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Abstract

In this thesis a short presentation of different solutions to solve the motion
planning problem is done. The probabilistic road map approach is investigated
further and the learning phase of this approach is spending most of its time on
collision tests. An approach is developed to lower the number of collision tests
done in this phase. The original approach uses an ε-enlarged object interpolated
to connection configurations. The approach suggested uses over-approximations
of the movement when connecting configurations in the local planner. A binary
connection strategy is developed to do over-approximations at finer degrees to
raise the connectivity of the road map. The approximation takes

O (k · (n + m)) ,

where n is the maximum number of points in the components, m is the maximum
number of connection points in the components and k is the number of compo-
nents. The approach has been implemented to setup experiments that compare
the collision tests done for different approaches, parameters of the approaches
in multiple environments with several different objects. The experiments have
shown several things. That larger search depths in the binary connection strat-
egy increases the number of collision tests. Increasing the number of edges in
the work space does not change the relationship in number of collision tests
done by the different strategies and parameters. However it is shown that the
complexity of the object moved increases the number of collision tests more for
the suggested approach than the original approach. The final thing the experi-
ments shows is that suggested approach can lower the number of collision tests
for a wide range problems.
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Chapter 1

Introduction

Motion planning problem has its origins in robotics, where the ultimate goal is
true autonomous robots. Autonomous robots are able to do what they are told
to do without having to be told exactly how to do it. One of the challenges in
creating such robots is the ability to plan movements.

Motion planning is considered with how the robot should get from a start
position to a goal position. The robot may not be able to move in a straight
line to get to its destination because of obstacles that should be avoided. An
example of this could be a robot moving around in a factory, where there are
obstacles such as walls and different machines on the factory floor, which the
robot should avoid any collision with. These obstacles never moves so they can
be predefined as a map to the robot. However obstacles such as humans and
other robots can move around and the robot must rely on sensors to detect
such obstacles. All information about the environment can be used by a robot
to move around while avoiding collisions with obstacles. This is illustrated in
Figure 1.1 where a construction robot is trying to get to a goal in a factory.

Figure 1.1: A construction robot is planning its motions to get to the goal while
avoiding the obstacles.

There are several examples of where the motion planning problem exists.
The example above is a rather rare example of real world usage of motion
planning. A widely used example could be a robot arm that is used in the
production industry. The robot arm consists of several components connected
by joints so it can move some tools into correct positions. Another example

1
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is within virtual environments and simulations, where an example could be a
prototype of a building. In this building panic simulation could be done which
implies that the people are moving around. This simulation is created to give
an impression on how the building would work in reality before building it. To
make the simulation realistic the people must move around realistically which
demands motion planning.

1.1 Motion Planning Problems

When a robot plan its motions it uses a simulated world to make movement
choices from. A simulated world is a representation of the real world which
can be generated from sensors on the robot or it can be a model created by a
human. From the simulated world the robot takes decisions and does actions in
the real world.

The simplest problem in motion planning is the point movement problem,
where the robot is a point in the plane. A shortest path for a point robot can
be a path where the robot will slide along an obstacle. For a real robot this
might not be convenient because there might be an error margin between the
real world and the simulated world, which could result in collisions in the real
world. This can be avoided by enlarging the obstacles by some safety margin
so that there will be a bigger margin for errors between the real world and the
simulated world, hence avoiding collisions in the real world. Figure 1.2 visualise
the two different approaches, where the sliding effect of the shortest path can be
seen and the keep distance to obstacles longer path. However, the enlargement
may cause valid paths in the real world to be illegal in the simulated world. The
optimal solution would be a trade-off between keeping distance to the obstacles
and not invalidating too many paths. If the strategy is to find any path, and not
necessarily the shortest path, the robot keeps as much distance to the obstacles
as possible while finding a path. This approach would give longer paths, more
safe paths that are more useful for real robots.

Motion planning of polygon robots that are moving with translations is
different. A translation can by formulated as a vector addition :

[
x
y

]
→

[
x
y

]
+

[
x′

y′

]
,

where (x, y) is the point and (x′, y′) is the translation vector. The transla-
tion polygon movement problem has a solution that builds on the point robot
movement. The solution is to enlarge the obstacles such that the robot can be
treated as a point robot. When the point is on the edge of an enlarged obstacle
it represents that the robot is touching the edge of the real obstacle. After the
enlargement the problem is reduced to solving the point movement problem.

If the robot is allowed to rotate it will make the motion planning problem
much harder. The problem is now a translation and rotation polygon movement
problem, where the robot can be orientated with an angle. A rotation with
angle α around origo can be expressed as a matrix multiplication :

[
x
y

]
→

[
cosα − sinα
sin α cosα

]
×

[
x
y

]
,
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s
g

(a) The shortest path from s to g

where a point slides along one of the
obstacles.

s
g

(b) A path from s to g where a
point keeps distance to the obsta-
cles.

Figure 1.2: Two figures show the difference between shortest path and keeping
distance to obstacles in motion planning. Figure 1.2(a) shows the shortest path
and Figure 1.2(b) show how a path would look if the robot would keep a distance
to the obstacles.

where (x, y) is the point rotated. Again there is a solution that builds on the
point movement problem by reducing the two dimensional robot to a three
dimensional point. This is done by enlarging each obstacle for every possible
orientation angle of the robot. After the enlargement the obstacles can be seen
as twisted cylinders in three dimensions, where, at some height of the obstacle
the two dimensional plane is equivalent to the obstacle enlarged with the robot
that has an orientation equivalent to the height. This means that the problem
is a three dimensional problem instead of a two dimensional problem, where the
third dimension is the orientation of the robot.

Finally there is the multi joint robot motion planning, where a practical
example could be a robot arm. This problem is a very hard motion planning
problem because of the dimensionality of the problem. The robot might be able
to translate and rotate which is three dimensions, and then, for each joint of the
robot, there are an orientation between two parts of the robot. This means, that
the number of dimensions in the problem grows with the number of components
in the robot.

A robot may not be able to have joints with an orientation larger than some
angle and the parts of the robot may not intersect. This can be represented
as constraints so the robot stays in legal positions in the simulated world. A
real world example of robots with constraints could be the robot arm. The arm
might be mounted on the floor hence it cannot move around. The joints in the
arm might only have a certain angle interval that they can move within or else
the joint will break. The components of the arm are not allowed to intersect
because this would break the robot. From the simple arm robot example there
is several possible constraints which must be obeyed in the simulated world.

All examples above ar motion planning for a single-mover , which means that
the robot is the only robot moving around. However several robots might be
moving around in the factory and that is a multi-mover problem.

Whether the motion planning is static or dynamic depends on the infor-
mation about the obstacles. In a static motion planning problem all informa-
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tion about the obstacles is available and this information will not change over
time. The dynamic motion planning problem is different because the infor-
mation about the obstacles is only partial and might change over time. The
static model can easily be simulated hence widely used in theory. However the
dynamic motion planning is the most realistic model for robotics because infor-
mation about the obstacles might not be complete. An example could be the
factory robot that moves around on the factory floor but has to avoid walls,
machines and humans. However, in the robot arm example there is enough
information to make a virtual model and solve the motion planning problem in
a static environment.

The robot may change geometric shape during the motion planning, which
is the conformable motion planning problem. The robot arm example is a non-
conformable motion planning problem.

Time-varying motion planning problem is when obstacles can change shape,
move around, appear or disappear over time. This basically means that there is
one more dimension added to the problem, namely time. The non-changeable
is a time-invariant motion planning problem.

If the robot can move a subset of the obstacles the problem is called a
movable-object motion planning problem.

1.2 An Overview

The problem domain in this thesis is a static, non-conformable, time-invariant,
single mover motion planning for multi joint objects in two dimensions without
constraints. The hardest problem looked into in this thesis is linked polygon
movement, which is polygons linked together. The robot is the only moving
object, and the environment is a static environment that does not change during
the run. The robot is referred as the moving object in the thesis, because it
represents a general moving object. There is no constraint handling of the object
moved, hence in the linked polygon case it can go into any position, with any
orientation between the joints.

In this thesis the standard probabilistic road map approach is used to solve
the motion planning problem. The construction of the road map use much time
with collision detections in the local planner. To lower the number of collision
tests an improvement to the local planner is proposed. Where the local planner
uses approximations when attempting to connect configurations. To show the
improvement several test are done in multiple environments with several object,
to give a good basis for showing the lowering in the number of collision tests.

Background material, such as graph theory, geometric computations, oper-
ators, spaces, road map, and more, are defined for later use in Chapter 2. After
the background material in, Chapter 3, there is a short summary of different
data structures and algorithms that can help solve the motion planning prob-
lem, and the probabilistic road map is selected for further investigation. Then,
in Chapter 4, the local planner of probabilistic road maps is investigated. The
local planner is the module responsible for telling whether the robot can move
from a start position to a goal position by using translations and rotations. Here
it is interesting to see whether it is possible to approximate the movement of
the robot and then only test for intersection on the approximation. This could
save many intersection tests, which are very expensive for the algorithm. In
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Chapter 5 the implementation of the probabilistic road map and the approxi-
mation approach is described. The reason to implement it is to test whether the
approximation approach is functional in a real application. Chapter 6 is the de-
scription on how the different debugging tests of the implementation are created
and executed in this thesis. An experiment comparing the number of collision
tests done by different connection strategies is done in Chapter 7. There are
two local planners tested: the original local planner from the original article by
Kavraki et al. [11] and a new local planner developed in this thesis.
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Chapter 2

Background Material

This chapter introduces the background material that is used throughout the
rest of the thesis. Basic graph theory, geometric shapes are introduced.

2.1 Graphs

Graphs are a big part of motion planning algorithms. Here graphs are used to
find paths, finding areas of interest for further investigation. The definition of
graph and path is related to chapter 6 in the book by Goodrich and Tamassia[7]
which is about graphs.

A graph G = (V, E) consists of a set of vertices V and a set of edges E
connecting these vertices. An edge e ∈ E defined by the two vertices vi ∈ V
and vj ∈ V that it connects and is therefore denoted as e = (vi, vj).

There is a distinction between directed and undirected graphs. In a directed
graph the edges are directed. Thus if there exists an edge e = (vi, vj) in the
graph G it is possible to move from vertex vi to vertex vj but not in the opposite
direction. In undirected graphs the following must apply (vi, vj) ∈ E ∧(vj , vi) ∈
E hence an edge must be represented by both edges in the edge set.

A path Pi,j in a graph is a sequence of alternating vertices that start at
vertex vi and end at vertex vj , such that each edge is incident to its predecessor
and successor vertex Pi,j = [vi, . . . , vj ].

Connected components in an undirected graph are sets of n vertices S =
{v1, . . . , vn} where for each pair of vertices vi and vj in the set there exists a
path Pi,j from vertex vi to vertex vj . If a vertex has no edges it is considered
in a connected component itself.

2.2 Basic Geometry

Points, vectors, edges and polytopes are basic geometric structures which are
defined in n dimensional space. Polygons and polyhedrons are dimensional
bounded polytopes, and simplicity and convexity are properties for polytopes.

• A point p, q or r in n dimensional space is an n-tuple of real numbers
p = (β1, β2, . . . , βn).

7
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• An edge e in n dimensional space is a pair of points, e = (p, q), where
p ∈ R

n and q ∈ R
n

• A vector −→v in n dimensional space is an n-tuple of real numbers

−→v =




β1

β2

...
βn




• A polytope P in n dimension space is represented as a set of m points and
k edges that defines the boundary of the polytope.

In general when talking about a geometric definition A in a specific dimension
n it will be represented as An. There are two general definitions of the polytope
is, the polygon and the polyhedral, which are defined as :

• A polygon P 2 is a polytope in two dimensional space

• A polyhedron P 3 is a polytope in three dimensional space

A polytope can have two properties, it can be simple or it can be convex .
These properties are defined as following :

• A simple polytope P̂ is a polytope where the boundaries of the polytope
are not allowed to intersect, and the polytope is on closed form. By closed
form means that there are no holes in the polytope.

• A convex polytope P is a polytope where there is no intersections at the
half planes bounding the polytope.

• A linked polygon P̃ 2 is a tree structure, where a tree node n is a three tuple

(np, PL, P̂ 2), where np is the parent node, PL is the list of connection

points children can be connected to and P̂ 2 is a polygon part.

2.3 Operators

The operators used between different geometric structures are defined in this
section. Section 2.3.1 contains definitions on addition, subtraction, and divi-
sion between different basic geometric structures such as points, vectors, and
polytopes. The Minkowski Sum operation is defined in Section 2.3.2.

2.3.1 Basic Operators

Simple operators like addition and subtraction can be applied between points,
vectors and polytopes. Additionally an angle can be transformed into a rotation
matrix and then multiplied to a point or polytope to rotate it around origo.

Addition between two points, p1 and p2 is adding the value of each dimension
together into a new point

p + q = (p1, p2, . . . , pn) + (q1, q2, . . . , qn) = (p1 + q1, p2 + q2, . . . , pn + qn) .
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This applies to the point subtraction and multiplication operator as well. The
vector addition and subtraction operator is also the operator applied between
each dimension into a new vector. A vector can be added to a point to translate
the point, the result is a new point

p+−→v = (p1, p2, . . . , pn)+(−→v 1,
−→v 2, . . . ,

−→v n) = (p1+−→v 1, p2+−→v 2, . . . , pn+−→v n) ,

which is also shown in Chapter 5 of the book by Foley et al.[5]. Subtraction is
also possible the operator is replaced with the minus operator instead and the
result is also a point.

Operators applied between a polytope and either a point or a vector, are the
operator applied on each point in the polygon and the point or vector. Let P
be a polytope of n points, where point q ∈ P and let p be the point added to
the polytope, then the addition is

P + p = {q1 + p, q2 + p, . . . , qn + p} ,

where the result is a new polygon. For adding a vector to a polytope it is the
same. Let −→v denote the vector added then

P +−→v = {q1 +−→v , q2 +−→v , . . . , qn +−→v } ,

defines the addition between a polytope and a vector. Again the result is a new
polytope.

Rotating a point p by an angle α returns a point q where the resulting point
q is the point p rotated a around origo. In two dimensions it is computed as
following

α · p =

[
cosα − sinα
sin α cosα

]
×

[
p1

p2

]
,

which can be written as

(p1 · cosα− p2 · sin α, p1 · sin α + p2 · cosα) .

This is also shown in chapter 5 of the book by Foley et al.[5] and the operation
can also be applied to a polytope is the same way as the addition and subtraction
operator.

2.3.2 Minkowski Sum

The Minkowski Sum is widely used in motion planning, because it has the
property to enlarge a polygon with another polygons size. An example of this
usage is the construction of a configuration space for a translating polygon. Here
each obstacle is enlarged by the polygon size and reducing a motion planning
problem to a point movement problem, which is seen in chapter 13 in the book
by Berg et al. [4].

Formally the Minkowski Sum is defined as the vector sum of two sets of
vectors and is denoted ⊕. Let S1 be a set of n vectors and S2 be a set of m
vectors. Then the Minkowski Sum of S1 and S2 is :

S1 ⊕ S2 = {p + q | p ∈ S1 ∧ q ∈ S2} .

It is required that, the points of both sets are of the same dimensionality.
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2.4 Spaces

In motion planning there is in general three different spaces which are used,
these are the work space, the Configuration Space (C-Space) and the free space.
The work space represents a real model of the problem while the C-Space is
an approximated problem space. The C-Space was introduced in the article by
Lozano-Perez [14] and is described in Chapter 13 of the book by Berg et al. [4].
The definition of the work space, the C-Space and free space is in Section 2.4.1,
Section 2.4.2 and Section 2.4.3, respectively.

2.4.1 Work Space

The work space is the actual representation of the real world but in the approach
used in this thesis there are some simplifications. There are no curves in the
workspace, which have the effect that arcs in the real world has to be represented
as polygons at some resolution in the work space. There is a limit on the
precision of the work space, hence it will not be a precise representation of the
real world. A consequence of the representation is that the obstacles in the real
world has to be over approximated in the work space to ensure the validity of
paths. However this might cause paths in the real world to not be omitted in
the work space.

The work space is a polytope in R
n that contains a set of obstacles S =

{P1, P2, . . . , Pi} where each obstacle is represented as a simple polytope. The
object can be placed into the work space through a reference point R. This
reference point is an e-tuple R = (γ1, γ2, . . . , γe) where m =

(
n
2

)
and n is the

dimensions of the work space. The first n points are the position of the reference
point and the rest is the angles specifying the orientation of the object. Hence
a reference point is then R = (γ1, . . . , γn) + (γn+1, . . . , γm) containing both a
position and a orientation.

2.4.2 Configuration Space

The C-Space is a transformed work space, by some function or algorithm that
takes a work space as input and generates a C-Space as output. A configuration
can be seen as a translated reference point for the polytope in the workspace.
I.e. a configuration describes how the polytope can be placed in the work
space. The definition of a configuration to a workspace in two dimensions with
a linked polygon that translates and rotates is as a “polytope” in the non-real
space R

2× [0 : 2π[m. Here m is the number of orientations which is the number
of polygons linked together instead of a polygon in R2 as the work space. A
configuration c in C-Space is a point in the C-Space. The point is a n-tuple
on the form c = β1, β2, . . . , βn. As the work space, the C-Space contains a
set of obstacles S = {P1, P2, . . . , Pi} but each of them is represented as either
a polytope or a polytope with curved edges, that can be seen as a sort of
“cylinder”. The curves comes from the orientation where the obstacles enlarged
are rotated along the z-axis. Figure 2.1 shows how translation alone does not
increase the dimensionality of the C-Space but the translation and rotations
do. Further it shows how the rotation and translation make a cylinder liked
obstacle.
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(a) The C-Space of a translation object. (b) The C-Space of a rotating and translat-
ing object.

Figure 2.1: Two figures of a configuration space obstacle where Figure 2.1(a) of
a translating object and Figure 2.1(b) of translating and rotating object. Both
figures are takes from Latombe’s lecture notes[13].

The concept cylinder is not entirely correct. It makes more sense in a 2D
work space where objects can be translated and rotated. Here the configuration
is a three tuple c = (x, y, α) where x and y describes the x- and y-coordinate
of the reference point and α describes the orientation. The C-Space is a non-
Euclidean space : R

2 × [0 : 2π[. The reason for this is that angles in ]−∞ : 0[
or [2π : ∞[ can be described as an equivalent angle in [0 : π[. Hence, the
configuration space of a translating and rotating object has a topology, which
is like a cylinder.

Each of the obstacles can be seen as a set of i points S = {p1, p2, . . . , pi},
where each point is represented as a n-tuple, p = (β1, β2, . . . , βd) where n is the
dimension of the C-Space.

Configuration Space Obstacle

The Configuration Space Obstacle (C-Obstacle) represents the area which is
forbidden to the moved object, if the object is represented as a configuration.
This means that the motion planning can be lowered to path planning for points
instead of the object. The simplest form for C-Obstacle is an obstacle for a
convex translating polygon which is a Minkowski Sum of a work space obstacle
and the inverse translating polygon. It is assumed that the obstacles are convex.

The C-Obstacles of convex obstacles for a translating convex obstacle are
defined as a set of operations. Let Ro define the object at origo, let P define
an obstacle in the work space and finally Pc define the C-Obstacle. To move
an object around let Ro(β1, . . . , βd) define the object at origo. Let r define the
position (β1, . . . , βd) hence Rr is the object at position r. Now the C-Obstacle
Pc of obstacle Px is defined as the set of points where the object Po and the Px

intersects, Pc = {(β1, . . . , βd) : Po(β1, . . . , βd) ∩ Px 6= ∅}.

Theorem 1 Let R be a translating object and let P be an obstacle, then the
C-Obstacle of P is P ⊕−Ro.

Proof. To prove Theorem 1 the following property has to hold:

p ∈ Rr ∩ P ⇔ r ∈ P ⊕ (−Ro).
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It is assumed that Rr ∩ P 6= ∅.
To prove p ∈ Rr ∩ P ⇐ r ∈ P ⊕ (−R0 let p ∈ Rr ∩ P . As Rr − r = Ro the

following is obtained:
p− r ∈ Ro

m
−p + r ∈ −Ro

By adding the p ∈ P the left side becomes a member of the Minowski Sum
P ⊕ (−Ro):

p− p + r ∈ Rr ∩ P ⊕ (−Ro) ⊂ P ⊕ (−Ro)
⇓

r ∈ P ⊕ (−Ro)

To prove that r ∈ P ⊕ (−Ro)⇒ p ∈ Rr ∩ P let q ∈ Ro be a point at origo.
Then there exist a point p ∈ P in the obstacle such that r = q + p and it can
be determined that p ∈ Rr as p = q + p− q = r− q. As p ∈ P by assumption it
can be concluded that p ∈ Rr ∩ P . �

2.4.3 Free Space

The free space can be defined as the space where the moving object is allowed to
move within. There are two types of free space: the free space of the workspace
and the free space of the C-Space.

Let Wfree be the set of points that defines the free space in work space, let
S be the set of obstacles in the work space and let p be a point in work space.
Then the free space of the workspace can be defined as the set of points where

p ∈ Wfree iff ∀P ∈ S : p /∈ P ,

and where the p ∈ R
n.

Let Cfree be the set of configurations that defines the free space in C-Space,
let S be the set of C-Obstacles in the C-Space, and let c be a point in C-Space,
hence a configuration. Then the free space of the C-Space can be defined as the
set of configurations where

c ∈ Cfree iff ∀P ∈ S : c /∈ P .

There is one difference from the free space of the workspace and that is c =
(β1, . . . , βn)× (βn+1, . . . , β2n)× . . .× (β(m−1)n+1, . . . , βnm) and c /∈ R, unless it
is the configuration for a point problem or a translating polygon.

2.5 Road Map

The set C is the set of possible configurations and the set Cfree is a subset
of S with free configurations, e.i. the configurations in Cfree are collision free.
The configuration s is the start configuration and the configuration g is the goal
configuration. The road map is an undirected graph R = (C, E) where the set
C is a subset of the set of free configurations Cfree, and the edges in E are legal
paths between configurations. I.e. for a configuration c1 and a configuration
c2 there is a an edge (c1, c2) ∈ E. An edge in E is not just a path between



2.5. ROAD MAP 13

two configurations. The path has to be a feasible path. A feasible path is a
path where the object can go from one configuration to the other configuration
without colliding with the surrounding environment and keep its own movement
constraints. The set of path E is only a subset of all possible paths between
configurations in C.
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Chapter 3

Motion Planning

Algorithms

In this section several solutions for solving the Motion Planning (MP) prob-
lem will be described and discussed. The article of Hwang et al.[9] divides
the approaches into three groups. At least one approach from each group is
investigated further in this chapter. The three groups are: the skeleton ap-
proach in Section 3.1, the cell decomposition approach in Section 3.2 and the
Potential-Field approach in Section 3.3. The skeleton approach contains the
Visibility Graph (V-Graph) structure, the slide structure and the Probabilistic
Road Map (PRM) structure. The cell decomposition contains two simple struc-
tures, the grid and the quad-tree representation. The potential field approach
introduces the original approach. In Section 3.4 the different approaches are
compared by how to construct the structure, how to query the structure, and
the memory usage.

3.1 Skeleton

There are several different algorithms to solve MP that goes under the term a
skeleton approach. The approach is to generate a Road Map (RM) that consists
of a set of way points and paths between the way points. This means to gen-
erate a graph representing paths of movement. These paths can be generated
differently and with different effects. This road map can then be queried to find
motions that can be used to get from a start configuration to a goal configura-
tion. In this section three different skeleton structures will be investigated: the
V-Graph from Chapter 13 of the book by Berg et al.[4], the slide structure by
Perez [15][14] that builds on the V-Graph, and the PRM by Kavraki et al.[11].

3.1.1 Visibility Graph

The main idea in the V-Graph is to construct a graph G for point movement,
where the set of vertices V is the set of all vertices of all obstacles and E is the
set of all edges where the two vertices in the edge is visible to each other. Let
Os Let a vertex vi ∈ V and let a vj ∈ V then an edge e = (vi, vj)) is a straight
line between these two points. Two vertices are visible if the edge between them

15
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does not intersect any edges of the obstacles. The query for finding a path for a
point is from a start configuration s to a goal configuration g is connecting both
configurations to the graph and then find the shortest path or report failure if
none exists. The connection of the configurations is done by adding edges to
the vertices that are visible for the node. Finding the shortest path is done with
Dijkstra’s shortest path algorithm.

g

s

Figure 3.1: Figure of the visibility graph, where the shaded areas are obstacles,
the s is the start configuration and g is the goal configuration. The shortest
path is marked with wider edges.

Let n be the number of vertices in the graph, then for point path planning it
is trivial to see that the algorithm can run in O(n3). That is done by connecting
each vertex to all the other vertices, each connection is then tested whether it
intersects any edges of the obstacles, unless it represents the edge. If the edge
intersects then the point is not visible else the point is visible and the edge is
added to the edge set E of the V-Graph. However the algorithm can be improved
to O(n2 log n) by a V-Graph construction algorithm given in the book by Berg
et al. [4], which was proved in the article by Nilsson[16]. The chapter describes
how the V-Graph is constructed with three functions : a construction function
“VisibilityGraph” that generates the graph, a function that create a set of visible
vertices function “VisibleVertices” which finds visible vertices for a given vertex
and finally “Visible” that test whether two vertices are visible to each other.
The construction function is the only function looked into in this thesis because
the other functions are only interesting if the running time has to be shown.
To make the V-Graph work for harder problems than point movement the C-
Space is generated for that problem. The C-Space is then used to construct a
V-Graph, that can be queried to find the shortest path between configurations.
Finding shortest paths in three dimensions or more is known to be a NP-Hard
problem.

Construction

The construction part of the algorithm takes a set of disjoint obstacles and it
only works for point movement problems. It initializes the V-Graph with an
empty edge set and a set of vertices corresponding to all vertices of all the
obstacles. Then for each vertex in the set of vertices v ∈ V it finds the set W
of visible vertices for vertex v. Now W contains all vertices visible for V , and
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VisibilityGraph(S : set of disjoint obstacles)

V ← all vertices in all obstacles

E ← ∅
G ← (V , E) : G is the Visibility Graph

∀ v ∈ V
W ← VisibleVertices(v, S)
∀ w ∈ W

E ← E ∪ (v, w)
return G

Pseudocode 3.1: Pseudo code showing the construction of the V-Graph.

this information must be stored in the graph G, so for each vertex in the set
of visible vertices w ∈ W an edge from the two vertices e = (v, w) is added
to the set of edges E in the V-Graph. Pseudo Code 3.1 shows this part of the
algorithm.

What is interesting about the construction function is the input. It demands
that the input is a disjoint set of obstacles and the construction algorithm only
works for point movement problems. Hence something must be done to the
input if a V-Graph should be constructed for harder problems than the point
movement problem.

Visibility Graph for Translating Polygon

Solving the problem of motion planning for a translating polygon with a V-
Graph is done as follow: Create a C-Space for the work space and the polygon
translated. This is done by generating new obstacles enlarged by the Minkowski
sum between the obstacle and the polygon. The C-Obstacle in C-Space is used
as the set of obstacles to the “VisibilityGraph” function and the V-Graph is
generated for the translating polygon. The C-Space is still within two dimen-
sions which ensures that the V-Graph can be calculated with O(n2 log n) where
n is the number of vertices in all the obstacles of the C-Space.

Visibility Graph for Harder Problems

For a polygon in two dimensions that both rotates and translates the C-Space
becomes three dimensional. Canny [3] proved in 1987 that the problem of com-
puting a shortest path connecting two points among polyhedral obstacles in
three dimensional space is NP-hard. This renders the visibility graph construc-
tion for a polygon that both rotates and translates to be NP-Hard. However
the slide structure in Section 3.1.2 uses visibility graphs where it approximated
the shortest paths for NP-Hard problems.

Conclusion for Visibility Graph

The V-Graph can find the exact shortest path for a point movement and polygon
translating in O(n2 log n). If the polygon rotates and translates the C-Space is
in three dimensions and the problem becomes NP-hard. The conclusion must
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be that V-Graphs alone are not viable for harder MP problems such as linked
polygon movement.

3.1.2 Slide Structure

The slide structure builds on the V-Graph, by constructing a C-Space and if the
C-Space is three dimensional then divide it into n slides, where n is dependent on
how great the rotation resolution should be. A slide is a projection of a part of
the three dimensional C-Space into the plane. Dividing the C-Space is done by
slicing through the z-plane in some step size. Smaller step size results in better
resolution of the work space into the C-Space. Each slide is then projected down
to (x,y)-plane, where it is the outline of the obstacles that are the obstacles in
the slide. When all slides have been created a visibility graph is constructed but
the search space has been extended. It is possible to connect a vertex from one
slide with a vertex from neighbour slide. If the MP problem is for a translating
and rotating polygon then the C-Space generated is three dimensional where
the third dimension is the orientation of the object moved. The cost of such
an edge might be the Euclidian distance between two configurations and some
cost for the rotation. The rotation cost is added to make straight path without
rotations a preferred choice. After the construction of the V-Graph the shortest
path in the graph can be found by using Dijkstra shortest path algorithm.

Conclusion for Slide Structure

A V-Graph created with the sliding algorithm can handle the case of a multi
linked polygon that translates and rotates. The path found may not be the
shortest path in workspace, and there might exist a path in workspace that is
not in the C-Space. The V-Graph may get very large if the obstacles contain
many vertices.

3.1.3 Probabilistic Road Map

A PRM is a RM between different configurations, and the initial phase of the
PRM construction is the selection of nodes done with done with random po-
sitions . The PRM is a graph, where each vertex in the graph represents a
configuration, and each edge in the graph is an object that can move by a fixed
type of movement, between two different configurations without colliding with
the surrounding environment. Further if the object has constrains on its move-
ment and/or has many Degrees Of Freedom (DOF) these constraints has to be
kept as well, while the object is moving between two configurations, before an
edge is legal.

The PRM algorithm is, in the original article by Kavraki et al. [11], divided
into two phases: a learning phase where the road map is constructed, and a
query phase where the shortest path, if any exists, in the road map between two
configurations is found.

Learning Phase

The learning phase is the phase that builds the probabilistic road map, that is
used in a later phase. Basically the learning phase is divided into two steps.
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N ← ∅
E ← ∅
loop

c ← a randomly chosen free configuration

Nc ← a set of candidate neighbours of c chosen from N
N ← N ∪ {c}
∀n ∈ Nc in order of increasing D(c, n) :

if ¬same-connected-component(c, n) ∧ ∆(c, n) then

E ← E ∪ {(c, n)}
update R’s connected components

Pseudocode 3.2: Construction step of the PRM algorithm.

Step one is the construction step and step two is the expansion step. The first
step must always be done before step two.

Construction Step

This step constructs the PRM by selecting random configurations in cfree.
When enough configurations have been selected the configurations are connected
if they have feasible paths. To speed up the algorithm only configuration within
a certain distance, that are not in the same connected component as the new
configuration, are attempted connected. This prevents cycles being created in
the construction step, because a configuration is never connected two times to
the same connected component. The absence of cycles does not make the road-
map worse in the sense of possible reachable configurations, it can only make
the paths longer. Shortcuts will be handled in the learning step or in the query
phase by a smoothing technique instead of using time in the construction step.
Pseudo code 3.2 shows how the construction step works and is taken from the
original article by Kavraki et al [11].

Creation of random configurations happens by a uniform random sample of
cfree. Such a configuration can be achieved by uniformly choosing each of its
coordinates from an interval of values. The intervals correspond to each DOF.
The obtained value is then checked for collisions with the obstacles, and if it is
collision free it will be added to N .

The local planner checks the line segment between two configurations for
collisions and joint limits. Checking the joint limits is straight forward, but
collision detection is somewhat harder to do. Collision detection is done by
discretizing the segment into a number of configurations c1, c2, ..., cm, such that
no pair of consecutive configurations (ci, ci+1) are further away from each other
than some ε, where ε > 0. To contain this movement the moving object is
grown with ǫ which gives an enlarged object. Then for each configuration from
c1 to cm is tested if the enlarged object at the configuration, is collision free. If
none of the m configurations yields a collision the path must be collision free.
Enlarging the moving object grown by ε only has to happen once because ε is
a constant in the local planner.

Selection of node neighbours is done by a distance function. If a distance
function D yields a value smaller than some maxdist then the node is in the
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neighbourhood of the node. This can be defined as

Nc ⊆ {c ∈ N | D(c, c) ≤ maxdist} ,

where nodes in N is considered candidate neighbours of c if they are within the
maxdist distance from c.

The distance function reflects the chance that the local planner will fail to
compute a feasible path between the pair (c, n) of configurations. The distance
function D(c, n) is used to both sort and construct the set Nc for candidate
solutions of each new node c:

D(c, n) = max
x∈object

||x(n) − x(c)|| ,

where x is a point on the object, x(c) is the position of x when the object is at
configuration c, and ||x(n) − x(c)|| is the Euclidean distance between x(c) and
x(n).

Expansion Step

In easy scenes the number of nodes, that are generated by the first step, are large
uniformly scattered on cfree and the connectivity in R is also high. But if cfree

is more constrained then R contains a few large components and several small
component, and there is low connectivity. This does not effectively capture the
connectivity of cfree.

The idea, is that the expansion step expands the connectivity of R. If the
R has no connectivity at some area but cfree has then this area is a hard and
narrow region, and the connectivity needs to be expanded. The expansion step
works by selecting some nodes from N that are likely to be in such an area
and expanding them. Expanding a configuration c means adding a new free
configuration from the neighbourhood of c, and adding the configuration to N .

For the expansion step a probabilistic scheme can be used. For all node c in
N there is associated a positive weight w(c). This weight is a heuristic measure
of the hardness of the region around c, the higher the weight the harder the
region. The weight is normalised so that they all sum to 1, and then a node is
selected from N with the following probability

Pr(c is selected) = w(c) .

This node is then expanded. Then the selection and expansion is continued for
some iterations.

The definition of the heuristic weight w(c) is defined as follows. If the local
planner often fails to connect c to other nodes, then c is in a difficult region.
The function should to some extend depend on the input scene.

• The failure ratio function rf (c) is defined by

rf (c) =
f(c)

n(c) + 1
,

where n(c) is the number of times the local planner has attempted to
connect c to another node, and f(c) is the total number of times the local
planner failed.
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• In the beginning of the expansion step all nodes weight are scaled appro-
priately so they sum to 1

w(c) =
rf (c)∑

a∈N rf (a)
.

For expansion the Random Bounce Walk (RBW) is used. This works by
moving in a random direction until a collision occurs, then a new random di-
rection is chosen. There is a limit on how far it can go from its start position
by limiting the computation time allowed for each node c, that is chosen for
expansion. If an expansion starts in node c and ends in node n, then the edge
(c, n) is included in R. The fact that the node c is also in the same connected
component as n is recorded and n is attempted connected to the rest of the
network as in the construction step.

When the expansion step is over the remaining small components of R are
removed. Small means that the component has less nodes than some min-
component percent of the total number of nodes.

Query Phase

During this phase paths between arbitrary start and goal configurations are
found. A query consists of a start configuration s and a goal configuration g,
and these two nodes are attempted connected to two random nodes in R (s
and g) with feasible paths Ps and Pg. If no such paths exists the query fails,
otherwise the path P that goes from s and g is computed. Finally a path from
s to g is computed by concatenate Ps, P and Pg reversed.

The Paths Ps and Pg is computed in the following way. Try to connect s to
R by choosing the node s from R in increasing order by the distance function D
and using the local planner. This is done until a feasible path is found within
the threshold of maxdist. If all connection attempts fail one or two random-
bounce walks are performed, where instead of adding the node at the end to R,
the node is attempted connected with R with the local planner. As soon as s is
successfully connected to R the same strategy is applied with g.

It may be that the road map consists of several connected components Ri

for i = 1, 2, ..., p. This happens when the free C-Space (Cfree) is not connected
or the road map is not dense enough. When there are several components the
start configuration s and the goal configuration g is attempted connected with
nodes from one of the components, in increasing distance from s and g, one
at a time. A component Ri has the distance to s, g defined by the maximum
distance between the distance D(s, Ri) and the distance D(g, Ri). This returns
failure when it, for all of the components fails to connect s and g to the same
component.

If the path planning fails frequently it indicates that too little time is used
in the learning phase. To fix this the current run can be extended by extending
the current road map to get a more dense road map.

Conclusion for PRM

Generating random initial points is a fast way to divide the space into partitions
and the connections of these can be seen as finding the easy paths in the work
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space. Configurations that have failed to be connected seem to be a good
indicator of where there are hard regions in the workspace. Hard areas can also
exist at nodes that have a low failure rate, but these may also be selected for
expansion due to the random selection of the node that needs expansion. On
the other hand, it might select the wrong nodes for expansion, but this is very
unlikely. The road map only uses space linear in the number of configurations,
and the number of configurations can be controlled by disallowing the creation
of too many configurations in the construction phase. The query phase can be
done pretty fast depending on how much time one would use on optimising the
path found if such a path exists. However the road map might fail to find a
path even though such paths exist.

3.2 Cell Decomposition

The main idea in cell decomposition is to decompose the free space into cells
and then a search for a path in the cells is done afterwards. The article of
Kondo [12] describes an approach to solve motion planning problems with six
degrees of freedom using a cell decomposition. A classical example of a cell
decomposition technique is to generate a grid. Cells not containing any part of
an obstacle is part of the free space and cells that fully contain an obstacle is
not a part of free space. How the cells that contain both free space and some
part of an obstacle is different from strategy to strategy. Some prefer to look
at these calls as not part of the free space while others will investigate these
cells more thoroughly. A quad-tree representation of the free space is a strategy
where the cells containing both obstacle and free space is divided into four cells
to get a higher resolution. However dividing a cell into four cells might produce
more cells that need to be divided into four new cells. This continues until a
wished resolution is reached, otherwise the algorithm would run forever.

The quad-tree approach is more efficient if you look at the number of cells
that is needed to represent the free space. The resolution of the quad-tree
is actually a bit greater in Figure 3.2(c) than the resolution of the grid in
Figure 3.2(b). The two examples clearly show how memory consuming a grid or
quad-tree representation can be. There is only need for seven points to represent
the obstacles in the workspace, but there are several more cells representing the
free space.

After the generation of the map of cells an A* algorithm can be used find a
path from a start position to a goal position. The A* algorithm is a memory
heavy path finding algorithm, but is the best option for finding paths in maps
of cells compared with other algorithms such as depth-first, breath-first or hill
climbing.

The two approaches to cell decomposition investigated in this section, are
created for point movement. However, it is possible to extend them to work on
harder problems of MP. Instead of feeding the algorithm with the workspace,
feed it with the C-Space that represents the corresponding MP problem. When
the MP is rotation of polygonal movers or harder, then the C-Space is generated
three dimensional. Which is not a problem to make a grid in three-dimensions
and instead of using a quad-tree an oct-tree can be used. The search through the
grid can still be done by the A* algorithm even though it is a three dimensional
problem.
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(a) A workspace with two obstacles. (b) A grid divided space.

(c) A quad-tree divided space.

Figure 3.2: The resulting free space from two types of cell decomposition is
generated. Figure 3.2(a) is the space that is being decomposed. Figure 3.2(b)
and Figure 3.2(c) is how the space looks after decomposition by grid and quad-
tree respectively.

The cell decomposition is not an exact MP algorithm in the form that not
all paths in the real world can be found in the represented world. The reason for
this is the cells that contains both obstacle and free space, if they are handled
as a part of the obstacle a part of the free space will be lost. It is possible
to handle these mixed cells separately so the free space in these will not be
lost. However if the problem is a MP for a translating and rotating polygon
or harder problem it will loose exactness on the C-Space. It is possible to use
the two simple cell decomposition approaches to solve a MP problem. There
are several other algorithms that are using a form of cell decomposition to solve
the MP problem. But the two simple approaches basically explain how the cell
decomposition works.

An MP problem can easy be solved by cell decompose the configuration
space and the search the free space the for a path. However the problem with
this problem is the high memory usage of both the representation of the free
space and the search algorithm itself. If the A* search algorithm is used then
the path found might not be the shortest, and the cell decomposition is not
exact for hard problems.
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3.3 Potential-Field

In the potential-field approach, obstacles are assumed to carry electrical charges,
and the resulting scalar potential field is used to represent the free space. A
repulsive force ensures that no collisions occur between the moving object and
the obstacles. This is the definition used by Hwang et al. [10], [8].

The MP problem is divided into two stages. The first stage is to find all
topological different paths between the start and goal configurations. Then the
shortest and most promising candidate path is selected for further investigation.
The second stage uses three algorithms that modifies the candidate path to a
final path and calculates the orientations of the moving object along the path.

The potential function used to represent the obstacles is one that has its
maximum inside the obstacle region and decreases as a function of the distance
to the obstacle. When there is multiple obstacles the value of a given point in the
space is the largest value of the potential functions of the obstacles represented.
Let the potential function in article by Hwang et al. [10], [8] be an example.
Here they let g(x) ≤ 0, g ∈ Lm, x ∈ Rn be the set of inequalities describing a
convex region of the obstacle where L denotes a set of linear functions and x
denotes the location of a point, then the scalar function

f(x) =

no of bound. seg.∑

i=1

gi(x) + |gi(x)|

is zero inside the region and grows linearly as the distance from the region grows.
Figure 3.3 shows the properties of the function f(x).
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g(x) > 0
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g(x) > 0

g(x) > 0

g(x) > 0

g(x) > 0

g(x) = 0

Figure 3.3: The sub function for the potential function. Inside the convex
obstacle is the value 0 and outside it grows the further away it is from the
obstacle.

Then let the potential function p be defined as p(x) = [δ+f(x)]−1, where δ is
a small constant. This function will have a maximum value inside the obstacle
and will decrease linearly with the distance to the region outside the region.
The Figure 3.4 represents an obstacle potential values, where the obstacle itself
have a maximum value and the value decreases with the distance to the obstacle
outside it. A Minimum Potential Valley (MPV) is defined as the region between
two obstacles where the boundary is defined as the line where they have the same
potential value. The partitions of the MPV is similar to the Voronoi Diagram.
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Where the Voronoi Diagram uses the Euclidian measure distance instead as a
potential function.

Figure 3.4: The potential field around a triangular obstacle. The figure is taken
from the article [10].

The topological structure of the free space is then represented with a graph.
The construction of potential paths searches through the MPV to find paths
that connects the start and goal position. The search of potential paths starts
at the start position and adds this node to the graph. Then a circle of maximum
radius possible radius without intersecting any obstacles is generated. The po-
tential along the circumference is calculated at discrete intervals, and the points
with locally minimum around the circumference is marked as neighbours of the
start node. The neighbours are then again treated as the start configuration
s to generate neighbours for themselves. The same procedure is used for the
goal configuration g. The graph construction is show in Figure 3.5 where the
potential paths from s to g can be seen. The circles on the picture represents
the circles needed to expand the search and the small dots shows the minimum
potential around the circles.

s

g

(a) The initial start of the potential path.

s

g

(b) Three potential paths that can be found
in this scene

Figure 3.5: Figure 3.5(a) is a scene with a start configuration s and a goal
configuration g and Figure 3.5(b) is three potential paths in the scene going
from s to g.

The search for the best path in the MPV starts by selecting the path that
is shortest and least likely to cause collisions between the object moved and
the obstacles. The chance to collide with an obstacle is estimated with a cost
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function that only uses the width and length of the moving object. In the article
by Hwang et al. [10]. the cost function is defined as

C =

∫
w(x)|dx| ,

where the weighted factor w(x) is defined as

w(x)





maxpotential for x ≤ a
2

z(x) for x < b
2 , x > a

2
1 else

.

Here a is the minimum width and b is the maximum length of the moving object,
and the function z(x) is some function that increases in value when x is going
towards b. At a and b the value of z(x) is equal to the max potential value and
one, respectively. This represents, that it is not possible to pass a region less
than half the width of the moving object and if the region is more than half the
size of any length of the moving object it can pass the region at any orientation.
When the cost of each branch is determined, dynamic programming is used to
find the minimum cost path. This path is then used as a potential path.

The potential path is passed through three different algorithms to determine
a final collision free path and the orientations along the path for the moving
object. The three algorithms are: parallel optimisation algorithm, serial opti-
misation algorithm and sidetracking algorithm. These algorithms repair a given
path, check for collisions and orientate the moving object. This means that they
can reject a path if they find that the path is infeasible.

The algorithm takes big steps when possible, in the open regions, and small
steps in narrow regions. A potential path is then looked into for further inves-
tigation to check for collisions and to find the orientations of the moved object.
The algorithm has a weakness when there are many candidate paths and all of
them fail, meaning the algorithm might run for a long time to report that no
path exists.

3.4 Comparing Approaches

Each approach has been represented in the previous sections but it is not clear
which approach, algorithm, or structure that is the most suitable for further in-
vestigation for a motion planning problem of a translating, rotating, multi linked
polygon. This section will compare the approaches and reason for advantages
and disadvantages.

In Section 3.4.1 the exactness of each approach is investigated, where only
the V-Graph is exact for simple problems. Another interesting thing is the
construction, Section 3.4.2, of each approach, how to query, Section 3.4.3, and
the usage of memory, Section 3.4.4. Finally Section 3.4.5 contains the reason
why the PRM approach is selected for further investigation.

3.4.1 Exactness

In an exact motion planning approach an existing path between two configura-
tions is always found. For non exact approaches there exist paths that cannot
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be found. None of the structures are exact for the motion planning problem of
a translating and rotating multi linked polygon.

Table 3.1 indicates whether a structure is exact for each of the MP problems.
The problems are abbreviated in the table, the four problems are : P is the point
movement, T is the translation of polygons, T+R is the translation and rotation
of polygons, and ML is the translation and rotation of multi linked polygons.
Most structures are exact for both a point and a translation of polygons with
the exception of the cell decomposition. The reason is that it is not possible to
make a resolution high enough to contain all information about the obstacles.
For motion planning problems harder than translation of polygons none of the
structures are exact.

Structure P T T+R ML
V-Graph Yes Yes No No
Slide structure Yes Yes No No
PRM Yes Yes No No
Cell Decomposition No No No No
Potential Field Yes Yes No No

Table 3.1: Table showing whether a structure is exact.

In V-Graphs the edges indicates that a straight line can be drawn between
the two vertices. The problem is that the C-Space will contain curves when a
polygon is translated and rotated, thus it is not clear how to define visibility
along curves. Due to the fact that the slide structure builds on V-Graphs and
does not slice up the C-Space before it becomes at least three dimensional. This
means the slide structure is precise for the two easiest problems as the V-Graph.
The PRM is also exact for the two simplest problems and looses the exactness
on the rotations while these has to be approximated to keep straight lines that
are easier to test for intersection. For the two simple problems there are no
paths that cannot be found in the PRM. If the construction algorithm is given
unlimited time. Cell Decomposition is however the worst structure when looking
at the exactness. The two proposed algorithms are not exact even for motion
planning of a point, while they are making the obstacles discrete and thus loose
the exactness. Finally there is the Potential Field which is exact for motion
planning of point movement, because the potential value is only maximal at the
border and within the obstacle. The translation of a polygon can be a point
movement problem instead due to a creation of a C-Space.

Only structure the Cell Decomposition is not exact for any approach. The
rest are exact as long the polygon is only translation. However, adding rotations
makes all approaches loose exactness due to approximations are used to speed
up the search.

3.4.2 Construction

In the construction of the structures there are several parameters that can make
it possible to use the workspace otherwise a special C-Space has to be created
before the structure is ready.

V-Graphs need a special C-Space, where the obstacles are enlarged, before
translation of polygons can be handled. For harder problems there are no solu-
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tion for the pure V-Graph, but the slide structure can be used instead, which
builds on the V-Graph. This structure also demands a special C-Space for the
motion planning problems of polygons or linked polygons. Another problem is
that the construction of the V-Graph demands that the polygons are a disjoint
set of polygons. This influence how the construction of the C-Space is done.
When the obstacles are enlarged several overlaps between obstacles might occur.
To make the obstacles a set of disjoint obstacles a union of the obstacles must
be created. This can be done with the map overlay algorithm defined in chapter
2 in the book of Berg et al. [4] which builds on the original article of Bentley et
al. [2]. The PRM does not need any specific C-Space to make the construction
work. While it checks for intersections by positioning the object moved into the
workspace. In Cell Decomposition a C-Space is needed for motion planning for
translating and rotating polygons or harder problems. There is no constraints
for the input so grids, quad, or oct-trees can be generated from input with curves
or joint polygons. The Potential Field approach does not have any constraints
on the input, and it is not dependent on a specific C-Space.

There are two approaches that do not need specific C-Space to construct the
structures to solve a motion planning problems harder than point movement.
The two approaches are the PRM and the Potential Field.

3.4.3 Query

There are different algorithms needed to query the different structures and some
of these queries repair the paths found in the structure before outputting them
as the result. By repair is meant that the path found might have a shortcut
or it can be smoothed. Other algorithms might have illegal paths from the
construction that are discarded upon query.

The V-Graph and the slide structure builds up a weighted graph. A query
on these approaches is the Dijkstra shortest path algorithm, and there is no
need for any form of repair after the search. So all the time used on query is
used for shortest path search in the path. But, for the PRM it is quite different
because the road map constructed is a graph without cycles so there might
be shortcuts in the graph. Additionally the path could contain unnecessary
rotations and the path might need smoothing. All of these path optimisations
can be done in the query of the PRM or some of the work can be done at the
construction. Most of the time will be used for repairing the path rather than
searching a graph without cycles. To query a Cell Decomposed structure the
A* search algorithm is proposed, but other algorithms such as the breadth first,
depth first, or hill climbing can be used. It is possible to do some repairs on
the path after the search, but the suggested algorithm does not propose it. I.e.
most of the time will be used for the search. The Potential Field approach
searches through a set of potential paths, where the paths might not be legal.
A candidate path needs to undergo three different algorithms to optimise the
length and to orientate the object along the path. The approach is not divided
into two phases of construction and query like the others while it generates the
potential paths from the start configuration and the goal configuration. This
influence the query speed, so a query is very expensive because there is no
construction phase to store general information.

The V-Graph and slide structure approach have a very fast query speed,
when the path found does not need any repair. Cell Decomposition is also a
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fast to query on, when using A* search algorithm, though the path might need
repairs. Then there is the PRM which need repairs to optimise the queried path
from the structure, though some of the query time can be saved by using more
time in the construction phase. Finally there is the Potential Field approach
which needs more time in the query phase due to no storage of general informa-
tion. It seems like the slide structure is best when it comes to the query time,
however the PRM only needs to search a non-cyclic graph and then repairs the
path. This is good a path from configuration s to Configuration g is needed.

3.4.4 Memory Usage

It is interesting to make some estimations about the memory usage of the dif-
ferent approaches. If the usage is too big to be in memory it will be cashed
onto the hard disk, which is very time consuming. None of the approaches are
optimised for I/O so if the structure will be cashed out, all operations on the
structure will become very expensive in running time.

The V-Graph and the slide structure are dependent on how many vertices
there are in total at the C-Space. The more vertices, the more likely it is to have
more visible edges. The worst case memory usage for V-Graphs are O(n2) given
that the graph describes a two dimensional problem where n is the number of
vertices. This makes the algorithm dependent on the number of vertices and
not the number of obstacles. The memory usage of the PRM can be controlled
by the number of configurations which are added to the graph. But the more
configurations, the better the RM is to find paths in. I.e. in easy scenes there is
no need for a great number of configurations, thus no need for a great amount
of memory. In hard scenes there is a need for many configurations and a great
deal of memory. However, if the amount of configurations is kept static the
PRM will just report failure on the hard scenes if the space is not investigated
enough. There are two problems with cell decomposition. At first the cell takes
up much space. It consumes O(n ·m) amount of space to the resolution in two
dimensions, where n and m are the number of cells at the x-axis and y-axis,
respectively. For every dimension another factor is multiplied into the memory
usage. The quad- and oct-tree will often save memory but in worst case it is
the same. Then there is the A*-search algorithm, which can be memory heavy
as well. Added together thus makes the cell decomposition approach memory
heavy. The potential field method has a weakness towards narrow corridors,
where the circles used to generate the path are very small. Imagine a workspace
full with narrow corridors. This leads to many small circles, which results in
many nodes in the graph for potential paths.

The worst approach seems to be the cell decomposition approach, though it
can be controlled how much memory it should use by controlling the resolution
of the grid or depth of the quad-tree. The V-Graph and the slide structure can
be very memory consuming but it depends on the given scene. A high number
of vertices can give a high number of edges, which in worst case will consume
quadratic space in the amount of vertices. The potential field approach is also
dependent on the input scene, if the input scene contains many tight regions it
will consume much space. Finally there is the PRM approach where the memory
usage is controllable. Hence it can be kept within memory all the time.
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3.4.5 Choice of Approach

The PRM approach will be looked into in thesis because the structure has some
very interesting features. The construction and the query phase can be divided
into two independent features. When the construction phase is done the RM can
be stored on hard disk, and when a query is needed the RM can be loaded into
memory again. However, this approach has some challenges in the sense that the
algorithm is probabilistic and that it needs many collision detections to connect
two configurations. In this thesis an attempt to lower the amount of collision
detections by approximating the movement instead of making several steps.
The comparison between the original Local Planner (LP) approach and the new
approach will happen through an experimental comparison. The experiment
will count the number of collision tests required for a wide range of problems to
determine the success criteria. I.e. a collision detection only has to happen on
the approximation and not for each step when attempting connection between
two configurations.



Chapter 4

Probabilistic Road Map

Extension

There are several improvements to the original PRM approach given in the
article by Kavraki et al. [11].

There are some articles describing how to improve the sampling of configura-
tions in the initial phase of the PRM. I.e they are looking into other approaches
for the initial step, where the standard is random generated configurations. An
approach could be to lay a grid of configurations as in the article of Sanchez
[17] or the article of Geraerts et al. [6]. The article of Geraerts et al. also de-
scribes the usage of a halting, a cell-based, a Gaussian and two obstacle based
approaches to sample the initial configurations.

However, in the article of Geraerts et al. [6] most of the running time for
the original construction algorithm by Kavraki et al. [11] is used on collision
detections. They are writing about how different collision detection algorithms
can lower the amount of time used on collision detection, and that a binary
search when connecting two configurations is faster than the incremental ap-
proach. The article of Sanchez et al. [18] considers how to test the connection
of two configurations for intersections by making a binary search instead of the
standard linear approach in Kavraki et al. original PRM.

At first in Section 4.1 the movement of the object is looked into, and a
suggestion to approximate the objects movement to save collision detections is
proposed. This change of strategy influences the LP so in Section 4.2 a new LP
is suggested that uses the approximations and a binary search strategy. The
binary search strategy is used because the approximation might be too large
for certain movements of the object. The movement is divided into two sub-
movements which generate a more precise approximation. This can continue
until a desired depth is reached.

4.1 Object Movement

Between two configurations Ci → Ci+1 the problem is to calculate how the
object moves between these two configurations. The object can both translate
and rotate at the same time. Hence the movement is some curve. The normal
approach, e.g used in the original article of Kavraki et al.[11], is to use inter-
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polation and then for each step test for intersection. This approach needs an
enlargement of the object so the path will stay legal. This approach is looked
into in Section 4.1.1. However, using an approximation of the area covered by
the movement could be used to describe the movement of the object as well.
An intersection test of this area will be legal as intersection test for all steps in
the interpolation approach. This approach is described in Section 4.1.2.

4.1.1 Interpolation

The original article of by Kavraki et al. [11] describes the interpolation approach
to connect two given configurations. However, to make sure that the approach
does not accept any illegal paths the object is enlarged by some ε where ε > 0
before interpolating. The enlargement has two parameters: a maximum angle a
and a maximum translation step t. Let r(α) define the function that generates
a rotation matrix for the angle α, let P 2

0 define the original polygon at origo.
Then by rotating the original polygon backwards the polygon P 2

1 can be found

P 2
1 = r(−α) · P 2

0 ,

and the P 2
2 is found by a forward rotation

P 2
2 = r(α) · P 2

0 .

Let f(P 2
from, P 2

to) define a function that generates an approximation polygon
over the rotation between the two polygons. The rotation approximation poly-
gon P 2

x is found by
P 2

x = f(P 2
1 , P 2

2 ) .

Let polygon P 2
t be the polygon containing at least the area that the step size

can cover. Then the ε-enlarged polygon can be found by a Minkowski Sum, as
following

P 2
ε = P 2

t ⊕ P 2
x .

For a linked polygon each of the polygons is ε-enlarged. Figure 4.1 shows
a triangle and the enlarged object after the enlargement. In the example a
maximum angle rotation of 0.1 radians and a step size of 10 are used. The
figure shows how this enlargement makes the polygon much larger and hence it
will be able to cover a movement of polygon with a maximum rotation of 0.1
and maximum step size of 10.

(a) (b) (c)

Figure 4.1: The ε-enlargement of a triangle. Where the original object is in
Figure 4.1(a) becomes the ε-object in Figure 4.1(b) after the ε-enlargement.
Figure 4.1(c) is the object within its enlargement.

The ε-object is then moved from configuration ci towards configuration cj

in small steps with a step size and maximum rotation smaller than the enlarge-
ment. In Figure 4.2 there is an example of an interpolation of the object from
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Figure 4.1 that goes from configuration ci to configuration cj . The figure clearly
shows that the interpolation approach from the original article by Kavraki et
al. [11] covers a larger area than the real movement. The real movement will be
contained in the area covered by the interpolation approach and hence accepting
the connection of two configurations as a legal path. However, a vast amount
of steps is required to get a resolution close enough, to the real movement.

(a) A triangle moving from a
configuration to another con-
figuration

(b) Interpolation movement with
an ε-enlarged triangle

Figure 4.2: The movement of a triangle and the interpolated movement of an
ε-enlarged triangle.

Dividing a movement of an object between two configurations into an inter-
polation of an ε-enlarged object is a simple approach to connect two configura-
tions in the RM. However, the approach has to make steps and for each step
an intersection test against the C-Space or work space has to be done.

4.1.2 Approximation

This section describes how different movements can be estimated. It begins
with the point movement, then line movement, polygon movement and finally
linked polygon movement. Each movement except the linked polygon move-
ment is divided into translation, rotation, and the combination of translation
and rotation. Approximating the objects movement can save intersection tests
when attempting to connect two configurations. The approximation needed is
assumed to be a conservative over-approximation. Let P 2 be the polygon rep-
resenting the approximated area and let S be a set containing all configurations
in the movement from configuration Ci to configuration Cj then

S ⊂ P 2

will describe the conservative over-approximation property of the approxima-
tion. Figure 4.3 shows how a given triangle moves from a configuration Ci to a
configuration Cj and the polygon describing the approximation of the movement
area.

(a) The object moving from a con-
figuration to another configuration

(b) The approximation of the area the
movement covers

Figure 4.3: The movement of a triangle and how the area of the movement is
approximated.
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Point Movement

There are three different methods for moving a point in two dimensional space.
The first is a simple translation, the second is a rotation, and the third is a
translation and rotation at the same time.

If the movement from C to C′ is a translation, then the movement is a line
between p to p′. It is trivial that there is no need to approximate anything.
This case is shown in Figure 4.4(a).

A rotating movement from C to C′ is quite different. This implies that the
movement from p to q is an arc with center point pc, where the lines (pc, p) and
(pc, p

′) has the angle α between them. The idea of the approximation is to make
a triangle that contains the arc. This is done by first finding the two tangent
lines at point p and at point p′. Next the point pr where these two tangent
lines cross is found. Then the three points p, p′, and pr describe the triangle
which over-approximates the movement from p to p′. This is shown in Figure
4.4(b). The argument of why this is true is as follow. The two tangent lines will
always be above the arc and the line between p and p′ will always be below the
arc. Hence the triangle’s area will cover the arc and the over-approximation will
be correct. One assumption needed to make this work is that the angle must
be less than π otherwise the vectors will intersect at the wrong side and if the
angle is exactly exactly π they will never intersect. However, it is convenient to
keep the angle as low as possible to keep the triangle as small as possible. Small
triangles make the approximation closer to the real movement.

Finally there is a movement that combines a translation and a rotation. This
case is harder than the two above, but can be solved by using the rotation case
above. Approximate the rotation at C with the angles α and −α. Then find
the convex hull of the points in the two triangles, and the movement has been
approximated. Figure 4.4(c) illustrates the approximation. At configuration
C and C′ the two triangles’ area are large enough to contain a rotation each.
Now only the translation needs to be taken care of. The point translation is
created be the straight lines between two points. Lines between the six points
and a boundary fix would work but a bounding box will contain the same area
or more. Hence the area surely can contain the movement.

Line Movement

For approximation of a line movement, bounded between the points p and q
there are three cases: Translation, rotation and the combination of translation
and rotation.

Translation movement of a straight line is trivial as it was for point move-
ment. Keep the two lines at c, (p, q), and at c′, (p′, q′), then connect the four
points p, q, p′ and q′ into two lines (p, p′) and (q, q′). These four lines describe
the area affected by a line movement if it is a translation. Hence there is no
need to approximate anything, which can be seen in Figure 4.5(a).

Rotation is harder but is solved in a similar way as a point movement consists
of both a translation and a rotation. Approximate the rotation for each of the
two points p and q. This gives six points p, q, p′, q′, pr and qr. The determine
the convex hull for these points. This yields a simple polygon whose area will
contain the rotation of a line from C to C′. Consider the following properties
when rotating a line less than π around a point pc.
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(a) Point translation move-
ment approximation.

(b) Point rotation movement
approximation.

(c) Point translation and
rotation movement ap-
proximation.

Figure 4.4: The approximation of a point movement: Figure 4.4(a) is the ap-
proximation of a translation of a point, Figure 4.4(b) is the approximation of a
rotation of a point and Figure 4.4(c) is the approximation of both a translation
and rotation of a point.

• Each endpoint p and q moves like an arc.

• If the endpoints are on each side of the rotation center pc there is a point
on the line that moves like an arc.

Each of these properties makes it impossible to draw lines between the points
p, q and p′, q′, respectively. By approximating p and q as rotating points the
movement of these points will be approximated correctly as argued earlier. Now
the problem is to determine the rest of the line is within the approximation. The
convex hull contains the line movement because it will always take end points
from the rotation. If it should not contain the movement there should be a point
on the line that should fall outside this area. However, this is not possible.

An approximation of a line that translates and rotates at the same time is
solved similar to the rotation and translation of a point described earlier, except
for a few changes. Instead of approximating rotation with angle α at one line
it is done for two lines with angle α at C and angle −α at C′. This will give 12
points p, pr1, pr2, p′, p′r1, p′r2, q, qr1, qr2, q′, q′r1 and q′r2. Finally the Convex
Hull of the 12 points will the result in a simple polygon which area covers the
movement of the line. Again consider the following properties when rotating
and translating a line.

• Each endpoint p and q moves in a curve.

• If the rotation is large and the translation small, and the endpoints are on
each side of the rotation center pc there is a point on the line that moves
like a curve.

Again each of these properties makes it impossible to draw a straight line be-
tween the points like the translation of the line. This time each of the endpoints
is approximated as a point that rotates and translates as described earlier,
which validates the endpoints movement. The special point of the line only
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occurs when the movement is close to being a rotation, hence small translation
and “large” rotation. The reason why this movement is within the area of the
Convex Hull is same as with line rotation.

(a) Line translation movement approximation.

(b) Line rotation movement approximation. (c) Line translation and rotation move-
ment approximation.

Figure 4.5: A line going from point p to point q movement approximation :
Figure 4.5(a) is the translation movement approximation, Figure 4.5(b) is the
rotation movement approximation and Figure 4.5(c) is both translation and
rotation movement approximation.

Simple Polygon Movement

There is a simple solution to simple polygon movement this problem that uses
line approximation.

There is a general solution to all three cases of how to approximate the
movement of a simple polygon.

The appropriate line approximation is done for each line of the polygon. The
approximation of line movements is described earlier.

Each approximated polygon from each line approximation is added to a set.
This set will in the end contain approximation polygons for all lines and they
combined will cover the movement of the polygon.
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(a) Polygon translation movement ap-
proximation.

(b) Polygon rotation movement approxi-
mation.

(c) Polygon translation and rotation
movement approximation.

Figure 4.6: The approximation of the different movement types for a simple
polygon that is triangle consisting of the points p, q and r. Figure 4.6(a) is the
translation movement approximation, Figure 4.6(b) is the rotation movement
approximation and Figure 4.6(c) is the approximation of the movement when
there is both a translation and a rotation.

Linked Polygon Movement

At first the approximation of the movement of a linked polygon seems like a
much harder problem to solve. However this is not the case.

This approximation builds on the simple polygon movement from earlier in
this section. Basically this approximation change the translation and the rota-
tion properly for each polygon in the linked polygon. Then each of the polygons
in the linked polygon is approximated like a simple polygon movement with the
translation and the rotation for the simple polygon. Finally the union of all ap-
proximation polygons is the approximation of the linked polygons’ movement.
The only thing that is not clear, is what happens when the translation and the
rotation is changed for each polygon of the linked polygon.

There are different layers of polygons, first there is the root polygon at layer
0. All the polygons connected to layer 0 is in layer 1. Hence, all layers at layer
i is connected to layer i − 1. The translation and rotation of the root or main
polygon is first processed. Then each layer is processed iteratively.

The root polygon is the basis of the configuration. Hence it uses the position
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and the orientation as the translation vector and a rotation matrix respectively.
The polygons of the first layer are connected to the root polygon through

some connection points. Hence the positions of these polygons depend on the
root polygon. The root polygon is the parent of the polygons of the first layer,
and they are the children of the root polygon.

Let the orientation of a polygon of layer one be static, then the three cases
of movement of the object will affect the polygon of the layer one. Any of the
three types of movement of the object will be a the same movement of the root
and the polygon at layer one. The polygon at layer one with no orientation
change can be seen as a part of the root polygon. Hence it will move with the
same parameters as the root polygon.

In the second case let the orientation of a polygon of layer one be non-
static, hence the orientation changes from configuration ci to configuration cj .
In the first case the movement of the polygon of layer one dependents on the
root polygon and is solved by applying the translation and rotation of the root
polygon to the polygon at layer one. Now the polygon of layer one rotate
around the connection point to the root. The movement of the polygon at
layer one is not a curve from the translation and rotation of the root polygon.
Instead it is a curve that contains the change in the orientation between the
two polygons, the translation and rotation of the root polygon. Approximating
rotation and translation of the connection point with the same parameters of
the root polygon gives a convex polygon of that movement. Then the polygon
of layer one is approximated as a polygon, described earlier in this section, with
a rotation of α0 + α1 around the connection point and no translation. But at
the point approximation of the polygon of layer one is the approximation of a
point Minkowski summed with the approximation of the connection point.

At layer i a polygon is connected to its parent polygon in layer n−1 through
some connection point, which again can be connected to some other polygon.

Let P̂ 2
i be a polygon at layer i and let P̂ 2

0 be the root polygon. Then the path
from the root polygon to the polygon at layer i can be described as

Pathi = {P̂ 2
0, . . . , P̂ 2

i} .

This path is used for both calculating the translation and orientation of polygon
i. Let f() define the function that returns the vector describing the movement
of the connection point of the simple polygon. Then the translation vector −→v i

of polygon i can be described as:

−→v i =

i∑

j=0

f(P̂ 2
j)

Let g(P̂ 2) define the function that returns the orientation rotation of the simple
polygon in form of an angle. Then the rotation angle αi of polygon i can be
described as:

αi =

i∑

j=0

f(P̂ 2
j)

Let h() define the function that approximates the point movement, let pi be
the connection point of polygon i, let −→v i−1, and αi−1 be the vector and angle
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found for polygon i− 1 and let P̂ 2
′

define the approximation of the connection
point movement. Then the movement approximation for the connection point
of polygon i is

P̂ 2
′

i = h(pi,
−→v i−1, αi−1)⊕ P̂ 2

′

i−1 .

Let q be a point in polygon i. Then the approximated polygon for the point
can be found by using the point approximation from before and the connection
point approximation by:

P̂ 2
′′

= h(q,−→v 0, αi)⊕ P̂ 2
′

i

Let m be the points in the approximated polygon, and let f ′ be a function that
takes two simple polygons and returns the convex hull. Then the set of simple
polygons S will be the approximation of the simple polygon i and is found by:

S = f ′(P̂ 2
′′

1 , P̂ 2
′′

m) ∪
m−1⋃

k=1

f ′(P̂ 2
′′

k, P̂ 2
′′

k+1) .

The total approximation can be expressed as following:

Si =

{
h(q,−→v i, αi) if i = 1

h(q, αi)⊕ P̂ 2
′

i otherwise
.

The root polygon is handled as a special case because it needs to rotate, trans-
late, and there is no enlargement from a connection point. Let the set A be the
set of approximated polygons. Then:

A =

m⋃

i=1

Si ,

where the approximation of a linked polygon is a set of polygons from each
polygon approximations edge approximation. Figure 4.7 is an example of the
over-approximation of linked polygon.

Figure 4.7: The approximation of the movement of three linked polygons, the
figure comes from the implemented local planner.
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Approximate Movement Algorithm

Using the observations from previous an algorithm that over-approximates move-

ments can be put together. It takes a linked polygon P̃ 2, the center point of
the rotation pc, a translation vector T and a rotation matrix R as parameters
and returns a set of approximation polygons that covers the moved area. The

linked polygon P̃ 2 is the object whose movement needs to be approximated and

it consist of simple polygons P̂ 2. The movement of the linked polygon P̃ 2 con-
sist of a translation vector T and a rotation matrix R that rotates the object
around center point pc. The output will be a set of simple polygons with a size
equal to the number of simple polygons in the linked polygon. The algorithm
will consist of several layers to exploit that linked polygons consists of simple
polygons, polygons consists of lines, lines consists of points. The top layer is
the linked polygon layer, the next layer is the polygon layer, then there is a line
layer and finally the point layer.

Several subroutines are used in the different routines defining the approxi-
mations. These subroutines are:

• parent-index(P̂ 2) returns the index of the parent polygon to the given
polygon.

• connection-number(P̂ 2) returns the index of the connection point in the
parent polygon to the given polygon.

• connections(P̂ 2) returns the list of connection points for a given polygon.

The linked polygon layer calls both the polygon layer and the point layer
because it divides the approximation problem into sub-problems. It approxi-
mates the movement of each polygon in the simple polygon, which is known as
a component of the object moved. When approximating a polygons movement
it is dependent on the approximation of the connection point. The double array
aci,j contains approximations, where index one is the component index and the
second index is the connection point index at the given component index. For
the root polygon there is none. However, it is different for a polygon P 2

i at layer
i, which has a parent polygon P 2

j . It uses the point approximation of the connec-
tion point. This point approximation is done before this approximation when
approximating the parent polygon pj−1. Meaning that the algorithm depends
on that the parent polygons are before the children polygon. The algorithm is
outlined in Pseudocode 4.1.

The polygon layer calls the line layer with each edge in the polygon. The
approximated movements for each line are seen as simple polygons. Each poly-
gon found at the line approximation is added to a set of simple polygons. The
set will in the end represent approximations for each edge in the polygon. The
union of the area, which is covered by all the edge approximations covers will
be the resulting polygon approximation. For an outline of the algorithm see
Pseudocode 4.2.

The next layer is the line layer which calls the point layer with each point in
the edge to approximate the movement for them. A set collects the points for
each approximation and a bounding box algorithm is executed on the set to find
a simple polygon that approximates the movement of the line. The algorithm
can be seen in Pseudocode 4.3.
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function approxLP(P̃ 2 : Linked Polygon,

pc : Center Point,

T : Translation Vector,

A : Angles)

S ← ∅ : Set of approximations

i ← 0

∀P̂ 2 ∈ P̃ 2 : in increasing order

j ← 0
k ← parent-index(SP)

ai ← ak + Ai

l ← connection-number(k, SP)

S ← S ∪ approxSP(P̂ 2, pc, T, R, aci,j)

C ← connections(SP)

∀p in C : in increasing order

aci,j ← approxP(p, ack,l)

i + +
j + +

return S

Pseudocode 4.1: How the linked polygon layer works in the approximate move-
ment algorithm.

function approxSP(P̂ 2 : Simple Polygon,

pc : Center Point,

T : Translation Vector,

R : Rotation Matrix,

AP : Approximated Polygon)

S ← ∅ : Set of simple polygons

S ← S ∪ P̂ 2

∀e ∈ P̂ 2 :

S ← S ∪ approxL(e, pc, T, R)

return S

Pseudocode 4.2: How the polygon layer works in the approximate movement
algorithm.

Last layer is the point layer, here each point will be approximated to six
point in the approximation. The first three points are a rotation of point p
around point pc with rotation matrix R. Then these three are translated by
vector T and finally if there is an approximated polygon it will be Minkowksi
summed with the points. This approximated the movement of the point. See
pseudocode 4.4 for more details about the algorithm.

These four functions can approximate the movement of a linked simple poly-
gon and the running time for the approximation will be clarified. Let e be the
number of edges in the polygon and p be the number of points in the polygon.
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function approxL(e : Edge,

pc : Center Point,

T : Translation Vector,

R : Rotation Matrix,

A : Approximated Polygon)

S ← ∅ : Set of Points

∀p ∈ e :

S ← S ∪ approxP(p, PointAc, T, R, A)

S ← convexHull(S)
return S

Pseudocode 4.3: How the line layer works in the approximate movement algo-
rithm.

function approxP(p : Point,

pc : Center Point,

T : Translation Vector,

R : Rotation Matrix,

A : Approximated Polygon)

S ← ∅ : Set of Points

pr ← R ∗ (p− pc) + pc

px ← point-of-intersection(tangent(p),tangent(pr))

PointAt ← T + p
PointAt+r ← T + pr

PointAt+x ← T + px

S ← {p, pr, px, pt, pt+r, pt+x}
S ← minkowski-sum(S, A)

return S

Pseudocode 4.4: How the line point works in the approximate movement algo-
rithm.

The number of edges is equal to the number of points in the polygon. Hence
e = p. Because the number of points and edges are the same this number will
be referred as n for the rest of this analysis.

Let n be the maximum number of points in the components, let m be the
maximum number of connection points in the components, and let k be the
number of components. The linked simple polygon approximation function has
two loops. The first loop is for each component of the linked polygon and
within this two things are done. The approximation of the simple polygon of the
component and a loop going through the connection points of the component. In
this loop the connection point is approximated. This give the following running
time

O (k · (approxSP + m · approxP )) .

The functions running time is dependent on two functions, one that approxi-
mates the simple polygon and one that approximates a point. The function that
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approximate the movement of a simple polygon has a loop where for each edge
in the simple polygon the approximation of the movement of the edge is done.
This gives the running time

O (n · approxL) .

There is only a dependency on the edge movement approximation function. The
approximation of an edge is dependent on the two point approximations and
the point approximation is a constant time operation. This makes the edge
approximation a constant time approximation as well which leads to a total
worst case running time of

O (k · (n + m)) ,

for approximation of linked simple polygons that translates and rotates.

Handeling Large Angles

The approximation can be extended to handle large angles, which is done by
dividing the rotation approximation into two separate approximations. The
smaller the angle of the rotation is, the better the approximation of the rotation
is. The reason is that the third point in rotation approximation is closer to the
rotation arc. The dividing of the rotation can continue recursively until a desired
angle is reached.

Let α describe the angle which is rotated, let p be the point rotated, let p′

be the point rotated to, and let q be the center of rotation. Finally let f() be
the function the finds the third point of a rotation approximation. Then the
approximation point px of the rotation will be

px = f(p, p′, q) .

Dividing the approximation into two sub-approximations is a new angle and
point need to be defined. Let α′ be α

2 and let p′′ be p rotated by α′ around
point q. Then the two approximation points px1 and px2 are found by:

px1 = f(p, p′′, q), px2 = f(p′′, p′, q) .

The division can be done on each of the sub-rotations as well to achieve a better
resolution.

4.2 Local Planner

There are two different strategies for the LP that is interesting to look into.
The first is the linear interpolation strategy from the original article by Kavraki
et al [11] and the second is the interpolation binary strategy in the article by
of Geraerts et al.[6]. In this section there are two subsections: Section 4.2.1
describes the original interpolation LP and Section 4.2.2 describes a LP which
is used when approximating the movement.

4.2.1 Interpolation Local Planner

The original interpolation LP uses linear placements of an ε-enlarged object at
each step. How this enlargement and placement works is described in Section
4.1.1. The connection strategy of the linear placements is looked into because the
approximation approach in Section 4.2.2 needs a different connection strategy.
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Connecting Configurations

In a path from configuration ci to configuration cj there are k steps. Let a list
L contain all configurations on the path from ci to cj and in that order. I.e.
L = [c1, c2, . . . , ck]. Let f() define a function that tests whether a configuration
intersects any obstacles in the environment. Then

∀c ∈ L : f(c)

where the output from the function means

f(c)

{
not connectable if true
maybe connectable if false

.

If all tests return true the two configurations are connectable, but if one of the
tests fail they are not connectable. In most failed connection attempts will the
obstacle not be near the configuration ci or the configuration cj but is will be
somewhere in the middle. This is why a binary approach is suggested in the
paper by Sanchez et al. [18] and the paper by Geraerts et al. [6]. However, this
approach is not used in this thesis. Because the interpolating approach with a
ε-enlarged object is the standard approach and it gives result that are fine to
benchmark the new suggested approach.

Conclusion

The LP that uses the interpolation strategy is very simple and the ε enlargement
is only required in the initial phase. However, this restricts the possible move-
ment steps, they have a maximum angle and a maximum translation between
each step. The approach does not take big steps if possible. I.e. that no matter
the distance between two configurations the resolution of the interpolation is
the same. This makes the speed of connecting configurations dependent on the
distance between them.

4.2.2 Approximation Local Planner

When the LP builds on the approximation approach to connect two configura-
tions. There is need to change the connection strategy. Hence a binary connec-
tion strategy is developed. The rest of the LP strategy follows the interpolation
LP from the article by Kavraki et al [11].

Connecting Configurations

To find a linear path from a configuration ci to a configuration cj is different
from the linear interpolation approach. The approximation approach is more
like the binary approach in Sanchez et al.[18] and Geraerts et al.[6].

At first an approximation P 2
approx of the movement from ci to cj is generated.

Then the P 2
approx is tested whether it intersects any obstacles in the environment.

If there are no intersections it is possible to connect the to configurations. If it
fails it might be that the approximation needs a better resolution to succeed. To
obtain a better resolution the path is divided in the middle at configuration ck.
Then the two paths from ci to ck and from ck to cj is approximated and tested
as the whole path. If both paths are collision free the whole path is collision free,
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however if one path is not collision free this path is recursively examined, until
it is collision free or a maximum recursion depth is reached. If both paths has a
collision both paths needs to be examined, but a depth first search is used here,
so if the examination of the first path fails to succeed then it is not possible to
connect the two configurations. Pseudocode 4.5 shows a connect function for the
approximation LP. It takes three parameters: two configurations, the current
and destination, and a search depth. It returns whether the two configurations
are connectable within the given search depth.

function connect(ci : from configuration,

cj : to configuration

l : search depth)

if l < 0
return false

P 2
approx ← approx(ci, cj)

if collide(P 2
approx)

ck ← middle(ci, cj)

if connect(ci, ck, l − 1)
return connect(ck, cj, l − 1)

else

return false

return true

Pseudocode 4.5: Pseudocode of how the approximation local planner attempts
to connect two configurations together.

This approach to connect two configurations does not have any constraints
on the given configurations. I.e there is no maximum angle or maximum step
size. The approximation has a constraint saying that it cannot take a angle
larger than π

2 but the approximation can be improved to take larger angles
as shown in the earlier Section 4.1.2. By keeping a maximum search depth
independent of the length of the path between ci and cj the small paths will
have a better resolution than the long paths.

Conclusion

In general the PRM approach needs to take large imprecise steps when possible.
However in narrow regions there is a need to make the resolution as close to the
real movement as possible. The approximation LP attempts to do exactly this
by going into the same search depth independent of the length of the path.
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Chapter 5

Implementation

The motion planning program has been implemented in C++ and uses a few
libraries such as the Standard Template Library (STL) and the OpenGL Util-
ity Toolkit (GLUT). The STL is used for sorting and data structures such as
vectors, lists, and maps. The GLUT library is used to visualize a generated
RM. The program is compilable on different Operating Systems (OSs) with
different versions of GNU Compiler Collection (GCC) compilers which is de-
scribed in Section 5.1. Several programs were created in this thesis and these
are shortly explained in Section 5.2. Representations of different structures
such as points, vectors, polygons, etc. are describe in Section 5.3. Section
5.4 follows with details about how configurations are generated in the pro-
gram. Section 5.5 and Section 5.6 describe the implementation details on the
Convex Hull and Minkowski Sum algorithms. Section 5.7 follows with details
about how the approximation is implemented. Section 5.8 follows with de-
tails about the different local planner implementations. Finally Section 5.9
shortly describes how the structure and the different phases of the PRM is im-
plemented. The code to the program can be found on the attached CD or at
http://www.daimi.au.dk/ ds/?page=6.

5.1 Operating System and Compiler

The program has been compiled on three different OSs with each their version
of the GCC compiler. On all OSs the program works as expected according to
the performed tests. The program is compiled with a GCC compiler, and it
has been compiled on the following systems : A GCC compiler version 4.0.1 on
Mandriva Linux 2006 64bit, a GCC compiler version 3.3.2 on a Fedora Core 3
Linux and finally on a GCC compiler version 4.1.1 on a fedore Core 5 Linux.
These can be seen in Table 5.1.

5.2 Programs

There are several programs constructed to test, implement, experiment, visual-
ising the PRM algorithm, the work spaces, the output of the PRM and counting
collisions tests. In Section 5.2.1 three different programs are described, which
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OS GCC version
Fedora Core 3 3.3.2
Fedora Core 5 4.1.1
Mandriva 2006 64 bit 4.0.1

Table 5.1: The different operating systems and compilers the implementation
has been debugged on.

are closely related to the PRM algorithm. In Section 5.2.2 a secondary program
for generating work spaces is described.

5.2.1 Main Programs

There are three different main programs: motionplanning-testrun,
motionplanning-prompt and motionplanning-opengl. The
motionplanning-testrun is a program that tests the different algorithms and
structures needed in the PRM algorithm. How these test works can be seen in
Chapter 6. The motionplanning-prompt is the program which can generate
the PRM but has other uses as well. This program can generate output in the
fig format as well. The fig format is specified in the Xfig manual [1]. Different
scripts are constructed to generated different outputs of the different features
of the algorithm. The data generated from the scripts can then be viewed in
Xfig, which is a vector graphic editing tool in linux.Another feature of this
program is that it can count the number of collision tests made during the
construction of a PRM and output this value. This is used in the count of
collision tests described in Chapter 7. Finally the motionplanning-opengl

program can visualize a PRM through OpenGL. To visualise through OpenGL
the construction of the PRM is divided into two separate programs. The test of
the program is a separate program because it only needs to be executed when
something has been changed in the program. Another thing is that one may
want to save the time it takes to compile the test cases.

More details on the different parameters are described in Appendix A.

5.2.2 Sub Program

A small program was created to generate the circle work spaces which are used
in the comparison of collision test counts. It places an obstacle at some interval
and generates the circle-like obstacle with a given amount of points. For an
example take a look at Figure 5.1 where Figure 5.1(a) is a generated work space
with a resolution of four. I.e. the “circles” consist of four points. Figure 5.1(b)
uses a resolution of eight. Hence the “circles” consist of eight points. This
doubling ends at a resolution of 128 where each “circle” has 128 points. This
feature is used to show the how different LP approaches perform collision test
counts in different work spaces with increasing edges. The results from this
experiment can be seen in Appendix F and the experiments are described in
Chapter 7. There are more figures of the different resolutions in Appendix C.
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(a) The circles workspace with a resolu-
tion of four.

(b) The circles workspace with a resolu-
tion of eight.

Figure 5.1: Two circles work spaces with a resolution of four and eight.

5.3 Representations in the Program

There are several structures implemented in the program, they are divided into
groups of geometric structures, collections, and PRM specific structures. The
geometric structures are angles, points, edges, vectors, and simple polygons.
The collections are arrays, sets, lists, vectors, maps, and graphs. The PRM
specific structures are the Road Map, the Object, the Configuration, and the
Work Space.

Efloat

To be able to control the precision of the floating point type used in the program
the type efloat is used. Efloat is defined in the file Typedefs.hpp, currently as a
double precision floating point. Originally a struct was representing the floating
point, which could be expanded with extra features. However the price for this
structure was that the motion planning used more than fifty percent of the time
on allocating, assignment, comparison of the structure. The information about
the time usage was gathered with compiling the program with the -gp flag and
using the gprof after the execution of the program. To save running time a
native type is used.

Angle, Point, Edge, Vector, and Simple Polygon

An efloat is used to represent the angle in radian. A point is represented as
two efloats. One for each dimension of the point. A vector is represented in
a similar way as the point namely with two efloats. Both the edge and the
simple polygon are represented through points in the plane. An edge is rep-
resented as two points. A simple polygon is represented as a list of n points
{p1, . . . , pn}, where the point pairs {(p1, p2), . . . , (pn, p1)} represent the edges
of the border of the simple polygon. The definition of the structs can be
found in the files Angle.hpp, Point2D.hpp, Edge2D.hpp, Vector2D.hpp and
SimplePolygon.hpp. The implementation can be found in the following files
Angle.cpp, Point2D.cpp, Edge2D.cpp, Vector2D.cpp, and SimplePolygon.cpp
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Arrays

An array is represented as a template with both the data and the length of
array. The reason for representing an array this way is that C++ does not store
the length of an array, and this information is very useful. I.e. let a function
calculate the convex hull over an array given as input and let it return the convex
hull as an array. Whatever called this function will now loose the information
about how big the returned array is, because the length of the input and output
might not be the same. The array implementation eliminates this problem and
arrays with their size can be passed easily between functions. The array is a
template, hence it must be implemented in the header due to GCC restrictions.
The header file of the array can be seen in file Array.hpp.

Sets, Lists, Vectors, and Maps

For collections like sets, lists, vectors and maps the STL implementation are
used. The program does not need any special implementations of these and the
STL implementation performs fine as long the program can fit in memory.

Graphs

Only a smaller functionality of the graph data type is needed in the program.
A graph is implemented with a vector of vertices of the graph. This collection is
used to sort vertices after some comparison functor or to apply a functor to each
vertex in the graph. The edges between the vertices are represented with inci-
dent list at each vertex and by an edge list. The only needed functionality of the
graph is traversal and inserts. The delete functionality is not needed in the graph
because no configuration will never have to be removed from the graph again and
no edges never needs to be removed as well. This have the effect that the graph
can be optimized for insertion and traversal. I.e. if there is a space problem then
the edge list can be removed from the graph but it is very convenient to have
when saving the graph to disk. A connected component is represented as with a
vertex and a size. The vertex is a vertex in the connected component and hence
the connected component can be traversed from this. The size is how many ver-
tices there is in the current connected component, which is used when inserting
a new edge in the graph, this might result in two connected components that is
merged into one. This merge is done by traversing the vertices in one connected
component, updating their pointer to the other connected component, and end
the end the connected component is removed. To optimise the update of con-
nected components the smallest connected component is selected. The graph,
the vertices, the edges and the connected component is templates so the imple-
mentation is in the header file, due to GCC restrictions. The code can be seen
in the following files: UndirectedGraph.hpp, UndirectedGraphVertex.hpp,
UndirectedGraphEdge.hpp and ConnectedComponent.hpp.

Road Map

The RM representation is a part of the PRM class and it uses a graph for
representation. Each node in the graph is a configuration in the road map and
each edge in the graph is a collision free path between two configurations. More
information about how to construct, expand and query the RM is in Section 5.9
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where the three phases are documented. The definition of the RM is in the file
PRM.hpp and the implementation is in the file PRM.cpp.

Object

The object moved around in the work space is represented as a list of compo-
nents. Each component is represented by a shape, parent, connection point.
The shape of the component is represented as a simple polygon. The parent
component is represented as the index of the parent component at the object
and the connection point is represented as the index of the point at the parent
component. The connection points are represented as a list of points where
sub components can be connected to the current component. The object and
component definition can be seen in the files Object.hpp and Component.hpp

and the implementation is in the files Object.cpp and Component.cpp.

Configuration

A configuration is represented with the following three parameters : the object
that the configuration is a configuration of, the position of the object and the
orientations of the components. The object is a pointer to the object and the
position is a vector. The orientations is a list of angles, where the angle at index
i the list is the orientation of component i of the object. The definition and
implementation of the configuration can be seen in the files Configuration.hpp
and Configuration.cpp, respectively.

Work Space

The work space is contains a vector with polygons that represent the obstacles
of the of workspace. The border is two points, a minimum point and a maximum
point, which defines a rectangle. The minimum point represents the corner that
has both minimum x- and y-coordinate and the maximum point has both maxi-
mum x- and y-coordinate. The definition and implementation of the workspace
can be seen in the files WorkSpace.hpp and WorkSpace.cpp, respectively.

5.4 Creating Configurations

There is two ways that the program generates configurations. The first type
is random configuration generation where a random free configuration is gen-
erated, this is used in the construction step of the PRM algorithm. In the
expansion step free configurations are generated by a RBW.

In the learning phase the creation of random free configurations for the
construction of the road map happens by creating random values for each pa-
rameter of the configuration within a legal interval. These random numbers
are generated by calling the rand function in the C library call. However this
only generates pseudo random values from a seed, but is faster than generating
“real” random numbers. The current time on the computer is used as seed value
to add extra randomness to the generation. When a configuration is generated
it might not be a legal configuration. Each generated configuration is tested
for intersections, and if this test fails the configuration is discarded, else it is
used a new configuration in the PRM. For each failed configuration a counter is
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incremented and while this counter is less than some maximum number of fails
the program continues to generate configurations. As soon the counter reach
the limit the program terminates, which makes the program terminable even
though there is no free configurations in the configuration space.

The RBW is implemented by generating a random configuration and then
move from the start configuration in direction of the generated configuration.
Moving the configuration is done by making a linear function with a step size.
Then for each configuration step the next configuration step is tested whether
it is a free configuration, if not another random configuration is generated to
find a new direction to move in. This continues until a certain number of steps
is reached, and the configuration that is current as configuration step is the
generated configuration of the RBW.

The definition and implementation of both configuration creation approaches
is in the files ConfigurationGenerator.hppand ConfigurationGenerator.cpp.

5.5 Minkowski Sum

The Minkowski Sum consists of two functions the sum function which generates
the Minkowski Sum and it uses a help function to sort the two given arrays of
points. They are sorted so the first point is the point with minimum y-value
and if there is two it is the one with the minimum x-value. Then it is made
sure the points go Counter Clock Wise (CCW) around in the polygon. If they
go Clock Wise (CW) around in the polygon the inverse order is CCW. That
is what the help function does and the resulting ordered polygon is returned
as a new point array. The sum function builds on the pseudo function from
chapter 13 in the book by Berg et al. [4]. Where it generates a point array that
contains the Mikowski Sum of the two point arrays it takes as a parameter. The
maximum number of points in the resulting polygon of a Minkowski Sum of two
convex polygons is the sum of the number of points in the two convex polygons.
An vector could be used instead, but due to the nature of the vector when
inserting points an array of the maximum size is used. This saves the double
effect of the vector, though amortised it is linear but the Minkowski Sum is
called often in the movement approximation of a linked polygon. Using more
ram for processor time seems like a good trade off because it is only local in each
connection attempt there will be larger usage of memory and that usage is not
that great comparing to storing information about the road map. The definition
and implementation of the Mikowksi Sum is in the files MikowskiSum.hpp and
MinkowskiSum.cpp, respectively.

5.6 Convex Hull

The Convex Hull is implemented as the algorithm given in Chapter 1 in the
book by Berg et al. [4], which is based on the Grahams Scan. Normally a
STL vector can be used to contain the points approximated but an array is
used with the size of the input. This can be done because the maximum size
of a convex hull of a polygon is maximum the size of the polygon. The array
is chosen to avoid the doubling effect of the vector and save computing time.
There is only one usage of the Convex Hull algorithm in the motion planning
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algorithm and that is the line approximation. The result of approximating each
end point in the edge/line is a constant size. This leads to a need for faster
computation time with the cost of more memory which is achieved by using the
array type instead of the vector. To achieve even more speed up the algorithm
has been implemented within a single function to save time to call sub functions.
The files ConvexHull2D.hpp and ConvexHull2D.cpp contains the definition and
implementation of the convex hull algorithm.

5.7 Approximation

The approximation is divided into two: movement approximation of everything
up to a simple polygon and movement approximation of linked polygons.

The first half of the approximations is build by a function that approxi-
mates point a movement, with translation, rotation and enlargement polygon.
The translation is a vector representing the translation of the point, if there is
no translation the vector is a zero vector. The angle rotated is an angle repre-
sentation and a rotation matrix is generated to make the rotation. If there is no
rotation there will be no generation of a rotation matrix. If there is a polygon
of which the movement must be enlarged with, this is needed in the approxi-
mation of linked polygons, then a Minkowski Sum is done. The line movement
approximation calls the point approximation for each endpoint of the edge. A
convex hull is then found on the points generated from approximation of the
points. The convex hull is returned as the result of the line movement approxi-
mation. Finally there is the simple polygon movement approximation which for
each edge in the polygon generates a line movement approximation and returns
the collection of all line approximations in a simple polygon array. The number
of polygons generated is equal to the number of edges in the polygon approxi-
mated. This makes an array an obvious representation instead of the vector to
save computation time.

The second half of the approximations is build on the function that approx-
imates the movement of a linked polygon. It takes two configurations, that
describes where the movement goes from and to. The approximation will for
each component approximate the movement of the component. The function
follows the theory from Section 4.1.2 but it uses point arrays instead of polygons
within the function. In the end each approximation is converted to a polygon
and added to an array of polygons which is returned.

The files that defines the first half of the approximation is in
ApproximateMovement2D.hpp and the implementation is in
ApproximateMovement2D.cpp. The definition of the second half is in
ApproximateMovement.hpp and the implementation is in
ApproximateMovement.cpp. The split was made to prepare the algorithm for
three dimensional motion planning and the ApproximateMovement was sup-
posed to handle both cases. Then whether it was two dimensional approxima-
tion or three dimensional approximation it could use the approximation for two
dimensions or three dimensions, respectively.
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5.8 Local Planner

All LP takes a pointer to a collision detector so the same collision detector
can be used throughout the program. Another advantage of this is that the
number of collision tests can be counted. Three LPs are implemented: the
first one is the original LP, the second is the interpolation LP and the third is
the approximation LP. There are more about the implementation of these in
Section 5.8.1, Section 5.8.2 and Section 5.8.3.

5.8.1 Original Local Planner

The original LP attempts to connect two configurations by moving the config-
uration in small steps from one configuration to the other configuration. There
is generated a current configuration that starts in the position of one of the
configurations and a configuration that represents the size of the step is also
generated. For each step that needs to be taken the step size configuration is
added to the current configuration. The current configuration is then for each
step tested for intersections with any obstacle in the workspace. If there is an
intersection the connection failed, else if the current configuration reaches the
second configuration then the connection is successful. The definition and im-
plementation of this LP can be seen in the files OriginalLocalPlanner.hpp

and OriginalLocalPlanner.cpp, respectively.

5.8.2 Interpolation Local Planner

There is a small difference between the original LP and the interpolation LP and
that is the object moved. In the original LP the original object is moved around
and in the interpolation LP it is the ε-enlarged object. The ε-enlargement hap-
pens in a different class and a pointer is stored in the interpolation LP to the
ε-enlarged object for futher usage. The files InterpolationLocalPlanner.hpp
and InterpolationLocalPlanner.cpp contains the definition and implemen-
tation.

5.8.3 Approximation Local Planner

The movement LP approximates the movement between two configurations,
which give a polygon array with approximation of each edge. Then the LP test
each approximation for intersection. If an approximation intersects an obsta-
cle the LP attempts to divide the movement into two movements generating
a temporary configuration midway between the two configurations. Then each
of the two new sub movements are approximated and tested for collisions with
any obstacles in the work space. The LP is implemented in such way that as
soon it knows that it cannot connect two configurations it will report failure,
it does not continue the search. When the LP can report failure or success it
cleans the memory for the used approximations and the temporary configura-
tions. For further information the definition and implementation is in the files
ApproximateLocalPlanner.hpp and ApproximateLocalPlanner.cpp.
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5.9 PRM

The PRM is implemented as one structure that contains a graph to represent
the RM. Further it contains three functions that implement the construction,
the expansion and the query of the RM. The implementation of the construction
phase, the expansion phase and the query step is described in Section 5.9.1, Sec-
tion 5.9.2 and Section 5.9.3, respectively. The definition and the implementation
of the PRM are in the files PRM.hpp and PRM.cpp respectively.

5.9.1 Construction

The construction phase of the PRM algorithm generates random free config-
urations and attempts to connect it to configurations in the RM. How the
connections are attempted is handled by the LP described in Section 5.8. The
construction of the road map continues until the number of wished configu-
rations have been added or until the maximum number of failures have been
reached. The failures in mind are failures of generating a free configuration, not
failures of connecting configurations.

5.9.2 Expansion

At first the expansion phase of the PRM algorithm need to calculate the proba-
bilities of selecting each configuration for expansion. This is done by a vector the
for the failure rate rf (c) rounded to the nearest integer, inserts a corresponding
number of references to the configuration. Figure 5.9.2 shows an example of the
vector to select a configuration for expansion can look like.

1 2 3 4 5 6 8 9 107
C1C1 C2 C2 C2 C5 C5 C5C3 C4

Figure 5.2: The vector to select configuration for expansion in a thought situa-
tion.

When all configurations failure ratio rf (c) have been calculated, then an
index is selected randomly in the interval {1, . . . , n} where n is all the total
number of references. This index reference is then followed to the configura-
tion which have been selected for expansion. Then the expansion generates a
configuration with the RBW and the generated configuration is then added to
the RM and attempted connected to the other configurations in the RM. The
expansion continues to select new configurations for expansion until the number
of wished configurations has been generated. There is just a single but in the
expansion step, the RBW might not be able to find a new configuration, if this
is the case the number of found configurations is still increased to make sure
that the expansion phase does terminate.

5.9.3 Query

The query phase of the algorithm is not like the original query phase described
in the article by Kavrak et al. [11]. Here they describe a query phase that
if it fails it can do some RBWs to attempt connection and the path found is
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put through some repair functions. These things are not implemented because
the focus in this master thesis is lowering the number of collision tests by using
approximations to connect configurations in the LP. However it does attempt to
find a path by connecting the start configuration and the goal configuration to
the same connected component. It attempts to connect to the closest connected
component and if it fails it attempts to connect to other connected components
in increasing distance from the start and goal configuration. If the start and
goal configuration is successfully connected to the same connected component
then the rest of the path is a graph path search.



Chapter 6

Debug

This section describes the debugging of the implemented PRM. Both the orig-
inal interpolation strategy by Kavraki et al. [11] and the new approximation
strategy is tested to ensure they are correct. It is vital that the implementation
is correct so the experimental comparison between the two approaches is reli-
able. There is two different types of debugging tests executed in this thesis. The
first type of test is the automatic test, which is executed automatically. If a test
case fails the program will terminate the test with an error report describing the
problem. The second type of test is the visual test, here each test case outputs
a fig figure that is viewed in xfig. Each test in the visual test has to be manually
approved to ensure that the output generated is correct. The visual tests has
the advantage that humans easily can see errors when geometric structures are
visualised.

6.1 Automatic Tests

To debug and ensure that the algorithms and the structures that the PRM
builds on are correct an automatic test was constructed. This ensures that a
given test case satisfy its constrains when the test is done. In this way if an
optimization is implemented in an algorithm it will still output the same result
to get through the test case. There have been implemented a large number of
test on the different structures and algorithms in the program. However this
form of automatic test is slow to construct compared to visual debugging. This
has the consequence that the tests are not all throughout complete as they could
be while most tests are done visually. As an example the convex hull test case
is described in Section 6.1.1. In Section 6.1.2 the output from the test program
is explained.

6.1.1 Convex Hull

When analysing the Grahams Scan algorithm there are five interesting sizes of
the input that needs to be tested. These are shortly listed in Table 6.1

The first case is the zero case where the convex hull algorithm has to return
an empty point array.

The one point and two point case does in both cases return a point array
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∅ The empty case
{p} The one point case
{p1, p2} The two points case
{p1, p2, p3} The three points case
{p1, . . . , pn} n points case

Table 6.1: A short overview of interesting input sizes to the Grahams scan
algorithm.

with the same points. However what if the two points in the array are the
same point ? Should the algorithm terminate the program because there is a
constraint telling that there cannot be two points that are equal in the same
list. By equal it is meant that the two points, p and q, are equal p = q which
means each coordinate set is equal px = qx ∧ py = qy. In this thesis the convex
hull algorithm cleans the input list of equal points, before the algorithm starts.
This answers the question from before, the algorithm must return a point array
with one of the points.

Now to the three point case where it often returns a list of three points,
due to the fact that three points represents a triangle, which is the most basic
convex structure in two dimensions. Like the two point case there can be equal
points which are removed. Finally there is a problem when the three points are
aligned, what should the algorithm do ? Return an array with two points or
three points ? This has the origin of whether a points orientation comparison
with two other points is strictly. If the comparison is strictly points on line with
others are not considered as a part of the convex hull. Points that are on line
are not considered as a part of the convex hull in this thesis. The implemented
convex hull algorithm will in this given test case return a list with the two end
points as a result.

Finally there is the n point case, which is by far the most complex one to
test. Some base cases whether it can find the convex hull of a simple number
of points is done. After that several list of several points has to be tested such
that the Grahams Scan algorithm has to remove points from the internal convex
border. By that is meant that when it is about to add a new point the convex
border will be broken if the point is unless points are removed from the current
border. If the algorithm is correct this will be done correctly and these points
will not be in the convex hull returned by the algorithm.

These test cases has been implemented in the TestConvexHull.cpp file
which tests the implemented Grahams Scan algorithm in the ConvexHull2D.cpp
file.

6.1.2 Test Program Output

When running the motionplanning-testrun program it outputs the different
headings for a specific test. The convex hull is one of the heading meaning that
all the test of the convex hull happens within the start heading Testing Convex

Hull started and the end heading Testing Convex Hull completed. After
all the tests are executed the program test a PRM construction of 100 config-
urations. Some of the output when executing motionplanning-testrun is listed
below.
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Testing Array started

Testing Array completed

Testing object started

Testing Test Component started

Testing Test Component completed

Testing object completed

Testing UndirectedGraph started

Testing UndirectedGraph completed

Testing geometry started

Testing Angle started

Testing Angle completed

Testing Test Point2D started

Testing Test Point2D completed

Testing Vector2D started

Testing Vector2D completed

Testing RotationMatrix2D started

Testing RotationMatrix2D completed

Testing SimplePolygon started

Testing SimplePolygon completed

Testing geometry completed

Testing Convex Hull started

Testing Convex Hull completed

Testing MinkowskiSum started

Testing MinkowskiSum completed

Testing Approximate Movement started

Testing Approximate Movement 2D started

Testing Approximate Movement 2D completed

Testing Approximate Movement started

Testing Approximate Movement completed

Testing Approximate Movement completed

Testing LocalPlanner started

Testing Original Planner started

Testing Original Planner completed

Testing LocalPlanner completed

loading workspace

workspaced loaded, loading object

loaded object, init prm

Random() constructor

construction started

...

6.2 Visual Tests

To ensure that the different aspects of the algorithm is correct several visual
tests have been done. Visual tests are faster to implement than the automatic
tests from Section 6.1 but they need visual verification. However, a human
can easier verify whether some output is correct from a geometric algorithm or
structure when it is visualised rather than looking at some numbers. The reason
for doing visual tests is to ensure that the different algorithms and structures
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are correct when experimenting with the collision tests count.

6.2.1 ε-enlargement

The ε-enlargement is tested with visual debugging on several convex objects was
tested. The test of the enlargement is important to ensure that the interpolating
LP used to as comparator to the new approximation LP is correct. In this section
the triangle object will be used as an example but all object ε-enlargements can
be seen in Appendix B.

The original triangle in Figure 6.1(a) is used to verify that the object used is
interpreted correctly by the program. The ε-enlargement of the triangle using a
step size of 10 and a rotation of 0.1 is in Figure 6.1(b) This figure is used to see
whether the polygon is still convex after the enlargement. Finally Figure 6.1(c)
is the triangle within its ε-enlargement. This figure is used to two things: first to
determine whether the resulting polygon from the ε-enlargement is larger than
the original polygon and secondly verify that the polygon is centred within its
enlargement.

(a) The original tri-
angle.

(b) The ε-enlarged
polygon of the trian-
gle.

(c) The original tri-
angle within its ε-
enlarged polygon.

Figure 6.1: Example on visual representation of the object, where the three
figures are; Figure 6.1(a) is the original object, Figure 6.1(b) is the polygon
from the ε-enlargement of Figure 6.1(a) and Figure 6.1(c) is the original object
within it’s enlargement.

6.2.2 Local Planner

There are three different LPs implemented and all of them is visual debugged
with a wide range of different objects and work spaces. The visual debugging
of the LPs is crucial to ensure the correctness of the output from PRM learning
phase. The reason is that the LPs performance must be reliable to compare
the results of the experiments. In this section a triangle is moving from a
configuration c1 = (100.0, 100.0, 0.0) to a configuration c2 = (250.0, 100.0, 1.0).
There are several other visual tests of the LP and these can be seen in Appendix
D.

The debug has been divided into five different steps; the two configurations,
the real movement (Original LP), the interpolating LP, the approximating LP
and the binary spilt in the approximating LP.
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The Two Configurations

This visual test is generated to ensure that the program represent the object
correct at a given configuration. Another detail is that it helps to understand
the output from the other LP tests when it is clear where the object is moving
from and to. Figure 6.2 is the visual output of a triangle at each configuration.

Figure 6.2: The triangle at from configuration (100.0, 100.0, 0.0) and at to con-
figuration (250.0, 100.0, 1.0).

The Original Local Planner

The original LPs output is generated as a reference of the real movement when
debugging the two other LPs. A feature of the original LP is that it is using
the interpolation strategy to connect two configurations as the interpolating LP
but with the original object instead of the ε-enlarged object. This feature is
convenient to visual debug the interpolation connection strategy as well. The
visual output from the original LP for a triangle can be seen in Figure 6.3.

Figure 6.3: The original movement of the triangle between two configurations.

The Interpolating Local Planner

The interpolating LP is the LP strategy used in the original article by Kavraki
et al. [11]. This strategy must with the placements of the ε-enlarged object
contain at least the area the real movement covers. Comparing the original
movement in Figure 6.3 and the output from this LP in Figure 6.4 confirms
that the interpolating LP is correct.

Figure 6.4: The interpolating local planners output for a triangle.
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The Approximating Local Planner

In this thesis an approximating LP is proposed to lower the number of collision
tests done when connecting two configurations. To validate the LP contains
at least the real movement of an object visual tests has been done. The out-
put of the approximating LP is hold against the output from the original LP
to check if the approximation covers at least the area of the real movement.
An example is the triangle and the output when connecting the two configu-
rations (100.0, 100.0, 0.0) and (250.0, 100.0, 1.0) is shown in Figure 6.5. Then
by looking at the original movement at Figure 6.3 it can be concluded that the
approximation holds.

Figure 6.5: The approximation local planner output for a triangle.

The Binary Spilt in the Approximating Local Planner

The final test of the LPs is the test of the binary split in the approximating LP.
The visual debug of this case is important to ensure that the binary connection
strategy works as intended. The test is done by using the approximating LP and
let it fail the first connection attempt between the two configurations c and c′.
When failing the connection attempt the approximation LP will split the search
into two sub problems. At first the configuration c′′ describing the middle of the
movement is found and the search continues for two new connection attempts.
The first is connection is the from configuration c to configuration c′′. The
second connection is from configuration c′′ to configuration Configuration′.
Figure 6.6 is an example on the output from this scenery. Again it is crucial
that the approximation is at least covering the area of the original movement,
seen in Figure 6.3. Another issue is to ensure that the approximation looks
somewhat smooth such that there is no edges or polygons sticking out from the
rest of the approximation.

Figure 6.6: The approximation local planners output during a single binary split
of the approximation for a triangle.

6.2.3 Road Map

To ensure that the generated RM is correct they are visually debugged. There
are three constraints that must be obeyed by the configurations and paths rep-
resenting the RM. These constraints are as following: the configurations must
be free configurations and paths must be both non cyclic and legal.
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Configurations must be free configurations, hence they are not allowed to
intersect any of the obstacle edges. This is controlled by outputting both the
object at all configurations and the obstacles. Then a visual check is performed
ensuring that no configurations intersects any of the obstacles in the workspace.
In this example a triangle moving in the labyrinth workspace is considered.
Figure 6.7 is output generated to visualise the configurations placements in the
work space. Triangles are placed in the labyrinth work space and it can be seen
that no configuration intersects any obstacle.

Figure 6.7: Placement of a triangles for each configuration in the road map.
The work space used is the labyrinth work space.

The RM must be a Directed Acyclic Graph (DAG), this means cyclic paths
are not allowed in the RM. All edges in the RM is outputted for visual con-
firmation that there is no cycles in the graph. Figure 6.8 is the triangle in the
labyrinth work space, and for each edge in the generated road map an edge is
visualised. It is clear that the graph in non-cyclic as the constraint was.

Paths must be legal paths, meaning that along a path the object is not
allowed to intersect an obstacle. The first control is to check whether an edge
going from the reference points of the two configurations is collision free. The
program outputs these edges and the obstacles so it can be visual confirmed that
there is not intersection between the edges and the obstacles. To confirm no
intersections happens in the paths, each path is printed out as a interpolation
of placed objects with a small step size. These outputs can then visually be
confirmed to be collision free with the obstacles. An example of this is Figure
6.9 where the triangle is placed in the labyrinth workspace several times along
each edge in the road map. The area the movements each edge represent is
covered with triangles and it can be confirmed visually whether the paths are
legal path. This given clearly shows that the paths found are legal in the current
example.

There are more examples of these visual views for other object types in the
labyrinth work space that can be seen in Appendix E.
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Figure 6.8: Placement of an edge for edge in the road map. The work space
used is the labyrinth work space.

Figure 6.9: Placement of a triangles showing the movement between each edge
in the road map represents. The work space used is the labyrinth work space.



Chapter 7

Results

A new connection strategy is developed to lower the number of collision tests
when constructing the RM. The collision tests count is the count of how many
times two arbitrary edges are tested for collision during the construction.

The experiment is executed on seven different work spaces to ensure that a
general conclusion can be draw from the data generated. Another reason for all
these tests is to see how the complexity of the work space effects the number
of collision tests. There are seven work spaces: the empty work space, the
cross work space, the labyrinth work space, the circles004, the circles008, the
circles016 and the circles032, these are visual shown in Appendix C.

Four different object types are tested on each work space to test whether the
complexity of the object has any affect on the number of collision tests. The
four objects are: the triangle, the square, the two small sticks and the three
small sticks. The objects are shown in Appendix B.

Section 7.1 describes the setup of the experiments, which is what machines
are used, what scripts that are created to execute the experiments, etc. Then
there are separate sections for each type of work space: Section 7.2 is the empty
work space, Section 7.3 is the cross work space, Section 7.4 is the labyrinth work
space and Section 7.5 is the circles work spaces. Finally in Section 7.6 the result
from the experiments is concluded.

7.1 Test Setup

This section contains a short description of the different setup parameters set
when collecting the data.

To make the program return the number of collision tests a counter was
placed in the collision detector that counts every time two edges are tested for
collision. Then the test suite calls the program from a perl script, which col-
lects the data and stores it in a data file. This file is then used by gnuplot
to generate graphs that can be closer examined. The files CCCcircles004.pl,
CCCcircles008.pl, CCCcircles016.pl, CCCcircles032.pl, CCCempty.pl,
CCCcross.pl and CCClabyrinth.pl contains the perl scripts that selects the
work spaces used to generate data from. However each of them uses the two
files
CreateCollisionsCountData.pl and CreateData.pl which contains the gen-
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eral approach to generate data and all the different lists of work space, object,
etc. Each setup is executed ten times and the result stored is the average of
these ten executions. Another detail one should be aware of is that both the
initial step and the expansion step of the construction phase is executed. The
effect of this is when two configurations is set as parameter it will attempt to
find two configurations in the initial step and two others in the expansion step,
which is four generated configurations. The rest of the parameters are static
to ensure trustworthy data. The parameter of the maximum number of failed
attempts to find a free configuration is 1000. The RBW takes between 10 and
100 steps and the search radius to connect configurations is 30.

The data collection has been divided out on a range of machines to speed
up the process. There are two types of machines used to collect the data and
the specifications of these two can be seen in Table 7.1.

CPU Intel Xeon CPU 3.00GHz Intel Pentium 4 CPU 3.00GHz
Memory 1Gb 1Gb
OS Fedora core 3 Fedora core 3
Compiler GCC 3.3.2 GCC 3.3.2

Table 7.1: The two machine types the collision tests count experiments are
executed on.

There are two different LP approaches compared in this thesis, the interpo-
lating LP and the approximating LP. The interpolating LP is using a rotation
angle of 0.1 radians per step and a step size of five. There are four different
search depths used with the approximating LPs, these are; one, two, four and
eight. The naming on the graphs is approximation 1 for the approximating LP
with search depth of one and approximation 2 for search depth two and so on.

7.2 The Empty Work Space

This workspace shows the performance of the approximation LP in large open
spaces. It should be here that the approximation LP has it strength in saving
collision tests compared with the interpolating LP. The collision tests in the
empty work space comes from testing for collision between the object and the
border of the work space. Another detail about the empty work space is that it
is a very large work space going from (-10000, -10000) to (10000,10000) where
the others goes from (0,0) to (1000,1000).

The graph in Figure 7.1 clearly indicates that the number of collision tests
is lowered by the new connection strategy. There is barely no difference in the
number of collision test no matter the depth of the approximation LP. The
reason is the there is barely any collisions when connecting configuration and
hence there will be no difference in the performance on the search depth. The
object used as an example here is the object, Figure B.1(g), where three small
sticks that are linked together.

There are graphs of all object types which can be seen in Figure F.1 in
Appendix F. They all clearly shows that the approximating LP lowers the
number of collision tests for the empty environment.
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Figure 7.1: Collision tests in the empty work space with the three small sticks
linked together. It is clear from the graph that approximations lowers the num-
ber of collision tests.

7.3 The Cross Work Space

The reason to test the number of collision tests counts on the cross work space
is to show the difference in the number of collision tests in a simple work space.
The cross work space can be seen in Figure C.1(a) in Appendix B. The results
of the collision tests count for the object, Figure B.1(g) in Appendix B in the
cross workspace can be seen in Figure 7.2. The order between the different
search spaces are as expected with the smallest search depth as the best and the
largest search depth is worst. The approximation strategy seems to come out as
a winner, except when using a search depth of eight. When using a search depth
of eight the number of collisions tests will exceed the interpolating LP. Using
such high a search depth gives a potential of 28 of sub connection attempts,
which gives the approximation a very fine resolution when the distance between
the two configurations is small. Another detail is that the interpolating LP is
using a step size of five which is very large steps, maybe a step size of one or
even less should have been selected. If a smaller step size is selected the number
of collision tests will go up with a reasonable factor for the interpolating LP.

The result of the other three figures reasons for the same conclusion and
these can be seen in Figure F.2 in Appendix F. However the number of col-
lision tests for the triangle is different, while here is the interpolating LP the
approach having most collision tests. This can be due to the fact that the tri-
angle only consists of three edges which results in fever polygons representing
the approximation, hence fever edges to test for collision in each step.

7.4 The Labyrinth Work Space

This is a different type of workspace where long obstacles from each side ensures
that the object must zigzag through the scene. Another detail is that this
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Figure 7.2: Collision tests in the cross work space with the three small sticks
linked together.

approach have the potential of generating many failed connection attempts due
to the closest configuration might often be on the other side of or inside an
obstacle. The labyrinth workspace can be seen in Figure C.1(b) in Appendix
B. The graph for a triangle, in Figure 7.3, shows that the approximation with
search depth eight is cheaper than the interpolation. However the graph for
three small sticks, in Figure 7.4 imply otherwise. The reason for this is the
number of edges in the triangle are fewer than the number of edges in the three
sticks, hence less complex approximation. Another thing that tributes to the
complexity of the result from the approximation of three sticks is that they
are linked, this can be seen in Figure D.19, Figure D.20 and Figure D.21 in
Appendix D.7.

Again there is a reasonable factor in the number of collision tests between the
different search depths. Where the larger search depth the more collision tests
are done. All approaches seems to follow each other nicely when increasing the
number of configurations which implies that there is a constant factor between
them.

7.5 The Circle Work Spaces

The circle works space is generated in several resolutions, these are then tested
to see if the relation between the different LP approaches and settings holds
no matter the resolution. The work spaces used are: circles004 Figure C.2(a),
circles008 Figure C.2(b), circles016 Figure C.2(c) and circles032 Figure C.2(d).

The first relation to be confirmed is testing with the triangle object, Figure
B.1(a) in circle work spaces of different resolutions. The graph in Figure 7.5 and
the graph in Figure 7.6 agree that the worst is the interpolating LP, then the
approximating LPs. Where the order is from the best to the worst, resolution
on one, two four and eight. This relation is as expected but both graphs are a
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Figure 7.3: The number of collision tests for the triangle object in the labyrinth
work space.
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Figure 7.4: The number of collision tests for the three sticks object in the
labyrinth work space.

bit unclear when counting collision tests for two configurations. The reason is
that some configurations can be placed close together or almost together. If this
happens it will have a huge effect on the total number of collision tests while
there is only two configurations.

The second relation to be confirmed is that linked polygons increases the
number of collision tests for the approximating LP compared with the inter-
polating LP. But the relation between the approximating LPs search depths
should continue to be the same. Again the tree small sticks object from Figure
B.1(g) in Appendix B is compared in circle work spaces of different resolutions.
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Figure 7.5: Number of collision tests for a triangle in the circles004 work space.
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Figure 7.6: Number of collision tests for a triangle in the circles032 work space.

Only the circles004 work space Figure C.2(a) and the circles032 work space Fig-
ure C.2(d) is shown in this section but there are tests of the two work spaces
with a resolution between these two. Appendix F contains the graphs of all
experiments executed. The graph in Figure 7.7 and the graph in Figure 7.8
confirms this assumption.

The number of edges in the work space does not change the relation between
different approaches, but the number of edges in the object does. This is shown
with the circles work spaces of different resolution with four different object
types. Another thing is that the step size of the interpolating LP is set to five
and that is a large step size. For example if the step size was lowered one the
interpolating LP is expected to do five times as many collision tests as it does
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Figure 7.7: Number of collision tests for three small sticks in the circles004 work
space.
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Figure 7.8: Number of collision tests for three small sticks in the circles032 work
space.

with step size five. With this in mind though the interpolating LP is better than
the approximating LP with search depth right now a factor five would shift the
order of the two.

Table 7.2 is a table over the data extracted from collision tests of the cir-
cles004 work space. Here the interpolating LP for 256 configurations does in
average 378815600 collision test and the approximating LP with search depth
of eight does 764518276.6 collision tests in average. This concludes the interpo-
lating LP beats the approximating LP by a factor 2. However if the step size
in the interpolating LP is lowered to one then approximately a factor five will
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by multiplied to the current number. This results in approximately 1894078000
collisions tests instead and then the factor will be 2.4 in advantage for the ap-
proximating LP for search depth eight. This concludes if a step size of less than
2.5 is selected for the interpolating LP the approximating LP of search depth
eight will come out on top in number of collision tests for the three small stick
object. However for more complex object the border line of which is best will be
lower. The more complex object the smaller step size in the interpolating LP is
the border between which is best. The best factor is between the approximating
LP with search depth of one and the interpolating LP where the approximating
LP wins with a factor ten at least.

2 51108.5 4370 5145.1 22170.6 63824
4 630511.4 18857.7 38871.2 146784.7 1079760.1
8 1947877.6 81656.9 194891.5 834440.4 3857795.7
16 9681739.7 339534.9 815170.3 3450741.8 17319765.9
32 26518302.9 1289542.2 2984967 12923930.3 63909735.9
64 62631332.2 4636797.1 11121848.6 40244252.6 151916681.8
128 142193193.1 12746687 32859587.2 86924281.6 328584182.2
256 378815600 33589710.5 78606879.2 227335106.5 764518276.6

Table 7.2: The number of collision tests for three small triangles in the cir-
cles004 work space. First column is the number of configurations, then the
collision tests for the interpolating local planner and finally collision tests for
the approximating local planner with search depth one, two, four and eight.

Again it is confirmed that the lowest search depth in the approximation LP
yields the lowest number of collision tests and it increases with the search depth.

7.6 Conclusion

The new LP approach lowers the number of collision tests when constructing
the RM.

The different work spaces shows that the complexity of the work space does
not effect the number of collision tests done by the different approaches. This
is clearly shown in Section 7.5 where the number of edges is increased and the
order of the tested approaches are still the same. The different search depth in
the approximation LP is ordered as expected in all work spaces where a search
depth of one is the best, second best is two and third is four and the worst is
a search depth of eight. The only shifting happens between the interpolating
LP and the approximating LP where the interpolating LP is better than the
approximating LP with a search depth of eight from time to time. This is not
due to the work space but is the object used.

The four different objects clearly shows that the approximating LP is more
dependent on the complexity of the object used than the interpolating LP.
The reason is that more complex objects yields a number of extra edges while
the approximating LP does not generate any extra edges. In Section 7.5 it is
stated that the step size of the interpolating LP can be lowered and that would
effect the result in such way that the approximating LP will come out on top.
But for arbitrary complex objects will make the approximation LP loose to the



7.6. CONCLUSION 73

interpolating LP.
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Chapter 8

Conclusion

In this thesis a new local planner strategy for the probabilistic road map is
suggested. This strategy uses approximations when attempting to connect two
configurations. Further more it uses a binary connection strategy to do finer
approximations when attempting connecting two configurations fails. The new
strategy was created to lower the number of collision tests done in the learning
phase of the probabilistic road map.

The approximation used when connecting two configurations is an over-
approximation of the movement of the object between the two configurations.
The approximation has the a worst case running time of

O (k · (n + m)) ,

where n is the maximum number of points in the components, m is the maxi-
mum number of connection points in the components, and k is the number of
components.

The binary connection strategy attempts to connect two configurations by
over-approximating the path between them. If the connection attempt fails the
binary connection strategy continues the search by dividing the path into two
sub-paths. This has the effect that each of the two sub-paths has a finer over-
approximation, and hence may be able to succeed in finding a path. The search
depth can be adjusted to control how fine the approximations should be. The
larger search depth that is used the finer the approximations will be.

Both the original approach and the new local planner have been implemented
in C++. A great deal of effort has been placed into ensuring that different
approaches generate correct output, so reliable test data can be generated from
the implementation.

Several experiments have been performed to generate reasonable data shows
the number of collision tests done under different circumstances. The experi-
ments has been executed on different work spaces with different objects to show
different dependencies. The experiments shows that:

• Larger search depths increases the number of collision tests.

• More edges in the work space increases the number of collision tests with
the same factor for both the original and the new local planner.
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• The new local planner strategy is more dependent on the complexity of
the object than the original.

• The new local planner strategy saves collision tests compared to the orig-
inal. But this is dependent on the complexity of the object moved, the
search depth and the step size.

The proposed approach saves collision tests in the learning phase of the
probabilistic road map. But the cost is more dependency on the complexity of
the object moved compared with the interpolating connection strategy.



Chapter 9

Future Work

9.1 Removing non-important Edges

The approximations in the given strategy gives a polygon for each edge in the
object moved. There are several edges in this approach that are duplicates.
Removing these duplicates will lower the number of collision tests done by the
approximation approach further. There are several edges of the polygons gen-
erated by the approximation that is within the outer boundary of the total
approximation. It is suggested that a map overlay algorithm can be used to
make a union of all the polygons. The union would remove inner edges as well
as duplicate edges, hence lowering the total number of edges outputted by the
approximation. This would lower the number of collision tests further but on
the cost of more running time done approximating movements. But this trade
off should be fine for work spaces with a high number of edges.

9.2 Comparing more Approaches

There is other connection approaches used to construct probabilistic road maps.
There is a another binary approach where it uses binary division of the path
instead of the interpolation. It could be interesting to compare this approach
with the original and the new approach from this theses.

9.3 Connectivity Comparison

The number of collision tests have been lowered for some problems by the sug-
gested local planner in this thesis. But how does it perform when focusing
on the connectivity. Does the lower number of collision tests have a price of
lower connectivity ? or can the suggested local planner have a lower number of
collision tests while having the same connectivity as the original local planner.
Several experiments can be setup by using the implementation from this thesis
to solve these question.
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9.4 Learning Phase Speed Comparison

Another interesting parameter that can be tested is how does the new approach
perform when comparing the time usage in the learning phase. Does the sug-
gested approach use to much time on approximation compared with what can
be saved by lowering the number of collision tests. However the construction
speed is not that an interesting parameter alone. If the speed of the learning
phase is great but the connectivity is too poor it would be a bad strategy. What
is interesting is a trade off between both speed and connectivity.

9.5 Combining Approaches

The suggest approach is cheap when connecting configurations that are far way
from each other. At low distances the original approach seem better. The idea
is to combine these two types of connection strategies. Where configurations
over a certain distance is attempted connected with the suggested approach.
While configurations under the distance is attempted connected with the original
approach. This seems like a good combination between the two strategies that
can yield even better results than the current.

9.6 Three Dimensions

Applying the suggested approach to three dimensional problems would be in-
teresting. Would it still lower the number of collision tests done. Does the extra
dimension have some cost that are too high when approximating the movements.
The algorithms used to generate approximations in two dimensions is the convex
hull and the Minkowski sum. Both the convex hull and the Minkowski sum are
solvable in three dimensions within reasonable running time. The only factor
could be that the number of generated facets from the approximation would be
to great. But it should be possible to apply the connection suggested here in
this thesis to three dimensions as well.



Appendix A

Program

A.1 Parameters

A.1.1 run

There are different run types of the program, meaning the program can print out
data to fig format, generate road maps and show different features used in the
complete algorithm. The syntax for running a certain run type is run=parameter,
where the parameters are shown below.
parameter description
roadmap starts the construction, followed by an expansion
construction starts the construction of a road map
localplanner starts a local planner
approximation stats an approximation
printenlarge prints an ε enlargement of an object
printobject prints an object
printobjenl prints both the object and the related ε enlargement.
printprm print a probabilistic road map
printcollisionstests print the collision test count
printconfigurations print the configurations
printworkspace print the workspace

A.1.2 print

When printing some data from the program the wanted information can be set,
an example can be that one might want to print obstacles and edges only. The
syntax is print=parameter and the parameters are shown below.
parameter description
obstacles obstacles print is activated
border border print is activated
edges edges print is activated
configurations configurations print is activated
originalmovement original movement of the object is activated
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A.1.3 numof

When generating a PRM the number of configurations generated or the max-
imum number of failures etc. can be set by using the following syntax nu-
mof=parameter=number. The different parameters are shown below.
parameter description
configurations number of maximum configurations
failures number of maximum failures
closestsconnect maximum number of attempts to connect configurations
minsteps minimum steps in the RBW
maxsteps maximum steps in the RBW
searchdepth search depth in the Approximation LP

A.1.4 localplanner

To control what LP strategy is used to connect configurations the localplan-
ner parameter can be set. This is done by the following syntax localplan-
ner=parameter. The different LP types are the parameters shown below.
parameter description
original use the original LP
interpolation use the interpolating LP
approximate use the approximating LP

A.1.5 loading data files

There are several parameters needed to load data files into the program. To
load in a data of a given type use the following syntax parameter=location and
below are the parameters shown.
parameter description
object loads an object file
configurations loads a configurations file
workspace loads a workspace file
prm loads a probabilistic road map



Appendix B

Objects Used

(a) . (b) . (c) . (d) . (e) . (f) . (g) .

Figure B.1: The seven objects used in the program, the objects are a triangle,
square, T structure, H structure, V structure, and two linked polygons. The
linked polygons are two sticks and three sticks, respectively.
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(a) . (b) . (c) . (d) .

Figure B.2: The objects used in the program that are ε enlarged. The T, H and
V are non-convex figures and there are no ε-enlargement for these figures.

(a) . (b) . (c) . (d) .

Figure B.3: The objects used in the program that are ε enlarged, where the
original object is within the ε enlargement. The T, H and V are non-convex
figures and there are no ε-enlargement for these figures.



Appendix C

Work Spaces Used

(a) The cross workspace. (b) The labyrinth workspace.

(c) The corridors workspace.

Figure C.1: Three workspaces used to test the motion planning algorithm.
There is no dump of the empty workspace as it does not have any obstacles.
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(a) The circles workspace with a resolu-
tion of four.

(b) The circles workspace with a resolu-
tion of eight.

(c) The circles workspace with a resolu-
tion of 16.

(d) The circles workspace with a resolu-
tion of 32.

(e) The circles workspace with a resolu-
tion of 64.

(f) The circles workspace with a resolu-
tion of 128.

Figure C.2: The six cirles work spaces used to test the number of collisions done
by different local planner strategies. They are with a resolution of 4, 8, 16, 32,
64 and 128.



Appendix D

Local Planner Figures

D.1 Triangle

(a) The from- and to-configuration of the
triangle.

(b) The real movement of the triangle.

(c) The ε enlarged triangle movement. (d) The approximation of the movement.

(e) The approximation of the movement
splitted into two.

Figure D.1: The three different local planners connection strategies for a triangle
between two configurations the translation is (150,0) and the rotation is 0.5.
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(a) The from- and to-configuration of the
triangle.

(b) The real movement of the triangle.

(c) The ε enlarged triangle movement. (d) The approximation of the movement.

(e) The approximation of the movement
splitted into two.

Figure D.2: The three different local planners connection strategies for a triangle
between two configurations the translation is (150,0) and the rotation is 1.0.

(a) The from- and to-configuration of the
triangle.

(b) The real movement of the triangle.

(c) The ε enlarged triangle movement. (d) The approximation of the movement.

(e) The approximation of the movement
splitted into two.

Figure D.3: The three different local planners connection strategies for a triangle
between two configurations the translation is (150,0) and the rotation is 2.
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D.2 Square

(a) The from- and to-configuration of the
square.

(b) The real movement of the square.

(c) The ε enlarged square movement. (d) The approximation of the movement.

(e) The approximation of the movement
splitted into two.

Figure D.4: The three different local planners connection strategies for a square
between two configurations the translation is (150,0) and the rotation is 0.5.
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(a) The from- and to-configuration of the
square.

(b) The real movement of the square.

(c) The ε enlarged square movement. (d) The approximation of the movement.

(e) The approximation of the movement
splitted into two.

Figure D.5: The three different local planners connection strategies for a square
between two configurations the translation is (150,0) and the rotation is 1.
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(a) The from- and to-configuration of the
square.

(b) The real movement of the square.

(c) The ε enlarged square movement. (d) The approximation of the movement.

(e) The approximation of the movement
splitted into two.

Figure D.6: The three different local planners connection strategies for a square
between two configurations the translation is (150,0) and the rotation is 2.
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D.3 T

(a) The from- and to-configuration of the T. (b) The real movement of a T structure.

(c) The from- and to-configuration of the T. (d) The approximation of the movement
splitted into two.

Figure D.7: The two different local planners connection strategies for a T struc-
ture between two configurations the translation is (150,0,0.5) and the rotation
is 0.5.

(a) The from- and to-configuration of the T. (b) The real movement of a T structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.8: The two different local planners connection strategies for a T struc-
ture between two configurations the translation is (150,0) and the rotation is
1.

(a) The from- and to-configuration of the T. (b) The real movement of a T structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.9: The two different local planners connection strategies for a T struc-
ture between two configurations the translation is (150,0) and the rotation is
2.
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D.4 H

(a) The from- and to-configuration of the H. (b) The real movement of a H structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.10: The two different local planners connection strategies for a H
structure between two configurations the translation is (150,0) and the rotation
is 0.5.

(a) The real movement of the triangle. (b) The real movement of a H structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.11: The two different local planners connection strategies for a H
structure between two configurations the translation is (150,0) and the rotation
is 1.

(a) The from- and to-configuration of the H. (b) The real movement of a H structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.12: Shows the three different local planners connection strategies for
a H structure between two configurations the translation is (150,0) and the
rotation is 2.
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D.5 V

(a) The from- and to-configuration of the V. (b) The real movement of a V structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.13: The two different local planners connection strategies for a V
structure between two configurations the translation is (150,0) and the rotation
is 0.5.
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(a) The from- and to-configuration of the V. (b) The real movement of a V structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.14: Shows the three different local planners connection strategies for
a V structure between two configurations the translation is (150,0) and the
rotation is 1.
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(a) The from- and to-configuration of the V. (b) The real movement of a V structure.

(c) The approximation of the movement. (d) The approximation of the movement
splitted into two.

Figure D.15: Shows the three different local planners connection strategies for
a V structure between two configurations the translation is (150,0) and the
rotation is 2.
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D.6 Two Small Sticks

(a) The from- and to-configuration of the
two small sticks.

(b) The real movement of linked object that
consists of two sticks.

(c) The ε enlarged linked object of two
sticks movement.

(d) The approximation of the movement of
the two sticks.

(e) The approximation of the movement
splitted into two.

Figure D.16: The three different local planners connection strategies for a linked
polygon between two configurations the translation is (150,0) and the rotation
is 0.25 for each orientation. The linked polygon consists of two sticks.
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(a) The from- and to-configuration of the
two small sticks.

(b) The real movement of linked object that
consists of two sticks.

(c) The ε enlarged linked object of two
sticks movement.

(d) The approximation of the movement of
the two sticks.

(e) The approximation of the movement
splitted into two.

Figure D.17: The three different local planners connection strategies for a linked
polygon between two configurations the translation is (150,0) and the rotation
is 0.5 for each orientation. The linked polygon consists of two sticks.
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(a) The from- and to-configuration of the
two small sticks.

(b) The real movement of linked object that
consists of two sticks.

(c) The ε enlarged linked object of two
sticks movement.

(d) The approximation of the movement of
the two sticks.

(e) The approximation of the movement
splitted into two.

Figure D.18: The three different local planners connection strategies for a linked
polygon between two configurations the translation is (150,0) and the rotation
is 1 for each orientation. The linked polygon consists of two sticks.
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D.7 Three Small Sticks

(a) The from- and to-configuration of the
three small sticks.

(b) The real movement of linked object that
consists of three sticks.

(c) The ε enlarged linked object of three
sticks movement.

(d) The approximation of the movement of
the three sticks.

(e) The approximation of the movement
splitted into two.

Figure D.19: The three different local planners connection strategies for a linked
polygon between two configurations the translation is (150,0) and the rotation
is 0.25 for each orientation. The linked polygon consists of three sticks.
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(a) The from- and to-configuration of the
three small sticks.

(b) The real movement of linked object that
consists of three sticks.

(c) The ε enlarged linked object of three
sticks movement.

(d) The approximation of the movement of
the three sticks.

(e) The approximation of the movement
splitted into two.

Figure D.20: The three different local planners connection strategies for a linked
polygon between two configurations the translation is (150,0) and the rotation
is 0.5 for each orientation. The linked polygon consists of three sticks.
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(a) The from- and to-configuration of the
three small sticks.

(b) The real movement of linked object that
consists of three sticks.

(c) The ε enlarged linked object of three
sticks movement.

(d) The approximation of the movement of
the three sticks.

(e) The approximation of the movement
splitted into two.

Figure D.21: The three different local planners connection strategies for a linked
polygon between two configurations the translation is (150,0) and the rotation
is 1 for each orientation. The linked polygon consists of three sticks.



Appendix E

Road Maps

(a) Two configurations. (b) Four configurations. (c) Eight configurations.

(d) 16 configurations. (e) 32 configurations. (f) 64 configurations.

(g) 128 configurations.

Figure E.1: Placements of a triangle for each configuration in the road map.
Figure E.1(a), Figure E.1(b), Figure E.1(c), Figure E.1(d), Figure E.1(e), Fig-
ure E.1(f) and Figure E.1(g) is the road map generated with the number of
configurations parameter set to 2, 4, 8, 16, 32, 64 and 128, respectively.
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(a) Two configurations. (b) Four configurations. (c) Eight configurations.

(d) 16 configurations. (e) 32 configurations. (f) 64 configurations.

(g) 128 configurations.

Figure E.2: Placements of an edge for each edge in the road map. Figure E.2(a),
Figure E.2(b), Figure E.2(c), Figure E.2(d), Figure E.2(e), Figure E.2(f) and
Figure E.2(g) is the road map generated with the number of configurations
parameter set to 2, 4, 8, 16, 32, 64 and 128, respectively.
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(a) Two configurations. (b) Four configurations. (c) Eight configurations.

(d) 16 configurations. (e) 32 configurations. (f) 64 configurations.

(g) 128 configurations.

Figure E.3: Placements of a triangles to show the movement for each edge
in the road map. Figure E.2(a), Figure E.2(b), Figure E.2(c), Figure E.2(d),
Figure E.2(e), Figure E.2(f) and Figure E.2(g) is the road map generated with
the number of configurations parameter set to 2, 4, 8, 16, 32, 64 and 128,
respectively.
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(a) Placement for 128
configurations of a
square.

(b) Placement for 128
configurations of two
small sticks.

(c) Placement for 128
configurations of three
small sticks.

(d) Edges for 128 config-
urations of a square.

(e) Edges for 128 con-
figurations of two small
sticks.

(f) Edges for 128 config-
urations of three small
sticks.

(g) Real movement for
128 configurations of a
square.

(h) Real movement for
128 configurations of two
small sticks.

(i) Real movement for
128 configurations of
three small sticks.

Figure E.4: .



Appendix F

Collision Tests Graphs
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(a) Collision tests on the empty work
space with a triangle.
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(b) Collision tests on the empty work
space with a square.
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(c) Collision tests on the empty work
space with two small sticks linked to-
gether.
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(d) Collision tests on the empty work
space with three small sticks linked to-
gether.

Figure F.1: Collision tests on the empty work space with the four different
objects. The graphs clearly shows how the approximation lowers the number of
collision tests for any object in the empty work space.
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(a) Collision tests on the cross work space
with a triangle.
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(b) Collision tests on the cross work
space with a square.
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(c) Collision tests on the cross work space
with two small sticks linked together.
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(d) Collision tests on the cross work
space with three small sticks linked to-
gether.

Figure F.2: Collision tests on the cross work space with the four different objects.
The graphs shows how the approximation lowers the number of collision tests
except for the search depth of eight.
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(a) Collision tests on the labyrinth work
space with a triangle.
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(b) Collision tests on the labyrinth work
space with a square.
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(c) Collision tests on the labyrinth work
space with two small sticks linked to-
gether.
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(d) Collision tests on the labyrinth work
space with three small sticks linked to-
gether.

Figure F.3: Collision tests on the labyrinth work space with the four different
objects. The graphs shows how the approximation lowers the number of collision
tests except for the search depth of eight.
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(a) Collision tests on the circles work
space with a resolution of four with a tri-
angle.
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(b) Collision tests on the circles work
space with a resolution of four with a
square.
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(c) Collision tests on the circles work
space with a resolution of four with small
sticks linked together.
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(d) Collision tests on the circles work
space with a resolution of four with three
small sticks linked together.

Figure F.4: Collision tests on the circles work space with a resolution of four
with the four different objects. The graphs shows how the approximation lowers
the number of collision tests except for the search depth of eight.
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(a) Collision tests on the circles work
space with a resolution of eight with a
triangle.
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(b) Collision tests on the circles work
space with a resolution of eight with a
square.
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(c) Collision tests on the circles work
space with a resolution of eight with small
sticks linked together.
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(d) Collision tests on the circles work
space with a resolution of eight with three
small sticks linked together.

Figure F.5: Collision tests on the circles work space with a resolution of eight
with the four different objects. The graphs indicates that the approximation
lowers the number of collision tests except for the search depth of eight.
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(a) Collision tests on the circles work
space with a resolution of 16 with a tri-
angle.
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(b) Collision tests on the circles work
space with a resolution of 16 with a
square.
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(c) Collision tests on the circles work
space with a resolution of 16 with two
small sticks linked together.
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(d) Collision tests on the circles work
space with a resolution of 16 with three
small sticks linked together.

Figure F.6: Collision tests on the circles work space with a resolution of 16 with
the four different objects. The graphs shows how the approximation lowers the
number of collision tests except for the search depth of eight.
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(a) Collision tests on the circles work space
with a resolution of 32 with a triangle.
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(b) Collision tests on the circles work space
with a resolution of 32 with a square.
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(c) Collision tests on the circles work space
with a resolution of 32 with two small sticks
linked together.
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(d) Collision tests on the circles work
space with a resolution of 32 with three
small sticks linked together.

Figure F.7: Collision tests on the circles work space with a resolution of 32 with
the four different objects. The graphs shows how the approximation lowers the
number of collision tests except for the search depth of eight.
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Appendix G

Notations

There will be a notation reference here
β and γ A real number
α Angle in radians.
p, q and r Point in R.
e Edge in R.
P 2 Polygon in the plane.
P Obstacle
c a configuration
cfree free configuration
s start configuration
g goal configuration
C set of configurations
Cfree set of free configurations
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Appendix H

Acronyms

C-Obstacle Configuration Space Obstacle

C-Space Configuration Space

CCW Counter Clock Wise

CW Clock Wise

DAG Directed Acyclic Graph

DOF Degrees Of Freedom

GCC GNU Compiler Collection

GLUT OpenGL Utility Toolkit

RBW Random Bounce Walk

LP Local Planner

MP Motion Planning

MPV Minimum Potential Valley

OS Operating System

PRM Probabilistic Road Map

RM Road Map

STL Standard Template Library

V-Graph Visibility Graph
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