
Hardware-Aware

Algorithms and Data Structures

Gabriel Moruz

PhD Dissertation

Department of Computer Science

University of Aarhus

Denmark

Hardware-Aware

Algorithms and Data Structures

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

PhD Degree

by
Gabriel Moruz
July 31, 2007

Abstract

Various computer hardware components are affecting the running time of algo-
rithms in different proportions, or may have severe implications on the accuracy
of algorithms. In this dissertation we propose algorithms and data structures
that are efficient and robust with respect to different hardware factors. The
hardware factors affecting the running time that we consider include branch
mispredictions occurring in the processor, memory transfers occurring between
consecutive levels of the memory hierarchy in modern computers, as well as the
high rate sequential access on modern hard-disks which is a major motivation
for developing streaming algorithms. Regarding the factors affecting the accu-
racy of algorithms, we consider soft memory errors which determine corruptions
in RAM memories.

Branch mispredictions incur significant performance losses for algorithms.
First, we show that the running time of randomized Quicksort is adaptive, i.e.
it depends on the presortedness of the input. We prove theoretically that the
number of element swaps performed by Quicksort depends on the number Inv
of inversions in the input and show experimentally that the number of ele-
ment swaps is closely correlated to the number of branch mispredictions. We
then give lower bound trade-offs between comparisons and branch mispredic-
tions for sorting and adaptive sorting, and propose sorting and adaptive sorting
algorithms matching these bounds. Finally, we show experimentally that for
random queries perfectly balanced binary search trees can be outperformed by
skewed binary search trees, i.e. trees for which at any given node there is a fixed
ratio between the nodes in the left and right subtrees. This happens because
the skewed binary search trees perform more comparisons, but fewer branch
mispredictions, compared to perfectly binary search trees for random queries.

Memory transfers occurring between consecutive levels of the memory hier-
archy in modern computers are modeled in the I/O model and cache oblivious
model, and the complexity of algorithms is given by the number of memory
transfers performed. We introduce I/O lower bounds for adaptive sorting algo-
rithms and give two algorithms that are optimal and I/O optimal with respect
to Inv .

In a streaming setting, algorithms are restricted to access data sequentially,
while having at their disposal a working memory that can be accessed for free,
but which is usually much smaller than the problem size. We give general re-
ductions from parallel algorithms to streaming algorithms, and show that we
can obtain optimal algorithms (up to poly-log factors) for several combinato-
rial problems, such as sorting, connected components, minimum spanning tree,

v

biconnected components, or maximal independent set.
To analyze memory corruptions, we use the faulty-memory RAM model

proposed by Finocchi and Italiano. In this model, any memory cell can get
corrupted at any time during the execution of an algorithm, with no possibility
of distinguishing between corrupted and uncorrupted cells. The number of
corruptions is bounded by a parameter δ, known to the algorithm, and O(1)
corruption-free cells are provided. An algorithm is denoted resilient if it works
correctly on the set of uncorrupted values. Our contributions include efficient
resilient priority queues and resilient dictionaries.

vi

Acknowledgments

I am deeply grateful to my adviser Gerth Stølting Brodal, for the countless
hours of discussions and for all the support he offered me throughout my Ph.D.
studies. He has guided my first steps in research on algorithms and it has been
a real pleasure to work with him.

Many thanks to the people forming the algorithms group at University of
Aarhus. In particular, I would like to thank my co-author Rolf Fagerberg,
now at University of Southern Denmark, and my co-authoring fellow Ph.D.
students Allan Grønlund Jørgensen and Thomas Mølhave for all the work done
together. Also, I would like to thank Lars Arge for establishing the great group
that MADALGO is becoming.

I would like to thank Camil Demetrescu for agreeing to work with me dur-
ing my abroad stay in Rome. Also, many thanks to the algorithms group at
University of Rome “La Sapienza” for the helpful discussions. In particular,
I would like to thank my co-authors Camil Demetrescu, Bruno Escoffier, and
Andrea Ribichini for all the research conducted together during the period that
I spent in Rome.

I am very thankful to all my colleagues and friends in Aarhus, in partic-
ular to Allan, Anders, Bjarke, Christopher, Claus, Daniel, Doina, Fitzi, Irit,
Jan, Jesper, Jesus, Jooyong, Johan, Kevin, Kristoffer, Manuel, Marco, Martin,
Michael, Mikkel, Mirka, Philipp, Roland, Rune, and Tord, for all the great mo-
ments spent together. Special thanks to Bartek for his help as a mentor, to
Chris for co-winning two table football tournaments, to Saurabh and Kirill for
their always cheerful attitude, to Henrik and Thomas for organizing the weekly
soccer events, and to Gosia and Darek for gluing the group together.

I am very grateful to all the administrative and technical staff for ensur-
ing that everything went smoothly, in particular (not exclusively) to: Mogens
Nielsen, Uffe Engberg, Lene Kjeldsteen, Karen K. Møller, Ellen Lindstrøm,
Hanne F. Jensen, Else Mag̊ard, and Michael Glad. Also, I would like to thank
Danish National Research foundation for funding my studies at BRICS.

Last, but not least, I am grateful to my parents and my sister for their
constant love and support over the years, and for being there for me all the
time. Without them I could have never made it.

Gabriel Moruz,
Århus, July 31, 2007.

vii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Hardware . 2

1.2 Modelling hardware . 4

1.3 Algorithmic problems studied . 6

1.4 Contributions . 7

1.5 Outline . 10

2 Hardware 11

2.1 Processor . 11

2.1.1 Execution engine . 13

2.1.2 Branch mispredictions . 13

2.2 Memory hierarchy . 16

2.2.1 Registers and caches . 18

2.2.2 Main memory . 20

2.2.3 Hard-disk . 20

2.3 Memory corruptions . 20

3 Modeling Hardware 23

3.1 Traditional models . 23

3.1.1 RAM model . 24

3.1.2 Comparison model . 24

3.2 Branch mispredictions . 24

3.3 External memory models . 25

3.3.1 I/O model . 26

3.3.2 Cache-oblivious model . 26

3.4 Streaming models . 27

3.4.1 Classical streaming . 28

3.4.2 W-Stream . 28

3.4.3 StrSort . 28

3.5 Faulty-memory RAM . 28

ix

4 Cache-Aware and Cache-Oblivious Adaptive Sorting 31

4.1 I/O lower bounds . 31

4.2 GroupSort . 32

4.3 Cache-aware GenericSort . 35

4.4 Cache-oblivious GenericSort . 36

4.5 GreedySort . 38

5 On the Adaptiveness of Quicksort 41

5.1 Expected number of swaps by randomized
Quicksort . 41

5.2 Experimental setup . 46

5.3 Experimental results . 47

5.3.1 Quicksort. 47

5.3.2 Mergesort. 48

5.4 Conclusions and related work . 49

6 Trading Branch Mispredictions for Comparisons when Sorting 57

6.1 Lower bounds for sorting . 57

6.2 An optimal sorting algorithm . 59

6.3 Optimal adaptive sorting . 60

7 Skewed Binary Search Trees 63

7.1 Skewed binary search trees . 63

7.2 Hardware discussion . 64

7.3 Branch mispredictions . 65

7.4 Memory layouts . 66

7.5 Experimental setup . 68

7.6 Experimental results . 68

8 Adapting parallel algorithms to the W-Stream model 73

8.1 Simulating parallel algorithms in W-Stream 73

8.2 Sorting . 75

8.3 Graph problems . 76

8.3.1 Connected components (CC) 76

8.3.2 Minimum spanning tree (MST) 77

8.3.3 Biconnected components (BCC) 78

8.3.4 Maximal independent set (MIS) 80

8.4 Limits of the RPRAM approach 81

9 Resilient Priority Queues 83

9.1 Preliminaries . 83

9.2 Fault tolerant priority queue . 83

9.2.1 Structure . 84

9.2.2 Push and pull primitives 85

9.2.3 Insert and deletemin . 86

9.3 Analysis . 87

9.3.1 Correctness . 87

x

9.3.2 Complexity . 88
9.4 Lower bound . 90

10 Optimal Resilient Dynamic Dictionaries 91
10.1 Optimal randomized static dictionary 91
10.2 Optimal static dictionary . 93
10.3 Dynamic dictionary . 97

Bibliography 101

xi

List of Figures

2.1 The architectures for Intel Pentium 4 [17]. 12

2.2 The architectures for AMD Opteron [73]. 12

2.3 A classification of the branch prediction schemes. 14

2.4 Popular branch prediction schemes. 15

2.5 Two-bit saturating counter. 15

2.6 Simple example demonstrating the effect of branch mispredic-
tions over the running time. 16

2.7 The running time of the code in Figure 2.6. 16

2.8 Simple example demonstrating the effect that memory transfers
have over the running time. 17

2.9 Running time of the highlighted code in Figure 2.8. 18

2.10 Typical memory hierarchy in a modern computer. 18

3.1 The I/O model . 26

3.2 Typical memory hierarchy in a modern computer. 27

4.1 Lower bounds on the number of I/Os and the number of com-
parisons. 32

4.2 Linear time reduction to non-adaptive sorting. 34

5.1 C code for randomized Quicksort. 42

5.2 Example of succesive partitions for randomized Quicksort. 42

5.3 The three different cases of Lemma 5.2. 43

5.4 Experimental results for randomized Quicksort on Athlon. 50

5.5 Experimental results for randomized Quicksort on P4. 50

5.6 Experimental results for randomized median-of-three Quicksort
on P4. 51

5.7 Experimental results for deterministic Quicksort on P4. 51

5.8 Experimental results for randomized Quicksort with small inputs. 52

5.9 Experimental results for randomized Quicksort with large inputs. 52

5.10 Experimental results with
∑n

i=1 log(di + 1) on the x-axis. 53

5.11 Experimental results for Heapsort. 53

5.12 Experimental results for Mergesort. 54

5.13 The number of branch mispredictions for two implementations
of randomized Quicksort for small di’s. 54

5.14 The number of branch mispredictions for two implementations
of randomized Quicksort for large di’s. 54

xiii

5.15 The number of L1 data cache misses for randomized Quicksort
for small di’s with the hardware prefetcher turned on and off. . . 55

5.16 The number of L1 data cache misses for randomized Quicksort
for large di’s with the hardware prefetcher turned on and off. . . 55

5.17 Running time for various implementations of randomized Quick-
sort for small di’s. 55

5.18 Running time for various implementations of randomized Quick-
sort for large di’s. 55

6.1 Lower bounds on the number of branch mispredictions for deter-
ministic comparison based adaptive sorting algorithms. 59

6.2 Greedy division protocol. 61

7.1 Bound on the expected cost for a random search. 64
7.2 An iterative C source code for searching. 69
7.3 The number of comparisons and the number of branch mispre-

dictions performed by a skewed search tree. 69
7.4 The running time and the number of L1 data cache misses per-

formed by a skewed search tree for the non-blocked layouts. . . . 72
7.5 The best running times for k-level grouping and pqDFS. 72
7.6 The running time and the number of L1 data cache misses per-

formed by a skewed search tree for the blocked layouts. 72
7.7 The skewness factors that achieved the minimum running times

for different tree sizes. 72

9.1 The structure of the resilient priority queue. 84
9.2 The distribution of M into buffers. 87

10.1 The structure of a block. The left and right verification segments,
LV and RV , contain 2δ elements each, and the query segment
Q contains δ + 1 elements. 93

10.2 Example of binary search on a sequence Sk, for the search key
21. The arrows show the direction of the search. The emphasized
element is corrupted. 94

10.3 A verification step for δ = 3, with k = 1 initially. The search key
is 45. The verification algorithms stops with cr = 0, reporting
failure. The emphasized elements are corrupted. 95

10.4 The structure of the dynamic dictionary. 97

xiv

Chapter 1

Introduction

A journey of a thousand miles begins with a single step.
— Lao-tzu

Since the early days of computer science, the design and analysis of algo-
rithms emerged as a fundamental research area. Having in mind that every
program running in a computer is based on an algorithm, developing fast algo-
rithms is a key factor towards developing fast software. In this dissertation, we
show that a major point in developing fast algorithms is taking advantage of
the characteristics of the underlying hardware. We focus on hardware factors
that have a great influence over the running time or the reliability of algorithms.
Among the factors affecting the running time we focus on branch mispredictions,
block transfers between the consecutive levels of the memory hierarchy, and the
high sequential access rate on modern hard-disks which motivates streaming.
We consider also memory corruptions caused by soft memory errors in RAM
memories and consequently design algorithms and data structures aware of pos-
sibly corrupted data.

Typically, the performance of algorithms is quantified by measures like in-
structions performed by the CPU or memory accesses. From this perspective,
efficient algorithms for an endless series of problems have been introduced dur-
ing the past decades. However, a number of assumptions with respect to the
actual behavior of the hardware have been made. Since these assumptions
do not always hold, this creates a potential gap between the theoretical algo-
rithm design and analysis on one hand and the actual behavior of algorithms
in practice on the other hand. For instance, a typical assumption is that all the
instructions have the same execution time. Should this be the case for most
instructions, in the case of conditional branches it is not always true, since they
may take as much as 30 CPU cycles to execute [103]. Another standard as-
sumption is that all memory accesses take the same time. This is certainly not
the case in practice, since, due to memory hierarchies found in most computers,
accessing data stored in the CPU registers is about 10,000,000 times faster than
accessing data stored on disk [61]. A problem getting more and more important
to address, motivated by the memory design technologies and the seeming un-
ending increase in storage requirements, is that the cells in RAM memories may
get corrupted in practice by e.g. alpha particles, radiation or cosmic rays, and

1

2 Chapter 1. Introduction

therefore assuming at all times a reliable memory may have dire consequences
on the output of algorithms.

The remainder of this chapter is structured as follows. We briefly describe
modern hardware in Section 1.1, and then we show in Section 1.2 why tradi-
tional models used for analyzing algorithms are not always accurate. We then
introduce the algorithmic problems we consider in Section 1.3, and a summary
of the contributions of the present dissertation in Section 1.4. This chapter
concludes with an outline of the rest of the dissertation in Section 1.5.

1.1 Hardware

In this section we briefly introduce the hardware architecture of modern com-
puters, emphasizing the factors that have a strong effect on the running time
of algorithms in practice. Also, we show that memory corruptions that occur
in the RAM memories can have dramatic effects on the output of algorithms.
A thorough discussion concerning the hardware is given in Chapter 2.

Nowadays computers are cutting-edge machineries, consisting of highly com-
plex components, and hardware technologies evolve at an incredibly fast pace.
For instance, based on an empirical observation, Moore’s law [119] states that
the number of transistors contained on an integrated circuit doubles every 24
months. Following this law, nowadays CPU’s may contain as much as 125 mil-
lions transistors, in the case of Intel Pentium 4 Extreme [61]. Furthermore,
similar laws state that storage capacity for RAM memories increases at the
same rate as processing power, and that the rate of progression in hard-disk
storage over the past decades has sped up more than once.

The running time of algorithms in practice is the result of interaction of a
wide range of factors, occurring at all hardware levels. In the following we give
brief descriptions of the hardware factors discussed in the present dissertation.

Instructions count. The classical way of determining the running time of
algorithms was counting the number of instructions performed by the CPU.
Even though there are several more factors affecting the running time, instruc-
tion count is still a good indicator for the performance of algorithms. However,
due to improvements in CPU design, such as increasing the frequencies and the
ability to execute multiple instructions per cycle, modern processors are able
to execute more instructions in a time unit and consequently the number of
instructions performed is diminishing its influence over the running time.

Branch mispredictions. To increase the clock speed, modern CPUs include
instruction pipelines in their architecture, where the instructions are prefetched
before being executed. When a conditional branch enters the pipeline, its out-
come is not known prior to its execution and thus its direction must be predicted
to ensure the prefetching of the following instructions. If the branch is incor-
rectly predicted, the whole pipeline must be flushed, since the instructions in
the pipeline correspond to a wrong execution path. This obviously leads to a
performance loss, which increases proportionally with the length of the pipeline.

1.1. Hardware 3

In such a case, we say that a branch misprediction occurs. Since the pipelines
are getting longer and longer (e.g. as much as 18 instructions for Pentium
P4 and 31 for Intel Prescott), branch mispredictions are having an increasing
influence over the running time of algorithms in practice.

To predict the outcome of conditional branches, modern CPUs employ
branch predictors, which implement branch prediction schemes. There are two
major categories of branch prediction schemes, static and dynamic. In a static
prediction scheme, a conditional branch is predicted the same way every time,
and its direction is set based on simple heuristics, e.g. predict forward branches
taken and backward branches not taken. Dynamic branch prediction schemes
are more complex and use the execution history to predict the direction of a
branch. The increased complexity of dynamic branch predictors proves to be
very useful in increasing the amount of succesfully predicted branches, achieving
a rate of success of about 90%.

I/O transfers. Modern computers have several memory levels, each level
having smaller size and access time than the next one. Typically, a desktop
computer contains CPU registers, L1, L2, and L3 caches, main memory and
hard-disk. The access time increases from one or even half a cycle for registers
and level 1 cache to around 10, 100 and 10,000,000 cycles for level 2 cache,
main memory and disk, respectively [61]. Therefore, the I/O transfers between
memory and disk often become a bottleneck with respect to the running time
of a given algorithm, and minimizing the number of I/O transfers is a necessary
step towards achieving fast running times.

Streaming. Data stream processing has gained increasing popularity in the
last few years as an effective paradigm for processing massive data sets. Huge
data streams arise in several modern applications, including database systems,
IP traffic analysis, sensor networks, and transaction logs [55,56,110]. Streaming
is an effective paradigm also in scenarios where the input data is not necessarily
represented as a data stream. Due to high sequential access rates of modern
disks, streaming algorithms can be effectively deployed for processing massive
files on secondary storage [62].

Memory corruptions. Memory devices continually become smaller, work
at higher frequencies and lower voltages, and in general have increased circuit
complexity [32]. Unfortunately, these improvements come at the cost of reliabil-
ity [113, 114]. A number of factors, such as alpha particles, infrared radiation,
and cosmic rays, can cause soft memory errors where a bit flips and as a conse-
quence the value stored in the corresponding memory cell is corrupted. An un-
reliable memory can cause a variety of problems in most software, ranging from
harmless to the very serious, such as breaking cryptographic protocols [18,120],
taking control of a Java Virtual Machine [57] or breaking smart-cards and other
security processors [5, 6, 108]. Also, the output of algorithms that are unaware
of possibly corrupted memories may be severely affected. A typical example
concerns merging two sorted sequences, where a single corrupted memory cell

4 Chapter 1. Introduction

may induce as much as Θ(n2) inversions in the output sequence [51].

1.2 Modelling hardware

The running time of algorithms is usually analyzed by counting the instructions
performed by the CPU on an abstract model of computation, e.g. the RAM
model. However, we argued that in practice some other hardware factors, in
addition to CPU instructions, can have a non-negligible effect over the running
time of an algorithm. In this section we briefly introduce the models that handle
the different hardware factors.

Traditional models. Traditionally, the time complexity of algorithms is
computed by counting the number of instructions performed by the CPU. Be-
low we introduce two of the most popular models of computation, the RAM
model and the comparison model.

RAM model. The RAM (Random Access Machine) model is an abstraction
of a real-world computer. It consists of a CPU and a memory of unlim-
ited size, where CPU instructions and memory accesses take the same
amount of time. The complexity of an algorithm is given by the number
of instructions and memory accesses performed.

Comparison model. In this model, the complexity of an algorithm is given by
the number of comparisons performed. Though it does not include all
the instructions performed by the CPU, the comparison model is suitable
when dealing with problems where comparisons are the key instructions,
e.g. sorting and searching.

Branch mispredictions. When analyzing the branch misprediction com-
plexity of an algorithm, we will use a static prediction scheme. In such a scheme,
every branch is predicted the same direction at all times. Basically, we assign
for each branch a priori a direction in which it will be predicted during the ex-
ecution of the algorithm. A major drawback in using static prediction schemes
to analyze the branch misprediction complexity of algorithms is that they are
less accurate than the dynamic prediction schemes in practice. However, static
prediction schemes are simple to analyze and are suited for hard problems,
such as sorting and searching, where the output of a comparison is very hard
to predict.

I/O transfers. Several models have been proposed to capture the effect of
memory hierarchies.We describe two of the most successful, the I/O model and
the cache-oblivious model.

I/O model. The I/O model was introduced by Aggarwal and Vitter [1]. It
is a model closer to real world hardware and models a simple two-level
memory hierarchy consisting of a fast memory of size M and a slow in-
finite memory. The data transfers between the slow and fast memory

1.2. Modelling hardware 5

are performed in blocks of size B of consecutive data. In this model the
algorithm has full control of the memory management, including location
of the data and the replacement policy. The performance of an algorithm
is given by its I/O complexity, which is obtained by counting the number
of transfers it performs between the slow and the fast memories.

Cache-oblivious model. A drawback of the I/O model is the assumption that
the size M of the fast memory and the block size B are known, which
does not always hold in practice. Moreover, as the modern computers
have multiple memory levels with different sizes and block sizes, different
parameters are required at the different memory levels. Frigo et al. [52]
proposed the cache-oblivious model, which is similar to the I/O model,
but assumes no knowledge about M and B. In short, a cache-oblivious
algorithm is an algorithm described in the RAM model, but analyzed in
the I/O model with an analysis valid for any values of M and B. The
power of this model is that if a cache-oblivious algorithm performs well
on a two-level memory hierarchy with arbitrary parameters, it performs
well between all the consecutive levels of a multi-level memory hierar-
chy. Since the algorithm is oblivious of the memory it operates on, a
standard assumption of this model is an optimal replacement strategy for
the underlying memory levels. Also, most algorithms require a tall cache
assumption, i.e. M = Ω(B1+ε).

Streaming. In the recent years, due to increased popularity of data stream
processing, several streaming models have been proposed. In such models, the
input data is accessed sequentially, using a small amount of working memory,
which is usually much smaller than the input size [13,62,87,88]. Typical param-
eters in streaming models include the number p of passes over the input stream
and the number s of bits contained by the working memory. In the following
we list some of the streaming models.

Classical streaming. In classical streaming, the input stream is read-only, and
we are interested in algorithms that require one (or few) passes for solving
a given problem. Given the little amount of resources that a streaming
algorithm has, typical results obtained in this model are approximations
of an exact solution.

W-Stream. The W-Stream model was introduced by Demetrescu et al. [37]. In
this model, at each pass we operate with an input stream and an output
stream. The streams are pipelined in such a way that the output stream
produced at pass i is given as input stream at pass i + 1.

StrSort. StrSort model is just W-Stream augmented with a sorting primitive
that can be used at each pass to reorder the output stream at no cost,
and is motivated by the fact that sorting is a well-studied problem in
the context of massive inputs. Sorting provides a significant amount of
computational power, making it possible to solve several graph problems
using poly-log passes and working space [2].

6 Chapter 1. Introduction

Memory corruptions. In practice, cells in RAM memories may get cor-
rupted as a result of soft memory errors. Since most algorithms assume a
reliable memory, they are not designed to handle memory corruptions and their
output may be severely affected. A classical example concerns merging two
sorted sequences, where a single memory corruption may induce as many as
Θ(n2) inversions [51]. To design algorithms that are aware of memory cor-
ruptions, we use the faulty-memory random access machine, introduced by
Finocchi and Italiano [51]. A faulty-memory RAM is a random access machine
where the content of memory cells can get corrupted at any time and at any
location. Corrupted cells cannot be distinguished from uncorrupted cells. The
model is parametrized by an upper bound δ on the number of corruptions oc-
curring during the lifetime of an algorithm. It is assumed that O(1) reliable
memory cells are provided, a reasonable assumption since CPU registers are
considered reliable. Also, copying an element is considered an atomic opera-
tion, i.e. the elements are not corrupted while being copied. An algorithm is
resilient if it is able to achieve a correct output at least for the uncorrupted
values. This is the best one can hope for, since the output can get corrupted
just after the algorithm finishes its execution. For instance a resilient sort-
ing algorithm guarantees that there are no inversions between the uncorrupted
elements in the output sequence.

1.3 Algorithmic problems studied

In this section we give an overview of the problems studied throughout the
rest of the dissertation. We are interested in developing algorithms and data
structures that are aware of the various hardware factors affecting the run-
ning time. We develop algorithms for fundamental problems, such as sorting,
adaptive sorting, and basic algorithms for undirected graphs (e.g. connected
components, minimum spanning tree, biconnected components, maximal inde-
pendent set). Also, we study fundamental data structures, such as priority
queues and static and dynamic dictionaries.

Sorting and adaptive sorting Given a sequence of elements from a to-
tally ordered universe, sorting means producing a sequence containing all the
elements in non-decreasing order.

A well known fact concerning sorting is that optimal sorting algorithms
perform Θ(n log n) comparisons [34, Section 9.1]. However, in practice there
are many cases where the input sequences are already nearly sorted, i.e. have
low disorder according to some measure [74,85]. In such cases one can hope for
a sorting algorithm to be faster.

In order to quantify the disorder of input sequences, several measures of pre-
sortedness have been proposed, e.g. see [43,74,82]. One of the most commonly
considered measures is Inv , the number of inversions in the input, defined by
Inv(X) = |{(i, j) | i < j ∧ xi > xj}| for a sequence X = (x1, . . . , xN). Other
examples of measures include: Runs , the number of boundaries between ascend-
ing subsequences; Max , the largest difference between the ranks of an element

1.4. Contributions 7

in the input and the sorted sequence; Dis, the largest distance determined by
an inversion. A sorting algorithm is denoted adaptive if the time complexity
is a function dependent on the size as well as the presortedness of the input
sequence [85]. For an overview concerning adaptive sorting, see e.g. the survey
by Estivill-Castro and Wood [45]. More recent works include [39–41,90,93].

Manilla [82] introduced the concept of optimality of an adaptive sorting
algorithm in the comparison model. An adaptive sorting algorithm S is optimal
with respect to some measure of presortedness D, if for some constant c > 0
and for all inputs X, the time complexity TA(X) satisfies

TA(X) ≤ c ·max(N, log |below(X,D)|) ,

where below(X,D) is the number of permutations of the input sequence Y
for which D(Y) ≤ D(X) and log x denotes log2 x. By the usual information
theoretic lower bound, this is asymptotically the best possible. In particular,
an adaptive sorting algorithm that is optimal with respect to the measure Inv
performs Θ(N(1 + log(1 + Inv/N))) comparisons [58].

Priority queues. A priority queue is a data structure that contains a set
of elements drawn from a totally ordered universe, supporting two operations,
insert and delete-min. The insert operation inserts an element, while the
delete-min operation returns and removes the element having the smallest
key from the data structure. In addition, priority queues may support vari-
ous operations such as decrease-key, deletions, melding, in addition to the two
standard ones,

Static and dynamic dictionaries. A dictionary is a data structure that
contains a totally ordered set of elements. Given a search key x, a static dic-
tionary returns a boolean value stating whether x is contained in the data
structure or not. A dynamic dictionary supports also updates, i.e. insertions
and deletions, in addition to searches.

Graph algorithms. Consider an undirected graph G = (V,E). A connected
component of G is a maximal set of vertices V ′ ⊆ V such that there exists a
path between any pair of vertices in V ′. A biconnected component of a graph G
is a maximal subset of edges E′ such that in the subgraph induced by E′ there
are two node-disjoint paths between any pair of vertices.

Consider a connected undirected graph G = (V,E) having weighted edges,
i.e. every edge (u, v) is assigned a cost w(u, v). A minimum spanning tree T
of G is a tree containing all the vertices in V and having minimal cost, i.e.
∑

(u,v)∈T w(u, v) is minimal.

1.4 Contributions

In this section we list the main contributions of the present dissertation. We
give detailed description of our results in Chapters 4-10, which present the work

8 Chapter 1. Introduction

published in [24,28–31,36,70]1 .

Cache-aware and cache-oblivious adaptive sorting (Chapter 4, [28]).
We recall that sorting algorithms are denoted adaptive if their running times
depend not only on the input size, but also on some measure of presortedness
quantifying how close to being sorted the input is. A popular measure of pre-
sortedness is the number Inv of inversions in the input sequence. In [28] we
first provide lower bounds on the number of I/O transfers for various measures
of presortedness. We then introduce two adaptive sorting algorithms which are
optimal with respect to Inv . From both algorithms we derive adaptive sorting
algorithms that are optimal with respect to Inv in both the I/O model and the
cache-oblivious model.

Quicksort is adaptive (Chapter 5, [29]). Quicksort was introduced by
Hoare [64,65]. It is a simple in-place, randomized sorting algorithm that became
very popular over the last decades. A text-book result states that Quicksort is
optimal (expected case), i.e. it performs expected Θ(n log n) comparisons [34].
A known fact is that Quicksort is not adaptive, since it performs expected
O(n log n) comparisons even when the input sequence is sorted. In [29] we
demonstrate empirically that the running time of Quicksort is adaptive with
respect to the number of inversions Inv in the input. Differences in running
times close to a factor of two are observed between instances with low and
high Inv values. We prove that Quicksort performs expected O(n(1 + log(1 +
Inv/n))) element swaps, where Inv denotes the number of inversions in the
input sequence. This result provides a theoretical explanation for the observed
behavior in practice, and gives new insights on the behavior of the Quicksort
algorithm. We also give some experimental results on the adaptive behavior of
Heapsort and Mergesort.

Optimal tradeoffs between comparisons and branch mispredictions
for sorting algorithms (Chapter 6, [30]). In [30] we consider tradeoffs be-
tween the number of branch mispredictions and the number of comparisons for
sorting algorithms in the comparison model, where each comparison is followed
by a branch. We prove that a sorting algorithm using O(dn log n) comparisons
performs Ω(n logd n) branch mispredictions. We show that Multiway Merge-
Sort achieves this tradeoff by adopting a multiway merger with a low number
of branch mispredictions. For adaptive sorting algorithms we similarly obtain
that an algorithm performing O(dn(1+log(1+ Inv/n))) comparisons must per-
form Ω(n logd(1 + Inv/n)) branch mispredictions, where Inv is the number of

1The paper Optimal Resilient Dynamic Dictionaries by Gerth S. Brodal, Rolf Fager-
berg, Irene Finocchi, Fabrizio Grandoni, Giuseppe F. Italiano, Allan G. Jørgensen, Gabriel
Moruz, and Thomas Mølhave [24], has been accepted for publication as a merged paper. The
original contributions were Resilient Search Trees: Randomization and Prejudice,
by Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano, and Optimal Resilient

Dynamic Dictionaries, by Gerth S. Brodal, Rolf Fagerberg, Allan G. Jørgensen, Gabriel
Moruz, and Thomas Mølhave. The contributions of the latter will appear as a technical report
in [27].

1.4. Contributions 9

inversions in the input. This tradeoff can be achieved by the algorithm Gener-
icSort by Estivill-Castro and Wood by adopting a multiway division protocol
and a multiway merging algorithm with a low number of branch mispredictions.

Skewed binary search trees (Chapter 7, [31]). It is well known that
binary search trees achieve the best performance for a random search when
they are perfectly balanced. Should this statement be true for the number of
comparisons, which is indeed minimal when the trees are perfectly balanced, it
does not hold for the running time. In [31], we study static skewed binary search
trees, where for each node the ratio between the number of nodes in the left
subtree and the size of the tree is a fixed constant. We show experimentally that
skewed binary search trees can outperform perfectly balanced search trees by
as much as 15% in running time. These improvements are due to the fact that
during a search branching to the left or right at a node does not necessarily have
the same cost, because of branch mispredictions. Basically, the more skewed
the search tree is, the more comparisons and fewer branch mispredictions it
performs. Also, previous work has shown that a dominating factor over the
running time for a search is the number of cache faults performed, and that
an appropriate memory layout of a binary search tree can reduce the number
of cache faults by several hundred percent. We give an experimental study of
various memory layouts of static skewed binary search trees, where each element
in the tree is searched for with a uniform probability.

Parallel algorithms are good for streaming (Chapter 8, [36]). We
show in [36] how to simulate parallel algorithms to obtain efficient algorithms
in the W-Stream model. Motivated by the fact that simulating classical PRAM
algorithms does not always help in achieving good results in the W-Stream
model, we introduce a new model of computation denoted RPRAM (Relaxed
PRAM). Basically a RPRAM is a classical PRAM where a processor is no longer
constrained to access O(1) memory cells in a parallel round, but can access as
much as all the cells in the memory. By simulating RPRAM algorithms in the
W-Stream model we are able to achieve optimal W-Stream algorithms (up to
poly-log factors) for several classical combinatorial problems, such as sorting,
connected components, minimum spanning tree, biconnected components, and
maximal independet set.

Resilient priority queues (Chapter 9, [70]). We recall that in the faulty-
memory RAM memory cells can get corrupted at any time and at any place
during the execution of an algorithm, and the number of corruptions is upper
bounded by a parameter δ. An algorithm or data structure is denoted resilient
if it works correctly on the set of uncorrupted values. In particular, for priority
queues, the Deletemin operation returns the minimum uncorrupted value or
some corrupted value. In [70] we introduce a resilient priority queue which
uses O(n) space to store n elements, and supports both insert and deletemin
operations in O(log n + δ) time amortized. Our priority queue matches the
performance of classical optimal priority queues in the RAM model when the

10 Chapter 1. Introduction

number of corruptions tolerated is O(log n). We prove matching worst case
lower bounds for resilient priority queues storing only structural information in
the uncorruptible registers between operations.

Optimal resilient dictionaries (Chapter 10, [24]). We introduce in [24]
two optimal resilient static dictionaries, a randomized one and a deterministic
one. The randomized dictionary supports searches in O(log n+δ) expected time
using O(log δ) random bits in the worst case under the assumption of an obliv-
ious adversary. The deterministic dictionary supports searches in O(log n + δ)
time in the worst case. We introduce a dynamic resilient dictionary supporting
searches in O(log n + δ) time in the worst case, which is optimal, and updates
in O(log n+ δ) amortized time. Our dynamic dictionary supports range queries
in O(log n + δ + k) worst case time, where k is the size of the output.

1.5 Outline

The remainder of the dissertation is structured as follows. We give a thorough
discussion about hardware in Chapter 2, and we discuss the various computa-
tion models, including related work, in Chapter 3. Chapters 4-10 contain the
technical contributions of this dissertation. In Chapter 4 we discuss cache-aware
and cache-oblivious adaptive sorting. Chapter 5 is devoted to showing that the
running time of Quicksort is adaptive with respect to the number of inversions
in the input, and we show adaptive behaviors also for Mergesort and Heapsort.
We prove lower and upper bounds stating optimal tradeoffs between branch
mispredictions and comparisons for sorting and adaptive sorting algorithms in
Chapter 6, and then we discuss the skewed binary search trees in Chapter 7.
In Chapter 8 we focus on streaming algorithms, and show how to achieve effi-
cient algorithms for several fundamental combinatorial problems by simulating
parallel algorithms. Finally, we introduce resilient priority queues in Chapter 9
and optimal resilient dictionaries in Chapter 10.

Chapter 2

Hardware

Hardware /nm./: the part of the computer that you can kick.
— Unknown

In this chapter we give a thorough description of the architecture of nowa-
days computers, emphasizing the key components affecting the running time.
We first describe the CPU in Section 2.1, and then the memory hierarchy in
Section 2.2. Finally, in Section 2.3 we discuss memory corruptions.

2.1 Processor

The processor is the core of any computing system. Nowadays processors are
highly complex electronic machineries, and processor technologies evolve at
amazing rates. For instance, due to fast progress in nanotechnology, in 1997
the Intel MMX processor was designed on 350nm (nano-meters) technology,
nowadays processors use 65nm technology, and the predictions state that in
about 2010 processor technology will be done on 32nm [97, 98]. This huge
progress allows a typical nowadays processor to contain as many as 125 million
transistors on a die size of only 112mm2 [17].

We introduce in Figures 2.1 and 2.2 the architectures of two popular pro-
cessors, the Pentium 4 and AMD Opteron respectively, as illustrated in [17]
and [73]. The two architectures are very similar and the key components are
the same. They both contain a L1 data cache and L1 instruction cache, the
latter denoted Execution Trace Cache for the Intel architecture, as well as an
unified L2 cache. Both architectures handle integer operations separately from
floating point and multimedia operations. The main difference between them
is that the instruction cache for the Pentium architecture contains decoded in-
structions unlike the AMD. Due to the more extensive documentation at our
disposal, in the remainder of this section we restrict ourselves to give more
detail for the Pentium 4.

The typical execution flow for the Intel Pentium 4 architecture starts with
prefetching, decoding and storing the resulted micro-operations (µops) in the
Execution Trace Cache. The µops are then scheduled for execution in one of the
integer Arithmetic and Logical Units (ALU) or one of the two blocks dedicated

11

12 Chapter 2. Hardware

Figure 2.1: The architectures for Intel Pentium 4 [17].

Figure 2.2: The architectures for AMD Opteron [73].

to floating point (FP) instructions. The instructions are executed once the
operands are fetched from the data cache.

To improve the instruction execution of the CPU, a series of enhancements
and optimizations have been performed. For instance, in the case of condi-
tional branches, a branch predictor has been added to predict the output of a
given branch prior to its execution, such that the instructions that follow the
branch can be prefetched. A thorough description of branch predictors is given
in Section 2.1.2. Another enhancement concerns store-to-load forwarding and
concerns scheduling the instructions to the various execution units. When an
instruction is scheduled for execution, its data may be the result of another

2.1. Processor 13

instruction not yet executed, and the processor needs to make sure the given
instruction has this data. For this purpose, the Pentium 4 processor employs a
Store Forwarding Buffer which contains the results of previous instructions, or
previous stores for the L1 data cache.

A recent and very significant improvement in processor design concerns
developing multi-core processors. A multi-core processor contains several exe-
cution cores, and the main motivation for using them lies in the relationship
between frequency and power. For instance, by overclocking a processor to
achieve a 13% gain in performance, the price to pay is an increase by 73% in
power consumed, while by losing 13% in frequency by underclocking the pro-
cessor, the power consumption reduces to about a half. Therefore, using two
under-clocked cores in a multi-core processor, one can achieve 73% more in
performance for the power used by a regular single-core processor [98], or for
the same performance significant gains are achieved in power consumption.

In the following we analyze the components that are the main time con-
sumers for the processors in practice and which are discussed in the remainder
of the dissertation. We first describe the execution core, and then we focus
on branch mispredictions. The L1 and L2 caches as well as the TLB (Trans-
lation Lookaside Buffer), though parts of the processor, will be discussed in
Section 2.2, which is devoted to the study of the memory hierarchy.

2.1.1 Execution engine

Processor performance often refers to the amount of time it takes to execute
some given application, or the ability to run multiple applications in a given
period of time. Usually it is quantified by multiplying the frequency and the
IPC (Instructions Per Cycle) [118], hence in this acception the performance of
a processor is given by the speed at which the processor executes instructions.
For a long time processor design engineers worked mostly on increasing the
frequency, which reached 3 Ghz in 2002 from only 5 Mhz in 1983. By 2002, due
to limitations generated by power densities and the resulting heat, increasing
the IPC receives more and more attention. Two direction have been adopted to
increase the IPC. The first one consists in extending the number of instructions
as well as increasing the instruction set performed by a processor in a cycle,
and the second one concerns developing multi-core processors [98].

Taking a closer look at the architecture of the Pentium 4, see e.g. Figure 2.1,
we notice that there are three execution blocks dedicated to integer instructions
and two for floating point instructions. Furthermore, two of the integer exe-
cution blocks operate at double speed and can execute two instructions in a
cycle.

2.1.2 Branch mispredictions

Nowadays CPUs have high memory bandwidth and increased pipelines, e.g.
Intel Pentium 4 Prescott has a 31 stage pipeline. The high memory bandwidth
severely lowers the effect of caching over the actual running time when com-
putation takes place in the internal memory. More precisely, faster memory

14 Chapter 2. Hardware

GAg

Static

Local

Dynamic

Global

gshare

Branch prediction schemes

gselect · · ·

Figure 2.3: A classification of the branch prediction schemes. The most popular
branch predictors in each category are emphasized.

transfers imply that the overhead incurred by a cache miss is less costly and
thus has a smaller effect on the running time of an algorithm.

When a conditional branch enters the execution pipeline of the CPU, its
outcome is not known and therefore must be predicted. If the prediction is
incorrect, the pipeline is flushed as it contains instructions corresponding to a
wrong execution path. Obviously, each branch misprediction results in perfor-
mance losses, which increase with the length of the pipeline.

Several branch prediction schemes have been proposed. A classification of
the branch prediction schemes is given in Figure 2.3.

In a static prediction scheme, every branch is predicted in the same direction
every time according to some simple heuristics, e.g. all forward branches taken,
all backward branches not taken. Although simple to implement, their accuracy
is low and therefore they are not widely used in practice.

The dynamic schemes use the execution history when predicting a given
branch. In the local branch prediction scheme (see Figure 2.4, left) the direc-
tion of a branch is predicted using its past outputs. It uses a pattern history
table (PHT) to store the last branch outcomes, indexed after the lower n bytes
of the address of the branch instruction. However, the direction of a branch
might depend on the output of other previous branch instructions and the local
prediction schemes do not take advantage of it. To deal with this issue global
branch prediction schemes were introduced [122]. They use a branch history
register (BHR) that stores the outcome of the most recent branches. The dif-
ferent global prediction schemes vary only in the way the prediction table is
looked up.

Three global branch prediction schemes proved very effective and are widely
implemented in practice [83]. The GAg (Figure 2.4, middle) uses only the last
m bits of the BHR to index the pattern history table, while gshare address
the PHT by xor-ing the last bits n of the branch address with the last m bits
of the BHR. Finally gselect concatenates the BHR with the lower bits of the
branch address to obtain the index for the PHT.

The predictions corresponding to the entries in the PHT are usually ob-
tained by the means of two-bit saturating counters. A two-bit saturating counter
is an automaton consisting of four states, as shown in Figure 2.5.

2.1. Processor 15

n m
m n

outcomeoutcomeoutcome

predictionpredictionprediction

PCBHRBHRPC

PHT PHTPHT

XOR

gsharelocal GAg

Figure 2.4: Branch prediction schemes.

Not taken Not taken Not taken Not taken

TakenTakenTakenTaken

Predicted Taken Predicted not taken

00011011

Figure 2.5: Two-bit saturating counter.

Note that for the dynamic branch prediction schemes the same index in
the PHT might correspond to several branches which would affect each other’s
predictions, constructively or destructively. This is known as the aliasing effect
and reducing its negative effects is one of the main research areas in branch
prediction schemes design.

We show the effect of branch mispredictions over the running time by the
means of a simple example. We generate a random array a of fixed length
n = 2×107, with a[i] chosen uniformly at random in [1 . . . 100]. In a left-to-right
scan we count the number of elements greater and smaller or equal than a given
parameter param, see e.g. the C source code in Figure 2.6. We measure the
running time of this code in two different settings, optimized with optimization
-O3 and using no optimizations respectively, for different values of parameter
param in the range [0, . . . , 101]. Intuitively, the inner branch is easy to predict
when the value of param is close to the endings of the interval, and becomes very
hard to predict when the value of param gets closer to the middle of interval. In
Figure 2.7 we present the results of our experiments, where each plotted value
represents the average over three different runs. When using no optimizations,
the chart has a symmetric behavior, the maximum running time is achieved for
param ≈ 50, and the maximum running time is larger by about 75% than the
minimum running time. When using optimization -O3, the running times are
significantly faster, and the maximum running time is about 400% larger than
the minimum running time. However, the chart does not exhibit a symmetric
behavior, but the maximum running time is achieved fir param ≈ 65, and
the difference in running times for param ≈ 0 and param ≈ 100 is of about
300%. By the means of a brief inspection of the assembly code, we explain the

16 Chapter 2. Hardware

different behaviors by the fact that in the optimized code when the branch is
taken, corresponding to a value larger than param, the code contains a jump
instruction more than in the case when the branch is not taken, and this does
not happen in the case when the code is not optimized.

for(i=0;i<n;i++)

if(a[i]>param)

g++;

else

s++;

Figure 2.6: Simple example demonstrating the effect that branch mispredictions
have over the running time. The size of the array a is n = 2 × 107 and the
values a[i] are generated uniformly at random in [1, . . . , 100].

Sanders and Winkel [103] gave a distribution based sorting algorithm and
show that in certain cases branch mispredictions can be avoided by using pred-
icated instructions available in certain processors, e.g. Intel Itanium. A predi-
cated instruction is an instruction which is associated a predicate. The instruc-
tion is executed if the predicate is true, and is discarded otherwise.

2.2 Memory hierarchy

This section is devoted to the study of the memory hierarchy found in mod-
ern computers. Nowadays computers contain several memory levels, each level
having smaller size and access time than the next one. Typically, a desktop
computer contains CPU registers, L1, L2, and L3 caches, main memory and
hard-disk. From the CPU to the hard-disk, each level has a smaller size and
access time compared to the next level, see e.g. Figure 2.10. The access time
increases from one or even half a cycle for registers to around 1,000,000 cycles
for the disk [61]. To amortize the cost of a memory access per element, data is

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e

Param

Noopt
OptO3

Figure 2.7: The running time of the code in Figure 2.6, using optimization -O3
and no optimization at all, for different values of parameter param.

2.2. Memory hierarchy 17

transferred in blocks between consecutive memory levels. Upon a data request
for a given level, if the data requested is contained in that level we say we have
a cache hit, and we say a cache miss or cache fault occurred otherwise. When
a cache fault occurs, the data required is fetched from the next level at the cost
of a block transfer, and a block is evicted from the current level. To decide
which block to be evicted, several replacement strategies were proposed, out of
which LRU (Least Recently Used) and its variants became very popular.

Similarly to branch mispredictions, we demonstrate the effect that memory
transfers have over the running time using a simple example. We consider
an array of size n, where n is a parameter, and access its elements in a cyclic
manner for a constant number of steps r, see. e.g. the source code in Figure 2.8.
We compiled our code using optimization level -O3, and to avoid compiler
optimizations disregarding the memory accesses we compute the sum of the
elements visited and return it.

r=800000000;s=0;

for(i=0;i<n-1;i++)

a[i]=i+1;

a[n-1]=0;

/* start timing */

for(i=0;i<r;i++)

{

s+=a[k];

k=a[k];

}

/* end timing */

return s;

Figure 2.8: Simple example demonstrating the effect that memory transfers
have over the running time. We consider an array of size n and perform r =
8×108 element accesses in a cyclic manner, by computing the sum. We measure
the running time of the code indicated by comments.

We are interested in the running time of the code indicated by the appro-
priate comments, when varying the size n of the array. In Figure 2.9 we show
the experimental results. First, we note that for log n ≈ 28 the running time
increases by a factor of about 2000 (Figure 2.9, left). This step corresponds to
the limit when the array still fits in the internal memory. Intuitively, as long
as the arrays fits in the internal memory the memory accesses take little time
and the computation is very fast. When the array does not fit in the inter-
nal memory, initially the first part of array fills completely the main memory.
After this moment, given the fact that the replacement policy usually removes
the least recently accessed block, each block access results in a cache miss and,
given the large access times for disks, the running time increases dramatically.
However, in Figure 2.9 (right), by restricting the range of the y-axis, we show

18 Chapter 2. Hardware

that a similar behavior is observed between the other levels of the memory
hierarchy, resulting in running time increases for log n ≈ 12 and log n ≈ 17,
corresponding to thresholds when the array does not fit in the L1 and the L2
cache respectively.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

log n

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

log n

Figure 2.9: Running time of the highlighted code in Figure 2.8. The right chart
plots the same data as the left chart, but restricts the range of the y-axis.

Given their effect over the running time, it becomes obvious that minimiz-
ing memory transfers, especially between disk and the main memory, is a key
factor in achieving fast algorithms in practice. We describe the structure of the
different memory levels and give more insights for their behavior in practice.
We start by describing the registers and caches, then we move on to introduce
the main memory, and we conclude by presenting the hard-disk.

2.2.1 Registers and caches

The registers are memory cells with very fast access times built inside the
main core of the processor. The data is loaded into the registers from the
cache memory before being processed and is stored still in the registers after
processing. Since there is a big gap between the speeds at which the processor
and the RAM memory operate, modern computers employ a few intermediate
memories, called cache memories, which have small sizes, but fast access times.

We briefly introduce the organization of cache memories. As with all levels
in the memory hierarchy, a cache memory is a collection of disjointed blocks of
constant size. We first describe the direct mapped and fully-associative caches.
The direct mapped cache are easy to implement in practice, but achieve rather

L1 cacheCPU
Fastest Fast

L2 cache RAM Hard disk
Very slowSlow

Figure 2.10: Typical memory hierarchy in a modern computer.

2.2. Memory hierarchy 19

poor performances, while fully associative caches yield good performances at
high design cost. We then introduce the set associative caches, which are a com-
promise between direct-mapped caches and fully-associative caches and which
are widely implemented in practice.

A cache is denoted direct mapped when the location of each block in the
cache is given by its memory address. In this case the replacement policy
becomes trivial, since the page to be evicted is given by the memory address of
the incoming cache line. Given the trivial replacement policy, direct-mapped
caches are easy to implement in practice. However, because the replacement
policy is decided by the memory address and not by the usage, the use of direct-
mapped caches can cause significant performance losses by thrashing, when
useful information is evicted from the cache. For instance, repeated interleaved
accesses of two memory blocks mapping to the same cache location results in a
cache miss for each access.

A fully-associative cache dramatically improves the performance of direct-
mapped caches by using a much more sophisticated replacement strategy. De-
ciding which page to be evicted considers the usage of the different blocks
instead of their memory addresses. A typical strategy is LRU (Least Recently
Used), which replaces the oldest block with respect to the time of the last usage.
Unfortunately, the very good performance achieved by fully-associative caches
in practice involves non-negligible costs in circuitry required to keep track of
the usage of all the blocks in the cache.

To combine the performance of the fully-associative caches and the simple
design of the direct-mapped ones, hardware designers introduced n-way set
associative caches. A n-way set associative cache is a collection of n direct-
mapped caches, referred to as sets [115]. The replacement strategy decides the
block to be evicted by first choosing one of the sets according to LRU or any
other replacement strategy, and then decides the block to be evicted in the
chosen set according to the memory address of the incoming block. This way,
the circuit complexity is maintained simple enough, and thrashing is reduced.
For a more comprehensive discussion on cache memories, we refer the interested
reader to [63,111].

We now describe the cache memories in a typical computer.

CPU caches. Modern computers include at least two levels of cache memories
in their architecture. Usually processors include in their architecture two
L1 cache memories, namely the instruction cache and the data cache, to
store instructions to be executed and the data required by the programs
respectively. Because the two L1 caches work independently, we achieve a
significant increase in performance. On the other hand, it is common that
there is only one L2 and (if available) L3 cache, which is unified, meaning
that it contains both instructions and data. For better performance, a
typical design has the L1 caches on the CPU chip, the L2 cache inside the
CPU package, and the L3 cache (if available) on the motherboard.

TLB. The Translation Lookaside Buffer (TLB) is a small fully-associative cache
memory used to store associations between virtual memory addresses and
physical memory addresses. Since translating a virtual memory address

20 Chapter 2. Hardware

into a physical memory address is a rather costly operation, storing this
information in a cache inside the CPU is necessary to avoid severe perfor-
mance losses. Some processors, such as UltraSPARC, go even further and
include two TLBs in their designs, to store associations between virtual
and physical memory addresses for instructions and data separately [115].

2.2.2 Main memory

Typically, the main memory of a computer is a RAM (Random Access Memory),
has much larger size than the cache memories and is dedicated to store vast
amounts of information required by the various applications. The time required
for accessing a block in a RAM is approximately the same for all blocks and is
reasonably small.

2.2.3 Hard-disk

Unlike RAM memories which consist of integrated circuits, the hard-disk is a
highly mechanical component. It consists of several platters, and each face of
a platter is assigned a read/write head. The surface of each face of a platter
is divided into a number of concentric circles denoted tracks, and each track is
further subdivided in a number of sectors. The data is written to and read from
the sectors. We note that since the inner tracks have a much shorter length
than the outer tracks, the number of sectors in a track is not constant. To
access the data on a platter, the head first identifies the track to access and
then the platter is rotated until the required location is encountered. We note
that the read/write head can move only inwards and outwards and can not be
placed always at the exact location to access, but merely on the right track and
most of the times rotating the platter is required.

The major advantage of hard-disks over RAM memories is that they are non-
volatile and thus the information stored is persistent upon power interruptions.
However, the non-volatility comes at the price of very slow access times. For
example, typical access times are a few tens of nanoseconds for main memories
and at least ten milliseconds for hard-disks [111]. As a final remark, the time
spent on positioning the head on the correct track is much larger than the time
needed to rotate the platter and therefore accessing the data sequentially is
much faster than performing random accesses.

2.3 Memory corruptions

Memory devices continually become smaller, work at higher frequencies and
lower voltages, and in general have increased circuit complexity [32]. Unfortu-
nately, these improvements come at the cost of reliability [113,114]. A number
of factors, such as alpha particles, infrared radiation, and cosmic rays, can
cause soft memory errors, sometimes referred as single-event upsets, where a
bit flips and as a consequence the value stored in the corresponding memory
cell is corrupted. An unreliable memory can cause problems in most software
ranging from the harmless to the very serious, such as breaking cryptographic

2.3. Memory corruptions 21

protocols [18, 120], taking control of a Java Virtual Machine [57] or breaking
smart-cards and other security processors [5, 6, 108]. Furthermore, many mod-
ern computing centers consist of relatively cheap of-the-shelf components, and
the large number of individual memories involved in these clusters substantially
increase the frequency of memory corruptions in the system. Hence it is crucial
that the software running on these machines is robust. Since the amount of
cosmic rays increases dramatically with altitude, soft memory errors are of spe-
cial concern in fields like avionics or space research. Furthermore, soft memory
error rates are expected to rise for both DRAM and SRAM memories [113].

At the hardware level, the soft memory errors can be handled by means
of error detection mechanisms such as redundancy or error correcting codes.
Unfortunately, implementing these mechanisms incur penalties with respect to
performance, size and money, and therefore memories using these technologies
are rarely found in large scale computing clusters or ordinary workstations.
Recent solutions to cope with soft-memory errors in cache memories include
replicating some “hot” blocks, i.e. blocks that are accessed often, in cache
memories or even an extra fully-associative L1 cache devoted to storing these
hot blocks [123,124].

On the software level, a series of low-level techniques have been proposed
for dealing with the soft memory errors, many of them coping with corrupted
instructions. Examples include algorithm based fault tolerance [67], asser-
tions [101], control flow checking [121], or procedure duplication [96].

For more details concerning soft memory errors we refer the interested reader
to comprehensive surveys [102,109].

As a final remark, high energy particles originating from alpha particles can
cause errors not only in memory locations but also in combinational logic in the
processor. In this case the shrinking geometries and increased pipeline depths
play a major role in increasing the frequency of combinational logic errors, and
studies estimate that between 1992 and 2011 the frequency of these errors will
increase nine orders of magnitude up to a level comparing to that of soft memory
errors in memories not implementing any error protection [107].

Chapter 3

Modeling Hardware

Make everything as simple as possible, but not simpler.
— Albert Einstein

When counting the occurrences of the different hardware factors (e.g. CPU
instructions, branch mispredictions, I/O transfers etc.) during the lifetime of an
algorithm, models are employed to provide frameworks in which algorithms are
easy to design and analyze. Basically, a model can be seen as a simplification of
the targeted hardware by taking into account only the relevant features. Models
are required to be simple enough to make algorithm design and analysis as
simple as possible, but in the same time they need to be accurate in capturing
the hardware they model.

In this chapter we introduce several models used for modeling the differ-
ent hardware factors affecting the running time of the algorithms, as well as
relevant related work for each of them. In Section 3.1 we introduce two pop-
ular models used for decades in algorithm design, the RAM model and the
comparison model. In Section 3.2 we describe various approaches employed to
achieve branch mispredictions complexities for searching and sorting. We in-
troduce two models handling memory transfers, the I/O model and the cache
oblivious model in Section 3.3, while in Section 3.4 we present several models
used to design and analyze streaming algorithms. This chapter concludes with
Section 3.5, which is devoted to models related to memory corruptions and
computation with unreliable information.

3.1 Traditional models

In the traditional setting, the complexity of algorithms is given by the number
of instructions performed by the processor. In this section we introduce two
such models, the RAM model in Section 3.1.1 and the comparison model in
Section 3.1.2. The RAM model counts all the instructions performed by the
processor, whereas the comparison model is more restrictive by considering only
comparisons and disregarding other instructions.

23

24 Chapter 3. Modeling Hardware

3.1.1 RAM model

The RAM model has been employed for decades in the design and analysis of
algorithms. It is a simple model which consists of a finite program operating
over a memory consisting of an infinite sequence of registers [3, 33]. Also, in-
put and output devices are provided. Each register is identified by an address,
which is required to access the contents of any given register. Depending on the
set of instructions supported, there have been proposed several RAMs. In the
standard model, the instructions supported include assignment, addition and
subtraction, indirect addressing, branching, as well as read and write instruc-
tions. Other RAMs include SRAM (Successor RAM), where the only arithmetic
instruction supported is increment by one, MRAM which is RAM augmented
with multiplication and division, and RAMs supporting bit-wise boolean in-
structions. For a detailed description of the various RAMs and their properties
we refer the interested reader to [116].

To measure the time and space complexities, there can be employed at
least two methods, the logarithmic method and the uniform method [116]. In
the logarithmic method, the cost of an instruction is given by the sum of the
logarithms of the quantities involved, including the operands and the addresses
involved. In the uniform method, each instruction is considered to take the
same amount of time, regardless of how large the values involved are.

3.1.2 Comparison model

The comparison model can be seen as a restrictive version of the RAM model,
since in this model we are interested only in the number of comparisons per-
formed by the algorithm, disregarding other instructions or memory accesses.
This model is particularly useful for analyzing algorithms such as sorting and
searching for which comparisons are the key instructions. A text-book result
concerns sorting algorithms that decide the sorted order based exclusively on
comparisons between input elements, and states that such algorithms perform
Ω(n log n) comparisons in the worst case [34, Section 8.1].

3.2 Branch mispredictions

Several approaches have been proposed for analyzing the branch misprediction
complexity of algorithms. A very convenient way to count branch mispredic-
tions is to employ static prediction schemes, where for each branch we specify
the direction in which it will be predicted. This approach is particularly effec-
tive in the cases where branches outcomes are not correlated and do not contain
patterns, and therefore dynamic prediction doesn’t help much. For instance,
in the case of sorting the outcome of a branch comparing elements is usually
very hard to predict because it is strongly dependent on the input. A similar
argument holds for searching. Basically, to count the branch mispredictions,
we use a variant of the comparison model where for each branch instructions
we assign prior to the execution the direction in which the given branch is
predicted at all times during the lifetime of the algorithm. Our work in this

3.3. External memory models 25

model is presented in Chapters 5, 6, and 7. In Chapter 5 we prove theoretically
that the number of element swaps performed by Quicksort is related to the
number of inversions in the input. We then demonstrate experimentally that
the number of element swaps are closely correlated with the number of branch
mispredictions, and that the running time is greatly influenced by the number
of branch mispredictions. In Chapter 7 we analyze static search trees. A text-
book result states that a search tree has to be perfectly balanced to achieve the
best running time for a random query. However, in perfectly balanced search
trees in the case of a random query branching left or right is (almost) equally
likely to happen at any node visited, and therefore branch prediction becomes
very hard. To overcome this problem, we analyze skewed binary search trees,
where at each node we set a fixed ratio between the nodes in the left and
right subtrees. This way, branching in the smaller subtree becomes less likely,
and the probability of accurate branch prediction increases as the tree becomes
more skewed, at the expense of more nodes to visit, which involves more com-
parisons and more cache misses. We demonstrate experimentally that skewed
search trees can outperform perfectly binary search trees, the improvements
observed in the running time being of 15%. Finally, in Chapter 6 we first give
lower bound-tradeoffs between branch mispredictions and comparisons for com-
parison based sorting and adaptive sorting algorithms, when each comparison
corresponds to a branch that can be correctly predicted or mispredicted. We
employ the classical decision tree model annotated with labels for the edges,
such that for each node one of the edges to the children is assigned a label
implying that the corresponding branch is correctly predicted, and the other
one is assigned a label meaning that a branch misprediction occurred. We give
algorithms matching the lower bounds for sorting and sorting that is adaptive
to the number of inversions in the input.

Kaligosi and Sanders [72] studied the behavior of Quicksort with a skewed
pivot. This means that during partitioning the input the pivot is chosen such
that the sizes of the resulted subsequences are deliberately uneven. This way,
the algorithm performs more comparisons, but less branch mispredictions since
comparisons against a skewed pivot are easier to predict. They employ a dy-
namic prediction scheme to analyze the number of branch mispredictions per-
formed and complement their theoretical results with experimental results.

3.3 External memory models

External memory models are motivated by the fact that traditional models are
not always adequate in practice, due to the memory hierarchy found on modern
computers. In particular, when the input does not fit in the main memory
the I/O transfers between hard-disk and the main memory often become a
bottleneck for the running time, since the cost of a disk transfer is counted
in millions of CPU cycles. Several models have been proposed to capture the
effect of memory hierarchies. In this section we describe two popular models to
capture the disk transfers, the I/O model and the cache-oblivious model.

26 Chapter 3. Modeling Hardware

3.3.1 I/O model

The I/O model was introduced by Aggarwal and Vitter [1]. Motivated by the
fact that the disk transfers are the most time consuming, it consists of a simple
two-level memory hierarchy containing a fast memory of size M and a slow
infinite memory, see e.g. Figure 3.1. The processor can access only the data

Block

CPU Slow memoryFast memory

Figure 3.1: The I/O model

in the fast memory, and the data transfers between the slow and fast memo-
ries are performed in blocks of size B of consecutive data. Also, in this model
algorithms have full control of the memory management, meaning it is the re-
sponsibility of the algorithm to decide the memory location for each piece of
data as well as the replacement policy. The I/O complexity of an algorithm
is given by number of transfers between the slow and the fast memories. A
comprehensive list of I/O efficient algorithms for different problems have been
proposed, e.g. see the surveys by Vitter [117] and Arge [8]. Among the funda-
mental results concerning the I/O model is that sorting a sequence of size N
requires Θ(N

B log M
B

N
B) I/Os [1].

3.3.2 Cache-oblivious model

The I/O model assumes that the size M of the fast memory and the block size
B are known, which does not always hold in practice. Another limitation of
the I/O model is that it considers only a two-level memory hierarchy, whereas
modern computers have multiple memory levels with different sizes and block
sizes, see e.g. Figure 3.2. Therefore, an algorithm that behaves well on the
whole memory hierarchy would have to consider all the parameters, e.g. block
size and memory size, for all the memory levels.

To overcome these limitations, Frigo et al. [52] proposed the cache-oblivious
model. It is similar to the I/O model, but assumes no prior knowledge about M
and B. Basically, a cache-oblivious algorithm is an algorithm designed in the
I/O model, which does not use M and B in its description, and therefore
its analysis hold for any values of M and B. Unlike the I/O model, in the
cache-oblivious model memory management is oblivious to the algorithm and
an optimal memory replacement strategy is assumed. The power of this model
is that if a cache-oblivious algorithm performs well on a two-level memory hi-
erarchy with arbitrary parameters, it performs well between all the consecutive
levels of a multi-level memory hierarchy.

3.4. Streaming models 27

L1 cacheCPU L2 cache RAM Hard disk

Figure 3.2: Typical memory hierarchy in a modern computer.

Many problems have been addressed in the cache-oblivious model (see e.g.
the surveys by Arge et al. [10], Brodal [21], and Demaine [35]). Among these
there are several optimal cache-oblivious sorting algorithms. Frigo et al. [52]
gave two optimal cache-oblivious algorithms for sorting: Funnelsort and a vari-
ant of Distributionsort. Brodal and Fagerberg [22] introduced a simplified ver-
sion of Funnelsort, Lazy Funnelsort. All these sorting algorithms are optimal
and their I/O complexity is Θ(N

B logM
B

N
B). Also, all these algorithms require

a tall cache assumption, i.e. M = Ω(B1+ε) for a constant ε > 0. In [23] it is
shown that a tall cache-assumption is required for all optimal cache-oblivious
sorting algorithms.

3.4 Streaming models

Streaming algorithms are algorithms designed to access their input data sequen-
tially. They usually have at their disposal a working memory which is typically
much smaller than the size of the input, and it can be used to store informa-
tion which can be accessed at any time during the execution of the algorithm
at no cost. Relevant parameters in streaming models include the number p of
passes over the input and the size s of the working memory, usually counted in
bits. For a comprehensive survey of algorithmic techniques for processing data
streams, we refer the interested reader to the extensive bibliographies in [13,88].

The motivation for developing streaming algorithms is two-fold. First,
streaming algorithms are employed in a variety of applications where data is
to be accessed “on the fly”, such as sensor networks, IP traffic monitoring,
transaction logs [55, 56, 110]. Secondly, streaming algorithms are particularly
useful in applications that process much more data than the size of the internal
memory. This is because modern hard-disks have high transfer rates in the case
of sequential access and thus in certain cases streaming algorithms become an
efficient alternative to external memory algorithms.

In this section we describe three streaming models. We start by introducing
the classical streaming, then we discuss the W-Stream model and we conclude
by presenting the StrSort model.

28 Chapter 3. Modeling Hardware

3.4.1 Classical streaming

In the classical read-only streaming model, algorithms are constrained to access
the input data sequentially in one (or few) passes, using only a small amount of
working memory, typically much smaller than the input size [62,87,88]. Among
the problems that have been studied in this model under the restriction that
p = O(1), we recall statistics and data sketching problems (see, e.g., [4,48,54]),
which can be typically approximated using poly-logarithmic working space, and
graph problems (see, e.g., [14,46,47,84]), most of which require a working space
linear in the vertex set size.

3.4.2 W-Stream

In the W-Stream model, at each pass we operate with an input stream and
an output stream. The streams are pipelined in such a way that the output
stream produced at pass i is given as input stream at pass i + 1. Despite the
use of intermediate streams, which allows achieving effective space-passes trade-
offs for fundamental graph problems, most classical lower bounds in read-only
streaming hold also in this model [37]. In the original paper, Demetrescu et
al. [37] introduced the W-Stream model and gave algorithms that achieve effi-
cient trade-offs between space and passes for computing the connected compo-
nents on undirected graphs and single-source shortest paths in directed graphs
with small non-negative integer edge weights. In Chapter 8 we investigate how
to turn efficiently parallel algorithms into W-Stream algorithms. We employ
a relaxed version the classical PRAM model, which we denote RPRAM, and
where a processor is allowed to read any number of cells in a parallel round. This
is motivated by the fact that when simulating parallel algorithms in W-Stream
we store the state of a processor in the working memory and the information
contained in its registers can be processed against an arbitrary number of items
in the stream in a single pass. By using simulations, we show how to obtain
optimal algorithms (up to poly-log factors) in the W-Stream model for sev-
eral combinatorial problems, such as sorting, connected components, minimum
spanning tree, biconnected components, set maximal independent set. For a
series of these algorithms we also give more efficient algorithms designed di-
rectly in wstr, without using any simulations. We conclude by discussing the
limitations of our approach.

3.4.3 StrSort

The StrSort model was introduced by Aggarwal et al. [2] and is just W-Stream
augmented with a sorting primitive that can be used at each pass to reorder the
output stream for free. Sorting provides a lot of computational power and allows
solving several graph problems using poly-log passes and working space [2].

3.5 Faulty-memory RAM

Dealing with unreliable information has been addressed in the algorithmic com-
munity in a number of settings. The liar model focuses on algorithms in the

3.5. Faulty-memory RAM 29

comparison model where the outcome of a comparison is possibly a lie. Sev-
eral fundamental algorithms in this model, such as sorting and searching, have
been proposed [19, 78, 99]. In particular, searching in a sorting sequence takes
O(log n) time, even when the number of lies is proportional to the number of
comparisons [19]. A standard technique used in the design of algorithms in the
liar model is query replication. Unfortunately, this technique is not of much
help when memory cells, and not comparisons, are unreliable.

Aumann and Bender [12] proposed fault-tolerant (pointer-based) data struc-
tures. To incur minimum overhead, their approach allows a certain amount of
data, expressed as a function of the number of corruptions, to be lost upon
pointer corruptions. In their framework memory faults are detectable upon
access, i.e. trying to access a faulty pointer results in an error message. This
model is not always appropriate, since in many practical applications the loss
of valid data is not permitted. Furthermore, a pointer can get corrupted to a
valid address and therefore an error message is not issued upon accessing it.

Kutten and Peleg [76, 77] introduced the concept of fault local mending
in the context of distributed networks. A problem is fault locally mendable
if there exists a correction algorithm whose running time depends only on the
(unknown) number of faults. Some other works studying network fault tolerance
include [38,53,59,60,71,79,92].

Finocchi and Italiano [51] introduced the faulty-memory RAM. In this model
memory corruptions can occur at any time and at any place during the execution
of an algorithm, and corrupted memory cells cannot be distinguished from
uncorrupted cells. Motivated by the fact that registers in the processor are
considered uncorruptible, O(1) safe memory locations are provided. The model
is parametrized by an upper bound, δ, on the number of corruptions occurring
during the lifetime of an algorithm. Finally, moving values is considered an
atomic operation, i.e. elements do not get corrupted while being copied. An
algorithm is resilient if it works correctly, at least on the set of uncorrupted cells
in the input. In particular, a resilient searching algorithm returns a positive
answer if there exists an uncorrupted element in the input equal to the search
key. If there is no element, corrupted or uncorrupted, matching the search key,
the algorithm returns a negative answer. If there is a corrupted value equal to
the search key, the answer can be both positive and negative.

Several problems have been addressed in the faulty-memory RAM. In the
original paper [51], lower bounds and (non-optimal) algorithms for sorting and
searching were given. In particular, sorting takes O(n log n + δ2) time and
searching in a sorted array takes Ω(log n + δ) time. Matching upper bounds
for sorting and randomized searching, as well as a O(log n+ δ1+ε) deterministic
searching algorithm, were then given in [49]. More recently, resilient search
trees that support searches, insertions, and deletions in O(log n+δ2) amortized
time [50] were introduced. Finally, in [94] it was empirically shown that resilient
sorting algorithms are of practical interest.

Our contributions include developing priority queues supporting both in-
sertions and delete-min operations in O(log n + δ) amortized time [70], as well
as proposing optimal static and dynamic dictionaries supporting searches in
O(log n + δ) worst case time and updates in O(log +δ) amortized time [27].

30 Chapter 3. Modeling Hardware

Independently to our work, Finocchi, Italiano, and Grandoni proposed ran-
domized search trees with O(log n + δ) expected amortized cost per operation
and a deterministic search tree with O(log n + δ1+ε) worst case time per oper-
ation. They also prove lower bounds stating that resilient search trees support
searches in Ω(log n + δ) worst-case time, under some reasonable assumptions.
Part of these results and part of the results in [27] are published in [24].

Chapter 4

Cache-Aware and Cache-Oblivious

Adaptive Sorting

The paper is interesting and uses cute reductions.
— Anonymous reviewer

In this chapter we introduce the results in [28]. In Section 4.1 we apply
the lower bound technique from [11] to obtain lower bounds on the number of
I/Os for comparison based sorting algorithms that are adaptive with respect
to different measures of presortedness. In Section 4.2 we present a linear time
reduction from adaptive sorting to general (non-adaptive) sorting, directly im-
plying comparison optimal and I/O-optimal cache-aware and cache-oblivious al-
gorithms with respect to measure Inv . In Section 4.3 we describe a cache-aware
generic sorting algorithm, cache-aware GenericSort based on GenericSort, in-
troduced in [44], and characterize its I/O adaptiveness. Section 4.4 introduces
a cache-oblivious version of GenericSort. In Section 4.5 we introduce a new
greedy division protocol for GenericSort, interesting in its own right due to its
simplicity. We prove that the resulting algorithm, GreedySort, is comparison
optimal with respect to measure Inv . We show that using our division protocol
we obtain both cache-aware and cache-oblivious algorithms that are optimal
with respect to Inv . In the remainder of this chapter, sorted means sorted in
increasing order.

4.1 I/O lower bounds

In this section we show lower bounds on the number of I/Os performed by
comparison based sorting algorithms that are adaptive with respect to several
measures of presortedness.

Theorem 4.1 A comparison based sorting algorithm must perform at least
Ω(N

B (1 + logM
B

(1 + Inv

N))) I/Os for sorting input sequences of size N and Inv

inversions, assuming M = Ω(B2).

Proof. Consider an adaptive sorting algorithm A and some input sequence X
of size N . Let TA(X) and I/OA(X) denote the number of comparisons and

31

32 Chapter 4. Cache-Aware and Cache-Oblivious Adaptive Sorting

Measure of I/Os Comparisons [45]
presortedness

Dis Ω
(

N
B

(

1 + logM
B

(1 + Dis)
))

Ω(N(1 + log(1 + Dis)))

Exc Ω
(

N
B

(

1 + Exc logM
B

(1 + Exc)
))

Ω(N + Exc log(1 + Exc))

Enc Ω
(

N
B

(

1 + logM
B

(1 + Enc)
))

Ω(N(1 + log(1 + Enc)))

Inv Ω
(

N
B

(

1 + log M
B

(
1 + Inv

N

)))

Ω
(
N
(
1 + log

(
1 + Inv

N

)))

Max Ω
(

N
B

(

1 + logM
B

(1 + Max)
))

Ω(N(1 + log(1 + Max)))

Osc Ω
(

N
B

(

1 + logM
B

(
1 + Osc

N

)))

Ω
(
N
(
1 + log

(
1 + Osc

N

)))

Reg Ω
(

N
B

(

1 + logM
B

(1 + Reg)
))

Ω(N(1 + log(1 + Reg)))

Rem Ω
(

N
B

(

1 + Rem logM
B

(1 + Rem)
))

Ω(N + Rem log(1 + Rem))

Runs Ω
(

N
B

(

1 + log M
B

(1 + Runs)
))

Ω(N(1 + log(1 + Runs)))

SMS Ω
(

N
B

(

1 + logM
B

(1 + SMS)
))

Ω(N(1 + log(1 + SMS)))

SUS Ω
(

N
B

(

1 + logM
B

(1 + SUS)
))

Ω(N(1 + log(1 + SUS)))

Figure 4.1: Lower bounds on the number of I/Os and the number of compar-
isons.

the number of I/Os performed by a comparison based sorting algorithm A for
sorting an input sequence X respectively.

Recall that below(X, Inv) denotes the set of all permutations Y for the
input sequence with Inv(Y) ≤ Inv(X). Consider the decision tree of A (see
e.g. [34, Section 8.1]) restricted to the inputs in below(X, Inv). The tree has at
least |below(X, Inv)| leaves and therefore A performs at least log |below(X,D)|
comparisons in the worst case. Therefore, for any sequence X, there is a se-
quence Y ∈ below(X, Inv), such that log |below(X, Inv)| ≤ TA(Y).

Using the decision tree translation by Arge et al. [11, Theorem 1] we get:

log(|below(X, Inv)|) ≤ N log B+ max
Y ∈below(X,Inv)

I/OA(Y)

(

B log

(
M

B

)

+ 3B

)

.

Since log(|below(X, Inv)|) = Ω(N(1 + log(1 + Inv

N))) [58], we obtain that
maxY ∈below(X,Inv) I/OA(Y) = Ω(N

B (1 + log M
B

(1 + Inv

N))), given M = Ω(B2).
2

Using a similar technique we obtain lower bounds on the number of I/Os for
other measures of presortedness, assuming that M = Ω(B2). Figure 4.1 lists
these lower bounds. For definitions of the different measures, refer to [45].

4.2 GroupSort

In this section we describe a reduction to derive Inv adaptive sorting algorithms
from non-adaptive sorting algorithms. The reduction is cache-oblivious and
requires O(N) comparisons and O(N/B) I/Os.

4.2. GroupSort 33

The basic idea is to distribute the input sequence into a sequence of buckets
S1, . . . , Sk each of size at most 32(Inv/N)2, where the elements in bucket Si are
all smaller than or equal to the elements in Si+1. Each Si is then sorted inde-
pendently by a non-adaptive cache-oblivious sorting algorithm [22,52]. During
the construction of the buckets S1, . . . , Sk some elements might fail to get in-
serted into an Si and are instead inserted into a fail set F . It will be guaranteed
that at most half of the elements are inserted into F . The fail set F is sorted
recursively and merged with the sequence of sorted buckets.

The Si buckets are constructed by scanning the input left-to-right by in-
serting an element x into the rightmost bucket Sk if k = 1 or x ≥ min(Sk)
and otherwise inserting x in F . During the construction we generate increasing
bucket capacities βj = 2 · 4j , which will be used for αj = N/(2 · 2j) insertions
into F . If during construction |Sk| > βj , the bucket Sk is split into two buckets
Sk and Sk+1 by computing its median using the cache-oblivious selection al-
gorithm from [16] and distributing its elements relatively to the median. This
ensures |Si| ≤ βj for 1 ≤ i ≤ k. We maintain the invariant |Sk| ≥ βj/2 if there
are at least two buckets by repeatedly concatenating the two last buckets after
an increment of i. Since βj−1 = βj/4, this ensures βj/2 ≤ |Sk| ≤ 3

4βj after this
concatenation process. If only one bucket remains, then |Sk| ≤ 3

4βj .
The pseudo-code of the reduction is given in Figure 4.2. We assume that

S1, . . . , Sk are stored consecutively in an array by storing the start index and the
minimum element from each bucket on a separate stack, i.e. the concatenation
of Sk−1 and Sk can be done implicitly in O(1) time. The fail set F is stored as
a list of subsets F1, . . . , Fj , where Fi stores the elements inserted into F while
the bucket size is βi. Similarly F1, . . . , Fj are stored consecutively in an array.

Theorem 4.2 GroupSort is cache-oblivious and is comparison optimal and
I/O-optimal with respect to Inv, assuming M = Ω(B2).

Proof. Consider the last bucket capacity βj and fail set size αj . Each element x
inserted into the fail set Fj induces in the input sequence at least βj/2 inversions,
since |Sk| ≥ βj/2 when x is inserted into Fj and all elements in Sk appeared
before x in the input and are larger than x.

For i = ⌈log Inv

N ⌉+1, we have αi · βi
2 = N

2·2i · 2·4i

2 ≥ Inv , i.e. Fi is guar-
anteed to be able to store all failed elements. This immediately leads to

j ≤ ⌈log Inv

N ⌉+1, and βj = 2 · 4j ≤ 32
(

Inv

N

)2
. The fail set F has size at most

∑j
i=1 αi =

∑j
i=1 N/(2 · 2i) ≤ N/2.

Taking into account that the total size of the fail sets is at most N/2,
the number of comparisons performed by GroupSort is given by the following
recurrence:

T (N) = T

(
N

2

)

+
k∑

i=1

TSort(|Si|) + O(N) ,

where the O(N) term accounts for the bucket splittings and the final merge of
S and F . The O(N) term for splitting buckets follows from that when a bucket
with βj elements is split then at least βj/4 elements in a bucket have been
inserted since the most recent bucket splitting or increase in bucket capacity,
and we can charge the splitting of the bucket to these recent βj/4 elements.

34 Chapter 4. Cache-Aware and Cache-Oblivious Adaptive Sorting

procedure GroupSort(X)
Input: Sequence X = (x1, . . . , xN)
Output: Sequence X sorted
begin

S1 = (x1); F1 = (); β1 = 8; α1 = N/4; j = 1; k = 1;
for i = 2 to N

if k = 1 or xi ≥ min(Sk)
append(Sk, xi);
if |Sk| > βj

(Sk, Sk+1) = split(Sk); k = k + 1;
else

append(Fj , xi);
if |Fj | > αj

βj+1 = βj · 4; αj+1 = αj/2; j = j + 1;
while k > 1 and |Sk| < βj/2

Sk−1 = concat(Sk−1, Sk); k = k − 1;
S = concat(sort(S1), sort(S2), . . . , sort(Sk));
F = concat(F1, F2, . . . , Fj);
GroupSort(F);
X = merge(S,F);

end

Figure 4.2: Linear time reduction to non-adaptive sorting.

Since TSort(N) = O(N log N) and each |Si| ≤ βj = O((Inv

N)2) the number
of comparisons performed by GroupSort is:

T (N) = T

(
N

2

)

+ O

(

N

(

1 + log

(

1 +

(
Inv

N

)2
)))

.

Since F is a subsequence of the input, Inv for the recursive call is at most Inv for
the input. As

∑∞
i=0

N
2i log Inv

N/2i = N log Inv

N

∑∞
i=0

1
2i + N

∑∞
i=0

i
2i , it follows that

GroupSort performs T (N) = O
(
N
(
1 + log

(
1 + Inv

N

)))
comparisons, which is

optimal.
The cache-oblivious selection algorithm from [16] performs O(N/B) I/Os

and the cache-oblivious sorting algorithms [22,52] perform O(N
B log M

B

N
B) I/Os

for M = Ω(B2). Since GroupSort otherwise does sequential access to the input
and data structures, we get that GroupSort is cache-oblivious and the number
of I/Os performed is given by the recurrence:

I/O(N) = I/O

(
N

2

)

+ O

(

N

B

(

1 + logM
B

(

1 +

(
Inv

N

)2

· 1

B

)))

.

It follows that GroupSort performs O(N
B (1 + log M

B
(1 + Inv

N))) I/Os provided

M = Ω(B2), which by Theorem 4.1 is I/O-optimal. 2

Pagh et al. [90] gave a related reduction for adaptive sorting on the RAM
model. Their reduction assumes that a parameter q is provided such that the

4.3. Cache-aware GenericSort 35

number of inversions is at most qN . A valid q is found by selecting increas-
ing values for q such that the running time doubles for each iteration. In the
cache oblivious setting the doubling approach fails, since the first q value should
depend on the unknown parameter M . We circumvent this limitation of the
doubling technique by selecting the increasing βj values internally in the reduc-
tion.

4.3 Cache-aware GenericSort

Estivill-Castro and Wood [44] introduced a generic sorting algorithm, Generic-
Sort, as a framework for adaptive sorting algorithms. It is a generalization of
Mergesort, and is described using a generic division protocol, i.e. an algorithm
for splitting an input sequence into two or more subsequences. The algorithm
works as follows: consider an input sequence X; if X is sorted then the algorithm
returns; if X is “small”, then X is sorted using some alternate non-adaptive
sorting algorithm; otherwise, X is divided according to the division protocol
and the resulting subsequences are recursively sorted and merged.

In this section we modify GenericSort to achieve a generic I/O-adaptive
sorting algorithm. Consider an input sequence X = (x1, . . . , xN) and some
division protocol DP such that DP splits the input in s ≥ 2 subsequences of
roughly equal sizes in a single scan, visiting each element of the input exactly
once. To avoid testing whether X is sorted before applying the division protocol,
we derive a new division protocol DP ′ by modifying DP to identify the longest
sorted prefix of X: we scan the input sequence until we find some i such that
xi < xi−1. Denote S = (x1, . . . , xi−1) and X ′ = (xi, . . . , xN). We apply DP to
X ′, recursively sort the resulting s subsequences, and finally merge them with
S. The adaptive bounds for GenericSort proved in [44, Theorem 3.1] are not
affected by these modifications, and we have the following theorem.

Theorem 4.3 Let D be a measure of presortedness, d and s constants, 0 <
d < 2, and DP a division protocol that splits some input sequence of size N
into s subsequences of size at most ⌈Ns ⌉ each using O(N) comparisons.

• the modified GenericSort performs O(N log N) comparisons in the worst
case;

• if for all sequences X, the division of a suffix of X into X1, . . . ,Xs by DP
satisfies that

∑s
j=1D(Xj) ≤ d⌊ s

2⌋ · D(X), then the modified GenericSort
performs O (N (1 + log(1 +D(X)))) comparisons.

We now describe a cache-aware version of the modified GenericSort provided
that the division protocol DP works in a single scan of the input. Let T be the
recursion tree of GenericSort using the new division protocol DP ′. We obtain a
new tree T ′ by contracting T top-down such that every node in T ′ corresponds
to a subtree of height O(logs(M/B)) in T and each node in T ′ has a fanout
of at most m, where m = Θ(M/B). There are O(m) sorted prefixes for every
node in T ′. In cache-aware GenericSort, for each node of T ′ we scan its input

36 Chapter 4. Cache-Aware and Cache-Oblivious Adaptive Sorting

sequence and distribute the elements accordingly to one of the O(m) output
sequences. Each output sequence is a linked list of blocks of size Θ(B). If the
size of the input sequence is at most M , then we sort it in internal memory,
hence performing O(N/B) I/Os. Theorem 4.4 gives a characterization of the
adaptiveness of cache-aware GenericSort in the I/O model. It is an I/O version
of Theorem 4.3.

Theorem 4.4 Let D be a measure of presortedness, d and s constants, 0 <
d < 2 and s ≤ M

2B , and DP a division protocol that splits some input sequence
of size N into s subsequences of size at most ⌈Ns ⌉ each using O(N

B) I/Os. If
DP performs the splitting in one scan visiting each element of the input exactly
once, then:

• cache-aware GenericSort performs O(N
B logM

B

N
B) I/Os in the worst case;

• if for all sequences X, the division of a suffix of X into X1, . . . ,Xs by DP
satisfies that

∑s
j=1D(Xj) ≤ d⌊ s

2⌋ · D(X), then cache-aware GenericSort

performs O
(

N
B

(

1 + log M
B

(1 +D(X))
))

I/Os.

Proof. We analyze the I/Os performed at the nodes of T ′ separately for the
nodes having input sizes less than or equal to M and greater than M .

At a node with input X and |X| > M , O(m+ |X|/B) = O(|X|/B) I/Os are
performed to read the input and to write to the at most m − 1 sorted output
prefixes and m sequences to be recursively sorted. If we charge O(1/B) I/Os
per element in the input this will pay for the I/Os required at the node.

At a node with input X and |X| ≤ M , O(1 + |X|/B) I/Os are performed.
These I/Os can be charged to the parent node, since at the parent we will
already charge O(1 + |X|/B) I/Os to write the output X.

By Theorem 4.3 we have that the sum of the depths in T reached by the
elements in the input X is bounded by O(N(1 + log(1 + D(X)))). Since each
node in T ′ spans Θ(log M

B) levels from T , we get that cache-aware GenericSort
performs O(N

B +N(1+log(1+D(X)))/(B log M
B)) = O(N

B (1+log M
B

(1+D(X))))

I/Os, where the N/B term counts for the I/Os at the root of T ′. 2

The power of cache-aware GenericSort lies in its generality, meaning that
using different division protocols we obtain sorting algorithms that are I/O
adaptive with respect to different measures of presortedness. For example,
using the straight division protocol, we achieve I/O optimality with respect to
Runs . Using the odd-even division protocol, we obtain an algorithm that is
I/O optimal with respect to Dis and Max . Furthermore, the different division
protocols can be combined as shown in [45] in order to achieve I/O optimality
with respect to more measures of presortedness.

4.4 Cache-oblivious GenericSort

We give a cache-oblivious algorithm that achieves the same adaptive bounds
as the cache-aware GenericSort introduced in Section 4.3. It works only for

4.4. Cache-oblivious GenericSort 37

division protocols that split the input into two unsorted subsequences. It is
based on a modification of the k-merger used in FunnelSort [22,52].

A k-merger is a binary tree stored using the recursive van Emde Boas layout.
The edges contain buffers of variable sizes and the nodes are binary mergers.
The tree and the buffer sizes are recursively defined: consider an output se-
quence of size k3 and h the height of the tree. We split the tree at level h

2

yielding k
1
2 + 1 subtrees, each of size O(k

1
2). The buffers at this level have

sizes k
3
2 . See [22] for further details.

Consider DP division protocol that scans the input a single time and DP ′

the modified DP as introduced in Section 4.3. Each node of the k-merger
corresponds to a node in the recursion tree of GenericSort using DP ′ as the
division protocol. Therefore, each node has a fanout of three and becomes a
ternary merger. The resulting unsorted sequences are pushed in the buffers to
the children, while the sorted prefix is stored as a list of memory chunks of size
O(N

2
3) for an input buffer of size N .

Our algorithm uses a single N
1
3 -merger. It fills the buffers in a top-down

fashion and then merges the resulted sorted subsequences in a bottom-up man-
ner. The N

1
3 output buffers at the leaves of the k-merger are sorted using a

non-adaptive I/O-optimal cache oblivious sorting algorithm [22,52].

Lemma 4.1 The N
1
3 -merger and the sorted subsequences use O(N) space.

Proof. Consider the N
1
3 -merger and an input sequence of size N . The total

size of the inner buffers is O(N
2
3) [52]. The memory chunks storing the sorted

subsequences use O(N) space because there are N
1
3 nodes in the merger and

the size of a single memory chunk is O(N
2
3). Adding the input sequence, we

conclude that the N
1
3 -merger and the sorted subsequences take O(N) space

together. 2

Lemma 4.2 Cache-oblivious GenericSort and cache-aware GenericSort have
the same comparison and I/O complexity, for division protocols that split the
input into two subsequences.

Proof. Consider ℓ = 1
3 log N the height of the N

1
3 -merger of the cache-oblivious

GenericSort.

We first prove that cache-aware and cache-oblivious GenericSort have the
same comparison complexity. For some element xi let di be its depth in the
recursion tree of the GenericSort using DP ′ as a division protocol. If di ≤ ℓ
then xi reaches the same level in the recursion tree of cache-oblivious Gener-
icSort, because the two algorithms have the same recursion trees at the top ℓ
levels. If di > ℓ then the number of comparisons performed by cache-oblivious
GenericSort for xi is O(log N) = O(di) because di > l = Ω(log N).

We analyze the number of I/Os used by cache-aware and cache-oblivious
GenericSort. Consider an element xi that reaches level di in the recursion tree
of cache-aware GenericSort.

38 Chapter 4. Cache-Aware and Cache-Oblivious Adaptive Sorting

If di < ℓ then xi is placed in a sorted prefix at a node in the N
1
3 -merger.

In this case, cache-oblivious GenericSort spends linear I/Os when the size of

the input reaches O(M) because the N
1
3 -merger together with the sorted sub-

sequences take linear space by Lemma 4.1. Taking into account that the height
of the N

1
3 -merger is O(log(M/B)) due to the tall cache assumption, it follows

that O(1 + di/(log(M/B))) I/Os are performed by cache-oblivious GenericSort
for getting xi to its sorted subsequence.

If di > ℓ then xi reaches an output buffer of the N
1
3 -merger, where it

is sorted using an optimal cache-oblivious sorting algorithm. In this case
the number of I/Os performed for the sorting involving xi is still O(1/B +

di/(B log(M/B))), because both the N
1
3 -merger and the optimal sorting algo-

rithms require O(1/B + di/(B log(M/B))) I/Os for the sorting involving xi,
since di = Θ(log N).

We obtain that cache-oblivious GenericSort performs O
(

N
B +

Pn
i=1 di

B log(M/B)

)

I/Os. Cache-aware GenericSort performs O

(

N
B +

Pn
i=1 di

B log M
B

)

I/Os too because

the fanout of the nodes in the recursion tree is O(log M
B). We conclude that

cache-aware GenericSort and cache-oblivious GenericSort have the same I/O
complexity. 2

4.5 GreedySort

We introduce GreedySort, a sorting algorithm based on GenericSort using a
new division protocol, GreedySplit. The protocol is inspired by a variant of
the Kim-Cook division protocol, which was introduced and analyzed in [80].
Our division protocol achieves the same adaptive performance with respect to
Inv , but is simpler and moreover facilitates cache-aware and cache-oblivious
versions. It may be viewed as being of a greedy type, hence the name. We first
describe GreedySort and its division protocol and then prove that it is optimal
with respect to Inv . GreedySplit partitions the input sequence X into three
subsequences S, Y , and Z, where S is sorted and Y and Z have balanced sizes,
i.e. |Z| ≤ |Y | ≤ |Z| + 1. In one scan it builds an ascending subsequence S of
the input in a greedy fashion and at the same time distributes the remaining
elements in two subsequences, Y and Z, using an odd-even approach.

Lemma 4.3 GreedySplit splits an input sequence X in the three subsequences
S, Y and Z, where S is sorted and Inv(X) ≥ 5

4 · (Inv(Y) + Inv(Z)).

Proof. Let X = (x1, . . . xN). By construction S is sorted. Consider an inversion
in Y , yi > yj, i < j and i1 and j1 the indices in X of yi and yj respectively.
Due to the odd-even construction of Y and Z, there exists an xk ∈ Z such that
in the original sequence X we have i1 < k < j1.

We prove that there is one inversion between xk and at least one of xi1 and
xj1, for any i1 < k < j1. Indeed, if xi1 > xk, we get an inversion between
xi1 and xk. If xi1 ≤ xk, we get an inversion between xj1 and xk, because we

4.5. GreedySort 39

assume that yi > yj which yields xi1 > xj1. Let zi, . . . , zj−1 be all the elements
from Z which appear between yi and yj in the original sequence. We know that
there exists at least an inversion between z⌊i+j⌋/2 and yi or yj. The inversion
(yi, z⌊(i+j)/2⌋) can be counted for two different pairs in Y , (yi, yi+2⌊(j−i)/2⌋) and
(yi, yi+1+2⌊(j−i)/2⌋). Similarly, the inversion (z⌊(i+j)/2⌋,j) can be counted for
two different pairs in Y . Taking into account that the inversions involving
elements of Y and elements of Z appear in X, but neither in Y nor Z, we have
that Inv(X) ≥ Inv(Y) + Inv(Z) + Inv(Y)/2. In a similar manner we obtain
Inv(X) ≥ Inv(Y) + Inv(Z)+ Inv(Z)/2. Summing the two equations we obtain
Inv(X) ≥ 5

4(Inv(Y) + Inv(Z)). 2

Theorem 4.5 GreedySort performs O(N(1+log(1+Inv(X)/N))) comparisons
to sort a sequence X of size N , i.e. it is comparison optimal with respect to Inv.

Proof. Similar to [80], we first prove the claimed bound for the upper levels of
recursion where the total number of inversions is greater than N/4 and then
prove that the total number of comparisons for the remaining levels is linear.
Let Inv i(X) denote the total number of inversions in the subsequences at the

ith level of recursion. By Lemma 4.3, Inv i(X) ≤
(

4
5

)i
Inv(X).

We want to find the first level ℓ of the recursion for which
(

4
5

)ℓ
Inv(X) ≤ N

4 ,

which yields ℓ =
⌈

log(4Inv(X)/N)
log(5/4)

⌉

.

At each level of recursion GreedySort performs O(N) comparisons. There-
fore at the first ℓ levels of recursion the total number of comparisons performed
is O(ℓ ·N) = O(N(1+ log(1+ Inv (X)/N)))). We now prove that the remaining
levels perform a linear number of comparisons.

Let |(X, i)| denote the total size of Y s and Zs at the ith level of recursion. As
each element in Y and Z is obtained as a result of an inversion in the sequence X,
we have |(X, i)| ≤ Inv i−1(X). Using Lemma 4.3 we obtain: |(X, ℓ + i)| ≤
Inv ℓ+i−1(X) ≤

(
4
5

)i−1 ·
(

4
5

)ℓ · Inv(X) ≤
(

4
5

)i−1 N
4 . Taking into account that

the sum of the |(X, ℓ + i)|s is O(N) and that at each level ℓ + i we perform
a linear number of comparisons with respect to |(X, ℓ + i)|, it follows that the
total number of comparisons performed at the lower levels of the recursion
tree is O(N). We conclude that GreedySort performs O(N(1 + log(1 + Inv

N)))
comparisons. 2 We derive both cache-aware and cache-oblivious algorithms

by using our greedy division protocol in both the cache-aware and the cache-
oblivious GenericSort frameworks described in Sections 4.3 and 4.4. In both
cases the division protocol considered does not identify the longest prefix of the
input, but simply apply the greedy division protocol. We prove that these new
algorithms, cache-aware GreedySort and cache-oblivious GreedySort achieve the
I/O-optimality with respect to Inv under the tall cache assumption M = Ω(B2).

Theorem 4.6 Both cache-aware GreedySort and cache-oblivious GreedySort
are I/O-optimal with respect to Inv, provided that M = Ω(B2).

Proof. From Theorem 4.5 the average number of levels of recursion for an ele-
ment is O(1 + log(1 + Inv/N)). In Theorem 4.4 each element is charged O(1

B)

40 Chapter 4. Cache-Aware and Cache-Oblivious Adaptive Sorting

I/Os for every Θ(log M
B) levels. This implies that cache-aware GreedySort per-

forms Θ(N
B (1 + logM

B
(1 + Inv

N))) I/Os, which is optimal by Theorem 4.1. Sim-

ilar observations apply to cache-oblivious GreedySort based on the proof of
Lemma 4.2. 2

Chapter 5

On the Adaptiveness of Quicksort

Given how well studied quicksort is, it is amazing that this basic fact was not
previously known.

— Anonymous reviewer

In this chapter we present the results published in [29]. Our main contri-
bution is demonstrating that the running time of Quicksort is correlated with
the number of inversions in the input, but we give results concerning adaptive
behavior also for Mergesort and Heapsort. In Section 5.1 we prove that the ex-
pected number of element swaps performed by randomized Quicksort depends
on the number Inv of inversions in the input. In Section 5.2 we describe our
experimental setup, and in Section 5.3 we describe and discuss our experimental
results. Parts of our proof of Theorem 5.1 were inspired by the proof by Sei-
del [105, Section 5] concerning the expected number of comparisons performed
by randomized Quicksort.

5.1 Expected number of swaps by randomized

Quicksort

In this section we analyze the expected number of element swaps performed
by the classic version of randomized Quicksort where in each recursive call a
random pivot is selected. The C code for the specific algorithm considered is
given in Figure 5.1. The parameters l and r are the first and last element,
respectively, of the segment of the array a to be sorted.

Theorem 5.1 The expected number of element swaps performed by randomized
Quicksort is at most n + n ln

(
2Inv

n + 1
)
.

We assume that the n input elements are distinct. In the following, let
(x1, . . . , xn) denote the input sequence, and let πi be the rank of xi in the
sorted sequence. The number of inversions in the input sequence is denoted by
Inv . The main observation used in the proof of Theorem 5.1 is that an element
xi that has not yet been moved from its input position i is swapped during a
partitioning step if and only if the selected pivot xj satisfies i ≤ πj < πi or
πi < πj ≤ i, or xi is itself the pivot element. This is seen by inspection of the

41

42 Chapter 5. On the Adaptiveness of Quicksort

#define Item int

#define random(l,r) (l+rand() % (r-l+1))

#define swap(A, B) { Item t = A; A = B; B = t; }

void quicksort(Item a[], int l, int r)

{ int i;

if (r <= l) return;

i = partition(a, l, r);

quicksort(a, l, i-1);

quicksort(a, i+1, r);

}

int partition(Item a[], int l, int r)

{ int i = l-1, j = r+1, p = random(l,r);

Item v = a[p];

for (;;) {

while (++i < j && a[i] <= v);

while (--j > i && v <= a[j]);

if (j <= i) break;

swap(a[i], a[j]);

}

if (p < i) i--;

swap(a[i], a[p]);

return i;

}

Figure 5.1: C code for randomized Quicksort.

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������
�����
�����
�����

�����
�����
�����

���������
���������
���������

���������
���������
���������

�����������
�����������
�����������

�����������
�����������
�����������

����������
����������
����������

����������
����������
����������

������������
������������
������������

������������
������������
������������

π15

π11

π13

π8

20 18 12 9 8 16 2 14 6 1 4 21 10 19 7 5

5 7 12 9 8 10 2 4 6 1 14

4 9 8 10 7 12 6 5

7 10 12 8 9

1 2 3 4 5 6 7 8 9 10 11 12 16151413

π5

8 9 10

8

Figure 5.2: The partitions involving element 8.

code, noting that after a partitioning step, the pivot element xj resides at its
final position πj . We shall only need the “only if” part.

Fact 5.1 When xi is swapped the first time, the pivot xj of the current par-
titioning step satisfies i ≤ πj < πi or πi < πj ≤ i, or xi is itself the pivot
element.

Figure 5.2 illustrates how the element x5 = 8 is moved during the execution
of randomized Quicksort. Circled elements are the selected pivots. The first
two selected pivots 14 and 4 do not cause 8 to be swapped, since 8 is already
correctly located with respect to the final positions of of the pivots 14 and 4.
The first pivot causing 8 to be swapped is x15 = 7, since π5 = 7, π15 = 6, and
5 ≤ π15 < π5.

5.1. Expected number of swaps by randomized Quicksort 43

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��������������
��������������
��������������

��������������
��������������
��������������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

 I

II

III

Sorted

Input xi

i

xj

j

xj xi

πj πi

| {z }

Input

Sorted

xj

j

πk

xj xi

xi

i

πj πi

Sorted

Input

xj

πj

| {z }

xi

i

xj

j

xi

πk

| {z }

| {z }

di πj − πi + 1

πi − πj + 1

πi − πj

πi

Figure 5.3: The three different cases of Lemma 5.2.

In the succeeding recursive calls after the first swap of an element xi, the
positions of xi in the array are unrelated to i and πi. Eventually, xi is either
picked as a pivot or becomes a single element input to a recursive call (the base
case is reached), after which xi does not move further.

In the following we let di = |πi − i|, i.e. the distance of xi from its correct
position in the sorted output. The correlation between Inv and the di values is
captured by the following lemma:

Lemma 5.1 Inv ≤∑n
i=1 di ≤ 2Inv.

Proof. For the left inequality, Inv ≤ ∑n
i=1 di, we consider the following algo-

rithm: If there is an element xi not at its correct position, move xi to posi-
tion πi, such that position πi temporarily contains both xi and xπi in sorted
order. Next move xπi to its correct position, and repeat moving an element
from the position temporarily containing two elements to its correct position,
until we move an element to position i. Repeat until the sequence is sorted. By
moving element xi from position i to its correct position πi, we move xi over the
di − 1 elements at positions between i and πi and possibly the current element
at position πi. This decreases the number of inversions in the sequence by at
most di, namely any inversions between xi and each of the at most di elements
moved over. In the final sorted sequence there are no inversions, hence we have
Inv ≤∑n

i=1 di.

For the right inequality,
∑n

i=1 di ≤ 2Inv , consider some xi with πi ≥ i. In
the input sequence there are at least di inversions between xi and other input
elements, since there are at least di elements less than xi with indices greater
than i in the input sequence. A similar argument holds for the case when
πi < i. Taking into account that we may count the same inversion twice, we
obtain

∑n
i=1 di ≤ 2Inv . 2

44 Chapter 5. On the Adaptiveness of Quicksort

The constants in Lemma 5.1 are the best possible. For even n, the sequence
(2, 1, 4, 3, 6, 5, . . . , n, n−1) has Inv = n/2 and

∑n
i=1 di = n, i.e. (

∑n
i=1 di)/Inv =

2, whereas the sequence (n, n− 1, n− 2, n− 3, . . . , 3, 2, 1) has Inv = n(n− 1)/2
and

∑n
i=1 di = n2/2, i.e. (

∑n
i=1 di)/Inv = 1 + 1

n−1 which converges to one for
increasing n.

For the proof of Theorem 5.1 we make the following definition:

Definition 5.1 For i 6= j let Xij denote the indicator variable that is one if
and only if there is a recursive call to quicksort where xj is selected as the
pivot in the partition step and xi is swapped during this partition step.

Note that xj can at most once become a pivot, since after a partition with
pivot xj the inputs to the recursive calls do not contain xj. Furthermore note
that the elements swapped in a partition step with pivot xj are the elements
in the input to the partition which are placed incorrectly relatively to the final
position πj of xj.

There are three cases where Xij = 0: (i) xj is never selected as a pivot, i.e.
there exists a recursive call where xj is the only element to be sorted; (ii) xj is
selected as a pivot in a recursive call and xi is not in the input to this recursive
call; and (iii) xj is selected as a pivot in a recursive call and xi is in the input to
this recursive call, but xi is not swapped because it is placed correctly relatively
to the final position πj of xj .

Lemma 5.2

Pr[Xij = 1] ≤

0 if πj < i ≤ πi or πi ≤ i < πj ,
1

|πi−πj |+1 if i ≤ πj < πi or πi < πj ≤ i ,
1

|πi−πj |+1 − 1
|πi−πj |+1+di

otherwise.

Proof. For the case (i) where xj is never selected as a pivot for a partition,
we in the following adopt the convention that xj is considered the pivot for
the recursive call where the input consists of xj only. This ensures that each
element becomes a pivot exactly once.

We first note that the probability that xi is in the input to the recursive
call with pivot xj is 1

|πi−πj |+1 , since this is the probability that xj is the first

element chosen as a pivot among the |πi−πj |+1 elements xk with πi ≤ πk ≤ πj

or πj ≤ πk ≤ πi (if the first pivot xk among the |πi−πj|+ 1 elements is not xj ,
then the selected pivot xk will cause xi and xj to not appear together in any
input to succeeding recursive calls).

To prove the lemma we consider the three different cases depending on
the relative order of i, πi, and πj . In the following we assume i ≤ πi. The
cases where πi < i are symmetric. The three possible scenarios are shown in
Figure 5.3.

First consider the case where πj < i ≤ πi, see Figure 5.3 (I). If a pivot xk

is selected with πj < πk ≤ πi before xj becomes a pivot, then xi and xj do
not appear together in any input to succeeding recursive calls, so xi cannot be
involved in the partition with pivot xj . The only other possibility is that xj is
a pivot before any element xk with πj < πk ≤ πi becomes a pivot, but then by

5.1. Expected number of swaps by randomized Quicksort 45

Fact 5.1 xi has not been moved when xj becomes a pivot, and the partitioning
with pivot xj does not swap xi.

For the second case, where i ≤ πj < πi, see Figure 5.3 (II), we bound the
probability that Xij equals one by the probability that xi is in the input to the
recursive call with pivot xj. As argued above, this probability is 1

|πi−πj |+1 .

For the last case where i ≤ πi < πj, see Figure 5.3 (III), we consider the
probability that xi is in the input to the recursive call with pivot xj and xi is
not swapped. This is at least the probability that xj is the first element chosen
as a pivot among the |πi−πj|+1+ di elements xk with i ≤ πk ≤ πj, since then
by Fact 5.1 xi has not been moved yet when xj becomes the pivot, and the
partitioning with pivot xj does not swap xi. It follows that the probability that
xi is in the input to the recursive call with pivot xj and xi is not swapped, is at
least 1

|πi−πj |+1+di
. Since the probability that xi is in the input to the recursive

call with pivot xj is 1
|πi−πj |+1 , the lemma follows. 2

Using Lemma 5.1 and Lemma 5.2 we now have the following proof of The-
orem 5.1.
Proof. Theorem 5.1 The for-loop in the partitioning procedure in Figure 5.1
only swaps non-pivot elements and each element is swapped at most once in
the loop. The loop is followed by one swap involving the pivot. Since a swap
of two elements xi and xk not involving the pivot xj are counted by the two
indicator variables Xij and Xkj, the expected number of swaps is at most

E

n∑

j=1

1 +
1

2

n∑

i=1,i6=j

Xij

= n +
1

2

n∑

i=1

n∑

j=1,i6=j

Pr(Xij = 1)

≤ n +
1

2

n∑

i=1

(
di∑

k=1

1

k + 1
+

∞∑

k=1

(
1

k + 1
− 1

k + 1 + di

))

(5.1)

≤ n +
1

2

n∑

i=1

(

2

di∑

k=1

1

k + 1

)

=

n∑

i=1

di+1∑

k=1

1

k

≤
n∑

i=1

(1 + ln(di + 1)) (5.2)

≤ n + n ln

∑n
i=1(di + 1)

n
(5.3)

≤ n + n ln

(
2Inv

n
+ 1

)

(5.4)

where (5.1) follows from Lemma 5.2, (5.2) follows from
∑n

i=1
1
i ≤ 1+ ln n, (5.3)

follows from the concavity of the logarithm function, and (5.4) follows from

46 Chapter 5. On the Adaptiveness of Quicksort

Lemma 5.1. 2

It should be noted that the upper bound achieved in (5.3) using the con-
cavity of the logarithm function can be much larger than the value (5.2). As
an example, if there are Θ(n/ log n) di values of size Θ(n) and the rest of the di

values are zero, then the difference between (5.2) and (5.3) is a factor Θ(log n),
i.e. the upper bound on the expected number of swaps stated in Theorem 5.1
can be a factor of log n from the actual bound.

5.2 Experimental setup

In the remainder of this chapter, we investigate whether classic, theoretically
non-adaptive sorting algorithms can show adaptive behavior in practice. We
find that this indeed is the case—the running times for Quicksort and Mergesort
are observed to improve by factors between 1.5 and 4 when the Inv value of
the input goes from high to low. Furthermore, the improvements for Quicksort
are in very good concordance with Theorem 5.1, which shows this result to be
a likely explanation for the observed behavior.

In more detail, we study how the number of inversions in the input sequence
affects the number of comparisons, the number of element swaps, the number of
branch mispredictions, the running time, and the number of data cache misses
of the version of Quicksort shown in Figure 5.1. We also study the behavior
of two variants of Quicksort, namely the randomized version that chooses the
median of three random elements as a pivot, and the deterministic version that
chooses the middle element as a pivot. We furthermore investigate different
experimental setups for the Quicksort in Figure 5.1. We reduce the number
of branch mispredictions by unrolling the inner loops three times, we turn off
the hardware prefetcher to incur more cache misses, and we study expensive
comparisons in two distinct ways, by making the elements doubles and using a
comparison function respectively. Finally, we study the behavior of the classic
sorting algorithm Mergesort, which also has an adaptive bahavior.

The input elements are distinct 4 byte integers. We generate two types of
input, having small di’s and large di’s, respectively. We generate the sequence
with small di’s by choosing each element xi randomly in [i−d, . . . , i+d] for some
parameter d, making sure it is different than its predecessors. The sequence
with large di’s is generated by letting xi = i with the exception of d random i’s
which are permuted in the input. We perform our experiments by varying the
disorder (by varying d) while keeping the size n of the input sequence constant.
For most experiments, the input size is 2 × 106, but we also investigate larger
and smaller input sizes.

Our experiments are conducted on two different machines. The first machine
has a Dual Intel P4 3.4 GHz CPU with 1 GB RAM, running linux 2.6.12, while
the other has an AMD Athlon XP 2400+ 2.0 GHz CPU with 256 MB RAM,
running linux 2.4.22. On both machines the C source code was compiled using
gcc-3.3.2 with optimization level -O3. The number of branch mispredictions
and L1 data cache misses was obtained using the PAPI library [91] version 3.0.

5.3. Experimental results 47

Source code and the plotted data are available at ftp://ftp.brics.dk/

RS/04/47/Experiments.

5.3 Experimental results

5.3.1 Quicksort.

We first analyze the dependence of the version of Quicksort shown in Figure 5.1
on the number of inversions in the input.

Figure 5.4 shows our data for the AMD architecture. The number of com-
parisons is independent of the number of inversions in the input, as expected.
For the number of element swaps, the plot is very close to linear when con-
sidering the input sequence with small di’s. Since the x-axis shows log(Inv),
this is in very good correspondence with the bound O(n(1 + log(1 + Inv

n))) of
Theorem 5.1 (recall that n is fixed in the plot). For the input sequence with
large di’s, the plot is different. This is a sign of the slack in the analysis (for this
type of input) noted after the proof of Theorem 5.1. We will demonstrate below
that this curve is in very good correspondence with the version of the bound
given by Equation (5.2). The plots for the number of branch mispredictions
and for the running time clearly show that they are correlated with the number
of element swaps. For the number of branch mispredictions, this is explained
by the fact that an element swap is performed after the two while loops stop,
and hence corresponds to two branch mispredictions. For the running time, it
seems reasonable to infer that branch mispredictions are a dominant part of
the running time of Quicksort on this type of architecture. Finally, the num-
ber of data cache misses seems independent of the presortedness of the input
sequence, in correspondence with the fact that for all element swaps, the data
to be manipulated is already in the cache and therefore the element swaps do
not generate additional cache misses.

Figure 5.5 show the same plots for the P4 architecture, except that we were
not able to obtain data for L2 data cache misses. We note that the plots follow
the same trends as in Figure 5.4. On the P4, the number of comparisons and
the number of element swaps are approximately the same as on the Athlon,
but the running time is affected by up to a factor of 1.8 on the P4, while only
by up to a factor of 1.45 on the Athlon. One reason for this behavior is the
number of branch mispredictions, which is slightly smaller for the Athlon. Also,
the length of the pipeline, shorter for Athlon, makes the branch mispredictions
more costly for a P4 compared to an Athlon.

Similar observations on the resemblance between the data for the two archi-
tectures apply to all our experiments. For this reason, and because of the extra
data for L2 data cache misses that we have for Athlon, we for the remaining
plots restrict ourselves to the Athlon architecture.

We now turn to the variants of Quicksort. Figure 5.6 shows the number com-
parisons, the number of element swaps, the number of branch mispredictions,
the running time, and the L2 data cache misses for the version of Quicksort that
chooses as a pivot the median of three random elements in the input sequence.
We note that the plots have a behavior similar to the ones for the version of

48 Chapter 5. On the Adaptiveness of Quicksort

Quicksort shown in Figure 5.4. However, some improvements are noticed. The
three-median pivot Quicksort performs around 15% less comparisons, due to
the better choice of the pivot. This immediately triggers a slight improvement
in the number of data cache misses. Although the number of element swaps re-
mains approximately the same, the number of branch mispredictions increases
due to the extra branches used for computing the median of three elements.
Also, the running time increases because of the increased number of branch
mispredictions and random number generations.

Figure 5.7 shows the same plots for the deterministic version of Quicksort
that chooses the middle element as pivot. In this case we note that the number
of comparisons does depend on the presortedness of the input. This is because
for small disorder, the middle element is very close to the median and there-
fore the number of comparisons is close to n log n, as opposed to ≈ 1.4n log n
expected for the randomized Quicksort [66]. The good pivot choice for small
disorder in the input also triggers a smaller number of branch mispredictions.
However, for large disorder, the number of comparisons is larger compared to
randomized median-of-three Quicksort due to bad pivot choices. Also, the run-
ning time is affected by up to a factor of two by the disorder in the input.

Figure 5.8 and Figure 5.9 show that when varying the input size n, the
behavior of the plots remains the same for randomized Quicksort. Hence, our
findings do not seem to be tied to the particular choice of n = 2× 106.

In Figure 5.10 we demonstrate that the number of element swaps is very
closely related to

∑n
i=1 log di, cf. the comment after the proof of Theorem 5.1.

Hence the reason for the non-linear shape of the previous plots for input se-
quences with large di’s seems to be the slack introduced (for this type of input)
after Equation (5.2) in the proof of Theorem 5.1. As in the other cases, the
running time and the number of branch mispredictions follow the same trend
as the number of swaps.

To reduce the number of branch mispredictions, we unroll the inner loops
three times.

5.3.2 Mergesort.

We briefly demonstrate that also for Mergesort the actual running time varies
with the number of inversions in the input. We focus on the binary merge
process, and count the number of times there is an alternation in which of the
two input subsequences provides the next element output. It is easy to verify
that the number of such alternations is dominated by the running time of the
Mergesort algorithm by Moffat [86] based on merging by finger search trees,
which was proved to have a running time of O(n(1 + log(1 + Inv

n))), i.e. the
number of alternations by standard Mergesort is O(n(1 + log(1 + Inv

n))). The
plots in Figure 5.12 show a very similar behavior for the number of alternations,
the number of branch mispredictions, and the running time. The number of
alternations is clearly correlated to the number of branch mispredictions, and
these appear to be a dominant factor for the running time of Mergesort. The
number of data cache misses increases only slightly for large disorder in the
input.

5.4. Conclusions and related work 49

5.4 Conclusions and related work

In this chapter we demonstrate that, in spite of common knowledge, the running
time of the randomized version of Quicksort is adaptive with respect to mea-
sure Inv . Even though the expected number of comparisons is O(n log n), we
prove that the expected number of element swaps is O(n(1 + log(1 + Inv/n))).
Furthermore, we demonstrate experimentally that the number of element swaps
performed follows closely the number of branch mispredictions, which are an
important factor affecting the running time when computation takes place in
internal memory. We observe that Mergesort has an adaptive behavior too.

Elmasry and Hammad [42] gave an empirical study for optimal algorithms
with respect to Inv , and compare these algorithms against Quicksort. For
Quicksort they measure the number of comparisons and the running time, ob-
taining results that are consistent to ours. They demonstrate that, for a low
number of inversions, Quicksort is outperformed by some other algorithms,
but its running time is still competitive. On the other hand, when the in-
put sequence has a high Inv value, Quicksort outperforms all the Inv optimal
algorithms considered.

For Heapsort, Figure 5.11 shows the way the number of inversions in the
input affects the number of comparisons, the number of elements swaps, the
number of branch mispredictions, the running time, and the number of L2 data
cache misses for input sequences of constant length n = 2 × 106. The number
of comparisons and the number of element swaps performed by Heapsort is
affected slightly, while the number of branch mispredictions is affected in a
more significant way, by a factor of 0.4. However, the number of L2 data cache
misses is greatly affected, and varies by more than a factor of ten. The running
time shows a virtually identical behavior with the data cache misses, except the
increase is by a factor close to four. This suggests that data cache misses are
the dominant factor for the running time for Heapsort on this architecture. We
leave open the question of a theoretical analysis of the number of cache misses
of Heapsort as a function of Inv .

An interesting sorting algorithm to be considered for study is Shellsort,
introduced by Shell in [106] and improved over the years (see [104] for a com-
prehensive survey). Since it is based on Insertionsort, we expect Shellsort to
outperform some optimal sorting algorithms for a very small number of inver-
sions, because of a very small number of comparisons and branch mispredic-
tions. Intuitively, Insertionsort performs O(n) branch mispredictions, because
the branch testing the element to be inserted against some element in the se-
quence should be correctly predicted with one exception, when the element gets
inserted.

Large di

Small di

Comparisons

403530252015

6.2e+07

6e+07

5.8e+07

5.6e+07

5.4e+07

5.2e+07

Large di

Small di

Element swaps

403530252015

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

403530252015

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

403530252015

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Large di

Small di

L2 data cache misses

403530252015

900000

800000

700000

600000

500000

400000

300000

Figure 5.4: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L2 data cache
misses performed by randomized
Quicksort on Athlon, for n = 2×
106. The x-axis shows log(Inv).

Large di

Small di

403530252015

2.75e+07

2.7e+07

2.65e+07

2.6e+07

2.55e+07

2.5e+07

2.45e+07

2.4e+07

Large di

Small di

403530252015

5e+06

4.5e+06

4e+06

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

Large di

Small di

403530252015

1.1e+07

1e+07

9e+06

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

Large di

Small di

403530252015

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

Large di

Small di

403530252015

9e+06

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

Figure 5.5: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L1 data cache
misses of randomized Quicksort
on P4, for n = 106. The x-axis
shows log(Inv).

Large di

Small di

403530252015

2.34e+07

2.32e+07

2.3e+07

2.28e+07

2.26e+07

2.24e+07

2.22e+07

2.2e+07

2.18e+07

2.16e+07

2.14e+07

2.12e+07

Large di

Small di

403530252015

5e+06

4.5e+06

4e+06

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

Large di

Small di

403530252015

1.2e+07

1.1e+07

1e+07

9e+06

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

Large di

Small di

403530252015

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

Large di

Small di

403530252015

6e+06

5.5e+06

5e+06

4.5e+06

4e+06

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

Figure 5.6: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L1 data cache
misses performed by randomized
median-of-three Quicksort on P4,
for n = 106. The x-axis shows
log(Inv).

Large di

Small di

403530252015

2.6e+07

2.5e+07

2.4e+07

2.3e+07

2.2e+07

2.1e+07

2e+07

1.9e+07

1.8e+07

Large di

Small di

403530252015

5e+06

4.5e+06

4e+06

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

Large di

Small di

403530252015

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

Large di

Small di

403530252015

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

Large di

Small di

403530252015

5e+06

4.5e+06

4e+06

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

Figure 5.7: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L1 data cache
misses performed by determinis-
tic Quicksort on P4, for n = 106.
The x-axis shows log(Inv).

Large di

Small di

Comparisons

32302826242220181614

2.5e+06

2.4e+06

2.3e+06

2.2e+06

2.1e+06

2e+06

Large di

Small di

Element swaps

32302826242220181614

450000

400000

350000

300000

250000

200000

150000

100000

50000

Large di

Small di

Branch mispredictions

32302826242220181614

900000

800000

700000

600000

500000

400000

300000

200000

100000

Large di

Small di

Running time

32302826242220181614

0.02

0.019

0.018

0.017

0.016

0.015

0.014

0.013

0.012

0.011

Large di

Small di

L2 data cache misses

32302826242220181614

25000

20000

15000

10000

5000

0

Figure 5.8: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L2 data cache
misses performed by randomized
Quicksort on Athlon, for n = 6×
104. The x-axis shows log(Inv).

Large di

Small di

Comparisons

454035302520

3.15e+08

3.1e+08

3.05e+08

3e+08

2.95e+08

Large di

Small di

Element swaps

454035302520

6e+07

5e+07

4e+07

3e+07

2e+07

1e+07

Large di

Small di

Branch mispredictions

454035302520

1.4e+08

1.2e+08

1e+08

8e+07

6e+07

4e+07

2e+07

Large di

Small di

Running time

454035302520

3.2

3

2.8

2.6

2.4

2.2

2

Large di

Small di

L2 data cache misses

454035302520

5e+06

4.5e+06

4e+06

3.5e+06

3e+06

Figure 5.9: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L2 data cache
misses performed by randomized
Quicksort on Athlon, for n =
107. The x-axis shows log(Inv).

Large di

Small di

Comparisons

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

6.2e+07

6e+07

5.8e+07

5.6e+07

5.4e+07

5.2e+07

Large di

Small di

Element swaps

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Large di

Small di

L2 data cache misses

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

900000

800000

700000

600000

500000

400000

300000

Figure 5.10: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L2 data cache
misses performed by randomized
Quicksort on Athlon, for the in-
put size n = 2× 106. The x-axis
shows

∑n
i=1 log(di + 1).

Large di

Small di

Comparisons

403530252015

7.75e+07

7.7e+07

7.65e+07

7.6e+07

Large di

Small di

Element swaps

403530252015

3.9e+07

3.88e+07

3.86e+07

3.84e+07

3.82e+07

3.8e+07

3.78e+07

3.76e+07

3.74e+07

Large di

Small di

Branch mispredictions

403530252015

2.4e+07

2.3e+07

2.2e+07

2.1e+07

2e+07

1.9e+07

1.8e+07

1.7e+07

1.6e+07

1.5e+07

Large di

Small di

Running time

403530252015

2

1.5

1

0.5

Large di

Small di

L2 data cache misses

403530252015

1.6e+07

1.4e+07

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

Figure 5.11: The number of com-
parisons, the number of element
swaps, the number of branch mis-
predictions, the running time,
and the number of L1 data cache
misses performed by Heapsort on
P4, for n = 2 × 106. The x-axis
shows log(Inv).

Large di

Small di

Alternations

403530252015

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Branch mispredictions

403530252015

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

0

Large di

Small di

Running time

403530252015

0.6

0.55

0.5

0.45

0.4

Large di

Small di

L2 data cache misses

403530252015

1.47e+06

1.46e+06

1.45e+06

1.44e+06

1.43e+06

1.42e+06

1.41e+06

1.4e+06

1.39e+06

Figure 5.12: The number of alternations, the number of branch mispredictions,
the running time, and the number of L2 data cache misses performed by Merge-
sort on Athlon, for n = 2× 106. The x-axis shows log(Inv).

RQUnroll
RQInt

403530252015

1.1e+07

1e+07

9e+06

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

Figure 5.13: The number of
branch mispredictions performed
by Quicksort on P4 for small di’s,
with no loop unrolling and with
three unrolls of the inner loops.
The input size is n = 106, and
the x-axis shows log(Inv).

RQUnroll
RQInt

403530252015

1e+07

9e+06

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

Figure 5.14: The number of
branch mispredictions performed
by Quicksort on P4 for large di’s,
with no loop unrolling and with
three unrolls of the inner loops.
The input size is n = 106, and
the x-axis shows log(Inv).

RQNoPref
RQPref

403530252015

9e+06

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

Figure 5.15: The number of data
cache misses performed by ran-
domized Quicksort on P4 for
small di’s, when the hardware
prefetcher turned on and off. The
input size is n = 106, and the x-
axis shows log(Inv).

RQNoPref
RQPref

403530252015

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

Figure 5.16: The number of data
cache misses performed by ran-
domized Quicksort on P4 for
large di’s, when the hardware
prefetcher turned on and off. The
input size is n = 106, and the x-
axis shows log(Inv).

RQUnroll
RQNoPref

RQFunc
RQDouble

RQInt

403530252015

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Figure 5.17: The running time
of randomized Quicksort on
P4 for small di’s, for inte-
ger elements, double elements,
comparison function, hardware
prefetcher turned off, and the in-
ner loops unrolled. The input
size is n = 106 and the x-axis
shows log(Inv).

RQUnroll
RQNoPref

RQFunc
RQDouble

RQInt

403530252015

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Figure 5.18: The running time
of randomized Quicksort on
P4 for large di’s, for inte-
ger elements, double elements,
comparison function, hardware
prefetcher turned off, and the in-
ner loops unrolled. The input
size is n = 106 and the x-axis
shows log(Inv).

Chapter 6

Trading Branch Mispredictions for

Comparisons when Sorting

Cute result.
— Anonymous reviewer

In this chapter we present the work published in [30]. In Section 6.1 we prove
lower bound tradeoffs between the number of comparisons and the number
of branch mispredictions for comparison based sorting and adaptive sorting
algorithms. Matching upper bounds are provided in Sections 6.2 and 6.3, where
we show how variants of multiway MergeSort and GenericSort, respectively,
achieve the optimal tradeoffs between comparisons and branch mispredictions.

6.1 Lower bounds for sorting

In this section we consider deterministic comparison based sorting algorithms
and prove lower bound tradeoffs between the number of comparisons and the
number of branch mispredictions performed, under the assumption that each
comparison between two elements in the input is immediately followed by a
conditional branch that might be predicted or mispredicted. This property is
satisfied by most sorting algorithms.

Theorem 6.1 introduces a worst case tradeoff between the number of com-
parisons and the number of branch mispredictions performed by sorting algo-
rithms.

Theorem 6.1 Consider a deterministic comparison based sorting algorithm A
that sorts input sequences of size n using O(dn log n) comparisons, d > 1. The
number of branch mispredictions performed by A is Ω(n logd n).

Proof. Let T be the decision tree corresponding to A (for a definition of decision
trees see e.g. [34, Section 8.1]). By assumption, each node in the tree corre-
sponds to a branch that can be either predicted or mispredicted. We label the
edges corresponding to mispredicted branches with 1 and the edges correspond-
ing to correctly predicted branches with 0. Each leaf is uniquely labeled with
the labels on the path from the root to the given leaf. Assuming the depth of

57

58 Chapter 6. Trading Branch Mispredictions for Comparisons when Sorting

the decision tree is at most D and the number of branch mispredictions allowed
is k, each leaf is labeled by a sequence of at most D 0’s and 1’s, containing at
most k 1’s. By padding the label with 0’s and 1’s we can assume all leaf labels
have length exactly D+k and contain exactly k 1’s. It follows that the number
of labelings is at most the binomial coefficient

(D+k
k

)
and therefore the number

of leaves is at most
(D+k

k

)
.

Denoting the number of leaves by N ≥ n!, we obtain that
(D+k

k

)
≥ N , which

implies log
(
D+k

k

)
≥ log N . Using log

(
D+k

k

)
≤ k(O(1) + log D

k) we obtain that:

k

(

O(1) + log
D

k

)

≥ log N . (6.1)

Consider D = δ log N and k = ε log N , where δ ≥ 1 and ε ≥ 0. We obtain:

ε log N

(

O(1) + log
δ

ε

)

≥ log N ,

and therefore ε
(
O(1) + log δ

ε

)
≥ 1. Using δ = O(d) we obtain ε = Ω(1/ log d).

Taking into account that log N ≥ log(n!) = n log n − O(n) we obtain k =
Ω(n logd n). 2

Manilla [82] introduced the concept of optimal adaptive sorting algorithms.
Given an input sequence X and some measure of presortedness M , consider
the set below(X,M) of all permutations Y of X such that M(Y) ≤ M(X).
Considering only inputs in below(X,M), a comparison based sorting algorithm
performs at least log |below(X,M)| comparisons in the worst case. In particular,
an adaptive sorting algorithm that is optimal with respect to measure Inv
performs O(n(1 + log(1 + Inv/n))) comparisons [45].

Theorem 6.2 introduces a worst case tradeoff between the number of com-
parisons and the number of branch mispredictions for comparison based sorting
algorithms that are adaptive with respect to measure Inv .

Theorem 6.2 Consider a deterministic comparison based sorting algorithm A
that sorts an input sequence of size n using O(dn(1 + log(1 + Inv/n))) compar-
isons, where Inv denotes the number of inversions in the input. The number of
branch mispredictions performed by A is Ω(n logd(1 + Inv/n)).

Proof. We reuse the proof of Theorem 6.1 by letting N = |below(X,M)|, for
an input sequence X.

Using (6.1), with the decision tree depth D = δn(1 + log(1 + Inv/n)) when
restricted to inputs in below(X,M), k = εn(1+ log(1+ Inv/n)) branch mispre-
dictions, and log N = Ω(n(1 + log(1 + Inv/n))) [58], we obtain:

εn

(

1 + log

(

1 +
Inv

n

))(

O(1) + log
δ

ε

)

= Ω

(

n

(

1 + log

(

1 +
Inv

n

)))

.

This leads to:

ε

(

O(1) + log
δ

ε

)

= Ω(1) ,

6.2. An optimal sorting algorithm 59

Measure Comparisons Branch mispredictions

Dis O(dn(1 + log(1 + Dis))) Ω(n logd(1 + Dis))
Exc O(dn(1 + Exc log(1 + Exc))) Ω(nExc logd(1 + Exc))
Enc O(dn(1 + log(1 + Enc))) Ω(n logd(1 + Enc))
Inv O(dn(1 + log(1 + Inv/n))) Ω(n logd(1 + Inv/n))
Max O(dn(1 + log(1 + Max))) Ω(n logd(1 + Max))
Osc O(dn(1 + log(1 + Osc/n))) Ω(n logd(1 + Osc/n))
Reg O(dn(1 + log(1 + Reg))) Ω(n logd(1 + Reg))
Rem O(dn(1 + Rem log(1 + Rem))) Ω(nRem logd(1 + Rem))
Runs O(dn(1 + log(1 + Runs))) Ω(n logd(1 + Runs))
SMS O(dn(1 + log(1 + SMS))) Ω(n logd(1 + SMS))
SUS O(dn(1 + log(1 + SUS))) Ω(n logd(1 + SUS))

Figure 6.1: Lower bounds on the number of branch mispredictions for deter-
ministic comparison based adaptive sorting algorithms for different measures of
presortedness, given the upper bounds on the number of comparisons.

and therefore ε = Ω (1/ log δ). Taking into account that δ = O(d) we obtain
that ε = Ω(1/ log d), which leads to k = Ω(n logd(1 + Inv/n)). 2

Using a similar technique, lower bounds for other measures of presortedness
can be obtained. For comparison based adaptive sorting algorithms, Figure 6.1
states lower bounds on the number of branch mispredictions performed in the
worst case, assuming the given upper bounds on the number of comparisons.
For definitions of different measures of presortedness, refer to [45].

6.2 An optimal sorting algorithm

In this section we introduce Insertion d-way MergeSort. It is a variant of d-
way MergeSort that achieves the tradeoff stated in Theorem 6.1 by using an
insertion sort like procedure for implementing the d-way merger. The merger
is proven to perform a linear number of branch mispredictions.

We maintain two auxiliary vectors of size d. One of them stores a permu-
tation π = (π1, . . . , πd) of (1, . . . , d) and the other one stores the indices in the
input of the current element in each subsequence i = (iπ1 , . . . , iπd

), such that
the sequence (xiπ1

, . . . , xiπd
) is sorted. During the merging, xiπ1

is appended
to the output sequence and iπ1 is incremented by 1 and then inserted in the
vector i in a manner that resembles insertion sort: in a scan the value y = xiπ1

to be inserted is compared against the smallest elements of the sorted sequence
until an element larger than y is encountered. This way, the property that the
elements in the input sequence having indices iπ1, . . . , iπd

are in sorted order
holds at all times. We also note that for each insertion the merger performs
O(1) branch mispredictions, even using a static branch prediction scheme.

Theorem 6.3 Insertion d-way MergeSort performs O(dn log n) comparisons
and O(n logd n) branch mispredictions.

60 Chapter 6. Trading Branch Mispredictions for Comparisons when Sorting

Proof. For the simplicity of the proof, we consider a static prediction scheme
where for the merging phase the element to be inserted is predicted to be larger
than the minimum in the indices vector.

The number of comparisons performed at each level of recursion is O(dn),
since in the worst case each element is in the worst case compared against d−1
elements at each level. Taking into account that the number of recursion levels
is ⌈logd n⌉, the total number of comparisons is O(dn logd n) = O(dn log n).

In what concerns the number of branch mispredictions, for each element In-
sertion d-way MergeSort performs O(1) branch mispredictions for each recursion
level. That is because each element is inserted at most once in the indices array
i at a given recursion level and for insertion sort each insertion is performed by
using a constant number of branch mispredictions. Therefore we conclude that
Insertion d-way MergeSort performs O(n logd n) branch mispredictions. 2

We stress that Theorem 6.3 states an optimal tradeoff between the number
of comparisons and the number of branch mispredictions. This allows tuning
the parameter d, such that Insertion d-way Mergesort can achieve the best
running time on different architectures depending on the CPU characteristics,
i.e. the clock speed and the pipeline length.

6.3 Optimal adaptive sorting

In this section we describe how d-way merging introduced in Section 6.2 can be
integrated within GenericSort by Estivill-Castro and Wood [44], using a greedy-
like division protocol. The resulting algorithm is proved to achieve the tradeoff
between the number of comparisons and the number of branch mispredictions
stated in Theorem 6.2.

GenericSort is based on MergeSort and works as follows: if the input is
small, it is sorted using some alternate sorting algorithm; if the input is already
sorted, the algorithm returns. Otherwise, it splits the input sequence into d
subsequences of roughly equal sizes according to some division protocol, after
which the subsequences are recursively sorted and finally merged to provide the
sorted output.

The division protocol that we use, GreedySplit, is a generalization of the
binary division protocol introduced in [28]. It partitions the input in d+1 sub-
sequences S0, . . . , Sd, where S0 is sorted and S1, . . . , Sd have balanced sizes. In
a single scan from left to right we build S0 in a greedy manner while distribut-
ing the other elements to subsequences S1, . . . , Sd as follows: each element is
compared to the last element of S0, if it is larger, it is appended to S0; if not,
it is distributed to an Sj such that at all times the ith element in the input
that is not in S0 is distributed to S1+i mod d. It is easy to see that S0 is sorted
and S1, . . . , Sd have balanced sizes. For merging we use the insertion sort based
merger introduced in Section 6.2.

Lemma 6.1 generalizes Lemma 3 in [28] to the case of d-way splitting.

Lemma 6.1 If GreedySplit splits an input sequence X in d + 1 subsequences

6.3. Optimal adaptive sorting 61

S0, . . . , Sd, where S0 is sorted and d ≥ 2, then

Inv(X) ≥ Inv(S1) + · · ·+ Inv(Sd) +
d− 1

4
(Inv(S1) + · · ·+ Inv(Sd)) .

Proof. Let X = (x1, . . . , xn) and Si = (si1, . . . , sit), for 1 ≤ i ≤ d. For each sij

denote by δij its index in the input. By construction, Si is a subsequence of X.
For some subsequence Si consider an inversion sii1 > sii2, with i1 < i2. By

construction we know that for each subsequence Sk, with k 6= i, there exists
some skℓ ∈ Sk such that in the input sequence we have δii1 < δkℓ < δii2 , see
Figure 6.2. We prove that there exists at least an inversion between skℓ and sii1

or sii2 in X. If skℓ < sii2 < sii1 then there is an inversion between skℓ and sii1 ; if
sii2 < skℓ < sii1 then there are inversions in the input between skℓ and both sii1

and sii2 ; finally, if sii2 < sii1 < skℓ, there is an inversion between skℓ and sii2 .
Let skℓ1, . . . , skℓz be all the elements in Sk such that i1 < δkℓ1 < · · · < δkℓz < i2,
i.e. all the elements from Sk that appear in the input between ranks δii1 and δii2 .

Figure 6.2: Greedy division protocol. Between any two elements in Si there is
at least one element in Sk in the input sequence.

We proved that there is an inversion between skℓ⌊(1+z)/2⌋
and at least one

of sii1 and sii2. Therefore, for the inversion (sii1 , sii2) in Si we have identified
an inversion in X between an element in Sk and an element in Si that is not
present in any of S1, . . . , Sd. But this inversion can be counted for at most two
different pairs in Si, namely (sii1, sii2) and (sii1 , si(i2+1)) if there is an inversion
between sii1 and skℓ⌊(1+z)/2⌋

or (sii1 , sii2) and (si(i1−1), sii2) otherwise. In a
similar manner in Sk the same inversion can be counted two times. Therefore,
we obtain that for each inversion in Si there is an inversion between Si and Sk

that can be counted four times. Taking into account that all the inversions in
S1, . . . , Sd are also in X, we obtain:

Inv(X) ≥ Inv(S1) + · · ·+ Inv(Sd) +
d− 1

4
(Inv(S1) + · · ·+ Inv(Sd)) .

2

Theorem 6.4 GreedySort performs O(dn(1+log(1+Inv/n))) comparisons and
O(n logd(1 + Inv/n)) branch mispredictions.

Proof. We assume a static branch prediction scheme. For the division protocol
we assume that at all times the elements are smaller than the maximum of
S0, meaning that branch mispredictions occur when elements are appended

62 Chapter 6. Trading Branch Mispredictions for Comparisons when Sorting

to the sorted sequences. This leads to a total of O(1) branch mispredictions
per element for the division protocol, because the sorted sequences are not
sorted recursively. For the merger, the element to be inserted is predicted to
be larger than the minimum in the indices vector at all times. Following the
proof of Theorem 6.3, we obtain that splitting and merging take O(1) branch
mispredictions per element for each level of recursion.

We follow the proof in [80]. First we show that at the first levels of recursion,
until the number of inversions gets under n/d, GreedySort performs O(dn(1 +
log(1+Inv/n)) comparisons and O(n(1+logd(1+Inv/n)) branch mispredictions.
Afterwards, we show that the remaining levels consume a linear number of
branch mispredictions and comparisons.

We first find the level ℓ for which the number of inversions gets below n/d.
Denote by Inv i the total number of inversions in the subsequences at level i.

Using the result in Lemma 6.1, we obtain Inv i ≤
(

4
d+3

)i
Inv . The level ℓ should

therefore satisfy:
(

4

d + 3

)ℓ

Inv ≤ n

d
,

implying ℓ ≥ log d+3
4

Inv ·d
n .

Taking into account that at each level of recursion the algorithm performs
O(dn) comparisons and O(n) branch mispredictions, we obtain that for the
first ℓ = ⌈log d+3

4

Inv ·d
n ⌉ levels we perform O(dn logd(Inv/n)) = O(dn log(Inv/n))

comparisons and O(n logd(Inv/n)) branch mispredictions.
We prove that for the remaining levels we perform a linear number of com-

parisons and branch mispredictions.
Let L(x) be the recursion level where some element x is placed in a sorted

sequence and L(x) ≥ ℓ. For each level of recursion j, where ℓ ≤ j < L(x), x is
smaller than the maximum in the sorted subsequence S0 and therefore there
is an inversion between x and the maximum in S0 that does not exist in the
recursive levels j+1, j+2, It follows that L(x)−ℓ is bounded by the number
of inversions with x at level ℓ.

Taking into account that the total number of inversions at level ℓ is at
most n/d and that for each element at a level we perform O(d) comparisons,
we obtain that the total number of comparisons performed at the levels ℓ +
1, ℓ + 2, . . . is O(n). Similarly, using the fact that for each element at each level
O(1) mispredictions are performed, we obtain that the total number of branch
mispredictions performed for the levels below ℓ is O(n/d). 2

Chapter 7

Skewed Binary Search Trees

The idea that the cost of branch predictions may alter the notion of what
constitute a well balanced tree is fresh and interesting.

— Anonymous reviewer

In this chapter we show the results concerning skewed binary search trees,
which were published in [31]. In Section 7.1 we describe skewed balanced search
trees and give an upper bound on the running time performed for a random
query. In Section 7.2 we give brief insights on the hardware issues that affect
the running time in practice. For a random query we give upper bounds on
the number of branch mispredictions in Section 7.3, while in Section 7.4 we
introduce different memory layouts and give upper bounds on the number of
cache misses. In Section 7.5 we describe the setup for the experiments we
perform and in Section 7.6 we show and discuss our experimental results.

7.1 Skewed binary search trees

A skewed binary search tree is a binary search tree where there exists a con-
stant α, 0 < α ≤ 1/2, such that for each node v there is a fixed ratio between
the number of nodes in the subtree rooted in the left child and the subtrees
rooted at v. More precisely, size(left(v)) = ⌊α · size(v)⌋, where size(v) denotes
the number of nodes in the subtree rooted at v.

Skewed binary search trees are the extreme unbalanced cases of BB[α] trees
of Nievergelt and Reingold [89].

Theorem 7.1 (Mehlhorn, Section III.5.1) The average path length P is at
most (1 + 1/n) log(n + 1)/H(α), where H(α) = −α log α− (1− α) log(1− α).

In practice, due to hardware issues, the running time spent at a given node
might depend on the next node to process, i.e. the left or right child. In
Corollary 7.1 we analyze the running time for a random search in the case where
the costs for visiting the left and right children of a given node are different.

Corollary 7.1 Consider a skewed search tree T of balance α, and let cl and cr

be the costs for branching left and right respectively. A random search has

O((αcl + (1− α)cr) log n/H(α)) (7.1)

63

64 Chapter 7. Skewed Binary Search Trees

10.80.60.40.20

8

7

6

5

4

3

2

1

0

Figure 7.1: Bound on the expected cost for a random search, where the cost
for visiting the left child is cl = 1 and the cost for processing the right child is
cr = 0, 1, 2, . . . , 28 (cr = 0 being the lowest curve).

expected cost, where H(α) = −α log α− (1− α) log(1− α).

Proof. Due to the linearity of expectation, the expected number of compar-
isons performed for a random search is equal to the average path length, which
is O(log n/H(α)) cf. Theorem 7.1. If for branching left and right we have
costs cl and cr, we obtain at a given node an expected cost of αcl + (1− α)cr,
since the probabilities of branching left and right are α and 1 − α respec-
tively. We conclude that the expected cost of a random search is O((αcl + (1−
α)cr) log n/H(α)). 2

In Figure 7.1 we show the function from the bound (7.1) on the expected
cost for a random search where we consider different costs for visiting the left
and the right child respectively. We note that in all the cases where cl 6= cr the
minimum occurs for α values different than 1/2.

7.2 Hardware discussion

The running time of algorithms is usually analyzed by counting the instructions
performed by the CPU. However, in practice, the running time of an algorithm
can be severely affected by some other hardware factors besides the CPU in-
structions. We show that the branch mispredictions that occur in the CPU and
the cache faults can have a major effect over the running time of searching in
skewed binary search trees.

To increase the clock speed, modern CPUs include instruction pipelines in
their architecture, where the instructions are prefetched before being executed.
When a conditional branch enters the pipeline, its outcome is not known prior to
its execution and thus its direction must be predicted to ensure the prefetching
of the following instructions. If the branch is incorrectly predicted, the whole
pipeline must be flushed, since the instructions in the pipeline correspond to
a wrong execution path. This obviously leads to a performance loss, which
increases proportionally with the length of the pipeline. In such a case, we
say that a branch misprediction occurs. Since the pipelines are getting longer

7.3. Branch mispredictions 65

and longer (e.g. 18 instructions for Pentium P4 and 31 for Intel Prescott),
branch mispredictions are having an increasing influence over the running time
of algorithms in practice.

In the traditional RAM model, all memory accesses are considered to have
equal access times. In practice, nowadays computers have a hierarchy of mem-
ory layers, each of them having smaller size and access time than the next one,
from the CPU registers to the hard-disk. The data can be transfered only be-
tween consecutive layers, and is performed in blocks of consecutive data rather
than individual items.

7.3 Branch mispredictions

Branch mispredictions can dramatically affect the running time in practice.
Even though in most of the cases the branch predictors incorporated in the CPU
architectures are accurate and yield good performances, in certain algorithms
the outcome of certain branches is hard to guess. Sorting and searching are
two such examples, since they involve comparisons among elements and the
outcome of an element comparison is usually hard to predict.

There are two major types of branch prediction schemes, namely static and
dynamic. In static branch predictors, each branch is predicted in the same
direction at all times, and the direction of the branch is either given at compile
time or it follows some simple heuristics, e.g. forward branches predicted taken
and backward branches predicted not taken. On the other hand, the dynamic
branch prediction schemes predict the direction of the branches at runtime,
taking advantage of the execution history. In the case of searching in a balanced
search tree, since the number of nodes in the left and right subtrees of a given
node are approximately the same, the outcome of any branch is hard to predict
and hence we expect branch mispredictions in around half of the cases. On
the other hand, for the skewed search trees, we expect the number of branch
mispredictions to decrease when increasing the skewness, since the probability
that the search key lies in the larger subtree is increasing. In Theorem 7.2 we
prove an upper bound on the number of branch mispredictions performed for a
skewed binary search tree when a static branch predictor is used.

Theorem 7.2 The expected number of branch mispredictions performed for a
random search in a skewed binary search tree of balance α is O(α log n/H(α)),
where H(α) = −α log α− (1−α) log(1−α), assuming a static branch predictor
and 0 ≤ α ≤ 1/2.

Proof. Since we consider α ≤ 1/2, for each non-leaf node of the search tree,
the right subtree will have more nodes than the left subtree, hence visiting
the right subtree next is more likely than visiting the left subtree. We use a
static prediction scheme where for each node we predict that the search key
is larger than the key stored at the given node. Using Corollary 7.1 with
cl = 1 and cr = 0, we obtain that for a random search we perform expected
O(α log n/H(α)) branch mispredictions. 2

66 Chapter 7. Skewed Binary Search Trees

7.4 Memory layouts

The difference in access times between the different layers of the memory hier-
archy, especially from the internal memory to the hard disk, has led to several
models that deal with capturing the cache effect. One of the most successful is
the I/O model introduced by Aggarwal and Vitter [1] and consist of a two level
memory hierarchy, containing a fast memory of bounded size M and a slow, infi-
nite memory. The computation is performed in the fast memory and the data is
transfered between the slow and fast memories in blocks of B consecutive items.
The I/O complexity of an algorithm is given by the number of blocks trans-
fered. Since in practice hardware architectures contain several memory levels
with different values for the fast memory size M and the block size B, Frigo et
al. [52] introduced the cache oblivious model. A cache oblivious algorithm is an
algorithm whose analysis holds for any values of M and B. Most of the algo-
rithms in this model assume a tall cache, i.e. M = Ω(B2). For a comprehensive
list of efficient external memory algorithms, e.g. refer to [8, 10,21,117].

We analyze different memory layouts for the static skewed binary search
trees. For all the layouts the tree is stored as an array of n nodes, where each
node is a structure containing two pointers to the left and the right subtree
respectively together with an integer key. We note that the number of com-
parisons and branch mispredictions performed for searches is not affected by
the way the tree is laid in memory, as they only depend on the height of the
tree and the number of left turns on a path from the root to a certain leaf (for
α < 1/2, assuming a static branch prediction scheme). However, the number of
cache faults can be dramatically affected by the memory layout, ranging from
O(1/ log B) to O(1) I/Os for each node on a search path.

Consider a balanced binary search tree T of n nodes. The different mem-
ory layouts that we consider together with the expected number of I/Os for a
random search are introduced below.

Random. Each node of T is stored at a random position in the array.

Since in this layout the nodes are stored at random locations in the array,
for each node on a search path we perform an I/O, hence the expected number
of I/Os is given by the average path length.

BFS. In this layout the nodes of the tree are stored according to the BFS
traversal of T , where the nodes at a level are processed in a left-to-right order.

The first B nodes of the array contain the topmost subtree. In any practical
setting, i.e. the tree is not severely skewed, the length of any path in this subtree
is Θ(log B). The top subtree is loaded into memory using in a single I/O, hence
for the first O(log B) nodes on any path we use O(1) I/Os. Afterward, for
the remaining nodes on any search path we consume O(1) I/Os per node, thus
obtaining expected O(1 + |P | − log B) I/Os for a following a search path P .

Inorder. The tree is stored in the array according to the inorder traversal,
i.e. the array is sorted.

7.4. Memory layouts 67

Following a path from the root to a leaf takes O(1) I/Os per node, except
for possibly the last subtree of Θ(B) nodes, since they will be loaded using a
single I/O. Considering the case when in a subtree of size B the length of a
search path is O(log B), we obtain that for a search path P in this layout we
perform between O(|P |) and O(1 + |P | − log B) I/Os, where |P | denotes the
length of P , depending whether P reaches the bottom levels of the tree or not.

DFSl. The tree is laid out in the array according to a DFS traversal, where
after visiting the root, the left child is traversed before the right child.

Since the left child is stored next to the parent, they are stored in the same
block, hence branching left takes O(1/B) I/Os. In what concerns the right
child, accessing it requires O(1) I/Os. Using Corollary 7.1 we obtain that for
a random search we perform expected O((α/B + (1 − α)) log n/H(α)) I/Os,
where H(α) = −α log α− (1− α) log(1− α).

DFSr. This layout is similar to DFSl, except for the fact that the right child
is traversed first and the left child afterwards. Using a similar argument, we
obtain that the number of I/Os performed for a random search is expected
O(α + (1− α)/B) log n/H(α).

k-level grouping. Given a tree T , in this layout we first store the first k
levels of T in the order given by a BFS traversal and then recursively store the
subtrees rooted in the nodes at level k + 1, in a right-to-left order.

Choosing k = log B, we obtain that following a search path P takes P (1 +
|P |/ log B) I/Os, each block is loaded using O(1) I/Os and in each block we
process Θ(log B) nodes of the search path, except for possibly the last block
loaded. Since the expected length of P is O(log n/H(α)), we obtain that the
expected number of memory transfers is O(1 + (1/H(α)) · logB n).

pqDFS. In a preprocessing phase, for each node v we assign its weight w(v) as
the number of nodes contained by the subtree rooted at v. Given a parameter
p, we first store consecutively the p heaviest nodes in decreasing order with
respect to their weights. The subtrees rooted at the children of the nodes
on the frontier, if any, are then recursively stored in decreasing order of their
weights. If two or more nodes have the same weight, no assumption can be
made with respect to the order in which they will be stored. To implement this
layout we use a priority queue, hence its name.

To optimize the number of memory transfers, we choose p = Θ(B) and
thus the group of the p heavy nodes is stored in O(1) memory blocks. For the
children of the frontier of a group of p nodes the ratio between the weights of the
lightest and heaviest children is at least α (for 0 ≤ α ≤ 1/2). This implies that
each subtree in the frontier of the group has at most a fraction of 1/(Bα+1) of
the size of the subtree rooted at the root of the group. It follows that a search
uses O(logBα+1 n) I/Os, which is O(logB n) for a constant α > 0.

68 Chapter 7. Skewed Binary Search Trees

Skewed van Emde Boas. This layout is a variation of the van Emde Boas
layout, which is known to match in the cache-oblivious model, i.e. where the
parameters M and B are not known, the best bounds known for searching in
the I/O-model. Given a node v and a tree, the weight of the node is given by the
number of nodes in the subtree rooted in v. Given a tree of n nodes, we split it
into a top subtree containing ⌈√n⌉ nodes and O(

√
n) bottom subtrees. The top

subtree contains the nodes with the highest weights and the bottom subtrees
have as roots the children of the leaves of the top subtree. After the splitting
phase, the top and the botttom subtrees are recursively stored in consecutive
memory locations.

Since the top subtree contains the heaviest ⌈√n⌉) nodes, by a similar argu-
ment to pqDFS the ratio between the weights of the lightest and heaviest root
of the bottom subtrees is at least α (for 0 ≤ α ≤ 1/2). If the root of the tree has
weight n, we obtain that the number of nodes in each of the bottom subtrees is
at most n/(α

√
n + 1) nodes. In the recursive layout, when n = Θ(B) searching

in the corresponding subtree takes O(1) I/Os. We obtain that a search takes
O(logBα+1 n) I/Os, which is O(logB n) when α is constant.

7.5 Experimental setup

We analyze how the skewness factor α of the binary tree affects the running
time in practice for the different layouts. To avoid additional costs inflicted
over the running time by recursive calls, we use the iterative searching proce-
dure in Figure 7.2. We generate a large sequence of random successful queries
and measure the running time together with the number of comparisons, the
number of branch mispredictions and the L1 data cache misses performed. We
conduct our experiments on two standard Linux machines, having two different
architectures. One of them has a P4 3.4 GHz CPU and 1 GB RAM, running
linux 2.6.10. The other one has an AMD Athlon XP 2400+ 2.0 GHz CPU
with 1GB RAM, running linux 2.6.8.1. To count the number of branch mis-
predictions and L1 data cache misses we use the PAPI 3.0 library. The code is
compiled with gcc 3.3.2 using optimization level -O3. We will restrict ourselves
to showing in the empirical results for AMD architecture. For the Pentium 4
processor the same behavior was observed as for the AMD architecture. The
source code together with the scripts running the experiments and the plotted
resulting data are available at www.daimi.au.dk/~gabi/esa06.tar.gz.

7.6 Experimental results

We demonstrate experimentally that in practice the skewed binary search trees
can outperform the theoretically better balanced binary search trees, because
of the different costs for branching left or right.

Since the number of branch mispredictions and the amount of computation
(i.e. the number of comparisons) are independent on the memory layout, we can
count them on any layout. The charts in Figure 7.3 are obtained by counting
the number of comparisons (left) and the number of branch mispredictions

7.6. Experimental results 69

while(root!=NULLV)

{

if(key==t[root].key)

return root;

if(key>t[root].key)

root=t[root].right;

else

root=t[root].left;

}

Figure 7.2: An iterative C source code for searching.

Comparisons

α

C
om

p
ar

is
on

s

10.90.80.70.60.50.40.30.20.10

7e+08

6e+08

5e+08

4e+08

3e+08

2e+08

1e+08

0

α

M
is

p
re

d
ic

ti
on

s

10.90.80.70.60.50.40.30.20.10

8e+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

Figure 7.3: The number of comparisons (left) and branch mispredictions (right)
performed by a skewed search tree of 25× 103 items for 106 queries.

(right) for a tree of 25 × 103 items and 106 queries. As expected, the number
of comparisons achieves a minimum for perfectly balanced trees, i.e. for α ≈
0.5, and increases with the skewness of the tree. In what concerns branch
mispredictions, their number increases by a factor of 350% when decreasing the
skewness, following the expectation in Theorem 7.2. Intuitively, this happens
because the more nodes one of the subtrees rooted at the children of a given node
has, the more likely is that a random search path will contain that child, hence
the more likely the searching conditional branch will be correctly predicted. We
observe that the number of branch mispredictions has a maximum for α ≈ 0.52
and that for very high values of α the number of branch mispredictions is greater
by about 25% than for very low values. This is because of the rounding for small
instances, i.e. the number in the left subtree is ⌊αn⌋ which yields a rightmost
path for αn < 1.

As previously stated, the number of cache faults performed for a random
search depends not only on the skewness factor α, but also on the memory
layout of the tree. We first analyze the layouts that do not use blocking, that
is DFSl, DFSr, BFS, Inord and Rand. In Figure 7.4 we give the running time
(left) and the number of cache misses (right) performed by 106 queries in a
skewed search tree of 25 × 103 nodes. As expected, the Rand layout achieves
the worst running time, since it performs one cache fault for each element
on a given path. Inord and BFS achieve competitive running times, whereas
DFSl and DFSr are best layouts that do not use blocking, with respect to
both running time and cache misses performed. We note that the Inord layout

70 Chapter 7. Skewed Binary Search Trees

performs less cache faults and achieves better running times than BFS for very
skewed trees, i.e. very small or very large values of α, whereas when the trees
are almost balanced BFS outperforms Inord. Also, it is expected that DFSl
and DFSr have symmetric charts for the number of cache misses and implicitly
the running time, since they are symmetric layouts, where DFSr is efficient for
α < 0.5, since there are more nodes in the right subtree, and DFSl is more
efficient for α > 0.5. We recall that in the case of DFSr, since the right child
is recursively stored after the root, branching right takes O(1/B) I/Os whereas
we spend O(1) I/Os for branching left, whereas in the case of DFSl we spend
O(1/B) I/Os for branching left and O(1) I/Os for branching right. We note
that the minimum running time is achieved for α ≈ 0.2 in the case of DFSr and
for α ≈ 0.75, and is better by around 15% compared to α = 0.5. In DFSr, for
0.2 < α ≤ 0.5, even though less comparisons are performed, both cache faults
and branch mispredictions increase and the overall running time increases too.

We now analyze the blocked layouts. We conduct experiments for tuning
the parameterized layouts, i.e. k-level grouping and pqDFS. Again, we perform
106 queries on a skewed search tree of 25× 103 nodes, for different values of the
parameters. For k-level grouping, we give experimental data for different values
of the parameter k, i.e. the number of levels grouped together in the layout,
for different values of α. For each pair of values for k and α, we perform three
series of queries and select the median of the running times. For each value
of the parameter k we choose the smallest running time among the different
possible skewness factors. The data we obtained is shown in Figure 7.5 (left).
The differences in the running times are up to 5%, and the minimum running
time is achieved for k = 2, i.e. when two levels of the tree are grouped together.
Thus, in our further experiments involving this layout we use this value.

We perform the same experiments for the pqDFS layout, varying the number
p of the heaviest nodes grouped in a block, see Figure 7.5 (right). Unlike the
k-level grouping, in this case the differences in the running times are very small.
Since the minimum running time was obtained when grouping p ≈ 40 nodes
together, in the further experiments we are using p = 40.

We perform a comparative study for the blocked layouts, i.e. k-level group-
ing, pqDFS, and skewed van Emde Boas, together with DFSr, since it is the
non-blocked layout that achieved the best running time. In Figure 7.6 we show
the running times (left) and the number of cache misses (right) performed for
these layouts on a skewed binary search tree of 25× 103 nodes for 106 queries.
We note that even though all layouts achieve approximately the same running
times, at all times the skewed van Emde Boas is the fastest. The heuristics
of grouping the heavy nodes achieves good results in practice, since pqDFS is
faster than blocking k levels (bDFS). Finally, we note that DFSr is slightly
slower than the blocked layouts. In what concerns the data cache misses, for
all the algorithms the number of data cache misses is almost similar and is
approximately the same regardless of the skewness factor for α < 0.5, except
for the case when the tree is extremely skewed, i.e. for very small values of
α. We note when increasing the skewness factor α up to 0.5, the number of
comparisons decreases, the number of cache misses is approximately the same
except for extremely low values of α, whereas the number of branch mispredic-

7.6. Experimental results 71

tions is increasing. The resulting effect is that the minimum running time is
achieved for α ≈ 0.3, and is better by a factor of 5% compared to the perfectly
balanced search trees for all the blocked layouts. As stated before, for DFSr,
the observed improvement in the running time is up to 15%. In what concerns
the number of caches, the blocked layouts performed much better than the
non-blocked layouts, as the skewed van Emde Boas and pqDFS layouts achieve
significant improvements against BFS, Inord and Rand.

Finally, we study for which values of the skewness factor α we achieve the
minimum running time when varying the size of the tree. We choose to perform
our experiments on two of the layouts that achieved the best running times,
namely pqDFS and the skewed van Emde Boas. For a given tree size, we
vary the skewness factor α and for each value of α we perform three series
of 106 queries and pick the median of the running times. We then measure
the skewness factor for which the minimum running time was achieved. In
Figure 7.7, we show the resulting data for both the AMD (left) and P4 (right)
architectures. We notice that for both architectures the pqDFS achieves its
best running time for smaller values of α than skewed van Emde Boas. Also,
the best skewness factor is increasing while increasing the input size in the case
of the AMD architecture, whereas for the P4 it has a constant behavior when
increasing the input size.

Rand
Inord
BFS

DFSr
DFSl

α

R
u
n
n
in

g
ti
m

e

0.90.80.70.60.50.40.30.20.1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

Rand
Inord
BFS

DFSr
DFSl

α

C
ac

h
e

m
is

se
s

10.80.60.40.20

3e+07

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

0

Figure 7.4: The running time (left) and the number of L1 data cache misses
(right) performed by a skewed search tree of 25× 103 items for 106 queries for
the non-blocked layouts.

k

R
u
n
n
in

g
ti
m

e

1614121086420

0.18

0.17

0.16

0.15

0.14

0.13

0.12

p

R
u
n
n
in

g
ti
m

e

120100806040200

0.18

0.17

0.16

0.15

0.14

0.13

0.12

Figure 7.5: The best running times for k-level grouping (left) and pqDFS where
p nodes are grouped together (right), for 106 queries and a skewed search tree
of 25× 103 nodes.

pqDFS
bDFS
vEB

DFSr

α

R
u
n
n
in

g
ti
m

e

0.90.80.70.60.50.40.30.20.1

0.22

0.21

0.2

0.19

0.18

0.17

0.16

0.15

0.14

0.13

pqDFS
bDFS
vEB

DFSr

α

C
ac

h
e

m
is

se
s

10.80.60.40.20

1e+07

8e+06

6e+06

4e+06

2e+06

0

Figure 7.6: The running time (left) and the number of L1 data cache misses
(right) performed by a skewed search tree of 25× 103 nodes for 106 queries for
the blocked layouts.

pqDFS
vEB

24222018161412

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

pqDFS
vEB

24222018161412

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

Figure 7.7: The skewness factors that achieved the minimum running times for
different tree sizes.

Chapter 8

Adapting parallel algorithms to the

W-Stream model

It is refreshing to see work on streaming moving from specific problems to a
more established ”theory” of general results.

— Anonymous reviewer

In this chapter we introduce the results in [36]. In Section 8.1 we show how
to turn parallel algorithms into efficient algorithm in the W-Stream model.
We first apply our simulations to give sorting algorithms achieving optimal
(up to poly-log factors) trade-offs between passes and space in Section 8.2. In
Section 8.3 we use our simulations to obtain similar results for several graph
problems, such as connected components, minimum spanning tree, biconnected
components, and maximal independent set. For some of these problems we
also propose improved ad-hoc algorithms. Finally, in Section 8.4 we discuss the
limitations of our approach.

8.1 Simulating parallel algorithms in W-Stream

In this section we show general techniques for simulating parallel algorithms in
W-Stream. We show in the next sections that our techniques yield near-optimal
algorithms for many classical combinatorial problems in the W-Stream model.
In Theorem 8.1 we discuss how to simulate general CRCW PRAM algorithms.

Theorem 8.1 Let A be a PRAM algorithm that uses N processors and runs
in time T using space M = poly(N). Then A can be simulated in W-Stream in
p = O((T ·N ·log M)/s) passes using s bits of working memory and intermediate
streams of size O(M + N).

Proof (Sketch). In the PRAM model, at each parallel round, every processor
may read O(1) memory cells, perform O(1) instructions to update its internal
state, and write O(1) memory cells. We assume that each memory address, cell
value, and processor state takes O(log M) bits. A round of A can be simulated
in W-Stream by performing O((N log M)/s) passes, where at each pass we sim-
ulate the execution of Θ(s/ log M) processors using s bits of working memory.

73

74 Chapter 8. Adapting parallel algorithms to the W-Stream model

The content of the memory cells accessed by the algorithm and the state of
each processor are maintained on the intermediate streams. We simulate the
task of each processor in a constant number of passes as follows. We first read
from the input stream its state and the content of the O(1) memory cells used
by A and then we execute the O(1) instructions performed. Finally, we write
to the output stream the new state and possibly the values of the O(1) output
cells. Memory cells that remain unchanged are simply propagated through the
intermediate streams by just copying them from the input stream to the output
stream at each pass. 2

There are many examples of problems that can be solved near-optimally
in W-Stream using Theorem 8.1. For instance, solving list ranking in PRAM
takes O(log n) rounds and O(n/ log n) processors [7], where n is the length
of the list. By Theorem 8.1, we obtain a W-Stream algorithm that runs in
O((n log n)/s) passes. An Euler tour of a tree with n vertices is computed in
parallel in O(1) rounds using O(n) processors [68], which by Theorem 8.1 yields
again a p = O((n log n)/s) bound in W-Stream. However, for other problems,
the bounds obtained this way are far from being optimal. For instance, efficient
PRAM algorithms for graph problems typically require O(m + n) processors,
where n is the number of vertices, and m is the number of edges. For these
problems, Theorem 8.1 yields bounds of the form p = O((m · polylog n)/s),
while p = Ω(n/s) almost-tight lower bounds are known for many of them.

In Definition 8.1 we introduce RPRAM as an extension of the PRAM model.
It allows every processor to handle in a parallel round not only O(1) memory
cells, but an arbitrary number of cells. Since in W-Stream a value in the
working memory might be processed against all the data in the stream, we view
RPRAM as a natural link between PRAM and W-Stream, even though it may
be unrealistic in a practical setting. We first introduce a generic simulation that
turns RPRAM algorithms into W-Stream algorithms. We then give RPRAM
implementations that lead to efficient algorithms in W-Stream for a number
of problems where the PRAM simulation in Theorem 8.1 does not yield good
results.

Definition 8.1 An RPRAM (Relaxed PRAM) is an extended CRCW PRAM
machine with N processors and memory of size M where at each round a pro-
cessor can execute O(M) instructions that:

• can read an arbitrary number of memory cells. Each cell can only be read
a constant number of times, and no assumptions can be made as to the
order in which values are given to the processor;

• can write an arbitrary subset of the memory cells. The result of concur-
rent writes to the same cell by different processors in the same round is
undefined. Writing can only be performed after all read operations have
been done.

Similarly to a PRAM, each processor has a constant number of registers of size
O(log M) bits.

8.2. Sorting 75

The jump in computational power provided by RPRAM allows substantial im-
provements for many classical PRAM algorithms such as decreasing the num-
ber of parallel rounds while preserving the number of processors or reducing
the number of processors used while maintaining the same number of parallel
rounds. We show in Theorem 8.2 that parallel algorithms implemented in this
more powerful model can be simulated in W-Stream within the same bounds
of Theorem 8.1.

Theorem 8.2 Let A be an RPRAM algorithm that uses N processors and runs
in time T using space M = poly(N). Then A can be simulated in W-Stream in
p = O((T ·N ·log M)/s) passes using s bits of working memory and intermediate
streams of size O(M + N).

Proof (Sketch). We follow the proof of Theorem 8.1. The main difference is
that a processor in the RPRAM model can read and write an arbitrary number
of memory cells at each round, executing many instructions while still using
O(log M) bits to maintain its internal state. Since the instructions of algorithm
A performed by a processor during a round do not assume any particular order
for reading the memory cells, reading memory values from the input stream
can still be simulated in one pass. Replacing cell values read from the input
stream with the new values written on the output stream can be performed in
one additional pass. 2

8.2 Sorting

As a first simple application of the simulation techniques introduced in Sec-
tion 8.1, we show how to derive efficient sorting algorithms in W-Stream. We
first recall that n items can be sorted on a PRAM with O(n) processors in
O(log n) parallel rounds and O(n log n) comparisons [68]. By Theorem 8.1, this
yields a W-Stream sorting algorithm that runs in p = O((n log2 n)/s) passes. In
RPRAM, however, sorting can be solved by O(n) processors in constant time
as follows. Each processor is assigned to an input item; in one parallel round
it scans the entire memory and counts the numbers i and j of items smaller
than and equal to the item the processor is assigned to respectively. Then each
processor writes its own item into all the cells with indices between i + 1 and
i + 1 + j, and thus we obtain a sorted sequence.

Theorem 8.3 Sorting n items in RPRAM can be done in O(1) parallel rounds
using O(n) processors.

Using the simulation in Theorem 8.2, we obtain the result stated below.

Corollary 8.1 Sorting n items in W-Stream can be performed in O(n log n/s)
passes.

We obtain a W-Stream sorting algorithm that takes p = O((n log n)/s)
passes, thus matching the performance of the best known algorithm for sort-
ing in a streaming setting [87]. Since sorting requires p = Ω(n/s) passes in

76 Chapter 8. Adapting parallel algorithms to the W-Stream model

W-Stream, this bound is essentially optimal. However, both our algorithm and
the algorithm in [87] perform O(n2) comparisons. We reduce the number of
comparisons to the optimal O(n log n) at the expense of increasing the num-
ber of passes to O((n log2 n)/s) by simulating an optimal PRAM algorithm via
Theorem 8.1, as stated before.

8.3 Graph problems

In this section we discuss how to derive efficient W-Stream algorithms for several
graph problems using the RPRAM simulation in Theorem 8.2. Since efficient
PRAM graph algorithms typically require O(m + n) processors on graphs with
n vertices and m edges [15], simulating such algorithms in W-Stream using
Theorem 8.1 yields bounds of the form p = O((m · polylog n)/s), while p =
Ω(n/s) almost-tight lower bounds in W-Stream are known for many of them.
Graph connectivity is one prominent example [37]. Notice that, assigning each
vertex to a processor, RPRAM gives enough power for each vertex to scan
its entire neighborhood in a single parallel round. Since many parallel graph
algorithms can be implemented using repeated neighborhood scanning, in many
cases this allows us to reduce the number of processors from O(m + n) to O(n)
while maintaining the same running time. By Theorem 8.2, this yields improved
bounds of the form p = O((n · polylog n)/s).

8.3.1 Connected components (CC)

A classical PRAM random-mating algorithm for computing the connected com-
ponents of a graph with n vertices and m edges uses O(m + n) processors and
runs in O(log n) time with high probability [15,100]. We first describe the algo-
rithm and then we give a RPRAM implementation that uses only O(n) proces-
sors which, by Theorem 8.2, leads to a nearly optimal algorithm in W-Stream.

PRAM algorithm. The algorithm is based on building a set of star sub-
graphs and contracting the stars. It each parallel round it performs the follow-
ing sequence of steps.

1. Each vertex is assigned the status of parent or child independently with
probability 1/2;

2. For each child vertex u, determine whether it is adjacent to a parent
vertex. If so, choose one such a vertex to be the parent f(u) of u, and
replace each edge (u, v) by (f(u), v) and each edge (v, u) by (f(v), u);

3. For each vertex having parent u, set the parent to f(u).

The algorithm performs O(log n) parallel rounds with high probability [15].

8.3. Graph problems 77

RPRAM implementation. We show how to implement each parallel round
in RPRAM in O(1) rounds using only O(n) processors. We attach a processor
to each vertex. We first assign each vertex the status of parent or child, and
then for each vertex we scan its neighborhood to find a parent, if there exists
one (in case of several parents, we break ties arbitrarily). Updating the parents
according to the third step also takes one round in RPRAM. We obtain the
result in Theorem 8.4.

Theorem 8.4 Solving CC in RPRAM takes O(n) processors and O(log n)
rounds with high probability.

By Theorem 8.2, this yields the following bound in W-Stream.

Corollary 8.2 CC can be solved in W-Stream in O((n log2 n)/s) passes with
high probability.

By the p = Ω(n/s) lower bound for CC in W-Stream [37], this upper bound
is optimal up to a polylogarithmic factor. We note however that CC can be
solved deterministically in W-Stream in O((n log n)/s) passes [37].

8.3.2 Minimum spanning tree (MST)

In this section, we first describe the PRAM algorithm in [15] for computing
the MST of an undirected graph. We then give a RPRAM implementation
that leads to an optimal algorithm (up to a polylog factor) in W-Stream by
using the simulation in Theorem 8.2. Finally, we give an algorithm designed in
W-Stream that outperforms the algorithm obtained via simulation.

PRAM algorithm. The randomized CC algorithm previously introduced
can be extended to find a minimum spanning tree in a (connected) graph [15].
It also takes O(log n) rounds with high probability and uses O(m+n) processors.
The algorithm is based on the property that given a subset V ′ of vertices, a
minimum weight edge having one and only one endpoint in V ′ is in some MST.
We modify the second step of the CC algorithm as follows. Each child vertex
u determines the minimum weight incident edge (u, v). If v is a parent vertex,
then we set f(u) = v and flag the edge (u, v) as belonging to the spanning
tree. This algorithm computes a MST and performs O(log n) rounds with high
probability.

RPRAM implementation. The updated second step runs in O(1) rounds in
RPRAM and uses O(n) processors. Since the implementations of the other steps
of the CC algorithm are unchanged and take O(1) rounds and O(n) processors,
we obtain the result stated in Theorem 8.5.

Theorem 8.5 MST is solvable in RPRAM using O(n) processors and O(log n)
rounds with high probability.

Assuming edge weights can be encoded using O(log n) bits, we obtain the fol-
lowing bound in W-Stream by Theorem 8.2.

78 Chapter 8. Adapting parallel algorithms to the W-Stream model

Corollary 8.3 MST can be solved in W-Stream in O((n log2 n)/s) passes.

We now give a deterministic algorithm designed directly in W-Stream that
improves the bounds achieved by using the simulation.

A faster ad hoc W-Stream algorithm. We again assume edge weights
can be encoded using O(log n) bits. We build the MST by progressively adding
edges as follows. We compute for each vertex the minimum weight edge incident
to it. This set of edges E′ is added to the MST. We then compute the con-
nected components induced by E′ and contract the graph by considering each
connected component a single vertex. We repeat these steps until the graph
contains a single vertex or there are no more edges to add. More precisely, we
consider at each iteration a contracted graph where the vertices are the con-
nected components of the partial MST so far computed. Denoting Gi = (Vi, Ei)
the graph before the ith iteration, the (i+1)th iteration consists of the following
steps.

1. for each vertex u ∈ Vi, we compute a minimum weight edge (u, v) incident
to u, and flag (u, v) as belonging to the MST (cycles that might occur
due to weight ties are avoided by using a tie-breaking rule). Denote
E′

i = {(u, v), u ∈ Vi} the set of flagged edges.

2. we run a CC algorithm on the graph (Vi, E
′
i). The resulted connected

components are the vertices of Vi+1.

3. we replace each edge (u, v) by (c(u), c(v)), where c(u) and c(v) denote the
labels of the connected components previously computed.

We now analyze the number of passes required in W-Stream. Let |Vi| = ni.
The first and the third steps require O((ni log n)/s) passes each, since we can
process in one pass O(s/ log n) vertices. Computing the connected compo-
nents also takes O((ni log n)/s) passes, and therefore the ith iteration requires
O((ni log n)/s) passes. We note that at each iteration we add an edge for every
vertex in Vi and thus |Vi+1| ≤ |Vi|/2, i.e. the number of connected components
is divided by at least two. We obtain that the total number of passes performed
in the worst case is given by T (n) = T (n/2) + O((n log n)/s), which sums up
to O((n log n)/s).

Theorem 8.6 MST can be computed in O((n log n)/s) passes in W-Stream.

By the p = Ω(n/s) lower bound for CC in W-Stream [37], this upper bound
is optimal up to a polylog factor. To the best of our knowledge, no previous
algorithm was known for MST in W-Stream.

8.3.3 Biconnected components (BCC)

Tarjan and Vishkin [112] gave a PRAM algorithm that computes the bicon-
nected components (BCC) of an undirected graph in O(log n) time using O(m+

8.3. Graph problems 79

n) processors. We give an RPRAM implementation of their algorithm that uses
only O(n) processors while preserving the time bounds and thus can be turned
using Theorem 8.2 in a W-Stream algorithm that runs in O((n log2 n)/s) passes.
We also give a direct implementation that uses only O((n log n)/s) passes.

PRAM algorithm. Given a graph G, the algorithm considers a graph G′

such that vertices in G′ correspond to edges in G and connected components in
G′ correspond to biconnected components in G. The algorithm first computes
a rooted spanning tree T of G and then builds a subgraph G′′ of G′ having as
vertices all the edges of T . The edges of G′′ are chosen such that two vertices are
in the same connected component of G′′ if and only if the corresponding edges
in G are in the same biconnected component. After computing the connected
components of G′′ the algorithm appends the remaining edges of G to their
corresponding biconnected components. We now briefly sketch the five steps of
the algorithm.

1. build a rooted spanning tree T of G and compute for each vertex its
preorder and postorder numbers together with the number of descendants.
Also, label the vertices by their preorder numbers.

2. for each vertex u, compute two values, low(u) and high(u), as follows.

low(u) = min({u} ∪ {low(w)|p(w) = u} ∪ {w|(u,w) ∈ G \ T})
high(u) = max({u} ∪ {high(w)|p(w) = u} ∪ {w|(u,w) ∈ G \ T}),

where p(u) denotes the parent of vertex u.

3. add edges to G′′ according to the following two rules. For all edges (w, v) ∈
G \ T with v + desc(v) ≤ w, add ((p(v), v), (p(w), w)) to G′′, and for
all (v,w) ∈ T with p(w) = v, v 6= 1, add ((p(v), v), (v,w)) to G′′ if
low(w) < v or high(w) ≥ v + desc(v), where desc(v) denotes the number
of descendants of vertex v.

4. compute the connected components of G′′.

5. add the remaining edges of G to their biconnected components. Each edge
(v,w) ∈ G \ T , with v < w, is assigned to the biconnected component of
(p(w), w).

RPRAM implementation. We give RPRAM descriptions for all the five
steps of the algorithm, each of them using O(log n) time and O(n) processors.
First, we compute a spanning tree of the graph using the RPRAM algorithm
previously introduced. Rooting the tree and computing for each vertex the
preorder and postorder numbers as well as the number of descendants are per-
formed using list ranking and Euler tour [112], which take O(log n) time and
O(n) processors in PRAM, and thus in RPRAM. Since the second step takes
O(log n) time using O(n) processors in PRAM [112], the same bounds hold
for RPRAM. We implement the third step in RPRAM in constant time and
O(n) processors, since it suffices a scan of the neighborhood for each vertex.
For computing the connected components of G′′ in the fourth step, we use the

80 Chapter 8. Adapting parallel algorithms to the W-Stream model

RPRAM algorithm previously introduced that takes O(log n) time and O(n)
processors. Finally, we implement the last step of the algorithm in RPRAM in
O(1) time and O(n) processors by scanning the neighborhood for all vertices v
and assigning the edges to the proper biconnected components. Since we im-
plement all the steps of the algorithm in RPRAM in O(log n) rounds and O(n)
processors, we obtain the following result.

Theorem 8.7 BCC is solvable in RPRAM using O(n) processors in O(log n)
rounds with high probability.

By Theorem 8.2, this yields the following bound in W-Stream.

Corollary 8.4 BCC can be solved in W-Stream in O((n log2 n)/s) passes with
high probability.

We now show that we can achieve better bounds with an implementation de-
signed directly in W-Stream.

A faster ad hoc W-Stream algorithm. We describe how to implement
directly in W-Stream all the steps of the parallel algorithm of Tarjan and
Vishkin [112]. Notice that we have given constant time RPRAM descrip-
tions for the third and the fifth step, thus by applying the simulation in The-
orem 8.2 we obtain W-Stream algorithms that run in O((n log n)/s) passes.
For computing the connected components in the fourth step, we use the al-
gorithm in [37] that requires O((n log n)/s) passes. Therefore, to achieve a
global bound of O((n log n)/s) passes, it suffices to give implementations that
run in O((n log n)/s) passes for the first two steps. For the first step, we can
compute a spanning tree within the bound of Theorem 8.6. Rooting the tree
and computing the preorder and postorder numbers together with the number
of descendants can be implemented in O((n log n)/s) passes using list ranking,
Euler tour and sorting. Concerning the second step, we compute the low and
high values by processing Θ(s/ log n) vertices at each pass, according to the
postorder numbers.

Theorem 8.8 BCC can be solved in W-Stream in O((n log n)/s) passes in the
worst case.

By the p = Ω(n/s) lower bound for CC in W-Stream [37], this upper bound
is optimal up to a polylog factor. To the best of our knowledge, no previous
algorithm was known for BCC in W-Stream.

8.3.4 Maximal independent set (MIS)

We give an efficient RPRAM algorithm for the maximal independent set prob-
lem (MIS), based on the PRAM algorithm proposed by Luby [81]. Using the
simulation in Theorem 8.2, this leads to an efficient W-Stream implementation.

8.4. Limits of the RPRAM approach 81

PRAM algorithm. A maximal independent set S of a graph G is incre-
mentally built through a series of iterations, where each iteration consists of
a sequence of three steps, as follows. In the first step, we compute a ran-
dom subset I of the vertices in G, by including each vertex v with probability
1/(2 · deg(v)). Then, for each edge (u, v) in G, with u, v ∈ I, we remove from I
the vertex with the smallest degree. Finally, in the third step, we add to S the
vertices in I, and then we remove from G the vertices in I together with their
neighbors. The above steps are iterated until G gets empty. The algorithm uses
O(m + n) processors and O(log n) parallel rounds.

RPRAM implementation. We implement the first step of each iteration in
constant time and O(n) processors in RPRAM, since it requires each vertex to
compute its own degree. The second step can also be implemented in constant
time, by having each vertex in I scan its neighborhood, and remove itself upon
encountering a neighbor also in I with a larger degree. Finally, we implement
the third step in constant time as well by scanning the neighborhood of each
vertex that is not in I, and removing it from G if at least one of its neighbors is
in I. Since the algorithm performs O(log n) iterations with high probability [81],
we obtain the bound in Theorem 8.9.

Theorem 8.9 MIS can be solved in RPRAM using O(n) processors in O(log n)
rounds with high probability.

By Theorem 8.2, this yields the following bound in W-Stream.

Corollary 8.5 MIS can be solved in W-Stream in O((n log2 n)/s) passes with
high probability.

We now prove lower bounds which show that the bound in Corollary 8.5 is
optimal up to a polylogarithmic factor.

Theorem 8.10 MIS requires Ω(n/s) passes in W-Stream.

Proof (Sketch). The proof is based on a reduction from the bit vector disjoint-
ness communication complexity problem. Alice has an n-bit vector A and Bob
has an n-bit vector B; they wish to know whether A and B are disjoint, i.e.
A · B > 0. They build a graph on 4n vertices vj

i , where i = 1, · · · , n and
j = 1, · · · , 4. If Ai = 0, then Alice adds edges (v1

i , v
2
i) and (v3

i , v
4
i), whereas if

Bi = 0, then Bob adds edges (v1
i , v3

i) and (v2
i , v

4
i). The size of any MIS is 2n if

A · B = 0 and strictly greater otherwise. 2

8.4 Limits of the RPRAM approach

In this section we prove that the increased power that RPRAM provides does
not always help in reducing the number of processors to O(n) and thus in
obtaining W-Stream algorithms that run in O((n · polylog n)/s) passes. As an
example, in Theorem 8.11 we prove that detecting cycles of length two in a
graph takes Ω(m/s) passes.

82 Chapter 8. Adapting parallel algorithms to the W-Stream model

Theorem 8.11 Testing whether a directed graph with m edges contains a cycle
of length two requires p = Ω(m/s) passes in W-Stream.

Proof (Sketch). We prove the lower bound by showing a reduction from the bit
vector disjointness two-party communication complexity problem. Alice has an
m-bit vector A and Bob has an m-bit vector B; they wish to know whether A
and B are disjoint, i.e. A · B > 0. Alice creates a stream containing an edge
e(i) = (xi, yi) for each i such that A[i] = 1 and Bob creates a stream containing
an edge er(i) = (yi, xi) for each i such that B[i] = 1, where xi = i div ⌈√m ⌉
and yi = i mod ⌈√m ⌉. Let G be the directed graph induced by the union of the
edges in the streams created by Alice and Bob. Clearly, there is a cycle of length
two in G if and only if A ·B > 0. Since solving bit vector disjointness requires
transmitting Ω(m) bits [75], and the distributed execution of any streaming
algorithm requires the working memory image to be sent back and forth from
Alice to Bob at each pass, we obtain s = Ω(m), which leads to p = Ω(m/s). 2

Testing whether a directed graph has a cycle of length two can be performed
easily in one round in RPRAM using O(m) processors, by just checking in
parallel whether there is any edge (x, y) that also appears as (y, x) in the graph.
This leads to an algorithm in W-Stream that runs in O((m log n)/s) passes by
Theorem 8.2.

Chapter 9

Resilient Priority Queues

Nice result, achieved through the expert use of known techniques.
— Anonymous reviewer

This chapter is dedicated to presenting the results published in [70]. In
Section 9.1 we define the resilient priority queue and introduce some notation.
We give a detailed description of the resilient priority queue in Section 9.2,
while in Section 9.3 we prove its correctness and complexity bounds. Finally,
in Section 9.4 we prove matching lower bounds for resilient priority queues.

9.1 Preliminaries

In this section we define the resilient priority queue and introduce some notation
used throughout this chapter.

Given two sequences X and Y , we let XY denote the concatenation of X
and Y . A sequence X is faithfully ordered if its uncorrupted keys appear in
non-decreasing order. Finally, a reliable value is a value stored in unreliable
memory which can be retrieved reliably in spite of possible corruptions. This is
achieved by replicating the given value 2δ +1 times. Retrieving a reliable value
takes O(δ) time using the majority algorithm in [20], which scans the 2δ + 1
values keeping a single majority candidate and a counter in reliable memory.

Definition 9.1 A resilient priority queue maintains a set of elements under
the operations Insert and Deletemin. An Insert adds an element and a
Deletemin deletes and returns the minimum uncorrupted element or a cor-
rupted one.

We note that our definition of a resilient priority queue is consistent with the
resilient sorting algorithms introduced in [51]. Given a sequence of n elements,
inserting all of them into a resilient priority queue followed by n Deletemin

operations yields a faithfully ordered sequence.

9.2 Fault tolerant priority queue

In this section we introduce the resilient priority queue. It resembles the cache-
oblivious priority queue by Arge et al. [9]. The elements are stored in faithfully

83

84 Chapter 9. Resilient Priority Queues

����
����
����

����
����
�����������
�������
�������

�������
�������
�������

��
��
��

��
��
�����
���
���

���
���
���

���
���
���

���
���
���

Di+1

Ui+1

︸ ︷︷ ︸

si

︸ ︷︷ ︸

si+1
Li+1

Ui

Di

Li

I
︸ ︷︷ ︸

b

.

Figure 9.1: The structure of the priority queue. The buffers are stored in a
doubly linked list using reliably stored pointers. Additionally, the size of each
buffer is stored reliably.

ordered lists and are moved using two fundamental primitives, Push and Pull,
based on faithful merging. We describe the structure of the priority queue in
Section 9.2.1 and then introduce the Push and Pull primitives in Section 9.2.2.
Finally, in Section 9.2.3, we describe the Insert and Deletemin operations.

9.2.1 Structure

The resilient priority queue consists of an insertion buffer I together with a
number of layers L0, . . . , Lk, with k = O(log n). Each layer Li contains an
up-buffer Ui and a down-buffer Di, represented as arrays. Intuitively, the up-
buffers contain large elements that are on their way to the upper layers in
the priority queue, whereas the down-buffers contain small elements, on their
way to lower layers. The buffers in the priority queue are stored as a doubly
linked list U0,D0, . . . , Uk,Dk, see Figure 9.1. For each up and down buffer
we reliably store the pointers to their adjacent buffers in the linked list and
their size. In the reliable memory we store pointers to I, U0 and D0, together
with |I|. Since the position of the first element in U0 and D0 is not always
the first memory cell of the corresponding buffer, we also store the index of
the first element in these buffers in reliable memory. The insertion buffer I
contains up to b = δ + log n + 1 elements. For layer Li we define the threshold
si by s0 = 2 · (δ2 + log2 n) and si = 2si−1 = 2i+1 · (δ2 + log2 n), where n is the
number of elements in the priority queue. We use these thresholds to decide
whether an up buffer contains too many elements or whether a down buffer
has too few. For the sake of simplicity, the up and down buffers are grown
and shrunk as needed during the execution such that they don’t use any extra
space.

To structure the priority queue, we maintain the following invariants for the
up and down buffers.

• Order invariants:

1. All buffers are faithfully ordered.

2. DiDi+1 and DiUi+1 are faithfully ordered, for 0 ≤ i < k.

• Size invariants:

3. si/2 ≤ |Di| ≤ si, for 0 ≤ i < k.

9.2. Fault tolerant priority queue 85

4. |Ui| ≤ si/2, for 0 ≤ i < k.

By maintaining all the up and down buffers faithfully ordered, it is possible
to move elements between neighboring layers efficiently, using faithful merging.
By invariant 2, all uncorrupted elements in Di are smaller than all uncorrupted
elements in both Di+1 and Ui+1. This ensures that small elements belong to the
lower layers of the priority queue. We note that there is no assumed relationship
between the elements in the up and down buffers in the same layer. Finally, the
size invariants allow the sizes of the buffers to vary within a large range. This
way, Ω(si) Insert or Deletemin operations occur between two operations on
the same buffer in Li, yielding the desired amortized bounds.

Since the si values depend on n, whenever the size of the priority queue
increases or decreases by Θ(n), we perform a global rebuilding. This rebuilding
is done by collecting all elements, sorting them with an optimal resilient sorting
algorithm [49], and redistributing the output into the down buffers of all the
layers starting with L0. After the global rebuilding, the up buffers are empty
and the down buffers full, except possibly the last down buffer.

9.2.2 Push and pull primitives

We now introduce the two fundamental primitives used by the priority queue.
The Push primitive is invoked when an up buffer contains too many elements,
breaking invariant 4. It “pushes” elements upwards, repairing the size invari-
ants locally. The Pull operation is invoked when a down buffer contains too
few elements, breaking invariant 3. It fills this down buffer by “pulling” ele-
ments from the layer above, again locally repairing the size invariants. Both
operations faithfully merge consecutive buffers in the priority queue and redis-
tribute the resulting sequence among the participating buffers. After merging,
we deallocate the old buffers and allocate new arrays for the new buffers.

Push. The Push primitive is invoked when an up buffer Ui breaks invariant 4,
i.e. when it contains more than si/2 elements. In this case we merge Ui, Di

and Ui+1 into a sequence M using the resilient merging algorithm in [49]. We
then distribute the elements in M by placing the first |Di|−δ elements in a new
buffer D′

i, and the remaining |Ui+1| + |Ui| + δ elements in a new buffer U ′
i+1.

After the merge, we create an empty buffer, U ′
i , and deallocate the old buffers.

If U ′
i+1 contains too many elements, breaking invariant 4, the Push primitive

is invoked on U ′
i+1. When Li is the last layer, we fill D′

i with the first elements
of M and create a new layer Li+1 placing the remaining elements of M into D′

i+1

instead of U ′
i+1. Since |D′

i| is smaller than |Di|, it could violate invariant 3.
This situation is handled by using the Pull operation and is described after
introducing Pull.

Unlike the priority queue in [9], the Push operation decreases the size of a
down buffer. This is required to preserve invariant 2, in spite of corruptions.
After a Push call, D′

i can contain elements from Ui ∪ Ui+1. Since there is no
assumed relationship between elements in Ui∪Ui+1 and those in Di+1∪Ui+2, we
need to ensure that each element in D′

i originating from Ui ∪ Ui+1 is faithfully

86 Chapter 9. Resilient Priority Queues

smaller than the elements in Di+1 ∪ Ui+2. Assume the size of Di is preserved,
i.e. |D′

i| = |Di|. Consider a corruption that alters an element in Di to some
large value before the Push. This corrupted value could be placed in U ′

i+1 and,
since |D′

i| = |Di|, an element from Ui ∪ Ui+1 must be placed in D′
i. This new

element in D′
i potentially violates invariant 2.

Pull. The Pull operation is called on a down buffer Di when it contains less
than si/2 elements, breaking invariant 3. In this case, the buffers Di, Ui+1,
and Di+1 are merged into a sequence M using the resilient merging algorithm
in [49]. The first si elements from M are written to a new buffer D′

i, and
the next |Di+1| − (si − |Di|) − δ elements are written to D′

i+1. The remaining
elements of M are written to U ′

i+1. A Pull is invoked on D′
i+1, if it is too

small.

Similar to the Push operation, the extra δ elements lost by Di+1 ensure that
the order invariants hold in spite of possible corruptions. That is, a corruption
of an element in Di ∪ Di+1 to a very large value may cause an element from
Ui+1 to take the place of the corrupted element in D′

i+1 and this element is
possibly larger than some uncorrupted element in Di+2 ∪ Ui+2.

After the merge, U ′
i+1 contains δ more elements than Ui+1 had before the

merge, and thus it is possible that it has too many elements, breaking in-
variant 4. We handle this situation as follows. Consider a maximal series of
subsequent Pull invocations on down buffers Di,Di+1, . . . ,Dj , 0 ≤ i < j < k.
After the first Pull call on Di and before the call on Di+1 we store a pointer
to Di in the reliable memory. After all the Pull calls we investigate all the af-
fected up buffers, by simply following the pointers between the buffers starting
from Di, and invoke the Push primitive wherever necessary. The case when
Push operations cause down buffers to underflow is handled similarly.

9.2.3 Insert and deletemin

An element is inserted in the priority queue by simply appending it to the
insertion buffer I. If I gets full, its elements are added to U0 by first faithfully
sorting I and then faithfully merging I and U0. If U0 breaks invariant 4, we
invoke the Push primitive. If L0 is the only layer of the priority queue and D0

violates the size constraint, we faithfully merge the elements in I with D0

instead.

To delete the minimum element in the priority queue, we first find the
minimum of the first δ + 1 values in D0, the minimum of the first δ + 1 values
in U0, and the minimum element in I. We then take the minimum of these three
elements, delete it from the appropriate buffer and return it. After deleting
the minimum, we right-shift all the elements in the affected buffer from the
beginning up to the position of the minimum. This way we ensure that elements
in any buffer are stored consecutively. If D0 underflows, we invoke the Pull

primitive on D0, unless L0 is the only layer in the priority queue. If U0 or D0

contains Θ(log n+ δ) empty cells, we create a new buffer and copy the elements
from the old buffer to the new one.

9.3. Analysis 87

D′
i D′

i+1 U ′
i+1

︷︸︸︷

|Ui+1|
︸ ︷︷ ︸

δ

M
︸ ︷︷ ︸

|Di|+ |Di+1|

Figure 9.2: The distribution of M into buffers.

9.3 Analysis

In this section we analyze the resilient priority queue. We prove the correctness
in Section 9.3.1 and analyze the time and space complexity in Section 9.3.2.

9.3.1 Correctness

To prove correctness of the resilient priority queue, we need to show that the
Deletemin operation returns the minimum uncorrupted value or a corrupted
value. We first prove that the Pull and Push operations preserve the order
invariants.

Lemma 9.1 The Pull and Push primitives preserve the order invariants.

Proof. Recall that in a Pull invocation on buffer Di, the buffers Di, Ui+1,
and Di+1 are faithfully merged into a sequence M . The elements in M are
then distributed into three new buffers D′

i, U ′
i+1, and D′

i+1, see Figure 9.2. To
argue that the order invariants are satisfied we need to show that the elements
of the down buffer on layer Lj , for 0 ≤ j < k, are faithfully smaller than
the elements of the buffers on layer Lj+1, where k is the index of the last
layer. The invariants hold trivially for unaffected buffers. The faithful merge
guarantees that D′

iD
′
i+1 as well as D′

iU
′
i+1 are faithfully ordered, and thus the

individual buffers are also faithfully ordered. Since invariant 2 holds for the
original buffers all uncorrupted elements in Di+1 and Ui+1 are larger than the
uncorrupted elements in Di, guaranteeing that Di−1D

′
i is faithfully ordered.

Finally, we now show that Di+1Di+2 and Di+1Ui+2 are faithfully ordered.

Let m be the minimum uncorrupted element in Di+2∪Ui+2. We need to show
that all uncorrupted elements in D′

i+1 are smaller than m. If no uncorrupted
element from Ui+1 is placed in D′

i+1, the invariant holds by the order invariants
before the operation. Otherwise, assume that an uncorrupted element y ∈ Ui+1

is moved to D′
i+1. Since |U ′

i+1| = |Ui+1|+δ and y is moved to D′
i+1, at least δ+1

elements originating from Di ∪Di+1 are contained in U ′
i+1. Since there can be

at most δ corruptions, there exists at least one uncorrupted element, x, among
these. By faithful merging, all uncorrupted elements in D′

i+1 are smaller than
x, which means that y ≤ x. Since x originates from Di ∪ Di+1, it is smaller
than m. We obtain y ≤ m.

A similar argument proves correctness of the Push operation. We conclude
that both order invariants are preserved by Pull and Push operations.

2

88 Chapter 9. Resilient Priority Queues

Having proved that the order invariants are maintained at all times, we now
prove the correctness of the resilient priority queue.

Lemma 9.2 The Deletemin operation returns the minimum uncorrupted el-
ement in the priority queue or a corrupted element.

Proof. We recall that the Deletemin operation computes the minimum of the
first δ + 1 elements of U0 and D0. It compares these values with the minimum
of I, found in a scan, and returns the smallest of these elements. Since U0

and D0 are faithfully ordered, the minimum of their first δ + 1 elements is
either the minimum uncorrupted value in these buffers, or a corrupted value
even smaller. Furthermore, according to the order invariants, all the values
in layers L1, . . . , Lk are faithfully larger than the minimum in D0. Therefore,
the element reported by Deletemin is the minimum uncorrupted value or a
corrupted value. 2

9.3.2 Complexity

In this section we show that our resilient priority queue uses O(n) space and
that Insert and Deletemin take O(log n + δ) amortized time. We first prove
that the Pull and Push primitives restore the size invariants.

Lemma 9.3 If a size invariant is broken for a buffer in L0, invoking Pull or
Push on that buffer restores the invariants. Furthermore, during this opera-
tion Pull and Push are invoked on the same buffer at most once. No other
invariants are broken before or after this operation.

Proof. Assume that Push is invoked on U0, and that it is called iteratively up
to some layer Ll. By construction of Push, the size invariants for all the up
buffers now hold. Since a Push steals δ elements from the down buffers, the
layers L0, . . . , Ll are traversed again and Pull is invoked on these as needed.
The last of these Pull operations might proceed past layer Ll. Similarly, a
Pull may cause an up buffer to overflow. However, since the cascading Push

operations left |Ui| = 0 for i ≤ l, any new Push are invoked on up buffers only
on layer Ll+1 or higher, thus Push is invoked on each buffer at most once. A
similar argument works for the Pull operation.

2

Lemma 9.4 The resilient priority queue uses O(n + δ) space to store n ele-
ments.

Proof. The insertion buffer always uses O(log n + δ) space. We prove that the
remaining layers use O(n) space. For each layer we use O(δ) space for storing
structural information reliably. In all layers, except the last one, the down
buffer contains Ω(δ2) elements by invariant 3. This means that for each of these
layers the elements stored in the down buffer dominate the space complexity.
The structural information of the last layer requires additional O(δ) space. 2

9.3. Analysis 89

The space complexity of the priority queue can be reduced to O(n) without
affecting the time complexity, by storing the structural information of L0 in safe
memory, and by doubling or halving the insertion buffer during the lifetime of
the algorithm such that it always uses O(|I|) space.

Lemma 9.5 Each Insert and Deletemin takes O(log n+δ) amortized time.

Proof. We define the following potential function:

Φ =
k∑

i=1

(c1 · (log n− i) · |Ui|+ c2 · i · |Di|) .

We use Φ to analyze the amortized cost of a Push operation. In a Push

operation on Ui, buffers Ui, Di, and Ui+1 are merged. The elements are then
distributed into new buffers U ′

i ,D
′
i, and U ′

i+1, such that |U ′
i | = 0, |D′

i| = |Di|−δ,
and |U ′

i+1| = |Ui+1|+ |Ui|+ δ. This gives the following change in potential ∆Φ:

∆Φ = −|Ui| · c1 · (log n− i)− δ · c2 · i + (|Ui|+ δ) · c1(log n− (i + 1))

= −c1 · |Ui|+ δ(−c2 · i + c1 · log n− c1 · i− c1) .

Since the Push is invoked on Ui, invariant 4 is not valid for Ui and there-
fore |Ui| ≥ si

2 = 2i (log2 n + δ2). Thus:

∆Φ ≤ −c1 · |Ui|+c1 ·δ · log n ≤ −c1 ·2i · (log2 n+δ2)+c1 ·δ · log n ≤ −c1 ·c′ · |Ui| ,
(9.1)

for some constant c′ > 0.
Since faithfully merging two sequences of size n takes O(n + δ2) time [49],

the time used for a Push on Ui is upper bounded by cm ·(|Ui|+|Di|+|Ui+1|+δ2),
where cm depends on the resilient merge. This includes the time required for
retrieving reliably stored variables. Adding the time and the change in potential
we are able to get the amortized cost less than zero by tweaking c1 based on
equation (9.1). This is because |Ui| is Ω(δ2) and at most a constant fraction
smaller than the participants in the merge.

A similar analysis works for the Pull primitive. We now calculate the
amortized cost of Insert and Deletemin. We ignore any Push or Pull

operations since their amortized costs are negative. The amortized time for
inserting an element in I, sorting I, and merging it with U0 is O(log n + δ)
per operation. The change in potential when adding elements to L0 is O(log n)
per element. The time needed to find the smallest element in a Deletemin is
O(log n + δ), and the change in potential when an element is deleted from L0

is negative.
The cost of the global rebuilding is dominated by the cost of sorting, which

is O(n log n+ δ2). There are Ω(n) operations between each rebuild, which leads
to O(log n + δ) time per operation, since δ ≤ n. We conclude that each Insert

and Deletemin takes O(log n + δ) amortized time. 2

Theorem 9.1 The resilient priority queue takes O(n) space and uses amor-
tized O(log n + δ) time per operation.

90 Chapter 9. Resilient Priority Queues

9.4 Lower bound

In this section we prove that any resilient priority queue takes Ω(log n + δ)
time for either Insert or Deletemin in the comparison model, under the
assumption that no elements are stored in reliable memory between operations.
This implies optimality of our resilient priority queue under these assumptions.
We note that the reliable memory may contain any structural information, e.g.
pointers, sizes, indices.

Theorem 9.2 A resilient priority queue containing n elements, with n > δ,
uses Ω(log n + δ) comparisons to perform Insert followed by Deletemin.

Proof. Consider a priority queue Q with n elements, with n > δ, that uses less
than δ comparisons for an Insert followed by a Deletemin. Also, Q does
not store elements in reliable memory between operations. Assume that no
corruptions have occurred so far. Without loss of generality we assume that all
the elements in Q are distinct. We prove there exists a series of corruptions C,
|C| ≤ δ, such that the result of an Insert of an element e followed by a
Deletemin returns the same element regardless of the choice of e.

Let k < δ be the number of comparisons performed by Q during the two
operations. We force the result of each comparison to be the same regardless
of e by suitable corruptions. In all the comparisons involving e, we ensure
that e is the smallest. We do so by corrupting the value which e is compared
against if necessary, by adding some positive constant c ≥ e to the other value.
If two elements different than e are compared, we make sure the outcome is
the same as if no corruptions had happened. If one of them was corrupted,
adding c to the other one reestablishes their previous ordering. If both of them
were corrupted by adding c, their ordering is unchanged and no corruptions are
needed. Forcing any comparison to give the desired outcome requires at most
one corruption, and therefore |C| ≤ k < δ.

We now consider the value e′ returned by Deletemin on Q. If e = e′ then
we choose e to be larger than some element x ∈ Q not affected by a corruption
in C. Such a value exists because the size of the priority queue is larger than
δ. Since e = e′ > x, Q returned an uncorrupted element that was not the
minimum uncorrupted element in Q. If e 6= e′ we choose e to be smaller than
any element in Q. With such a choice of e, no corruptions are required and the
value returned by Q was not corrupted, but still larger than e. This proves Q
is not resilient.

Adding the classical Ω(log n) bound for priority queues in the comparison
model the result follows. 2

Chapter 10

Optimal Resilient Dynamic Dictionaries

The paper is very well written, contains a good motivation, good area
overview, all proof are sound, complete and easy to understand.

— Anonymous reviewer

This chapter is devoted to presenting the results published as [27], which
has been accepted for publication as a merged paper [24]. The remainder of
the chapter is structured as follows. First we introduce the randomized static
dictionary in Section 10.1, and then the deterministic static dictionary in Sec-
tion 10.2. Finally, in Section 10.3 we present the dynamic dictionary.

10.1 Optimal randomized static dictionary

In this section we introduce a simple randomized resilient search algorithm. It
searches for a given element in a sorted array using worst case O(log δ) random
bits and expected time O(log n+δ), assuming that corruptions are performed by
a non-adaptive adversary. The running time matches the algorithm by Finocchi
et al. [49], which, however, uses expected O(log n · log δ) random bits. The
main idea of our algorithm is to implicitly divide the sorted input array in 2δ
disjoint sorted sequences S0, . . . , S2δ−1, each of size at most ⌈n/2δ⌉. The j’th
element of Si, Si[j], is the element at position posi(j) = 2δj + i in the input
array. Intuitively, this divides the input array into ⌈n/2δ⌉ consecutive blocks of
size 2δ, where Si[j] is the i’th element of the j’th block. Note that, since 2δ
disjoint sequences are defined from the input array and at most δ corruptions
are possible, at least half of the sorted sequences S0, . . . , S2δ−1 do not contain
any corrupted elements.

The algorithm generates a random number k ∈ {0, . . . , 2δ−1} and performs
an iterative binary search on Sk. We store in safe memory k, the search key e,
and the left and right indices, l and r, used by the binary search. The binary
search terminates when l and r are adjacent in Sk, and therefore 2δ elements
apart in the input array, since posk(r) − posk(l) = 2δ when r = l + 1. If the
binary search was not mislead by corruptions, then the location of e is between
posk(l) and posk(r) in the input array. To check whether the search was mislead,
we perform the following verification procedure. Consider the neighborhoods
Nl and Nr, containing the 2δ + 1 elements in the input array situated to the

91

92 Chapter 10. Optimal Resilient Dynamic Dictionaries

left of posk(l) and to the right of posk(r) respectively. We compute the number
sl = |{z ∈ Nl | z ≤ e}| of elements in Nl that are smaller than e in O(δ)
time by scanning Nl. Similarly, we compute the number sr of elements in Nr

that are larger than e. If sl ≥ δ + 1 and sr ≥ δ + 1, and the search key is
not encountered in Nl or Nr, we decide whether it lies in the array or not by
scanning the 2δ− 1 elements between posk(l) and posk(r). If sl or sr is smaller
than δ + 1, a corruption has misguided the search. In this case, a new k is
randomly selected and the binary search is restarted.

Theorem 10.1 The randomized dictionary supports searches in O(log n + δ)
expected time and uses O(log δ) expected random bits.

Proof. We first prove the correctness of the algorithm. Assume that sl ≥ δ + 1
and e 6∈ Nl. Since only δ corruptions are possible, there exists an uncorrupted
element in Nl strictly smaller than e. Because the input array is sorted, no
uncorrupted elements to the left of posk(l) in the input array are equal to e. By
a similar argument, if sr ≥ δ + 1 and e 6∈ Nr, then no uncorrupted elements to
the right of posk(r) in the input array are equal to e. If no corrupted elements
are encountered during the binary search, all the uncorrupted elements of Nl

are smaller than e, and therefore sl ≥ δ + 1. Similarly, we have sr ≥ δ + 1, and
the algorithm terminates after scanning the elements between l and r.

We now analyze the running time. Each iteration generates a random num-
ber k ∈ {0, . . . , 2δ − 1}, using O(log δ) random bits. The sorted sequences
induced by different k’s are disjoint, thus at most δ of them may contain cor-
ruptions. Since there are 2δ sorted sequences, the probability of selecting a
value k that leads to a corruption-free sequence is at least 1/2, and therefore
the expected number of iterations is at most two. Each iteration uses O(log n)
time for the binary search and O(δ) time for the verification. We conclude that
a search uses expected O(log δ) random bits and O(log n + δ) expected time.
2 2

We note that for each iteration an adaptive adversary can learn about the
subsequence Sk on which we perform the binary search by investigating the
elements accessed. Subsequently a single corruption suffices to force the search
path to end far enough from its correct position such that the verification
fails. In this situation, the algorithm performs O(δ) iterations and therefore
O(δ(log n+ δ)) time regardless of the random choices of subsequences on which
to perform the binary search.

We obtain a worst case bound of O(log δ) random bits by using a stan-
dard derandomization technique. In the i’th iteration we perform the binary
search on sequence Sh(i), for h(i) = (r0 + ir1 + i2r2 + i3r3) mod k, where k is
a prime number with 2δ ≤ k < 4δ, and ri are chosen uniformly at random in
{0, . . . , k− 1}. By construction h(i) is a 4-wise independent hash function [69],
which suffices to obtain an expected constant number of iterations for our al-
gorithm [95].

10.2. Optimal static dictionary 93

LV RVQ

︷ ︸︸ ︷

2δ
︷ ︸︸ ︷

2δ
︷ ︸︸ ︷

︸ ︷︷ ︸

δ + 1

.
Block

Figure 10.1: The structure of a block. The left and right verification segments,
LV and RV , contain 2δ elements each, and the query segment Q contains δ +1
elements.

10.2 Optimal static dictionary

In this section we close the gap between lower and upper bounds for determinis-
tic resilient searching algorithms. We present a resilient algorithm that searches
for an element in a sorted array in O(log n + δ) time in the worst case, which
is optimal [51]. It is an improvement of the previously published best deter-
ministic dictionary, which supports searches in O(log n + δ1+ε) time [49]. We
reuse the idea presented in the design of the randomized algorithm and define
disjoint sorted sequences to be used by a binary search algorithm. Similarly to
the randomized algorithm, we design a verification procedure to check the result
of the binary search. We design the adapted binary search and the verification
procedure such that we are guaranteed to advance only one level in the binary
search for each corrupted element misleading the search. We count the number
of detected corruptions and adjust our algorithm accordingly to ensure that no
element is used more than once, excepting a final scan performed only once on
two adjacent blocks. The total time used for verification is O(δ).

We divide the input array into implicit blocks. Each block consists of 5δ +1
consecutive elements of the input and is structured in three segments: the
left verification segment, LV , consists of the first 2δ elements, the next δ + 1
elements form the query segment, Q, and the right verification segment, RV ,
consists of the last 2δ elements of the block, see Figure 10.1. The left and right
verification segments, LV and RV , are used only by the verification procedure.
The elements in the query segment are used to define the sorted sequences
S0, . . . , Sδ, similarly to the randomized dictionary previously introduced. The
j’th element of sequence Si, Si[j], is the i’th element of the query segment of
the j’th block, and is located at position posi(j) = (5δ + 1)j + 2δ + i in the
input array.

We store a value k ∈ {0, . . . , δ} in safe memory identifying the sequence
Sk on which we currently perform the binary search. Also, k identifies the
number of corruptions detected. Whenever we detect a corruption, we change
the sequence on which we perform the search by incrementing k. Since there
are δ + 1 disjoint sequences, there exists at least one sequence without any
corruptions.

Binary search. The binary search is performed on the elements of Sk. Sim-
ilarly to the randomized algorithm, we store in safe memory the search key,
e, and the left and right sequence indices, l and r, used by the binary search.
Initially, l = −1 is the position of an implicit −∞ element. Similarly, r is the

94 Chapter 10. Optimal Resilient Dynamic Dictionaries

position of an implicit ∞ to the right of the last element. Since each element
in Sk belongs to a distinct block, l and r also identify two blocks, Bl and Br.

Each step in the binary search compares the search key e against the element
at position i = ⌊(l + r)/2⌋ in Sk. Assume without loss of generality that this
element is smaller than e. We set l to i and decrement r by one. We then
compare e with Sk[r]. If this element is larger than e, the search continues.
Otherwise, if no corruptions have occurred, the position of the search element
is in block Br or Br+1 in the input array. When two adjacent elements are
identified as in the case just described, or when l and r become adjacent, we
invoke a verification procedure on the corresponding blocks. The pseudo-code
description of the binary search is given in Algorithm 1, and a working example
is shown in Figure 10.2.

Algorithm 1: Pseudo-code for the binary search procedure.

l← −1
r ←last-block+1
while r − l > 1 do

i← ⌈ l+r
2 ⌉

if repk(block(i)) < e then
l← i
r← r − 1
if repk(block(r)) < e then

if verify(r,r+1) is successful then
return success

else
Backtrack

else if repk(block(i)) > e then
Similar to previous case.

else
return success

if verify(l,r) is successful then
return success

else
Backtrack

47312523 29 32 35 4110 12 13843 18 21 14−∞
876543210−1 9 10 11 12 13 14 15 16 17

+∞

Figure 10.2: Example of binary search on a sequence Sk, for the search key
21. The arrows show the direction of the search. The emphasized element is
corrupted.

The verification procedure determines whether the two adjacent blocks, de-
noted Bi and Bi+1, are correctly identified. If the verification succeeds, the
binary search is completed, and all the elements in the two corresponding ad-

10.2. Optimal static dictionary 95

jacent blocks, Bi and Bi+1 are scanned. The search returns true if e is found
during the scan, and false otherwise. If the verification fails, the search may
have been mislead by corruptions and we backtrack it two steps. To facilitate
backtracking, we store two word-sized bit-vectors, d and f in safe memory. The
i’th bit of d indicates the direction of the search and the i’th bit of f indicates
whether there was a rounding in computing the middle element in the i’th step
of the binary search respectively. We can easily compute the values of l and r
in the previous step of the binary search by retrieving the relevant bits of d and
f . If the verification fails, it detects at least one corruption and therefore k is
incremented, thus the search continues on a different sequence Sk.

Verification phase. Verification is performed on two adjacent blocks, Bi

and Bi+1. It either determines that e lies in Bi or Bi+1 or detects corruptions.
The verification is an iterative algorithm maintaining a value which expresses
the confidence that the search key resides in Bi or Bi+1. We compute the left
confidence, cl, which is a value that quantifies the confidence that e is in Bi or
to the right of it. Intuitively, an element in LVi smaller than e is consistent
with the thesis that e is in Bi or to the right of it. However an element in LVi

larger than e is inconsistent. Similarly, we compute the right confidence, cr, to
express the confidence that e is in Bi+1 or to the left of it.

To compute cl we scan a sub-interval of the left verification segment, LVi, of
Bi. Similarly, the right confidence is computed by scanning the right verification
segment, RVi+1, of Bi+1. Initially, we set cl = 1 and cr = 1. We scan LVi from
right to left starting at the element at index vl = 2δ − 2k in LVi. Intuitively,
by the choice of vl we ensure that no element in LVi is accessed more than
once. Similarly, we scan RVi+1 from left to right beginning with the element
at position vr = 2k. In an iteration we compare LVi[vl] and RVi+1[vr] against
e. If LVi[vl] ≤ e, cl is increased by one, otherwise it is decreased by one and k
is increased by one. Similarly, if RVi+1[vr] ≥ e, cr is increased; otherwise, we
decrease cr and increase k. The verification procedure stops when min(cr, cl)
equals δ − k + 1 or 0. The verification succeeds in the former case, and fails
in the latter. The pseudo-code for the verification procedure is introduced in
Algorithm 2, and a working example is shown in Figure 10.3.

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45.
→→→→ ←

234cl cr

→→←
38 71

012

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

Figure 10.3: A verification step for δ = 3, with k = 1 initially. The search key
is 45. The verification algorithms stops with cr = 0, reporting failure. The
emphasized elements are corrupted.

Theorem 10.2 The resilient algorithm searches for an element in a sorted
array in O(log n + δ) time.

96 Chapter 10. Optimal Resilient Dynamic Dictionaries

Algorithm 2: Pseudo-code for the verification procedure.

input : k: Number of errors identified so far
δ: maximum number of errors
l:index of the left block
r:index of the right block

LV ← index of first element in LVl

RV ← index of first element in RVr

il ← LV + 2δ − 2k
ir ← RV + 2k
cr, cl ← 1
while 0 < min(cl, cr) < δ − k + 1 do

if A[il] < e then
cl ← cl + 1

else
cl ← cl − 1
k ← k + 1

if A[ir] > e then
cr ← cr + 1

else
cr ← cr − 1
k ← k + 1

il ← il − 1
ir ← ir + 1

if min(cl, cr) = 0 then
return failure

else
Scan left and right block and return result

Proof. We first prove that when cl or cr decrease during verification, a cor-
ruption has been detected. We increase cl when an element smaller than e is
encountered in LVi, and decrease it otherwise. Intuitively, cl can been seen as
the size of a stack S. When we encounter an element smaller than e, we treat
it as if it was pushed, and as if a pop occurred otherwise. Initially, the element
g from the query segment of Bi used by the binary search is pushed in S. Since
g was used to define the left boundary in the binary search, g < e at that time.
Each time an element LVi[v] < e is popped from the stack, it is matched with
the current element LVi[vl]. Since LVi[v] < e < LVi[vl] and vl < v, at least one
of LVi[vl] and LVi[v] is corrupted, and therefore each match corresponds to de-
tecting at least one corruption. It follows that if 2t−1 elements are scanned on
either side during a failed verification, then at least t corruptions are detected.

We now argue that no single corrupted cell is counted twice. A corruption
is detected if and only if two elements are matched during verification. Thus it
suffices to argue that no element participates in more than one matching. We
first analyze corruptions occurring in the left and right verification segments.
Since the verification starts at index 2(δ − k) in the left verification segment
and k is increased when a corruption is detected, no element is accessed twice,

10.3. Dynamic dictionary 97

Top tree Leaf structure

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

Figure 10.4: The structure of the dynamic dictionary.

and therefore not matched twice either. A similar argument holds for the right
verification segment. Each failed verification increments k, thus no element
from a query segment is read more than once. In each step of the binary search
both the left and the right indices are updated. Whenever we backtrack the
binary search, the last two updates of l and r are reverted. Therefore, if the
same block is used in a subsequent verification, a new element from the query
segment is read, and this new element is the one initially on the stack. We
conclude that elements in the query segments, which are initially placed on the
stack, are never matched twice either.

To argue correctness we prove that if a verification is successful, and e is
not found in the scan of the two blocks, then no uncorrupted element equal to e
exists in the input. If a verification succeeds and e is not found in either block,
then cl ≥ δ − k + 1. Since only δ − k more corruptions are possible, there is
at least one uncorrupted element in LVi smaller than e and thus there can be
no uncorrupted elements equal to e to the left of Bi in the input array. By a
similar argument, if cr ≥ δ − k + 1, then all uncorrupted elements to the right
of Bi+1 in the input array are larger than e.

We now analyze the running time. We charge each backtracking of the
binary search to the verification procedure that triggered it. Therefore, the
total time of the algorithm is O(log n) plus the time required by verifications.
To bound the time used for all verification steps we use the fact that if O(f)
time is used for a verification step, then Ω(f) corruptions are detected or the
algorithm ends. At most O(δ) time is used in the last verification for scanning
the two blocks. 2 2

10.3 Dynamic dictionary

In this section we describe a linear space resilient deterministic dynamic dic-
tionary supporting searches in optimal O(log n + δ) worst case time and range
queries in optimal O(log n + δ + k) worst case time, where k is the size of the
output. The amortized update cost is O(log n + δ).

98 Chapter 10. Optimal Resilient Dynamic Dictionaries

Structure. The sorted sequence of elements is partitioned into a sequence
of leaf structures, each storing Θ(δ log n) elements. For each leaf structure we
select a guiding element, and we place these O(n/(δ log n)) guiding elements
in the leaves of a reliably stored binary search tree. Each guiding element is
chosen such that it is larger than all uncorrupted elements in the corresponding
leaf structure.

For this reliable top tree T , we use the (non-resilient) binary search tree
in [25], which consists of h = log |T |+O(1) levels when containing |T | elements.
In the full version [26] it is shown that the tree can be maintained such that
the first h − 2 levels are complete. We lay the tree in memory in left-to-right
breadth first order, as specified in [25]. It uses linear space, and an update costs
amortized O(log2 |T |) time. A global rebuilding is performed when |T | changes
by a constant factor.

All the elements and pointers in the top tree are stored reliably, using repli-
cation. Since a reliable value takes O(δ) space, O(δ|T |) space is used for the en-
tire structure. The time used for storing and retrieving a reliable value is O(δ),
and therefore the additional work required to handle the reliably stored values
increases the amortized update cost to O(δ log2 |T |) time.

The leaf structure consists of a top bucket B and b buckets, B0, . . . , Bb−1,
where log n ≤ b ≤ 4 log n. Each bucket Bi contains between δ and 6δ input
elements, stored consecutively in an array of size 6δ, and uncorrupted elements
in Bi are smaller than uncorrupted elements in Bi+1. For each bucket Bi,
the top bucket B associates a guiding element larger than all elements in Bi,
a pointer to Bi, and the size of Bi, all stored reliably. Since storing a value
reliably uses O(δ) space, the total space used by the top bucket is O(δ log n).
The guiding elements of B are stored as a sorted array to enable fast searches
using the deterministic resilient search algorithm from Section 10.2.

Lemma 10.1 The dynamic dictionary uses O(n) space to store n elements.

Proof. Since a leaf structure stores Θ(δ log n) input elements, the top tree con-
tains O(n/(δ log n)) nodes, using O(δ|T |) = O(δn/(δ log n)) = o(n) space. Each
of the O(n/(δ log n)) leaf structures uses O(δ log n) space and therefore the total
space used for leaf structures is O(n). 2 2

Searching. The search operation consists of two steps. It first locates a leaf
in the top tree T , and then searches the corresponding leaf structure. Let h
denote the height of T . If h ≤ 3, we perform a standard tree search from the
root of T using the reliably stored guiding elements and pointers. Otherwise,
we locate two internal nodes, v1 and v2, with guiding elements g1 and g2,
such that g1 < e ≤ g2, where e is the search key. Since h − 2 is the last
complete level of T , level ℓ = h − 3 is complete and contains only internal
nodes. The breadth first layout of T ensures that elements of level ℓ are stored
consecutively in memory. The search operation locates v1 and v2 using the
deterministic resilient search algorithm from Section 10.2 on the array defined
by level ℓ. The search only considers the 2δ + 1 cells in each node containing

10.3. Dynamic dictionary 99

guiding elements and ignores memory used for auxiliary information, e.g. sizes
and pointers. Although they are stored using replication, the guiding elements
are considered as 2δ +1 regular elements in the search. Since the space used by
the auxiliary information is the same for all nodes, these gaps in the memory
layout of level ℓ are easily excluded from the search. We modify the resilient
searching algorithm previously introduced such that it reports two consecutive
blocks with the property that if the search key is in the structure, it is contained
in one of them. The reported two blocks, each of size 5δ + 1, span O(1) nodes
of level ℓ and the guiding elements of these are queried reliably to locate v1 and
v2. The appropriate leaf can be in either of the subtrees rooted at v1 and v2,
and we perform a standard tree search in both using the reliably stored guiding
elements and pointers. Searching for an element in a leaf structure is performed
by using the resilient search algorithm from Section 10.2 on the top bucket, B,
similar to the way v1 and v2 were found in T . The corresponding reliably stored
pointer is then followed to a bucket Bi, which is scanned.

Range queries can be performed by scanning the level ℓ, starting at v, and
reporting relevant elements in the leaves below it.

Lemma 10.2 The search operation of the dynamic dictionary uses O(log n+δ)
worst case time. A range query reporting k elements is performed in worst case
O(log n + δ + k) time.

Proof. The initial search in the top tree takes O(log n + δ) worst case time by
Theorem 10.2. Traversing the O(1) levels to a leaf takes time O(δ). Searching
in the top bucket of the leaf structures uses O(log log n + δ) time, again using
Theorem 10.2. The final scan of a bucket takes time O(δ).

In a range query, the elements reported in any leaf completely contained in
the query range pay for the O(δ log n) time used for going through the bottom
part of the top tree and scanning the top bucket. The search pays for the
rightmost traversed leaf. 2 2

Updates. Updating the structure is performed using standard bucketing tech-
niques. To insert an element into the dictionary, we first perform a search to
locate the appropriate bucket Bi in a leaf structure, and then the element is
appended to Bi and the size of Bi in the top bucket is updated. When the size
of Bi increases to 6δ, we split it into two buckets, Bs and Bg, of almost equal
sizes. We compute a guiding element that splits Bi in O(δ2) time by repeatedly
scanning Bi and extracting the minimum element. The element m returned by
the last iteration is kept in safe memory. In each iteration, we select a new m
which is the minimum element in Bi larger than the current m. Since at most
δ corruptions can occur, Bi contains at least 2δ uncorrupted elements smaller
than m and 2δ uncorrupted elements larger, after |Bi|/2 = 3δ iterations. The
elements from Bi smaller than m are stored in Bs, and the remaining ones are
stored in Bg. The guiding element for Bs is m, while Bg preserves the guiding
element of Bi. The new split element is reliably inserted in the top bucket using
an insertion sort step, by scanning and shifting the elements in B from right to
left, and placing the new element at its appropriate position. Similarly, when

100 Bibliography

the size of the top bucket becomes 4 log n, it is split in two new leaf structures.
The first leaf structure consists of the first 2 log n bottom buckets, and the sec-
ond leaf structure contains the rest. The second leaf structure is associated with
the original guiding element, and the guiding element of the new leaf structure
is the the last guiding element in its top bucket. This new guiding element is
inserted into the top tree.

Deletions are handled similarly by first searching for the element and then
removing it from the appropriate bucket. When an element is deleted from a
bucket, we ensure that the elements in the affected bucket are stored consec-
utively by swapping the deleted element with the last element. If the affected
bucket holds fewer than δ elements after the deletion, it is merged with a neigh-
boring bucket. If the resulting bucket contains more than 6δ elements, it is split
as described above. If the top bucket contains less than log n guiding elements,
it is merged with a neighboring leaf structure which is found using a search.
Following this, the original leaf is deleted from the top tree.

Lemma 10.3 The insert and delete operations of the dynamic dictionary take
O(log n + δ) amortized time each.

Proof. An update in the top tree takes O(δ log2 n) time and requires Ω(δ log n)
updates in the leaf structures. Thus each update costs amortized O(log n)
time for operations in the top tree. Splitting and merging a bucket of a leaf
structure takes time O(δ log n) for updates to the top bucket and O(δ2) time for
computing a split element for a bucket. A bucket is split or merged every Ω(δ)
operations resulting in an amortized update cost of O(log n+ δ). Appending or
removing a single element to a bucket takes worst case time O(δ) for updating
the size. Adding the O(log n + δ) cost of the initial search concludes the proof.

2 2

Theorem 10.3 The resilient dynamic dictionary structure uses O(n) space
while supporting searches in O(log n + δ) time worst case with an amortized
update cost of O(log n+ δ). Range queries with an output size of k is performed
in worst case O(log n + δ + k) time.

Bibliography

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127,
1988.

[2] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the streaming
model augmented with a sorting primitive. In Proc. 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 540–549, 2004.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximat-
ing the frequency moments. Journal of Computer and System Sciences,
58(1):137–147, 1999.

[5] R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In
Proc. 2nd Usenix Workshop on Electronic Commerce, pages 1–11, 1996.

[6] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices.
In International Workshop on Security Protocols, pages 125–136, 1997.

[7] R. J. Anderson and G. L. Miller. A simple randomized parallel algorithm
for list-ranking. Information Processing Letters, 33(5):269–273, 1990.

[8] L. Arge. External memory data structures. In J. Abello, P. M. Pardalos,
and M. G. C. Resende, editors, Handbook of Massive Data Sets, pages
313–358. 2002.

[9] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I.
Munro. Cache-oblivious priority queue and graph algorithm applications.
In Proc. 34th Annual ACM Symposium on Theory of Computing, pages
268–276, 2002.

[10] L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivious data structures.
In D. Mehta and S. Sahni, editors, Handbook of Data Structures and
Applications, page 27. CRC Press, 2004.

[11] L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the i/o-
complexity of comparison-based algorithms. In Proc. 3rd Workshop on
Algorithms and Data Structures, pages 83–94. Springer-Verlag, 1993.

101

102 Bibliography

[12] Y. Aumann and M. A. Bender. Fault tolerant data structures. In Proc.
37th Annual Symposium on Foundations of Computer Science, pages 580–
589, 1996.

[13] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Mod-
els and issues in data stream systems. In Proc. 21st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages
1–16, 2002.

[14] Z. Bar-Yosseff, R. Kumar, and D. Sivakumar. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 623–
632, 2002.

[15] G. E. Blelloch and B. M. Maggs. Parallel algorithms. In The Computer
Science and Engineering Handbook, pages 277–315. 1997.

[16] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. Journal of Computer and System Sciences, 7:448–
461, 1973.

[17] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller, P. Roussel,
R. Singhal, B. Toll, and K. Venkatraman. The microarchitecture of the
Intel pentium 4 processor on 90nm thechnology. Intel Technology Journal,
08(01):1–18, 2004.

[18] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking
cryptographic protocols for faults. In EUROCRYPT, pages 37–51, 1997.

[19] R. S. Borgstrom and S. R. Kosaraju. Comparison-based search in the
presence of errors. In Proc. 25th Annual ACM symposium on Theory of
Computing, pages 130–136, 1993.

[20] R. S. Boyer and J. S. Moore. MJRTY: A fast majority vote algorithm.
In Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 105–
118, 1991.

[21] G. S. Brodal. Cache-oblivious algorithms and data structures. In Proc.
9th Scandinavian Workshop on Algorithm Theory, volume 3111 of Lecture
Notes in Computer Science, pages 3–13. Springer Verlag, Berlin, 2004.

[22] G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping.
In Proc. 29th International Colloquium on Automata, Languages, and
Programming, volume 2380 of Lecture Notes in Computer Science, pages
426–438. Springer Verlag, Berlin, 2002.

[23] G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness.
In Proc. 35th Annual ACM Symposium on Theory of Computing, pages
307–315, 2003.

Bibliography 103

[24] G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. Italiano, A. G.
Jørgensen, G. Moruz, and T. Mølhave. Optimal resilient dynamic dictio-
naries. In Proc. 14th Annual European Symposium on Algorithms, 2007.
To appear.

[25] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees via
binary trees of small height. In Proc. 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 39–48, 2002.

[26] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees via
trees of small height. Technical Report ALCOMFT-TR-02-53, ALCOM-
FT, May 2002.

[27] G. S. Brodal, R. Fagerberg, A. G. Jørgensen, G. Moruz, and T. Mølhave.
Optimal resilient dynamic dictionaries. Technical Report RS-07-12,
BRICS, 2007.

[28] G. S. Brodal, R. Fagerberg, and G. Moruz. Cache-aware and cache-
oblivious adaptive sorting. In Proc. 32nd International Colloquium on
Automata, Languages, and Programming, volume 3580 of Lecture Notes
in Computer Science, pages 576–588. Springer Verlag, Berlin, 2005.

[29] G. S. Brodal, R. Fagerberg, and G. Moruz. On the adaptiveness of quick-
sort. In Proc. 7th Workshop on Algorithm Engineering and Experiments,
pages 130–140, 2005.

[30] G. S. Brodal and G. Moruz. Tradeoffs between branch mispredictions
and comparisons for sorting algorithms. In Proc. 9th International Work-
shop on Algorithms and Data Structures, volume 3608 of Lecture Notes
in Computer Science, pages 385–395. Springer Verlag, Berlin, 2005.

[31] G. S. Brodal and G. Moruz. Skewed binary search trees. In Proc. 14th An-
nual European Symposium on Algorithms, volume 4168 of Lecture Notes
in Computer Science, pages 708–719. Springer Verlag, Berlin, 2006.

[32] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE
Micro, 23(4):14–19, 2003.

[33] S. A. Cook and R. A. Reckhow. Time bounded random access machines.
Journal of Computer Systems Science, 7(4):354–375, 1973.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, 2nd Edition. MIT Press, 2001.

[35] E. Demaine. Cache-oblivious algorithms and data structures. Lecture
Notes from the EEF Summer School on Massive Data Sets, 2002.

[36] C. Demetrescu, B. Escoffier, G. Moruz, and A. Ribichini. Adapting par-
allel algorithms to the w-stream model, with applications to graph prob-
lems. In Proc. 32nd International Symposium on Mathematical Founda-
tions of Computer Science, 2007. To appear.

104 Bibliography

[37] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes
in graph streaming problems. In Proc. 17th Annual ACM-SIAM Sympo-
sium of Discrete Algorithms, pages 714–723, 2006.

[38] K. Diks and A. Pelc. Optimal adaptive broadcasting with a bounded frac-
tion of faulty nodes (extended abstract). In Proc. 5th Annual European
Symposium on Algorithms, pages 118–129, 1997.

[39] A. Elmasry. Priority queues, pairing, and adaptive sorting. In 29th An-
nual International Colloquium on Automata, Languages and Program-
ming, volume 2380 of Lecture Notes in Computer Science, pages 183–194.
Springer Verlag, Berlin, 2002.

[40] A. Elmasry. Adaptive sorting with avl trees. In 3rd IFIP International
Conference on Theoretical Computer Science, pages 307–316, 2004.

[41] A. Elmasry and M. L. Fredman. Adaptive sorting and the information
theoretic lower bound. In 20th Annual Symposium on Theoretical Aspects
of Computer Science, volume 2607 of Lecture Notes in Computer Science,
pages 654–662. Springer Verlag, Berlin, 2003.

[42] A. Elmasry and A. Hammad. An empirical study for inversions-sensitive
sorting algorithms. In 4th International Workshop on Experimental and
Efficient Algorithms, pages 597–601, 2005.

[43] V. Estivill-Castro and D. Wood. A new measure of presortedness. Infor-
mation and Computation, 83(1):111–119, 1989.

[44] V. Estivill-Castro and D. Wood. Practical adaptive sorting. In Advances
in Computing and Information - Proc. International Conference on Com-
puting and Information, pages 47–54. Springer-Verlag, 1991.

[45] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms.
ACM Computing Surverys, 24(4):441–475, 1992.

[46] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph
distances in the streaming model: the value of space. In Proc. 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 745–754, 2005.

[47] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On
graph problems in a semi-streaming model. Theoretical Computer Science,
348(2):207–216, 2005.

[48] J. Feigenbaum, S. Kannan, M. J. Strauss, and M. Viswanathan. An
approximate L1 difference algorithm for massive data streams. SIAM
Journal on Computing, 32(1):131–151, 2003.

[49] I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and
searching in the presence of memory faults. In Proc. 33rd International
Colloquium on Automata, Languages and Programming, volume 4051 of
Lecture Notes in Computer Science, pages 286–298. Springer, 2006.

Bibliography 105

[50] I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient search trees. In
Proc. 18th ACM-SIAM Symposium on Discrete Algorithms, pages 547–
554, 2007.

[51] I. Finocchi and G. F. Italiano. Sorting and searching in the presence
of memory faults (without redundancy). In Proc. 36th Annual ACM
Symposium on Theory of Computing, pages 101–110, 2004.

[52] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache
oblivious algorithms. In 40th Annual IEEE Symposium on Foundations
of Computer Science, pages 285–298, 1999.

[53] L. Gasieniec and A. Pelc. Broadcasting with a bounded fraction of faulty
nodes. Journal of Parallel and Distributed Computing, 42(1):11–20, 1997.

[54] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. Fast, small-space algorithms for approximate histogram mainte-
nance. In Proc. 34th Annual ACM Symposium on Theory of Computing,
pages 389–398, 2002.

[55] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Quick-
sand: Quick summary and analysis of network data. Technical report,
DIMACS Technical Report 2001-43, 2001.

[56] L. Golab and M. T. Özsu. Data stream management issues – a survey.
Technical report, School of Computer Science, University of Waterloo,
TR CS-2003-08, 2003.

[57] S. Govindavajhala and A. W. Appel. Using memory errors to attack a
virtual machine. In IEEE Symposium on Security and Privacy, pages
154–165, 2003.

[58] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new
representation of linear lists. In Proc. 9th Annual ACM Symposium on
Theory of Computing, pages 49–60, 1977.

[59] J. Hastad and T. Leighton. Fast computation using faulty hypercubes.
In Proc. 21st Annual ACM Symposium on Theory of Computing, pages
251–263, 1989.

[60] J. Hastad, T. Leighton, and M. Newman. Reconfiguring a hypercube in
the presence of faults. In Proc. 19th Annual ACM Symposium on Theory
of Computing, pages 274–284, 1987.

[61] J. L. Hennesy and D. A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers Inc, 2006.

[62] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data
streams. pages 107–118, 1999.

[63] M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE
Transactions on Computers, 38(12):1612–1630, 1989.

106 Bibliography

[64] C. A. R. Hoare. Algorithm 63: Partition. Commun. ACM, 4(7):321, 1961.

[65] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321,
1961.

[66] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–15, April
1962.

[67] K. H. Huang and J. A. Abraham. Algorithm-based fault tolerance for
matrix operations. IEEE Transactions on Computers, 33:518–528, 1984.

[68] J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[69] A. Joffe. On a set of almost deterministic k-independent random variables.
Annals of Probability, 2(1):161–162, 1974.

[70] A. G. Jørgensen, G. Moruz, and T. Mølhave. Priority queues resilient to
memory faults. In Proc. 10th International Workshop on Algorithms and
Data Structures, 2007. To appear.

[71] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. Ragha-
van, S. Rao, C. D. Thomborson, and A. Tsantilas. Asymptotically tight
bounds for computing with faulty arrays of processors (extended ab-
stract). In Proc. 31st Annual Symposium on Foundations of Computer
Science, pages 285–296, 1990.

[72] K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort.
In Proc. 14th Annual European Symposium on Algorithms, volume 4168
of Lecture Notes in Computer Science, pages 780–791. Springer, 2006.

[73] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The amd
opteron processor for multiprocessor servers. IEEE Micro, 23(2):66–76,
2003.

[74] D. E. Knuth. The Art of Computer Programming. Vol 3, Sorting and
Searching. Addison-Wesley, 1973.

[75] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[76] S. Kutten and D. Peleg. Fault-local distributed mending. Journal of
Algorithms, 30(1):144–165, 1999.

[77] S. Kutten and D. Peleg. Tight fault locality. SIAM Journal on Computing,
30(1):247–268, 2000.

[78] K. B. Lakshmanan, B. Ravikumar, and K. Ganesan. Coping with er-
roneous information while sorting. IEEE Transactions on Computers,
40(9):1081–1084, 1991.

Bibliography 107

[79] F. T. Leighton and B. M. Maggs. Expanders might be practical: Fast
algorithms for routing around faults on multibutterflies. In Proc. 30th
Annual Symposium on Foundations of Computer Science, pages 384–389,
1989.

[80] C. Levcopoulos and O. Petersson. Splitsort – an adaptive sorting algo-
rithm. Information Processing Letters, 39(1):205–211, 1991.

[81] M. Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM Journal of Computing, 15(4):1036–1053, 1986.

[82] H. Manilla. Measures of presortedness and optimal sorting algorithms.
IEEE Transactions on Computers, 34:318–325, 1985.

[83] S. McFarling. Combining branch predictors. Technical report, Western
Research Laboratory, 1993.

[84] A. McGregor. Finding matchings in the streaming model. In Proc. 8th
International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, pages 170–181, 2005.

[85] K. Mehlhorn. Data Structures and Algorithms. Vol. 1, Sorting and Search-
ing. Springer Verlag, 1984.

[86] A. Moffat, O. Petersson, and N. C. Wormald. Sorting and/by merging
finger trees. In Algorithms and Computation: Third International Sym-
posium, ISAAC ’92, volume 650 of Lecture Notes in Computer Science,
pages 499–508. Springer Verlag, Berlin, 1992.

[87] J. I. Munro and M. Paterson. Selection and sorting with limited storage.
Theoretical Computer Science, 12:315–323, 1980.

[88] S. Muthukrishnan. Data streams: algorithms and applications, 2003.
Available at http://www.cs.rutgers.edu/ muthu.

[89] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance.
In Proc. 4th Annual ACM Symposium on Theory of Computing, pages
137–142, 1972.

[90] A. Pagh, R. Pagh, and M. Thorup. On adaptive integer sorting. In Proc.
12th Annual European Symposium on Algorithms, volume 3221 of Lecture
Notes in Computer Science, pages 556–567. Springer, 2004.

[91] PAPI (Performance Application Programming Interface). Software li-
brary found at http://icl.cs.utk.edu/papi/, 2004.

[92] S. Park and B. Bose. All-to-all broadcasting in faulty hypercubes. IEEE
Transactions on Computers, 46(7):749–755, 1997.

[93] O. Petersson and A. Moffat. A framework for adaptive sorting. DAMATH:
Discrete Applied Mathematics and Combinatorial Operations Research
and Computer Science, 59:152–179, 1995.

108 Bibliography

[94] U. F. Petrillo, I. Finocchi, and G. F. Italiano. The price of resiliency: a
case study on sorting with memory faults. In Proc. 14th Annual European
Symposium on Algorithms, pages 768–779, 2006.

[95] S. Pettie and V. Ramachandran. Minimizing randomness in minimum
spanning tree, parallel connectivity, and set maxima algorithms. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 713–
722, 2002.

[96] D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice-Hall,
Inc., 1996.

[97] R. M. Ramanathan. Extending the world’s most popular processor archi-
tecture. Available at: http://www.intel.com/technology/magazine/
computing/new-instructions-1006.htm, 2006.

[98] R. M. Ramanathan. Intel multi-core processors: Making the move to
quad-core and beyond. Available at: http://www.intel.com/technolo-
gy/magazine/computing/quad-core-1206.htm, 2006.

[99] B. Ravikumar. A fault-tolerant merge sorting algorithm. In Proc. 8th An-
nual International Conference on Computing and Combinatorics, pages
440–447, 2002.

[100] J. H. Reif. Optimal parallel algorithms for integer sorting and graph
connectivity. Technical Report TR 08-85, Aiken Computation Laboratory,
Harvard University, Cambridge, 1985.

[101] M. Z. Rela, H. Madeira, and J. G. Silva. Experimental evaluation of the
fail-silent behaviour in programs with consistency checks. In Proc. 26th
Annual International Symposium on Fault-Tolerant Computing, pages
394–403, 1996.

[102] G. K. Saha. Software based fault tolerance: a survey. Ubiquity, 7(25),
2006.

[103] P. Sanders and S. Winkel. Super scalar sample sort. In Proc. 12th Euro-
pean Symposium on Algorithms, volume 3221 of Lecture Notes in Com-
puter Science, pages 784–796. Springer Verlag, Berlin, 2004.

[104] R. Sedgewick. Analysis of shellsort and related algorithms. In Proc. 4th
European Symposium on Algorithms, pages 1–11, 1996.

[105] R. Seidel. Backwards analysis of randomized geometric algorithms. Tech-
nical Report TR-92-014, International Computer Science Institute, Uni-
veristy of Calfornia at Berkeley, February 1992.

[106] D. L. Shell. A high-speed sorting procedure. Communications of the
ACM, 2(7):30–32, 1959.

Bibliography 109

[107] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Mod-
eling the effect of technology trends on the soft error rate of combinational
logic. In Proc. International Conference on Dependable Systems and Net-
works, pages 389–398. IEEE Computer Society, 2002.

[108] S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks.
In Proc. 4th International Workshop on Cryptographic Hardware and Em-
bedded Systems, pages 2–12, 2002.

[109] G. R. Srinivasan. Modeling the cosmic-ray-induced soft-error rate in inte-
grated circuits: an overview. IBM Journal of Research and Development,
40(1):77–89, 1996.

[110] M. Sullivan and A. Heybey. Tribeca: A system for managing large
databases of network traffic. In Proc. USENIX Annual Technical Confer-
ence, pages 13–24, 1998.

[111] A. S. Tanenbaum. Structured Computer Organization. Prentice Hall, 5th
edition edition, 2006.

[112] R. E. Tarjan and U. Vishkin. Finding biconnected components and com-
puting tree functions in logarithmic parallel time. In Proc. 25th An-
nual IEEE Symposium on Foundations of Computer Science, pages 12–20,
1984.

[113] Tezzaron Semiconductor. Soft errors in electronic memory - a white paper.
http://www.tezzaron.com/about/papers/papers.html, 2004.

[114] A. J. van de Goor. Testing Semiconductor Memories: Theory and Prac-
tice. ComTex Publishing, Gouda, The Netherlands, 1998.

[115] R. van der Pas. Memory hierarchy in cache-based systems. Sun Microsys-
tems Blueprints, November 2002.

[116] P. van Emde Boas. Machine models and simulation. In Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity,
pages 1–66. 1990.

[117] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Computing Surveys, 33(2):209–271, 2001.

[118] O. Wechsler. Inside Intel core microarchitecture: Setting new standards
for energy-efficient performance. Available at: http://www.intel.com/
technology/magazine/computing/core-architecture-0306.htm,
2006.

[119] www.wikipedia.org. Moore’s law. Available at: http://en.wikipedia.
org/wiki/Moore’s law, 2007.

[120] J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer. An experimental study of
security vulnerabilities caused by errors. In Proc. International Confer-
ence on Dependable Systems and Networks, pages 421–430, 2001.

110 Bibliography

[121] S. S. Yau and F.-C. Chen. An approach to concurrent control flow check-
ing. IEEE Transactions on Software Engineering, SE-6(2):126–137, 1980.

[122] Y.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adap-
tive branch prediction. In ACM International Symposium on Computer
Architecture, pages 124–134, 1992.

[123] W. Zhang. Replication cache: A small fully associative cache to improve
data cache reliability. IEEE Transactions on Computers, 54(12):1547–
1555, 2005.

[124] W. Zhang, S. Gurumurthi, M. T. Kandemir, and A. Sivasubramaniam.
Icr: In-cache replication for enhancing data cache reliability. In Interna-
tional Conference on Dependable Systems and Networks, pages 291–300,
2003.

