of those sets there are at most

(aβ
β

)
possibilities

for having a subset with β marked nodes. This gives us an upper bound
of S(n)2O(aβ)(aβ

β

)
for the number of possible sets with β marked nodes. In

conclusion we get

S(n)2O(aβ)
(
aβ

β

)
≥ ct|Q|

β`
⇒ S(n) = Ω

(
t|Q|

β`2O(aβ)

)
= Ω

(
t|Q|

`2O(aβ)

)

Unlike the case for the query lower bound, we build the set of queries in
two stages. In the first stage, we consider all documents of length m over
the alphabet [σ] (that is [σ]m) and independently sample n/m of them (with
replacement) to form the initial set D of input documents. And for queries,
we consider the set Q of all strings of length m over the alphabet [σ] ∪ {∗}
containing exactly κ wild cards (recall that ∗ is the wild card character). In
total we have |Q| =

(m
κ

)
σm

σκ queries. In the second stage, for a parameter
β, we consider all pairs of queries and remove both queries if the number of
documents they both match is β or more. No document is removed in this
stage. We now want to find a value of β such that we retain almost all of our
queries after the second stage.

The probability that a fixed query matches a random document is σκ

σm .
There are in total |D| documents, meaning we expect a query output t = σκ

σm |D|
documents. By an easy application of Chernoff bound we can prove that with
high probability, all queries output Θ(σκσm |D|) documents.

We now bound the number of queries that survive the second stage. First
observe that if two queries do not have any wild card in the same position,
then there is at most 1 ≤ β document that matches both. Secondly, observe
that for a fixed query q there are

(κ
s

)
σs
(m−κ

s

)
other queries sharing κ− s wild

cards. We say these other queries are at distance s from q. For a fixed query,

92 CHAPTER 4. TEXT INDEXING

we prove that with constant probability it survives the second stage. This is
accomplished by considering each s = 1, 2, . . . , κ individually and using a high
concentration bound on each, and then using a union bound. Since there are
κ different values for s we bound the probability for each individual value by
Θ(1/κ).

Now consider a pair of queries at distance s. The expected number of
documents in their intersection is t

σs . Letting X to be the random variable
indicating the number of documents in their intersection we get

Pr[X > (1 + δ)µ] = Pr[X > β] =
(

eδ

(1 + δ)1+δ

)µ
<

(
t

σs

)Θ(β)
.

Recall that there are κ values for s and there are
(κ
s

)
σs
(m−κ

s

)
“neighbours” at

distance s, we want the following condition to hold:(
t

σs

)Θ(β)
·
(
κ

s

)
σs
(
m− κ
s

)
·κ ≤ 1

100 ⇔ σΘ(sβ) ≥ 100tΘ(β)
(
κ

s

)
σs
(
m− κ
s

)
·κ

We immediately observe that the query time, t, should always be greater than
m (just for reading the query) and that there are never more than κ ≤ m wild
cards in a query. Picking σ = t1+ε for some ε > 0 and letting β be sufficiently
large, we can disregard the factors tβ and σs. If σΘ(sβ) > 100κ(eκs)s(ms)s it
follows that the condition above is satisfied. Since κ ≤ m ≤ t ≤ σ

1
1+ε it

is sufficient to set β = Θ(1). We still have to derive the value of m. Since
t = D σκ

σm = D t(1+ε)κ

t(1+ε)m , t · t(1+ε)(m−κ) = D. Manipulating this equation we see
that m = κ + logtD−1

1+ε . We can now use Chazelle’s framework (Lemma 26):
by construction, the output size of any query is t = Ω(Q(n)) and the any two
queries have O(1) documents in common. By the framework, we get the space
lower bound of

S(n) = Ω
((

m

κ

)
σm

σκ
D
σκ

σm

)
= Ω

(
n

m

(
m

κ

))
.

For κ < logQ(n) n, we can upper bound
(m
κ

)
by Θ(logQ(n) n)κ. Thus, we obtain

the following theorem.

Theorem 14. Any pointer-machine data structure that answers WCI queries
with κ wild cards in time Q(n) + O(m + t) over an input of size n must use
Ω
(
n
κΘ

(logQ(n) n

κ

)κ−1)
space, as long as κ < logQ(n) n, where t is the output

size, and m is the pattern length.

Since m = κ + logtD−1
1+ε we see that for κ ≤

√
logn we achieve S(n) ≥

Ω
(

n
logn(logt n

κ)κ
)
. For query times close to t = 2κ we thus see S(n) ≥

Ω
(

n
logn(logn

κ2)κ
)
. It is worth noting that this is close to the upper bounds

seen in

4.8. WILD CARD INDEXING LOWER BOUNDS 93

4.8.3 Consequences

Our results when juxtaposed with the known upper bounds on WCI give us
the following interesting observations. First, let us consider the case when
κ = 3

√
logn. Bille et al. [19] provided a special data structure, for when

m < σκ, that usesO(nσκ2(log logn)κ) space and can answer queries in optimal
time of O(m + j + t) where j is the number of wild cards in the query. Our
query lower bound in Theorem 12 shows this is almost tight, for this particular
range of κ: even if we are willing to pay a larger query time of O(2κ/2 +m+t),
we would need Ω(n · nΘ(1/ log κ)) = Ω(n · 2Θ(κ2/ log κ)) space. In other words,
one can at best hope to remove the (log logn)κ factors, or reducing the base
of the exponent from σ to 2.

Now let us consider the data structure of Cole et al. [47] that usesO(n(logκ n)/k!)
space and can answer queries in O(m + 2κ log logn + t) time (we assume all
queries have κ wild cards). Our space lower bound shows that if we insist
on query time of O(logO(1) n + m + t), then our lower bound is within a
2O(k)(log logn)k factor of their space usage. If we allow a higher query time,
then the gap widens and it is possible that either our lower or their data struc-
ture can be improved (or both). Nonetheless, for κ = 3

√
logn and Q(n) = 2κ,

we can apply our space lower bound with fewer wild cards, specifically, with
κ′ = κ1−ε wild cards, for a constant ε > 0. This would yield a space lower
bound of Ω(n logεκ1−ε

n), which rules out the possibility of significantly im-
proving the data structure of Cole et al. [47].

94 CHAPTER 4. TEXT INDEXING

4.9 Two Patterns Reporting Lower Bound
Here we also use the framework of Chazelle and Rosenberg, specifically we use
the refined lemma as stated in the previous section. To apply the framework
we need to create a set of queries and a set of inputs satisfying the stated
properties. First we only focus on the 2P problem and later describe how
to adapt to the FP and 2FP problems. The rest of this section is divided
into four parts. The first part is preliminaries and technicalities we use in
the remaining parts. Next we describe how to create the documents, then we
define the queries and finally we refine the two sets and prove that they satisfy
the conditions stated in Lemma 26.

Preliminaries. Consider the alphabet Σ = {0,1,2, · · · ,2σ − 1} with 2σ
characters (we adopt the convention to represent the characters in bold). In
our proof, documents and patterns are bitstrings. For convenience we use
i to interchangeably refer to the character i and its binary encoding. The
input is a set D = {d1, d2, . . . , dD} of D documents where each document is
a string over Σ and the total length of the documents is n. The set D is to
be preprocessed such that given two patterns P1 and P2, that are also strings
over Σ, all documents where both P1 and P2 occur can be reported. Our main
theorem is the following.

Theorem 15. Any data structure on the Pointer Machine for the Two Pat-
tern Query Problem with query time Q(n) and space usage S(n) must obey

S(n)Q(n) = Ω
(
n2−o(1)

)
Also, if query time is O((nk)1/2−α + k) for a constant 0 < α < 1/2, then

S(n) = Ω
(
n

1+6α
1+2α−o(1)

)
The Documents. Let σ be some parameter to be chosen later. In our con-
struction, the first character, 0, works as a delimiter and for convenience (and
to avoid confusion) the symbol # to denotes it. The number of documents
created is D which is also a parameter to be chosen later. The set of doc-
uments is created randomly as follows. Each document will have 3(|Σ| − 1)
characters, in |Σ|−1 consecutive parts of three characters each. The i-th part,
1 ≤ i ≤ 2σ − 1, is #ib1b2 · · · bσ where each bj , 1 ≤ j ≤ σ is uniformly and
independently set to “0” or “1”. In other words, the i-th part is the encod-
ing of the delimiter (which is basically σ “0”s) followed by the encoding of i,
followed by σ random “0”s and “1”s.

The Queries. The patterns in our queries always starts with #, followed
by another character i, 1 ≤ i < 2σ (called the initial character), followed

4.9. TWO PATTERNS REPORTING LOWER BOUND 95

by some trailing bits. Observe that any pattern P1 = #i, for 1 ≤ i < 2σ,
matches all the documents. Observe also, if two patterns P1 = #ib1 · · · bp and
P2 = #ib′1 · · · b′p where bj , b′j ∈ {0, 1}, 1 ≤ j ≤ p, match the same document,
then we must have bj = b′j for every 1 ≤ j ≤ p. Based on this observation,
our set of queries, Q, is all pairs of patterns (P1, P2) with different initial
characters and p trailing bits each, for some parameter p to be set later. The
previous observation is stated below.

Observation 1. Consider two patterns P and P ′ that have the same initial
characters. If a document matches both P and P ′, then P = P ′ (i.e., they
also have the same trailing bits).

A consequence of our construction is that, each pattern has one position
where it can possibly match a document and matching only depends on the
random bits after the initial character.

Analysis. We start by counting the number of queries. For each pattern in
a query we have one initial character and p trailing bits but the two initial
characters should be different. So the number of queries is

|Q| =
(

2σ − 1
2

)
22p = Θ(22σ+2p)

We need to obey the properties stated in Lemma 26 in the worst case, i.e.
the intersection of l queries should be ≤ β. The analysis proceeds by using
high concentration bounds and picking parameters carefully such that the
requirements of Lemma 26 are satisfied with high probability. First we study
the probability of fixed patterns or fixed queries matching random documents.

Lemma 27. The probability that a fixed pattern matches a random docu-
ment is 2−p and the probability that a fixed query matches a random document
is 2−2p.

Proof. The first part follows by the construction. Two patterns with distinct
initial characters matching a document are independent events, thus the sec-
ond part also follows.

Corollary 4. The expected number of documents matching a fixed query
is Θ

(
D2−2p)

According the framework, every query should have a large output (first re-
quirement in Lemma 26). By a straightforward application of Chernoff bounds
it follows that all queries output at least a constant fraction of the expected
value. We also need to satisfy the second requirement in Lemma 26. Consider
the intersection of `2 queries, q1, · · · , q`2 , for some parameter `. Assume the
intersection of q1, · · · , q`2 is not empty, since the second requirement is already

96 CHAPTER 4. TEXT INDEXING

satisfied otherwise. There must be at least ` distinct patterns among these
queries thus it follows by Observation 1 that there are at least ` distinct initial
characters among the `2 queries.

Observation 2. The number of sets that contain ` patterns, P1, · · · , P`, with
distinct initial characters is at most (2σ+p)`.

Lemma 28. The probability that a random document satisfies a set of ` pat-
terns, P1, · · · , P` is at most 1

2p` , and the expected number of such documents
is at most D

2p` .

Proof. This is just an extension of the case where ` = 2. If the patterns do
not have distinct initial characters then the probability is 0 by Observation 1.
Otherwise, the events for each constraint matching a document are mutually
independent.

We will choose parameters such that D
2p` = O(1). We need to consider the

intersection of `2 queries and bound the size of their intersection.

Lemma 29. The probability that at least β documents satisfy ` given patterns
is O

((
eD
β2p`

)β)
.

Proof. Let Xi be a random variable that is 1 if the i-th document matches
the given ` patterns and 0 otherwise, and let X =

∑D
i=1Xi. By Lemma 28 we

have E[X] = D
2p` . By the Chernoff bound Pr[X ≥ β] = Pr[X ≥ (1 + δ)µ] ≤(

eδ

(1+δ)1+δ

)µ
≤ eβ

(β/µ)β where µ = D/2p` and 1 + δ = β/µ. The lemma follows
easily afterwards.

We now want to apply the union bound and use Lemma 29 and Observa-
tion 2. To satisfy the second requirement of Lemma 26, it suffices to have

2`(p+σ)O

((
eD

β2p`
)β)

< 1/3. (4.3)

By Lemma 26 we have S(n) ≥ |Q|t
`22O(β) . Remember that by Corollary 4, the

output size of each query is t = Ω(D2−2p). We set D such that t = Θ(Q(n)).
We now plug in t and |Q|.

S(n) ≥ |Q|t
`22O(β) = Ω

(
22σ+2pD2−2p

`22O(β)

)
= Ω

(
(n/D)2D

`2O(β)

)
= Ω

(
n2

Q(n)22p`22O(β)

)

Since D2σ = n (the input size must be n) and D = Θ(Q(n)22p). This
gives us that S(n)Q(n) = Ω

(
n2

`222p2O(β)

)
, subject to satisfying inequality (4.3).

Choosing p = Θ(β) = Θ(
√

log(n/Q(n))) and ` = Θ(logn) we satisfy the
condition and get the trade-off: S(n)Q(n) = Ω

(
n2

2O(
√

log(n/Q(n))) log2 n

)

4.9. TWO PATTERNS REPORTING LOWER BOUND 97

Though we do not explicitly use σ in the bound, one can verify that
σ = Θ(log(n/Q(n))) and thus we can assume that each character fits in one
memory cell.

Recently in the literature there has been bounds on the formO(
√
nk logO(1) n+

k) with linear space. The trade-off proved here can be used to prove that is
optimal within polylogarithmic factors. Suppose Q(n) = O((nk)1/2−α + k),
for a constant 0 < α < 1/2. We can obtain a lower bound, by making sure
that the search cost nk1/2−α is dominated by the output size which means
k ≥ (nk)1/2−α or k ≥ n(1/2−α)/(1/2+α) = n(1−2α)/(1+2α). Plugging this in for
the query time gives the trade-off S(n) ≥ Ω(n

1+6α
1+2α /2Θ(

√
log(n))).

We have now proven the claims of Theorem 15.

4.9.1 Forbidden Pattern lower bound modifications

One quickly sees that the inputs and queries designed for the 2P problem
do not work to prove lower bounds for the Forbidden Pattern case (i.e. one
positive pattern and one negative pattern). To overcome this, we design a
slightly different input instance and the bounds are slightly different though
still not more than polylogarithmic factors off from the upper bounds.

The documents are created very similar to before, except each document
now comes in two parts. The first part is the same as before, i.e. 2σ subse-
quences of 3 characters where the i-th subsequence is #, follow by i, followed
by a trailing bits. Now we extend the alphabet to Σ = Σ1 ∪ Σ2 = [2σ+1],
and the second part of the document will only contain symbols from Σ2 =
{2σ,2σ + 1, . . . ,22σ − 1}. The second part of a document is a uniformly ran-
dom subset with m characters from Σ2, however, as before, we prefix each
character with #. The ordering of the characters in the second part does not
matter. The queries consist of a positive pattern and a negative pattern. The
positive patterns are created in the same way as before. The negative pattern
is just # follow by one character from Σ2.

Fact. There are 22σ+p different queries.

Proof. A simple counting argument.

Fact. The probability a fixed query hits a random document is 2−p(1 − m
|Σ2|)

and the expected number of documents returned by a query is D
2p (1− m

|Σ2|)

Proof. The proof follows easily from the construction.

For `2 queries to have any output, there must either be ` distinct positive
patterns or ` distinct negative patterns. In the former case, the rest of the
proof from Section 4.9 goes through. In latter case there are ` distinct negative
patterns, i.e. ` distinct characters. If any of the ` characters appear in a
document, that document is not in the intersection.

98 CHAPTER 4. TEXT INDEXING

Fact. Let P be a set of ` negative patterns. The probability that a random
document contains at least one pattern from P is (|Σ2|−`

m)
(|Σ2|
m) = Θ(1

2pl), for some
choice of m.

Proof. Suppose we choose 1− m
Σ2

to be 2−p, then it follows that Σ2−m = Σ2
2p .

Using these equations it follows that(|Σ2|−`
m

)(|Σ2|
m

) = (Σ2 −m)(Σ2 −m− 1) · · · (Σ2 −m− `+ 1)
Σ2(Σ2 − 1) · · · (Σ2 − `+ 1) ≤ 1

2pl

Now one can go through the remaining steps from Lemma 28 and onwards
to get the same results. However the values change slightly. We see now
n = D(m + 2σ), which is still Θ(D2σ), since m is bounded by 2σ. As noted
above the number of queries has changed to |Q| = 22σ+p. We get the following
when plugging in the values in the framework.

S(n) ≥ |Q|t
`22O(β) = 22σ+pD2−2p

`22O(β) = (n/D)2D

`22O(β)2p
= n2

Q(n)`22O(β)23p

By choosing the same values for β, p, and ` as before, we get the same
trade-off up to constant factors, the only difference is the denominator has 23p

factor instead of 22p.

Adapting to two negative patterns. The description above defines the
hard instance for one positive pattern and one negative pattern. The change
was to split each document in two parts, one regarding the positive element
and one regarding the negative element. In exactly the same way a hard
instance can be designed for two negative patterns: simply use the negative
construction for the both parts of the documents. There are two minor details
that also need to be addressed in the case of two negative patterns. The first
is, that the length of each document is “long enough”, which easily follows
since m is at least a constant fraction of 2σ. The second part, as also noted
above, is that the queries lose yet another p bits, which means we can now
only create 22σ queries. Similarly to above, this means the denominator will
have a 24p factor rather than 23p (one positive pattern, one negative pattern)
or 22p (two positive patterns).

4.10. TWO PATTERNS SEMI-GROUP LOWER BOUND 99

4.10 Two Patterns Semi-Group Lower Bound
Following the same strategy as in the previous section and with some more
work we can get the following theorem:

Theorem 16. Answering 2P queries in the semi-group model requires

S(n)Q2(n) = Ω(n2/ log4 n).

The general strategy for proving the lower bound is as follows. We cre-
ate queries and documents where the answer for each query is sum of “a
lot of” documents. Then we aim to prove that any subset of poly(logn)
documents are unlikely to have more than a few patterns in common, which
subsequently implies, any pre-computed sum that involves more than polylog-
arithmic weights is only useful for few queries; let’s call such a pre-computed
sum “crowded”. We charge one unit of space for every “crowded” sum stored.
At the query time however, since the answer to queries involves adding up “a
lot of” weights, to reduce the query time, the query algorithm must use at
least one “crowded” sum. But we argued that each “crowded” sum can be
useful only for a small number of queries which means to be able to answer
all the queries, the data structure should store many “crowded” sums, giving
us a lower bound.

This strategy is very similar to the strategy employed by Dietz el al. [50]
to prove a lower bound for the offline set intersection problem of processing
a sequence of updates and queries. However we need to cast the construction
in terms of documents and two-pattern queries. The results we get are for
static data structure problems where as they care about an algorithm for
processing a sequence of queries/updates. This means the results are not
easily comparable since there are other parameters, such as the number of
queries and updates. They do also provide a lower bound for dynamic online
set intersections with restrictions on space. However, since it is dynamic the
results are also not directly comparable. Both their result and our result suffer
the penalty of some poly log(n) factors, but ours are slightly more sensitive.
Their log factors are only dependent on n (the number of updates, which
for us is the number of elements) where as some of our log factors depend
on Q(n) instead (the query time), which makes a difference for fast query
times. However when considering the pointer machine model we have to be
much more careful than they are in considering the size of the intersection of
many sets. For the pointer machine it is absolutely crucial that the size is
bounded by a constant, whereas they can get away with only bounding it by
O(logn) and only suffer logn factor in the bounds. If the intersection cannot
be bounded better than ε logn for pointer machine lower bounds, the bound
gets a penalty of nε, which is really detrimental and would make the lower
bounds almost non-interesting. Luckily we are able to provide a better and
tighter analysis in this regard.

100 CHAPTER 4. TEXT INDEXING

Documents and Queries. Our construction will be very similar to the
one used in the reporting case and the only difference is that the number of
trailing bits, p will be constant. To avoid confusion and for the clarity of the
exposition, we will still use the variable p.

Lower bound proof We now wish to bound how many documents can be
put in a “crowded” sum and be useful to answer queries. To be specific, we
define a “crowded” sum, as a linear combination of the weights of at least β
documents. We would like to show that such a combination is useful for a very
small number of queries (i.e., patterns). The same technique as the previous
section works and we can in fact continue from inequality (4.3).

We make sure that 2p` ≥ D2 or 2 logD ≤ p`. We also choose β > ce for
some c > 1 and simplify inequality 4.3 to get, 2`(p+σ) ≤ 2p`β/2 ⇒ p+ σ ≤
pβ/2, or

σ ≤ pβ/2. (4.4)

If the above inequality holds, then, no sets of β documents can match
` different patterns. Furthermore, remember that with high probability the
number of documents that match every query is D

2·22p . Observe that to answer
a query q faster than D

2·22pβ time, one has to use at least one crowded sum s. If
there is a document that is used in s but it does not match q, then the result
will be incorrect as in the semi-group model there is no way to “subtract” the
extra non-matching weight from s. Thus, all the documents whose weights
are used in s must match q. However, we just proved that documents in a
crowded sum can only match ` patterns, and thus be useful for `2 queries.
So, if inequality (4.4) holds, either Q(n) ≥ D

2·22pβ or S(n) ≥ 22σ+2p

`2 ; the latter
follows since 22σ+2p is the total number of queries and the denominator is
the maximum number of queries where a crowded sum can be used for. To
exclude the first possibility, we pick D such that

Q(n) < D

2 · 22pβ
. (4.5)

Recall that n = D2σ. We pick σ = log(n/D), p = O(1), which forces β ≥
log(n/D)) and ` ≥ logD = Θ(log(n/2σ)) = Θ(logQ(n)). We also pick D as
small as possible while satisfying (4.5). This leads to the following trade-off:

S(n) ≥ 22σ+2p

`2
= n2/D2

Θ(log2Q(n))
= n2

Θ(Q2(n) log2 n log2Q(n))
⇒

This yields S(n)Q(n)2 = Ω(n2/ log4 n) and concludes the proof of Theorem 16.

4.11. LOWER BOUND IMPLICATIONS 101

4.11 Lower Bound Implications

Set Intersection. We refer to the introduction for the definition of this
problem (and its variants). Using a data structure that solves the set inter-
section problem, one can solve the hard instance we gave for the 2P problem:
Notice that all our patterns have a fixed length. This means in a suffix tree
built on the set of documents, each pattern matches a set of leaves disjoint
from all the other patterns. For each pattern one identifies the set of doc-
uments in the corresponding leaf set as the input for the Set Intersection
problem. Verifying the correctness is rather straightforward.

Corollary 5. The reporting (resp. searching) variant of the set intersec-
tion requires S(n)Q(n) = Ω(n2/(2O(

√
log(n/Q(n)) log2 n)) (resp. S(n)Q2(n) =

Ω(n2/ log4 n)) in the pointer machine (resp. semi-group) model.

Furthermore these trade-offs are actually achievable within polylogarith-
mic factors. In fact in addition to Set Intersection all the Two-Pattern trade-
offs are also achievable.

Set Intersection Upper bound Suppose we are aiming for query time
Q(n). We store every set in sorted order and this obviously takes only linear
space. The observation is that if a set Si has at most Q(n)/ logn elements,
then we can answer the query i,j in O(Q(n)) time by binary searching every
element of Si in Sj . Thus, we only need to focus on “large” sets, that is, those
larger than Q(n)/ logn. There can at most be t = n logn/Q(n) large sets.
Directly store the answer for every pair of large sets. In the searching variant
(semi-group model), this takes t2 space. For the reporting variant, assume the
sets are indexed increasingly by size. The space usage is

∑
i<j

min {|Si|, |Sj |} ≤
t−1∑
i=0

(t−i)|Si+1| ≤
Q(n)
lognO

((
n logn
Q(n)

)2
)

= O

(
n2 logn
Q(n)

)
.

Theorem 17. The reporting (resp. searching) variant of the set intersection
can be solved in O(Q(n) + k) (resp. Q(n)) time using O(n2 log2 n/Q2(n))
(resp. O(n2 logn/Q(n))) space.

Two-Sided High-Dimensional Queries Another implication is for high
dimensional two-sided range queries, a special case of the fundamental problem
of orthogonal range searching (see [4, 5, 35, 38, 39, 41, 42] for the best upper
bounds, lower bounds, history and motivation). In this problem, we would like
to preprocess a set of points in d-dimensional space such that given an axis-
aligned query rectangle q = (a1, b1) × · · · × (ad, bd), we can report (or count)
the points contained in the query. We consider a variant of the problem in

102 CHAPTER 4. TEXT INDEXING

which the input is in d-dimensions but the query box q has two sides, that
is, all ai’s and bi’s are set to −∞ and +∞, respectively, except only for two
possible values.

To give a lower bound for this problem, we consider our construction for
the 2P problem, and a suffix tree built on the set of documents. Consider a
non-delimiter character i and its corresponding range of leaves, Si, in the suffix
tree: we are guaranteed that each document appears exactly once in Si. We
create D points in (2σ − 1)-dimensional space by picking the i-th coordinate
of the points based on the order of the documents in Si. With a moment of
thought, it can be verified that we can use a solution for 2-sided orthogonal
range searching to solve our hard instance for the 2P problem. By reworking
the parameters we obtain the following.

Theorem 18. For a set of m points in d-dimensional space, answering 2-
sided orthogonal range reporting (resp. searching) queries in m1−o(1) +O(k),
(resp. m1−o(1)) time in the pointer machine (resp. semi-group) model requires
Ω((md)2−o(1)/m) (resp. Ω((md)2−o(1)/m2)) space.

Two Pattern Simple Upper Bounds

For the sake of completeness we also include the simple upper bounds for
2P, FP, and 2FP that match the trade-offs from the lower bounds within
polylogarithmic factors. These upper bounds have already been described by
other authors and we claim no novelty here. The only observation left to make,
is that the data structures for the counting versions also work with arbitrary
weight assignments.

We first describe the general scheme and then move on to describe how to
adapt to reporting versus counting. The first part deals with the reporting case
and the second part deals with the searching/counting variant. In the second
part we shortly describe upper bounds that work in the semi-group model
for both the 2P and 2FP problems. Due to working with the semi-group
model we are not allowed to do subtractions. We show that the problem of
finding all documents where both P1 and P2 occur and the problem of finding
documents where P1 occurs but P2 does not occur can still both be solved
in such a model. Also notice that the solution described will work for any
assignment of weights, which is also assumed for the lower bound to hold.

General Scheme As input we have a set of documentsD = {d1, d2, . . . , dD}.
We build a suffix tree over the concatenation of the documents, and each leaf
is annotated with which document that suffix starts in (and the weight if ap-
plicable) of that document. Let `i be the i-th leaf and let the document it
corresponds to be d`i . For each i ∈ {1, . . . , D} we build a range emptiness
structure, where the input to the ith structure is {j | d`j = i}. That is, for
every document we build a range emptiness structure where the points are the

4.11. LOWER BOUND IMPLICATIONS 103

leaf numbers in the suffix tree corresponding to that document. Now suppose
we are aiming for a query time of O(Q(n)). We mark every Q(n)-th leaf and
mark all their common ancestors. This leads to O(n/Q(n)) marked nodes in
the suffix tree. Now depending on the situation (reporting, searching, forbid-
den pattern, etc.) we have a different strategy. E.g. in the searching cases we
store some information for every pair of marked nodes that depends on the
query type we are to support.

Two matching patterns - Reporting The lower bound says that S(n)Q(n) =
Ω(n2/ logO(1) n), thus we can store O(n) information for all marked nodes in
our tree and still be within polylogarithmic factors of the optimal solution.

For each node in the suffix tree there is a unique highest descendant that
is marked. Each node then stores a pointer to that node. If the node itself is
marked a self pointer is stored. Each node defines a range of leaves and each
leaf is associated with a document. For each marked node we store a pointer
to an auxiliary data structure. The auxiliary data structure is the standard
document retrieval data structure from [96]. The input for the auxiliary data
structure is the set of documents corresponding to the leaves defined by the
marked node. To process a query one searches for P1 in the main structure
which ends at a node v. Then we follow the pointer stored at v to its highest
marked descendant vmark and perform a query with P2 in the auxiliary data
structure stored at vmark. The leaves in the range defined by vmark is by defi-
nition a subset of the ones defined by v. This means that what is reported by
the query in the auxiliary structure should be reported, since those documents
contain both P1 and P2. But we might be missing some documents. To find
the remaining documents a search for P2 in the main structure is performed
which ends in the node u. Now scan the leaves in v’s range but not in vmark’s
range. Each leaf corresponds to a document and if that document has not
already been reported, a range emptiness query is performed asking if that
document appears in u’s range. If so, the document is reported. The docu-
ments reported during the scan exactly satisfy that P1 occurs in them (due to
scanning leaves defined by v) and they also appear as leaf in u’s range, mean-
ing P2 occurs in them. This concludes the description of the data structure
and query algorithm.

The time to perform a query is O(|P1| + |P2| + Q(n) + k) where k is
the output size. To bound the space usage we see that each auxiliary data
structure uses O(n) space and there are O(n

Q(n)) marked nodes. In addition
we also store range emptiness structures which requires in total O(n) space
as well as a suffix tree using O(n) space. In total we get O(n2/Q(n)) space,
since Q(n) ≤ n.

Two matching patterns - Counting Observe that a node in the suffix
tree corresponds to an interval of leaves. Each pair of marked nodes then

104 CHAPTER 4. TEXT INDEXING

corresponds to two intervals of leaves. The value stored for a pair of marked
nodes is then the weighted sum of the documents that occur in both intervals.
Now to answer a query the following steps are performed. First we search
for each pattern, which gives two nodes that have two intervals [lp1 , rp1] and
[lp2 , rp2]. For those two nodes we find the highest marked descendant in their
subtrees (say we store a pointer in every node to its highest marked descen-
dant). This will also give us two intervals: [lmarkp1 , rmarkp1], [lmarkp2 , rmarkp2].
For this pair a value is stored, which we read and let that be the running sum.
Now this only corresponds to parts of the actual intervals we were interested
in, since by construction lpi ≤ lmarkpi and rpi ≥ rmarkpi . To find the remaining
values to add, one can scan through the remaining leaves and for each leaf
perform O(1) range emptiness queries to test whether that value is already
part of the running sum and otherwise add it. I.e. run through the leaves
with numbers in [lp1 , rp1] \ [lmarkp1 , rmarkp1] and in [lp2 , rp2] \ [lmarkp2 , rmarkp2].

Since every nε/2th leaf was marked it follows that lmarkpi − lpi = O(nε/2)
and similarly rpi−rmarkpi = O(nε/2) which are the leaf numbers we scan. The
query time becomes O(P1 +P2 +nε/2) and the space becomes O((n/nε/2)2) =
O(n2−ε). Note that this matches the trade-off in the lower bound within a
poly(logn) factor.

One forbidden pattern - Counting In this setting we are given two pat-
terns P+ and P− and we are to report the sum of all documents where P+

occurs but P− does not occur. In the model where we proved the lower
bound trade-off we were not allowed to subtract weights. This might seem
like a hard restriction and our main observation is that subtractions are not
required. Suppose for a moment subtractions were allowed, then the solution
presented in Section 4.11 would also solve this version of the problem, except
when scanning the leaves one has to subtract from the running sum rather
than add. To fix this, another pointer is stored in every node that points to
the nearest ancestor which is a marked node. For the query, the node that P−
ends in, one should follow the ancestor pointer instead. Now “too much” have
been excluded by the ancestor of P− from the running sum, and by iterating
through the interval differences (similar to the previous case) one can find the
weights that were excluded and add them to running sum. The analysis is
completely analogous to before.

Bibliography

[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures
imply strong lower bounds for dynamic problems. In Proceedings of
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 434–443, 2014. 52, 55

[2] Peyman Afshani. Improved pointer machine and I/O lower bounds for
simplex range reporting and related problems. In Symposium on Com-
putational Geometry (SoCG), pages 339–346, 2012. 64, 89, 91

[3] Peyman Afshani and Jesper Sindahl Nielsen. Data structure lower
bounds for set intersection and document indexing problems. 2015. 49,
50

[4] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogo-
nal range reporting: query lower bounds, optimal structures in 3-d, and
higher-dimensional improvements. In Symposium on Computational Ge-
ometry (SoCG), pages 240–246, 2010. 64, 101

[5] Peyman Afshani, Lars Arge, and Kasper Green Larsen. Higher-
dimensional orthogonal range reporting and rectangle stabbing in the
pointer machine model. In Symposium on Computational Geometry
(SoCG), pages 323–332, 2012. 64, 101

[6] Peyman Afshani, Edvin Berglin, Ingo van Duijn, and Jesper Sindahl
Nielsen. Applications of incidence bounds in point covering problems.
2015. vi

[7] Miklós Ajtai, János Komlós, and Endre Szemerédi. AnO(n logn) sorting
network. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 1–9, 1983. 45

[8] Susanne Albers and Torben Hagerup. Improved parallel integer sorting
without concurrent writing. Information and Computation, 136(1):25–
51, 1997. 45, 46

[9] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Optimal
static range reporting in one dimension. In Proceedings of ACM Sym-
posium on Theory of Computing (STOC), pages 476–482, 2001. 63

105

106 BIBLIOGRAPHY

[10] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman.
Sorting in linear time? Journal of Computer and System Sciences
(JCSS), 57:74–93, 1998. 36, 39, 40, 41

[11] Sunil Arya, David M. Mount, and Jian Xia. Tight lower bounds for
halfspace range searching. Discrete & Computational Geometry, 47(4):
711–730, 2012. 65

[12] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 2nd edition, 2011. 50, 51

[13] Nikhil Bansal and Ryan Williams. Regularity lemmas and combinatorial
algorithms. Theory of Computing, 8(1):69–94, 2012. 83

[14] Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent com-
pressed text indexing. In Proceedings of European Symposium on Algo-
rithms (ESA), pages 748–759, 2011. 58, 61, 75

[15] Djamal Belazzougui, Gonzalo Navarro, and Daniel Valenzuela. Improved
compressed indexes for full-text document retrieval. Journal of Discrete
Algorithms, 18:3–13, 2013. 58

[16] Djamal Belazzougui, Gerth Stølting Brodal, and Jesper Sindahl Nielsen.
Expected linear time sorting for word size Ω(log2 n log logn). In Scan-
dinavian Workshop on Algorithm Theory (SWAT), Proceedings, pages
26–37, 2014. 35

[17] Gary Benson and Michael S. Waterman. A fast method for fast database
search for all k-nucleotide repeats. Nucleic Acids Research, 22(22), 1994.
51

[18] Philip Bille, Anne Pagh, and Rasmus Pagh. Fast evaluation of union-
intersection expressions. In International Symposium on Algorithms and
Computation (ISAAC), volume 4835 of Lecture Notes in Computer Sci-
ence, pages 739–750. Springer Berlin Heidelberg, 2007. 55

[19] Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String
indexing for patterns with wildcards. In Scandinavian Workshop on
Algorithm Theory (SWAT), Proceedings, pages 283–294, 2012. 55, 57,
60, 93

[20] Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli Upfal,
and Avi Wigderson. A tradeoff between search and update time for the
implicit dictionary problem. In International Colloquium on Automata,
Languages and Programming (ICALP), volume 226 of LNCS, pages 50–
59. Springer, 1986. 7

BIBLIOGRAPHY 107

[21] Gerth Stølting Brodal. A survey on priority queues. In Proc. Conference
on Space Efficient Data Structures, Streams and Algorithms – Papers in
Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume
8066 of Lecture Notes in Computer Science, pages 150–163. Springer
Verlag, Berlin, 2013. 19

[22] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious
search trees via binary trees of small height. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 39–48,
2002. 22

[23] Gerth Stølting Brodal, Casper Kejlberg-Rasmussen, and Jakob Tru-
elsen. A cache-oblivious implicit dictionary with the working set prop-
erty. In International Symposium on Algorithms and Computation
(ISAAC), volume 6507 of LNCS, pages 37–48. Springer, 2010. 9, 15

[24] Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space
efficient two dimensional range minimum data structures. Algorithmica,
63(4):815–830, 2012. 62, 82

[25] Gerth Stølting Brodal, Jesper Sindahl Nielsen, and Jakob Truelsen. Fin-
ger search in the implicit model. In International Symposium on Algo-
rithms and Computation (ISAAC), pages 527–536, 2012. 7

[26] Gerth Stølting Brodal, Jesper Sindahl Nielsen, and Jakob Truelsen.
Strictly implicit priority queues: On the number of moves and worst-
case time. In Algorithms and Data Structures Workshop (WADS), 2015.
7

[27] Gerth Stølting Brodal. Finger search trees. In Dinesh Mehta and Sartaj
Sahni, editors, Handbook of Data Structures and Applications, chap-
ter 11. CRC Press, 2005. 9

[28] Andreas Broschart and Ralf Schenkel. Index tuning for efficient
proximity-enhanced query processing. In Workshop of the Initiative for
the Evaluation of XML Retrieval (INEX), pages 213–217, 2009. 51

[29] Stefan Büttcher, Charles L. A. Clarke, and Gordon V. Cormack. Infor-
mation Retrieval: Implementing and Evaluating Search Engines. MIT
Press, 2010. 50, 51

[30] Svante Carlsson and Mikael Sundström. Linear-time in-place selection
in less than 3n comparisons. In International Symposium on Algorithms
and Computation (ISAAC), pages 244–253, 1995. 24

[31] Svante Carlsson, J. Ian Munro, and Patricio V. Poblete. An implicit
binomial queue with constant insertion time. In Scandinavian Workshop

108 BIBLIOGRAPHY

on Algorithm Theory (SWAT), Proceedings, pages 1–13, 1988. 19, 20,
28

[32] Timothy M. Chan. Optimal partition trees. In Symposium on Compu-
tational Geometry (SoCG), pages 1–10. ACM, 2010. 64

[33] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via
additive combinatorics. http://arxiv.org/abs/1502.05204, 2015. 55

[34] Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthog-
onal range searching on the ram, revisited. In Symposium on Computa-
tional Geometry (SoCG), pages 1–10, 2011. 83

[35] Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthog-
onal range searching on the ram, revisited. In Symposium on Computa-
tional Geometry (SoCG), pages 1–10, 2011. 101

[36] Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason
Morrison, and Bryan T. Wilkinson. Linear-space data structures for
range mode query in arrays. In Proceedings of Annual Symposium on
Theoretical Aspects of Computer Science (STACS), pages 290–301, 2012.
83

[37] Timothy M. Chan, Stephane Durocher, Matthew Skala, and Bryan T.
Wilkinson. Linear-space data structures for range minority query in
arrays. In Scandinavian Workshop on Algorithm Theory (SWAT), Pro-
ceedings, pages 295–306, 2012. 83

[38] Bernard Chazelle. Filtering search: A new approach to query-answering.
SIAM Journal on Computing, 15(3):703–724, 1986. 101

[39] Bernard Chazelle. A functional approach to data structures and its
use in multidimensional searching. SIAM Journal on Computing, 17(3):
427–462, 1988. 101

[40] Bernard Chazelle. Lower bounds on the complexity of polytope range
searching. Journal of the American Mathematical Society, 2(4):pp. 637–
666, 1989. 65

[41] Bernard Chazelle. Lower bounds for orthogonal range searching: I. the
reporting case. Journal of the ACM (JACM), 37(2):200–212, 1990. 63,
64, 101

[42] Bernard Chazelle. Lower bounds for orthogonal range searching II. the
arithmetic model. Journal of the ACM (JACM), 37(3):439–463, 1990.
59, 64, 65, 101

BIBLIOGRAPHY 109

[43] Bernard Chazelle and Burton Rosenberg. Simplex range reporting on a
pointer machine. Computational Geometry, 5:237–247, 1995. 64, 90

[44] Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper
bounds for simplex range searching and new zone theorems. Algorith-
mica, 8:407–429, December 1992. 64

[45] Hagai Cohen and Ely Porat. On the hardness of distance oracle for
sparse graph. http://arxiv.org/abs/1006.1117, 2010. 52, 55

[46] Hagai Cohen and Ely Porat. Fast set intersection and two-patterns
matching. Theoretical Computer Science, 411(40-42):3795–3800, 2010.
52, 53, 54, 55, 57

[47] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary
matching and indexing with errors and don’t cares. In Proceedings of
ACM Symposium on Theory of Computing (STOC), pages 91–100, 2004.
55, 57, 93

[48] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press and McGraw Hill, 3rd
edition, 2009. 35

[49] Mark de Berg, Marc van Kreveld, Mark Overmars, and O. Schwarzkopf.
Computational Geometry — Algorithms and Applications. Springer, 3rd
edition, 2008. 63

[50] Paul F. Dietz, Kurt Mehlhorn, Rajeev Raman, and Christian Uhrig.
Lower bounds for set intersection queries. Algorithmica, 14(2):154–168,
1995. 55, 99

[51] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti
Penttonen. A reliable randomized algorithm for the closest-pair problem.
Journal of Algorithms, 25(1):19–51, 1997. 40, 45

[52] Stefan Edelkamp, Amr Elmasry, and Jyrki Katajainen. Ultimate binary
heaps, 2013. Manuscript. 20

[53] Paolo Ferragina and Roberto Grossi. The string B-tree: A new data
structure for string search in external memory and its applications. Jour-
nal of the ACM (JACM), 46(2):236–280, 1999. 37, 73

[54] Paolo Ferragina, Nick Koudas, S. Muthukrishnan, and Divesh Srivas-
tava. Two-dimensional substring indexing. Journal of Computer and
System Sciences (JCSS), 66(4):763–774, 2003. Special Issue on PODS
2001. 51, 54, 57, 80

110 BIBLIOGRAPHY

[55] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro.
Compressed representations of sequences and full-text indexes. ACM
Trans. Alg., 3(2):art. 20, 2007. 69

[56] Johannes Fischer, Travis Gagie, Tsvi Kopelowitz, Moshe Lewenstein,
Veli Mäkinen, Leena Salmela, and Niko Välimäki. Forbidden patterns.
In Latin American Symposium on Theoretical Informatics (LATIN),
pages 327–337, 2012. 51, 53, 54, 57

[57] Gianni Franceschini. Sorting stably, in place, with O(n logn) compar-
isons and O(n) moves. Theory of Computing Systems, 40(4):327–353,
2007. 19

[58] Gianni Franceschini and Roberto Grossi. Optimal worst case opera-
tions for implicit cache-oblivious search trees. In Algorithms and Data
Structures Workshop (WADS), volume 2748 of LNCS, pages 114–126.
Springer, 2003. 7, 8, 9, 10

[59] Gianni Franceschini and J. Ian Munro. Implicit dictionaries with O(1)
modifications per update and fast search. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 404–
413, 2006. 19, 20, 21

[60] Gianni Franceschini, Roberto Grossi, James Ian Munro, and Linda
Pagli. Implicit B-Trees: New results for the dictionary problem. In
Proceedings of Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 145–154. IEEE, 2002. 8, 9

[61] Greg N. Frederickson. Implicit data structures for the dictionary prob-
lem. Journal of the ACM (JACM), 30(1):80–94, 1983. 7

[62] Travis Gagie, Gonzalo Navarro, and Simon J. Puglisi. New algorithms
on wavelet trees and applications to information retrieval. Theor. Comp.
Sci., 426-427:25–41, 2012. 58

[63] François Le Gall. Powers of tensors and fast matrix multiplication.
CoRR, abs/1401.7714, 2014. 83

[64] Michael T. Goodrich. Randomized shellsort: A simple data-oblivious
sorting algorithm. Journal of the ACM (JACM), 58(6):27, 2011. 36, 46

[65] Michael T. Goodrich. Zig-zag sort: A simple deterministic data-
oblivious sorting algorithm running in O(n logn) time. CoRR,
abs/1403.2777, 2014. 45

[66] Frank Gray. Pulse code communications, 1953. 26

BIBLIOGRAPHY 111

[67] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.
51

[68] Torben Hagerup. Sorting and searching on the word RAM. In Proceed-
ings of Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 366–398, 1998. 45

[69] Yijie Han and Mikkel Thorup. Integer sorting in O(n
√

log logn) ex-
pected time and linear space. In Proceedings of Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 135–144, 2002. 36,
47

[70] Wing-Kai Hon, Rahul Shah, and Jeffrey S. Vitter. Space-efficient frame-
work for top-k string retrieval problems. In Proceedings of Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 713–
722, 2009. 52, 58, 71, 75

[71] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott
Vitter. String retrieval for multi-pattern queries. In International Sym-
posium on String Processing and Information Retrieval, pages 55–66,
2010. 53, 57

[72] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey S.
Vitter. On position restricted substring searching in succinct space.
Journal of Discrete Algorithms, 17:109–114, 2012. 66, 76

[73] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott
Vitter. Document listing for queries with excluded pattern. In Annual
Symposium on Combinatorial Pattern Matching (CPM), pages 185–195,
2012. 53, 57

[74] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey S.
Vitter. Faster compressed top-k document retrieval. In Proc. 23rd DCC,
pages 341–350, 2013. 53, 71

[75] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey S.
Vitter. Space-efficient frameworks for top-k string retrieval. Journal of
the ACM (JACM), 61(2):9, 2014. 52

[76] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott
Vitter. Space-efficient frameworks for top-k string retrieval. Journal of
the ACM (JACM), 61(2):9, 2014. 53

[77] Guy Jacobson. Space-efficient static trees and graphs. In Proceedings of
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 549–554, 1989. 62

112 BIBLIOGRAPHY

[78] Donald B. Johnson. Efficient algorithms for shortest paths in sparse
networks. Journal of the ACM (JACM), 24(1):1–13, 1977. 19

[79] Bolette Ammitzbøll Jurik and Jesper Sindahl Nielsen. Audio quality
assurance: An application of cross correlation. In International Confer-
ence on Preservation of Digital Objects (iPRES), pages 196–201, 2012.

[80] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Ely Po-
rat. Word-packing algorithms for dynamic connectivity and dynamic
sets. http://arxiv.org/abs/1407.6755, 2014. 55

[81] David Kirkpatrick and Stefan Reisch. Upper bounds for sorting integers
on random access machines. Theoretical Computer Science, 28(3):263–
276, 1983. 36

[82] Donald E. Knuth. The Art of Computer Programming, volume 4A:
Combinatorial Algorithms. Addison-Wesley Professional, 2011. 39

[83] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 3SUM hardness in (dy-
namic) data structures. http://arxiv.org/abs/1407.6756, 2014. 52, 54,
55, 57, 59

[84] Daniel Larkin, Siddhartha Sen, and Robert Endre Tarjan. A back-to-
basics empirical study of priority queues. In 2014 Proceedings of the Six-
teenth Workshop on Algorithm Engineering and Experiments, ALENEX
2014, Portland, Oregon, USA, January 5, 2014, pages 61–72, 2014. 19

[85] Kasper Green Larsen, J. Ian Munro, Jesper Sindahl Nielsen, and
Sharma V. Thankachan. On hardness of several string indexing
problems. In Annual Symposium on Combinatorial Pattern Matching
(CPM), pages 242–251, 2014. 49, 50

[86] Frank Thomson Leighton. Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, chapter 3.4.3 Packing, Spread-
ing, and Monotone Routing Problems. Morgan Kaufmann Publishers,
Inc., 1991. 39

[87] Tom Leighton and C. Greg Plaxton. Hypercubic sorting networks. SIAM
Journal on Computing, 27(1):1–47, 1998. 46

[88] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993. 61

[89] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Jour-
nal of the ACM (JACM), 48(3):407–430, 2001. 61

[90] Yossi Matias, S. Muthukrishnan, Süleyman Cenk Sahinalp, and Jacob
Ziv. Augmenting suffix trees, with applications. In Proceedings of Eu-
ropean Symposium on Algorithms (ESA), pages 67–78, 1998. 50

BIBLIOGRAPHY 113

[91] Jiří Matoušek. Range searching with efficient hierarchical cuttings. Dis-
crete & Computational Geometry, 10(2):157–182, 1993. 64

[92] Christian Worm Mortensen, Rasmus Pagh, and Mihai Pǎtraşcu. On dy-
namic range reporting in one dimension. In Proceedings of ACM Sym-
posium on Theory of Computing (STOC), pages 104–111, 2005. 82

[93] J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah,
and Sharma V. Thankachan. Top-k term-proximity in succinct space. In
Algorithms and Computation - 25th International Symposium, ISAAC
2014, Jeonju, Korea, December 15-17, 2014, Proceedings, pages 169–180,
2014. 49, 50

[94] James Ian Munro. An implicit data structure supporting insertion, dele-
tion, and search in O(log2 n) time. Journal of Computer and System
Sciences (JCSS), 33(1):66–74, 1986. 9

[95] James Ian Munro and Hendra Suwanda. Implicit data structures for fast
search and update. Journal of Computer and System Sciences (JCSS),
21(2):236–250, 1980. 8

[96] S. Muthukrishnan. Efficient algorithms for document retrieval prob-
lems. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 657–666, 2002. 50, 53, 103

[97] Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape
of document retrieval on sequences. ACM Computing Surveys, 46(4):52,
2013. 50, 53

[98] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):art. 2, 2007. 52, 61

[99] Gonzalo Navarro and Yakov Nekrich. Top-k document retrieval in op-
timal time and linear space. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1066–1078, 2012. 52

[100] Gonzalo Navarro and Luís M. S. Russo. Fast fully-compressed suffix
trees. In Proc. 24th DCC, pages 283–291, 2014. 61

[101] Gonzalo Navarro and Sharma V. Thankachan. Faster top-k document
retrieval in optimal space. In International Symposium on String Pro-
cessing and Information Retrieval, LNCS 8214, pages 255–262, 2013.
53

[102] Gonzalo Navarro and Sharma V. Thankachan. Top-k document retrieval
in compact space and near-optimal time. In International Symposium
on Algorithms and Computation (ISAAC), LNCS 8283, pages 394–404,
2013. 53

114 BIBLIOGRAPHY

[103] Gonzalo Navarro and Sharma V. Thankachan. New space/time trade-
offs for top-k document retrieval on sequences. Theoretical Computer
Science, 542:83–97, 2014. 53

[104] Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Scan-
dinavian Workshop on Algorithm Theory (SWAT), Proceedings, pages
271–282, 2012. 63

[105] Harvey N.J.A. and Zatloukal K.C. The post-order heap. In 3rd Inter-
national Conference on Fun with Algorithms, 2004. 19, 20

[106] Mihai Pǎtraşcu. Succincter. In Proceedings of Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 305–313, 2008. 73

[107] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic prob-
lems. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 603–610, 2010. 55

[108] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds.
SIAM Journal on Computing, 40(3):827–847, 2011. 56

[109] Mihai Pǎtraşcu and Liam Roditty. Distance oracles beyond the thorup–
zwick bound. SIAM Journal on Computing, 43(1):300–311, 2014. 52,
55

[110] Mihai Pǎtraşcu, Liam Roditty, and Mikkel Thorup. A new infinity
of distance oracles for sparse graphs. In Proceedings of Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 738–
747, 2012. 52, 55

[111] Mohammad Sohel Rahman and Costas S. Iliopoulos. Pattern matching
algorithms with don’t cares. In SOFSEM 2007: Theory and Practice
of Computer Science, 33rd Conference on Current Trends in Theory
and Practice of Computer Science, Harrachov, Czech Republic, January
20-26, 2007, Proceedings Volume II, pages 116–126, 2007. 56, 57

[112] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct
indexable dictionaries with applications to encoding k-ary trees, prefix
sums and multisets. ACM Transactions on Algorithms (TALG), 3(4),
2007. 62, 82

[113] Ralf Schenkel, Andreas Broschart, Seungwon Hwang, Martin Theobald,
and Gerhard Weikum. Efficient text proximity search. In SPIRE, pages
287–299, 2007. 51

[114] Rahul Shah, Cheng Sheng, Sharma V. Thankachan, and Jeffrey Scott
Vitter. Top-k document retrieval in external memory. In Proceedings of

BIBLIOGRAPHY 115

European Symposium on Algorithms (ESA), LNCS 8125, pages 803–814,
2013. 52

[115] Robert Endre Tarjan. A class of algorithms which require nonlinear time
to maintain disjoint sets. Journal of Computer and System Sciences
(JCSS), 18(2):110–127, 1979. 63

[116] Mikkel Thorup. Randomized sorting in O(n log logn) time and linear
space using addition, shift, and bit-wise boolean operations. Journal of
Algorithms, 42(2):205–230, 2002. 46

[117] Mikkel Thorup. Equivalence between priority queues and sorting. Jour-
nal of the ACM (JACM), 54(6), December 2007. 36

[118] Peter van Emde Boas. Preserving order in a forest in less than logarith-
mic time. In Proceedings of Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 75–84, 1975. 35

[119] Peter Weiner. Linear pattern matching algorithms. In Proc. 14th Annual
IEEE Symposium on Switching and Automata Theory, pages 1–11, 1973.
60

[120] Dan E. Willard. Log-logarithmic worst-case range queries are possible
in space Θ(n). Information Processing Letters (IPL), 17(2):81–84, 1983.
36

[121] John William Joseph Williams. Algorithm 232: Heapsort. Communica-
tions of the ACM (CACM), 7(6):347–348, 1964. 8, 18, 20

[122] Hao Yan, Shuming Shi, Fan Zhang, Torsten Suel, and Ji-Rong Wen.
Efficient term proximity search with term-pair indexes. In ACM Con-
ference on information and knowledge management, pages 1229–1238,
2010. 51

[123] Mingjie Zhu, Shuming Shi, Mingjing Li, and Ji rong Wen. Effective top-
k computation in retrieving structured documents with term-proximity
support. In ACM Conference on information and knowledge manage-
ment, pages 771–780, 2007. 58

[124] Mingjie Zhu, Shuming Shi, Nenghai Yu, and Ji rong Wen. Can phrase
indexing help to process non-phrase queries? In ACM Conference on
information and knowledge management, pages 679–688, 2008. 51

	Abstract
	Resumé
	Preface
	Acknowledgments
	Contents
	Introduction
	Fundamental Implicit Data Structures
	The Implicit Model
	Finger Search
	Static Finger Search Structure
	Finger Search Lower Bounds
	Dynamic Finger Search Structure
	Priority Queues
	A Priority Queue with Amortized O(1) Moves
	A Priority Queue with Worst Case Bounds

	Interlude: Sorting
	Algorithm
	Tools
	Algorithm – RAM details
	Packed sorting
	General sorting

	Text Indexing
	Introduction
	Previous Results
	Our Results
	Preliminaries
	Term Proximity
	The Common Colors Problem
	Hardness Results
	Wild Card Indexing Lower Bounds
	Two Patterns Reporting Lower Bound
	Two Patterns Semi-Group Lower Bound
	Lower Bound Implications

	Bibliography

