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Abstract

The subject of this thesis is the problem of computing the visibility graph
of m points P within a polygon Q. The vertices of the visibility graph are the
points of P and the edges of the graph are the pairs of points in P×P , where the
line between them is fully contained inside Q. Known algorithms by Ben-Moshe
et al. are presented for computing the visibility graph of a simple polygon, the
visibility graph of a polygon with holes, the range-restricted visibility graph
and the invisibility graph. Finally, a new improved algorithm to compute the
invisibility graph is presented. This algorithm improves the running time by a
factor O(m1/2) of the, so far, best algorithm.





Chapter 1

Introduction

The visibility graph is very fundamental in computational geometry, and the
problem of computing it has a lot of special cases depending on the type of poly-
gon, the type of visibility, the application etc. It is applied mostly in computer
graphics, for example illumination and rendering, but also in motion planning,
where the problem is to find a route from A to B among a set of obstacles.
Some less obvious applications include pattern recognition and sensor networks.

The problem of computing the visibility graph is defined as follows: Let Q be
a polygon having n vertices V and consider a set P of m points (sites) inside Q
or on the boundary of Q. Then the visibility graph V GQ(P ) of P in Q is the
graph with P as vertices and an edge between two sites s and t, if the line
segment st lies within Q (Fig. 1.1). We then say that s and t see each other
within Q. The number of edges in V GQ(P ) is denoted k.

V GQ(P )

P

Q

Figure 1.1: A visibility graph V GQ(P ) of 19 points P within a polygon Q

Two variants of the visibility graph is the range-restricted visibility graph
and the invisibility graph. The range-restricted visibility graph V GQ(P ) is a
directed graph with the same vertices as the normal visibility graph. There is
an edge from s to t if and only if s can see t and st ≤ ds where ds is an associated
range of sight of s (Fig. 1.2). The invisibility graph is the complement of the
visibility graph. I.e., it has the same vertices as the visibility graph, but there

9



10 CHAPTER 1. INTRODUCTION

V GQ(P )

Figure 1.2: An example of a range-restricted visibility graph V GQ(P )

is and edge between s and t if and only if s can not see t.
Other related work with visibility graphs includes the problem of computing

the visibility graph of a set of disjoint polygonal obstacles. This problem has an
optimal solution running in O(n log n + k) time, where n is the total number of
edges of the obstacles and k is the number of edges of the output graph [GM91].

Ben-Moshe et al. [BHKM04] present other cases of the visibility problem:
The robust visibility problem, where two sites are robustly visible to each other
if they can be moved within a given distance and still be visible, and the one-
dimensional terrain problem, where it is detected if two sites are visible to each
other for the case that Q is a one-dimensional terrain.

1.1 Previous Study

Many different visibility problems have been studied, and the algorithms of this
thesis will be compared with the relevant ones.

One of the special cases of the problem is the computation of the visibility
graph of the polygon vertices, i.e. P = V . This problem already has an op-
timal solution running in O(n + k) time [H89], and we will compare our time
complexity to this in the end of Chapter 5.

For the general problem of points within a simple polygon, there are two
immediate solutions:

1. By looking at the points of P as polygon vertices of one vertex polygons, we
can use an optimal algorithm [GM91] to compute the visibility graph of a
set of polygonal obstacles. The vertices of the obstacles is then V ∪P , and
the running time is O((n + m) log(n + m)+ k′), where k′ is the number of
visibility edges of V GQ(V ∪P ). Then, only edges of V GQ(P ) are reported.
The problem is that too many edges could be over-reported, for example
when k′ is O(n2) and |V GQ(P )| is small.

2. This solution uses ray shooting: Given a set S of line segments and a
query ray r—a half line—report the first line segment of S intersected
by r. By shooting a ray between two sites, it can be detected whether
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Type Author(s) Running time

simple [GM91] O((n + m) log(n + m) + |V GQ(P ∪ V )|)
simple [CG89] O(n log n + m2 log n)
simple [BHKM04] O(n + m log m log mn + k)
simple, P = V [H89] O(n + k)
h holes [BHKM04] O(n + m(h log mn + log m logmn) + k)

range-restricted [BHKM04] O(n + m log m(m1/2 log m + log mn) + k)

invisibility [BHKM04] O(n + m log m(m1/2 log m + log mn) + k)

invisibility this thesis O(n + m log m log mn + k)

Figure 1.3: Running times of known and new algorithms

there is an edge of the polygon between the sites or not. The polygon Q
is preprocessed for ray shooting queries in O(n log n) time, and the time
for shooting a ray between all pairs of sites takes O(m2 log n) time. So,
this method requires O(n log n + m2 log n) time on any output, but it is
faster than the first method if |V GQ(V ∪ P )| is O(n2).

Running times of known and new algorithms is presented in Fig. 1.3.

1.2 The Algorithms

This thesis gives a detailed presentation of algorithms from [BHKM04] by Ben-
Moshe et al. First, we present an output-sensitive, divide-and-conquer algorithm
that is nearly linear in m, n and k. The running time is O(n+m log m logmn+k)
for simple polygons and roughly multiplied by a factor of O(h) when the polygon
has h holes. The space complexity is O(m+n) which is optimal and not output-
sensitive, since visibility edges are only reported and not saved.

The main algorithm is covered in the following chapters of the thesis.

Chapter 2 Trapezoidal Map: Insertion of O(n) diagonals (edges with end-
points on the polygon boundary) to decompose the polygon. Point Lo-
cation Structure: A data structure to efficiently locate the region of the
trapezoidal map containing a given site.

Chapter 3 Decomposition Tree: Recursive selection of diagonals that split
sub-polygons in two. Factor Graph: Extension of the decomposition tree
used by the query structure.

Chapter 4 Query Structure: The data structure used to detect the visible part
of a diagonal from a given site. The Chain Data Structure: the main data
structure used by the query structure.

Chapter 5 Ray Associations: Association of visibility rays from sites to diag-
onals. Visibility Edge Computation: Computation of the output edges
using ray associations.

After this, Chapter 6 describes an algorithm to compute the visibility graph
of points within a polygon with holes. The idea of this algorithm is to divide
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the polygon into O(h) simple polygons, use the main algorithm to compute the
visibility graph inside these simple polygons, and finally compute visibility edges
across boundaries of the simple polygons.

In Chapter 7, an algorithm to compute the range-restricted visibility graph
is presented. Here, the visibility graph is computed by answering range queries
for each site. This algorithm runs in O(n + m logm(m1/2 log m + log mn) + k)
time.

Finally, two algorithms to compute the invisibility graph is presented in
Chapter 8. The first algorithm is from [BHKM04] and uses the method of the
range-restricted visibility graph and thus has the same time complexity. The
second algorithm is a new improved algorithm that has the same running time
as the main algorithm, O(n + m log m log mn + k). This algorithm improves
the O(n + m log m(m1/2 log m + log mn) + k) time algorithm of [BHKM04] by
roughly a factor O(m1/2) for the case where k is O(m polylog m).

Preliminaries

The subtree of a node v is denoted subtree(v). The height of a leaf is 0, and
the height of an internal node v is one plus the maximum height of a child of v.
The depth of the root is 0, and the depth of an internal node v is one plus the
depth of the parent of v.



Chapter 2

Trapezoidal Graph

To compute V GQ(P ), the polygon Q must first of all be represented as a data
structure. We can then use a number of tools and other data structures to
compute the visibility edges. It is assumed that Q is given as a list of ver-
tices (v1, . . . , vn) in clockwise order around the polygon.

The contents of this chapter includes a trapezoidal map of the polygon,
where diagonals are inserted to decompose the polygon, and modifications of
the trapezoidal map by splittings and merging of trapezoids. The point location
structure described afterwards is used to efficiently locate the region of the
trapezoidal map containing a given site.

2.1 Trapezoidal Map

It turns out that a trapezoidal map of Q will suffice as a basic data structure for
the polygon. In this data structure the polygon is decomposed into trapezoids
or triangles by drawing vertical extensions from every vertex—upwards and
downwards—inside the polygon until the extensions meet an edge or a vertex of
the polygon (Fig. 2.1). If a vertex is incident to two edges on each (horizontal)
side of the vertex, one extension is drawn inside the polygon until it meets an
edge (case 1). A vertex incident to two edges on the same side of the vertex
can occur in two ways: If the edges form an angle of the polygon of degree less
than 180◦, no extensions are drawn (case 2). If the angle is greater than 180◦,
two extensions are drawn (case 3). Because an extension has endpoints on
the polygon edge, it will be called a diagonal . Diagonals—always vertical—are
essential in the algorithm, because they hold information about which areas of
the polygon a site can see.

For each trapezoid, let the left (resp. right) definition vertex be the vertex
lying on the left (resp. right) diagonal of the trapezoid. If no diagonal is
bounding the trapezoid to the left (resp. right), it is bounded by a vertex and
this will be the definition vertex. See the end of this section, what happens in
the degenerate case where more vertices lie on one of the diagonals.

Many algorithms build a trapezoidal map of n vertices in O(n log n) time.
Chazelle shows in [C91] how the trapezoidal map can be computed in linear
time. The algorithm is rather complicated and will not be described here, but
the result is very important to our algorithm.

13



14 CHAPTER 2. TRAPEZOIDAL GRAPH

2
3

1

Figure 2.1: A trapezoidal map with three types of polygon vertices 1, 2 and 3

d1

d2
d3

d1

d2 d3
A

B C

D

B C DA

Figure 2.2: An example of a balanced decomposition

Theorem 2.1.1 The trapezoidal map of a simple polygon with n vertices can
be computed in O(n) time.

Furthermore, Chazelle showed how a triangulation of a polygon can be de-
rived in linear time from its trapezoidal map.

Theorem 2.1.2 The triangulation of a simple polygon with n vertices can be
computed in O(n) time.

The output of Chazelle’s algorithm is a tree because every edge represents
a diagonal that divides the polygon in two and because the polygon is simple.
The tree has a node for each trapezoid and an edge for each diagonal between
two neighbouring trapezoids (Fig. 2.1). This tree will be called a trapezoidal
graph.

The purpose of the trapezoidal graph is to make a balanced decomposition S
of the polygon. A balanced decomposition is a tree representing recursive split-
ting of a polygon, where each split results in two sub-polygons with approxi-
mately the same number of sites (Fig. 2.2). Hence, to ensure that the decom-
position can be balanced, a trapezoid must not contain more than one site. A
trapezoid must then be split if it contains more than one site, and two trape-
zoids must be merged into a simple polygon if one of them is empty. Eventually
every sub-polygon contains exactly one site, and we can make the decomposition
balanced.

To find out which trapezoids must be split, we must keep track of all sites
inside a trapezoid. We do this by inserting the sites into a binary search tree of
each trapezoid. Hence, we need a point location structure to efficiently find the
trapezoid containing a given site. This is explained in the next subsection.

A triangulation of Q would be simpler than the trapezoidal map, but we now
know that this type of partition has a drawback: If the edges of a triangle ∆ in
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Algorithm Merge(Node x, Node y)
for each node z incident to y and not visited do

if z is empty and the degree of a merged node does not exceed 4 then
Merge(x, z)

else
create a new edge (x, z)

for each node z incident to x by a new edge do
Merge(z, z)

return

Figure 2.3: The merge algorithm

the triangulation are all diagonals, it would not be possible to create a diagonal
inside ∆ if it contained two sites, since a diagonal must have end vertices on the
boundary of Q.

We use the point location structure to locate each site s in O(log n) time.
If sites are already associated to that trapezoid, we use the binary search tree
to locate the correct trapezoid in O(log m) time. This gives us a total running
time of O(m(log m + log n)) for the splitting process.

Since the decomposition should be balanced according to the number of
sites in the sub-polygons, we need to merge empty and non-empty sub-polygons
to obtain a decomposition where each sub-polygon contains exactly one site.
This can be done by running a merge algorithm (Fig. 2.3). Let x be the node
associated with a non-empty trapezoid. Then the procedure call Merge(x, x)
will merge all trapezoids correctly.

If a node of an empty sub-polygon is merged with a node of a non-empty
sub-polygon, and the result is a node with degree greater than 4, we no longer
have a bound on the number of children of nodes. To prevent this, we simply
do not merge two nodes if the resulting node has degree greater than 4. If
a node of an empty sub-polygon is not merged, it is treated as a non-empty
sub-polygon. Hence, it will be merged with other nodes of empty sub-polygons.
In this way no node of an empty sub-polygon is incident to a node of another
empty sub-polygon, and the resulting graph will have at most m nodes of empty
sub-polygons and m nodes of sub-polygons containing exactly one site.

Theorem 2.1.3 The space complexity of the trapezoidal map/graph after the
merge is O(m).

After running the merge algorithm, we end up with a division, where each
region is a sub-polygon containing one site (Fig. 2.4). We call these sub-polygons
basic sub-polygons .

Notice that after running the algorithm, nodes are associated with basic sub-
polygons instead of trapezoids. Hence, pointers from nodes to diagonals should
be updated accordingly. The algorithm runs in linear time, and the following
result follows immediately. Notice that we still call the graph a trapezoidal
graph even though regions are now sub-polygons and not trapezoids.

A query structure will be built on top of the trapezoidal graph T before
the merging of nodes to answer visibility queries for each of the sites. So the
structure of T is of great importance.

Lemma 2.1.4 The trapezoidal graph T is a ternary tree.
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Figure 2.4: A trapezoidal graph after a merging process (See Fig. 1.1)

Figure 2.5: Degenerate case: Two sites with the same x-coordinate

Proof: First of all, the trapezoidal graph is a tree since every edge represents
a diagonal that divides the polygon in two and since the polygon has no holes.
Pick a root at random from the nodes of the graph.

Each node has degree at most 4 before running the merge algorithm, since
every trapezoid can have only one upper left neighbour, one lower left neighbour,
one upper right neighbour, and one lower right neighbour. The merge algorithm
prevent that the degree of a node exceeds 4.

Hence, each node has at most three children. Thus the tree is ternary. 2

Degenerate Cases

Will it always be possible to split every trapezoid with two sites? Yes, if two
sites have different x-coordinates, a trapezoid will be correctly decomposed,
since diagonals by definition are vertical. If two sites inside the same trapezoid
have the same x-coordinate, we let the upper site belong to the left trapezoid
and the lower site belong to the right trapezoid (Fig. 2.5). If more sites have
the same x-coordinate, this procedure continues creating symbolic trapezoids
with zero width. The thought of this approach is to slightly rotate the sites
counter clockwise—a standard approach for degenerate cases in computational
geometry.

If a polygon vertex a and a site s have the same x-coordinate, the site s
may lie on the diagonal with a as endpoint. Then s is assumed to belong to the
trapezoid to the left of this diagonal.

The degenerate case, where a trapezoid has more than one left definition
vertex or more than one right definition vertex, is handled by inserting symbolic



2.2. POINT LOCATION PREPROCESSING 17

Figure 2.6: Degenerate case: Two polygon vertices with the same x-coordinate

trapezoids of zero width (Fig. 2.6). This can also be illustrated by slightly
rotating the polygon vertices counter clockwise.

2.2 Point Location Preprocessing

In this section we consider the point location structure used to efficiently locate
the trapezoid containing a given site. Identification of the trapezoid of a site is
used to split trapezoids containing more than one site.

Let a subdivision be any partition of the plane into polygonal faces (regions).
Then the trapezoidal map is a subdivision. Kirkpatrick [K83] showed how a
subdivision S with n vertices can be preprocessed in O(n) time in order to
answer point location queries in O(log n) time: Given a query point p, determine
which face of S contains p.

First, he shows that the time bound applies to point location in triangular
subdivisions, after which he reduces the general (trapezoidal) subdivision prob-
lem to the point location problem for triangular subdivisions. The Kirkpatrick
data structure is a general data structure and also applies to other problems.
Hence, we will describe it out of the context of the visibility problem.

Triangular Subdivisions

Let S be a triangular subdivision with n vertices. Kirkpatrick’s data struc-
ture is then a directed acyclic graph with faces of a subdivision as internal
nodes and leaves. The graph represents a hierarchy of triangular subdivi-
sions S1, . . . , Sh(n), where S = S1, h(n) is the height of the hierarchy of sub-
divisions, and |Si| > |Si+1|, 1 ≤ i ≤ h(n) − 1. The size |Si| of a subdivi-
sion is the number of vertices, and the top level subdivision Sh(n) is a trian-
gle. Each face F of Si+1 has a pointer (downwards) to each face F ′ of Si for
which F ′ ∩ F 6= ∅ (Fig. 2.7). The face F ′ satisfying this is called a parent of F
in Si.

When searching for the face containing the query point p, we locate for
each level Si (starting in Sh(n) at the top) which face F ′ contains p, using the
knowledge of which face F in Si+1 contained p (Fig. 2.8).

It can be tested in constant time whether a point p is inside a triangle.
Let a, b, c be the vertices of a triangle. If the polygonal lines abp, bcp and cap
all make the same turn (left or right), then the point is inside the triangle,
whether a, b and c are in clockwise order or not.
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S1

S2

Sh(n)

Figure 2.7: The point location structure

Algorithm PointLocation(Point p)
candidatesh(n) ← faces of Sh(n)

F ← face in candidatesh(n) containing p
i← h(n)− 1
while i > 0 do

candidatesi ← parents(F )
F ← face in candidatesi containing p
i← i− 1

return F

Figure 2.8: The point location algorithm

It takes O(|Sh(n)|) time to find the face containing p in the top level of the
hierarchy. In each lower level of the hierarchy, it takes O(|parents(F )|) time to
find the face containing p, where F is the face of the level above having most
parents. Therefore, it is easy to see that the algorithm in Fig. 2.8 has time
complexity

O



|Sh(n)|+

h(n)−1
∑

i=1

max
f∈Si+1

{|parents(f)|}



 .

We need a few lemmas to determine how large this is.

Lemma 2.2.1 An n-vertex connected, planar graph has at most 3n− 6 edges.

Proof: Euler’s formula states that for a connected planar graph with n ver-
tices, m edges, and f faces

n−m + f = 2 .

When n ≥ 3 for a connected, planar graph, every face has at least three edges.
So if every edge was only incident to one face, then m ≥ 3f . But since every
edge is incident to two faces

2m ≥ 3f .
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Together with Euler’s formula this gives us:

3n− 3m + 3f = 6

⇒ 3n− 3m + 2m ≥ 6

⇒ m ≤ 3n− 6

which completes the proof. 2

Let an independent set I of vertices in the graph G(V, E) be a subset I ⊆ V
of vertices such that no pair of vertices in I is incident in G(V, E).

Lemma 2.2.2 There exists constants c, d > 0 such that every connected, planar
graph with n ≥ 2 vertices has at least n/c independent vertices of degree at
most d. At least n/c of these can be identified in O(n) time.

Proof: We will show that c = 24 and d = 11 will satisfy it, although this may
not be optimal.

By Lemma 2.2.1, the average vertex degree

davg =
2m

n
≤

2(3n− 6)

n
= 6−

12

n
≤ 6 .

Since no vertex has degree 0, less than half of the vertices have degree greater
than 11. Let V be the set of vertices of degree at most 11. Then

|V | ≥
n

2
.

By choosing elements from V for the independent subset, at most 12 elements
are removed from the graph each time an element is chosen—the element itself
and at most 11 dependent elements. In this way the independent subset will
contain at least |V |/12 ≥ n/24 elements, and these elements can easily be
identified in O(n) time. 2

The algorithm for the construction of the point location data structure is
described in Fig. 2.9. The data structure is built bottom-up starting with the
lowest level S1. For each level of the hierarchy, an independent set of vertices
is removed, and regions of the resulting subdivision are triangulated. Pointers
are added from faces of the subdivision before the triangulation to intersecting
faces of the subdivision after the triangulation. The time complexity of this
algorithm is O(n), which is proved in Lemma 2.2.3.

Lemma 2.2.3 There exist constants c, d > 0 such that, for any triangular sub-
division S with n vertices, an associated subdivision hierarchy S1, . . . , Sh(n) can
be constructed in O(n) time satisfying:

1. |Sh(n)| = 3

2. |Si+1| ≤ (1 − 1/c)|Si|

3. each face of Si+1 has at most d parents in Si
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Algorithm Kirkpatrick(Subdivision S)
i← 1
S1 ← enclose S in a large triangle ∆
triangulate the area in S1 between S and ∆
create a node for each triangle in S1

while |Si| > 3 do
I ← independent set of vertices in Si with degree less than d
i← i + 1
Si ← remove I from Si−1

for each sub-polygon S′ of Si do
triangulate S′

create a node for each triangle in Si

add pointers from each node in Si to intersecting nodes of Si−1

return

Figure 2.9: The Kirkpatrick algorithm to build the data structure

Proof: Assume that |Si| > 3, and let v be any internal vertex of Si. Let
the neighbourhood of v be the union of incident faces of v. If v and its deg(v)
incident edges are removed and the neighbourhood of v is re-triangulated in
linear time, the resulting triangulation will decrease by one. In this way, each
new face intersects at most deg(v) faces of Si.

If v1, . . . , vt form an independent set of vertices of Si, then it is possible
to do this process t times to get the subdivision Si+1 with the property that
each of the faces intersects at most max{deg(vj), 1 ≤ j ≤ t} faces of Si. The
intersecting faces can be found in constant time for each face by looking at the
constant number of pairs of triangles.

Now, by Lemma 2.2.2, there exist constants c, d ≥ 1 such that the subdivi-
sion Si has an independent set of size at least |Si|/c with deg(vi) ≤ d, 1 ≤ i ≤ t.
Furthermore, this independent set can be found in O(|Si|) time.

We get the following construction time for the subdivision hierarchy.

h(n)
∑

i=1

(

1−
1

c

)i

n ≤
∞
∑

i=0

(

1−
1

c

)i

n =
n

1−
(

1− 1
c

) = O(n)

which completes the proof. 2

Theorem 2.2.4 There is an O(log n) query time, O(n) space and O(n) pre-
processing time algorithm for the triangular subdivision point location problem,
where O(n) is the complexity of the subdivision.

Proof: If we use the data structure by Kirkpatrick to answer point lo-
cation queries, Lemma 2.2.3 tells us that the preprocessing time is O(n).
Since |S1|, |S2|, . . . , |Sh(n)| is decreasing geometrically, h(n) = O(log n). Hence,
the space used by the data structure is

O





h(n)
∑

i=1

|Si|



 = O(n)

plus the space used by the links between levels, but this is also O(n), since each
face has a constant number of parents.
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The constant number of parents also means that the query time is

O



|Sh(n)|+

h(n)−1
∑

i=1

max
f∈Si+1

{|parents(f)|}



 = O(log n)

since h(n) = O(log n). 2

Trapezoidal Subdivisions

Now that we have established a result for point location in triangular sub-
divisions, we need a way to use this result for trapezoidal subdivisions in order
to identify the trapezoid containing a given point.

Theorem 2.2.5 There is an O(log n) query time, O(n) space and O(n) pre-
processing time algorithm for the trapezoidal subdivision point location problem,
where O(n) is the complexity of the subdivision.

Proof: We can easily triangulate all faces of the trapezoidal subdivision S in
linear time, thereby getting a new subdivision T . Since T is a refinement of S,
the location of a triangle in T implies the location of a face in S. So after a
triangulation of each trapezoid, Theorem 2.2.4 implies the desired result. 2

So after computing the trapezoidal map in O(n) time, preprocessing the
trapezoidal map in O(n) time, locating each site in O(m log n) time and split-
ting trapezoids in O(m(log m + log n)) time, we end up with an O(m) sized
trapezoidal graph T where each node represents a sub-polygon with one site
inside. In the next chapter, a balanced decomposition of T and a factor graph
will be built to support the query structure.
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Chapter 3

Decomposition and Factor

Graph

In order to compute visibility edges inside the polygon efficiently, a balanced
decomposition of the trapezoidal graph is built. This data structure is then
extended to form the factor graph that is the underlying structure of the query
structure described in the next chapter.

In the first section of this chapter, the balanced decomposition will be de-
scribed. This data structure is built by recursively removing edges of the trape-
zoidal graph T of the last chapter. Every removal constitutes a node of the
balanced decomposition. Since the process is a general tree transform, it will
be described out of the context of T . In the second section, we will describe
how the tree transform is used on T . In the last section, the factor graph will
be described. The factor graph is an extension of the balanced decomposition
used by the query structure.

3.1 Decomposition of a Tree

Every removal of an edge in a tree T results in two subtrees. By repeatedly
removing edges, we get a decomposition S of T , where nodes are edges of T
and leaves are nodes of T . The decomposition is balanced if there exists a
constant α > 0 such that each time a subtree T is partitioned by the removal
of an edge, the two subtrees remaining each have size at least α|T ′|.

Guibas et al. [GHLST86] showed how to build a balanced decomposition of a
binary tree in O(n) time, where n is the number of nodes in the tree. The same
idea is used here to build a balanced decomposition of a ternary tree. Therefore,
in our case α = 1/4, contrary to [GHLST86] where α = 1/3. It should be noted
that the proof of the O(n) time construction of the auxiliary tree is omitted in
[GHLST86]. Hence, the proof of Theorem 3.1.6 and preceeding lemmas is my
own work.

Auxiliary Tree

Construction of the balanced decomposition makes use of an auxiliary tree,
denoted A, to find the centroid (split) edges of T . The auxiliary tree has the

23
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Algorithm AuxiliaryTree(Tree T )
L← empty list
V ← empty list
for each node v of T (in an Euler tour) do

insert v into L
if v has not been visited then insert v into V
if v is a leaf then

bv ← 1
γv ← 0

else if all children of v have been visited then
bv ← carryadd(bx + by + bz) for children x, y, z
γv ← max{n ∈ N : 2n ↑ bv}

U ← tournament tree over V with γv as priority
return BuildTree(U , L)

Figure 3.1: The auxiliary tree algorithm

Algorithm BuildTree(TournamentTree U , List L)
x← remove max element from U
U × L ← split U at each instance of x in L
join the first and the last element of U × L
for each element (U ′, L′) in U × L do

make BuildTree(U ′, L′) a child of x
return x

Figure 3.2: The build tree algorithm

same nodes as T , and each node has at most four children. See Fig. 3.1 and
Fig. 3.2 for the construction of A.

A label bv = carryadd(bx + by + bz) is computed for every node v of T with
children x, y and z. The function carryadd(bx + by + bz) is defined as follows.
Let i be the position of the leftmost carry in the computation of bx+by+bz+1 as
binary numbers and let n be the number of bits. Then carryadd(bx + by + bz) is
defined to be the binary number consisting of bits (n−1) . . . i from bx+by+bz+1
and bits (i− 1) . . . 0 being zero. Leaves v of T have labels bv = 1. For example

carryadd(10 + 10 + 1) = 100

since the addition is 10 + 10 + 1 + 1 = 110 and i = 2.

A label bv of a node v is an approximation of the size of the subtree
of v: |v|/2 ≤ bv ≤ |v| where |v| is the size of the subtree of v. The first in-
equality comes from the fact that bx + by + bz + 1 ≤ 2carryadd(bx + by + bz).
Since at most 1 is added to the label each time a node is added to a tree, the
second inequality is proved.

A label is used to find the priority γv of v which is the number of times
that 2 divides bv. The priority is used to find the strong node of a tree in each
step of the construction. Let the node v be balancing in a tree T if there exists
a subtree T ′ after the removal of v such that α|T | ≤ |T ′| ≤ (1 − α)|T |. A node
v is then strong if it is balancing, or the node of highest priority in a subtree
after removal of v is balancing.
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Figure 3.3: Labels on the trapezoidal graph from Fig. 2.4

See Fig. 3.3 for an example of labels on a graph. The graph is the trapezoidal
graph from Fig. 2.4, where the black node is picked as the root of T . The
priority γv is the number of successive zeroes in the right end of the binary
representation of bv.

Lemma 3.1.1 There is a unique node with highest priority in every subtree of
the tree T .

Proof: Every two different numbers divisible by the same highest power of
two have a number in between divisible by a higher power of two. This is an
algebraic property of the natural numbers. The lemma is proved by showing
that the path between every two nodes with labels divisible by the same power
of two contain a node whose label is divisible by a higher power of two.

Suppose now that the node x and its descendant y are divisible by the highest
power of two and have labels bx = c12

i and by = c22
i, c1 ≥ c2. Then somewhere

between x and y, there must be a node z with label bz = 2i+1, since it can not
happen that on the path from y to x label(s) are added without producing the
label bz at some node.

Suppose now that y is not a descendant of x or vice versa, and that their
labels are divisible by 2i, the highest power of two. Assume without loss of
generality that bx = c12

i and by = c22
i, where c1 ≤ c2. Then the label of a

node on the path from x to the common ancestor of x and y is divisible by 2i+1

by the same argument as above.
In either case there is a node in between with a label divisible by a higher

power of two. Hence, there is a unique node whose label is divisible by the
highest power of two. 2

Let λ be the modification of a label bv where the rightmost 1-bit is switched.
I.e., if γ is the priority of v then λ = bv − 2γ . When a subtree of a tree rooted
at v has been removed, the approximation of the size of the subtree of v changes
to: |v|/2 ≤ bv − λ ≤ |v|.

The following lemma shows that if the label bv of the root v of a tree T
satisfies that λ + 110 . . .0 ≤ bv ≤ λ + 111 . . .1 where the lower and upper
bit strings have the same length, then the node of T with highest priority is
balancing.

Lemma 3.1.2 In a tree with v as root, the node with highest priority γ is
balancing if

λ + 2γ + 2γ−1 ≤ bv ≤ λ + 2γ+1 − 1 .
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Proof: Assume the condition of the lemma. We will prove that the part T −
subtree(m) of T above m satisfies that

1

8
<
|v| − |m|

|v|
<

7

8

and thus makes the node m balancing.
First inequality: Since bv − bm is an approximation of the size of T −

subtree(m), we get that bv − bm ≤ |v| − |m|. Together with the condition
and the definition of λ we have that

|v| − |m|

|v|
≥

bv − bm

|v|
≥

λ + 2γ + 2γ−1 − bm

|v|
≥

λ + 2γ + 2γ−1 − (λ + 2γ)

2(bv − λ)
=

2γ−1

2(bv − λ)
=

2γ−2

bv − λ
≥

2γ−2

2γ+1 − 1
≥

1

8− 22−γ
>

1

8

for all γ ≥ 0.
Likewise, we get the second inequality:

|v| − |m|

|v|
≤ 1−

|m|

|v|
≤ 1−

2γ

|v|
≤ 1−

2γ

2bv
≤ 1−

2γ−1

bv
≤

1−
2γ−1

λ + 2γ+1 − 1
<

1

2
<

7

8
.

Hence, the node m is balancing, since the size of T − subtree(m) is between 1/8
and 7/8 of the size of T . 2

Lemma 3.1.3 The node with the highest priority of a tree is a strong node and
can be picked as the root of the auxiliary tree (or subtree).

Proof: If the node m with highest priority γ of the tree T satisfies that

λ + 2γ + 2γ−1 ≤ bv ≤ λ + 2γ+1 − 1 .

then m is balancing by Lemma 3.1.2.
If m does not satisfy the above, then at least one of the remaining subtrees

of T has a balancing node after the removal of m:
We will show that a root of one of the remaining subtrees satisfies that

λ + 2γ + 2γ−1 ≤ bv ≤ λ + 2γ+1 − 1

by assuming the negation. Hence some child x of m must satisfy

λ + 2γ−1 ≤ bx ≤ λ + 2γ + 2γ−1 − 1

for some γ. The node m can then only have priority γ if for another child y

2γ−2 ≤ by .

Together this gives us that

2γ−2 ≤ by ≤ |y| <
1

8

since the subtree of y must have size less then |T |/8. This equation fails
for γ ≥ 0. Hence, one of the remaining subtrees of T has a balancing node
by Lemma 3.1.2. 2
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Lemma 3.1.4 After the removal of a node in T , there is still a unique node
with highest priority in each of the remaining four subtrees.

Proof: Let x be the removed node of T . The same proof as the one of
Lemma 3.1.1 can be used for the subtree of each of the children of x.

In T − subtree(x) all pairs of nodes still have a node in between with label
divisible by a higher power of two, since the path between two nodes in T −
subtree(x) is the same as before the removal of x. 2

The implementation of the tournament tree in Fig. 3.1 and Fig. 3.2 must
support efficient insert, remove, split and join operations. This is achieved using
a 2-4 tree [GT98] with the property that each internal node has 2, 3 or 4 children
and all external nodes have the same depth. Each internal node with x children
has x−1 keys. After inserting (resp. deleting) an element, the two properties are
maintained by creating (resp. deleting) internal nodes and performing O(log n)
key transfer operations and fusions of nodes when overflow (resp. underflow) of
children occur.

Deletion of elements, key transfers and fusions of nodes are also used to
maintain the properties after a split operation: Let x and y be the keys of the
first and last element of the new tree. First, all keys outside the range [x, y] are
removed together with the respective children in each node from x (resp. y) to
the common ancestor z of x and y. This causes underflow in some of the nodes
from x (resp. y) to z which is fixed by O(log n) node fusions and key transfers.
In the remaining part of the tree, the same operations are used to maintain the
properties. The same technique is used for tree joins where operations instead
are node splits and key transfers.

Theorem 3.1.5 The auxiliary tree of a tree with n nodes has height O(log m).

Proof: By Lemma 3.1.1 and Lemma 3.1.3, we can choose a unique, strong node
for each subtree of the tree T . This node is balancing in the auxiliary tree A at
least half of the times. Hence, A has height O(log m). 2

Theorem 3.1.6 It takes O(n) time to construct the auxiliary tree of a tree
with n nodes.

Proof: Computing the Euler tour takes O(n) time, since insertion into a list
and priority computation is constant time operations. The tournament tree U
on the Euler tour can be constructed bottom up in O(n) time.

Removal of the node with highest priority in U and splitting of the tree
takes O(log m) time. Let a be the removed node having subtrees b, c, d and e.
After (at most) four split operations in O(log n) time, (at most) five parts of U
remain corresponding to the following chunks from left to right in the Euler
tour: first part of a, b, c, d and second part of a. The two parts of a are joined
in O(log n) time.

Recursion proceeds to the four parts, where the sum of the size of these parts
is |L| and L is the Euler tour list. Hence, the complexity of the AuxiliaryTree()
algorithm is

T (n) =
4
∑

i=1

T (ni) + log n

which is O(n), since
∑

i ni = n and ni ≤ ǫn for some ǫ > 0. 2
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Figure 3.4: The auxiliary tree derived from the tree in Fig. 3.3

Lemma 3.1.7 The auxiliary tree has at most O
(

m
2h

)

nodes of height h.

Proof: Follows immediately from Theorem 3.1.5. 2

The auxiliary tree of the trapezoidal graph in Fig. 3.3 is seen in Fig. 3.4 as
an example.

Centroid Edge and The Decomposition

Lemma 3.1.8 In any ternary tree with m nodes there is an edge (a centroid
edge) whose removal leaves two components, each with at least ⌊m+1

4 ⌋ nodes.

Proof: The lemma will be proved by an algorithm as follows. Assume that it is
known for each node how large the subtree is. Start at the root of the ternary
tree T . In each node x of T , check whether any of the edges incident to x satisfy
the condition. If none of the edges is a centroid edge, then go to the child where
the size of the subtree is at least m/4. This child exists, since the part of T
minus the subtree of x and the other two children of x must each be of size less
than m/4. Furthermore, this child is unique, since otherwise there would be a
centroid edge. Proceed in this way until the centroid edge is found.

The algorithm will eventually find a centroid edge, since the size of the
subtree is at most decreased by a factor 2 each time a new child is visited.

Notice that the centroid edge need not be unique, but this algorithm will
always find the centroid edge of lowest depth in T . 2

We could find the centroid edges directly in T , but since T is not balanced,
this could take more than O(log n) time, which we can not afford. Therefore,
we use the auxiliary tree to find each centroid edge in O(log n) time.

A subtree in T has the same nodes as a subtree in A but possibly in another
structure. Therefore, an edge in T incident to nodes x and y does not have to
be incident to x and y in A.

If the size of the subtree of a node is computed for all nodes in T (linear
time), nodes in A can also have information on the size of the component in A.
This will be useful for the following lemma.

Lemma 3.1.9 The centroid edge of an auxiliary tree with n nodes can be found
in O(log n) time.
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Proof: By Lemma 3.1.8, there is an edge whose removal leaves two components,
each with at least ⌊m+1

4 ⌋ nodes. Thus, we can find the edge by searching
through A starting at the root.

By looking at the size of the subtree that is stored in each node of A, it can
be tested in constant time, whether one of the edges in T incident to the node in
question is a centroid edge. If so, it is reported, otherwise the search continues
to the child with the largest subtree.

Eventually the search will find the centroid edge, since it exists and it will
be in the larger of two children’s subtrees. The edge will be found in O(log n)
time, since the height of A is O(log n).

The removal of a centroid edge e from a node x to its parent y results in two
subtrees of A, one tree A− subtree(y) above e and one tree subtree(y) below e.
In the subtree above e, the size of a subtree of a node can be updated in O(log n)
time for all nodes from e to the root, since the height of A is O(log n). 2

Lemma 3.1.10 A balanced decomposition of a ternary tree with n nodes can
be computed in O(n) time.

Proof: Four properties of the auxiliary tree are used to prove linearity of the
construction:

1. Nodes in A can not increase in height, since no nodes are added to A.

2. There are at most O(m/2k) nodes of height k in A (Lemma 3.1.7).

3. By Lemma 3.1.9, it takes O(h) time to split A where h is the height of
the root in A.

4. No node can appear as the root more than O(h) times, since A is bal-
anced (priorities decrease for each level of the tree).

This means that decomposition of a subtree takes O(k2) time as long as a
particular node with height k is the root. Since there are at most m/2k nodes
of height k, the decomposition of the tree takes

O





⌊log m⌋
∑

k=0

k2 m

2k



 = O



m

⌊log m⌋
∑

k=0

k2

2k



 = O(m)

time, since k2 is a polynomial and 2k increases exponentially. 2

3.2 Decomposition of the Trapezoidal Graph

The decomposition of a ternary tree can be applied to the trapezoidal graph T
of our polygon Q. In this way, the decomposition of T is a recursive splitting
of Q into two with a diagonal.

Each node x in the auxiliary tree A has at most four children. The subtrees
of these children form the sub-polygons bounding the trapezoid of x. The parent
sub-polygon of x is adjacent to one of these sub-polygons.

Theorem 3.2.1 A balanced decomposition of the trapezoidal graph can be com-
puted in O(m) time.

Proof: Since by Lemma 2.1.4, the trapezoidal graph of O(m) nodes is ternary,
we have the desired result from Lemma 3.1.10. 2
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Figure 3.5: The factor graph of Fig. 2.4 where factor edges are dashed lines

3.3 Factor Graph

The last thing to do before applying the query structure, is to build the factor
graph from the balanced decomposition.

The factor graph, introduced by Guibas and Hershberger [GH89], has in-
formation on the topology of the polygon and is used as a base of the query
structure.

The polygon Q is recursively split into two sub-polygons until basic sub-
polygons remain. Now, let Rd be the sub-polygon split by the diagonal d in
the decomposition process, and let the depth of Rd be the depth of d in the
decomposition S.

Lemma 3.3.1 Rd has at most O(log m) diagonals on its boundary.

Proof: The diagonals bounding Rd have different depth. This follows by in-
duction:

If d is the diagonal splitting the complete polygon, no diagonals are bound-
ing Rd. Hence, they (none) are of different depth.

Assume now that diagonals bounding Re have different depths and that e
is the parent diagonal of d. Then Rd is bounded by e and some of the same
diagonals as Re. Either way, e has another depth than the other diagonals
bounding Re which in turn are of different depth. Hence, diagonals bounding Rd

also have different depths.
Since the tree is balanced, it has height O(log m) and there is only a O(log m)

number of different depths. Hence, only O(log m) diagonals are bounding Rd.2

The factor graph of S is denoted S∗ and has the same nodes and edges
as S. Furthermore, S∗ has an edge from each diagonal d to all the diagonals
bounding Rd (Fig. 3.5).

Lemma 3.3.2 The degree of a node in S∗ having O(m) vertices is O(log m).

Proof: Each diagonal d has at most depth(d) edges to diagonals of lesser depth,
the diagonals bounding Rd. So by Lemma 3.3.1, the out-degree of d is O(log m).

A diagonal d is adjacent to two sub-polygons at each stage of the decom-
position, so for each depth greater than depth(d), d has at most two edges to
other diagonals. Thus, the the total degree of a node in S∗ is O(log m). 2
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Lemma 3.3.3 Rd must contain at least

⌊

(

4

3

)h(d)−1

+ 1

⌋

sites, where h(d) is the height of d.

Proof: The lemma is proved inductively: If d is a leaf, then it contains one site
which is at least as large as ⌊7/4⌋ = 1.

Assume now that d has two children e and f with heights h(e) and h(f),
respectively. Since the decomposition is balanced, we have that

(

3

4

)max{h(e),h(f)}

≥
1

2

(

3

4

)min{h(e),h(f)}

⇒ 2

(

3

4

)max{h(e),h(f)}−min{h(e),h(f)}

≥ 1 .

Assume that the children contain at least ⌊(4
3 )height−1 + 1⌋ sites. Then Rd

contains at least
⌊

(

4

3

)h(e)−1

+ 1

⌋

+

⌊

(

4

3

)h(f)−1

+ 1

⌋

≥ 2

⌊

(

4

3

)min{h(e),h(f)}−1

+ 1

⌋

≥ 2

(

3

4

)max{h(e),h(f)}−min{h(e),h(f)}
⌊

(

4

3

)max{h(e),h(f)}−1

+ 1

⌋

≥

⌊

(

4

3

)max{h(e),h(f)}−1

+ 1

⌋

=

⌊

(

4

3

)h(d)−1

+ 1

⌋

sites. 2

Theorem 3.3.4 The size of the factor graph is O(m).

Proof: Sub-polygons split by diagonals with the same height in S are all dis-
joint, since they are separated by the diagonal of the lowest common ances-
tor. By Lemma 3.3.3, it can be proved like in Lemma 3.1.7 that there are
only O((3

4 )km) diagonals with height k in S.
The graph S∗ has m−3 nodes and at most 2h(d) edges to descendants from

each node d. Therefore by Lemma 3.3.2, S∗ has at most

∑

d∈S∗

2h(d) = O





∑

k≤1+log4/3 m

k

(

3

4

)k

m



 = O(m)

edges. 2

Theorem 3.3.5 The factor graph can be computed in O(m) time.

Proof: Two diagonals d and e will be connected in S∗ if and only if they can
be connected inside Q by a path that does not cross any diagonal of depth less
than min{depth(d), depth(e)}.
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Hence, the factor edges in S∗ for a given edge d in T can be computed by
expanding a tree from d to paths that comply with the requirement above.

Since factor edges are only visited twice and no further computations are
done, the complexity is O(m) by Theorem 3.3.4. 2

Now a balanced decomposition S of the trapezoidal graph T has been com-
puted in O(m) time and afterwards used to build the factor graph S∗, also
in O(m) time.

The last data structure to set up before using the visibility algorithm is the
query structure that is applied on top of the factor graph.



Chapter 4

Query Structure

Guibas and Hershberger [GH89] introduced a data structure called an hourglass
to represent shortest paths between two diagonals of a polygon. In this context,
we will use an hourglass to represent visibility between two diagonals.

Let AB and CD be two diagonals in the polygon Q so that ACDB is in
clockwise order around the boundary of Q (Fig. 4.1). Let π(A, C) represent
the shortest path inside Q between points A and C that are endpoints of two
diagonals. Then the hourglass of AB and CD is the union of the polygonal
chains π(A, C) and π(D, B) and is denoted H(AB, CD).

We would like to answer queries like: For a given site s inside the polygon Q,
determine the part Is of a diagonal at one end of an hourglass that is visible
to s (Fig. 4.1). In this way, rays from a site can be associated with diagonals
in order to compute visibility edges of a diagonal. It turns out that hourglasses
for all edges of the factor graph can be computed in O(m + n) time and that
queries can be answered in O(log mn) time.

The main data structure of the hourglass is the convex chain. The convex
chain data structure represents a convex chain of edges and has two important
properties: Two convex chains can efficiently be combined to form a new convex
chain, and the tangent from a query point to a convex chain can be found
efficiently. Details will be given later.

C

D

A

s

B

Is

Figure 4.1: An hourglass of AB and CD
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4.1 Hourglasses

Let s and t be two sites inside Q and assume that the straight line st is contained
in Q. Then s and t see each other and st will intersect a sequence of diagonals.
Each of these separating diagonals will split Q into two parts, one containing s
and one containing t. In this ordered sequence, adjacent diagonals have different
depths. Furthermore by the definition of a splitting diagonal, there is always a
diagonal of lesser depth between two diagonals of equal depth.

Let ds be the deepest diagonal of S where the sub-polygon split by ds con-
tains s. Define dt in the same way. Notice that st does not need to cross ds

or dt. If s and t can see each other, st must cross a diagonal that is the lowest
common ancestor of ds and dt. Let this diagonal be d′. We define ds and d′ to
be part of the principal diagonals of s, denoted Ds. If the sequence of diagonals
intersecting st is scanned from ds to d′, each diagonal with depth less than the
minimum depth so far is also a principal diagonal. Define Dt in the same way.
Since Ds is a subset of the ancestor diagonals of ds, the idea is to only associate
visibility rays from a site s to ancestor diagonals of ds.

Since the depth of the principal diagonals is strictly decreasing from ds to d′,
the length of the sequence is O(log n), since this is the height of S.

Each diagonal in Ds is contained in the sub-polygon split by its successor
in Ds, and hence is a descendant in S of that successor. This means that Ds

is a sub-sequence of the path from ds to d′ in S. This sub-sequence can be
retrieved by following edges of S∗. So instead of computing Ds by looking at
all separating diagonals between s and t, only principal diagonals of S∗ need
to be considered. Hence, visibility between ds (resp. dt) and d′ is computed
by concatenating hourglasses of Ds (resp. Dt) found in the nodes of S∗. Two
hourglasses H(AB, d) and H(d, CD) sharing a diagonal d are concatenated by
combining them into H(AB, CD) such that this new hourglass is the union of
the polygonal chains π(A, C) and π(D, B)

The Data Structure

Given a site s in the sub-polygon split by AB in the decomposition process
and the hourglass H(AB, CD), it is easy to find out which part of CD is visible
to s (Fig. 4.1). Find the tangent from s to each side of H(AB, CD) and compute
the intersections with CD. These intersections will be the ends of the interval
of CD to be seen from s.

Guibas and Hershberger use hourglasses to answer shortest path queries and
divide them into two groups: open and closed hourglasses. In closed hour-
glasses, π(A, C) and π(D, B) share polygon vertices and H(AB, CD) consists
of two funnels and a polygonal chain between them. Closed hourglasses can
only be used to answer shortest path queries. If an hourglass in the context of
visibility is closed, no points of AB can see anything of CD, and the hourglass
is useless. We will therefore only consider open hourglasses like in Fig. 4.1 and
denote them simply as hourglasses. The polygonal chains of an open hourglass
are convex.

If two hourglasses H(d1, d2) and H(d2, d3) are concatenated, the convex
chains of the concatenated hourglass H(d1, d3) will consist of a sub-chain
of H(d1, d2), a common tangent of the chains of H(d1, d2) and H(d2, d3) and a
sub-chain of H(d2, d3). Hence, concatenation reduces to finding common tan-
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Figure 4.2: Examples of an open (a) and a closed (b) concatenation

gents between pairs of convex chains.
A tangent of two chains is the line that intersects one vertex of each chain and

nothing else. A tangent of two chains sharing a vertex (one chain in continuation
of the other) is called an outer common tangent . The common tangents of two
hourglasses is defined as the upper outer common tangent and the lower outer
common tangent.

Let d1, d2 and d3 be diagonals, so that d2 separates d1 and d3. If H(d1, d2)
and H(d2, d3) are open, then H(d1, d3) could be either open or closed. If both
outer common tangents of H(d1, d2) and H(d2, d3) are unblocked with respect
to the polygon boundary, the concatenation is open, otherwise closed (Fig. 4.2).

The first two parts of the following lemma will be used to prove that the
construction of all hourglasses of the factor graph takes O(m + n) time. The
third part guarantees that the hourglass can answer queries in O(log mn) time.
The proof of the lemma will be given in the next section.

Lemma 4.1.1 If tangents from a point to hourglasses H(d1, d2) and H(d2, d3)
can be found in times τ1 and τ2, respectively, and C is some constant, then

1. The common tangents of hourglasses H(d1, d2) and H(d2, d3) is com-
putable in O(τ1 + τ2) time.

2. The hourglass H(d1, d3) can be constructed from H(d1, d2) and H(d2, d3)
in time O(τ1 + τ2). Furthermore, H(d1, d2) and H(d2, d3) are unaltered
by the concatenation operation.

3. Tangents to H(d1, d3) can be found in time max{τ1, τ2}+ C.

Construction of Hourglasses

Hourglasses are constructed from hourglasses of greater depth (Fig. 4.3).
In each outer loop of the algorithm, the depth is decreased and sub-polygons
are merged to form new and larger sub-polygons. All hourglasses in these new
sub-polygons re-use information of hourglasses of greater depth.

The input to the algorithm is the factor graph of the trapezoidal graph
before the merging of nodes, where leaves represent trapezoids. Hourglasses
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Algorithm Hourglasses(FactorGraph S∗)
max← maximum depth of a node in S∗

for each k from max to 0 do
for each diagonal d ∈ S∗ of depth k do

for each d1 bounding Rl and d2 bounding Rr (d1, d2 6= d) do
compute the common tangents of H(d1, d) and H(d, d2)
construct the hourglass H(d1, d2)

return

Figure 4.3: The hourglasses algorithm

of trapezoids are computable in constant time contrary to hourglasses of basic
sub-polygons.

The invariant of the algorithm is: After all rounds of the outer loop with k
depth, all hourglasses in sub-polygons with greater depth than k have been
computed. The invariant is satisfied after the first round, because every sub-
polygon with greater depth than the maximum is a trapezoid. Hourglasses
between bounding diagonals of a trapezoid are easy to construct, since trape-
zoids are convex polygons. In further steps of the algorithm, a diagonal d splits
a sub-polygon Rd into Rl and Rr. Every hourglass of Rl and Rr has been com-
puted in the last step. So to maintain the invariant, every hourglass H(d1, d)
in Rl must be concatenated with every hourglass H(d, d2) in Rr.

This process computes hourglasses for exactly those pairs of diagonals linked
by edges in the factor graph of the trapezoidal graph before merging. It requires
only one concatenation for each hourglass generated.

If two diagonals d1 and d2 are linked by an edge in S∗, they lie on the
boundary of some sub-polygon. Let λ(d1, d2) be the logarithm of the size of
that sub-polygon.

Lemma 4.1.2 If d1 and d2 are linked by an edge in the factor graph, the tan-
gents through a site to the hourglass H(d1, d2) can be found in time O(λ(d1, d2)).

Proof: We will prove this by induction:

In the basic step, an hourglass of a trapezoid consists of two line segments
connecting d1 and d2. Hence, tangents through a site to such an hourglass can
be found in constant time, say D.

In the induction step, a diagonal d splits Rd into Rl and Rr. Let d1 and d2

be bounding diagonals of Rl and Rr, respectively, and let |R| be the number
of vertices of the sub-polygon R. We then concatenate H(d1, d) with H(d, d2).
Since S∗ is balanced, we have by Lemma 3.1.8 that |Rd| ≥

4
3 max{|Rl|, |Rr|}.

By Lemma 4.1.1, tangents of H(d1, d2) can be found in time

C′ max{|Rl|, |Rr|}+ C ≤ C′ 3

4
|Rd|+ C = O(λ(d1, d2))

which completes the proof. 2

Theorem 4.1.3 The hourglasses of all edges of the factor graph S∗ can be
constructed in O(m + n) time using O(m + n) space.
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A B C

α β

Figure 4.4: A derived chain

Proof: Lemma 4.1.1 part 2 and Lemma 4.1.2 implies that an hourglass obtained
by concatenation of H(d1, d

′) and H(d′, d2) can be built in O(λ(d1 , d2)) time,
which is proportional to the height h(d′) of d′ in S∗. Furthermore

h(d′) < max{d1, d2} .

Let d = max{d1, d2}. Since d is joined with O(h(d)) edges to lower diagonals
in S∗, the hourglasses of these O(h(d)) edges can be built in O((h(d))2) time.

Thus, as in the proof of Theorem 3.3.4, the construction takes time and
space proportional to

∑

d∈S∗

(h(d))2 = O





∑

k≤1+log4/3 n

k2

(

3

4

)k

(m + n)



 = O(m + n)

since there are only O((3
4 )k(m+n)) diagonals with height k in S and an hourglass

crossing a diagonal of height k can be built in time O(k). 2

In the next section, we will describe the chain data structure, prove Lem-
ma 4.1.1 and show how the hourglass data structure can be used to answer
queries in logarithmic time.

4.2 Convex Chains

The implementation of an hourglass uses convex chains. Inspired by Overmars
and van Leeuwen [OL81], convex chains are represented as binary trees. This is
the obvious way to find a tangent of a convex chain in logarithmic time.

A convex chain from A to B has the property that it is equal to its own convex
hull minus AB. A chain can be either trivial or derived . A trivial chain is just
a polygon edge. A derived chain is the convex hull of two sub-chains, π(A, B)
and π(B, C), minus

{

AB, AC, BC
}

, where B is a polygon vertex between A
and C (Fig. 4.4). Thus, a derived chain consists of a common tangent of two
sub-chains and references to these. Notice that the common tangent can be of
zero length, and that the common tangent can be equal to the convex chain.

So, in the binary tree implementation of a convex chain, a single edge is
just a leaf, and a derived chain is represented by a node containing the common
tangent and pointers to two nodes representing the sub-chains.

The basic query of the convex chains is: Given a site s outside the convex
hull of the convex chain A, compute the two tangents from s to A. Given a
node of A, it can be checked in constant time, which sub-chain of A a tangent
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Figure 4.5: Possible intersections of chain points

touches. Since the height of the binary tree of A is logarithmic, the query time
is also logarithmic.

Now that the chain data structure has been described, we are now able to
prove the three parts of Lemma 4.1.1.

Proof of Lemma 4.1.1 part 1: We will now prove that the common tangent
of two convex chains can be found in time O(τ1 + τ2). The problem of finding
the common tangent reduces to the problem of finding one point α on the first
convex chain and one point β on the second convex chain, such that the straight
line between them does not intersect the convex chains. Hence, we need to search
in the convex chains for these points.

Assume that we are looking at the upper convex chains. The proof for the
lower convex chains is similar. Assume furthermore that a point on the con-
vex chain A is connected to a point on the convex chain B with a straight
line. Then this straight line can essentially intersect the two convex chains
in nine ways (Fig. 4.5). The point on A can lie on the side of A not fac-
ing B (Fig. 4.5:a), it can lie “on top” of A (Fig. 4.5:b), or it can lie on the side
of A facing B (Fig. 4.5:c). Similarly, the point on B can have three possible
positions..

Together, this gives us nine possible lines. We talk about the point p lying
after q, if p is lying after q or on q in the counter-clockwise order of the chain.
Similar for p lying before q. In the first case of the following, it is only possible
to deduce that the search for β must continue after d for the segment ad. This
is so, because we can not say anything about the position of α. It could both lie
before, on or after a. But certainly, β must lie after d if ad can not intersect B.

ad Search for β strictly after d.

ae Search for α strictly after a, and search for β after e.

af Further analysis is needed.

bd Search for α before b, and search for β strictly after d.

be Here b = α and e = β, and we are done.

bf Search for α before b, and search for β strictly before f .

cd Search for α strictly before c, and search for β strictly after d.

ce Search for α strictly before c, and search for β after e.

cf Search for α strictly before c.
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A B
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Figure 4.6: An example of turn(pqm) 6= turn(pqn) and turn(mqn) = right.

Notice that the following pairs of cases are symmetrical: ad and cf , ae
and bf , bd and ce. In the case af , the search for α proceeds after a, or the
search for β proceeds before f , depending on the exact position of a and f on
the convex chains.

Assume that p is a vertex of A, q is a vertex of B, and x and y are vertices
incident to p where x is to the left of p and y is to the right of p. If the turn
of pqx and pqy are the same, then p is at position b. If the turn of pqx and pqy
are different and xqy is a right turn, then p is at position a (Fig. 4.6). Finally,
if the turn of pqx and pqy are different and xqy is a left turn, then p is at
position c. Similar conclusions can be made for q. Hence, the cases can be
distinguished in constant time.

Let τ1 and τ2 be the (logarithmic) times to compute tangents from a point
to A and B, respectively. Since, the search space is reduced to half the size
for either α or β in each of the nine cases, this approach reduces the problem
of finding a common tangent of A and B to the problem of finding a tangent
from a point to A and a tangent from a point to B. Hence, the time to find the
common tangent is O(τ1 + τ2). 2

Proof of Lemma 4.1.1 part 2: This part is a consequence of the previous
one: If tangents from a point to hourglasses H(d1, d2) and H(d2, d3) can be
found in times τ1 and τ2, respectively, then the common tangents of (the convex
chains of) the two hourglasses is computable in O(τ1 + τ2) time. The hour-
glass H(d1, d3) is represented as two convex chains. The upper (resp. lower) con-
vex chain is represented as a pointer to the common tangent of the upper (resp.
lower) chains of H(d1, d2) and H(d2, d3), a pointer to the upper (resp. lower)
chain of H(d1, d2) and a pointer to the lower (resp. upper) chain of H(d2, d3).
Hence, H(d1, d3) can be constructed in O(τ1 + τ2) time, and the original two
hourglasses are unaltered by the concatenation. 2

Proof of Lemma 4.1.1 part 3: Let s be a site of P . When searching for the
tangent from s to H(d1, d3), we look at the edge stored at the binary tree node
that represents a convex chain of H(d1, d3). In constant time we determined
which sub-chain of H(d1, d2) and H(d2, d3) the tangent touches and continue
the search in that subtree. Hence, it takes max{τ1, τ2}+C time to compute the
tangent from s to H(d1, d3) for some constant C. 2

Lemma 4.2.1 The hourglasses of S∗ can answer visibility queries from a site
to one of its principal diagonals in O(log2 mn) time.

Proof: Before answering a query, hourglasses of S∗ must be concatenated into
the hourglass to be used for the query.
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Let s be a site of P . There are O(log mn) principal diagonals of Ds hold-
ing O(log mn) hourglasses. By Lemma 4.1.2 and Lemma 4.1.1 part 2, these
hourglasses can be concatenated in O(log2 mn) time into a single hourglass.
By Lemma 4.1.1 part 3, this hourglass can answer queries in O(log mn) time.
Hence, the total query time is O(log2 mn). 2

Logarithmic Time Queries

If some hourglasses of S∗ answer many queries, it might be a good idea to
compute these hourglasses once and for all instead of re-computing them each
time they are used. Obviously hourglasses of the upper part of S∗ are used the
most. We would like to exploit this fact to reduce the query time of Lemma 4.2.1
to O(log mn).

Lemma 4.2.2 In a balanced tree S with n nodes, there are only O(n/ log2 n)
nodes with at least α log2 n descendants.

Proof: Since S is balanced, the number of descendants is on average multiplied
by a factor α when moving from a node to its parent. Therefore, each node
of height larger than O(log log2 n) has at least α log2 n descendants. Since S
is balanced, the number of nodes of height greater than h is O(n/2h) (similar
proof like in Lemma 3.1.7). This means that there is at least

O(n/2log log2 n) = O(n/ log2 n)

nodes with at least α log2 n descendants. 2

Let U be the set of upper nodes of S∗ with more than α log2 mn descen-
dants. Add to S∗ edges from nodes of U to all their ancestors. Since S∗

is balanced, the set U has O((m + n)/ log2 mn) nodes by Lemma 4.2.2. These
nodes have O(log mn) ancestors each, resulting in O((m+n)/ logmn) new edges
of S∗. A construction time of O(log mn) for each hourglass gives us a O(m+n)
time precomputation of the additional hourglasses.

Theorem 4.2.3 Visibility queries in S∗ can be performed in O(log mn) time.

Proof: Let Rd be the minimum sub-polygon containing the query site s and
let d′ be an ancestor of d in S∗. Then d and d′ is separated by a sequence D of
diagonals.

If d′ /∈ U then d′ has at most O(log2 mn) descendants, and there are
only O(log(log2 mn)) = O(log log mn) hourglasses to be concatenated between d
and d′. Therefore, the construction time of H(d, d′) is O((log log mn)2), which
in turn is O(log mn).

Assume now that d′ ∈ U . Let d− be the highest diagonal in D that is
not in U , and let d+ be the successor of d− in D. Since d− /∈ U , we can
compute H(d, d−) in O((log log mn)2) time. The hourglass H(d−, d+) can be
computed in O(log mn) time, and H(d+, d′) has been precomputed. Concate-
nation of H(d, d−), H(d−, d+) and H(d+, d′) takes O(log mn) time. 2

We now have a data structure to determine which part of a diagonal is
visible from any given site. All data structures of the algorithm have now been
described, and we are ready to apply the main algorithm.
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Simple Polygon

All of the required data structures have now been set up, and the visibility
graph can be computed by the main algorithm. The main algorithm consists
of two parts. In the first part, rays from each site through the visible area of a
diagonal d are associated to d. Visibility edges are computed in the second part
using the associations of rays from the first part. Since the visibility edges are
computed in the dual plane, the first section is about the duality transform.

5.1 Dual Plane

Let is be the part of d visible from s, and let Ls be the set of lines passing
through s and a point in is. Then Ls forms a wedge.

In the standard point-line duality transformation, a point (a, b) is trans-
formed into a line y = ax − b, and a line y = ax + b is transformed into a
point (a,−b). Hence, the set Ls of lines is transformed into a set L∗

s of points,
i.e. a line segment.

A site s is then visible to a site t if and only if Ls ∩ Lt 6= ∅, in which
case l ∈ Ls ∩ Lt is unique (Fig. 5.1). The line l is transformed into the point l∗

in the dual. Hence, visibility between s and t can be discovered by computing
the intersection point l∗ between L∗

s and L∗
t .

Notice that the diagonal d computing the visibility between sites s and t
does not have to cross st. The sites s and t can see each other if L∗

s ∩ L∗
t 6= ∅,

t

Ls

Lt

d

s
It

Is

Figure 5.1: Site s sees site t if there is a line in common to Ls and Lt

41
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t

Lt

Ls

d

s

Figure 5.2: The diagonal d does not have to be between sites s and t

s r

Figure 5.3: Ray intervals of a site

whether the sites are on the same side of d or not (Fig. 5.2), since then there
will be a line through s and t.

5.2 Association of Rays

The first part of the main algorithm associate rays from each site to diagonals
of the polygon.

Consider a ray r from a site s inside the polygon Q. The part of r inside Q
will intersect some set D of the diagonals of Q. Then r is associated to the
diagonal d ∈ D of minimum depth. If this is done for all rays starting in s, we
will get a partition of the rays into intervals (Fig. 5.3). For each interval, all
rays are associated to the same diagonal, i.e. the diagonal of minimum depth.

It is essential that a ray from s is only associated to one diagonal. Otherwise,
a visibility edge could be discovered more than a constant number of times.
Hence, we must start by associating rays to the diagonal of lowest depth, hold
information about how much of the ray-space has been covered so far, and then
walk down the factor graph (Fig. 5.4). The variable J holds the information
about how much of the ray-space is covered. Notice that there can be one or
two line segments in the variable m of the algorithm, since Js ⊂ Is causes Is to
be split into two parts.
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Algorithm RayAssociation(Sites P )
for each site s in P do

d← root of the factor graph
A← smallest sub-polygon containing s
e← splitting diagonal of A
Js ← ∅
while d is not e do

Is ← ray interval for the visibility of d from s
Is ← Is − Js

Js ← Js + Is

if Is is not empty then
m← line segment(s) in the dual corresp. to lines from s through Is

insert m into d’s list of line segments
d← child of d containing e

return

Figure 5.4: The ray association algorithm

Algorithm Visibility(FactorGraph S∗)
for each diagonal d of S∗ do

I ← intersection points of all line segments associated with d
for each point p in I do

(l, m)← line segments creating the intersection point p
(a, b)← vertex origins of the ray intervals l∗ and m∗

create visibility edge (a, b)
return

Figure 5.5: The visibility algorithm

Theorem 5.2.1 Rays from all sites of P can be associated with diagonals of Q
in O(m log m log mn) time.

Proof: Each point associates rays to O(log m) diagonals. Before each associ-
ation, the visible area of a diagonal is computed in O(log mn) time by Theo-
rem 4.2.3. Since there are m points, the total time is O(m log m log mn). 2

5.3 Visibility Edge Computation

Every diagonal of the factor graph now holds a list of line segments in the dual
plane. It only remains to compute the intersections of all line segments for each
diagonal (Fig. 5.5).

Theorem 5.3.1 The running time of the intersection computation algorithm
is O(m log2 m + k), where k is the number of intersections.

Proof: Let md be the number of sites in the sub-polygon split by the diagonal d.
Then

∑

d∈D md = m where D is the set of all diagonals of a given depth. The kd

intersections between md line segments can be computed in O(md log md + kd)
time using the optimal intersection algorithm of Balaban [B95]. So the total
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time for finding the intersections in all of the diagonals in S∗ is

O

(

∑

d∈S∗

(md log md + kd)

)

= O

(

∑

d∈S∗

(md log md) +
∑

d∈S∗

kd

)

= O
(

m log2 m + k
)

since it takes O(m log m) time for the intersection algorithm in each of
the O(log m) depths of S∗. If two sites are visible to each other, then they
have an overlapping ray interval over a diagonal of minimal depth. Hence,
each visibility edge is reported only once, and

∑

d∈S∗ kd = k which is the total
number of visibility edges. 2

Theorem 5.3.2 The visibility graph V GQ(P ) of m sites P within a simple
polygon Q having n vertices can be computed in O(n+m logm log mn+k) time,
where k is the number of edges of V GQ(P ). The space complexity is O(m + n).

Proof: By Theorem 2.1.1, 2.2.5, 3.2.1, 3.3.5, 4.1.3, 5.2.1 and 5.3.1, we get the
following time complexities for each step of the algorithm.

Trapezoidal Map O(n)
Point Location Structure O(n)

Trapezoid Splitting and Merging O(m(log m + log n))
Decomposition Tree O(m)

Factor Graph O(m)
Hourglass Query Structures O(m + n)

Ray Associations O(m log m log mn)

Visibility Edge Computation O(m log2 m + k)

All together, this results in an overall O(n+m log m log mn+k) time visibility
graph algorithm. By Theorem 2.2.5, 3.3.5 and 4.1.3, the space used for the point
location structure, the factor graph and the query structure is O(m + n). 2

One of the special cases of the visibility graph computation is the case
where P = V , i.e. the nodes of the visibility graph are the nodes of the poly-
gon. The optimal algorithm for this problem runs in O(n + k) time [H89]. If
we replace m by n in Theorem 5.3.2, we get a running time of O(n log2 n + k),
which is close to the optimal solution.
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Polygon with Holes

Often, polygons are not simple as they were in the computation of the visibility
graph in the previous chapter. Motion planning, for example, is the problem
of finding a route among a set of obstacles. Here, the obstacles are the holes
of the polygon. Since the polygon becomes more complex, we can not use the
algorithm of the previous chapter. Instead, we present an algorithm used to
compute the visibility graph of a polygon with holes.

6.1 Other Problems with Holes

Before presenting the algorithm of polygon with holes, let us look at how other
known computational geometry problems become harder when holes are added
to the polygon.

Polygon Triangulation

As we saw in Section 2.1, a simple polygon can be triangulated in linear time
by Chazelle’s algorithm. The linearity is achieved by computing an approxima-
tion of the triangulation in a bottom-up phase and refining the approximation
in a top-down phase using information of the bottom-up phase.

Bar-Yehuda and Chazelle showed in [BC94] how a polygon with h holes
can be triangulated in O(n + h log1+ǫ h) time. The idea of this algorithm is to
connect every hole to another hole or the polygon boundary in O(h log1+ǫ h)
time. This results in a simple polygon that can be triangulated in O(n) time.

Here, the number of holes h does not affect the number of vertices n at
all. Let us look at how many holes the polygon can have without affecting the
running time of the linear algorithm. For

O(h) = O

(

n

log1+ǫ n

)

we have that
O(h log1+ǫ h) = O(n) .

So if ǫ is small, h can be very close to n before this algorithm is asymptotically
slower than running the algorithm for a simple polygon of the same complex-
ity. Hence, the addition of holes almost never influences the running time of
triangulation.
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Shortest Path

The problem of finding the shortest path from s to t inside a simple polygon
with n vertices can be solved in O(n) time [GHLST86]. This algorithm has
a O(n) time preprocessing of the polygon Q given a fixed vertex of Q. The
preprocessing exploits the O(n) time triangulation of Chazelle [C91]. The query
time for a target point inside Q is then logarithmic.

Kapoor et al. [KMM97] showed how the shortest path inside a polygon Q
with h holes can be computed in O(n + h2 log n) time. Thus, the addition of
holes has no effect on the running time for

h ≤

√

n

log n

when using this algorithm instead of the one in [GHLST86].
This algorithm also starts by computing the triangulation of Q. As we

saw, this can be done in O(n + h log1+ǫ h) time for polygons with holes.
The O(h2 log n) part of the time complexity is a result of a sweep algorithm
to compute a visibility graph of a set of polygons with O(h) convex chains
and O(h) reflex vertices. Here, tangent segments are computed in O(log n)
time. The final search for the shortest path is done in a graph with O(h2) nodes
and edges. Therefore, h does not influence the linear factor n.

6.2 Visibility Graph

The idea of the algorithm in [BHKM04] to compute the visibility graph of points
within a polygon with holes is to preprocess Q, so that it is divided into O(h)
simple polygons. The visibility graph of the points inside these O(h) polygons
can then be computed using the algorithm of the previous chapter. It remains
to compute the visibility edges across boundaries of the simple polygons.

Preprocessing

The preprocessing of the visibility algorithm is the same as in the shortest
path algorithm. We start by triangulating the polygon Q, which by [BC94] can
be done in O(n + h log1+ǫ h) time. Let T be the dual graph of the triangulation
where nodes are faces of the triangulation and edges represent adjacent faces.
Then the nodes of T have degree 1, 2 or 3. The graph is now modified in the
following way.

Delete every degree 1 node of T and its incident edge. Assume that h ≥ 2.
Then there must be some node of degree 3. Since there must always be an even
number of odd-degree vertices, there must be at least two nodes of degree 3.
Now, replace every node of degree 2 and its incident edges with a single edge.
In the resulting graph G, all nodes have degree 3, and multi edges may occur.
It is obvious that the graph has h faces—one for each hole of the polygon.
Euler’s formula then tells us that there are O(h) nodes and edges. Each node
of G corresponds to a triangle in T and is called a junction triangle (Fig. 6.1).
Removal of the junction triangles from Q results in O(h) simple polygons called
corridors . The border line between a junction triangle and a corridor is called a
door . The process of deleting all degree 1 nodes and merging all degree 2 nodes
can be done in O(n) time by scanning through the nodes.
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Figure 6.1: Holes (white), Junction triangles (dark) and corridors (light)

Algorithm RayAssociation(Sites P )
for each site s in P do

for each door d of Q do
i← interval of d visible from s
if i is not empty then

m← line in the dual plane corresponding to lines from s through i
insert m into d’s list of lines

return

Figure 6.2: The ray association algorithm for polygons with holes

Computing Visibility Edges

After the triangulation step and the above process, the polygon is divided
into O(h) corridors and junction triangles. Since the computation of the visi-
bility graph of each of the corridors are completely isolated, the visibility graph
of the O(h) corridors of Q can be computed in

O





O(h)
∑

i=1

(ni + mi log mi log mini + ki)



 = O(n + m log m logmn + k)

time, since
∑O(h)

i=1 mi = m. Thus, the visibility graph of the corridors can be
computed in O(n+m log m log mn+h log1+ǫ h+k) time, where h is the number
of holes in Q and ǫ is small.

Visibility edges crossing doors still need to be computed. As for the sim-
ple polygon case, rays are associated with doors of Q, and visibility edges are
computed for each door.

As in the simple polygon case, we iterate through all sites s in P (Fig. 6.2).
Since, potentially, all doors of Q can be seen from s, we have to iterate through
all O(h) doors. Each visibility query in the O(m+n) sized factor graph is done
in O(log mn) time. Hence, the running time of the ray association algorithm
is O(hm log mn).

Similarly, the algorithm to compute the visibility edges looks a lot like the
one for simple polygons. All O(h) doors of Q are iterated (Fig. 6.3), and
the intersection points of the lines associated with a door d are computed
in O(m log m + kd) time. Summing up results in an O(hm log m + k) total
running time.
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Algorithm Visibility(Polygon Q)
for each door d of Q do

I ← intersection points of all lines associated with d
for each point p in I do

(l, m)← lines creating the intersection point p
(a, b)← vertex origins of the ray intervals l∗ and m∗

create visibility edge (a, b)
return

Figure 6.3: The visibility algorithm for polygons with holes

Theorem 6.2.1 The visibility graph V GQ(P ) of m sites P within a non-simple
polygon Q having n vertices and h holes can be computed in

O(n + m(h log mn + log m log mn) + k)

time, where k is the number of edges of V GQ(P ).

Proof: The preprocessing of Q takes O(n + h log1+ǫ h) time. Computing the
visibility edges of all corridors takes O(n + m log m logmn + k1) time, where k1

is the number of visibility edges that do not cross doors. The association of rays
to the doors takes O(hm log mn) time. Finally, the visibility edges across doors
can be found in O(hm log m + k2) time, where k2 is the number of visibility
edges crossing doors. The number of output edges is then k = k1 + k2. 2

Notice that this algorithm uses the same amount of space as the algorithm for
the simple polygon. The computation of the visibility graphs of all corridors take
up O(m + n) space. Since the ray association and visibility edge computation
of the doors between corridors does not take up more space, the total amount
of space is O(m + n).

Note that the visibility graph problem almost becomes harder by a fac-
tor of O(h) when the polygon contains holes, contrary to the addition
of O(h log1+ǫ h) and O(h2 log n) for the triangulation and shortest path prob-
lems, respectively.



Chapter 7

Range Restriction

Another special case of the visibility problem is to compute the range-restricted
visibility graph V GQ(P ) of P within the simple polygon Q. In this scenario, each
site s has a restricted range of sight ds > 0, such that s only can see the site t
if st ⊆ Q and |st| ≤ ds (Fig. 7.1). Since V GQ(P ) can be computed as a range-
restricted visibility graph where ds = ∞ for all sites s, V GQ(P ) ⊆ V GQ(P ).
Since it might be that ds 6= dt for two sites s and t, V GQ(P ) is a directed graph.

The visibility algorithm uses range queries to compute visibility edges. Let s
be a site in Q with a range of sight ds, and let σs be the part of a diago-
nal visible from s. Then s can only see sites inside the sector through σs of
range ds (Fig. 7.1). A sector is the intersection between two half-planes and a
disc.

The preprocessing of the polygon for this algorithm is the same as for the
normal visibility algorithm described in Chapter 2-4, i.e. computation of the
trapezoidal map, the point location structure, the balanced decomposition, the
factor graph and the query structure.

Like the normal visibility algorithm, this algorithm is based on the divide-
and-conquer paradigm. Visibility edges are computed for each sub-polygon of
the balanced decomposition S. Before the visibility edges are computed, we
must compute for each site s of a sub-polygon, which interval of a diagonal is
visible from s. Like before, the interval is computed by two queries to determine
the end points of the interval. Thus, it takes O(m log m log n) time to compute
intervals for the m points in each of the O(log m) levels of the balanced decom-
position. Every interval is inserted into a segment tree [BKOS98] of the diagonal
used to efficiently report the intervals containing a given query point. Segment

σs

dss

Figure 7.1: The sector range of a site s through σs
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trees are described in the first section of this chapter.
In the second section, I make essential use of a result on multi-level data

structures by Agarwal and Matoušek without proof. In the last section, the
computation of the visibility graph is described.

7.1 Segment Trees

Let I = {[x1, x
′
1], . . . , [xm, x′

m]} be a set of m intervals, and let p1, . . . , pk be the
sorted list of distinct interval endpoints. Then these interval endpoints induce
a partitioning of the real line. The intervals in this partitioning are called
elementary intervals:

(−∞, p1), [p1, p1], (p1, p2), . . . , (pk−1, pk), [pk, pk], (pk,∞) .

Points are treated as intervals, because the answer to a query of an endpoint is
different from the answer to a query of a point between two endpoints.

A segment tree is a balanced binary tree T . The leaves of T are the sorted
elementary intervals, and the elementary interval corresponding to leaf µ is
denoted Int(µ). The internal nodes of T stores intervals that are the union
of elementary intervals. The interval Int(v) of an internal node v is the union
of the elementary intervals of leaves in the subtree rooted at v. Finally, a
node v contains the canonical subset I(v) consisting of intervals [x, x′] ∈ I such
that Int(v) ⊆ [x, x′] and Int(parent(v)) ( [x, x′].

Intervals of I are stored in the nodes of T instead of the leaves, thereby
saving space. Otherwise the amount of space could become quadratic. This is
the basic principle of segment trees.

Theorem 7.1.1 A segment tree on a set of m intervals uses O(m log m) space.

Proof: Let v1, v2, v3 be nodes of the same depth of the segment tree T , such that
they are numbered from left to right. Assume that [x, x′] is stored at v1 and v3.
Then [x, x′] spans the interval from the left endpoint of Int(v1) to the right
endpoint of Int(v3). Because v2 lies between v1 and v3, Int(parent(v2)) ⊂ [x, x′]
and [x, x′] will not be stored at v2.

Hence, an interval is at most stored in two nodes of each level of T . This
means that O(m log m) space is used, since the height of T is O(log m). 2

Theorem 7.1.2 Using a segment tree, the intervals containing a query point
can be reported in O(log m + k) time, where m is the number of intervals in the
segment tree and k is the number of reported intervals.

Proof: The QuerySegmentTree algorithm (Fig. 7.2) is called with v = root(T )
to report all intervals containing the query point qx. The functions lc(v)
and rc(v) returns the left and right child of v, respectively. The invariant of
the algorithm is that qx ∈ Int(v) and that intervals of ancestors of v have been
reported.

In the first call of the algorithm, the invariant is satisfied since qx is
in Int(root(T )) and root(T ) has no ancestors. In subsequent calls qx ∈ Int(v),
since this is the requirement of the branch in the algorithm. Finally, all intervals
of the parent of v have been reported, since this is done in the first line of the
algorithm before branching.
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Algorithm QuerySegmentTree(Node v, QueryPoint qx)
report all the intervals in I(v)
if v is not a leaf then

if qx ∈ Int(lc(v)) then
QuerySegmentTree(lc(v), qx)

else
QuerySegmentTree(rc(v), qx)

return

Figure 7.2: The query algorithm of the segment tree

Algorithm InsertSegmentTree(Node v, Interval [x, x′])
if Int(v) ⊆ [x, x′] then

store [x, x′] at v
else

if Int(lc(v)) ∩ [x, x′] 6= ∅ then
InsertSegmentTree(lc(v), [x, x′])

if Int(rc(v)) ∩ [x, x′] 6= ∅ then
InsertSegmentTree(rc(v), [x, x′])

return

Figure 7.3: The insertion algorithm of the segment tree

Thus, when a leaf is encountered, all nodes (ancestors) with intervals con-
taining qx have been visited, and the intervals have been reported only once,
since an interval is only associated with one node along a path from the root to
a leaf.

The running time is O(log m + k), since the height of T is O(log m), and k
intervals are reported. 2

Theorem 7.1.3 A segment tree of m intervals can be built in O(m log m) time.

Proof: As mentioned before, the endpoints of the intervals must be sorted. This
takes O(m log m) time. The balanced binary search tree is then constructed
bottom-up on the sorted elementary intervals, which takes O(m) time. In order
to compute the canonical subsets, each interval is inserted one by one by calling
the InsertSegmentTree algorithm (Fig. 7.3) with v = root.

As we saw in the proof of Theorem 7.1.1, an interval is stored at most twice
in each level of T . In addition, only one node of each level has an interval
containing x and one node has an interval containing x′. Hence, at most 4
nodes are visited at each level, and the total insertion time is O(m log m) for
the m intervals. 2

7.2 Multi-Level Data Structures

Given a set of points in the plane, we want to report the points lying inside
a sector. This can be done by two half-plane queries and a disc query in a
multi-level data structure described by Agarwal and Matoušek [AM94].
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s
d

t

σ
′ σ

Figure 7.4: The canonical segment σ in which o = st ∩ d lies

Theorem 7.2.1 Let P be a set of m points in the plane. For any ǫ > 0, there
is a multi-level data structure for P , such that the points from P lying inside a
query sector can be reported in O(m1/2+ǫ + k) time, where k is the number of
reported points.

Furthermore, the time to preprocess the point set P to answer sector range
queries is O(m log m).

7.3 Computing the Visibility Edges

Like mentioned in the beginning of this chapter, visibility intervals of each site
of Rd is inserted into the segment tree of the diagonal d. By Theorem 7.1.3, this
takes O(m log m) time for the m points. This is done for each of the O(log m)
levels of the balanced decomposition S, resulting in an O(m log2 m) running
time.

The visibility edges will now be computed for each level of S. Suppose that
we are looking at the diagonal d. We can assume that d is vertical, since we can
rotate Q to achieve this. Let Pl (resp. Pr) be the sites of P to the left (resp.
right) of d. Insert all of the m segments of visibility into the segment tree T of d.
At each node v of T we divide I(v) into Sl

v and Sr
v so that Sl

v (resp. Sr
v) includes

all of the segments stored in v that are associated with sites in Pl (resp. Pr).
Assume that s and t are sites on each side of the diagonal d. Let σs and σt

be visibility intervals of s and t, respectively, and let σ ⊆ σs and σ′ ⊆ σt be the
canonical segments in which o = st ∩ d lies (Fig. 7.4).

Lemma 7.3.1 Let s ∈ Pl and t ∈ Pr. Then s and t see each other through o if
and only if t lies in the sector from s through σ and s lies in the sector from t
through σ′.

Proof: First, assume that s and t see each other through o. The seg-
ment σs (resp. σt) is stored in O(log m) nodes of T , and the union of the
canonical segment corresponding to these nodes is σs (resp. σt). Exactly one of
these canonical segments contains o. Let this be σ (resp. σ′). Then t (resp. s)
lies in the sector from s (resp. t) through σ.

Suppose now that the segment σ (resp. σ′) is a canonical segment of the
segment σs (resp. σt), and that t (resp. s) lies in the sector from s (resp. t).
Then s and t see each other through a point o ∈ σ. 2
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Algorithm Visibility(FactorGraph S∗)
for each diagonal d of S∗ do

Td ← segment tree for the visible parts of the sites in Rd

for each node v of Td do
preprocess the subset of Pr corresponding to Sr

v

for each segment σi ∈ Sl
v do

perform a range query with the sector from si through σi

report sites from the output of the query to be visible from si

preprocess the subset of Pl corresponding to Sl
v

for each segment σi ∈ Sr
v do

query with the sector sector from si through σi

report sites from the output of the query to be visible from si

return

Figure 7.5: The visibility algorithm of sites with restricted sight

Thus by Lemma 7.3.1, to find all visibility edges, a sector range query must
be performed for each diagonal d of Q and each canonical segment of the segment
tree of d (Fig. 7.5).

Theorem 7.3.2 Let Q be a simple polygon with n vertices, and let P be a set
of m points in Q with associated ranges of sight. Then the range-restricted
visibility graph V GQ(P ) is constructed in

O(n + m logm(m1/2 log m + log mn) + k)

time using O(n + m log m) space.

Proof: By Theorem 2.1.1, 2.2.5 and 3.2.1, the preprocessing steps take
time O(n + m log mn).

Each level of the factor graph S∗ has O(m) points. Thus, computing the
visible parts of the diagonals take O(m log m log mn) time.

By Theorem 7.1.1, each level of S has O(m log m) nodes of a segment tree.
Each of these nodes v has O(log m) segments in its canonical subset I(v). Since,
by Theorem 7.2.1, a sector range query takes O(m1/2) time for each segment,
the total running time is O(n + m log m(m1/2 log m + log mn) + k).

By Theorem 7.1.1, the segment trees take up O(m log m) space. Since the
point location structure uses O(m + n) space, the total amount of space is
then O(n + m log m). 2

It turns out that a segment tree with m intervals can be implemented us-
ing only O(m) space. Thus, the space complexity of V GQ(P ) can be reduced
to O(m + n).
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Chapter 8

Invisibility Graph

Until now, we have only considered the visibility graph. Since the algorithm to
compute this is output sensitive, the running time of the algorithm for dense
graphs will be dominated by k, the number of visibility edges.

Hence, it will sometimes be faster to compute the complementary graph, the
invisibility graph. The algorithm to compute this must of course also be output
sensitive.

The algorithm of [BHKM04] uses sector range searching and is presented
briefly in the first section of this chapter. In the second section, an improved
algorithm using half-plane range queries is presented.

8.1 Sector Range Algorithm

In the previous algorithm of range-restricted visibility, a sector range query was
answered for each site s in each level of the balanced decomposition. The sector
range was a combination of two half-plane queries and a circle query. If the
sector range query is replaced by the complement of the two half-plane queries
and no circle query, and the search space is a subset of sites on the other side
of the diagonal, all reported sites are not visible from s.

Thus, as observed in [BHKM04], the idea of the algorithm to compute the
range-restricted visibility graph can be used to compute the invisibility graph.
The time complexity of the algorithm will then be the same as for the range-
restricted algorithm.

Theorem 8.1.1 Let Q be a simple polygon with n vertices, and let P be a set
of m points in the polygon Q. Then the invisibility graph can be constructed
in time O(n + m log m(m1/2 log m + log mn) + k) using O(n + m log m) space,
where k is the number of invisible pairs of sites.

Proof: Even though sector ranges have changed, we can still use Theorem 7.2.1
to answer sector ranges in O(m1/2) time for each segment of the canonical subset
in the segment tree of a diagonal. Thus, the total running time of the algorithm
is O(n + m log m(m1/2 log m + log mn) + k).

Since the only change of the algorithm as compared with the range-restricted
algorithm is the sector ranges, the space used is still O(n + m log m). 2
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Algorithm Invisibility(FactorGraph S∗)
for each diagonal d of S∗ do

preprocess Pr (resp. Pl) for efficient half-plane range queries
for each site s of Pl (resp. Pr) do

(u, l)← boundary lines of sight from s through d
U ← half-plane range query with u in Pr (resp. Pl)
create invisibility edges between s and all sites of U
L← half-plane range query with l in Pr (resp. Pl)
create invisibility edges between s and all sites of L

return

Figure 8.1: The invisibility algorithm

8.2 Improved algorithm

It turns out that when a sector range query is replaced by two separate half-
plane queries, the problem is easier to solve. Using half-plane range reporting
twice to determine which points lie above or below the wedge, the invisibility
graph can be computed in O(n + m log m log mn + k) time.

Let d be a diagonal of the factor graph S∗, and let Rd be the sub-polygon
that is split by d in the decomposition process. Preprocess the sites Pr ⊆ Rd to
the right of d for efficient half-plane range reporting. This takes O(md log md)
time, where md is the number of sites in Rd [C85].

Now for each site s ∈ Pl ⊆ Rd to the left of d, use the query structure of
Guibas and Hershberger [GH89] to determine in O(log mn) time the boundary
lines of sight through d visible from s. By [CGL85], half-plane range queries
for the two boundary lines can be answered in O(log md + k) time to report k
invisible pairs of sites between s and sites in Pr.

Now preprocess Pl and repeat the above steps for each site in Pr. Every
invisible pair of sites (s, t) with d as the lowest common ancestor of s and t
in S∗ has now been computed. Repeat all of the above for each diagonal d
of S∗ (Fig. 8.1).

See Fig. 8.2 for an example of two half-plane range queries through a site s.
The upper half-plane query detects that s is invisible to a, while the lower half-
plane query detects that s is invisible to b. Notice that even though c is invisible
to s, it is not detected in this step of the algorithm. However, it will be detected
when s is one of the sites being preprocessed and half-plane queries are answered
from c.

Theorem 8.2.1 Let Q be a simple polygon with n vertices, and let P be a set
of m points in Q with associated ranges of sights. Then the invisibility graph is
constructed in O(n + m log m log mn + k) time using O(n + m) space.

Proof: If st∩d = ∅ then the invisibility between s and t will be discovered from
both s and t, since both sites lie in the respective half-planes. If st∩ d 6= ∅ then
let o = st ∩ d and let d be the lowest common ancestor of s and t. Then the
invisibility of s and t will be reported from the site that can not see o. Assume
that s can not see o. Then t will lie in one of the half-plane queries answered
at s.
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c

s

b

a

Figure 8.2: An example of two half-plane range queries from the site s

Thus, invisibility will be reported either once or twice. The time complexity
of the above algorithm is then

O

(

∑

d∈S∗

(md(log md + log mn)) + k

)

= O
(

m log m log mn + k
)

.

since
∑

d∈D md is O(m) where D is the set of all diagonals of a given depth.
The space used for the point location structure, the factor graph and the query
structure is still O(m+n). Since the half-plane range query structure uses O(m)
space, the total amount of space used is O(m + n). 2

This result improves the running time of Theorem 8.1.1 by a factor of
roughly O(m1/2) and uses the same amount of time and space as the visibility
algorithm.
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Chapter 9

Future Work

After working with some special cases of the visibility graph problem, it would
be interesting to know if some of the running times can be improved, since none
of the described algorithms are optimal.

It seems hard to improve the main algorithm to compute the visibility graph
within a simple polygon. The only thing to reduce is the log m logmn factor
on m. Apparently, the lower bound of the running time is poly-logarithmic
in m, so it might be reduced to O(n + m log2 m + k) or O(n + m log mn + k).
It is, however, not obvious how to do this.

As noted at the end of Chapter 6, the visibility graph problem becomes
harder by almost a factor O(h) when the polygon contains h holes, contrary to
other problems. This fact suggests that it might be possible to improve this
algorithm. In that case, a different approach would probably be necessary.

Since it was possible to reduce the running time of the invisibility algo-
rithm to poly-logarithmic time, there might be a possibility of improving the
range-restricted algorithm to something similar. The approach with ray as-
sociation might not work for this algorithm, since the range-restricted visibil-
ity graph is directed. Hence, we have to somehow preprocess Pr and query
with each site in Pl and its range of sight. Then the preprocessing of md

sites takes O(md polylog mn) time and the queries can be answered in poly-
logarithmic time.

There are no known results on the 3-dimensional version of the visibility
problem, where the visibility graph of points in space within a polyhedron is
computed. It would be interesting to explore this special case, since it is widely
used in computer graphics applications. It should be noted though, that this
problem is expected to be much harder than the 2-dimensional problem.
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Appendix A

Notation

|R| the number of vertices of the sub-polygon R, 36

|Si| the number of vertices of the subdivision Si, 17

AB diagonal between A and B, 33

∆ a triangle of the triangulation, 14

d, e, f diagonal nodes in S∗, 31

Ds the principal diagonals of s, 34

depth(e) the depth of e in S or S∗, 30

F a face of S, 17

γv the priority of the node v ∈ T , 24

h the number of holes in Q, 11

h(e) the height of e in S or S∗, 31

is the part of a diagonal visible from the site s, 41

H(d, e) the hourglass between diagonals d and e, 33

I(v) the canonical subset of v ∈ T , 50

Int(µ) the elementary interval of the leaf µ, 50

k the number of edges in V GQ(P ), 9

l∗ the dual of the line l, 41

Ls the set of lines passing through s and a point in is, 41

L∗
s the dual of the line set, 41

m the number of sites in P , 7

µ a leaf of the segment tree T , 50
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n the number of vertices in V , 9

p, q query points associated with sites in P , 17

P the sites within Q, 7

Pl the points in Rl, 52

Pr the points in Rr, 52

Rd the sub-polygon split by the diagonal d, 30

Rl the sub-polygon of Rd to the left of the diagonal d, 36

Rr the sub-polygon of Rd to the right of the diagonal d, 36

π(A, B) the shortest path between A and B, 33

Q the polygon, 7

s, t sites in P , 9

S a subdivision of the plane, 17

Si the subdivision of level i in the point location structure, 17

Sl
v segments stored in v that are associated with points in Pl, 52

Sr
v segments stored in v that are associated with points in Pr, 52

S the balanced decomposition, 14, 23

S∗ the factor graph, 30

σ canonical segment of the segment tree T , 52

T a tree, 23, a segment tree, 50

T the trapezoidal graph, 15

U tournament tree, 24

V the vertices of Q, 9

V GQ(P ) the visibility graph of P within Q, 9



Bibliography
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2-4 tree, 27

auxiliary tree, 23

balanced decomposition, 14
basic sub-polygon, 15

canonical subset, 50
common tangents of hourglasses, 35
concatenating hourglasses, 34
convex chain, 33
corridor, 46

definition vertex, 13
depth, 12
depth of a sub-polygon, 30
derived chain, 37
diagonal, 13
door, 46
dual graph, 46

elementary interval, 50

factor graph, 23

height, 12
hourglass, 33

independent set of vertices, 19
invisibility graph, 9, 55

junction triangle, 46

neighbourhood of a site, 20

outer common tangent of chains, 35

parent of a face, 17
principal diagonal, 34
priority, 24

range-restricted visibility graph, 9
ray shooting, 10

sector, 49
see, 9
segment tree, 49
site, 9
strong node, 24
subdivision, 17

tangent, 35
trapezoidal graph, 14
trapezoidal map, 13
trivial chain, 37

visibility graph, 9
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