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Abstract - English

This thesis deals with handling large data, and is split into two parts. In the first part we
look at space efficient data structures. That is we try to handle as large as possible data
sets with the available memory. Here we first look at the (1 + ε)-approximate range mode
problem. For this problem we are given an array A, and want to construct a data structure
that supports approximate range mode queries. Such a query consists of indices i and j,
and must return an element e from A[i, j] such that the frequency of e in A[i, j] is within a
factor (1 + ε) of the most frequent element. We present a (1 + ε)-approximate range mode
structure using O(n

ε ) space, which supports queries in O(log 1
ε ) time.

Next we look at implicit data structures. An implicit structure consists of indivisible
elements stored in an array, where any additional information must be encoded in the order
of the elements. We consider two distinct models: In the weak implicit model we are allowed
to store O(1) words of information between operations, while in the strong implicit model
only the size n of the array may be stored. In the strong implicit model we construct a
dictionary with the working set property supporting insert(e) and delete(e) in O(log n) time,
and find(e) in O(log `) time, where ` is the number of distinct elements searched for since e
was last searched for. We construct a static dictionary with the finger search property. This
structure supports find(e), predecessor(e) and successor(e) in time O(log d(e, f)) and change-
finger(e) in time O(nε) for any ε > 0. Here change-finger(e) sets the current finger f to be
the element e and d(e, f) is the rank distance between the current finger f and e. We show
that under some constraints, this structure is optimal in the strict implicit model, while
in the weak model exponential search on a sorted array would have the same performance
except change-finger(e) would take only O(log n) time. Also in the strict implicit model,
we construct a dynamic finger search dictionary achieving the same bounds as the static
version mentioned above.

In the second part of this thesis we look at I/O algorithms, where we have given up
on the idea of fitting all data into memory, and instead try to limit the number of disk
accesses performed. We look at practically efficient terrain algorithms. First we construct
an algorithm that, given a raster of size

√
N ×

√
N , can construct all

√
N down scalings in

O(scan(N)) I/Os in the cache oblivious model. The algorithm is shown to be efficient in
practice.

Secondly we construct an algorithm that can simplify a planar decomposition, such as a

contour map or a watershed map. Such a planar decomposition forms a planar graph with

nodes and line segments between the nodes. This graph separates the different faces of the

decomposition. The simplification consists of removing nodes of degree two. It maintains

several key properties: first the input and output decompositions are homotopic, secondly

any segment in the input is at most a distance εxy away from the segment that replaces it in

the output. For the special case of contours we also make a similar guarantee in the z-axis.

The algorithm uses O(sort(N)) I/Os under some realistic assumptions, and is shown to be

efficient in practice.
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Abstract - Danish

Denne afhandling omhandler h̊andtering af store datamængder, og best̊ar af to dele. Den
første del handler om pladseffektive datastrukturer. Her ser vi første p̊a det (1 + ε)-approks-
imative intervaltypetalsproblem. I dette problem er vi givet et array A, og skal konstruere
en datastruktur, som understøtter approksimative intervaltypetalsforespørgsler. En s̊adan
forespørgsel best̊ar af indekser i og j, og skal returnere et element e fra A[i, j], som har
en hyppighed, der er højest en faktor (1 + ε) fra det mest hyppige element. Vi præsen-
terer en (1 + ε)-approksimativ intervaltypetalsdatastruktur der bruger O(n

ε ) plads, og som
understøtter forespørgsler i O(log 1

ε ) tid.
Derefter ser vi p̊a implisite datastruktuere. En implicit datastruktur best̊ar af udelelige

elementer, som er gemt i et array, hvor alt yderligere information skal kodes i rækkefølgen af
elementerne. Vi studere to forskellige modeller: I den svage implicite model er det tilladt at
vi gemmer O(1) ord af information mellem operationer, hvorimod man i den stærke implicite
model kun m̊a gemme størrelsen af arrayet n. I den stærke implicite model konstruerer vi en
ordbog med arbejdssæts egenskaben, som understøtter insert(e) og delete(e) i O(log n) tid,
og find(e) i O(log `) tid, hvor ` antallet af unikke elementer, der er søgt efter siden e sidst blev
søgt efter. Vi konstruerer en statisk ordbog med fingersøgnings egenskaben. Denne struktur
understytter find(e), predecessor(e) og successor(e) i tid O(log d(e, f)) og change-finger(e) i
tid O(nε) for et vilk̊arligt ε > 0. Her flytter change-finger(e) den nuværende finger f til
elementet e, og d(e, f) er rangafstanden mellem den nuværende finger f og e. Vi viser
at denne struktur under visse betingelser er optimal i den stærke implicitte model, mens
eksponentiel søgning i et sorteret array i den svage model vil have den samme udførselstid,
undtagen for change-finger(e) som kun vil tage O(log n) tid. I den stærke implicitte model
konstruerer vi ogs̊a en dynamisk fingersøgnings ordbog, der opn̊ar de samme udførselstider
som den statiske struktur.

I den anden del af denne afhandling ser vi p̊a I/O algoritmer, her opgiver vi at f̊a alt data
til a være in rammen, og prøver istedet at begrænse antallet tilgange til disken. Specifikt
ser vi p̊a praktisk effektive terrænalgoritmer. Først konstruerer vi en algoritme, som givet
en raster af størrelse

√
N ×

√
N , konstruerer alle

√
N nedskaleringer i O(scan(N)) I/Oer i

den cache uvidende model. Denne algoritme vises at være effektiv i praksis.

Derefter konstruerer vi en algoritme, der kan simplificere planare opdelinger, som f.eks.

kurvekort eller vandoplandskort. En s̊adan planar opdeling danner en planar graf med

knuder og linjesegmenter mellem knuderne. Denne graf deler fladerne i opdelingen. Simpli-

fikationen best̊ar i at fjerne knuder med grad to, hvor flere vigtige egenskaber overholdes.

Input og output opdelingerne vil være homotopiske og ethvert segment i inputtet har højst

afstand εxy til det segment, der erstatter det i outputtet. For det specielle tilfælde af

kurvekort giver vi ogs̊a en tilsvarende garanti for z-aksen. Algoritmen udfører O(sort(N))

I/Oer under visse realistiske antagelser, og vi viser at den er effektiv i praksis.
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Preface

I started my PhD thinking about looking into cache-oblivious data structures, and
while I did produce some cache-oblivious structures along the way, this was more
a by-product than a deliberate act. Instead, my work during my PhD has been in
two main areas, namely that of space efficient data structures and practical terrain
algorithms. Here the space efficient data structures seek to explore the theoretical
limits of space usage, and are not useful in practice as is. The terrain algorithms on
the other hand are of immediate use, while still theoretically sound.

This thesis reflects this split focus. Chapter 1 is comprised of a summary of my
work. It contains descriptions of the various problems I have worked on along with
previous work. It contains a rough description of the results of my co-authors and
me, as well as information about recent developments in the fields. Chapters 2 and 3
contain some of the work on space efficient data structures, while chapters 4 and 5
contain some of the work on practical, efficient terrain algorithms. Each of these
chapters are based on papers published during my PhD, and include text written
by co-authors, as detailed below.

Range Mode Chapter 2 is based on “Cell Probe Lower Bounds and Approxima-
tions for Range Mode” [39], which is co-authored with Mark Greve, Allan Grønlund
Jørgensen and Kasper Dalgaard Larsen. The paper was presented at ICALP 2010
by Kasper. Here I contributed mainly to the 3- and (1 + ε)-approximations.

Implicit Dictonaries Chapter 3 is based on “A Cache-Oblivious Implicit Dictio-
nary with the Working Set Property” [19], which is co-authored with Gerth Stølting
Brodal and Casper Kejlberg-Rasmussen. The paper was presented at ISAAC 2010
by me.

It is also based on “Finger Search in the Implicit Model” [20], which is co-
authored with Gerth Stølting Brodal and Jesper Sindahl Nielsen. The paper was
presented at ISAAC 2012 by Jesper.

Computing Multiresolution Rasters Chapter 4 is based on “An Optimal and
Practical Cache-Oblivious Algorithm for Computing Multiresolution Rasters” [7],
which is co-authored with Lars Arge, Gerth Stølting Brodal and Constantinos
Tsirogiannis. The paper was presented at ESA 2013 by Constantinos.

Decomposition Simplification Chapter 5 is based on “Simplifying Massive Pla-
nar Subdivisions” [11] which is co-authored with Lars Arge and Jungwoo Yang. The
paper was presented at ALENEX 2014 by Jungwoo. This work in an improvement
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of “Simplifying Massive Contour Maps” [8], which is co-authored with Lars Arge,
Lasse Deleuran, Thomas Mølhave and Morten Revsbæk. The paper was presented
at ESA 2012 by me.

Other Work During my PhD, I also did other work not included in this thesis.
Very early on in my PhD, I developed a pipelining framework for TPIE [1]. This has
had a number of rewrites and is now very useful, for instance all the experimental
results in this thesis are based on this framework. We are currently in the process
of writing a paper detailing its construction.

I spend quite some time trying to use TPIE pipelining to construct an external
algorithm for model checking with visiting a Czech PhD student Martin Šmérek,
however this turned out to be infeasible. The problems were mainly that the pruning
needed to make the problem handleable would occur later in an external algorithm
than an internal one.

As already mentioned I co-authored the paper “Simplifying Massive Contour
Maps” [8], on which “Simplifying Massive Planar Subdivisions” [11] is partly based.
The former paper is not part of this thesis, since it is superseded by the latter.

I have co-authored the paper “Strictly Implicit Priority Queues” together with
Gerth Stølting Brodal and Jesper Sindahl Nielsen. The paper is not part of this
thesis and has yet to be published. In the paper we construct two priority queues
in the strict implicit model, where between operations only an array of elements
and the size n of the structure are stored. The first structure supports insert and
delete-min in O(1) and O(log n) time amortised respectively, however the delete-min
operation performs only O(1) element moves. The second gives worst-case O(1)
time insert and O(log n) time delete-min. Both structures require that the elements
in the structure are distinct. What we would really like is a priority queue with O(1)
time insert and O(log n) time delete-min which does O(1) moves, and which does not
require distinct elements, however this seems very hard.
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1

Introduction

This thesis is within the field of theoretical computer science. In this field we try
to model various aspects of computers and computations using math. In this thesis
we look at various computation problems whose solutions can be decomposed into
data structures and algorithms.

An algorithm is a recipe for solving a given problem. A problem is some input
and the solution is some output. One common problem could be sorting, where the
input consists of a list of comparable items and the output is the same list of items
now ordered from lowest to highest according to some total ordering. We typically
say that the input is of size n. Among the important properties we care about for
an algorithm are 1) Correctness: The output should look like we want. 2) Running
time: How long time does it take for the algorithm to compute the solution on an
input of size n. 3) Space usage: How much memory do we use while computing the
solution.

An important component in most algorithms (and also in their own right) are
data structures. Here we wish to store data in such a way that we can quickly
answer questions about the data, and update the structure with new data. A well
known data structure is the set. Here we can insert an element e into the set, or
remove an element e. We can also ask if the element is already in the set. Typically
we say that the number of elements in the data structure is n. Again we want each
operation to be correct and fast. We also care about the amount of space used both
between and during operations.

As long as there has been computers, there have been data sets just a bit to
large to be handled in the memory of the computers. As memory capacity has
grown with Moore’s law (which predicts that the maximal transistor count of an
integrated circuit will roughly double every two years), the size of the data we want
to process has grown as well. This is sometimes in jest called Parkinson’s law “work
expands so as to fill the time available for its completion” or for computation “data
expands to fill the space available for storage”. In a sense it is natural that we want
to process as much data as possible. This thesis deals with two different ways one
can push the boundary on how much data can be processed. In the first part we look
at space efficient data structures, where we try to decrease the amount of memory
(RAM) needed in order to store a given amount of data, such that larger data sets
may be processed. In the second part we look at external memory algorithms, where
we store data on disk, instead of solely in memory, in such a way as to minimize
the number of times we need to access the disk. Before going into details we will
(in Section 1.1) describe the models of computations used in this thesis. Next in
Section 1.2, and 1.3 we introduce various results in space efficient data structures.

13



14 CHAPTER 1. INTRODUCTION

Finally in Section 1.4, and 1.5 we introduce results within the area of external
memory terrain algorithms.

1.1 Models of computation

When analysing the work done by an algorithm in theoretical computer science it is
important to describe the model of computation used during the analysis. That is a
description of what a computation device can do and what resources are considered
in the analysis. Without a precise definition of the model it is very hard to argue
that you considered everything in your analysis. To make comparing algorithms by
different authors easier we often analyse our algorithms in a predefined model also
used by others. The different models used in this thesis are defined below.

1.1.1 Word RAM

The arguably most used model for upper bounds is the “word random access memory
model” (often just called the RAM). In this model we model only the memory and
the CPU of the computer. The memory of a computer consists of an array of words
each w bits long. Arbitrary memory cells can be read at any time using an index
(also know as a pointer). A data structure with n elements will use some S(n) words
of space, we assume that log(S(n)) ≤ w (here and throughout the rest of the thesis
log will denote the binary logarithm), such that a single word can encode a pointer
to any other word. The CPU can perform operations on the words, the operations
addition, subtraction, bitwise xor, bitwise and, bitwise or and bit shifts are always
allowed. Most authors also allow multiplication and division, and some even allow
all AC0 operations. All operations are assumed to be unit cost such that the time of
an algorithm is linear in the number of operations performed. This model is a fairly
good approximation of a computer, the set of operations allowed matches very well
with what a CPU supplies, however the model does not take the cache hierarchy
into account, for instance both merge-sort and quick-sort take O(n log n) time in
this model, while quick-sort preforms significantly less cache faults [49].

1.1.2 Cell probe

As stated above the RAM model is good for analysing upper bound behaviour of
algorithms since the set of CPU operations allowed matches fairly well with what
a modern CPU can do. Proving lower bounds in the RAM model however is fairly
hard. First there is not full agreement on what operations are allowed, and secondly
even if there where, the set of operations is so large that arguing for even the most
trivial problem is next to impossible. There are basically two ways to go about
this. One could restrict the operations allowed, for instance by making elements
indivisible and only allowing group operations, as done in the group model. Here it
is often somewhat easier to argue about what an algorithm can do [36, 50], however
these kinds of lower bounds do not apply to the general RAM, and we will not talk
more about them in this thesis. Another way to go about this is to extend the set of
operations allowed by the CPU. While this of course does not make it easier to prove
lower bounds, it makes it easier to focus on what makes a given problem hard. In the
cell probe model of Yao [70], this is exactly what is done. Here the memory is again
divided into cells of w bits each, and the complexity of an algorithm is determined
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by the number of these cells the algorithm accesses. That is, all operations done in
the CPU are free, and we allow the CPU to do any kind of operation on its registers,
even solving NP-hard or unsolvable problems. It is clear that a lower bound in this
model also provides a lower bound in the RAM model, since any operation that
touches a memory cell in the RAM model has cost at least one.

1.1.3 Implicit models

When designing data structures in the RAM model, an important parameter is the
amount of space S(n) used as a function of the number of elements the data structure
contains. To minimize this there are two ways to go. In the succinct models, the
distribution of the input elements is taken into account, and data structures can be
created that require the minimal number of bits plus some lower order term [43,
44, 28, 59]. While this line of research is interesting and worthwhile we will in
this thesis explore another path. We will consider the elements stored in the data
structure as indivisible black-box elements that can only be compared or swapped,
each occupying exactly one word of memory. It is clear that the minimal amount
of words needed to store such a data structure is n, and in the implicit model this
is exactly what we aim for. More precisely a data structure of n elements in the
implicit model is an array with exactly n entries. Computation is done in a CPU
with a constant number of registers with a word size of Θ(log n) bits. Similar to the
RAM model all operations on registers are unit cost. A register can either contain
an integer, in which case we allow exactly the same operations as in the RAM model,
or an element. Elements can be compared, read from the array, or written back to
the array and nothing else.

There is no real agreement about how much memory may be used between
operations on the structure, we therefor define two different implicit models. In
the weak implicit model O(1) extra words of information may be stored between
operations words [33, 34, 54]. In the strong implicit model no additional space
is allowed, only the number of elements n is assumed to be implicitly maintained
[15, 35].

1.1.4 Strict lower bound model

Similarly to the RAM model, proving lower bounds in the implicit model is not easy,
since the complexity of operations allowed on the integer registers is too high. Given
that the strict implicit model is a restriction of the weak implicit model, which is
a restriction of the RAM model, which is a restriction of the cell probe model, we
could just use the cell probe model to prove lower bounds. However as we will see in
Chapter 3 some problems are harder in the strict implicit model than in the RAM
model. We therefore need another model to prove lower bounds. The model we
propose is the following. We will count only the array accesses (cell probes) and
the element comparisons. To make it simpler for ourselves, we say that in one time
step an algorithm is allowed to make at most one array access and one comparison.
We do not bound the number of registers, so any two already loaded elements can
be compared and any already loaded element may be written to the array in any
given step. Since our model is used to prove lower bounds on the strict implicit
model, we will make the requirement that the only thing stored in the registers of
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the CPU when an algorithm (operation on the data structure) starts, is the number
of element n and any possible arguments to the algorithm.

Consider a static data structure of size n, and an operation on this structure that
takes only elements or keys as arguments (for instance find(k) on a dictionary). Then
the first cell accessed during the operation must always be the same, independent of
the content of the data structure. This is true since the content of any integer register
is always the same initially (we do not allow randomization). Now after the first
operation is performed an element has been loaded, and it might have been compared
to some of the arguments. However the result of this comparison yields only a single
bit of information, so for the next step at most one of two different possible cells
may be probed (depending on the outcome of the comparison). Extending this we
prove in Lemma 3.1 that for any algorithm A on a strict implicit data structure of
size n that runs in time at most τ , whose arguments are keys or elements from the
structure, there exists a set XA,n of at most O(2τ ) array entries, such that A touches
only array entries from XA,n, no matter the arguments to A or the content of the
data structure.

1.1.5 External memory

As said the RAM-model describes well the time complexity of algorithms on modern
computation devices. However there are a number of differences between an actual
computer and a RAM-model machine that causes some analysis to be misaligned
with reality. The most pronounced is caching. In the RAM-model any operation is
unit cost. However the real memory of a computer is divided into several caches,
and performing operations on elements that reside in a cache closer to the CPU
than one further away can be orders of magnitude faster.

For the machine apex1, we have experimentally found the cache hierarchy to
have the following properties:
Name Size Access time Block size Throughput

Register 3 KiB2 0.29 ns 8 B 26 GiB/s
L1 32 KiB2 0.57 ns 64 B 13 GiB/s
L2 256 KiB2 1.22 ns 64 B 13 GiB/s
L3 8192 KiB 3.75 ns 64 B 10 GiB/s
RAM 48 GiB 9.16 ns 4 KiB 8 GiB/s
Disk 21 TiB 9.4 ms 2 MiB 447 MiB/s

An important thing to notice here is that as we move away from the CPU the
access time becomes drastically worse while the throughput does not drop nearly as
much. This high throughput is obtained by transferring large blocks at the same
time, for instance in order to get the 447 MiB/s throughput for the disk we need to
transfer the data in continuous chunks of 2 Megabytes each.

This is reflectd in the I/O model (also called the External Memory Model) by
Aggarwal and Vitter [5], where we consider the computer as consisting of an external
disk of unbounded size, and an internal memory of size M . Data can be transferred
between disk and memory in chunks of size B. Each such transfer is called an I/O

1The machine used for all experiments in this thesis. It has a 3.2GHz four-core Xeon CPU
(W3565), 48GiB of memory and 20 3TiB of disks in two raids.

2The registers, L1 and L2 cache are per core, while the L3, RAM and disk are shared between
CPU cores.
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Figure 1.1: In the I/O model of computation data is transferred between the dist
(D) and the main memory (M), in blocks of size B.

operation, and we measure the efficiency of an algorithm by the number of I/O
operations it performs. See Figure 1.1.

To scan an array of N elements we need O(scan(N)) I/O operations, where
scan(N) = N/B, and to sort a set of N elements we needO(sort(N)) I/O operations,
where sort(N) = N/B logM/B N/B. The scan(N) bound is achieved by loading data
from a stream one block at a time, processing each item in the block one at a time,
and writing the resulting block to another stream. The O(sort(N)) bound can be
achieved by external merge sort. First elements are read in M at a time and sorted
internally, yielding N/M individually sorted chunks of size M . Next these chunks
are merged in a M/B way merge sort. In each merge a block of size B of each of
the M/B streams being merged is loaded in memory, so that the I/O complexity of
each merge is O(scan(K)), where K is the number of items being merged.

While the I/O model is described in terms of moves between the RAM and the
disk, the model can also be used to describe cache faults between the CPU and L1
or between any other adjacent entries in the cache hierarchy.

1.1.6 Cache Oblivious

One problem with the External Memory Model is that it only works for one cache
level at a time. While we could have different M ’s and B’s for different cache levels,
and designing the algorithm knowing these M ’s and B’s, this quickly becomes very
tedious. However if we could design an algorithm that does not know M and B
and still do an analysis in terms of M and B with good I/O performance, then the
algorithm would work well for all possible levels on all possible cache hierarchies all
at once, even for crazy machines not yet invented. This model (with some more
technical details to be satisfied) is know as the cache-oblivious model [37]. However
there is one important detail to make this work. When creating an algorithm in the
I/O model you have to carefully handle when exactly what blocks are transferred and
when blocks are dropped from the memory (we call this a caching strategy). When
you analyse your algorithm you prove that your caching strategy works. However in
the cache-oblivious model the algorithm cannot know M and B so you cannot hope
to implement a good caching strategy in terms of M and B in your algorithm. To
get around this we assume that the computer uses an optimal caching strategy for
each cache level, this can be justified by the fact that LRU is constant competitive.
Now to do the analysis we just have to invent a caching strategy that we could have
used, and prove that this strategy is good enough. If it is, then surly the optimal
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Figure 1.2: The cache levels of a normal two core computer.

strategy will be at least as good.
As in the I/O model scanning can trivially be done in O(scan(N)) I/Os, and

sorting can be done in O(sort(N)) though this is somewhat more complicated [37].
The cache oblivious model is a relatively good fit for the cache layout of a normal

computer as depicted in Figure 1.2.

1.2 Range mode

The first problem I looked at is the so called range mode problem. Given a multi-set
of elements, an obvious question to ask is which element is the most common. This
most common element is called the mode of the set. In the range mode problem
we are given an sequence of elements, say e1, . . . , en. We want to construct a data
structure, such that given two indices i ≤ j we can quickly find the mode of ei, . . . , ej .

The mode is together with the median and mean a common statistical measure.
Range mode has many useful application, for instance a sales company could have
a list of sales ordered by date, and could be interested in what the most sold item
is within a certain time span is.

A simplification we can make, is to assume that e1, . . . , en are numbers in the
range from 1 to n. We can make this simplification since we can map an arbitrary
input into this range (e.g. using hashing) before constructing our data structure.
This will take expected linear time (however we do not care much about the pre-
processing times). Once the data structure for this simplified problem answers a
range mode query we can then map the number back to the original element using
an array lookup in constant time. This approach will only give us an O(n) space
overhead.

As for most data structure problems, solutions for the range mode problem
provide a tradeoff between query-time and storage-space. Here we have two obvious
solutions at either end of the spectrum. First we could store the answer to all n2

possible queries in a giant table, and look them up in constant time. In the other
end of the spectrum we could walk trough the range, and use bucket counting to
get an O(n) time query while using linear space.

In order to improve these trivial solutions, one can observe that the mode of
ei, . . . , ej is either ei or the mode of ei+1, . . . , ej . Given an element e we can,
in O(log n) time, determine how many times it occurs in the range from i to j.
This can be done by constructing a table Te with the indices of all occurrences of e
in e1 to en in the preprocessing phase. Then when answering a query, doing a binary
search for j and i in Te, and subtracting the returned positions.

This immediately gives a solution with linear space and O(
√
n log n) query time

(see Figure 1.3). Simply divide e1, . . . , en into
√
n slabs and store the answer for
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Figure 1.3: Example of mode computation. Here the mode from 1 to 12 is computed
by first looking up the mode of the largest contained multislab 4 to 11 (in green)
which is d, and comparing its frequency with the frequency of all the remaning
elements (in blue). Here the frequency of d in the range from 1 to 12 is 4 while the
frequence of c in the same range is 6, and the mode is therefore c.

Reference Space Query Conditions

Krizanc et al. [48] O(n2 log log n/ log n) O(1)
Petersen [61] O(n2/ log n) O(1)
Petersen et al. [62] O(n2 log log n/ log2 n) O(1)

Krizanc et al. [48] O(n2−2ε) O(nε log n) 0 < ε ≤ 1
2

Petersen [61] O(n2−2ε) O(nε) 0 < ε ≤ 1
2

Krizanc et al. [47] O(n) O(
√
n log logn)

Chan et al. [26] O(n) O(
√
n/ log n)

Table 1.1: The operation time, and space overhead of important structures for the
range mode problem.

every multislab (i.e. store the answer for every query starting and ending at slab
boundaries). To answer a query i, j, find the mode of the largest contained multislab,
and compare the frequency of this element to the at most 2

√
n elements not covered

by the multislab. The element that has the largest frequency in the range from i
to j, is the mode for the range i to j.

Using these insights several data structures have been developed, and log factors
shaved off; see Table 1.1 for an overview of the main results. All these query times are
quite high, however in [26], Chan et al. presented strong evidence that a query time
significantly below

√
n, for linear space, cannot be achieved by purely combinatorial

techniques, since boolean matrix multiplication of two
√
n × √n matrices reduces

to n range mode queries in an array of size O(n).

Due to the relatively long query time for linear spaced data structures we de-
cided to look into approximations of the mode. In the c-approximate range mode
problem, a query is given indices i and j, and we must return an element with a
frequency at least 1

c times that of the mode. This problem was first considered
by Bose et al. [18]. With constant query time, they solve 2-approximate range
mode with O(n log n) space, 3-approximate range mode with O(n log log n) space,
and 4-approximate range mode with linear space. For (1 + ε)-approximate range
mode, they describe a data structure that uses O(nε ) space and answers queries in
O(log log(1+ε) n) = O(log log n+ log 1

ε ) time. In Chapter 2 we present a simple data
structure for the 3-approximate range mode with linear space, and constant query
time. We then use this to construct a structure for (1 + ε)-approximate range mode.
This structure uses O(nε ) space and answers queries in O(log 1

ε ) time. This gives a
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Figure 1.4: Range mode reduction.

linear space, constant time data structure for c-approximate range mode for every
constant c > 1.

In Chapter 2 we also give a lower bound for the range mode problem in the cell
probe model. We prove that any data structure that uses S cells and supports range
mode queries must have a query time of Ω( logn

log(Sw/n)). This means that any data
structure that uses O(n logO(1) n) words of space needs Ω(log n/ log logn) time to
answer a range mode query, assuming w = logO(1) n. Similarly, any data structure
that supports range mode queries in constant time needs n1+Ω(1) space.

The lower bound for linear space is somewhat far from the upper bounds of the
algorithms, and the conditional lower bound provided in [26], however with current
techniques for cell probe lower bounds proving a query time above log n does not
seem feasibly for any data structure problem, let alone range mode.

For the lower bound we use techniques by Pǎtraşcu and Thorup [60, 58]. Actually
our construction proves the same lower bound for queries on the form: Is there an
element with frequency at least (or precisely) k in A[i, j], where k is given at query
time? In the scenario where k is fixed for all queries it is quite easy to give a linear
space data structure with constant query time for determining whether there is an
element with frequency at least k. We will store an array X of length n, where X[i]
stores the lowest index j such that the frequency in the of the mode of A[i, j] is at
least k. The answer to a query (i, j) we just check if X[i] ≤ j.

The lower bound is achieved by reducing a communication complexity problem
know as blocked lopsided set disjointness [58] to a sequence of range mode queries.
This is done by having Bob create a range mode data structure, and Alice simulating
queries on it by sending memory requests to Bob (see Figure 1.4).

1.3 Implicit dictionaries

A problem I have spent quite a lot of time on, is the problem of creating space effi-
cient dictionaries with query dependent properties such as the working-set property
or the finger-search property.

A dictionary is a data structure, that stores elements, with associated keys. A
dictionary should support some subset of the operations listed in Table 1.2. The
first dictionary with decent performance to be discovered was the AVL tree[2], here
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Operation Description

Insert(v) Insert the element v into the dictionary.
Find(k) Find and return the element v associated with the key k.
Remove(k) Remove the element with the associated key k.
Predecessor(k) Find and return the element v that has the largest associ-

ated key that is less than k.
Successor(k) Find and return the element v that has the smallest asso-

ciated key that is greater than k.

Table 1.2: Common operations on a dictionary.

all operations described in Table 1.2 run in time O(log n) where n is the number
of elements currently in the structure. The structure uses O(n) space. Later other
more popular structures such as the red-black tree[13], achieving the same bounds
where described.

1.3.1 Access sensitive properties

One interesting dictionary is the splay-tree [65], which supports all the operations
in Table 1.2 in time O(log n) amortised. While this on the surface sounds worse
than that of a red-black tree, the space overhead of the structure is smaller since
one does not have to store any rebalancing information (like colour or subtree size).
Also the structure is easier to implement since you basically just have to implement
the splay operation.

The splay-tree also has other surprising properties. If you perform a sequence
ofm searches for keys k1, . . . , km, the total time is bounded byO(n log n+

∑m
i=1 log `i)

where `i is the minimal j such that ki−j = ki, that is the number of searches since ki
was last searched for. This property is called the working set property. The idea is
that elements you have accessed recently should be fast to access again.

Another property of the splay tree is the dynamic finger property. If we per-
form a sequence of m searches for keys k1, . . . , km, we can bound the total time
by O(n log n +

∑m−1
i=1 log d(ki, ki+1)) where d(k, k′,) is the rank-distance between k

and k′. That is if you search for something that is close to what you just searched
for it will potentially be much faster that searching for something far away. For
instance if you do a predecessor search for all elements in increasing order x times,
the time required is O(n log n+ xn) instead of the expected O(xn log n).

Yet another property of the splay tree is the static finger property, where we pick
some element f in the tree. When performing a sequence of m searches for keys
k1, . . . , km, we get a total time of O(n log n+

∑m
i=1 log d(ki, f)), where again d(k, f)

is the rank-distance between the element with key k and f .

Given a red-black tree, it is easy to construct a dictionary that achieves the
working-set property in a worst case sense such that searching for a key k takes
time O(log `) where ` is the number of distinct elements searched for since k was
last searched for. The structure, described by Iacono [42], consists of log log n red-
black trees and dequeues of double exponentially increasing size. In the i’th level we
have a red-black tree with 22i elements, and a dequeue with the same elements (see
Figure 1.5). The idea is that if you concatenate the dequeues from 0 to log log n then
the elements will appear in order of decreasing access time, such that an element
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Figure 1.5: Double exponential layout of the Iacono structure.
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Figure 1.6: Finger search for k from f . The red path is the search path, going up
to the level where the ancestors of k and f are adjacent, instead of all the way to
the lowest common ancestor.

that has been access more recently will appear before all elements accessed less
recently. When searching for an element k we will search the red-black trees in
order, until we find the element. If we assume that it was last accessed ` searches
ago, it must be in one of the first log log ` levels, so the total search time becomes
O(
∑log log `

i=0 log 22i) = O(log `). In the same time it is fairly easy to maintain the
order properties under insert, delete, and search. This is done by bumping the oldest
element from one level into the next level. All of these other operations will maintain
a worst cast time of O(log n).

In a similar way it is also quite easy to create a dictionary that has the static
finger search property for a given fixed finger f in the worst case sense. Again
construct a sequence of log log n double exponentially increasing red-black trees.
This time keeping elements closer to f in the lower levels. Here the search time
will become O(log d(k, f, )), while all other operations maintain a worst cast time
of O(log n).

Another way of achieving a worst case finger search property for a dynamic set
of fingers of constant size is to use a level linked tree. Here the nodes in the search
tree is augmented with pointers to the left and the right cousin. Assume we use a
search tree where elements are only stored in leaves, then for a finger f we maintain
a pointer to the leaf containing it. When searching for some key k we start in the
leaf containing f , and walk up looking at the left and right cousins until we find a
sub-tree containing k. This takes O(log d(k, f, )) worst case time, while the insert
and delete time can be maintained at O(log n). See Figure 1.6.
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1.3.2 Decreasing space usage

While the solutions mentioned above have nice asymptotic running time and space
usage, the constant in the space usage can in fact be quite high, and an obvious ques-
tion to ask is therefore how low can the constant in space usage get? As mentioned
in Section 1.1.3 there are two fundamental different ways of going about this. We
can assume a specific kind of elements, and provide a space efficient encoding based
on the properties of the individual elements and the distribution of the elements,
which is done in the succinct models, or we can assume that elements are black
box comparable elements, which we will do here. If an element is black box and
occupies k bits, then clearly any data structure containing n elements will occupy
at least kn bits, and this is indeed what we are going to aim for.

Much work has been going into improving the space overhead of dictionaries.
An overview of this work can be found in Table 1.3.

Structure Reference Additional Space Operation Time

AVL Tree [2] O(n) O(log n)

Munro and Suwanda [54] O(1) O(n1/3 log n)
Frederickson [35] O(1) O(nε) for ε > 0
Implicit AVL Tree [53] O(1) O(log2 n)
Implicit BTree [34] O(1) O(log2 n/ log logn)
FG Dictionary [33] O(1) O(log n)

Table 1.3: Space usage of various dictionaries.

In Chapter 3 we present dictionaries that are both space efficient and have the
working-set or finger-search properties. The main tricks in doing this is combining
the implicit dictionary of Franceschini and Grossi [33] with the dictionaries of double
exponentially increasing size of Iacono [42].

We present an implicit dictionary with the working set property. It uses no addi-
tional space, it supports Insert, Delete, Predecessor, and Successor in time O(log n),
and Find in time O(log `). Since the dictionary is based on the Franceschini-Grossi
Dictionary which is also cache oblivious efficient, the log’s can be changed to a logB
in a cache oblivious analysis of our structure. This structure uses the same bumping
strategy as in [42], however instead of keeping track of the age of elements explicitly,
we divide the elements within each level into three generations.

After the publication of [19] on which Chapter 3 is partly based, Brodal and
Kejlberg-Rasmussen [22] improved upon this result so that also the Predecessor and
Successor operations run in time O(log `).

We present an implicit dictionary with the static finger search property. It
again uses no additional space, while it supports Insert, Delete in time O(log n),
Predecessor, Successor and Find in time O(log t), where t is the rank distance between
the element returned and the current finger, and change-finger in time O(nε) for any
0 < ε ≤ 1. The change-finger operation changes the finger from its current element f
to some new element f ′.

In Lemma 3.1 we state that for any algorithm A on a strict implicit data structure
of size n that runs in time at most τ , whose arguments are keys or elements from
the structure, there exists a set XA,n of at most O(2τ ) array entries, such that A
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touches only array entries from XA,n, no matter the arguments to A or the content
of the data structure.

Now assume we want to create a static dictionary with the static finger search
property. Here in the weak model, we can just store all elements in a sorted array,
and additionally store the index of the finger element, now finger searching can
trivially be done in O(log t) time using exponential search, and the finger can easily
be changed in O(log t) time. Nevertheless we show using Lemma 3.1 that in the
strong implicit model where we are not allowed to store the index of the finger,
changing the finger must take Ω(nε) time if we want a search time of O(log t), or
indeed anything less than log n.

Lemma 3.1 gives us a general technique to prove lower bounds for data structures
in the implicit model. The technique is only useful in the strict implicit model. As
we show, it can be used to prove some polynomial lower bounds, however we have
only been able to apply it where at least one of the operations of the structure run
in time log n or below. If all operations run in O(log n) time, the lemma just implies
that all operations may touch every cell, which does not seem useful. The lemma
is based on a very simple counting technique, so its novelty can be discussed. I
have not seen similar techniques used in conjunction with the implicit model before,
however this is most likely do to the obscurity of the strict implicit model.

The above results show that much of what can be done in the weak implicit
model with O(1) registers between operations, can also be done without these O(1)
registers. While for some problems having the O(1) extra registers is a must. The
only real advantage the strong model has over the weak is composability. If you
construct a data structure using more than O(1) weak implicit data structures,
you get a data structure that is not even weakly implicit. While if you compose
any number of strong implicit structures the result will also be strongly implicit.
However this advantage does not appear in many situations.

Many data structures defined in the weak implicit model can be converted into
strong implicit structures. If all operations take at least Ω(log n) time, the conver-
sion can be done trivially. For instance given a weak implicit dictionary where all
operations take Ω(log n) time, we can construct a strong implicit dictionary that
supports the same operations within the same time bound. To do this we keep the
first C log n elements outside of the main structure, for some constant C. Between
operations on the dictionaries the O(1) words of memory can be encoded in the or-
der of these C log n elements, this data can be recovered before doing an operation,
and re-encoded after the operation, with only an additional O(log n) time overhead.
To perform a find operation, we first recover the O(1) words from the C log n. If
the element we are looking for is within the first C log n elements, we return it,
otherwise we query the main structure and return the result. Similar tricks can be
done for insert, delete, successor, and predecessor. The same transformation can also
be applied to a priority queue where the operations take Ω(log n) time.

This implies that the strong implicit model only makes sense when at least one
operation runs in o(log n) time, and since the model as defined here is comparison
based, this mostly happens with a fine grained analyses where the query time is
dependent on something other than n.
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Figure 1.7: Example of down scaling a 9x9 raster by a factor of 3 to a 3x3 raster.

1.4 Multiresolution rasters

At ESA 2013 Constantinos Tsirogiannis presented an algorithm for a problem known
as the “multi resolution raster” problem [9]. While this algorithm is good in theory,
we afterwards still felt that this problem could get a cleaner and more practical
efficient solution.

The problem can be defined as follows. The input is a raster R which consists of√
N ×

√
N cells, that for instance could be an elevation map of a terrain. We want

to compute rasters Rs, for all integers 1 < s ≤
√
N , where Rs is a s down-sampling

of R. That is Rs has size d
√
N/se × d

√
N/se and each cell in Rs stores the average

value of the corresponding s× s cells of R. See Figure 1.7 for an example.
Constructing all these scale instances is important for several different applica-

tions. In general it is often not obvious at which scales different properties of a
terrain emerges. If you zoom out too far you will miss details. If you zoom in too
close one feature can be distributed over a large area. For instance Fisher et al. [32]
construct rasters at many different scales to perform landform classification. Wood-
cock and Strahler [69] construct many different scale instances in order to estimate
the average tree canopi size from a grayscale forest image.

It is not immediately obvious how large the total size of the output rasters are,
however assuming we do not output the original raster the total size is:

√
N∑

i=2

N

i2
≤ N(−1 +

∞∑

i=1

1

i2
) ≤ 0.645N.

This problem has a fairly trivialO(sort(N)) solution, that was first detailed in [9].
First a matrix of prefix sums P is computed, such that any i, j in P contains the sum
of every entry i′, j′ from R where i′ ≤ i and j′ ≤ j. This way the average value that
we need to compute for some entry i, j in an Rs, can be computed from four prefix
values, as Rs[i, j] := (P [si, sj]−P [si, s(j−1)]−P [s(i−1), sj]+P [s(i−1), s(j−1)]) 1

s2
.

P can be computed with a scan over R. This immediately gives an internal memory
algorithm. Now we iterate over all cells t in all the outputs, and for each consider
the four entries p1, . . . , p4 from P needed to compute the value of t, while doing this
we create a stream S with the pairs (pi, s). We sort S by p. We now iterate over S
and P simultaneously, for every entry (p, s) in S we write a new entry (p, s, P [p])
into a stream S′. We sort S′ by t. We now iterate over the cells of the output
rasters t and for each cell we compute the average value based on the four values
forwarded to t through S′.

In [9] a O(scan(N)) algorithm for the problem was also presented, the algorithm
is quite simple; first compute P , then scan over P to compute the B largest out-
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puts, R2, . . . , RB all at once. Then produce the smaller outputs RB+1, . . . , R√N ,
by performing 4 I/Os per cell, to directly read the required entries from P . In to-
tal only O(scan(N)) I/Os are performed, under some assumptions. First it makes
the tall cache assumption, that is M > B2, however in order to achieve good I/O
performance we often pick B to be of the order of a few megabytes, meaning that
we would need terabytes of memory. Secondly it writes to B files simultaneously,
however the performance of most operating systems degrades rapidly when writing
to more than a few hundred files at a time.

In Chapter 4 we present an O(scan(N)) algorithm for the problem. This algo-
rithm only assumes that a constant number of files can be used at the same time,
and it does not need the tall cache assumption. Furthermore the algorithm is cache-
oblivious and experimentally shown to be practically efficient. The algorithm from
Chapter 4 was compared with the O(sort(N)) algorithm from [9] by performing runs
on a large dataset. Here the former took 2 hours and 15 minutes while the latter
took 13 hours and 14 minutes.

The algorithm works by deriving smaller rasters from larger ones. The main
observation is that instead of creating the 1/18 scale raster by processing the full
input raster, it can be created from the 1/9 scale raster. By always deriving a scale
raster from the smallest possible scale raster and by deriving multiple rasters at the
same time an efficient algorithm can be constructed.

1.5 Decomposition simplification

The problem on which I have used the most time during my PhD studies, is the
problem of simplifying large planar decompositions.

A planar decomposition is the division of the plane (often the surface of the
earth) into disjoint faces. There are many different kinds of planar decompositions
that have practical value, some common ones are depicted in Figure 1.8.

Input We will now go into detail with some of the planar decomposition instances
and how they are computed.

A contour map is a vector description of the elevation of a terrain. A fixed set of
heights are selected (for instance every multiple of 2 meters), and all points on the
terrain with one of the selected heights are extracted, if the terrain is reasonable well
behaved, the extracted points will form a number of curves. These curves can be
used for all kinds of things ranging from navigation to environmental impact assess-
ments. Before the introduction of Light Detection and Ranging (LIDAR) contour
curves where drawn by hand, sparse height samples of the terrain where collected by
surveyors, these points where positioned on a large sheet of paper, and a cartogra-
pher would draw nice smooth curves between the points. With LIDAR technology
and digital computers, a more precise approach is possible. A detailed height model
is collected by flying a plane at low altitude (on a nice summer day, with clear skies).
On the plane a LIDAR device is attached which uses a number of lasers to accurately
measure points on the ground. Currently a new model of Denmark is being flow,
where on average more than 5 points are collected for every square meter of surface.
A surface model can then be constructed from this massive point cloud. A common
way of doing this is to project the points into the XY plain, compute a Delaunay
triangulation, and then rising this triangulation back up to 3D. The surface model
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(a) Cadastre: A cadastral map is the
decomposition of the plane into land
parcels.

(b) Contours: A contour map is the de-
composition of the plane into regions with
a bounded height interval.

(c) Watershed: A watershed map is the
decomposition of the plain into regions
that all drain into the ocean at the same
point, or all drain into the same river.

(d) Nautical chart: A nautical chart,
is similar to a contour map but depicts
under sea terrain. Since it is used for
safe navigation other considerations have
to be made while simplifying.

Figure 1.8: Examples of planar decompositions

thus obtained is called a TIN (Triangulated irregular network). The most obvious
way to get a contour map from such a tin (and indeed the way we use) is to compute
the intersection of all the triangles with the contour planes (as seen in Figure 1.9).
That is all the horizontal planes that go through the wanted contour heights. The
curves thus generated are very accurate, and almost completely unusable; all the
details hide what you really want to see. Clearly simplification is required, what
kind of simplification and with what parameters depends on the particular usage
and scale of the map.

A watershed map is the decomposition of the terrain into sections where rain
goes into the same river. Traditionally such a map was drawn by tracing ridges in
the terrain, everything on one side of a ridge flows into one river while everything on
the other side flows into another. Such maps can again be used for many different
proposes from predicting flooding based on precipitation to examining the impact
of a pollution event. Again with newer technology more detailed and accurate maps
can be computed automatically. First a TIN is constructed as described above. Next
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Figure 1.9: Contour segments are gen-
erated from a tin by cutting the in-
dividual triangles with the contour
planes.

Figure 1.10: A raster is constructed
from a tin by interpolating the heights
at the center points of the raster cells.

a raster DEM (Digital elevation model) is constructed, often by simply imposing a
raster on top of the TIN and assigning the height under the center of the raster cell in
the TIN, to that cell (See Figure 1.10). For the new Denmark dataset currently being
created, a raster with a cell size of 50cm by 50cm will be constructed. The DEM is
then processed using topological simplification to remove smaller depressions in the
terrain [31, 4]. A flow directions raster can be computed on this simplified DEM;
for every cell one computes which direction the water would flow from that cell by
comparing the heights of the neighbouring cells and the current cell, and assigning
the flow to the lowest neighbour. Once this is done, time forward processing can be
used to compute which cells flow into which rivers. The output of this is a raster,
where every cell contains the id of the river it flows into. This raster can then
be processed to obtain a vector decomposition, by outputting a segment along the
boundary between every adjacent pair of cells, that do not share the same id. Again
the generated watershed, while very accurate, is way too detailed for practical use.

1.5.1 Terrain Simplification

When simplifying planar decompositions there are two fundamentally different ap-
proaches that can be used independently (or together). Either you simplify the
input model before generating the decomposition or you simplify the decomposition
after generating it.

Simplifying the model before decomposition has not been the focus of any of
my work during my PhD, however I will briefly mention some of the most common
approaches used for simplifying input for contour generation.

The method of terrain simplification most often used for contour generation is
running a gaussian kernel over the terrain. Here every pixel in the output terrain is
creating by sampling the corresponding neighbouring pixels in the input according
to a normal distribution, which yields a nice smooth terrain. See Figure 1.11 for an
example of contours generated using this approach. This approach can be refined
to provide properties needed for the particular contours. An example of this is a
method the Danish cadastral agency (GST) has used for generating nautical charts.

A nautical chart is a document used for navigation which consists of contour lines
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(a) A Raw, unsimplified
contour map.

(b) Generated from an ag-
gregated raster.

(c) Generated from a
raster smoothed with a
gaussian kernel.

Figure 1.11: Examples of contours generated from rasters simplified using simple
mean aggregation or smoothed using a gaussian kernel.

and plotted measured points (among lots of other things). If you put a -20 meter
contour line in the map, it is vitally important that there is at least 20 meters of
water underneath the line in real life, since ships would otherwise run aground (and
the cadastral agency would be legally liable for the damages). This naturally leads
to the following constraint for a simplified input S model used for construction of
curves: the elevation of every point in S must be lower than the elevation at the same
point in the actual height model H. Let G(T, ρ) be the gaussian smoothing of some
terrain T with standard deviation ρ. Then an input terrain for curve generation is
generated by the following process. First a standard deviation ρ is picked that gives
a nice smooth terrain, and a constant c < 1 is picked, say c = 0.9.

Now we compute S0 = G(H, ρ), as our initial estimate of the smoothed terrain,
which might be too high at some points. We therefore define Di = max(Si −H, 0)
to measure how much too high Si is. We can now compute a new refinement Si+1 =
Si − G(Di, ρc

i), where we subtract a smoothed version of how much too high we
where; We will continue this process with ever smaller deviation, until a sufficiently
high i say n where ρci ≤ 1 and finally define the output S = max(Sn, H). While
this technique produces mostly nice and smooth curves, it was eventually dropped
because there are (many) other requirements for the curves on nautical charts that
are almost impossible to fulfill on a method only modifying the input terrain.

A very simple approach that is also used sometimes (depending on how you
view the world) is aggregation. Here the input terrain is simplified by aggregation.
Here the raster is made smaller by replacing a window of cells by their average, as
explained in Section 1.4. While this gives smaller curves in terms of segments, the
curves are not very pretty, and do not necessarily represent reality very well. An
example of this is shown in Figure 1.11.
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Figure 1.12: The raster (black) is tri-
angulated (red).

Figure 1.13: Contour segments are
generated from a tin by cutting the
individual triangles with the contour
planes.

1.5.2 Initial results

My first work on decomposition simplification was in [8]. I have not included it in
this thesis since it has (in my view) been entirely superseded by [11]. I will though
here give a fairly detailed overview of the results and their production.

The purpose of [8] is to produce simplified contour lines of an input terrain given
as a TIN or a raster, under a given set of constraints. The focus of the paper is on
how to do this I/O efficiently under some realistic assumptions. The focus is not on
how to make the curves look pretty. The algorithm works in a number of phases.
First the input is converted into triangles which are cut with the contour planes to
get a soup of contour segments. The segments are then processed in order to remove
ridges such that contour lines form nice rings (every vertex has even degree). The
segments are then labelled such that every connected component of segments has
the same label. This labelling is done in a way such that for every ring enclosed
by another ring, the enclosed will have a higher label than the enclosee. The rings
are then relabelled as detailed below. Finally each ring is simplified by an internal
algorithm in turn by label order.

The algorithm will simplify a contour map in O(sort(n)) I/Os, under some re-
alistic assumptions. First we assume that for any horizontal line, all the segments
intersected by the line fits in internal memory. Secondly for every face in the decom-
position, we assume that all segments adjacent to that face, fits in internal memory.

Before going into details, let me define some notation. A segment is a two
dimensional line segment. A chain is a sequence of segments, where each consecutive
pair of segments share an endpoint. A ring is a chain where the first and the last
segment also share an endpoint.

If the input is a raster, it is converted into a triangulation, as shown in Fig-
ure 1.12. If on the other hand the input is a TIN, the triangles are extracted from
the TIN (using three sorting steps). In either case the triangles are visited in the
order of extraction, and segments are generated by cutting with planes in all the
contour heights, as shown in Figure 1.13. Special care is taken such that the inter-
section points are computed to exactly the same coordinates on adjacent triangles.
The details of how to get this right are quite tricky, especially when dealing with
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Figure 1.14: Example of ring nesting, on the left the contours have been labelled,
and on the right the corresponding ring nesting tree.

floating point coordinates. However it is doable.

The segments are ordered by their minimal y coordinate (and using the other
coordinates as tie breakers) by an external sort. The segments are then scanned and
if the same segment appears twice both appearances are removed since the segment
must then be a ridge segment (assuming the segment generation is done somewhat
cleverly).

Next we label the segments such that each ring gets a separate label. The
labelling algorithm is inspired by an algorithm from [10], and explained in more
detail in Chapter 5. The algorithm is based on a sweepline approach, and in order to
be I/O efficient requires that all segments intersecting the sweepline at any particular
point in time fits into the internal memory (for realistic datasets this means that√
N = O(M)). The algorithm performs two sweeps through the data, first a sweep

from the bottom to the top (the up sweep), where connections below the sweepline
are maintained, and then a sweep from the top to the bottom (the down sweep),
where the connections above the sweepline are combined with the connections below.

The nesting of the rings form a tree, such that a ring a is a descendent of a
ring b if b is contained within a (See Figure 1.14). When simplifying a ring a, all
segments on the two faces on which the ring is situated need to be considered in
order to maintain homotopy. These segments are exactly the segments on the parent,
siblings and child rings of a in the nesting tree (In the example of Figure 1.14, the
rings a,c,d and e need to be considered when simplifying b).

The labelling algorithm generates labels such that a ring with a lower mini-
mal y coordinate gets a smaller label than one with a higher y coordinate. Yet in
order to facilitate simplification we need a different order of labels, specifically we
want the labelling to be a level ordering of the nesting tree. That is, given two
distinct rings a and b, we require that the labels of a and the labels of b be different.
If a and b are on different levels in the tree, the ring on the lower level has to have
lowest label. If a and b are on the same level, then the ordering on the labels of a
and b must be the same as the ordering of the labels of their respective parents. This
relabeling can be done I/O efficiently, as described in [8], however it is somewhat
tricky to implement.

We will simplify contour rings one at a time, in a level order traversal of the
nesting tree. When we simplify a ring a, we will already have simplified its parent
and some of its siblings. In order to maintain homotopy of the final output, we will
consider these simplified versions of the parent and siblings as we are simplifying a.
We will do the actual simplification internally by assuming that for any ring a, all
the edges of it, its parent, its siblings and its children fit in memory at the same
time.
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C1

C2

Figure 1.15: When simplifying two chains independently the simplified chains cannot
intersect
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Figure 1.16: Example of segment forwarding, the size of each face (the number of
adjacent segments) is written in red. We see that a forwards its segments to both b, c
and d, so in total a forwards 33 segments.

The internal simplification we used in [8] is a constraint variant of the Douglas
Peucker algorithm [29]. The homotopy constraint is maintained by tracing both the
original and the proposed simplified rings in a trapezoidal decomposition, as also
described in Chapter 5.

1.5.3 A simpler approach

In Chapter 5 which is based on [11], we present an algorithm for the more general
problem of decomposition simplification. That can be seen as an evolution of [8],
that solves a harder problem in an easier way. One of the main complications in
implementing [8] is that we need to process everything in a specific order, such that
we can use the all ready simplified version of one contour level, as a constraint for
the next level. If we where somehow able to simplify one ring independently from
the other, the algorithm would be much simpler, also it would work on general
decompositions where defining a level ordering is not possible. It turns out that this
is possible, and in fact it works without changing anything. This is due to the main
observation of Chapter 5. Given two planar chains C1 and C2, if you simplify C1 by
choosing a subset of its points, such that it does not intersect C2, and you simplify C2

by choosing a subset of its points, such that it does not intersect C1, then the two
simplification cannot intersect, see an example in Figure 1.15. This is proved in
Lemma 5.3.

For the case of contours this gives rise to a simple algorithm. First generate
the contour segments like in [8]. Instead of labelling the rings, we will label the
faces and augment every segment with the labels of the two faces it is attached
to. It turns out that it is quite simple to adapt the labelling algorithm of [8] to do
this. Note that when simplifying a contour ring, the segments needed to constrain
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the ring, are the segments of the two faces the contour is situated between. To
do the simplification in an I/O efficient manner, we let every face forward all its
segments to every neighbour it has, which is larger than itself in terms of segments
(see Figure 1.16 for an example). This way the larger neighbour can then simplify
the shared ring in memory. The in memory simplification can be done in the same
way as [8].

To prove that the algorithm is I/O efficient, we need to bound the number of
segments forwarded from smaller to larger neighbours. In Theorem 5.6 we prove
that this is at most 3 times the number of segments in the graph.

The algorithm will simplify a planar decomposition in O(sort(n)) I/Os, under
some realistic assumptions. First we assume that for any horizontal line, all the
segments intersected by the line fit in internal memory. Secondly for every two
adjacent faces in the decomposition, we assume that all segments touching these
two faces, fit in internal memory at the same time.





2

Range Mode

This chapter contains the paper “Cell Probe Lower Bounds and Approximations for
Range Mode”[39], which is joint work with Mark Greve, Allan Grønlund Jørgensen
and Kasper Dalgaard Larsen. This chapter differs from the paper only in notation
and other small textual changes.

2.1 Introduction

In this chapter we consider the range mode problem, the range k-frequency prob-
lem, and the c-approximate range mode problem. The frequency of a label ` in a
multiset H of labels, is the number of occurrences of ` in H. The mode of H is the
most frequent label in H. In case of ties, any of the most frequent labels in H can
be designated the mode.

For all the problems we consider the input is an array A of length n containing
labels. For simplicity we assume that each label is an integer between one and n.
In the range mode problem, we must preprocess A into a data structure that given
indices i and j, 1 ≤ i ≤ j ≤ n, returns the mode, Mi,j , in the subarray A[i, j] =
A[i], A[i+ 1], . . . , A[j]. We let Fi,j denote the frequency of Mi,j in A[i, j]. In the c-
approximate range mode problem, a query is given indices i and j, 1 ≤ i ≤ j ≤ n,
and returns a label that has a frequency of at least Fi,j/c. In the range k-frequency
problem, a query is given indices i and j, 1 ≤ i ≤ j ≤ n, and returns whether there
is a label occurring exactly k times in A[i, j].

For the upper bounds we consider the unit cost RAM with word size w =
Θ(log n). For lower bounds we consider the cell probe model of Yao [70]. In this
model of computation a random access memory is divided into cells of w bits. The
complexity of an algorithm is the number of memory cells the algorithm accesses.
All other computations are free.

Previous Results. The first data structure supporting range mode queries in
constant time was developed in by Krizanc et al. [48], this data structure uses
O(n2 log log n/ log n) space. This was subsequently improved to O(n2/ log n) space
in [61] and finally to O(n2 log log n/ log2 n) in [62]. For non-constant query time, the
first data structure developed usesO(n2−2ε) space and supports queries inO(nε log n)
time, where 0 < ε ≤ 1

2 is a query-space tradeoff constant [48]. The query time was
later improved to O(nε) without changing the space bound [61].

Given the rather large bounds for the range mode problem, the approximate
variant of the problem was considered in [18]. With constant query time, they
solve 2-approximate range mode with O(n log n) space, 3-approximate range mode

35
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withO(n log logn) space, and 4-approximate range mode with linear space. For (1 + ε)-
approximate range mode, they describe a data structure that uses O(nε ) space and
supports queries in O(log log1+εn) = O(log log n+ log 1

ε ) time. This data structure
gives a linear space solution with O(log log n) query time for c-approximate range
mode when c is constant. There are no known non-trivial lower bounds for any of
the problems we consider.

Our Results. In this chapter we show the first none trivial lower bounds for
range mode data structures and range k-frequency data structures and provide new
upper bounds for the c-approximate range mode problem and the range k-frequency
problem.

In Section 2.2 we prove our lower bound for range mode data structures. Specif-
ically, we prove that any data structure that uses S cells and supports range mode
queries must have a query time of Ω( logn

log(Sw/n)). This means that any data structure
that uses O(n logO(1) n) space needs Ω(logn/ log logn) time to answer a range mode
query. Similarly, any data structure that supports range mode queries in constant
time needs n1+Ω(1) space.

We suspect that the actual lower bound for near-linear space data structures for
the range mode problem is significantly larger. However a fundamental obstacle in
the cell probe model is to prove lower bounds for static data structures that are
higher than the number of bits needed to describe the query. The highest known
lower bounds are achieved by the techniques in [60, 58] that uses reductions from
problems in communication complexity. We use this technique to obtain our lower
bound and our bound matches the highest lower bound achieved with this technique.

Actually our construction proves the same lower bound for queries on the form,
is there an element with frequency at least (or precisely) k in A[i, j], where k is
given at query time. In the scenario where k is fixed for all queries it is quite easy to
give a linear space data structure with constant query time for determining whether
there is an element with frequency at least k. We will store an array X of length n,
where X[i] stores the lowest index j such that the frequency in the of the mode of
A[i, j] is at least k. The answer to a query (i, j) is just X[i] ≤ j. In Section 2.3
we consider the case of determining whether there is an element with frequency
exactly k, which we denote the range k-frequency problem. To the best of our
knowledge, we are the first to consider this problem. We show that 2D rectangle
stabbing reduces to range k-frequency for any constant k > 1. This reduction
proves that any data structure that uses S space, needs Ω(log n/ log(Sw/n)) time
for a query [58, 57], for any constant k > 1. Secondly, we reduce range k-frequency
to 2D rectangle stabbing. This reduction works for any k. This immediately gives a
data structure for range k-frequency that uses linear space, and supports queries in
optimal O(log n/ log log n) time [45] (we note that 2D rectangle stabbing reduces to
2D range counting). In the restricted case where k = 1, this problem corresponds
to determining whether there is a unique label in a subarray. The reduction from
2D rectangle stabbing only applies for k > 1. We show, somewhat surprisingly, that
determining whether there is a label occurring exactly twice (or k > 1 times) in
a subarray, is exponentially harder than determining if there is a label occurring
exactly once. Specifically, we reduce range 1-frequency to four-sided 3D orthogonal
range emptiness, which can be solved with O(log2 log n) query time and O(n log n)
space by a slight modification of the data structure presented in [3].



2.2. CELL PROBE LOWER BOUND FOR RANGE MODE 37

In Section 2.4 we present a simple data structure for the 3-approximate range
mode problem. The data structure uses linear space and answers queries in constant
time. This improves the best previous 3-approximate range mode data structures
by a factor O(log log n) either in space or query time. With linear space and con-
stant query time, the best previous approximation factor was 4. In Section 2.5
we use our 3-approximate range mode data structure, to develop a data structure
for (1 + ε)-approximate range mode. This data structure uses O(nε ) space and an-
swers queries in O(log 1

ε ) time. This removes the dependency on n in the query time
compared to the previously best data structure, while matching the space bound.
Thus, we have a linear space data structure with constant query time for the c-
approximate range mode problem for any constant c > 1. We note that we get the
same bound if we build on the 4-approximate range mode data structure from [18].

Later Results. After the publication of [39], on which this chapter is based, Chan
et al. [26], provided linear space data structure supporting range mode queries in
time O(

√
n/ log n). They also provide an argument for the hardness of range mode.

They show that boolean matrix multiplication of two
√
n×√n matrices reduces to n

range mode quires in an array of length O(n). Thus constructing a data structure
for range-mode with a query time below O(n1/2−ε) for some ε > 0 would yield an
improvement for non algebraic boolean matrix multiplication.

2.2 Cell probe lower bound for range mode

In this section we show a query lower bound of Ω(log n/ log(Sw/n)) for any range
mode data structure that uses S space for an input array of size n. The lower bound
is proved for the slightly different problem of determining the frequency of the mode.
The lower bound for range mode follows since the frequency of an element in any
range can be determined in O(log log n) time by a linear space data structure . This
data structure stores a linear space static rank data structure [67] for each label ` in
the input, containing the positions in A storing `. The frequency of a label in A[i, j]
is the rank difference between i− 1 and j.

Communication Complexity and Lower Bounds. In communication com-
plexity we have two players Alice and Bob. Alice receives as input a bit string x
and Bob a bit string y. Given some predefined function, f , the goal for Alice and
Bob is to compute f(x, y) while communicating as few bits as possible.

Lower bounds on the communication complexity of various functions have been
turned into lower bounds for static data structure problems in the cell probe model.
The idea is as follows [51]: Assume we are given a static data structure problem
and consider the function f(q,D) that is defined as the answer to a query q on
an input set D for this problem. If we have a data structure for the problem that
uses S memory cells and supports queries in time t we get a communication protocol
for f where Alice sends t logS bits and Bob sends tw bits. In this protocol Alice
receives q and Bob receives D. Bob constructs the data structure on D and Alice
simulates the query algorithm. In each step Alice sends logS bits specifying the
memory cell of the data structure she needs and Bob replies with the w bits of this
cell. Finally, Alice outputs f(q,D). Thus, a communication lower bound for f gives
a lower bound tradeoff between S and t.
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This construction can however only be used to distinguish between polynomial
and superpolynomial space data structures. Since range mode queries are trivially
solvable in constant time with O(n2) space, we need a different technique to obtain
lower bounds for near-linear space data structures. Pǎtraşcu and Thorup [60, 58]
have developed a technique for distinguishing between near linear and polynomial
space by considering reductions from communication complexity problems to k par-
allel data structure queries. The main insight is that Alice can simulate all k queries
in parallel and only send log

(
S
k

)
= O(k log S

k ) bits to define the k cells she needs.
For the right values of k this is significantly less than k logS bits which Alice needs
if she performs the queries sequentially.

Lopsided Set Disjointness (LSD). In LSD Alice and Bob receive subsets S
and T of a universe U . The goal for Alice and Bob is to compute whether S∩T 6= ∅.
LSD is parameterized with the size |S| = N of Alice’s set and the fraction between
the size of the universe and N , which is denoted B, e.g. |U | = NB. Notice that the
size of Bob’s set is arbitrary and could be as large as NB. We use [X] to denote
the set {1, 2, . . . , X}. There are other versions of LSD where the input to Alice
has more structure. For our purpose we need Blocked-LSD. For this problem the
universe is considered as the cartesian product of [N ] and [B], e.g. U = [N ] × [B]
and Alice receives a set S such that ∀j ∈ [N ] there exists a unique bj ∈ [B] such
that (j, bj) ∈ S, e.g. S is of the form {(1, b1), (2, b2), . . . , (N, bN )} where bi ∈ [B].
The following lower bound applies for this problem [58].

Theorem 2.1. Fix δ > 0. In a bounded-error protocol for Blocked-LSD, either Alice
sends Ω(N logB) bits or Bob sends Ω(NB1−δ) bits.

Blocked-LSD Reduces to N/k Parallel Range Mode Queries. Given n, we
describe a reduction from Blocked-LSD with a universe of size n (n = NB) to N/k
parallel range mode queries on an input array A of size Θ(n). The size of A may not
be exactly n but this will not affect our result. The parameters k and B are fixed
later in the construction. From a high level perspective we construct an array of
permutations of [kB]. A query consists of a suffix of one permutation, a number of
complete permutations, and a prefix of another permutation. They are chosen such
that the suffix determines a subset of Bob’s set and the prefix a subset of Alice’s
set. These two subsets intersect if and only if the frequency of the mode is equal to
two plus the number of complete permutations spanned by the query.

Bob stores a range mode data structure and Alice simulates the query algo-
rithm. First we describe the array A that Bob constructs when he receives his
input. Let T ⊆ [N ] × [B] be this set. The array Bob constructs consists of two
parts which are described separately. We let · denote concatenation of lists. We also
use this operator on sets and in this case we treat the set as a list by placing the
elements in lexicographic order. Bob partitions [N ] into N/k consecutive chunks
of k elements, e.g. the i’th chunk is {(i− 1)k + 1, . . . , ik} for i = 1, . . . , N/k. With
the i’th chunk Bob associates the subset Li of T with first coordinate in that chunk,
e.g. Li = T ∩({(i−1)k+t | t = 1, . . . , k}× [B]). Each Li is mapped to a permutation
of [kB].

We define the mapping f : (x, y)→ (x− 1 mod k)B+ y and let the permutation
be ([kB] \ f(Li)) · f(Li), e.g. we map the elements in Li into [kB] and prepend
the elements of [kB] not mapped to by any element in Li such that we get a full
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permutation of [kB]. The first part of A is the concatenation of the permutations
defined for each chunk Li ordered by i, e.g. ([kB]\f(L1)) ·f(L1) · · · ([kB]\f(LN/k)) ·
f(LN/k). The second part of A consists of Bk permutations of [kB]. There is one
permutation for each way of picking a set of the form {(1, b1), . . . , (k, bk)} where bi ∈
[B]. Let R1, . . . , RBk denote the Bk sets on this form ordered lexicographically. The
second part of the array becomes f(R1) · ([kB] \ f(R1)) · · · f(RBk) · ([kB] \ f(RBk)).

We now show how Alice and Bob can determine whether S ∩ T 6= ∅ from
this array. Bob constructs a range mode data structure for A and sends |Li|
for i = 1, . . . , N/k to Alice. Alice then simulates the query algorithm on the range
mode data structure for N/k queries in parallel. The i’th query determines whether
the k elements Qi = {((i − 1)k + 1, b(i−1)k+1), . . . , (ik, bik)} from S have an empty
intersection with T (actually Li) as follows.

Alice determines the end index of f(Qi) in the second part of A. We note
that f(Qi) always exists in the second part of A by construction and Alice can
determine the position without any communication with Bob. Alice also determines
the start index of f(Li) in the first part of A from the sizes she initially received
from Bob. The i’th query computes the frequency Ri of the mode between these
two indices. Let p be the number of permutations of [kB] stored between the end
of f(Li) and the beginning of f(Qi) in A, then Fi − p = 2 if and only if Qi ∩ T 6= ∅,
and Fi−p = 1 otherwise. Since each permutation of [kB] contributes one to Fi, Fi−p
is equal to two if and only if at least one of the elements from Qi is in Li meaning
that S ∩T 6= ∅. We conclude that Blocked-LSD reduces to N/k range mode queries
in an array of size NB +BkkB.

To obtain a lower bound for range mode data structures we consider the parame-
ters k andB and follow the approach from [58]. Let S be the size of Bob’s range mode
data structure and let t be the query time. In our protocol for Blocked-LSD Alice
sends t log

(
S
N/k

)
= O(tNk log Sk

N ) bits and Bob sends twN/k+N/k log(kB) bits. By

Theorem 2.1, either Alice sends Ω(N logB) bits or Bob sends Ω(NB1−δ). Fix δ = 1
2 .

Since N/k log(kB) = o(N
√
B) we obtain that either tNk log(SkN ) = Ω(N logB) or

twN/k = Ω(N
√
B). We constrain B such that B ≥ w2 and logB ≥ 1

2 log(SkN ) ⇒
B ≥ Sk

n and obtain t = Ω(k). Since |A| = NB +BkkB and we require |A| = Θ(n),

we set k = Θ(logB n). To maximize k we choose B = max{w2, Skn }. We obtain that

t = Ω(k) = Ω(logN/ log Swk
n ) = Ω(log n/ log Sw

n ) since w > k.

Summarizing, we get the following theorem.

Theorem 2.2. Any data structure that uses S space needs Ω( logn

log Sw
n

) time for a
range mode query in an array of size n.

It follows from the construction that we get the same lower bound for data
structures that support queries that are given i, j and k, and returns whether there
exists an element with frequency exactly k in A[i, j] or support queries that are
given i, j and k and returns whether there is an element with frequency at least k
in A[i, j].

2.3 Range k-frequency

In this section, we consider the range k-frequency problem and its connection to
classic geometric data structure problems. We show that the range k-frequency
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problem is equivalent to 2D rectangle stabbing for any fixed constant k > 1, and
that for k = 1 the problem reduces to four-sided 3D orthogonal range emptiness.

In the 2D rectangle stabbing problem the input is n axis-parallel rectangles. A
query is given a point, (x, y), and must return whether this point is contained1 in at
least one of the n rectangles in the input. A query lower bound of Ω(log n/ log(Sw/n))
for data structures using S space is proved in [58], and a linear space static data
structure with optimal O(log n/ log logn) query time can be found in [45].

In four-sided 3D orthogonal range emptiness, we are given a set P of n points
in 3D, and must preprocess P into a data structure, such that given an open-ended
four-sided rectangle R = (−∞, x] × [y1, y2] × [z,∞), the data structure returns
whether R contains a point p ∈ P . Currently, the best solution for this problem
uses O(n log n) space and supports queries in O(log2 log n) time [3].

For simplicity, we assume that each coordinate is a unique integer between one
and 2n (rank space).

Theorem 2.3. Let k be a constant greater than one. The 2D rectangle stabbing
problem reduces to the range k-frequency problem.

Proof. We show the reduction for k = 2 and then generalize this construction to
any constant value k > 2.

Let R1, . . . , Rn be the input to the rectangle stabbing problem. We construct a
range 2-frequency instance with n distinct labels each of which is duplicated exactly 6
times. Let R` be the rectangle [x`0 , x`1 ]× [y`0 , y`1 ]. For each rectangle, R`, we add
the pairs (x`0 , `), (x`1 , `) and (x`1 , `) to a list X. Similarly, we add the pairs (y`0 , `),
(y`1 , `), and (y`1 , `) to a list Y . We sort X in descending order and Y in ascending
order by their first coordinates. Since we assumed all coordinates are unique, the
only ties are amongst pairs originating from the same rectangle, here we break the
ties arbitrarily. The concatenation of X and Y is the range 2-frequency instance
and we denote it A, i.e. the second component of each pair are the actual entries
in A, and the first component of each pair is ignored.

We translate a 2D rectangle stabbing query, (x, y), into a query for the range 2-
frequency instance as follows. Let px be the smallest index where the first coordinate
of X[px] is x, and let qy be the largest index where the first coordinate of Y [py]
is y. If A[px] = A[px + 1], two consecutive entries in A are defined by the right
endpoint of the same rectangle, we set ix = px + 2 (we move ix to the right of
the two entries), otherwise we set ix = px. Similarly for the y coordinates, if
A[|X| + qy] = A[|X| + qy − 1] we set jy = qy − 2 (move jy left of the two entries),
otherwise we set jy = qy. Finally we translate (x, y) to the range 2-frequency query
[ix, |X|+ jy] on A, see Figure 2.1. Notice that in the range 2-frequency queries that
can be considered in the reduction, the frequency of a label is either one, two, three,
four or six. The frequency of label ` in A[ix, |X|] is one if x`0 ≤ x ≤ x`1 , three if
x > x`1 and zero otherwise. Similar, the frequency of ` in A[|X|+1, |X|+jy] is one if
y`0 ≤ y ≤ y`1 , three if y > y`1 and zero otherwise. We conclude that the point (x, y)
stabs rectangle R` if and only if the label ` has frequency two in A[ix, |X|+ jy].

Since x, y ∈ {1, . . . , 2n}, we can store a table with the translations from x to ix
and y to jy. Thus, we can translate 2D rectangle stabbing queries to range 2-
frequency queries in constant time.

1points on the border of a rectangle are contained in the rectangle
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A = [BBCCCAABA︸ ︷︷ ︸CBABBAACC]︸ ︷︷ ︸

X=[(6,B)(6,B)(5,C)(5,C)(4,C)(3,A)(3,A)(2,B)(1,A)]

Y=[(1,C)(2,B)(3,A)(4,B)(4,B)(5,A)(5,A)(6,C)(6,C)]

6

Figure 2.1: Reduction from 2D rectangle stabbing to range 2-frequency. The ×
marks a stabbing query, (5, 3). This query is mapped to the range 2-frequency query
[i5, |X|+j3] in A, which is highlighted. Notice that i5 = p5+2 since A[p5] = A[p5+1].

For k > 2 we place k − 2 copies of each label between X and Y and translate
the queries accordingly.

The following theorem provides a matching upper bound.

Theorem 2.4. The range k-frequency problem reduces to 2D rectangle stabbing.

Proof. Let A be the input to the range k-frequency problem. We translate the
ranges of A where there is a label with frequency k into O(n) rectangles as follows.
Fix a label x ∈ A, and let sx ≥ k denote the number of occurrences of x in A.
If sx < k then x is irrelevant and we discard it. Otherwise, let i1 < i2 < . . . < is
be the position of x in A, and let i0 = 0 and is+1 = n + 1. Consider the ranges
of A where x has frequency k. These are the subarrays, A[a, b], where there exists
an integer ` such that i` < a ≤ i`+1 and i`+k ≤ b < i`+k+1 for 0 ≤ ` ≤ sx − k. This
defines sx − k + 1 two dimensional rectangles, [i` + 1, i`+1] × [i`+k, i`+k+1 − 1] for
` = 0, . . . , sx− k, such that x has frequency k in A[i, j] if and only if the point (i, j)
stabs one of the sx − k + 1 rectangles defined by x. By translating the ranges of A
where a label has frequency k into the corresponding rectangles for all distinct labels
in A, we get a 2D rectangle stabbing instance with O(n) rectangles.

This means that we get a data structure for the range k-frequency problem that
uses O(n) space and supports queries in O(log n/ log logn) time.

Theorem 2.5. For k = 1, the range k-frequency problem reduces to four-sided
orthogonal range emptiness queries in 3D.

Proof. For each distinct label x ∈ A, we map the ranges of A where x has frequency
one (it is unique in the range) to a 3D point. Let i1 < i2 < · · · < is be the
positions of x in A, and let i0 = 0 and is+1 = n + 1. The label x has frequency
one in A[a, b] if there exist an integer ` such that i`−1 < a ≤ i` ≤ b < i`+1.
We define s points, Px = {(i`−1 + 1, i`, i`+1 − 1) | 1 ≤ ` ≤ s}. The label x has
frequency one in the range A[a, b] if and only if the four-sided orthogonal range
query [−∞, a]× [a, b]× [b,∞] contains a point from Px (we say that x is inside range
[x1, x2] if x1 ≤ x ≤ x2). Therefore, we let P =

⋃
x∈A Px and get a four-sided 3D

orthogonal range emptiness instance with O(n) points.

Thus from [3], we get a data structure for the range 1-frequency problem that
uses O(n log n) space and supports queries in O(log2 log n) time and we conclude
that for data structures using O(n logO(1) n) space, the range k-frequency problem
is exponentially harder for k > 1 than for k = 1.
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2.4 3-Approximate range mode

In this section, we construct a data structure that given a range [i, j] computes a
3-approximation of Fi,j .

We use the following observation from in [18]. If we can cover A[i, j] with
three disjoint subintervals A[i, x], A[x + 1, y] and A[y + 1, j] then we have 1

3Fi,j ≤
max{Fi,x, Fx+1,y, Fy+1,j} ≤ Fi,j .

First, we describe a data structure that uses O(n log log n) space, and then we
show how to reduce the space to O(n). The data structure consists of a tree T of
polynomial fanout where the i’th leaf stores A[i], for i = 1, . . . , n. For a node v let Tv
denote the subtree rooted at v and let |Tv| denote the number of leaves in Tv. The
fanout of node v is fv = d

√
|Tv|e. The height of T is Θ(log log n). Along with T , we

store a lowest common ancestor (LCA) data structure, which given indices i and j,
finds the LCA of the leaves corresponding to i and j in T in constant time [40].

For every node v ∈ T , let Rv = A[a, b] denote the consecutive range of entries
stored in the leaves of Tv. The children c1, . . . , cfv of v partition Rv into fv disjoint
subranges Rc1 = A[ac1 , bc1 ], . . . , Rcfv = A[acfv , bcfv ] each of size O(

√
|Tv|). For

every pair of children cr and cs where r < s− 1, we store Facr+1 ,bcs−1
. Furthermore,

for every child range Rci we store Faci ,k and Fk,bci for every prefix and suffix range
of Rci respectively. To compute a 3-approximation of Fi,j , we find the LCA of i
and j. This is the node v in T for which i and j lie in different child subtrees,
say Tcx and Tcy with ranges Rcx = [acx , bcx ] and Rcy = [acy , bcy ]. We then lookup
the frequency Facx+1 ,bcy−1

stored for the pair of children cx and cy, as well as the

suffix frequency Fi,bcx stored for the range A[i, bcx ] and the prefix frequency Facy ,j
stored for A[acy , j], and return the max of these.

Each node v ∈ T uses O(|Tv|) space for the frequencies stored for each of
the O(|Tv|) pairs of children, and for all the prefix and suffix range frequencies.
Since each node v uses O(|Tv|) space and the LCA data structure uses O(n) space,
our data structure uses O(n log log n) space. A query makes one LCA query and
computes the max of three numbers which takes constant time.

We just need one observation to bring the space down to O(n). Consider a
node v ∈ T . The largest possible frequency that can be stored for any pair of
children of v, or for any prefix or suffix range of a child of v is |Tv|, and each such
frequency can be represented by b = 1 + blog |Tv|c bits. We divide the frequencies
stored in v into chunks of size b logn

b c and pack each of them in one word. This
reduces the total space usage of the nodes at depth i to O(n/2i). We conclude that
the data structure uses O(n) space and supports queries in constant time.

Theorem 2.6. There exists a data structure for the 3-approximate range mode
problem that uses O(n) space and supports queries in constant time.

2.5 (1 + ε)-Approximate range mode

In this section, we describe a data structure usingO(nε ) space that given a range [i, j],
computes a (1 + ε)-approximation of Fi,j in O(log 1

ε ) time. Our data structure
consists of two parts. The first part solves all queries [i, j] where Fi,j ≤ d1

εe (small
frequencies), and the latter solves the remaining. The first data structure also
decides whether Fi,j ≤ d1

εe. We use that 1
log (1+ε) = O(1

ε ) for any 0 < ε ≤ 1.
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Small Frequencies. For i = 1, . . . , n we store a table, Qi, of length d1
εe, where

the value in Qi[k] is the largest integer j ≥ i such that Fi,j = k. To answer a
query [i, j] we do a successor search for j in Qi. If j does not have a successor in Qi
then Fi,j > d1

εe, and we query the second data structure. Otherwise, let s be the
index of the successor of j in Qi, then Fi,j = s. The data structure uses O(nε ) space
and supports queries in O(log 1

ε ) time.

Large Frequencies. For every index 1 ≤ i ≤ n, define a list Ti of indeces with
length t = dlog1+ε(εn)e, with the following invariant: For all j, if Ti[k−1] < j ≤ Ti[k]

then d1
ε (1 + ε)ke is a (1 + ε)-approximation of Fi,j . The following assignment of

values to the lists Ti satisfies this invariant:

Let m(i, k) be the largest integer j ≥ i such that Fi,j ≤ d1
ε (1 + ε)k+1e−1. For T1

we set T1[k] = m(1, k) for all k = 1, . . . , t. For the remaining Ti we set

Ti[k] =

{
Ti−1[k] if Fi,Ti−1[k] ≥ d1

ε (1 + ε)ke+ 1

m(i, k) otherwise
.

The n lists are sorted by construction. For T1, it is true since m(i, k) is increasing
in k. For Ti, it follows that Fi,Ti[k] ≤ d1

ε (1 + ε)k+1e − 1 < Fi,Ti[k+1], and thus
Ti[k] < Ti[k + 1] for any k.

Let s be the index of the successor of j in Ti. We know that Fi,Ti[s] ≤ d1
ε (1 + ε)s+1e−

1, Fi,Ti[s−1] ≥ d1
ε (1 + ε)s−1e+ 1 and Ti[s− 1] < j ≤ Ti[s]. It follows that

d1
ε (1 + ε)s−1e+ 1 ≤ Fi,j ≤ d1

ε (1 + ε)s+1e − 1 , (2.1)

and that d1
ε (1 + ε)se is a (1 + ε)-approximation of Fi,j .

The second important property of the n lists, is that they only store O(nε )
different indices, which allows for a space-efficient representation. If Ti−1[k] 6= Ti[k]
then the following d1

ε (1 + ε)k+1e − 1 − d1
ε (1 + ε)ke − 1 ≥ b(1 + ε)kc − 3 entries,

Ti+a[k] for a = 1, . . . , b(1 + ε)kc−3, are not changed, hence we store the same index
at least max{1, b(1 + ε)kc − 2} times. Therefore, the number of changes to the n
lists, starting with T1, is bounded by

∑t
k=1

n
max{1,b(1+ε)kc−2}

= O(nε ) . This was

observed in [18], where similar lists are maintained in a partially persistent search
tree [30].

We maintain these lists without persistence such that we can access any entry in
any list Ti in constant time. Let I = {1, 1 + t, . . . , 1 + b(n− 1)/tct}. For every ` ∈ I
we store T` explicitly as an array S`. Secondly, for ` ∈ I and k = 1, . . . , dlog1+εte
we define a bit vector B`,k of length t and a change list C`,k, where

B`,k[a] =

{
0 if T`+a−1[k] = T`+a[k]
1 otherwise

.

Given a bit vector L, define sel(L, b) as the index of the b’th one in L. We set

C`,k[a] = T`+sel(B`,k,a)[k] .

Finally, for every ` ∈ I and for k = 1 + dlog1+εte, . . . , t we store D`[k] which is the
smallest integer z > ` such that Tz[k] 6= T`[k]. We also store E`[k] = TD`[k][k]. We
store each bit vector in a rank and select data structure [43] that uses O( nw ) space
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for a bit vector of length n, and supports rank(i) in constant time. A rank(i) query
returns the number of ones in the first i bits of the input.

Each change list, C`,k and every D` and E` list is stored as an array. The
bit vectors indicate at which indices the contents of the first dlog1+εte entries of
T`, . . . , T`+t−1 change, and the change lists store what the entries change to. The D`

and E` arrays do the same thing for the last t − dlog1+εte entries, exploiting that
these entries change at most once in an interval of length t.

Observe that the arrays, C`,k, D`[k] and E`[k], and the bit vectors, B`,k allow us
to retrieve the contents of any entry, Ti[k] for any i, k, in constant time as follows.
Let ` = bi/tct. If k > dlog1+εte we check if D`[k] ≤ i, and if so we return E`[k],
otherwise we return S`[k]. If k ≤ dlog1+εte, we determine r = rank(i − `) in B`,k
using the rank and select data structure. We then return C`,k[r] unless r = 0 in
which case we return S`[k].

We argue that this correctly returns Ti[k]. In the case where k > dlog1+εte,
comparing D`[k] to i indicates whether Ti[k] is different from T`[k]. Since Tz[k] for
z = `, . . . , i can only change once, Ti[k] = E`[k] in this case. Otherwise, S`[k] =
T`[k] = Ti[k]. If k ≤ dlog1+εte, the rank r of i− ` in B`,k, is the number of changes
that has occurred in the k’th entry from list T` to Ti. Since C`,k[r] stores the
value of the k’th entry after the r’th change, C`,k[r] = Ti[k], unless r = 0 in which
case Ti[k] = S`[k].

The space used by the data structure is O(nε ). We store 3dnt e arrays, S`, D`

and E` for ` ∈ I, each using t space, in total O(n). The total size of the change
lists, C`,k, is bounded by the number of changes across the Ti lists, which is O(nε ) by
the arguments above. Finally, the rank and select data structures, B`,k, each occupy
O( tw ) = O( t

logn) words, and we store a total of dnt edlog1+εte such structures, thus
the total space used by these is bounded by

O(
t

log n

n

t
log1+εt) = O(n

log1+εt

log n
) = O(

n

ε

log t

log n
) = O(

n

ε

log(n log(εn))

log n
) = O(

n

ε
).

We use that if d1
εe ≥ n then we only store the small frequency data structure. We

conclude that our data structures uses O(nε ) space.
To answer a query [i, j], we first compute a 3-approximation of Fi,j in constant

time using the data structure from Section 2.4. Thus, we find fi,j satisfying fi,j ≤
Fi,j ≤ 3fi,j . Choose k such that d1

ε (1 + ε)ke + 1 ≤ fi,j ≤ d1
ε (1 + ε)k+1e − 1 then

the successor of j in Ti must be in one of the entries, Ti[k], . . . , Ti[k +O(log1+ε3)].
As stated earlier, the values of Ti are sorted in increasing order, and we find the
successor of j using a binary search on an interval of length O(log1+ε3). Since each
access to Ti takes constant time, we use O(log log1+ε3) = O(log 1

ε ) time.

Theorem 2.7. There exists a data structure for (1 + ε)-approximate range mode
that uses O(nε ) space and supports queries in O(log 1

ε ) time.

The careful reader may have noticed that our data structure returns a frequency,
and not a label that occurs approximately Fi,j times. We can augment our data
structure to return a label instead as follows.

We set ε′ =
√

(1 + ε) − 1, and construct our data structure from above. The
small frequency data structure is augmented such that it stores the label Mi,Qi[k]

along with Qi[k], and returns this in a query. The large frequency data structure
is augmented such that for every update of Ti[k] we store the label that caused the
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update. Formally, let a > 0 be the first index such that Ti+a[k] 6= Ti[k]. Next to Ti[k]
we store the label Li[k] = A[i + a − 1]. In a query, [i, j], let s be the index of the
successor of j in Ti computed as above. If s > 1 we return the label Li[s − 1], and
if s = 1 we return Mi,Qi[d1/ε′e], which is stored in the small frequency data structure.

In the case where s = 1 we know that d 1
ε′ e ≤ Fi,j ≤ d 1

ε′ (1 + ε′)2e − 1 =
d 1
ε′ (1 + ε)e−1 and we know that the frequency ofMi,Qi[d1/ε′e] in A[i, j] is at least d 1

ε′ e.
We conclude that the frequency of Mi,Qi[d1/ε′e] in A[i, j] is a (1 + ε)-approximation
of Fi,j .

If s > 1 we know that d 1
ε′ (1 + ε′)s−1e + 1 ≤ Fi,j ≤ d 1

ε′ (1 + ε′)s+1e − 1 by
equation (2.1), and that the frequency, fL, of the label Li[s− 1] in A[i, j] is at least
d 1
ε′ (1 + ε′)s−1e+ 1. This means that Fi,j ≤ 1

ε′ (1 + ε′)s+1 ≤ (1 + ε′)2fL = (1 + ε)fL,
and we conclude that fL is a (1 + ε)-approximation of Fi,j .

The space needed for this data structure is O( nε′ ) = O(n(
√

1+ε+1)
ε ) = O(nε ), and

a query takes O(log 1
ε′ ) = O(log 1

ε + log(
√

1 + ε+ 1)) = O(log 1
ε ) time.

2.6 Concluding remarks

We have shown that using only linear space we can get any constant factor approxi-
mation of the mode in constant time. Secondly, we considered the range k-frequency
problem and showed how this problem is strongly related to geometric data struc-
ture problems. We found matching upper and lower bounds for any constant k > 1,
and showed that for k = 1 it is exponentially easier to solve for near linear space
data structures. Unfortunately, we were not able to exploit this in our efforts to
prove anything new regarding the range mode problem. The range mode problem
seems to be much harder than the range k-frequency problem, but we were not able
to put any structure on the range mode problem that could be used to prove a lower
bound as we did for the range k-frequency problem.





3

Implicit Dictonaries

In this chapter we consider the problem of creating implicit dictionaries [54] with
the working set and finger search properties. The chapter is a merger of [19] which
is joint work with Gerth Stølting Brodal and Casper Kejlberg-Rasmussen, and [20]
which is joint work with Gerth Stølting Brodal and Jesper Sindahl Nielsen. Several
section have been extended and the terminology has been unified.

3.1 Introduction

A dictionary is a data structure storing a set of elements with distinct comparable
keys such that an element can be located efficiently given its key. It may also support
predecessor and successor queries where given a query k it must return the element
with the greatest key less than k or the element with smallest key greater than k.
A dynamic dictionary also supports insertion the and deletion of elements.

A dictionary has the finger search property if the time for searching is dependent
on the rank distance t between a specific element f , called the finger, and the query
key k. In the static case O(log t) search can be achieved by exponential search on a
sorted array of elements starting at the finger. Dynamic finger search data structures
have been widely studied, some of the famous dynamic structures that support finger
searches are splay trees, randomized skip lists and level linked (2-4)-trees. These
all support finger search in O(log t) time, respectively in the amortised, expected
and worst case sense. For an overview of data structures that support finger search
see [21].

We consider two variants of finger search structures. The first variant is the
finger search dictionary where the search operation also changes the finger to the
returned element. The second variant is the change finger dictionary where the
change-finger operation is separate from the search operation.

A dictionary has the working set property if the time for searching for an ele-
ment e depend on the number of distinct elements ` searched for since e was last
searched for. The splay tree [65], a skip list variant [16], and the working set struc-
ture [42], all achieve a query time ofO(log `) in the amortised, expected or worst-case
sense.

The unified access bound, which is a generalization of the working set bound
and the finger search property, is achieved in [12]. The unified access bound states
that, if `(g) is the number of distinct elements accessed since g was last accessed,
and d(g, e) denotes the rank distance between g and e, then the search time for e
must be O(ming log(`(g) + d(g, e) + 2)).

We consider the problems in the implicit model. Here a data structure of n ele-
ments is an array with exactly n entries, each entry containing exactly one element

47



48 CHAPTER 3. IMPLICIT DICTONARIES

Reference Insert/Delete Search Predecessor

Additional
space
(words)

[33] O(log n) O(log n) O(log n) None
[42] O(log n) O(log `) O(log `) O(n)
[17, Sec. 2] O(log n) O(log `) exp. O(log n) O(log log n)
[17, Sec. 3] O(log n) O(log `) exp. O(log `) exp. O(

√
n)

This chapter O(log n) O(log `) O(log n) None
[22] O(log n) O(log `) O(log `) None

Table 3.1: The operation time, and space overhead of important structures for the
working set dictionary problem.

which is indivisible. Computation is done on a machine with a constant number of
registers with a word size of Θ(log n) bits. All operations on registers are unit cost,
similar to the RAM model. There is some debate about how much memory can be
used between operations. We therefore partition this into two different models. In
the weak implicit model O(1) extra words of information may be stored between
operations. Examples are [33, 34, 54]. In the strong implicit model no additional
space is allowed, only the number of elements n is assumed to be implicitly main-
tained. Examples assuming the strong implicit model are [15, 35]. In either model
the only allowed operations on elements are comparisons and swaps.

In both models almost all structure has to be encoded in the order of the ele-
ments. As there is no agreement on the exact definition of the implicit model, it
is interesting to study the limits of the strict model. We show that for a static
change-finger dictionary in the strict model, if we want a search time of O(log t),
then change-finger must take time Ω(nε), while in the weak model a sorted array
achieves O(log n) change-finger time.

Extensive research has been done in the implicit/in-place models, from as early
as binary heaps [68], to an in-place 3-d convex hull algorithm [27]. Implicit dictio-
naries have been the topic of several papers. Among the first [53] gave a dictionary
supporting insert, delete and search in O(log2 n) time. In [34] an implicit B-tree is
presented, supporting insert,delete, and Predecessor in O(log2 n/ log logn) time , and
finally in [33] a worst case optimal and cache oblivious dictionary is presented, sup-
porting the operations in O(log n) time and O(logB n) I/Os. For a more extensive
overview see [52].

In [17] two dictionaries with low space overhead are presented, achieving the
working set property in the expected sense, see Table 3.1.

As a continuation of the publication of [19], on which this chapter is partly based
Gerth Stølting Brodal and Casper Kejlberg-Rasmussen published [22], where they
show how to construct strict implicit dictonary with the working set property where
also the Predecessor and Successor operations run in time O(log `), where ` is with
respect to the found element.

Preliminaries. A common implicit data structure technique is the pair encoding
of bits. When we have two distinct consecutive elements x and y, then they encode
a 1 if x ≤ y and 0 otherwise.

We will use set notation on a data structure when appropriate, e.g. |X| will
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denote the number of elements in the structure X and e ∈ X will denote that the
element e is in the structure X. Given two data structures or sets X and Y , we
say that X ≺ Y ⇔ ∀(x, y) ∈ X × Y : x < y. We use d(e1, e2) to denote the rank
distance between two elements, that is the difference of the index of e1 and e2 in the
sorted key order of all elements in the structure.

At any time f will denote the current finger element and t the rank distance
between this and the current search key. The running time of the search operation
is hereafter denoted by q(t, n). Throughout the chapter we require that q(t, n) is
nondecreasing in both t and n, q(t, n) ≥ log t and that q(0, n) < log n

2 . We define
Zq(n) = min{t ∈ N | q(t, n) ≥ log n

2 }, i.e. Zq(n) is the smallest rank distance t, such
that q(t, n) > log n

2 . Note that Zq(n) ≤ n
2 (since by assumption q(t, n) ≥ log t), and

if q is a function of only t, then Zq is essentially equivalent to q−1(log n
2 ). As an

example q(t, n) = 1
ε log t, gives Zq(n) = d(n2 )εe, for 0 < ε ≤ 1. We require that for

a given q, Zq(n) can be evaluated in constant time, and that Zq(n + 1) − Zq(n) is
bounded by a fixed constant for all n.

Our results. To facilitate our working set and finger search results, we need a
movable dictionary, i.e. a dictionary stored in a consecutive sub-array that can be
moved to the left or the right, one position at a time. We construct a movable
dictionary from a constant number of the implicit and cache-oblivious dictionaries
from [33], achieving a dictionary inheriting the same properties, but which is also
movable. The movable dictionary is in itself an interesting result because it is a
general transformation, that can be applied to any data structure that can be laid
out in an array and grows/shrinks in one end and supports insertions and deletions.
Hence we can plug in say a binary heap, and get a movable binary heap. The
movable dictonary is presented in Section 3.2.

We present an implicit dictionary with the working set property that supports
insertions, deletions, and predecessor queries in O(log n) time and search queries
in O(log `) time. Our result improves the construction of [17, Section 2] by re-
quiring no additional space. Furthermore our structure is cache-oblivious and sup-
ports insert, delete and predecessor operations in O(logB n) cache-misses and search
in O(logB `) cache misses. In the literature the working set property is often stated
in terms of the number of operations. We note that if we perform a search for an
element whenever it is inserted, we will also satisfy these kinds of bounds. The
construct of the working set dictonary is given in Section 3.3 and a detailed descrip-
tion of how to manage the memory is given in Section 3.4. In Section 3.5 we prove
correctness and running time bounds.

In Section 3.6 we present a static change-finger implicit dictionary support-
ing predecessor in time O(q(t, n)), and change-finger in time O(Zq(n) + log n), for
any function q(t, n). Note that by choosing q(t, n) = 1

ε log t, we get a search time
of O(log t) and a change finger time of O(nε) for any 0 < ε ≤ 1.

In Section 3.7 we outline a construction for creating a dynamic change-finger
implicit dictionary , supporting insert and delete in time O(log n), predecessor and
successor in time O(q(t, n)) and change-finger in time O(Zq(n) log n). Note that by
setting q(t, n) = 2

ε log t, we get a search time of O(log t) and a change-finger time

of O(nε/2 log n) = O(nε) for any 0 < ε ≤ 1, which is asymptotically optimal in
the strict model. It remains an open problem if one can get better bounds in the
dynamic case by using O(1) additional words.
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Finally in Section 3.8, we present a simple technique for proving lower bounds
in the strict implicit model. First we prove (Lemma 3.1) that for any algorithm A
on a strict implicit data structure of size n that runs in time at most τ , whose
arguments are keys or elements from the structure, there exists a set XA,n of at
most O(2τ ) array entries, such that A touches only array entries from XA,n, no
matter the arguments to A or the content of the data structure. We use this to
show that for any change-finger implicit dictionary with a search time of q(t, n),
change-finger will take time Ω(Zq(n) + log n) for some t (Theorem 3.2).

We prove that for any change-finger implicit dictionary search will take time at
least log t (Theorem 3.3). A similar argument applies for predecessor and successor.
This means that our previous requirement q(t, n) ≥ log t is necessary. We show that
for any finger-search implicit dictionary search must take at least log n time as a
function of both t and n, i.e. it is impossible to create any meaningful finger-search
dictionary in the strict implicit model (Theorem 3.4).

By Theorem 3.2 and 3.3 the static data structure presented in Section 3.6 is
optimal w.r.t. search and change-finger time trade off, for any function q(t, n) as
defined above. In the special case where the restriction q(0, n) < log n

2 does not hold,
[33] provides the optimal trade off. For completeness we also show that search time
for the working-set dictonary in the strict implicit model, presented in Section 3.3,
is asymptoticaly optimal with respect to ` and n, since it must be at least log ` by
Theorem 3.5.

3.2 A movable dictionary

In this section we describe an implicit movable dictionary which can be laid out
in an array in the range [i; j], where n = j − i + 1 is the number of elements in
the dictionary. When deleting an element from the dictionary we are allowed to
shrink the dictionary from the left or the right end, such that the structure now
lies in the range [i + 1; j] or [i; j − 1], respectively. Likewise we can insert and
expand the dictionary at the left or right end such that the structure now lies in
the range [i− 1; j] or [i; j + 1], respectively. The structure also supports search and
predecessor operations. All operations run in O(log n) time. The movable dictionary
is implicit except for O(log n) extra bits that need to be stored/encoded externally
(in the Di structures in Section 3.3).

The dictionary supports the following operations:

• Insert-left(e) and insert-right(e): inserts an element e into the dictionary which
grows in the left and right side, respectively.

• Delete-left(x) and delete-right(x): deletes the element with key x from the
dictionary which shrinks in the left and right side, respectively.

• Search(x): returns the element e with key x in the dictionary if such an element
exits, otherwise none is returned.

• Predecessor(x): is given a key x and returns the element e in the dictionary
with the largest key less than x.

An amortised solution can be obtained using two of the dictionaries by Frances-
chini and Grossi [33] (in the following denoted FG dictionaries). Let r be an index
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RL C

or

Figure 3.1: We have three FG dictionaries L,C and R, where L always grows/shrinks
in the left direction, and R grows/shrinks in the right, and C will change direction
during the execution of the jobs to shrink or grow L or R.

in the range i ≤ r ≤ j. One FG dictionary denoted R is located in the range [r; j]
and grows to the right as normal, and one FG dictionary denoted L is located in the
range [i; r − 1] and grows to the left, i.e. for L we have inverted all the indexes of
the original FG dictionary. The insert-left and insert-right operations insert elements
into L and R, respectively. The delete-left operation searches for the element e to be
deleted in L and R. If e is in L it is deleted from L and we are done. Otherwise e
is deleted from R and an arbitrary element is deleted from L and inserted into R
– provided L is non-empty. If L is empty we first rebuild the data structure such
that L and R differ in size by at most one, by repeatedly reinserting into new L
and R structures starting from the new index r = d i+j2 e. The delete-right operation
is handled symmetrically. To search for an element with a given key, we search in L
and then in R; to find the predecessor element of a given key we find the predeces-
sor in L and R and return the largest of the two. Since [33] supports all operations
in O(log n) time, all operations run in O(log n) amortised time, which e.g. can be
seen using the potential function Φ = | |L| − |R| |.

In the following we describe how to deamortise the above construction using
incremental rebalancing of L and R. An additional FG dictionary C is placed
between L and R (see Figure 3.1).

In the following we w.l.o.g. assume that n ≥ 24, such that all intervals stated be-
low are guaranteed to include an integer. If L or R get outside the range [ 3

24n,
7
24n],

say L is getting too big/small, we initialize an incremental job to make L smaller/
bigger by transferring elements to/from C. Each time an insert and delete operation
is executed we perform a constant number of steps of the current job. While resiz-
ing L there might be a pending job waiting for resizing R, and vice versa. During
the execution of a job we have a temporary FG dictionary, which can be one of
either L′, C ′ or R′, depending on how far we are in the execution of the job (see
Figure 3.2).

3.2.1 Methods and jobs

The insert-left and delete-left operations, and the grow-left and shrink-left jobs de-
scribed here have analogous right-versions.

Search(x) We always have the structures L,C and R, and possibly one of the
structures L′, C ′ or R′. We search each of the at most four structures. If we find an
element e with key x we return e, otherwise we return none.

Predecessor(x) As in search we search for the predecessor in each of the struc-
tures L,C,R and possibly one of L′, C ′ or R′, and return the largest of the four
candidates found.
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Figure 3.2: The steps of the two operations grow-left and shrink-left, notice that
they are almost each other’s inverse. (Left) The five steps of the grow-left operation,
notice that in step 4) the arrow at the top means that we have split L up into two
by use of address-mapping. (Right) The five steps of the shrink-left operation, in
step 3) we have again used address-mapping to split L in two.

Insert-left(e) We insert e into L. If |L| > 7
24n we initialize a shrink-left job unless

a left job is already running/pending.

Delete-left(x) We delete the element with key x from L. We can do this even
though the element we want to delete resides in L′, C, C ′, R or R′ by swapping the
element we want to delete with one from L. We can swap elements by performing
two deletions and two insertions. If |L| < 3

24n we initialize a grow-left job unless a
left job is already running/pending.

Grow-left The job consists of the following steps to be performed incrementally (see
Figure 3.2 (left)). Notice that during the incremental work, deletions and insertions
are performed on L and R by the update operations. We let ninit denote the size
of the dictionary when the job is initialized, and assume that ninit is remembered
when the job is initialized.

1) If C is not growing to the left then turn C around so it grows toward L. We turn C
around by creating a new C ′ in the growing end of C which grows towards C,
into which we insert all the elements of C, one element at a time.

2) Construct L′ of size d 2
24ninite at the beginning of L, growing to the right, by

deleting elements from C and inserting them into L′.

3) Turn L′ around so it faces L, like we turned C in step 1).

4) Continue deleting an element from C and inserting it into L′, so L′ expands
into L. The element overridden in L is moved into the empty place in C where
we took the element to place in L′. We do this by splitting L into two pieces by
address-mapping, see steps 3) and 4) in Figure 3.2 (left). When we have moved L
completely to the right of L′, we swap the names of L and L′.
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5) Merge L′ back into C, by deleting an element from L′ and inserting it into C
until L′ is empty.

Shrink-left The job consists of the following steps (see Figure 3.2 (right)). Notice
the similarity to grow-left.

1) If C is not growing to the left then turn C around so it grows toward L.

2) Create L′ by deleting d 5
24ninite elements from C, one element at a time and

inserting them into L′, which we create to the left of C.

3) Swap the names of L and L′. Delete an element from L′ and insert it into C so
it expands into L, then move the element overridden in L to the empty space to
the left of L′, do this one element at a time until L is moved completely to the
left of L′.

4) Turn L′ around so it faces C.

5) Merge L′ back into C.

3.2.2 Correctness

The correctness of the search and predecessor operations follows directly from the
fact that the dictionary consists of at most four FG dictionaries. Similarly the insert-
left and insert-right operations insert a single new element into an FG dictionary and
otherwise only moves elements between the FG dictionaries. The only operations
remaining to be considered are the delete-left and delete-right operations. In the
following we only consider the delete-left operation (delete-right is symmetric). The
only technical detail we need to argue about is that there always is a non-empty FG
dictionary L oriented to the left that has its leftmost element stored in the leftmost
entry in the subarray.

In the following when considering a job, we let ninit, n0, nfinish denote the size
of the movable dictionary: when the job was initialized, when the execution of the
job started, and just after it is finished, respectively.

By performing the incremental work sufficiently fast, we will be able to perform
the job during at most βn0 movable dictionary updates, for any constant β > 0. An
upper bound on the number of primitive steps (that is movement of one element
from one FG dictionary to another one, and possibly move in memory) per update
is: During the execution of the job at most βn0 insertions can take place, i.e. the
dictionary always has size at most (1 + β)n0. Therefor each of the five steps of a
job require at most (1 + β)n0 primitive steps. In total there are at most 5(1 + β)n0

primitive steps. By performing at least 5(1 + β)/β primitive steps per update, the
job finishes within βn0 updates.

To relate ninit and n0 we make the observation that any job under execution will
finish during the next βn updates, where n is the current number of elements in the
dictionary. To see this, observe that a job that has run for d updates needs to be
executed for at most βn0−d ≤ β(n0−d) ≤ βn further updates, provided β ≤ 1. From
this it follows that when a job is initialized, it at most takes βninit updates before
the current job finishes and the new job starts being executed, i.e. (1 − β)ninit ≤
n0 ≤ (1 + β)ninit.
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Let tfinish denote the number of updates between the initialization of a job until
it is finished. We have tfinish ≤ βninit +βn0 ≤ βninit +β(1 +β)ninit = (β2 + 2β)ninit.
We get nfinish ≤ ninit + tfinish ≤ (1 + β2 + 2β)ninit and nfinish ≥ ninit − tfinish ≥
(1− β2 − 2β)ninit.

During the lifetime of a job, i.e. between its initialization and its the time it
finish, there are always at least 3

24ninit − tfinish ≥ ( 3
24 − β2 − 2β)ninit elements that

still can be deleted from the leftmost FG dictionaries which shrink the subarray
from the left. By selecting β sufficiently small such that β2 + 2β < 3

24 , this number
is always non-zero.

What remains to be argued is that i) 3
24nfinish ≤ |L| ≤ 7

24nfinish when a left
job is finished, ii) |C| ≥ d 2

24ninite when a grow job starts its execution, and iii)
|L| ≥ d 5

24ninite immediately before step 3) in a shrink job. We need i) to ensure
that 3

24n ≤ |L| ≤ 7
24n holds just before a job is initialized, and ii) and iii) to ensure

that grow-left and shrink-left are well defined, respectively.

The above can be shown by the following observations:

i) After a shrink or grow job |L| ≤ 5
24ninit + 1 + tfinish ≤ 6

24ninit + tfinish which
is less than 7

24nfinish for β2 + 2β ≤ 1
31 . Similarly after a shrink or grow job

|L| ≥ 5
24ninit − tfinish which is greater than 3

24nfinish for β2 + 2β ≤ 2
27 .

ii) Before grow-left |C| ≥ n0 − |L| − |R| ≥ (ninit − βninit) − ( 7
24ninit + βninit) −

7
24ninit(1 + β) which is greater than 3

24ninit ≥ d 2
24ninite for β ≤ 7

55 .

iii) In shrink-left |L| ≥ 7
24ninit − tfinish which is greater than 6

24ninit ≥ d 5
24ninite

for β2 + 2β ≤ 1
24 . We note that setting β = 1

63 will satisfy all the stated
constraints.

The O(log n) time bounds for the operations follow from the O(log n) time
bounds of the FG dictionaries. In the cache-oblivious model we notice that because
the FG dictionary is cache-oblivious and we only use a constant number of FG dic-
tionaries, where we split at most one of them into two parts by address-mapping
then we only multiply the bound on the cache-misses from the FG dictionary by a
constant factor. Hence all operations cause O(logB n) cache-misses.

We notice that we can make the movable dictionary implicit such that we do not
need to store O(log n) bits between operations. We do this by introducing a block D
of O(log n) elements to the left of L which pair-encodes the O(log n) bits. With pair-
encoding we mean that each consecutive pair of elements encodes a bit. As we need
to read this block to get the O(log n) bits, we can maintain (and possibly move) D
when we perform insert-left, insert-right, delete-left and delete-right operations. From
a cache-oblivious viewpoint this does also not change the asymptotic bound on the
number of cache-misses.

3.3 Construction of the working set dictionary

In the following we describe our working set dictionary archiving insertions, deletions
and predecessor searches in O(log n) time and searches in O(log `). We first describe
the overall structure leaving the details of the memory layout to be handled in
Section 3.4. The structure is composed ofO(log log n) blocks, where the i’th block Bi
stores O(22i) elements. The main design goal is to have elements that have been
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Figure 3.3: Layout of the data structure. The arrows indicate the movement of
elements after an element in Rj has been searched for. The dotted lines in block Bm
indicate that the structures do not necessarily exist.

searched for within the last ` distinct searches located in one of the first O(log log `)
blocks.

Block Bi consists of a list Di of size wi, where wi = dα2ie for some appropriate
constant α, and three implicit movable dictionaries, Li, Ci and Ri. We use Di to
pair-encode O(2i) bits, used for memory management in the working set dictionary
and for storing the data needed between operations in the movable dictionaries Li, Ci
and Ri. Block Bi contains exactly 2 ·22i +wi elements, except for the last block Bm
that might contain less than 2 · 22i +wi elements, as this is the block that grows or
shrinks when we insert or delete, respectively.

When an element e is searched for it is moved from its current block Bj to the
block B0. To make room for this in B0, we move an element from each block Bi
to Bi+1 until we reach the block Bj , where e was originally located. We move
elements from Ri to Li+1, for i = 0, . . . , j − 1 (see Figure 3.3). Once Ri is empty
we move Ci to Ri, and Li to Ci. Doing this we can guarantee that at all elements
in Lj ∪Cj ∪

⋃j−1
i=0 Bi have been accessed more recently than the elements in Rj , i.e.

least 22i distinct elements have been searched for since any element in Ri was last
searched for. We can give this guarantee because an element will be located in Ci
at least until searches for 22i other elements have been performed.

3.3.1 Invariants

Our data structure satisfies the invariants below. Here I.1 to I.4 are about the
sizes of data structures and are important for memory management. On the other
hand I.5 to I.8 are about the location of elements according to when they were last
searched for and are important for achieving the working set property.

I.1 |Ci| ≤ 22i and |Ri| 6= 0⇒ |Ci| = 22i , for all i.

I.2 |Di| ≤ wi and |Li|+ |Ci|+ |Ri| 6= 0⇒ |Di| = wi, for all i.

I.3 |Li|+ |Ri| = 22i , for all i < m, and |Lm|+ |Rm| ≤ 22m .

I.4 |Li| < 22i , for all i.

I.5 All elements searched for since Li was last empty are contained in Li, Di or Bj
for some j < i.

I.6 For any e in some Ci either at least |Li| distinct elements have been searched
for after e was last searched for or e has never been searched for.

I.7 For any e in some Ri either at least 22i distinct elements have been searched for
after e was last searched for or e has never been searched for.
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I.8 For any e in Di, Li or Ci, for i > 0, either at least 22i−1
distinct elements have

been searched for after e was last searched for, or e has never been searched for.

From the invariants we make the following observations:

O.1 |Di| = wi for all i < m (from I.2 and I.3).

O.2 |Ri| > 0 for all i < m (from I.3 and I.4).

O.3 |Ci| = 22i for all i < m (from I.1 and O.2).

O.4 |Bi| = wi + 2 · 22i for all i < m (from O.1, O.3, and I.3).

O.5 For i > 0 and any e in Bi, either at least 22i−1
distinct elements have been

searched for after e was last searched for or e has never been searched for (from
I.7 and I.8).

3.3.2 Operations

Our data structure uses the operations shift and find internally, and supports the
operations insert, delete, predecessor and search. Below is a detailed description of
all operations, pseudo-code for all the operations can be found in Section 3.9.

Shift(j) handles the case when |Rj | = 0 and |Lj | = 22j , i.e. I.4 is violated for
block Bj . This is done by discarding Rj , renaming Cj to Rj , renaming Lj to Cj ,
and creating a new empty Lj . After shift(j) finishes I.4 also holds for Bj .

Find(x) finds the data structure Si containing the element with key x or returns
none if no such element exists. Here Si will be either Di, Li, Ci or Ri for some i.
This is done by searching for x in the blocks starting with B0 and going in an
incremental linear fashion towards Bm. Within each block, x is searched for in Di

using a linear scan, and the implicit movable dictionaries Li, Ci and Ri are searched
for x using their built-in search operation. As soon as x is found, a reference to
the data structure Si containing the element is returned, and no further blocks are
considered. In the case when x is not found in any of the blocks none is returned.

Predecessor(x) returns the element e in the data structure with the largest key
less than x. This is done for B0, . . . , Bm by a linear scan of Di and invoking the
built-in predecessor operation on Li, Ci and Ri and returning the element among
the results with the highest key.

Insert(e) inserts the element e into the data structure. This is done by insert-
ing e into one of the data structures in Bm. It is inserted into Dm if |Dm| < wm.
Otherwise, if |Cm| < 22m it is inserted into Cm, else it is inserted into Rm. If this
makes |Lm|+ |Rm| = 22m , then a new block Bm+1 is initialized by incrementing m
by one.
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Delete(x) deletes the element with key x from the data structure. We first check
if x is in the dictionary by performing a find(x) operation. If x is not found we
return. Here Sj will be one of Dj , Lj , Cj or Rj . If Bm is empty, m is decremented
by one. An arbitrary element e is deleted from the first of the structures Rm, Cm, Lm
and Dm that is non-empty. If e has key x we return, else the element with key x is
deleted from Sj and e is inserted into Sj .

Search(x) returns the element e with key x or none if such an element does not
exist. This is done by performing a find(x) operation, finding the data structure Sj
containing x. If x is not in the data structure then none is returned.

If x is found in a data structure Sj then the element e with key x is found by
running the built-in search method on Sj . If Sj is either D0 or L0 we return e
immediately. If Sj = Cj and |Rj | > 0, an arbitrary element g is removed from Rj , e
is removed from Cj and g is inserted in Cj . In the other case where Sj 6= Cj
or |Rj | = 0, the element e with key x is deleted from Sj .

In all cases we then proceed by deleting an arbitrary element h from Ri−1 and
inserting it into Li, for i = j, . . . , 1. In the special case where i = j and Sj = Dj

we insert h into Dj instead of Lj . Next we insert e into L0. Now for i = 0, . . . , j

we check whether |Li| = 22i , and if this is the case we perform a shift(i) operation.
Finally we return e.

3.4 Memory management

From O.4 we know that any block except the last will contain a fixed number of
elements, namely 2·22i +wi. This implies that we can lay out the blocks sequentially
in the array, and then we only have to worry about memory management inside each
block. The last block Bm can vary in size, and is located at the end of the array
where growing and shrinking must occur.

By I.2 we know thatDi will be completely constructed before the other structures
are needed, therefore we lay it out sequentially in the beginning of the block. The
remaining structures will be laid out sequentially in the order: Li, Ci, Ri. That is
we lay out structures as show in Figure 3.3 from consecutively left to right.

Right before we insert an element into Li, we move Ci and Ri one position to
the right to make room. We can move Li, Ci or Ri to the right by performing a
delete-left operation on an arbitrary element e followed by an insert-right(e). This
moving will take time O(2i). We do the same when inserting into Ci, but here we
only move Ri one position to the right. We never need to move structures to the
left.

To perform queries on the substructures in a block Bi we need to store various
information in Di. We need nLi , nCi and nRi : the size of Li, Ci and Ri, respectively.
We store nCi and nRi inDi explicitly using 2i bits each, whereas nLi can be computed
as nLi = |Bi|−wi−nCi−nRi . Furthermore we store in Di the Θ(2i) bits we allow the
movable dictionaries Li, Ci and Ri to maintain between operations, denoted dataLi ,
dataCi and dataRi .

We maintain all these bits in Di, using pair-encoding. The fields are stored in
the following order: dataLi , nCi , dataCi , nRi , dataRi . Whenever we add an element
to or remove an element from Di we maintain the ordering of the pair by performing
a swap if needed.



58 CHAPTER 3. IMPLICIT DICTONARIES

To perform an operation on block Bi we need to know the index bi of the first
element, which can be computed as b0 = 0, and bi = bi−1 + 2 · 22i−1

+wi−1. We may
also need |Di| which can be computed as |Di| = min(wi, n− bi), and |Bi| which can
be computed as |Bi| = wi + 2 · 22i if i < m and |Bm| = n− bm otherwise.

Whenever we want to perform an operation on Ci, we first extract nLi , nCi , nRi

and dataCi from the pair-encoding in Di and put them into registers. From the sizes
and the value of bi we can compute the index of the first element in Ci. Using that
information we can run the operation on the implicit movable dictionary. Once that
is done we write dataC back to the pair-encoding in Di. Totally this requires O(2i)
time. We do similarly if we perform an operation on Li or Ri.

When performing a shift operation we override nRi and dataRi with nCi and dataCi

and we override nCi and dataCi with nLi and dataLi . This renames the data struc-
tures, initiating a new empty Li before the old full one, and “deletes” the old
empty Ri.

During an insert operation, when Di increases to wi, we initialize nLi , dataLi ,
nCi , dataCi , nRi and dataRi . Finally we calculate m when it is needed as the minimal

value where
∑m

j=0 2 · 22j + wj > n.

3.5 Analysis of the working set structure

We now analyse the working set dictionary, we first argue that all operations main-
tain the invariants, which proves the correctness of the structure and the operations.
Then we analyse the running time and cache-misses that each operation incurs.

3.5.1 Maintaining Invariants

First note that the find and predecessor operations do not alter the structure, so
they trivially maintain the invariants. Also note that all the invariants hold for the
empty data structure.

In the following Ci will refer to the data structure before the operation and C ′i
the same data structure after the operation, similarly for the other data structures
and m.

The insert operation First note that all invariants are trivially maintained
for i < m since we do not change blocks B0, . . . , Bm−1. Since I.1 held before the
operation we know that either |Cm| = 22m or |Rm| = 0. In the first case we will not
insert anything into Cm, but into Ri. In the latter case we will only insert something
into Rm if |Cm| = 22m , so in both cases I.1 is maintained for i = m. We note that
if m′ = m+ 1, I.1 holds for i = m′ since |Rm′ | = 0.

Since I.2 held before the operation we know that either |Lm| = |Cm| = |Rm| = 0
or |Dm| = wm. In the first case we only insert something into Cm or Rm if |Dm| =
wm. In the second case we do not alter |Dm|, so in both cases, I.2 is maintained
for i = m. If m′ = m+1, then I.2 holds for i = m′ because |Lm| = |Cm| = |Rm| = 0.
If m′ = m+ 1 then we also get that |Lm|+ |Rm| = 22m so I.3 holds for i = m′ − 1.

Since we never insert anything into Lm and all elements we insert into Dm, Cm
or Rm by definition have never been searched for, then I.4 to I.8 are maintained
for i = m.
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The delete operation I.1 to I.4 only deal with sizes of data structures. Since
we only changed the sizes in Bm, they are maintained for i < m. I.1 is maintained
for i = m since we only delete from Cm if Rm is empty. I.2 is maintained for i = m
since we only delete from Dm if Lm, Cm and Rm are empty. I.3 does not apply
for m′, not even if m′ = m− 1. I.4 is maintained since we do not add any elements
to Lm. Since we only ever move elements to the left, I.5 is maintained. Since we
only touch Bm and Bj , I.6 to I.8 are maintained for all other blocks.

If element e is deleted from Lm, then Cm is empty so I.6 holds for block Bm.
Now if we insert the element e into Sj = Cj , then it will come from Bm. We have
two cases. If j < m then O.5 tells us that at least 22m−1 ≥ 22j distinct elements have
been searched for since e was last searched for. By I.4 we know that 22j > |Lj |, so
I.6 is maintained for Bj . If on the other hand j = m then if e comes from Cm, Lm
or Dm then we just insert e into Cm and I.6 is maintained, so lets assume that e
comes from Rm. Here I.4 and I.7 imply that at least 22m > |Lm| elements have been
searched for after e was last searched for (or e has never been searched for), so I.6
is maintained for block Bj .

If element e is inserted into Sj = Rj and m > j then O.5 imply that at
least 22m−1 ≥ 22j elements have been searched for after e and I.7 is maintained.
Now if element e is inserted into Sj = Rj and m = j, then we know that x 6= e and
we have deleted and inserted e into Sj = Rj and deleted x, which maintains I.7.

If an element e is inserted into Dj , Lj or Cj , then by O.5 we know that at
least 22m−1 ≥ 22j−1

elements have been searched for after e and I.8 is maintained.

The shift operation We assume that Bj satisfies all invariants except I.4 before
shift(j). Since the shift operation requires that |Lj | = 22j and C ′j = Lj I.1 holds
for j after the shift operation. Because |Lj | = 22j and I.2 holds before the operation
we know that |Dj | = wj . Since the shift operation did not change Dj , I.2 also holds
for j after the operation. When verifying I.3 we have two cases: if j = m, then from
I.1 we know that |Cm| ≤ 22m so |L′m| + |R′m| = 0 + |Cm| ≤ 22m so I.3 holds. Else
if j < m then by O.3 we know that |Cj | = 22j . Now since L′j is empty and R′j = Cj ,
then I.3 holds for j < m after the operation. Since L′j is empty, no elements
have been accessed after it was last empty, thus I.5 trivially holds for j. Likewise

because
∣∣∣L′j
∣∣∣ = 0, then I.6 is maintained for j. Because shift(j) assumed |Lj | = 22j ,

and because R′j = Cj , then I.6 immediately implies that I.7 holds for j after shift(j).
Lastly, since all elements in L′j and C ′j come from Lj , and D′j contains the same
elements as Dj then I.8 held for j since it holds before the shift(j) operation.

The search operation We will show that all invariants except I.4 hold for the
search operation, just before we perform the shift operations. This is sufficient since
the search operation will maintain all invariants except I.4, and since we perform a
shift on every block where I.4 does not hold, then after all the shift operations have
been performed, I.4 will hold, along with all the other invariants.

The search operation will change the blocks B0, . . . , Bj . We observe that an
element is moved from Bi to Bi+1 for i < j and that an element is moved from Bj
to B0. Therefore the number of elements contained in each block is not altered by
the search operation.

The only time we delete something from Ci is if the element e, with key x,
happens to be located in Ci. In this case we replace the element e from Ci with
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some element g we extracted from Ri unless Ri happened to be empty. So either |Ci|
remains the same as before or it decreases and then |Ri| = 0, so therefore we I.1 is
maintained.

We never delete anything from D0, and when we delete an element from Di it is
replaced by an element from Ri−1, so the size of Di never changes. Also since the
size of Bi is maintained for all i, then the sum of the sizes of the remaining data
structures in Bi must also be maintained, and therefore I.2 holds.

It is clear that for 0 < i < j, we always remove an element from Ri and insert
an element into Li, so I.3 is maintained for 0 < i < j. If the element e with key x
was in Dj or Lj , then it is replaced by an element h from Rj−1, so the size of all
data structures in Bj is also maintained. If the element e with key x was in Rj ,
then |L′j | = |Lj | + 1 either by inserting an element h from Rj−1 or in the case
where j = 0 by inserting e itself, and |R′j | = |Rj | − 1. Otherwise e must come
from Cj , and again we have that the size of |L′j | = |Lj | + 1 , and |R′j | = |Rj | − 1
unless j = m, so I.3 is maintained for i = j. We now verify that I.3 holds for i = 0,
here we have two cases if j = 0, then we do not move any elements so I.3 is trivially
maintained. Else we have j > 0, so we insert e into L0 so |L′0| = |L0| + 1, and we
move an element from R0 to B1 so |R′0| = |R0| − 1 and I.3 is maintained for i = 0.
Lastly I.3 is trivially maintained for i > j, so I.3 holds for all blocks i.

We now check if I.5 is maintained. First we note that the element e with key x
located in Sj being searched for will always be put in L0 or D0 so this element cannot
violate any Li. Likewise the moving of element g between Cj and Rj if Sj = Cj
also does not affect I.5. Finally when we move an element from Ri−1 to Li or Di,
this does not violate I.5 for i ≤ j and for i > j we do no change Bi at all, so I.5 is
maintained.

Now we want to show that I.6 is maintained. Let g be some element in C ′i, if g

was not in Ci then g must have come from Ri and by I.7 at least 22i elements have
been searched for after g, and we know by I.4 that |L′i| ≤ |Li| + 1 ≤ 22i , so I.6
holds for g. If on the other hand g was also in Ci then we know by I.6 that at
least |Li| distinct elements have been searched for after g, and if |L′i| = |Li| then I.6
is maintained. In the other case |L′i| = |Li| + 1, we first notice that i ≤ j, Sj 6= Di

and Sj 6= Li since in those cases |Li| = |L′i|. Now by I.5 this means that e has not
been searched for since Li was last emptied because e /∈ Li, Di, Bk for k < i, so we
have yet another distinct, element namely e, that has been searched for since Li was
last emptied. So I.6 holds for g, and I.6 is maintained.

Since we never add new elements to Ri for any i, I.7 is trivially maintained.
Also I.8 is trivially maintained for any element g that was also in its corresponding
structure before. If i > 0 then a new element g added to Li or Di comes from Ri−1

where I.7 implies that at least 22i−1
elements have been searched for after g, so I.8

is maintained, and I.8 is trivially maintained for i = 0.

3.5.2 Running time and correctness

The find operation If an element e with key x is in the data structure, find(x)
will find it as promised. The element will be located in exactly one of the data
structures in one of the blocks, and find looks in all of them.

Let ` be the number of distinct elements searched for since we last searched for e,
and assume that e is in some block Bj . By O.5 we know that at least 22j−1

elements

have been searched for after e was last searched for so ` ≥ 22j−1
, i.e. 2j = O(log `).
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For each block we use constant time to calculate bi, |Di|, and whether i = m.
This can be done since we have already computed bi−1 once bi is needed. The
time used for the find operation in block Bi is O(2i) doing the linear scan in Di

and O(log 22i) = O(2i) for doing searches in Li, Ci and Ri from the bounds on the
movable dictionary. The total time for doing searches in all the blocks is then

O
(

j∑

i=0

2i

)
= O(2j) = O(log `).

From the cache-oblivious viewpoint we incur O(2i/B) cache-misses when search-
ing Di and O(logB 22i) = O(2i/ logB) when searching in Li, Ci and Ri, so in total
we incur O

(∑j
i=0 2i/ logB

)
= O

(
2j logB

)
= O(logB `) cache-misses for the find

operation.

The insert operation First note that we maintain m in such a way that there
is always room for at least one element in Bm, so insert will find a place to insert
the element. We will use O(log log `) time calculating m, |Dm| and bm. We then
insert an element into either Dm - which takes constant time - or into one of the
other structure of size at most n - which will take O(log n) time from the bounds
on the movable dictionary. It might also cause Dm to get size wm, in which case we
will use an additional O(log n) time setting up Lm, Cm and Rm. In total it runs
in O(log n) time.

From the cache-oblivious viewpoint we incur O(log(n)/B) cache-misses when
calculating/maintaining m, |Dm| and bm and finding the place to insert the element.
Then we either insert into Dm taking O(log(n)/B) cache-misses, or we insert into
one of the structures of size at most n which takes O(logB n) cache-misses from
the bounds on the movable dictionary. Finally we might also incur O(log(n)/B)
cache-misses when setting up Lm, Cm and Rm. In total we incur at most O(logB n)
cache-misses.

The delete operation The delete operation always deletes the element that it
promises to delete. Other elements may also be removed but they are always
reinserted before the operation finishes. We will use O(log log n) time calculat-
ing m, |Di| and bi for all i. The delete operation performs a find operation running
in time O(log `) and at most two deletes and one insert on movable dictionaries of
size n so it uses O(log n) time.

From the cache-oblivious viewpoint we incur O(log(n)/B) cache-misses when
maintaining m, |Di| and bi for all i. We also perform a find operation incur-
ring O(logB `) cache-misses and at most two deletes and one insert on movable
dictionaries which incur O(logB n) cache-misses. In total we incur O(logB n) cache-
misses.

The predecessor operation We will use O(log log n) time to calculate m, |Di|
and bi for all i, then we perform a predecessor search on each data structure on all
the levels 0, . . . , log logn using O(

∑log logn
i=0 3 log(22i) + 2i) = O(log n) time. Since it

finds the predecessor of x in every structure it will find the real predecessor in one
of them, this must be the maximal value found, and if we keep track of the maximal
from all the blocks we have visited then this is already counted in the O(log n) time
bound.
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Figure 3.4: Memory layout of the static finger search dictionary.

From the cache-oblivious viewpoint we incur O(log(n)/B) cache-misses when
calculating m, |Di| and bi for all i. We also perform a predecessor search on all

levels 0, . . . , log logn which incursO(
∑log logn

i=0 3 logB(22i)+2i/B) = O(logB n) cache-
misses. In total we then incur O(logB n) cache-misses.

The search operation The search operation uses find, so it will find the location
of the element with key x if it is in the structure, and it will return the correct
answer. Furthermore it never deletes an element without inserting it again so all
elements remain somewhere in the data structure. Search performs a find operation
taking time O(log `). It performs at most a constant number of shifts, insertions

and deletions on each of the O(log log `) blocks looked at, taking O(
∑log log `

i=0 2i) =
O(log `) time. We will use O(log log n) time calculating m, |Di| and bi for all i ≤
log log `. So in total it uses O(log `) time.

From the cache-oblivious viewpoint we incur O(logB `) cache-misses on the find
operation, we then perform a constant number of shift, insert and delete operations
on each of the O(log log `) blocks incurring O(

∑log log `
i=0 logB 22i) = O(logB `) cache-

misses. In total we incur O(logB `) cache-misses.

3.6 Static finger search

In this section we present a simple change-finger implicit dictionary , achieving an
optimal trade off between the time for search and changer-finger.

Given some function q(t, n), as defined in Section 3.1, we are aiming for a search
time of O(q(t, n)). Let ∆ = Zq(n), recall that Zq(n) is the smallest rank distance ∆,
such that q(∆, n) > log n

2 . Note that we are allowed to use O(log n) time searching
for elements with rank-distance t ≥ ∆ from the finger, since q(t, n) = Ω(log n)
for t ≥ ∆.

Intuitively, we start with a sorted list of elements. We cut the 2∆ + 1 ele-
ments closest to f (f being in the center), from this list, and swap them with the
first 2∆ + 1 elements, such that the finger element is at position ∆+1. The elements
that were cut out form the proximity structure P , the rest of the elements are in the
overflow structure O (see Figure 3.4).

A search for x is performed by first doing an exponential search for x in the
proximity structure, and if x is not found there, by doing binary searches for it in
the remaining sorted sequences.

The proximity structure consists of sorted lists XS ≺ S ≺ {f} ≺ L ≺ XL. The
list S contains the up to ∆ elements smaller then f that are closest to f w.r.t. rank
distance. The list L contains the up to ∆ closest to f , but larger than f . Both are
sorted in ascending order. The list XL contains a possibly empty sorted sequence
of elements larger than elements from L, and XS contains a possibly empty sorted
sequence of elements smaller than elements from S. Here |XL|+|S| = ∆ = |L|+|XS |,
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Figure 3.5: Cases for the change-finger operation. The left side is the sorted array. In
all cases the horizontally marked segment contains the new finger element and must
be moved to the beginning. In the final two cases, there are not enough elements
around f so P is padded with what was already there. The emphasized bar in the
array is the 2∆ + 1 break point between the proximity structure and the overflow
structure.

|S| = min{∆, rank(f)− 1} and |L| = min{∆, n− rank(f)}. The overflow structure
consists of three sorted sequences l2 ≺ l1 ≺ {f} ≺ l3, each possibly empty. The full
ordering of all sequences is l2 ≺ XS ≺ l1 ≺ S ≺ {f} ≺ L ≺ XL ≺ l3.

To perform a change-finger operation, we first revert the array back to one sorted
list and the index of f is found by doing a binary search. Once f is found there are 4
cases to consider, as illustrated in Figure 3.5. Note that in each case, at most 2|P |
elements have to be moved. Furthermore the elements can be moved such that
at most O(|P |) swaps are needed. In particular cases 2 and 4 can be solved by a
constant number of list reversals.

For reverting to a sorted array and for doing search, we need to compute the
lengths of all sorted sequences. These lengths uniquely determine the case used for
construction, and the construction can thus be undone. To find |S| a binary search
for the split point between XL and S, is done within the first ∆ elements of P .
This is possible since S ≺ {f} ≺ XL. Similarly |L| and |XS | can be found. The
separation between l2 and l3, can be found by doing a binary search for f in O,
since l1∪ l2 ≺ {f} ≺ l3. Finally if |l3| < |O|, the separation between l1 and l2 can be
found by a binary search, comparing candidates against the largest element from l2,
since l2 ≺ l1.

When performing the search operation for some key k, we first determine if k < f .
If this is the case, an exponential search for k in S is performed. We can detect if we
have crossed the boundary to XL, since S ≺ {f} ≺ XL. If the element is found it
can be returned. If k > f we do an identical search in L. Otherwise the element is
neither located in S nor L, and therefore d(k, f) > ∆. All lengths are reconstructed
as above, and the element is searched for using binary search in XL and l3 if k > f
and, otherwise in XS , l1 and l2.

Analysis The change-finger operation first computes the lengths of all lists in
O(log n) time. The case used for constructing the current layout is then identified
and reversed in O(∆) time. We locate the new finger f ′ by binary search in O(log n)
time and afterwards the O(∆) elements closest to f ′ are moved to P . We get O(∆+
log n) time for change-finger.

For searches there are two cases to consider. If t ≤ ∆, it will be located by the
exponential search in P in O(log t) = O(q(t, n)) time, since by assumption q(t, n) ≥
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Figure 3.6: Memory layout of dynamic finger search dictionary.

log t. Otherwise the lengths of the sorted sequences will be recovered in O(log n)
time, and a constant number of binary searches will be performed in O(log n) time
total. Since t ≥ ∆⇒ q(t, n) ≥ log n

2 , we again get a search time of O(q(t, n)).

3.7 A dynamic structure

For any function q(t, n), as defined in the introduction, we present a dynamic change-
finger implicit dictionary that supports change-finger, search, insert and delete in
O(∆ log n),O(q(t, n)),O(log n) andO(log n) time respectively, where ∆ = Zq(n) and
n is the number of elements when the operation was started.

The data structure consists of two parts: a proximity structure P which con-
tains the elements near f and an overflow structure O which contains elements
further from f w.r.t. rank distance. We partition P into several smaller structures
B1, . . . , Bm. Elements in Bi are closer to f than elements in Bi+1. The overflow
structure O is an implicit movable dictionary as described in the Section 3.2. See
Figure 3.6 for the layout of the data structure. During a change-finger operation the
proximity structure is rebuilt such that B1, . . . , Bm correspond to the new finger,
and the remaining elements are put in O.

The total size of P is 2∆ + 1. The i’th block Bi consists of a counter Ci and an
implicit movable dictionary Di. The counter Ci contains a pair encoded number ci,
where ci is the number of elements in Di smaller than f . The sizes within Bi are
|Ci| = 2i+1 and |Di| = 22i , except in the final block Bm where they might be smaller
(Bm might be empty). In particular we define:

m = min
{
m′ ∈ N

∣∣∣
m′∑

i=0

(
2i+1 + 22i

)
> 2∆

}
.

We will maintain the following invariants for the structure:

I.1 ∀i < j, e1 ∈ Bi, e2 ∈ Bj : d(f, e1) < d(f, e2)

I.2 ∀e1 ∈ B1 ∪ · · · ∪Bm, e2 ∈ O : d(f, e1) ≤ d(f, e2)

I.3 |P | = 2∆ + 1

I.4 |Ci| ≤ 2i+1

I.5 |Di| > 0⇒ |Ci| = 2i+1

I.6 |Dm| < 22m and ∀i < m : |Di| = 22i

I.7 |Di| > 0⇒ ci = |{e ∈ Di | e < f}|
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We observe that the above invariants imply:

O.1 ∀i < m : |Bi| = 2i+1 + 22i (From I.5 and I.6)

O.2 |Bm| < 2m+1 + 22m (From I.4 and I.6)

O.3 d(e, f) ≤ 22k−1 ≤ ∆⇒ e ∈ Bj for some j ≤ k (From I.1 – I.6)

3.7.1 Block operations

The following operations operate on a single block and are internal helper functions
for the operations described in the next subsection.

block delete(k, Bi): Removes the element e with key k from the block Bi. This
element must be located in Bi. First we scan Ci to find e. If it is not found it must
be in Di, so we delete it from Di. If e < f we decrement ci. In the case where e ∈ Ci
and Di is nonempty, an arbitrary element g is deleted from Di and if g < f we
decrement ci. We then overwrite e with g, and fix Ci to encode the new number ci.
In the final case where e ∈ Ci and Di is empty, we overwrite e with the last element
from Ci.

block insert(e, Bi): Inserts e into block Bi. If |Ci| < 2i+1, e is inserted into Ci
and we return. Otherwise we insert e into Di. If Di was empty we set ci = 0. In
either case if e < f we increment ci.

block search(k, Bi): Searches for an element e with key k in the block Bi. We
scan Ci for e, if it is found we return it. Otherwise if Di is nonempty we perform a
search on it, to find e and we return it. If the element is not found nil is returned.

block predecessor(k, Bi): Finds the predecessor element for the key k in Bi. Do
a linear scan through Ci and find the element l1 with largest key less than k. After-
wards do a predecessor search for key k on Di, call the result l2. Return max(l1, l2),
or that no element in Bi has key less than k.

3.7.2 Operations

In order to maintain correct sizes of P and O as the entire structure expands or con-
tracts a rebalance operation is called in the end of every insert and delete operation.
This is an internal operation that does not require I.3 to be valid before invocation.

rebalance(): Balance Bm such that the number of elements in P less than f
is as close to the number of elements greater than f as possible. We start by
evaluating ∆ = Zq(n), the new desired proximity size. Let s be the number of
elements in Bm less than f which can be computed as cm + |{e ∈ Cm | e < f}|.
While 2∆ + 1 > |P | we move elements from O to P . We move the predecessor of f
in O from O to Bm if O ≺ {f} ∨ (s < |Bm|

2 ∧ ¬({f} ≺ O)) and otherwise we move
the successor of f to O. While 2∆ + 1 < |P | we move elements from Bm to O. We
move the largest element from Bm to O if s < Bm

2 . Otherwise we move the smallest
element.

change-finger(k): To change the finger of the structure to k, we first insert every
element of Bm . . . B1 into O. We then remove the element e with key k from O, and
place it at index 1 as the new f , and finish by performing rebalance.

insert(e): Assume e > f . The case e < f can be handled similarly. Find the first
block Bi where e is smaller than the largest element li from Bi (which can be found
using a predecessor search) or li < f . Now if li > f for all blocks j ≥ i, block delete
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the largest element and block insert it into Bj+1. In the other case where li < f for
all blocks j ≥ i, block delete the smallest element and block insert it into Bj+1. The
final element that does not have a block to go into, will be put into O, then we put e
into Bi. In the special case where e did not fit in any block, we insert e into O. In
all cases we perform rebalance.

delete(k): We perform a block search on all blocks and a search in O to find out
which structure the element e with key k is located in. If it is in O we just delete
it from O. Otherwise assume k < f (the case k > f can be handled similarly), and
assume that e is in Bi, then block delete e from Bi. For each j > i we block delete
the predecessor of f in Bj , and insert it into Bj−1 (in the case where there is no pre-
decessor, we block delete the successor of f instead). We also delete the predecessor
of f from O and insert it in Bm. The special case where k = f , is handled similarly
to k < f , we note that after this the predecessor of f will be the new finger element.
In all cases we perform a rebalance.

search(k), predecessor(k) and successor(k), all follow the same general pattern.
For each block Bi starting from B1, we compute the largest and the smallest element
in the block. If k is between these two elements we return the result of block search,
block predecessor or block successor respectively on Bi, otherwise we continue with
the next block. In case k is not within the bounds of any block, we return the result
of search(k), predecessor(k) or successor(k) respectively on O.

3.7.3 Analysis

By the invariants, we see that every Ci and Di except the last, have fixed size.
Since O is a movable dictionary it can be moved right or left as this final Ci or Di

expands or contracts. Thus the structure can be maintained in a contiguous memory
layout.

The correctness of the operations follows from the fact that I.1 and I.2, implies
that elements in Bj or O are further away from f than elements from Bi where i < j.
We now argue that search runs in time O(q(t, n)). Let e be the element we are
searching for. If e is located in some Bi then at least half the elements in Bi−1 will
be between f and e by I.1. We know from O.1 that t = d(f, e) ≥ |Bi−1|

2 ≥ 22i−1−1.
The time spent searching is O(

∑i
j=1 log |Bj |) = O(2i) = O(log t) = O(q(t, n)). If

on the other hand e is in O, then by I.3 there are 2∆ + 1 elements in P , of these at
least half are between f and e by I.2, so t ≥ ∆, and the time used for searching is
O(log n +

∑k
j=1 log |Bj |) = O(log n) = O(q(t, n)). The last equality follows by the

definition of Zq. The same arguments work for predecessor and successor.

Before the change-finger operation the number of elements in the proximity struc-
ture by I.3 is 2∆+1. During the operation all these elements are inserted into O, and
the same number of elements are extracted again by rebalance. Each of these opera-
tions are just insert or delete on a movable dictionary or a block taking time O(log n).
In total we use time O(∆ log n).

Finally to see that both Insert and Delete run in O(log n) time, notice that
in the proximity structure doing a constant number of queries in every block is
asymptotically bounded by the time to do the queries in the last block. This is
because their sizes increase double-exponentially. Since the size of the last block
is bounded by n we can guarantee O(log n) time for doing a constant number of
queries on every block (this includes predecessor/successor queries). In the worst
case, we need to insert an element in the first block of the proximity structure, and
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“bubble” elements all the way through the proximity structure and finally insert
an element in the overflow structure. This will take O(log n) time. At this point
we might have to rebalance the structure, but this merely requires deleting and
inserting a constant number of elements from one structure to the other, since we
assumed Zq(n) and Zq(n + 1) differ by at most a constant. Deletion works in a
similar manner.

3.8 Lower bounds

To prove our lower bounds we use an abstracted version of the strict implicit model.
The strict model requires that nothing but the elements and the number of elements
are stored between operations, and that during computation elements can only be
used for comparison. With these assumptions a decision tree can be formed for a
given n, where nodes correspond to element comparisons and element loads, and
leaves contain the answers. Note that in the weak model a node could probe a cell
containing an integer, giving it a degree of n, which prevents any of our lower bound
arguments.

Lemma 3.1. Let A be an operation on an implicit data structure of length n, running
in time τ worst case, that takes any number of keys as arguments. Then there exists
a set XA,n of size 2τ , such that executing A with any arguments will touch only cells
from XA,n no matter the content of the data structure.

Proof. Before loading any elements from the data structure, A can reach only a
single state which gives rise to a root in a decision tree. When A is in some node s,
the next execution step may load some cell in the data structure, and transition into
another fixed node, or A may compare two previously loaded elements or arguments,
and given the result of this comparison transition into one of two distinct nodes. It
follows that the total number of nodes A can enter within its τ steps is

∑τ−1
i=0 2i < 2τ .

Now each node can access at most one cell, so it follows that at most 2τ different
cells can be probed by any execution of A within τ steps.

Observe that no matter how many times an operation that takes at most τ time
is performed, it will only be able to reach the same set of cells, since the decision
tree is the same for all invocations.

Theorem 3.2. For any change-finger implicit dictionary with a search time of q(t, n)
as defined in Section 3.1, change-finger requires Ω(Zq(n) + log n) time.

Proof. Let e1 . . . en be a set of elements in sorted order with respect to the keys
k1 . . . kn. Let t = Zq(n)− 1. By definition q(t+ 1, n) ≥ log n

2 > q(t, n). Consider the
following sequence of operations:

for i = 0 . . . nt :
change-finger(kit)
for j = 0 . . . t− 1: search(kit+j)

Since the rank distance of any query element is at most t from the current finger and q
is non-decreasing each search operation takes time at most q(t, n). By Lemma 3.1
there exists a set X of size 2q(t,n) such that all queries only touch cells in X . We
note that |X | ≤ 2q(t,n) ≤ 2log(n/2) = n

2 .
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Since all n elements were returned by the query set, the change-finger operations
must have copied at least n − |X | ≥ n

2 elements into X . We performed n
t change-

finger operations, thus on average the change-finger operations must have moved at
least t

2 = Ω(Zq(n)) elements into X .
For the log n term in the lower bound, we consider the sequence of operations

change-finger(ki) followed by search(ki) for i between 1 and n. Since the rank distance
of any search is 0 and q(0, n) < log n

2 (by assumption), we know from Lemma 3.1
that there exists a set Xs of size at most 2log(n/2), such that search only touches cells
from Xs. Assume that change-finger runs in time c(n), then from Lemma 3.1 we
get a set Xc of size at most 2c(n) such that change-finger only touches cells from Xc.
Since every element is returned, the cell initially containing the element must be
touched by either change-finger or search at some point, thus |Xc| + |Xs| ≥ n. We
see that 2c(n) ≥ |Xc| ≥ n− |Xs| ≥ n− 2log(n/2) = 2log(n/2), i.e. c(n) ≥ log n

2 .

Theorem 3.3. For a change-finger implicit dictionary with search time q′(t, n),
where q′ is nondecreasing in both t and n, it holds that q′(t, n) ≥ log t.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order. Let t ≤ n
be given. First perform change-finger(k1), then for i between 1 and t perform
search(ki). From Lemma 3.1 we know there exists a set X of size at most 2q

′(t,n),
such that any of the search operations touch only cells from X (since any element
searched for has rank distance at most t from the finger). The search operations
return t distinct elements so t ≤ |X | ≤ 2q

′(t,n), and q′(t, n) ≥ log t.

Theorem 3.4. For finger-search implicit dictionary, the finger-search operation re-
quires at least g(t, n) ≥ log n time for any rank distance t > 0 where g(t, n) is
nondecreasing in both t and n.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order. First
perform finger-search(k1), then perform finger-search(ki) for i between 1 and n. Now
for all queries except the first, the rank distance t ≤ 1 and by Lemma 3.1 there exists
a set of memory cells X of size 2g(1,n) such that all these queries only touch cells in X .
Since all elements are returned by the queries we have |X | = n, so g(1, n) ≥ log n,
since this holds for t = 1 it holds for all t.

We can conclude that it is not possible to achieve any form of meaningful finger-
search in the strict implicit model. The static change-finger implicit dictionary from
Section 3.6 is by Theorem 3.2 optimal within a constant factor, with respect to the
search to change-finger time trade off, assuming the running time of change-finger
depends only on the size of the structure.

Theorem 3.5. For a working set dictonary with a search time of q′(`, n), where q′

is nondecreasing in both t and n, it holds that q′(`, n) ≥ log `.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order. First
perform search(ki) for i between 1 and `, then perform search(ki) for i between 1
and ` again in the same order.

We will look at the last ` searches, and note that the working set number of each
element search of is less then ` (it is in fact exactly `).

From Lemma 3.1 we know there exists a set X of size at most 2q
′(`,n), such that

any of the search operations touch only cells from X . The search operations return `
distinct elements so ` ≤ |X | ≤ 2q

′(`,n), and q′(t, n) ≥ log `.
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3.9 Pseudocode

The following section contains psudocode for the various algorithms described in
this chapter.

Algorithms for the dynamic workingset dictonary

Algorithm 3.1: shift(j)

Require: |Rj | = 0
Rj ← Cj
Cj ← Lj
Lj ← ∅

Algorithm 3.2: find(x)

for i = 0 . . .m:
if Di.contains(x): return Di

else if Li.contains(x): return Li
else if Ci.contains(x): return Ci
else if Ri.contains(x): return Ri

return none

Algorithm 3.3: insert(e)

if |Dm| < Wm: Dm.insert(e)
else if |Cm| < 22m : Cm.insert(e)
else: Rm.insert(e)
if |Lm|+ |Rm| = 22m : m← m+ 1

Algorithm 3.4: delete(x)

Sj ← find(x)
if |Bm| = 0: m← m− 1
if |Rm| > 0: e← Rm.deleteOne()
else if |Cm| > 0: e← Cm.deleteOne()
else if |Lm| > 0: e← Lm.deleteOne()
else: e← Dm.deleteOne()
if key(e) 6= x: Sj .replace(x, e)
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Algorithm 3.5: predecessor(x)

e← none
for i = 0 . . .m:
e← max(e,Di.predecessor(x))
e← max(e, Li.predecessor(x))
e← max(e, Ci.predecessor(x))
e← max(e,Ri.predecessor(x))

return e

Algorithm 3.6: search(x)

Sj ← find(x)
if Sj = none: return none
e← Sj .find(x)
if Sj = D0 ∨ Sj = L0: return e
if Sj = Cj ∧ |Rj | > 0:
g ← Rj .deleteOne()
Cj .replace(x, g)

else
Sj .delete(x)

for i = j − 1 . . . 0:
h← Ri.deleteOne()
if i+ 1 = j ∧ Sj = Dj : Dj .insert(h)
else: Li+1.insert(h)

L0.insert(e)
for i = 0 . . . j:

if |Li| = 22i : shift(i)
return e
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Computing Multiresolution Rasters

This chapter contains [7] which is joint work with Lars Arge, Gerth Stølting Bro-
dal and Constantinos Tsirogiannis. The paper is included with major changes in
notation, also several proofs where extended.

4.1 Introduction

Rasters are one of the most common formats for modelling spatial data. A raster is
a 2-dimensional grid of square cells where each cell is assigned a real value. Among
other applications, rasters are used to represent real-world terrains; in this case
each cell corresponds to a region of a terrain, and the value of the cell indicates the
average height of the terrain in this region. Today, it is possible to acquire massive
rasters that represent terrains with very fine resolution; the size of each cell in such
a raster can be less than one square meter. Yet, studying a terrain in such a small
scale might lead to wrong conclusions. This happens for example when we want to
identify landforms on terrains; when we study a terrain at a scale of a few meters,
we might identify many small peaks concentrated within a small area. Yet, when
looking on a larger scale, these peaks may be a part of another landform; for instance
a rough ridge, or a valley.

To tackle this problem, we need to have a method that can analyse the same
raster in many different scales. Fisher et al. [32] use such a method in their landform
classification algorithm; their algorithm constructs multiple rasters Rs, where a cell c
of Rs covers the same region as s × s cells of the original fine-resolution raster R.
The value assigned to c is equal to the average of the values of the original s × s
cells. Given the constructed rasters Rs, it is then possible to search for landforms
at different scales.

Reconstructing a raster in different resolutions is an important tool for many
other scientific applications; in remote sensing, Woodcock and Strahler [69] intro-
duced an algorithm to extract the average size of tree canopies in grayscale images
of forests. Here, an image is represented by a raster of square pixels, where each
pixel is assigned a grayscale value. Their algorithm reconstructs many instances of
a given image raster, in exactly the same way as the algorithm of Fisher et al. con-
structs different instances of a terrain raster. For their application, it is critical to
construct one instance of the image for every pixel size which is an integer multiple
of the pixel size in the original image, until a single pixel covers almost the entire
image. This approach has been also used in other image processing algorithms [14].

Therefore, all of the different applications that we described above lead to the
same algorithmic problem; let R be a raster that consists of

√
N ×

√
N cells. For

every integer s ∈ {2, 3, . . . ,
√
N} we want to compute a raster Rs of d

√
N/se ×

71
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d
√
N/se cells where each cell of Rs stores the average of the values of the s× s cells

of R that cover the same region.

External Memory Algorithms As already mentioned, today many available
raster datasets are massive, and may consist of terabytes of data. A raster of this
size cannot fit entirely in the main memory of a normal computer; thus, it can only
be stored entirely in the hard disk. When we want to process the dataset, we have
to transfer blocks of data from the disk to the main memory. We call such a block
transfer an I/O-operation, or an I/O for short. Unfortunately, an I/O can take the
same time as a million CPU operations. Thus, when designing an algorithm that
may process such a large dataset, we want to minimise the number of block transfers
that are required to process the full dataset.

For this reason, Aggarwal and Vitter [5] introduced a computational model that
takes into account the number of block transfers between the disk and the main
memory. This model considers two important parameters: the size of the internal
memory M , and the maximum size B of a block of data that we can transfer from/to
the disk. The efficiency of an algorithm in this model is equal to the number of I/Os
that the algorithm requires during its execution. We call this concept of efficiency the
I/O-efficiency of the algorithm. The I/O-efficiency of an algorithm is expressed as a
function of the input sizeN , but also of the block size B and memory sizeM . To scan
a set of N records stored in the disk we need O(scan(N)) I/Os, where scan(N) =
N/B. To sort a set of N records we need O(sort(N)) I/Os, where sort(N) =
N/B logM/B N/B.

Today computers contain several layers of memory; these include layers of cache
used between the main memory of the computer and the processor. In this context,
the values of parameters M and B differ for every pair of consecutive layers of cache
that we consider. Then, to minimise the number of block transfers between all layers,
the algorithm must be designed so that it achieves an optimal I/O-performance
without knowing the parameters M and B. The algorithms that have this property
are known as cache-oblivious algorithms [37].

When designing algorithms in the I/O Model, we take grate care in moving the
right data in and out of memory in block sizes of B. However such paging strategies
cannot be used in the cache-oblivious model, where instead we assume that the
optimal paging strategy is used. When analysing our algorithm for a specific M
and B, we will give an example of a paging strategy that would work for this M
and B, and then conclude that the optimal strategy must work at least as well.

Previous Results For the problem of computing multiple resolution instances of
a given raster, we study the case where the raster does not fit in the main memory
of the computer. We want to design an external memory algorithm for this problem
that has optimal performance both in terms of I/Os and in terms of CPU operations.
In a previous paper, Arge et al. [9] proposed two external memory algorithms for
this problem; the first algorithm requires O(sort(N)) I/Os and O(N logN) CPU
time, and is easy to implement. Their second algorithm requires O(scan(N)) I/Os
and O(N) CPU time, which is obviously optimal. Yet, this algorithm assumes
that M is at least Θ(B1+ε) for some selected ε > 0. This algorithm is cache-aware,
which means that M and B should be known to the algorithm to achieve this
performance. Moreover, this algorithm has a strong limitation when it comes to
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its implementation; it requires that Θ(B) files are open simultaneously during its
execution. Nowadays, B can be as large as a few million units, while most operating
systems can maintain only a relatively small number of files open at the same time
(usually around a thousand).

Our Results In this chapter we present a new, cache-oblivious algorithm that
achieves the optimal performance of O(scan(N)) I/Os and O(N) CPU time, with-
out making any assumptions on the size of the main memory; that is it performs
O(scan(N)) I/Os even when M = O(B). The new algorithm is easy to imple-
ment; we have developed a purely cache-oblivious implementation of the algorithm,
and we have tested its performance against an implementation of the algorithm
of Arge et al. that requires O(sort(N)) I/Os. Recall that the O(scan(N)) algo-
rithm of Arge et al. is not practically implementable due to limitations of today’s
operating systems. The new algorithm performs extremely well and, as expected,
clearly outperforms the older approach. We consider this to be a solid proof that
non-trivial cache-oblivious algorithms can be implemented to perform efficiently in
practice, and be used in real-world applications in the place of standard cache-aware
implementations.

4.2 Description of the algorithm

Preliminaries For a raster R we denote by R[i, j] the cell that appears in the i-th
row and j-th column of R. We use |R| to indicate the number of cells of this raster.
We assume that R is a square; it consists of

√
N rows and

√
N columns of cells.

Yet, it is easy to show that our analysis holds also for rasters that do not have an
equal number of rows and columns. Given a cell R[i, j] of R, consider the set of
cells R[k, `] for which it holds that 1 ≤ k ≤ i and 1 ≤ ` ≤ j. We denote the sum of
the values of these cells by psum(i, j), that is:

psum(i, j) =
∑

1≤k≤i
1≤`≤j

R[k, `].

The value psum(i, j) is the so-called prefix sum of cell R[i, j].
Let R be a raster of dimensions

√
N ×

√
N , and let s be an integer such that

1 < s ≤
√
N . We define Rs as the raster of dimensions d

√
N/se × d

√
N/se such

that the value of any cell Rs[i, j] is equal to the average value of all cells R[k, `] for
which we have that (i− 1)s+ 1 ≤ k ≤ is and (j − 1)s+ 1 ≤ ` ≤ js. We say that Rs
is the scale instance of R at s, and we call s the scale of this instance. Considering
the size of a scale instance Rs, we observe that as we increase s the number of cells
of Rs decreases quadratically. In fact, Arge et al. [9] showed that the total size of
all scale instances Rs is Θ(N). We retrieve the following lemma from their paper.

Lemma 4.1. Given a raster R of
√
N ×

√
N cells, the total number of cells for all

rasters Rs with 2 ≤ s ≤
√
N is less than 0.65 ·N .

Proof. The total number of cells for all rasters Rs is:
√
N∑

s=2

N

s2
< N

( ∞∑

s=1

1

s2
− 1

)
= N

(
π2

6
− 1

)
.
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4.2.1 A Solution Based on Prefix Sums

In the rest of this section we describe our new cache-oblivious approach for comput-
ing all scale instances of a raster R. To describe this new approach, we first present
some concepts used by Arge et al. [9]. For any scale instance Rs of a raster R,
Arge et al. observed that we can express the value of a cell Rs[i, j] using the prefix

sums of the cells of R as Rs[i, j] = sum(i,j,s)
s2

, where:

sum(i, j, s) = psum(is, js)− psum(is, (j − 1)s)

−psum((i− 1)s, js) + psum((i− 1)s, (j − 1)s). (4.1)

Hence, to computeRs we only need to extract the prefix sums from all cellsR[i′, j′]
of R such that both i′ and j′ are integer multiples of s. It is easy to compute all
rasters Rs if R fits in the main memory; first we compute a matrix that has

√
N×
√
N

entries, and which stores the prefix sums for all cells in R. Then we can compute the
value of each cell of Rs in constant time using the equation above, with only four
random accesses to the entries of this matrix. Since the total number of cells of all
rasters Rs is Θ(N), this approach leads to an internal memory algorithm that runs
in Θ(N) CPU operations. However, it is not straightforward how to compute the
rasters Rs efficiently if R does not fit in the main memory. To solve this problem
we provide the following definitions.

Let P1 denote the 2-dimensional matrix of
√
N ×

√
N entries, such that for

every entry P1[i, j] of this matrix we have that P1[i, j] = psum(i, j). For any
s ∈ {2, 3, . . . ,

√
N}, let Ps be the matrix that has d

√
N/se× d

√
N/se entries, where

Ps[i, j] = P1[is, js]. Thus, Ps stores all the prefix sums that are needed for con-

structing Rs; the value of each cell Rs[i, j] = sums(i,j)
s2

, where:

sums(i, j) = Ps[i, j]− Ps[i, j − 1]

−Ps[i− 1, j] + Ps[i− 1, j − 1].

Therefore, assume that we already had an efficient algorithm for computing all
matrices Ps. Then, we can extract from these matrices all scale instances Rs I/O-
efficiently, in only O(scan(N)) I/Os and Θ(N) CPU operations by simply scanning
each matrix Ps, and maintaining four pointers to access the prefix sums needed for
computing each value Rs[i, j].

Hence, we now focus on designing an efficient algorithm for computing matri-
ces Ps for every s ∈ {2, 3, . . . ,

√
N}. It is easy to compute P1; we can do this by

scanning R, starting from R[1, 1] and visiting all cells in increasing order of their
row and column indices and using equation (4.1) above. To compute a matrix Ps
with s > 1, we could scan P1 and extract each entry P1[i, j] such that both i and j
are multiples of s. However, in this manner we spend O(scan(N)) I/Os to extract
each matrix Ps, leading to O(

√
N ·scan(N)) I/Os for extracting all of these matrices.

To speed up the computation of the matrices Ps, we can exploit the following
property; consider two distinct integers t and u such that t, u ∈ {2, 3, . . . ,

√
N},

and t = xu, for some x ∈ N, x > 1. Then it holds that Pt[i, j] = Pu[ix, jx] for every
entry Pt[i, j] of matrix Pt. In other words, the entries of matrix Pt are a subset of
the entries of Pu if t is divisible by u. Thus, we can construct Pt by processing a
matrix Pu that can be much smaller than P1. To construct Pt faster, we want to use
the smallest matrix Pu for which t is a multiple of u; we must find the largest u < t
which is a divisor of t. We call this number the largest distinct divisor of t, and



4.2. DESCRIPTION OF THE ALGORITHM 75

we denote it by ldd(t). Note that if t is not a prime, then t/ldd(t) is the smallest
prime factor of t. Consider two matrices Pt and Pu such that t, u ∈ {1, 2, . . . ,

√
N},

and u = ldd(t). We say that matrix Pt derives from matrix Pu, and that Pt is a
derived matrix of Pu. In a similar manner, we say that scale instance Rt derives
from instance Ru. For a matrix Ps we denote the set of matrices that derive from Ps
by Ds, that is:

Ds = {Pt | t ∈ {2, 3, . . . ,
√
N} and s = ldd(t)} .

To compute matrices Ps, we first scan R to construct matrix P1 that stores all
prefix sums. Then, we extract all matrices D1 that derives from P1; these are
the matrices Ps such that s is a prime ≤

√
N . To do this, we use a function

ExtractDerived(Ps); the input of this function is a prefix sum matrix Ps, and the
output is the set of the matrices that derive from Ps. We describe later in more
detail how this function works. After constructing matrices Ps ∈ D1, we apply
again function ExtractDerived on these matrices to extract all sets of matrices Ds.
We continue this process recursively, until we have computed all matrices Ps for
the values s ∈ {2, 3, . . . ,

√
N}. We call the algorithm that we just described for

computing all the scale instances of R as MultirasterSpeedUp.
It is easy to prove that MultirasterSpeedUp computes the scale instances of R

correctly, assuming that function ExtractDerived(Ps) computes correctly the de-
rived matrices of any given Ps. By Lemma 4.1, excluding the performance figures of
ExtractDerived, the rest of the algorithm requires only O(scan(N)) I/Os and Θ(N)
CPU operations. Next we show how we design function ExtractDerived.

4.2.2 Extracting the Derived Matrices

To compute the matrices Ds that derive from a given matrix Ps, we first have to
compute all scale values t such that Pts is a matrix that derives from Ps. We call
these values the derived indices of s. We denote the set of these values by Ss. We
observe that:

Ss = {t | t ∈ {2, 3, . . . , b
√
N/sc} and s = ldd(ts)} .

Given s, we can calculate all derived scales Ss using the following observations;
Let s, t be two natural numbers such that s = ldd(ts), that is ts derives from s.

First t is a prime since s is the largest distinct divisor in ts. Secondly t ≤ spd(s),
where spd(s) is the smallest prime divisor of s. This is true since otherwise ts/spd(s)
would be a divisor of ts larger then s.

Based on the above, to compute Ss we first compute spd(s); we go through
all integers k ∈ {2, . . . , b√sc} in increasing order, and we stop when we find the
first k that divides s. Next we compute all prime numbers in the range [2, spd(s)]
by trivially trying all possible pairs of integers within this range, and checking if the
largest of the two is divided by the smallest. For the special case s = 1 the smallest
prime divisor is undefined, and we consider that Ss consists of all prime numbers
smaller than

√
N . Thus, for s > 1 we can compute scale values Ss in O(s) CPU

operations. We need at most O(scan(s)) I/Os to store these values. For s = 1 this
process requires O(N) CPU operations and O(scan(N)) I/Os.

To extract the derived matrices Ds, we use Ps to construct an intermediate file Fs
that contains altogether the entries of all matrices in Ds, and then process this file
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to extract each derived matrix I/O-efficiently. More specifically, file Fs is organised
as follows; for every prime t ∈ Ss, and for every entry Pts[i, j] ∈ Pts , Fs contains a
record of the form: {it, jt, t, Ps[it, jt]} .

The two first fields of the record indicate which is the entry in Ps that has the
same value as Pts[i, j]. The third field indicates the scale of Pts, and the last field car-
ries the value Pts[i, j]. Most importantly, the records in Fs appear in lexicographical
order of their three first fields.

Thus, Fs stores a record for each entry of the matrices in Ds, including multiples.
The number of records in Fs is O(|Ps|); the number of entries of Ps is |Rs|, and due
to Lemma 4.1 the total number of cells of all the scale instances of a raster Rs
cannot exceed |Rs|. To construct Fs, we create an individual file Fs,k for each
matrix Pks ∈ Ds. File Fs,k contains only records of the form {ik, jk, ks,⊗}, where ⊗
is a symbolic “no-data” value. Then we merge all those files into Fs in a bottom-up
manner; first we generate Fs by merging the two files Fs,k and Fs,t that correspond
to the two smallest matrices Pts and Pks in Ds; that is t, k are the two largest values
in Ss. We go on merging Fs each time with the smallest remaining file Fs,u, until
all files are merged into Fs.

Next we fill in the prefix sum values at the last field of each record in Fs with a
single simultaneous scan of Fs and Ps. To extract matrices Ds from Fs we scan Fs
once per matrix in Ds. The matrices are extracted in order of decreasing size; in
the first scan of Fs we extract the largest matrix Pts ∈ Ds, and so on and so forth.
To extract Pts, we pick the records in Fs whose third field is equal to t. We then
throw away these records from Fs, creating a new smaller instance of Fs. When Fs
becomes empty we will have extracted all derived matrices in Ds. The correctness
of the algorithm follows from how we handle the prefix sum values in the records of
file Fs. Next we prove the efficiency of this algorithm.

Lemma 4.2. Function ExtractDerived computes the set of matrices Ds that derive
from Ps in O(scan(|Ps|+ s)) I/Os and O(|Ps|+ s) CPU operations.

Proof. We showed that for s > 1 computing the scales Ss takes O(scan(s)) I/Os
andO(s) CPU time. Recall that for the case s = 1, we can compute Ss inO(scan(N))
I/Os and O(N) CPU operations. Now we prove that for any s > 1 we can construct
all matrices Ds in O(scan(|Ps|)) I/Os and O(|Ps|) CPU operations. To construct
file Fs, we merge several smaller files Fs,t, one merge at a time. As soon as file Fs,t
gets merged with Fs the records of Fs,t become a part of Fs; from this point and
on, these records are scanned once each time we merge Fs with another file Fs,k.
Hence, each record that initially belonged to file Fs,t gets scanned as many times as
the number of primes that are smaller or equal to t; this is because Ss contains all
primes in the range [2, spd(s)], and because we merge files Fs,k in decreasing order
of k. In the mathematical literature, the number of primes that are smaller or equal
to t is denoted by π(t). As each record of Fs,t is scanned π(t) times, and as Fs,t
has |Pst| records, the total number of records scanned when constructing Fs is:

∑

t∈Ss

π(t) · |Pst| =
N

s2

∑

t∈Ss

π(t)

t2
. (4.2)

The following upper bound is known for π(t) [64]: π(t) < 1.26 t
ln t . Combining

this with (4.2) we get:
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N

s2

∑

t∈Ss

π(t)

t2
< 1.26

N

s2

∑

t∈Ss

1

t ln t

=
1.26

log e

N

s2

∑

t∈Ss

1

t log t
, (4.3)

where e is the base of the natural logarithm. We have that:

∑

t∈Ss

1

t log t
<
∞∑

i=0

∑

t is prime

22
i≤t<22

i+1

1

t log t

≤
∞∑

i=0

∑

t is prime

22
i≤t<22

i+1

1

2it
. (4.4)

From the mathematical literature we know that [64] (Equation 2.30):

∑

t is prime
t≤x

1

t
= lg lg x+O(1) . (4.5)

Applying this on (4.4) we get:

∞∑

i=0

∑

t is prime

22
i≤t<22

i+1

1

2it
= O

( ∞∑

i=0

i+ 1

2i

)
= O(1) . (4.6)

Combining (4.3) and (4.6) we get that the total number of records that we need
to scan in order to construct Fs is O(|Ps|). This requires O(scan(|Ps|)) I/Os. During
the merging we do one comparison for every record that we scan, which implies that
we do O(|Ps|) operations in the CPU in total.

It remains now to show that extracting all matrices of Ds from Fs requires
O(scan(|Ps|)) I/Os and O(|Ps|) time in the CPU. Recall that we extract the matri-
ces Pt in increasing order of t, hence, the records of Pst will get scanned as many
as π(t) times each. Therefore the records scanned in this part of the algorithm are
as many as the records scanned for constructing Fs. We showed that this number
is equal to O(|Ps|), implying O(scan(|Ps|)) I/Os and O(|Ps|) CPU operations for
extracting the matrices for Fs, and the lemma follows.

By construction, our algorithm does not require knowledge of M and B, hence
it is cache-oblivious. Also, its performance does not depend on a lower bound on
the size of M . We obtain the following theorem.

Theorem 4.3. Given a raster R of
√
N ×

√
N cells, we can compute all scale

instances of R cache-obliviously in O(scan(N)) I/Os and O(N) CPU operations.

Proof. Function ExtractDerived is called only once for each matrix Ps so, according
to Lemma 4.2, the total number of I/Os and CPU operations required by the entire
algorithm is O(scan(

∑
s(|Ps|+ s))) and O(

∑
s(|Ps|+ s)) respectively. Since Ps has

the same size as Rs, then according to Lemma 4.1 and because
∑

s |Ps| = Θ(N),
the theorem follows.
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4.2.3 Ordering the Prefix Sum Matrices

So far, we have described an algorithm that computes efficiently all scale instances of
a given raster R. However, this algorithm does not output the scale instances of R in
the right order. More specifically, from the description of algorithm Multiraster-

SpeedUp we can see that there can be pairs of scale instances Rs and Rt with s < t
such that Rt appears in the output before Rs. Yet, for most practical applications, it
makes sense to have those instances sorted in the output in order of increasing scale
value. Fortunately, we can solve this problem while achieving the same performance
as with the algorithm MultirasterSpeedUp.

Theorem 4.4. Given a raster R of
√
N×
√
N cells, we can compute cache-obliviously

all scale instances of R, and output these instances in order of increasing scale us-
ing O(scan(N)) I/Os and O(N) CPU operations.

Proof. In hart our algorithm is recursive, first we produce Pp for all primes, and we
recurse on each of these to further subdivide them. To get the output in the right
order we will assume that the matrices from a recursion are returned in order, and
make sure what we merge the result matrices to maintain the invariant. In order
for the merging to be efficient we will recurse on the children in order of increasing
size. Since we are only merging three streams at the same time, arguing for O(N)
CPU operations implies the cache-oblivious bound of O(scan(N)).

Lets consider the merging steps in the recursion of Ps. The size of the resulting
matrix stream returned by the recursion on a given derived matrix Pst will be of
size at most 0.65|Pst| by Lemma 4.1. We first merge this with Pst it self to create
a matrix stream of size at most 1.65|Pst|. This matrix stream is then merged with
the resulting stream of the recursion on larger streams in turn. In total it will be
merged with π(t) other streams. So the total amount of work is:

∑

t∈Ss

π(t)1.65|Pst| .

By the same argument as in the proof for Lemma 4.2 this will sum to O(|Ps|). Since
we at most use O(|Ps|) to recurse on every Ps, and since their total size is O(N) by
Lemma 4.1 we use at most O(N) CPU operations on merging the resulting matrices
by order. As stated above this also implies the O(scan(N)) cache-oblivious I/Os.

4.2.4 Improving the practical performance of the algorithm

Earlier in this section, we described how we can extract the prefix sum matrices Ds

from a matrix Ps by building an intermediate file Fs. This approach requires merg-
ing several smaller files, and needs only O(scan(|Ps|)) I/Os. Yet we can avoid this
merging process, and thus improve the I/O-performance of the algorithm by a con-
stant factor; to build Fs, we scan Ps and stream the records that correspond to the
entries of matrices in Ds in the form of queries to Ps. After extracting the prefix
sum value of a queried record, we append this record in Fs.

To do this, the records are streamed to Ps in lexicographical order of their three
first fields. To produce the stream of the ordered records we build a min-heap
structure. Each leaf node v[t] of the heap corresponds to a derived matrix Pst ∈ Ds

and stores the next record of Pst that has to be streamed. The root of the heap
stores the next record to be queried to Ps. Figure 4.1 illustrates the structure of
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P2s

P3s

P(spd(s)−1)s Pspd(s)s

P5s

Figure 4.1: The structure of the skewed heap that we use to stream the records.

the heap; we can see that the heap is as skewed as it can get in favour of the larger
derived matrices. The heap contains one leaf node for each derived matrix of Ps, so
the size of the heap is O(spd(s)). Although we do not know M , we can build the
heap so that at any point the nodes of the O(M) topmost levels appear in memory.
For the rest of the levels, a record will have to pay one I/O for every B levels that
it goes up in the heap. Although this method is oblivious of M , we show that we
can stream all records to Ps so that the number of I/Os decreases as M increases.

Lemma 4.5. Let Ps be a prefix sum matrix. We can stream all the records that
correspond to the entries of the derived matrices of Ds in lexicographical order in
O(scan(|Ps|/ logM)) I/Os and O(|Ps|) CPU operations.

Proof. We lay the merge heap out linearly in memory such that root and the current
location in P2s comes before the right child of the root and P3s and so on. That is
we will store the tree in the order of a pre-order traversal.

We will analyse the paging strategy that maintains the top aM elements in
memory for some a > 0. We note that producing all the entries for the top aM
matrices incur no cache misses. While the remainder incur 1

B for every level they
have to traverse up the tree until they reach height aM .

So the total number of cache faults must be a B’th of:

∑

t∈Ss
π(t)>aM

(π(t)− aM)|Pst|

≤
∑

t∈Ss
t>aM

π(t)|Pst| =
N

s2

∑

t∈Ss
t>aM

π(t)

t2

≤ 1.26

log e

N

s2

∑

t∈Ss
t>aM

1

t log t

≤ 1.26

log e

N

s2

∑

t is prime
t>aM

1

t log t

≤ 1.26

log e

N

s2

∞∑

i=blog log aMc

∑

t is prime

22
i
<t≤22

i+1

1

t log t
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≤ 1.26

log e
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s2
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log e
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i=blog log aMc

1

2i

∑

t is prime

22
i
<t≤22

i+1

1

t

≤ 1.26

log e

N

s2

∞∑

i=blog log aMc
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t≤22
i

1

t

)

≤ 1.26

log e
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O(1)

2i

= O
(
N

s2
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i=blog log aMc

1

2i

)
= O

(
N

s2

1

logM

)
= O

( |Ps|
logM

)

The bound on the CPU work follows by doing the same analysis with constant M
and B.

4.3 Implementation and benchmarks

We implemented MultirasterSpeedUp and evaluated its efficiency on datasets of
various sizes. In the experiments that we conducted, we tried several alternatives
for implementing the most important routines of the algorithm, and we assessed the
efficiency of the implementation for each of these alternatives. We also compared the
performance of our implementation with an older implementation of the O(sort(N))
algorithm of Arge et al. [9]. Recall that it is not currently possible to implement
the O(scan(N)) algorithm of Arge et al. due to restrictions in standard operating
systems; this algorithm requires that B files are open simultaneously, and while B
today is in the order of millions of units, standard operating systems allow for about
a thousand files open at the same time.

To measure the performance of our algorithm we used massive raster datasets of
many sizes. The datasets that we used originate from a massive raster that consists
of roughly 26 billion cells, arranged in 146974 rows and 176121 columns. This raster
models the terrain surface over the entire region of Denmark. Each cell of the
raster represents a square region on the terrain that has dimension of 2 meters. The
elevation of each cell is stored as a 4-byte floating point number, and the entire
dataset is stored in a geotif file that has 97 gigabytes size. From this dataset, we
constructed all scale instances Rs for s ≤ 146974, and we used the largest of these
instances as input for the algorithm; we did this to evaluate the performance of the
algorithm for a large range of different input sizes.

As already mentioned, we tried different options for implementing the key rou-
tines of the algorithm. These are the routines that involve merging or extracting a
sequence of files from/to another larger file. For those routines we evaluated how
the performance of the algorithm is affected when trying to merge/extract several
files simultaneously. The routines that we tweaked are the following:
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• The part of ExtractDerived where, given a prefix sum matrix Ps, we merge
several files to construct an intermediate file Fs which contains the records
that correspond to all the entries of the derived matrices Ds.

• The part of ExtractDerived where we extract the derived matrices Ds from
the intermediate Fs.

For the above routines we measured how the performance of the algorithm
changes if we change the number of files that are merged or extracted together.
For the first routine we use f1 to denote the number of files that we merged simul-
taneously at each point for constructing Fs. For the second routine we use f2 to
denote the number of derived matrices that we extracted together each time that
we performed a scan of Fs. In the previous description of the algorithm, we convey
that the value of each of these two parameters is equal to two. We also implemented
a version of the routine that constructs the intermediate file Fs based on the mech-
anism of the skewed heap described in Section 4.2.4. Recall that this method does
not merge any files in order to construct Fs. All versions of our implementation
work in a purely cache-oblivious manner.

The algorithms were implemented in C++ using the software library TPIE (the
Templated Portable I/O Environment) [1]. This library offers I/O-efficient algo-
rithms for scanning and sorting large files in external memory. Our experiments
where run on a machine with a 3.2GHz four-core Xeon CPU (W3565). The main
memory of the computer is 12GB. This workstation has 20 disks that have a btrfs
(raid 0) file system configuration. The operating system on this computer was Linux
version 2.6.38. During our experiments, 8GB of memory was managed by our soft-
ware, and the rest was left to the operating system for disk cache. For each of the
versions of our implementation, the maximum amount of disk space used at any
time during the execution was 672 GB.

In our first experiment, we ran our implementation of the algorithm on the
97GB dataset for all possible combinations of values of the two parameters f1, f2 ∈
{2, 3, 10, 20, 35, 50}. We also ran the implementation of the algorithm using the
skewed heap approach for all values of parameter f2 ∈ {2, 3, 10, 20, 40, 50}. From
all the possible versions that we tried, the best running time was achieved by the
version that uses the skewed heap approach, and parameter value f2 = 50; the
running time in this case was 2 hours and 15 minutes. The best running time that
we got without using the skewed heap approach was for the version with parameter
values f1 = f2 = 50. In this case, the running time was 2 hours and 28 minutes. The
worst running time that we got among all versions was from the version that has
parameter values f1 = 2, and f2 = 2; the running time for this version was 3 hours
and 35 minutes. In general, the running time of each version that behaved like a
decreasing function on the values of parameters f1 and f2. We also did experiments
with values of f1 and f2 larger then 50, however here we did not see an additional
improvement in runtime. Running the implementation of the O(sort(N)) algorithm
of Arge et al. on the largest dataset yielded a running time of 13 hours and 14
minutes. This running time is a bit less than four times larger than the worst
running time that we got for any version of our implementation.

For our next experiment, we ran the two best versions of our implementation on
the datasets that we got from extracting the 100 largest scale instances of the 97GB
raster, including the initial raster itself. We also ran on these datasets the implemen-
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implementation.

tation of the O(sort(N)) algorithm of Arge et al., and the naive internal-memory
algorithm that uses prefix sums. Figure 4.2 illustrates the performance of the four
implementations. There, we get a good impression on how the performance of our
implementation scales with the size of the input. This is a strong indication that
the theoretical bounds that we proved for the performance of the algorithm can be
reflected in practice.

The results of both experiments show evidently the practical efficiency of our al-
gorithm, when also compared to the implementation of the algorithm of Arge et al..
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Of course, it could be argued here that this result is hardly surprising; in the-
ory, an O(sort(N)) algorithm has obviously worse asymptotical behaviour than an
O(scan(N)) algorithm. However, in practice, the performance of an O(sort(N)) al-
gorithm scales linearly in terms of I/Os. Figure 4.2 provides some evidence on this
argument for the algorithm of Arge et al., at least for the range of input sizes that we
considered. The explanation behind this phenomenon is that the ratio M/B in most
computers has a value close to one thousand, and therefore the term logM/B(N/B)
in sort(N) is not larger than two in all practical cases. Thus, it is not unrealistic
to observe O(sort(N)) algorithms performing better in practice than O(scan(N))
algorithms. More than that, in our case, we compare a cache-aware implementation
with a cache-oblivious one, and we could expect that this is an advantage for the
performance of the cache-aware implementation. Yet, as we see from our exper-
iments, this is clearly not the case; the cache-oblivious algorithm performs much
better in practice. This result shows that purely cache-oblivious software can be
developed to perform efficiently in real-world applications. It is interesting to see if
we can get similar results also for other external memory problems.

In our last experiment, we ran the best version of our implementation on the
largest of our datasets, and at every minute of the execution we measured the rate
of the CPU utilisation and the I/O-throughput of this implementation. Figure 4.3
illustrates the results of this experiment. We see that both the I/O-throughput and
CPU utilisation were fairly constant during the run. Also, for the largest part of
the execution of the algorithm, the CPU utilisation remained above or close to 40%;
hence, the running time of the algorithm was almost equally distributed between
the CPU and the I/O-operations.
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Decomposition Simplification

This chapter contains [11] which is joint work with Lars Arge and Jungwoo Yang.
The paper is included here with some proofs extended, and a new section detailing
the labelling algorithm.

5.1 Introduction

Spatial data analysis has received considerable attention over the last few decades.
Spatial data can be analysed in various ways, but visualizing the data is obviously a
first simple method to understand the data. For visualization, spatial data is often
represented by geometric primitives such as points, lines, and polygons, and often
such representations form a planar subdivision, that is, an embedding of a planar
graph with straight line edges. For example, (2.5-dimensional) terrain data is often
visualized by (2-dimensional) contour maps, just like various terrain analysis results,
such as drainage divisions, take the form of planar subdivisions. One reason for the
increasing focus on spatial data analysis is that massive amounts of spatial data is
increasingly available. For example, advances in mapping technology such as Light
Detection and Ranging (LIDAR) technology has made high-resolution terrain data
available. However, with the increasing size of the data also comes the need for
intelligent data simplification. Such simplification is e.g. motivated by advanced
analysis tools only being able to handle a limited amount of data.

In this chapter, we consider the planar subdivision simplification problem, where
we are given a planar subdivision P and a constant εxy > 0 and want to construct
a simpler planar subdivision P ′ such that no point on P ′ is moved more than a
distance of εxy away from a point on P (xy-constraint) and such that P and P ′
are homotopic (homotopy-constraint). Intuitively, the homotopy-constraint means
that P can be transformed to P ′ by smoothly moving edges and points, such that
faces and neighbor relations between faces are preserved; Refer to Section 5.2 for
more precise definitions of the xy- and homotopy-constraints.

We are interested in practically efficient algorithms for massive subdivisions that
are too large to fit in main memory and must reside in disk. In such cases the move-
ment of data between main memory and disk is often the bottleneck in a computa-
tion. We will therefore consider algorithms in the I/O-model of computation [5]. In
this model the machine consists of a main memory that can hold M data elements
and a disk of unbounded size. A block of B consecutive elements can be transferred
between disk and main memory in a single I/O. Computation takes place in main
memory, and the complexity of an algorithm is measured in terms of the number of
I/Os it performs. Furthermore, since we are interested in practical applications of

85
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algorithms for planar subdivision simplification, we will make two practically real-
istic assumptions (also made in previous similar work) namely that 1) all edges in
P crossing any horizontal line fit in main memory, and 2) all edges in P incident to
two faces sharing an edge fit in main memory.

Previous results. A large number of I/O-efficient algorithms have been devel-
oped in the last two decades. See recent surveys for an overview [6, 66]. Here
we mention that scanning and sorting N elements takes O(scan(N)) = O(N/B)
and O(sort(N)) = O(N/B logM/B(N/B)) I/Os, respectively. We are not aware of
any direct previous work on I/O-efficient algorithms for planar subdivision simpli-
fication. However, there has been a lot of work on the related problem of terrain
simplification; Refer e.g. to [38, 25] and the references therein. Unfortunately, most
often the developed approaches do not provide guarantees on accuracy (fulfill our
constraints) or they are not I/O-efficient. Similarly, there is a lot of previous work
on simplifying a polygonal line in the plane; Refer e.g. to [41] for a survey. However,
trying to simplify a planar subdivision by simplifying individual polygonal lines in
the subdivision will likely lead to intersections between the simplified polygonal lines
and thus to violation of the homotopy-constraint.

Very recently, however, an I/O- and practically-efficient (but not particularly
simple) algorithm for the very related contour map simplification problem was de-
veloped by Arge et al. [8]. The problem is defined as follows. Let T be a terrain
represented as a planar triangulation with heights associated with the nodes (also
known as a triangulated irregular network or TIN); the height of an arbitrary point p
is obtained by linear interpolation between the three nodes of the triangle of T con-
taining the xy-projection of p. The h-level set of T is the set of (planar) edges
obtained by intersecting T with a horizontal plane at height h. A contour is a
connected component of a level set, and a contour map H is the union of multiple
level sets. H is a planar subdivision and if we for simplicity assume that none of the
level sets are defined by heights of the nodes of T then all contours in H are cycles.
The contour map simplification problem is simply the planar subdivision problem
on H with the added z-constraint, that for any point p on a contour in the h-level
set of the simplified subdivision (map) H′ the difference between h and the height
of p in T is less than εz. Note that the problem reduces to normal planar subdivi-
sion simplification if the (h− εz)-level and (h+ εz)-level set are added to H before
the simplification. In fact, this is exactly how the problem is solved in the recent
O(sort(N)) I/O algorithm by Arge et al. [8]. The algorithm first I/O-efficiently con-
structs a so-called topology tree that encodes how the contours in H are nested (that
is, their inside/outside relationships). Then this tree is traversed and the contour c
in each node v is loaded into main memory in turn, along with the contours in the
parent, siblings and children of v. Note that these constraint contours are exactly
the contours that are adjacent to one of the two faces adjacent to c; Refer to Fig-
ure 5.1. Then c is simplified under the xy- and homotopy-constraints relative to the
constraint contours with an internal memory algorithm, which is a variant of the
Douglas-Peucker polygonal line segment simplification algorithm [63, 29]. Finally,
the simplified contour c′ is reinserted in the topology tree (to ensure that no later
simplified contour intersect c′). Arge et al. [8] performed experiments on massive
contour maps and showed that the algorithm performs well in practice. Note, how-
ever, that the algorithm cannot easily be adapted to work on planar subdivisions,
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c
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Figure 5.1: Illustration of the Arge et al. [8] algorithm. Contour c in a node v of
the topology-tree is simplified relative to the contours in children (green) and parent
and siblings (blue).

since the topology tree (nesting) is only well-defined for contour maps (and not for
general subdivisions).

Our results. In this chapter, we present the first I/O- and practically-efficient
algorithm for planar subdivision simplification. Our algorithm is not only more
general than the contour map simplification algorithm in [8] but also simpler. To
illustrate this, consider how our algorithm works in the case where the subdivision
is a contour map H. In this case the algorithm first considers each contour c in
turn and assigns it to the largest of the two faces adjacent to c (the face with
most adjacent contour edges), along with all other contours adjacent to the other
(smallest) face as constraint contours. Note that the constraint contours assigned to
a face with c are either the contours in the children of the node v in the topology tree
for H containing c or the contours in v’s parent and siblings; Refer to Figure 5.1.
Note also that a given contour can be assigned to many faces. Next the algorithm
considers each face f in H in turn and simplifies each contour c assigned to f in
internal memory under the xy- and homotopy-constraints relative to the constraint
contours assigned with c and all contours (except for c itself) adjacent to f in H.
Note that this means that just as in [8], c is simplified relative to contours in the
parent, siblings and children nodes of the node v in H.

We present our algorithm in two sections below: The external part of the al-
gorithm is described in Section 5.3 and the internal memory part in Section 5.5.
Our algorithm is simpler (and more general) than the previous algorithm [8] since it
completely avoids the topology tree. This is accomplished by collecting constraint
contours (by assigning contours to faces) before the actual simplification, which
makes the construction and traversal, as well as update, of the topology tree un-
necessary. However, since only original contours in H are considered as constraints
during the simplification, the correctness (fulfillment of the homotopy-constraint)
is not straightforward since intersections between adjacent contours could poten-
tially be introduced when they are simplified separately. Also the efficiency of the
algorithm is not straightforward, since (as mentioned) a contour can be assigned
as a constraint to many faces. In Section 5.4 we provide a correctness proof and
show that our algorithm is as efficient as the previous contour map simplification
algorithm [8].

We have implemented our algorithm and in Section 5.6 we present the results
of experimenting with it on real-life data, more precisely on data derived from a
detailed terrain model of Denmark containing over 12 billion data elements. We both
compare its performance to the previous algorithm for contour map simplification [8],
and investigate its performance on general planar subdivisions by using it to simplify
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a so-called catchment decomposition of a terrain. For the contour map simplification
problem our algorithm is significantly faster than the previous algorithm, while
obtaining approximately the same simplification factor w.r.t. to the number of edges .
For the catchment decomposition simplification problem our algorithm also performs
well. Our experiments reveal that the simplification factor depends significantly on
the length of the boundary between adjacent faces, with the largest simplification
being obtained when adjacent faces share many edges (as is the case in contour map
simplification). Overall, our experiments confirm that our algorithm is not only
simple and general but also practically efficient.

5.2 Preliminaries

A path P is a set of edges defined by pairs of consecutive points in a sequence p1, . . . , pn
of n > 1 points in R2. Abusing notation slightly, we use P to denote both the se-
quence of points and the path itself. A sub-path of P is defined by a consecutive
subsequence pi, pi+1, . . . , pj , 1 ≤ i < j ≤ n of P , and a simplification P ′ of P is
simply a subsequence of P . A polygon is a path P where p1 = pn. A point p is
within a polygon P if any path from p to infinity crosses at least one edge of P . We
will abuse notation slightly and also use a polygon P to define the closed region of
space defined by points within or on the boundary of P .

Let P be a planar subdivision with N edges. An edge e is said to be a face edge
of a face f in P if e is adjacent to f , and we use Ef to denote the set of all face
edges of f . The size |f | of a face f is defined to be |Ef |. A face is a neighbor of
another face if they share a face edge. A maximal path in P is a connected path of
edges of P, such that each node except the first and last node has degree two, and
such that the first and last have degree larger than two or are the same node, that
is, a maximal path is a path that cannot be extended and still only contains nodes
of degree two.

Definition 5.1. Let S ⊆ R2, Q,Q′ ⊆ S. Q is homotopic to Q′ in S if and only if
there exists a continuous function H : Q× [0, 1]→ S such that

1. H(·, 0) is the identity function

2. {H(p, 1) | p ∈ Q} = Q′

3. H(·, t) is injective for all t ∈ [0, 1]

We call H a homotopy function from Q to Q′ in S.

Let Q and Q′ be the sets of points consisting of all points on the edges of pla-
nar subdivisions P and P ′, respectively. We say that P is homotopic to P ′ if and
only if Q is homotopic to Q′ in R2.

Intuitively, the homotopy function H in the above definition transforms the
decomposition Q into Q′ as “time” goes from 0 to 1, that is, H(p, t) defines where
a point p in Q is placed at time t in the homotopic transformation. The continuity
of H ensures that paths are not broken, and the injective property ensures that a
maximal path P in P is transformed into a maximal path P ′ in P ′, that faces in P
maintain their neighbors in P ′, and thus that no faces appear or disappear.
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Definition 5.2. Let P be a planar subdivision homotopic to a planar subdivi-
sion P ′. P and P ′ are within distance εxy > 0 if and only if for each maximal path P
in P and the corresponding maximal path P ′ in P ′, each point on one of these paths
is within distance εxy of a point on the other path.

Throughout the rest of this chapter, P will be the input planar subdivision and P ′
the simplified output subdivision. As discussed in the introduction, we want P to
be homotopic to P ′ (Definition 5.1; fulfill the homotopy-constraint), and P and P ′
to be within distance εxy of each other (Definition 5.2; fulfill the xy-constraint).

The following lemmas about homotopy (needed in the correctness proof in Sec-
tion 5.4) are easily proved. Intuitively the first lemma states that a homotopic
relation in a space S will also hold in any larger space containing S. The second
lemma states that two homotopic relations in disjoint spaces can be joined into one
homotopic relation in the union of the two spaces.

Lemma 5.1. Let S ⊆ S ′ ⊆ R2, Q,Q′ ⊆ S, such that Q is homotopic to Q′ in S.
Then Q is homotopic to Q′ in S ′.

Lemma 5.2. Let S1,S2 ⊆ R2. Let H1 be a homotopy function from Q1 to Q′1 in S1

and H2 be a homotopy function from Q2 to Q′2 in S2. If H1(p, t) = H2(p, t) = p for
all p ∈ S1 ∩ S2, t ∈ [0, 1], then Q1 ∪Q2 is homotopic to Q′1 ∪Q′2 in S1 ∪ S2.

5.3 Algorithm

In this section we describe the external part of our algorithm for simplifying a
planar subdivision P. The internal memory part of the algorithm (an algorithm for
simplifying a maximal path P̃ under the xy- and homotopy-constraints relative to
a set of constraint edges) is described in Section 5.5.

As described for the special case of contour maps in the introduction, our algo-
rithm works in two phases: In the first phase edges of P are assigned to faces, and in
the second phase each face is considered in turn and the actual simplification is per-
formed to obtain P ′. Both phases require that every edge e in P is labeled with the
two faces adjacent to e. If this is not the case, we can obtain the labels in O(sort(N))
I/Os using an algorithm similar to an algorithm due to Arge et al. [10] for computing
(labeling) connected components in a planar embedded graph, as detailed below.

Labelling. Our labelling algorithm uses two sweepline phases: In the first phase
we sweep up (in y direction) while maintaining connectivity below the sweepline,
and in the second phase we sweep down while maintaining connectivity above the
sweepline. During the second phase we also consider the connectivity information
obtained during the first phase in order to compute overall connectivity.

The up sweep uses five different data structures. We have the external stream of
outgoing segments O, which is sorted by their minimal y-coordinate, these segments
are the input to the algorithm. We have an internal priority queue I with incoming
segments and associated left and right labels, of the form (s, l, r). The segments in I
are ordered by their maximal y-coordinate (smallest first). We have an ordered set L
(red-black tree) of segments, with associated labels of the form (s, l, r). The segments
are ordered from left to right (w.r.t. intersection with the sweepline). Both I and L
will contain the segments currently intersected by the sweepline. We have a reference
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Figure 5.2: The node p in a up sweep (a) or a down sweep (b), we have k incom-
ing segments with associated labels, and m outgoing segments. The segments are
ordered counter clockwise around p

counted disjoint set structure U (union find) of labels. Any label in I or L is
also present in U . The labels in U are reference counted in such a way that once
labels go out of I and L they may also in time be removed from U . Specifically
at most constant fraction of the elements in U will not be in I and L. We require
that the representative of a set in U is its minimal element. Finally we have an
external stream R of resulting segments with associated labels, on the form (s, l, r).
R contains the result of the up sweep, the segments will by construction be ordered
by their maximal y-coordinate (smallest first).

In the up sweep, the nodes of the segment graph (the endpoints of the line
segments) are processed in increasing y order. For every node p the outgoing seg-
ments o1, . . . , om are loaded from O, and the incoming segments i1, . . . , ik are loaded
from I, together with the associated labels l1, . . . , lk and r1, . . . , rk. As shown in
Figure 5.2a the segments are ordered counter clockwise around p and the labels
represent the left and right faces.

For every j in 1, . . . , k, we will find the representatives l′j and r′j of lj and rj
respectively in U , and output (ij , l

′
j , r
′
j) to R. For every j in 1, . . . , k − 1, the

labels rj and lj+1 will be unioned in U . If k = 0, we will find the predecessor (lower
bound) of p in L. This will be some segment on the form (s, l, r) that is to the left
of p. The label of the face p is located in will be the representative r′ of r in U , so
we will set n0 := nm := r′, for later use. Otherwise if k 6= 0, but m = 0, we will
union l1 and rk in U and get a new representative r′, again we set n0 := nm := r′.
In the final case where k 6= 0 and m 6= 0, we will set n0 to be the representative of rk
in U and nm to be the representative of l1 in U . In any case we will create m − 1
new labels in U and call them n1, nm−1 these will be the labels assigned to the new
faces between each of the outgoing segments. For every j in 1 . . .m, we will insert
the (oj , nj−1, nj) into I and L.

After the up sweep, a down sweep is performed. In this we replay the unions of
the up sweep in reverse order. The sweep uses four structures. We have the stream
of outgoing segments R on the form (s, l, r), which is the output of the up sweep.
We will read this in reverse order to get the elements ordered by their maximal y
coordinate in decreasing order. We have an internal priority queue Q of incoming
segments on the form (s, l, r), this will be ordered by the minimal y coordinate in
decreasing order, and will only contain segments intersected by the sweepline. We
have a reference counted dictionary D of labels, mapping temporary labels from the
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up sweep, to the final labels. We will only store mappings of labels referenced in Q.
Finally we have the output X which contains segments on the form (s, l, r) where l
is the label of the face to the left of s and r is the label of the face to the right
of s. By construction X is ordered by the minimal y coordinate of the segments in
increasing order. That is the segments in X occur in the same order as in O.

In the down sweep, the nodes of the segment graph are processed in decreasing y
order. For every node p the outgoing segments (o1, l

O
1 , r

O
1 ) . . . (om, l

O
m, r

O
m) are loaded

from R and the incoming segments (i1, l
I
1, r

I
1) . . . (ik, l

I
k, r

I
k) are loaded from Q. As

show in Figure 5.2b the segments are again ordered counter clockwise around p. The
unions preformed for p in the up sweep are replayed. For given l, we define D[l] to
be the mapping of l in D or l if l is not mapped by D. For given l, r, the union
of l and r in D is performed by setting D[l] := D[r] := min(D[l], D[r]). For every j
in 1 . . .m−1 we union rOj and lOj+1 in D. If k = 0 we also union lO0 and rOm in D. For

every j in 1 . . . k we output (ij , D[lIj ], D[rIj ]) to the output stream X. For every j

in 1 . . .m we add (oi, l
O
j , r

O
j ) to Q.

The memory used by the labelling algorithm is linear in the number of segments
crossing the sweepline, assuming this also holds for the disjoint set structure. To
construct a reference-counted disjoint set with this property, we start with a regular
disjoint set structure with path compression. We augment each node with pointers
to the left and right siblings and the left and right children, as well as the reference
count. Whenever a note has a reference count of zero, has a parent and has less then
two children, the node can be deleted and the at most one child can be moved to the
parent. This way leafs in the tree are always alive, and the number of dead internal
nodes can be bounded by the number of leafs, without affecting the asymptotic
running time of any of the operations.

To see that the algorithm is correct we need to prove that any two labels assigned
to a face in the output are identical. In the up sweep several labels can be assigned
to a given face. New labels are assigned in the case where m > 1, here m− 1 labels
are created. All these labels will at some point during the up sweep be unioned in
the case where k > 1 or m = 0. We note that in the case where k = 0, we copy a
label already used for the face, such that the labels on inner rings will be the same
as that on the outer ring. Once we have swept across a face, all the different labels
assigned to it will have been unioned, and every time a union has been performed
the labels outputted to R immediately before the union bear witness to it such that
it is replayed correctly in the down sweep. Since the down sweep visits the notes
and therefore the unions in reverse order, and since the representatives of a union is
always the minimal label, all the different labels assigned to a face in the up sweep,
will be mapped to the minimal of these in the down sweep.

We note that if we create new labels in increasing order, and if we choose the
representative of a union as the smallest of the two representatives, then a face
starting below another face will have a smaller label then one starting above it. In
particular any face completely contained within another will have a higher label
then the one it which it is contained.

Phase one. In this phase, for each face f we collect all face edges (except the ones
shared with f) from all smaller neighbor faces of f (faces f ′ with |f ′| < |f |). Note
that in the contour map case, this corresponds exactly to assigning each contour c
to the largest face adjacent to c along with all other contours adjacent to the smaller
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face adjacent to c (as described in the introduction).
To collect edges, we first make two copies of each edge in P. More precisely,

for an edge e between nodes (points) p1 and p2 and with adjacent faces l and r
we output (l, r, p1, p2) and (r, l, p1, p2) to a list S. This can be accomplished in a
simple scan of the edges. Next for each face f we compute the size of f and of
each neighbor face f ′ of f . To do so, we first sort S in lexicographical order, such
that all face edges of f occur consecutively in S and such that all shared edges
with each neighbor f ′ also occur consecutively. Then we scan through S and for
each face f we compute the size |f | of f , as well as the size |f ′| of each neighbor
face f ′ while outputting (f ′, f, |f |) to a list Sn. Then we sort Sn lexicographically,
such that it contains the size of all neighbor faces (more precisely, for each face it
contains a number of consecutive elements containing the size of neighbor faces).
Finally, we perform the actual collection of edges by scanning through S and Sn
simultaneously. For each face f we first load all its face edges into memory from S;
by assumption they fit in memory. We then obtain the size |f ′| of each neighbor
from Sn, and if |f | < |f ′|1 we output all edges of f not shared with f ′ to a list Sf in
the form (f ′, f, p1, p2). After handing all faces, we sort Sf in lexicographical order,
such that for each face it contains all non-shared edges of all smaller neighbor faces
as required.

Note that phase one is performed using a constant number of scans and sorts
of S, Sn and Sf . S and Sn are of linear size in N , and we will bound the size of Sf
in Section 5.4.

Phase two. In this phase we simplify each maximal path P̃ of P in turn (using
the internal algorithm discussed in Section 5.5) with all the face edges of its two
adjacent faces as constraints. Note that in the contour map case each contour
will be a maximal path, and the edges of the two adjacent faces will be exactly the
contours of the parent, siblings and children nodes in the topology tree (as described
in the introduction).

To simplify each maximal path we scan through S and Sf simultaneously. For
each face f , we first load all its face edges into memory from S, and then we in
turn load all non-shared face edges of each smaller neighbor face f ′ into memory
from Sf ; by assumption they fit in memory. We simplify each maximal path P̃
shared between f and f ′ using the internal algorithm (Section 5.5) with constraints
(Ef ∪ Ef ′) \ P̃ as required. We also simplify maximal paths incident only to f
with Ef \ P̃ as constraints.

Note that each maximal path is simplified in the above process, since it will
either be shared between two neighbor faces (and then simplified when the largest
of the faces is considered) or be incident to only one face (and then simplified when
that face is considered). Note also that phase two is performed in one scan over S
and Sf .

1If |f | = |f ′| we break ties arbitrarily by outputting edges to the face with the largest label
(that is, we output to f if f > f ′).
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Figure 5.3: Illustration of the definitions used in correctness proof. The solid lines
are in EfP ∪ Ef ′P and the dashed lines in P .

5.4 Analysis

In this section we show that our algorithm fulfills the homotopy- and xy-constraints,
and that it is efficient.

Correctness. Given a maximal path P̃ = p1, p2, . . . , pn−1, pn of P with adja-
cent faces fp and f ′p (as shown in Figure 5.3), the internal algorithm (Section 5.5)
computes a simplified maximal path P = ps1 , ps2 , . . . , psm of P ′ where P is a sub-
sequence of P̃ , with s1 = 1 < s2 < · · · < sm = n, so that every simplified
edge e = (psi , psi+1) ∈ P replaces a sub-path ẽ = (psi , . . . , psi+1) in P̃ . We de-
fine ∆e as the polygon obtained by joining ẽ and e, and ∆P =

⋃
e∈P ∆e. Finally

we say that e satisfies the xy-constraint if and only if the distance2 between ẽ and e
is at most εxy. Note that the simplification satisfies the xy-constraint if all edges
in P ′ satisfy the xy-constraint.

The simplified path P of P̃ computed by the internal algorithm has the following
properties (refer to Section 5.5):

(1) (EfP ∪ Ef ′P ) \ P̃ is disjoint from ∆P except for the endpoints of P .

(2) ∆P is contained within fP ∪ f ′P .

(3) P̃ is homotopic to P in ∆P .

(4) Any edge in P satisfies the xy-constraint.

Lemma 5.3. Let P and Q be distinct maximal paths in P ′. Then ∆P is disjoint
from ∆Q except possibly for the shared endpoints of P and Q.

Proof. Assume for contradiction that ∆P and ∆Q are not disjoint. Since ∆P =⋃
e∈P ∆e there must exist edges e ∈ P and g ∈ Q such that ∆e is not disjoint

from ∆g. By (2) we know that ∆P is contained within fP ∪f ′P and ∆Q is contained
within fQ ∪ f ′Q, so ẽ and g̃ must be adjacent to a common face. Since ∆e is not
disjoint from ∆g, either one is within the other or their boundaries must intersect.

2The distance between a point p and an edge e is the minimal Euclidean distance between p
and a point on e. The distance between an edge e and a path ẽ is the maximal distance between e
and any point on ẽ.



94 CHAPTER 5. DECOMPOSITION SIMPLIFICATION

If we assume that one is within the other, say ∆e is within ∆g, then also ẽ must be
within ∆g, but ẽ ⊆ (EfQ ∪ Ef ′Q) \ Q̃ since P̃ and Q̃ share a common face, thus one
polygon cannot be contained within the other since it would violate (1).

The only remaining case is then that the boundary of ∆e intersects the boundary
of ∆g. By (1) e does not intersect g̃, g does not intersect ẽ, and by the definition
of P, ẽ and g̃ do not intersect (possibly all pairs can intersect on the shared endpoints
of P and Q). Therefore, only e and g can intersect. Note that in order for ∆e and ∆g
to share only a point, the shared point must be one of the shared endpoints of P
and Q, that is, ∆e and ∆g must intersect at least twice. Since e and g are edges,
they can intersect at most once, which is a contradiction to the fact that they must
intersect at least twice. Thus, this contradicts the assumption that ∆P and ∆Q are
not disjoint.

Theorem 5.4. P is homotopic to P ′ in R2 and satisfies the xy-constraint.

Proof. Let P1, . . . , Pk be the maximal paths of P ′. By (3) we have that P̃i is ho-
motopic to Pi in ∆Pi. By Lemma 5.3 all polygons ∆Pi are disjoint from each
other except for the shared endpoints, where the points are not moved during the
transformation. By repeated applications of Lemma 5.2, we get that

⋃
i P̃i = P is

homotopic to
⋃
i Pi = P ′ in

⋃
i ∆Pi. By Lemma 5.1, since

⋃
i ∆Pi ⊆ R2 we get

that P is homotopic to P ′ in R2.
By (4) all edges on all paths in P ′ satisfies the xy-constraint, so (as noted ear-

lier) P ′ also satisfies the xy-constraint.

Efficiency. The external part of our algorithm performs a constant number of
scans and sorts on the lists S, Sn and Sf . Recall that S and Sn are of linear size
in N , and that Sf is produced by for each face f of P collecting all face edges from
all smaller neighbor faces of f . To show that our algorithm uses O(sort(N)) I/Os,
we need to show that Sf is of size O(N).

We consider the dual graph Pd of P, that is, Pd contains a node for each face
in P, and two nodes in Pd are connected by an edge if and only if the corresponding
faces in P are neighbors. For a node v in Pd, we define the weight w(v) as the size
of the face corresponding to v in P. We define the weight w(e) of an edge e in Pd
to be the minimum of the weights of its endpoints. Observe that

∑
v∈Pd

w(v) = 2N
and that |Sf | =

∑
e∈Pd

w(e).

Lemma 5.5. Let F (V,E) be a forest such that each node v ∈ V has non-negative
weight w(v). For every e(u, v) ∈ E we define w(e) = min(w(u), w(v)). Then∑

e∈E w(e) ≤∑v∈V w(v).

Proof. We may assume F (V,E) is a tree, since a forest can be transformed into a
tree by adding edges between components, which increases

∑
e∈E w(e). Now, F can

be viewed as a rooted tree by choosing an arbitrary node r in V as the root. For
every edge e ∈ E, we define w′(e) to be the weight of the node of e furthest from r.
We know

∑
e∈E w

′(e) ≤ ∑v∈V w(v) since the weight of every node is counted at
most once. Since w(e) ≤ w′(e), we have

∑
e∈E w(e) ≤∑v∈V w(v).

Theorem 5.6. The number of I/Os performed by our algorithm is O(sort(N)).

Proof. By Nash-Williams’ formula [55, 56], every planar graph has arboricity at
most three, where the arboricity of a graph is the minimum number of forests into
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which the edges of the graph can be partitioned. Thus since Pd is a planar graph,
the edges of Pd can be partitioned into at most three forests. Let Fi(Vi, Ei) be a
forest for 1 ≤ i ≤ 3 such that

⋃
i Fi = Pd. By Lemma 5.5,

∑

e∈Pd

w(e) ≤
∑

1≤i≤3

∑

e∈Ei

w(e) ≤
∑

1≤i≤3

∑

v∈Vi

w(v) ≤ 6N .

Thus, we see that |Sf | = O(N) and our algorithm uses O(sort(N)) I/Os.

5.5 Internal simplification algorithm

Our internal algorithm for simplifying a maximal path is similar to the internal ring
simplification algorithm of [8]. We are given a maximal path P̃ = p1, . . . , pn of P
and the set of edges E of the (at most) two faces f and f ′ adjacent to P̃ (that is,
E = (Ef ∪Ef ′) \ P̃ ). The algorithm computes a simplification P of P̃ satisfying the
following properties:

(1) E is disjoint from ∆P except for the endpoints of P .

(2) ∆P is contained within f ∪ f ′.

(3) P̃ is homotopic to P in ∆P .

(4) Any edge in P satisfies the xy-constraint.

Algorithm. The simplification is performed by a simple recursive algorithm on
a sub-path P̃ij = pi, . . . , pj , based on Douglas-Peucker’s algorithm [29], where P̃ij
initially is P̃ itself. Let ∆P̃ij be the polygon obtained by closing P̃ij with the edge e =
(pj , pi). We replace P̃ij by e, if it satisfies three conditions: 1) the furthest point pk
from e in P̃ij is within distance εxy, (εxy-condition), 2) E is disjoint from ∆P̃ij
(disjoint-condition) and 3) e does not intersect any edge in P̃ \ P̃ij (non-intersection
condition). If e violates any of these conditions, we recurse on both P̃ik and P̃kj .
In order to prevent the “collapse” of faces (which would violate the homotopy-
constraint)3, our algorithm will not simplify a maximal path to lengths less than 2;
rings will not be simplified to lengths less than 3.

What remains is to describe how to decide if a given edge e satisfies the three
conditions.

We check the εxy-condition simply by scanning through all points in P̃ij .
To check the disjoint-condition, that is, to check if E is disjoint from ∆P̃ij

except possibly for the endpoints of P̃ , we navigate the space inside f ∪ f ′ by
computing a trapezoidal decomposition Do of edges in E using a sweepline algorithm.
In addition, we add both endpoints of P̃ toDo as empty edges. As in [8], we define the
trapezoidal sequence t(Q) of a pathQ to be the sequence of trapezoids traversed byQ,
sorted in the order of traversal. If t(Q) contains the partial sequence tt′t for some
trapezoids t, t′ ∈ Do, we will replace this by t. Performing this contraction repeatedly
until no more contractions are possible, we obtain a new sequence tc(Q) called the
canonical trapezoidal sequence of Q. We trace P̃ij and e in Do to obtain t(P̃ij)

3Simplifying a path to a single edge will normally not cause problems. However, if the boundary
of a face consists of exactly two maximal paths and both of them were simplified to a single edge,
the face would collapse to an edge, violating the homotopy-constraint.
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Figure 5.4: Example of using a trapazoidal decomposition to verify homotopy. Here
the red line has a trapazoidal sequence of abcjklfghi which is also the canonical tra-
pazoidal sequence. The green path has a trapazoidal sequence of abcdefghgfedcjklfghi
and a canonical trapazoidal sequence of abcjklfghi, so the green path can be replaced
by the red line, in the simplification. On the other hand the orange line has a tra-
pazoidal sequence of abcdefghi which is also its canonical trapazoidal sequence, so
the orange path cannot be replaced by the red line.

and t(e) respectively, and verify that tc(P̃ij) is equal to tc(e). If they are the same, E
is disjoint from ∆P̃ij and the endpoint of P̃ is not inside of ∆P̃ij (possibly on the
boundary). This can be proved by an argument similar to the ones in [23]. See
Figure 5.4 for an example.

Finally, we check if e does not intersect P̃\P̃ij , the non-intersection condition, in a
similar way to the disjoint-condition. We first build a trapezoidal decomposition Ds
of all edges in P̃ . Then instead of checking the trapezoidal sequence, we check if e
crosses any edge P̃ \ P̃ij during the tracing e in Ds. Whenever the trace crosses an
edge in P̃ , we check if the edge is in P̃ij . If this is not the case, e is an invalid edge.

Correctness. To prove correctness, we need to show that the simplification com-
puted by our algorithm satisfy the above four properties. Property (1) is satisfied
since all the edges in E are in Do, and we explicitly check the disjoint-condition for
all edges in P . Since P̃ is contained within f ∪ f ′, the only way to violate Property
(2) is for P to intersect the boundary of f ∪ f ′. This is impossible by Property (1).
Property (4) is also explicitly checked by the algorithm, when the εxy-condition is
considered. For Property (3), we show that for any P generated by the algorithm,
there exists a homotopy function from P̃ to P within ∆P . We first introduce the
following lemma.

Lemma 5.7. Let h and h′ be two simple paths that share both endpoints and form
a simple polygon ∆h. Then, h is homotopic to h′ in ∆h.

Proof. The Jordan–Schoenflies theorem [24] states that for any simple closed curve C
in the plane there is a homeomorphism f : R2 → R2 such that f(C) is the unit circle
in the plane4. Thus, we know that there exists a homeomorphism f that maps ∆h
to the unit circle in the plane such that h and h′ are mapped to the boundary of
the unit circle. It is then easy to find a homotopy function H ′ from f(h) to f(h′)
on the unit disk; simply moving uniformly along straight lines within the disk will

4 A homeomorphism is a function f : X → Y where f is a bijection and f and f−1 are
continuous.
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Figure 5.5: Illustration of the two cases (left and right, respectively). (Left) For each
simple polygon, we simply deform one to another by finding intersection points. The
green point is a stationary point during the deformation. (Right) The blue point is
the endpoint of P̃ , and it must be an endpoint of e. We first make ∆eQ̃ empty and

deform Q̃ into e and then ẽ into Q.

do. Since f−1 is also a homeomorphism, H(p, t) = f−1(H ′(f(p), t)) will provide a
homotopy function from h to h′.

We consider the polygon ∆e for an edge e ∈ P . Note that from Property (1), ∆e
does not intersect any edge in E. We have two cases to consider: Either ∆e is
disjoint from ∆g for any g ∈ P \ {e} (possibly sharing an endpoint) or it is not.
In the first case, we define a homotopy function as follows. We trace along e from
an endpoint p0 (say the 0-th intersection) of e to the other endpoint. Whenever
we reach the i-th intersection point pi between e and ẽ that has not been mapped
(including the other endpoint of e), we can find a homotopy function Hi from the
part of ẽ (from pi−1 to pi) to the part of e (from pi−1 to pi) within the simple
polygon ∆i they form by Lemma 5.7. Then, we regard all points on ẽ from pi−1

to pi as being mapped. Note that we might ignore some intersections that has been
mapped already (refer to Figure 5.5). Let k be the number of intersections found
during the mapping. Then, we can obtain a homotopy function H from ẽ to e in ∆e
as follows:

H(p, t) =





p if t = 0
H(p, i−1

k ) if i−1
k < t ≤ i

k ∧ p 6∈ ∆i
Hi(p, tk − i+ 1) if i−1

k < t ≤ i
k ∧ p ∈ ∆i

.

In the other case where ∆e and ∆g are not disjoint for some g, we note that e does
not intersect g̃, g does not intersect ẽ (by the non-intersection condition) and ẽ does
not intersect g̃ (by the definition of P). Thus, we know that e and g cannot intersect
(as in Lemma 5.3). This means that either ∆e is contained within ∆g or ∆g in ∆e,
assume without loss of generality that ∆g is contained within ∆e. Note that the
endpoints of P̃ cannot be inside of ∆e by the disjoint-condition. Hence there must
be a sub-path Q̃ of P̃ going from one endpoint of ẽ to the other endpoint through
the interior of ∆e containing g̃. Let Q be the simplification of Q̃, ∆eQ̃ the polygon
obtained by closing Q̃ with e, and ∆ẽQ the polygon obtained by closing ẽ with Q.
Note that ∆eQ̃ and ∆ẽQ are simple polygons. If ẽ intersects e we first find a simple
polygon ∆X completely contained in ∆ẽQ such that ∆X contains the intersection
between ∆eQ̃ and ∆ẽQ incident to e (refer to Figure 5.5). By Lemma 5.7, we can
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find a homotopy function such that all points on ẽ in ∆X map to the boundary
of ∆X outside of ∆eQ̃. Then we can find a homotopy function from Q̃ to e in ∆eQ̃
by Lemma 5.7. After mapping Q̃ to e, we also find a homotopy function from
(modified) ẽ to Q in ∆ẽQ by Lemma 5.7.

5.6 Experiments

We have implemented our algorithm and in this section we present the results of
experimenting with it on real-life data. We both compare its performance to the
previous algorithm for contour map simplification [8] and investigate its performance
on general planer subdivisions by using it to simplify a so-called catchment (or
watershed) decomposition of a terrain.

Implementations. We implemented our algorithms using the TPIE library for
efficient implementation of I/O-efficient algorithms, utilizing the libraries pipelining
functionality [1].

Our simplification algorithm was implemented as described in Section 5.3 and 5.5
except for one major optimization, which resulted in a speed-up of an order of magni-
tude. The optimization is based on the observation that when simplifying a maximal
path P we do not actually need to consider all the face edges E of the two faces
adjacent to P . Recall that in the internal algorithm in Section 5.5 we simplified P
by constructing a trapezoidal decomposition on all edges in E. However, it is easy to
realize that only the subset of E within the bounding box B of P can actually con-
strain the simplification of P to P ′. We used this observation in our implementation
of the external algorithm in Section 5.3, where we only used the internal algorithm
on the edges inside the bounding box of the path when simplifying a maximal path.
More precisely, we modified the algorithms such that when considering a face f in
phase two, we first built an internal memory Hilbert R-tree T [46] on all face edges
of f . Then when loading non-shared face edges of each smaller neighbor face f ′ into
memory in turn and simplifying every maximal path P on the boundary between f
and f ′, we retrieved the necessary face edges inside the bounding box B of P by
querying T with B and scanning through the face edges of f ′ and collecting only
edges inside B. As mentioned, this resulted in a significant runtime speedup.

Similarly to the previous contour map simplification algorithm of Arge et al. [8],
we implemented our algorithm to work on a grid terrain model, where the terrain is
represented as a regular grid of elevation values, and where input parameters δ, εxy
and εz are used to specify that the algorithm should produce a contour map with
equi-spaced contours a distance of δ apart and simplify it under the xy- and z-
constraints (as discussed in the introduction). As the previous algorithm [8], we
fulfill the z-constraint by introducing additional contours at level h−εz and h+εz for
each contour at level h,5 and the input contour map is constructed simply by adding
diagonals to the grid terrain model to obtain a triangulation, and then obtaining
the contour edges by intersecting each triangle with horizontal planes at the relevant
heights. After this preprocessing the contours are simplified with our algorithm as
described (using the sweeping based face labeling algorithm discussed in Section 5.3).
Since the preprocessing only requires scanning the input grid, it does not dominate
the total running time.

5The additional contours are not simplified and are not part of the output contours.
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Arge et al. [8] Our algorithm

Input edges 4,786,277,840 4,786,277,840

Running time (hours) 43 26

Output edges (% of input edges) 8.43 8.56

εxy violations 111,065,821 112,074,000

εz violations 262,798,580 263,424,320

Table 5.1: Comparison of results for contour simplification of Denmark. Here εxy
violations is the number of times we recurse in the internal algorithm because of
violation of the xy-constraint, and εz violations is the number of times we recurse
because of violation of the z-constraint (but not the xy-constraint).

Our implementation of an algorithm for simplifying a catchment decomposition
also works on a grid (terrain model) and takes a simplification parameter εxy. How-
ever, now the grid is interpreted such that neighbor grid cells with the same value
are in the same catchment (decomposition face). Our algorithm first constructs
the decomposition edges by scanning over the grid and constructing edges between
neighbor cells with different values, where edges are merged such that there are no
endpoints (nodes) of degree two where both edges are either horizontal or vertical.
We also directly augment each edge with the face (catchment value) on each side
of the edge (and thus avoiding the sweeping based face labeling algorithm). After
this preprocessing the decomposition is simplified with our algorithm as described.
Again the preprocessing only requires scanning the input grid and does therefore
not dominate the total running time.

Experimental setup and data. We performed all our experiments on a machine
with an 8-core Intel Xenon CPU running at 3.2GHz and with 32GB of RAM out
of which 13GB were available for our experiment. The machine had a 20 disk raid
with a maximal I/O speed of roughly 600 MB/s.

For our contour map simplification experiments we used the same data as in
the paper by Arge et al. [8], that is, a 2 by 2 meter grid model of Denmark with
roughly 12.4 billion grid cells. As in [8], the model was simplified using topological
persistence [4, 31] before the experiments, such that depressions and hills with a
depth/height less than 0.5 meter were removed.

For our catchment decomposition simplification experiments we used three dif-
ferent grid datasets, all obtained from the 2 by 2 meter grid model of Denmark. The
datasets were obtained by running commercial catchment delineation software from
SCALGO with thresholds 100, 500, and 500, 000, respectively (in number of grid
cells). Intuitively, the software assigns a flow direction for each cell to the steepest
downslope neighbor, computes river networks by identifying cells with a number of
upstream cells larger than the threshold, and assigns all cells that flow into the same
stream junction to the same catchment.

Experimental results. We first compared the practical performance of our algo-
rithm with the previous algorithm for the contour map simplification problem. As
in Arge et al. [8] we constructed a 0.5-meter contour map of all of Denmark (that is,
we used δ = 0.5m) and used simplification parameters εz = 0.2 meters and εxy = 5
meters; the εz value was chosen to roughly correspond to the z-accuracy of the input
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dataset, and the εxy value was chosen to allow a xy-variation of more than 2 grid
cells (and because results in [8] showed that choosing a larger values does not lead to
significant further simplification because of the z-constraint). An example of the un-
simplified and simplified contours computed in the experiment is given in Figure 5.6,
and detailed results are given in Table 5.1 (comparison to the previous algorithm)
and Figure 5.7 (resource use of our algorithm). In Table 5.1 it can be seen that the
preprocessing phase, identical for the two algorithms, resulted in approximately 4.8
billion edges. The simplification factor of the two algorithms are comparable, both
producing an output of size only approximately 8% of the input size. However, our
algorithm is significantly faster than the previous algorithm, running in 26 hours
versus the previous 43 hours. We believe this is due to its simplicity.

A closer look at the simplification number in Table 5.1 reveals that our algorithm
simplifies slightly less than the previous algorithm. We believe the explanation
is that our algorithm, unlike the previous one, partitions a contour into several
maximal paths (due to degeneracies) and simplifies each path individually, leading
to a higher chance of violating the constraints. This is confirmed by Table 5.1 that
shows the number of edges added during the algorithms as a result of violating the
xy-constraint or the z-constraint (when the xy-constraint was already satisfied).
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Figure 5.6: Example of unsimplified (top) and simplified (bottom) contours in con-
tour simplification experiment.
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Figure 5.7: Resource usage graphs for the contour simplification experiment. The
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Catchment Threshold 100 500 500000

Input subdivision edges 3,212,696,822 1,239,228,951 102,512,883

Input subdivision faces 387,212,706 75,342,930 787,428

Running time (minutes) 425 117 10

Output edges (% of input edges) 45.30 26.73 8.00

Table 5.2: Results for catchment decomposition simplification of Denmark with
different thresholds.

Path Length 1 [21, 22) [22, 23) [23, 24) [24, 25) [25, 26) [26, 27) [27, 28) [28,∞)

Dist. in 100 1.9% 35.3% 7.7% 16.2% 20.8% 11.1% 4.3% 2.1% 0.7%

Output 100% 98.1% 38.6% 18.6% 9.8% 5.5% 2.8% 1.5% 0.5%

Dist. in 500 1.0% 19.9% 2.4% 7.0% 18.0% 27.1% 13.9% 5.1% 5.6%

Output 100% 99.0% 39.7% 18.0% 9.3% 5.6% 3.5% 1.6% 0.6%

Dist. in 500k 0.3% 3.8% 0.1% 0.1% 0.4% 1.7% 6.4% 20.4% 66.8%

Output 100% 99.8% 72.8% 18.2% 9.1% 5.6% 4.5% 4.2% 3.9%

Table 5.3: Distribution of maximal path lengths, along with simplification factor
for the various path length intervals, in catchment decomposition simplification of
Denmark.

In the catchment decomposition simplification experiments designed to investi-
gate the practical performance of our algorithm on general subdivisions, we simpli-
fied the three grid decompositions using εxy = 10 meter; the εxy was chosen to be
somewhat larger than the 2 meter input grid size but without being significantly
larger. An example of the unsimplified and simplified catchments computed in the
experiment is given in Figure 5.8, and detailed results are given in Table 5.2 and 5.3.
In Table 5.2 it can be seen that the preprocessing phase resulted in three subdivi-
sions with approximately 102 million, 1.2 billion and 3.2 billion edges, respectively,
and with approximately 800 thousand, 75 million and 387 million faces, respec-
tively. The first interesting thing to note is that the time used on the threshold
100 input is much smaller than the time used on the only slightly larger contour
simplification input discussed above. This is due to face labeling being avoided in
the catchment decomposition simplification algorithm. It is also interesting to note
that the simplification factor is significantly lower than in the contour case, and
that it decreases significantly as the catchment threshold decreases (as the number
of faces increases). We believe this is due to a large number of maximal paths being
too short to allow for a significant simplification. This is confirmed by Table 5.3
that shows the distribution of maximal path lengths for the three datasets, along
with the simplification factor for various path length intervals. As it can be seen,
there is a significant number of short paths in the two largest datasets and they are
not simplified significantly.
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Figure 5.8: Example of unsimplified (top) and simplified (bottom) catchments in
the catchment decomposition simplification experiment; Colors indicate catchments
in the input.
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