
Orthogonal Range Skyline Counting Queries
Master Thesis
Spring 2014

Computer Science - Aarhus University

Daniel Winther Petersen (20082246, dapet88@cs.au.dk)

June 19, 2014

1

Contents

1 Introduction 3

2 Previous work 6

3 Naive 7

4 RMQ simple 10
4.1 Binary structure . 10
4.2 Prefix skyline count structure 13
4.3 RMQ structure . 15
4.4 Conclusion . 17

5 Fractional cascading 19
5.1 High x path . 22
5.2 Low x path . 24
5.3 Fractional performance . 26

6 Succinct RMQ 28

7 Succinct dominating prefix sum and fractional cascading 29

8 Final structure 31
8.1 Block structure . 31
8.2 Inner node structure . 32
8.3 Multislab structure . 34
8.4 Orthogonal range skyline counting query 36

9 Tests 39
9.1 Test machine . 39
9.2 Measurement setup . 39
9.3 Test data . 40
9.4 Worst case . 43
9.5 Best case . 51
9.6 Best to worst case . 54
9.7 Variable query regions . 55
9.8 Random case . 59

10 Conclusion 62

11 References 63

12 Apendixes A: Table of notation 65

2

Abstract

The Orthogonal Range Skyline of a set of points S and with a
Orthogonal Range defined by p1 and p2 where p2 dominates p1, is the
maximal subset of points S′ ⊆ S that does not contain a dominated
point and where it holds for every point p ∈ S′ that p1.x < p.x < p2.x
and p1.y < p.y < p2.y . The topic of this thesis is to implement the
structure from [Brodal and Larsen, 2014] over several steps, where the
first steps are very simple and ending up with the final structure. The
purpose is to test the performance of each step compared to each other.

The paper concludes through tests that the Naive, RMQ simple
and Fractional algorithms follow the query times, preprocessing times
and structure size boundaries set in the theories. There is also an
analysis of the best case scenario where RMQ simple performed better
than Fractional, even though Fractional where better in the worst case.
This got followed by a best to worst case scenario test that showed
RMQ simple quickly became worse than Fractional. At the end there
were a random test that showed RMQ simple in many random cases
were slower than Fractional, because of the high risk of querying a big
subtree in the binary structure.

1 Introduction

Figure 1 shows an example of a Skyline (Definition 1.2) and Figure 2 shows
an example of a Orthogonal range Skyline (Definition 1.3). Skyline counting
queries return the number of points on the skyline and Skyline reporting
queries return the points on the skyline.

Definition 1.1. Point (x, y) dominates point (x′, y′) if x ≥ x′ and y ≥ y′.

Definition 1.2. The Skyline of a set of points S, is the maximal subset of
points S′ ⊆ S that does not contain a dominated point.

Definition 1.3. The Orthogonal Range Skyline of a set of points S with an
Orthogonal Range defined by points p1 and p2, where p2 dominates p1, is the
maximal subset of points S′ ⊆ S that does not contain a dominated point,
with respect to points in S′, and where it holds for every point p ∈ S′ that
p1.x < p.x < p2.x and p1.y < p.y < p2.y .

The data structure from [Brodal and Larsen, 2014], is a delta tree struc-
ture making use of succinct range maximum structure [Fischer, 2008], suc-
cinct dominating prefix sum structure [Raman et al., 2007] and succinct frac-
tional successor/predecessor structures [Brodal and Larsen, 2014] to achieve
orthogonal range skyline counting query time of O(log n/ log log n) with a
space usage on O(n) words and O(n log n) preprocessing time.

3

Figure 1: The figure shows the Skyline, with an unbroken blue line, for all
the points.

Figure 2: The figure shows the Orthogonal range Skyline, with an unbroken
blue line, for all the points in the query range. The query range is represented
by a red rectangle.

The topic of this thesis is to implement the structure over several steps,
where the first steps are very simple and ending up with the final structure.
Some steps implement a simple version of a substructure from the final struc-
ture, an example could be a range minimum structure that is not succinct,
for then in a later step to implement a succinct version of the substructure.
Every step will then be thoroughly tested and analyzed before proceeding
to the next step. This will make it possible to compare the different steps
performance and conclude which step had the best practical performance
gain.

The steps with their theoretical performance:

4

1. Naive: O(n) query time, O(n log n) preprocessing and O(n) words
space usage. Iteration over a sorted list.

2. RMQ simple: O(log2 n) query time, O(n log2 n) preprocessing and
words space usage. Introducing a binary tree structure and non suc-
cinct range maximum structure [Bender and Farach-Colton, 2000] and
a variation on non succinct dominating prefix sum [Brodal and Larsen,
2014] called non succinct prefix skyline count.

3. Fractional: O(log n) query time, O(n log2 n) preprocessing and words
space usage. Introducing a non succinct fractional cascading predeces-
sor and successor structure [Chazelle and Guibas, 1986].

4. Succinct RMQ:O(log n) query time, O(n log n) preprocessing and words
space usage. Introducing a succinct range maximum structure [Fischer,
2008].

5. Succinct dominating prefix sum and fractional cascading: O(log n)
query time, O(n log n) preprocessing and O(n) words space usage. In-
troducing a succinct dominating prefix sum structure and a succinct
fractional cascading structure, using [Raman et al., 2007].

6. Final Structure: O(log n/ log log n) query time, O(n log n) preprocess-
ing and O(n) words space usage. Introducing a delta tree structure
[Brodal and Larsen, 2014] [Das et al., 2013] and fractional predecessor
and successor structure [Brodal and Larsen, 2014].

The purpose of this paper is to test the performance of each step com-
pared to each other.

This paper is structured with a theory section for each step and then
ending with the test results and a conclusion. During the paper the first 3
steps got implemented and tested.

Definition 1.4. Through this paper there will be multiple uses of sorting a
set of points with respect to the y axis, in cases of 2 points with equal y then
the point with lesser x is considered lower.

Definition 1.5. Through this paper there will be multiple uses of sorting a
set of points with respect to the x axis, in cases of 2 points with equal x then
the point with lesser y is considered lower.

5

2 Previous work

All the structures mentioned here are static structures.
In [Patrascu, 2007] it was proved that a space usage of n logO(1) n implies

an orthogonal range counting query time of Ω(log n/ log log n) and in [JáJá
et al., 2004] a range counting query time of O(log n/ log logn) was achieved
with a space usage on O(n). Where a orthogonal range counting query re-
ports the total amount of points within an orthogonal range of a set of points
in the plane.

Orthogonal range skyline counting queries was first considered in [Das
et al., 2012] where a data structure were presented with O(n log2 n/ log log n)
space usage and a query time of O(log3/2 n/ log logn). This was improved
by [Kalavagattu et al., 2012] with a space usage of O(n log n) and a query
time of O(log n). After that [Das et al., 2013] improved the query time to
O(log n/ log log n) but with a space usage of O(n log3 n/ log log n). Finally
there is [Brodal and Larsen, 2014] that showed a structure that achieved
a query time of O(log n/ log log n) but with O(n) space usage. This also
matches the theoretical lower bound of orthogonal range skyline counting
queries, also proved in [Brodal and Larsen, 2014]. The bound states that if
the word size is logO(1) n and the space usage is n logO(1) n words then the
query lower bound is Ω(log n/ log logn).

6

3 Naive

This first step is a naive brute force way of solving the problem with a
query time of O(n), space consumption of O(n) words and a preprocessing
of O(n log n). This step does not evolve later into the final algorithm and
was only implemented because of its simplicity so we easily could verify its
correctness. It was mainly used to debug the other steps and provide a
baseline for all the tests.

The preprocessing consists of sorting all the points according to the x
axis (According to Definition 1.5) and save the sorted list of points in an
array A. The query can then be performed as shown in the "naiveQuery"
algorithm.

First the algorithm finds all the points in the sorted array A that is within
the x range of the query. This is done with a successor and predecessor
search with the x query values on A. Then the algorithm iterates over all
the points from high x to low x. Through the iteration there is kept track
of the highest y values encountered, this value starts at the query range
minimum y value. Every point encountered that have a higher y value than
the highest y value previous encountered and still a lower y value than the
query range maximum y value, will increase the skylinecount with one. After
the iteration the skylinecount is returned.

Algorithm 1 naiveQuery(Point* * A, Point* lowerLeft , Point* topRight)

if |A| == 0 then
return 0

lowxIndex ← searchSucc(A, lowerLeft)
highxIndex ← searchPred(A, topRight)
lowY ← lowleft .y
skylineCount ← 0
for p← highxIndex down to lowxIndex do

if p.y > lowY and p.y < topRight .y then
lowY = p.y
skylineCount++

return skylineCount

To prove the correctness of this algorithm we need the following lemmas:

Lemma 3.1. Let p be a point on the skyline. Then we know that all other
points on the skyline with a lower x coordinate than p will also have a higher
y coordinate compared to p.

Proof. If p1 is on the skyline and a point p2 has a lower x and y coordinate
than p1, then we know per Definitions 1.1 and 1.2 that p2 cannot be on the
skyline because it is dominated by p1.

7

Figure 3: The figure shows a state of the Naive query during the iteration.
The naive query iterates over all the sorted points from high x to low x. The
green vertical line shows the current point being iterated, the blue non broken
line shows the current found skyline and the broken blue line represents
the skyline that will be found in future iterations. At any point through
the iterations the highest y value encountered so far, lowY , is stored and
represented by the broken orange horizontal line. This is important because
the next point found with a higher y coordinate, than any other point iterated
over yet, and still within the query region, shown as a red box, will be on
the skyline.

Lemma 3.2. There cannot be more points on the skyline than points in the
Query set.

Lemma 3.3. There exists a structure that calculates the answer to an or-
thogonal range skyline counting query in O(n) time, using O(n) space and
having a preprocessing time of O(n log n).

Proof. The naiveQuery algorithm calculates the orthogonal range skyline
counting query. Because of Lemma 3.2 we can justify the first if statement.
Because the for loop goes from the points with highest x and down to the
points with the lowest x and because of Lemma 3.1 we can conclude that
the query algorithm will find every point on the skyline and no other point
will be added.

The preprocessing time is equal to the time it takes to sort the array,
O(n log n). The space consumption is dominated by the space for the sorted
array, O(n) words. The query’s running time is worst case O(n) because we
could iterate over all the points in the array.

8

This structure can also return the actual points without loss of perfor-
mance.

Figure 3 shows how the state of one iteration in the Naive query could
be.

9

4 RMQ simple

This is the second step in the implementation of the algorithm. It contains
the binary tree structure, a prefix structure [Brodal and Larsen, 2014] and a
simple range maximum query (RMQ) structure [Bender and Farach-Colton,
2000]. This will result in a preprocessing of O(n log2 n), space consumption
of O(n log2 n) words and a query time of O(log2 n).

The structure will be explained in a top down format, starting with the
binary structure and go on to the lower structures afterwards.

4.1 Binary structure

A query in a binary search tree over all the points, in this case sorted on
their x coordinates, can still find the minimum and maximum point relative
to the x-axis of the query range in O(log n) time. Another property is that
the paths from those two points to their least common ancestor (LCA) each
have up to O(log n) subtrees within the x range of the query.

All points contained in these subtrees are within the query range relative
to the x-axis, but nothing is known about their y coordinates yet. It is this
fact that the rest of this algorithm builds upon. Because the query will again
traverse from high x to low x, starting in the lowest point in the path with
high x and go up until the LCA, then down from there through the low x
path.

Figure 4 shows the binary structure over some random points, and how
one query could look like with Xmin, Xmax , high x path and the low x path.

The following lemma will be needed:

Lemma 4.1. If p is the point within the query with the largest x coordinate,
then p is on the skyline.

Proof. If p is the point with the highest x coordinate then there cannot exist
another point within the query range that could dominate p, so p must be
on the skyline.

The query can easily deal with the two leaf cases, Xmin and Xmax . In
the Xmax case if it is in the y range of the query then it is the first point in
the skyline (Lemma 4.1). If the query keeps track of the highest y coordinate
of previous added points, as in the naive case, then the query can check if
Xmin is in the range. How the query handle the subtree cases is explained in
the next two sections. The pseudo code "rmqSimpelQuery" shows in more
detail how the query is implemented.

10

Figure 4: The figure shows how the binary structure in the RMQ Simpel
structure is used in the query. The query region is shown as a red box.
Based on the query regions x values the query will find Xmin and Xmax
by a predecessor and successor search through the tree. At the same time
the high x path and the low x path are being calculated, represented as red
nodes and edges. All leafs and inner nodes that are within the query region
x values and is not a part of the high or low x paths is marked in blue, while
the rest are marked in green. It is worth to note that not every leaf has the
same path length to the root and that any point within the valid section of
the binary tree, including Xmin and Xmax , not necessarily is within the y
range of the query range but that they are within the x range. What is left
is to deal with the leaf cases and all the subtrees of the valid section.

11

Algorithm 2 rmqSimpelQuery(Point lowerLeft , Point topRight)

highPath ← rootNode.getPredecessorPath(topRight .x)
lowPath ← rootNode.getSuccessorPath(lowerLeft .x)
lca ← findLCA(highPath, lowPath)
lowY ← lowerLeft .y
highY ← topRight .y
if highPath[lca] = lowPath[lca] then

return subQuery(highPath[lca], lowY , highY)

skylineCount ← 0
for i← |highPath| − 1 to lca do

leftChild ← highPath[i].leftChild
if leftChild = null then

skylineCountChange ← highPath[i].rmqSubQuery(lowY , highY)
if skylineCountChange 6= 0 then

lowY ← highPath[i].predecessor(highY).y
skylineCount ← skylineCount + skylineCountChange

elseif leftChild 6= highPath[i+ 1] then
skylineCountChange ← leftChild .rmqSubQuery(lowY , highY)
if skylineCountChange 6= 0 then

lowY ← leftChild .predecessor(highY).y
skylineCount ← skylineCount + skylineCountChange

for i← lca − 1 to 0 do
rightChild ← lowPath[i].rightChild
if rightChild = null then

skylineCountChange ← lowPath[i].rmqSubQuery(lowY , highY)
if skylineCountChange 6= 0 then

lowY ← lowPath[i].predecessor(highY).y
skylineCount ← skylineCount + skylineCountChange

elseif rightChild 6= lowPath[i+ 1] then
skylineCountChange ← rightChild .rmqSubQuery(lowY , highY)
if skylineCountChange 6= 0 then

lowY ← rightChild .predecessor(highY).y
skylineCount ← skylineCount + skylineCountChange

return skylineCount

12

4.2 Prefix skyline count structure

With the indexes of the points on the skyline with the highest and lowest
y coordinate, then the skyline count over all the points can be computed in
O(1) time by using the prfix skyline count.

Definition 4.2. Prefix skyline count is the skyline count for a given point
in a set, if you only consider the points with lower y coordinates than that
point in the set.

Algorithm 3 generatingPrefixSkylineCount(Point* *A)

prefixSkylineCount ← int [|A|]
nonDom ← {}
for p← 0 to |A| − 1 do

while nonDom 6= φ AND nonDom.peak().x ≤ A[p].x do
nonDom.pop()

end while
nonDom.push(p)
prefixSkylineCount [p]← |nonDom|

Lemma 4.3. The algorithm "generatingPrefixSkylineCount" will generate
an array of prefix skyline counts, one for each point in the input y sorted
array A, in O(n) time and using O(n) space.

Proof. Before each iteration of the for loop the stack nonDom contains the
skyline of A[0..p−1], based on the Definition 1.2. The point A[p] will have a
higher y coordinate than all points in nonDom. Because nonDom contains
the skyline of the previous points in a increasing y order and decreasing x
order, then the top point will have the lowest x coordinate, else it would
dominate some of the lower points and then nonDom will not be a true
skyline. So the while loop starts from the top of the stack and stops at
the first point that haves a higher x coordinate, because the stack is sorted
with respect to x. Every point will be added to the nonDom and only be
removed if it was dominated, and nonDom is a true skyline at the end of
every iteration, so we can conclude that we will get a correct prefix skyline
count.

Every point will be added to nonDom only once and there will at maxi-
mum be done 2n comparisons on the points in nonDom. Because beside the
first check in the while loop at every iteration, then every other check will
remove a point from nonDom and there can only be removed n − 1 points
through the whole iteration. This sums up to a running time of O(n) and the
prefixSkylineCount array of n size is the only thing that needs to be saved
so that limits the space usage to O(n).

13

Figure 5: Every inner node in the binary structure, in the RMQ simple
structure, contains a prefix skyline count structure, over all the points in its
subtree. The figure shows all the points in a subtree and pictures how one
query could be. The blue broken horizontal lines link a point with its prefix
sum count. The two red lines show the query region, because every point of
a queried subtree is within the x range then only the y range is shown. The
blue unbroken line shows the Skyline within the query range. The two green
squares mark the highSky and lowSky points, and in the middle is shown
the prefixSkylineCount [highSky]−prefixSkylineCount [lowSky]+1 calculation
based on those points. highSky will be found by a predecessor search on the
points and lowSky will be found through the RMQ structure that is explained
next.

14

Lemma 4.4. With the indexes of the points on the skyline with the highest
and lowest y coordinate, then the skyline count over all the points can be
computed by:

prefixSkylineCount [highSky] − prefixSkylineCount [lowSky] + 1 in O(1)
time.

Proof. prefixSkylineCount [highSky] is the total skyline count from highest
point down to the lowest point in the total set, not just in the query range,
and prefixSkylineCount [lowSky] is the part we do not need to consider. The
plus one is because prefixSkylineCount [lowSky] includes the lowSky that is
within the query range. So all non dominated points between highSky and
lowSky , both included, with a constant time lookup is left.

Figure 5 shows the Prefix skyline count structure over some random
points and how one query could make use of it to find the skyline count
between two points.

4.3 RMQ structure

With a range maximum structure the indexes of the point on the skyline
with the lowest y coordinate can be found in O(1) time, if the predecessor
to highY and successor to lowY is known.

Lemma 4.5. There exists a structure that can find the highest point on the
x axis in a set of points S sorted on y axis, in a range on the y axis, with
query time O(1), space usage O(n log n) and preprocessing time O(n log n).

Proof. Any interval in S, S[i, j] can be covered by two smaller intervals
S[i, i + k] and S[j − k, j], where k = 2blog |S|c, without covering more than
S. Worst case the 2 intervals need to be 2blognc size, because the range can
be all the points. With this upper bound all possible intervals on S can be
covered by using blog nc+ 1 indexes for each input point.

For each of the log n indexes the point with the largest x coordinate in its
range is saved. Then the point with the highest x coordinate in any interval
can be calculated in O(1) time, by comparing the two intervals max points.
This structure will have O(n log n) space usage.

15

Figure 6: Every inner node in the binary structure, of the RMQ Simple
structure, will have a RMQ structure over all the points in its subtree. The
figure shows what is stored for two points in the RMQ structure and how a
query uses the structure to find lowSky . There is stored blog nc = blog 18c =
4 points for each point in the subtree. The two last indexes at both points
covers the same area, but this will not be the case if the points had been
further away from the center point. During the query the two points marked
A and D is found with a predecessor or successor search on the queries y
range. Then the distance between the two points will determine the index to
use blog mainIntervalSizec = blog 9c = 3 at each point to find the point with
the largest x value. The rectangles representing these indexes are colored
green. 16

The fact that any index S[i, j] can be covered by two smaller intervals
S[i, i+ k] and S[j − k, j] of k = 2blog |S|c size means that every index in the
RMQ structure can be calculated in O(1) time, because RMQ [level , index] =
max(RMQ [level − 1, index],RMQ [level − 1, index + 2level−1]). If the struc-
ture is filled bottom up, starting from the indexes representing the shortest
intervals and then going up to the bigger ones, as shown in the pseudo code
generateRMQ that takes a list of points, sorted on the y axis, then there
exist n log n indexes that all can be filled out in O(1) time and this totals
up to a preprocessing time of O(n log n).

Figure 6 shows the RMQ structure over some random points and how a
query could use it to find the lowest point on the skyline.

Algorithm 4 generateRMQ(Point* *A)

rmqForward← int[log |A|][|A|]
for i← 0 to |A| do

rmqForward [0][i]← i

for layer ← 1 to log |A| do
for i← 0 to |A| − 1 do

leftSubIndex ← i
rightSubIndex ← i+ 2layer−1

if rightSubIndex ≥ |A| then
rightSubIndex ← |A| − 1

leftSubRMQ ← rmqForward [layer − 1][leftSubIndex]
rightSubRMQ ← rmqForward [layer − 1][rightSubIndex]
if A[leftSubRMQ].x > A[rightSubRMQ].x then

rmqForward [layer][i]← leftSubRMQ
else

rmqForward [layer][i]← rightSubRMQ

4.4 Conclusion

Lemma 4.6. The point p within the query range with the highest y value is
the highest point on the skyline.

Proof. Because there is no point within the query range that has higher y
value, then the point p cannot be dominated.

Lemma 4.7. There exists a structure that can perform an orthogonal range
skyline count query in O(log2 n) time, that uses O(n log2 n) space and has a
preprocessing time of O(n log2 n)

17

Proof. There are two paths in the binary structure, with up to log n subtrees
to check in each paths. For each subtree the query can find the top point
within the query range in O(log n) time, with a binary predecessor search.
The lowest point within the query range that is above the highest y coor-
dinate encountered so far to the right of the subtree, through the previous
iterations through the subtrees, can be found with a binary successor search
in O(log n) time. The highest point in the query range is equal to the highest
point on the skyline by Lemma 4.6 and the lowest point on the skyline can
be found with the RMQ structure from Lemma 4.5 in O(1) time. Then the
skyline count can be calculated in O(1) time through the prefix skyline count
structure by Lemma 4.4. This will total up to O(log2 n) time for a query.

The binary structure has log n layers, every element will have O(log n)
indexes in one of the RMQ structures found on a layer. Every element will
also be represented in the dominating prefix sum structure once in each layer.
This totals up to O(n log n log n+ n) = O(n log2 n) space.

The preprocessing uses the same argument: log n layers that spans n
elements each. For every inner layer that spans n elements there will be used
log n time in the RMQ preprocessing and O(1) time in the prefix skyline
count per element. The binary tree can be created in O(n) time bottom
up because the input is sorted. This totals up to a preprocessing time of
O(n+ n log n log n) = O(n log2 n).

The pseudo code "rmqSubQuery" shows how the sub query into every
subtree is implemented.

Algorithm 5 rmqSubQuery(int lowY , int highY)

inHighY ← predecessor(pointsSortY , highY)
inLowY ← successor(pointsSortY , lowY)
if inLowY = −1 OR inHighY = −1 OR inHighY < inLowY then

return 0
if innerNode AND inHighY > inLowY then

highLowDist ← inHighY − inLowY
logDist ← blog highLowDistc
lowest ← rmq [logDist][lowY]
highest ← rmq [logDist][highY − 2logDist]
if pointsSortY [lowest].x > pointsSortY [highest].x then

lowestMemberOfSkyline ← lowest
else

lowestMemberOfSkyline ← highest

return dps[inHighY]− dps[lowestMemberOfSkyline] + 1

return 1

18

5 Fractional cascading

This is the third step in the implementation of the algorithm. It contains the
non succinct fractional cascading structures, these are a simple variation of
the fractional cascading from [Chazelle and Guibas, 1986]. This will result in
a preprocessing time of O(n log2 n), space consumption of O(n log2 n) words
and a query time of O(log n). First there will be some Lemmas stating the
fractional cascading substructures that will be used and then there will be
two big Lemmas explaining the implementation of the structures in high and
low x path.

Lemma 5.1. If there exists two ordered lists of points sorted on the y coor-
dinate, S1 and S2, with size O(n), then there exists a Fractional Cascading
structure that supports minimum successor queries on y, that for any point
p1 ∈ S1 returns the point p2 ∈ S2 with the lowest y value where p1.y < p2.y,
with a query time of O(1), preprocessing in O(n) time and space usage in
O(n) words.

Algorithm 6 fracSuccessor(S1, S2)
s2Counter ← 0
fracCascSucc ← int [|S1|]
for i← 0 to |S1| − 1 do

while s2Counter 6= −1 AND S1[i].y ≤ S2[s2Counter].y do
if s2Counter < |S2| − 1 then

s2Counter + +
else

s2Counter ← −1
break

end while
fracCascSucc[i]← s2Counter

return fracCascSucc

19

Proof. The pseudo code "fracSuccessor" shows how the preprocessing could
be done within O(n) time and words space. The code makes use of the
fact that two points from S1 with indexes i and j, where i < j, minimum
successor indexes in S2 will have the property succ(i) ≤ succ(j). This means,
as shown by the while loop, that if we iterate through both lists at the same
time, from low to high, then every current iterated point in S2, p2, that is
not the minimum successor to the current iterated element in S1, p1, will not
be a minimum successor to any point later in the iteration over S1 either,
and if p2 is bigger than p1 then there will be no better candidate later in S2,
because they are sorted. This way the preprocessing will only touch every
element once and this result in the preprocessing time on O(n) time. The
space usage is bounded by the fracCascPred array so O(n) words and the
query is a O(1) lookup in fracCascPred .

Lemma 5.2. The structure from Lemma 5.1 can also support, with the same
performance, minimum successor on y if no equal queries, that for any point
p1 ∈ S1 returns the point p2 ∈ S2 with the lowest y value where p1.y ≤ p2.y.

Proof. The same proof as for Lemma 5.1, the S1[i].y ≤ S2[s2Counter].y con-
dition in the while loop just need to be changed to S1[i].y < S2[s2Counter].y,
to only give the minimum successor with respect to y if there is no point equal
to.

Lemma 5.3. The structure from Lemma 5.1 can also support, with the same
performance, maximum predecessor on y if no equal queries, that for any
point p1 ∈ S1 returns the point p2 ∈ S2 with the highest y value where
p1.y ≥ p2.y.

Proof. The same proof as for Lemma 5.1, the S1[i].y ≤ S2[s2Counter].y con-
dition in the while loop just need to be changed to S1[i].y > S2[s2Counter].y
and the directions changed from "low to high" to "high to low", to only give
the maximum predecessor with respect to y if there is no element equal
to.

Lemma 5.4. If there exists two ordered lists of points sorted on the y co-
ordinate, child and parent , with size O(n), and child ⊂ parent then there
exists a Fractional Cascading structure that supports child to parent mapping
queries, that finds the points from parent that is equal to the queried points
in child , with a query time of O(1), preprocessing will take O(n) time and
space usage on O(n).

20

Proof. This proof is very similar to the proof for Lemma 5.1, because the
points are sorted then the same facts hold, that two points from child with
indexes i and j, where i < j, mapped indexes in parent will have the property
map(i) ≤ map(j). Because child is a subset of parent then every child ele-
ment does exist in the parent set. This means the S1[i].y ≤ S2[s2Counter].y
condition from the pseudo code from Lemma 5.1 needs to be changed to
child [i].y = parent [s2Counter].y and then the lookup table can be con-
structed in O(n) time. So the preprocessing time is O(n), query time is
equal to the lookup so O(1) time and the space usage is O(n) because of the
table.

Lemma 5.5. If the sub query of RMQ simple query mentioned in Lemma
4.7 could get the index on lowY and highY , inLowY and inHighY , instead
of their values as parameters, then the sub query could be performed in O(1)
time.

Proof. If the sub query were given inLowY and inHighY then there were no
need for the two binary searches to find the indexes. Then what is left in the
query is: two lookups in the RMQ table and two lookups in the prefix skyline
count table, both of these are O(1) time lookups and sums up to a query
time of O(1). This is also shown in the pseudo code "fracSubQuery".

Algorithm 7 fracSubQuery(int inLowY , int inHighY)
if inLowY = −1 OR inHighY = −1 OR inHighY < inLowY then

return 0
if innerNode then

if inHighY > inLowY then
highLowDist ← inHighY − inLowY
logDist ← blog highLowDistc
lowest ← rmq [logDist][lowY]
highest ← rmq [logDist][highY − 2logDist]
if pointsSortY [lowest].x > pointsSortY [highest].x then

lowestMemberOfSkyline ← lowest
else

lowestMemberOfSkyline ← highest

return psc[inHighY]− psc[lowestMemberOfSkyline] + 1

return 1

21

5.1 High x path

Lemma 5.6. It is possible for the high x path part of the RMQ simple query
mentioned in Lemma 4.7 to give the indexes of lowY and highY , inLowY
and inHighY , to every sub query during the query, resulting in a query time
of O(log n) during this part.

Proof. The high x path part is a bottom up iteration of the high x path,
but the calculation of the path is a top down recursive call from the root
down to Xmax . During this recursive call the inLowY and inHighY of every
node can be calculated from the parent nodes inLowY and inHighY with
a "maximum predecessor if no equal query" (Lemma 5.3) and a "minimum
successor if no equal query" (Lemma 5.2) in O(1) time. The root will make
use of a successor and predecessor call on a sorted list of the input points
to find its inLowY and inHighY , so these points would be points from the
input set that is within the query range, with respect to the x coordinate.
The "if no equal queries" needs to be used, else every recursion will exclude
points that is within the query range, with respect to the x coordinate.

The first call to the sub query, at Xmax , can be done in O(1) based on
Lemma 5.5, because the query now knows inLowY and inHighY .

The next sub queries, during the iteration through the high x path, will
be called on inner nodes that are left children to the high x path, these
parent nodes already calculated its own inLowY and inHighY based on the
query values, during the recursion. But if earlier, during the query, a point
were added to the Skyline then lowY needs to change in the parent nodes.
There is several parts to this:

When a sub query adds to the skyline then that child’s parents inLowY
needs to change to the parent index of the child’s inHighY , to keep track
of the highest y values added yet. This can be done in O(1) time with
the child to parent mapping mentioned in Lemma 5.4, parent .lowY ←
child .childToParMap(child .highY), because the points in the child’s subtree
is a subset to the parents.

When the query iterates up through the high path, if there have been
added to the skyline previously then the inLowY of the parent node just
iterated to, parent1, must be equal to the index in parent1 of the element
at inLowY of the previously iterated parent, parent2. Because parent2 ⊂
parent1 then by using Lemma 5.4:

parent1.lowY ← parent2.childToParMap(parent2.highY) can be done in
O(1) time.

22

The last part is then to call the next sub query. If there have not been
added to the Skyline yet, then inLowY and inHighY of the child can be
calculated with a "maximum predecessor if no equal query" (Lemma 5.3)
and a "minimum successor if no equal query" (Lemma 5.2) in O(1) time.
But if there have been added to the Skyline previously then the inLowY is
now representing a point that have already been added to the skyline, so
the inLowY s y coordinate in the child may not be equal to the inLowY s
y coordinate in the parent anymore, so to calculate inLowY the "minimum
successor query" (Lemma 5.1) is needed, it also have a query time of O(1).

This shows that the high x path part of the RMQ simple query is able to
give inLowY and inHighY to every sub query. It also shows that calculating
these indexes at every node takes in total O(1) time and Lemma 5.5 shows
us that every sub query also only takes O(1) time, if given inLowY and
inHighY . With O(log n) nodes in the high x path then it sums up to a total
query time of O(log n) total for the high x path part.

All these details is also shown in the first half of the pseudo code "frac-
Query".

23

Algorithm 8 fracQuery(Point lowerLeft , Point topRight):FirstHalf

highPath ← rootNode.getPredecessorPath(topRight .x)
lowPath ← rootNode.getSuccessorPath(lowerLeft .x)
lca ← findLCA(highPath, lowPath)
if highPath[lca] = lowPath[lca] then

return subQuery(highPath[lca], lowY , highY)

skylineCount ← 0
highPathhighs ← int [|highPath|]
highPathlows ← int [|highPath|]
highs[0]← rootNode.getPredecessor(topRight .x)
lows[0]← rootNode.getSuccessor(lowerLeft .x)
for i← 1 to |highPath| − 1 do

highs[i]← highPath[i].fracParPredIfNoEqual(highs[i− 1])
lows[i]← highPath[i].fracParSucIfNoEqual(lows[i− 1])

for i← |highPath| − 1 to lca + 1 do
leftChild ← highPath[i].leftChild
if leftChild = null then

highY ← highs[i]
lowY ← lows[i]
skylineCountChange ← highPath[i].fracSubQuery(lowY , highY)
if skylineCountChange 6= 0 then

lows[i− 1]← highPath[i].childParMap(highY)
skylineCount ← skylineCount + skylineCountChange

elseif leftChild 6= highPath[i+ 1] then
highY ← leftChild .fracParPredIfNoEqual(highs[i])
lowY ← leftChild .fracParSucIfNoEqual(highPathlows[i])
if skylineCount 6= 0 then

lowY ← leftChild .fracParSuc(highPathlows[i])

skylineCountChange ← leftChild .fracSubQuery(lowY , highY)
if skylineCountChange 6= 0 then

lows[i]← leftChild .childParMap(highY)
lows[i− 1]← highPath[i].childParMap(lows[i])
skylineCount ← skylineCount + skylineCountChange

5.2 Low x path

Lemma 5.7. It is possible for the low x path part of the RMQ simple query
mentioned in Lemma 4.7 to give the indexes of lowY and highY , inLowY
and inHighY , to every sub query during the query, resulting in a running
time of O(log n) for the query during this part.

24

Proof. The low x path part is a top down iteration of the low x path. This
means that inLowY and inHighY can, and will be, calculated during the
iteration and not necessarily during the recursion, that created the low x
path. So every iterations parent nodes inLowY and inHighY will be calcu-
lated based on its parent node, as in the high x path case. In the case where
there is never added to the skyline, then at every iteration the inLowY and
inHighY of the child can be calculated with a "maximum predecessor if no
equal query" (Lemma 5.3) and a "minimum successor if no equal query"
(Lemma 5.2), because the previous inLowY and inHighY never were a part
of the skyline but are within the query range. The same goes for the inLowY
and inHighY of all the sub queries to the children of the path.

But if there have been added to the skyline in the previous iterations
then the inLowY of the previous iteration is part of the skyline already, so
the inLowY of the current iteration need to be found through a "minimum
successor query" (Lemma 5.1), because the child inLowY may not have the
same y coordinate as the inLowY in the parent. But if this iterations sub
query does not add to the skyline, then the next iterations inLowY will
be calculated with a "minimum successor if no equal query" (Lemma 5.2),
because the current iterations new inLowY were not part of the skyline.
This is also the case for the first iteration, the left child of the lca, and no
matter if there is added to the skyline or not the queries to find the inLowY
for the sub queries do not change.

This shows that the low x path part of the RMQ simple query is able to
give inLowY and inHighY to every sub query. It also shows that calculating
these indexes at every node takes in total O(1) time and Lemma 5.5 shows
us that every sub query also only takes O(1) time, if given inLowY and
inHighY . With O(log n) nodes in the low x path then it sums up to a total
query time of O(log n).

All these details is also shown in the second half of the pseudo code
"fracQuery".

25

Algorithm 9 fracQuery(Point lowerLeft , Point topRight):SecondHalf

highY ← lowPath[lca + 1].fracParPredIfNoEqual(highs[lca])
if skylineCount > 0 then

lowY ← lowPath[lca + 1].fracParSuc(lows[lca])
else

lowY ← lowPath[lca + 1].fracParSucIfNoEqual(lows[lca])

for i← lca − 1 to 0 do
foundPointInLow ← false
rightChild ← lowPath[i].rightChild
if rightChild = null then

skylineCountChange ← lowPath[i].fracSubQuery(lowY , highY)
if skylineCountChange 6= 0 then

skylineCount ← skylineCount + skylineCountChange

elseif rightChild 6= lowPath[i+ 1] then
highYChild ← rightChild .fracParPredIfNoEqual(highY)
lowYChild ← rightChild .fracParSucIfNoEqual(lowY)
skylineCountChange ← rightChild .fracSubQuery(lowYChild , highYChild)
if skylineCountChange 6= 0 then

lowY ← rightChild .childParMap(highYChild)
skylineCount ← skylineCount + skylineCountChange
foundPointInLow ← true

highY ← lowPath[lca + 1].fracParPredIfNoEqual(parentHigh)
if foundPointInLow then

lowY ← lowPath[lca + 1].fracParSuc(lowY)
else

lowY ← lowPath[lca + 1].fracParSucIfNoEqual(lowY)

return skylineCount

5.3 Fractional performance

Lemma 5.8. There exists a structure that can perform orthogonal range
skyline counting queries in O(log n) time, that uses O(n log2 n) space and
has a preprocessing running time of O(n log2 n).

26

Proof. Based on the RMQ simple query mentioned in Lemma 4.7 and with
the changes to the high and low x paths mentioned in Lemma 5.6 and Lemma
5.7, then the query is able to achieve the O(log n) query time total. These
changes needs the fractional structures of "maximum predecessor if no equal
query" (Lemma 5.3), "minimum successor if no equal query" (Lemma 5.2),
"minimum successor query" (Lemma 5.1) and the child to parent mapping
mentioned in Lemma 5.4, these all add a O(n) preprocessing time and a O(n)
space usage to every node, but these are smaller than the RMQ structures
O(n log n) preprocessing time and O(n log n) space usage for every node, so
these aspects of the performance are unchanged resulting in a O(n log2 n)
space and a preprocessing running time of O(n log2 n) total, with a O(log n)
query time total.

27

6 Succinct RMQ

This is the fourth step in the implementation of the algorithm. It replaces
the non succinct range maximum structure with the succinct one found in
[Fischer, 2008]. This will result in a preprocessing time of O(n log n), space
consumption of O(n log n) words and a query time of O(log n).

[Fischer, 2008] states that:

Lemma 6.1. There exists a structure that can find the highest point on the
x axis in a set of points S sorted on y axis, in a range on the y axis. With
query time O(1), space usage O(n) bits and preprocessing time O(n).

Lemma 6.2. There exists a structure that can perform an orthogonal range
skyline count query in O(log n) time, that uses O(n log n) space and has a
preprocessing time of O(n log n)

Proof. By replacing the non succinct RMQ structure from Lemma 4.7 with
the succinct RMQ structure from Lemma 6.1, then the query time is un-
changed but for every node the preprocessing and space usage is decreasing.
Every point is present in O(log n) inner nodes and in every inner node there
is a RMQ structure, a prefix skyline count structure and O(1) fractional
cascading structures, beside this by using the succinct RMQ structure there
is no need for the sortedY lists in the inner nodes anymore. The fractional
cascading structures have a space usage on O(1) words and a preprocessing
of O(1), for each point (Lemma 5.1, 5.2, 5.3, 5.4). The prefix skyline count
structure has a space usage of O(1) words and a preprocessing of O(1), for
each point (Lemma 4.3). So with the succinct RMQ structure there is a
space usage of O(1) words and a preprocessing time of O(1) for each point,
this totals up to a preprocessing of O(n log n) and a space usage of O(n log n)
words for the total structure.

28

7 Succinct dominating prefix sum and fractional
cascading

This is the fifth step in the implementation of the algorithm. It replaces
the non succinct prefix skyline count with succinct dominating prefix sum
and the non succinct fractional cascading with a succinct one, both changes
uses the prefix sum structure from [Raman et al., 2007]. This will result in
a preprocessing time of O(n log n), space consumption of O(n) words and a
query time of O(log n).

[Raman et al., 2007] states that:

Lemma 7.1. Let X[1..s] be a vector of s non-negative integers with a total
sum of t. There exist a data structure of size O(s log (2 + t/s)) bits, sup-
porting the lookup of X[i] and the prefix sum

∑i
j=1X[j] in O(1) time, for

i = 1, .., s. This structure requires O(n) preprocessing time.

Definition 7.2. Dominating prefix sum is the amount of points dominated
for a given point in a set, if you only consider the skyline of the points with
lower y coordinates than that point in the set, added the prefix sum of the
point just below the queried point, if it exist.

Lemma 7.3. There exist a structure given n points P where the dominating
prefix sum for the point p can be queried in O(1) time, with O(n) bits space
usage and O(n) preprocessing time.

Proof. The dominating prefix sum is a vector of non-negative integers with a
total sum of n elements and with n elements. By applying Lemma 7.1 then
this will result in O(n log (2 + n/n)) = O(n) bits space usage, a query time
of O(1) and a preprocessing time of O(n).

Lemma 7.4. With the indexes of the points on the skyline, for a query
range, with the highest and lowest y coordinate, then the skyline count can
be computed by:

(highSky − lowSky)− dps[highSky]− dps[lowSky] + 1 in O(1) time.

Proof. (highSky − lowSky) is the total amount of points that possible could
be on the skyline and dps[highSky] − dps[lowSky] is the amount of points
dominated between the two points. By using the structure from Lemma 7.3
then the O(1) query time is upheld.

Lemma 7.5. The structures "maximum predecessor if no equal query" (Lemma
5.3), "minimum successor if no equal query" (Lemma 5.2) and "minimum
successor query" (Lemma 5.1) can all be preprocessed in O(n) time and use
O(n) bits space, while keeping the O(1) query time.

29

Proof. Define a bit vector X where X[i] = 1 iff sortedY [i] is in the first child.
A prefix sum defined asmpne[i] = (

∑i
j=0X[j])−1 can answer "maximum

predecessor if no equal query" (Lemma 5.3) for the first child, where every
index without a predecessor or equal return −1 and 0 ≤ i < n.

A prefix sum defined as msne[i] = |child | − ((
∑n−1

j=i X[j]) − 1) − 1 can
answer "minimum successor if no equal query" (Lemma 5.2) for the first
child, where every index without a successor or equal return |child | and
0 ≤ i < n.

A prefix sum defined as msq[i] = |child | − ((
∑n−1

j=i+1X[j]) − 1) − 1 can
answer "minimum successor query" (Lemma 5.1) for the first child, where
every index without a successor return |child | and 0 ≤ i < n.

All these prefix sums are all n length and the total sum of them all
are n/2 so by using Lemma 7.1 then they can all be queried in O(1) time,
preproccesed in O(n) time and the space usage is O(n log (2 + (n/2)/n)) =
O(n) bits. The same structure can be created for the second child by stating
that X[i] = 1 iff sortedY [i] is in the second child.

Lemma 7.6. The child to parent mapping structure mentioned in Lemma
5.4 can be preprocessed in O(n) time and use O(n) bits space, while keeping
the O(1) query time.

Proof. Define a function par(i) that for any i, 0 ≤ i < |child |, returns the
index of child .sortedY (i) in the parent .sortedY . Also Define a bit vector X
of the size |child | where X[i] = par(i) − par(i − 1) for any 0 < i < |child |
and X[0] = par(0).

A prefix sum defined as ctp[i] =
∑i

j=0X[j] can answer the child to parent
mapping mentioned in Lemma 5.4, where 0 ≤ i < |child |.

This prefix sum is n length and the total sum of them all are n ∗ 2 so
by using Lemma 7.1 then the query time is O(1), the preprocessing time is
O(n) and the space usage is O(n log (2 + (n ∗ 2)/n)) = O(n) bits.

Lemma 7.7. There exists a structure that can perform an orthogonal range
skyline count query in O(log n) time, that uses O(n) words space and O(n log n)
preprocessing time.

Proof. Introducing the structure from Lemma 7.3, 7.5 and 7.6 into the pre-
vious structure from Lemma 6.2 then the query and preprocessing times are
unchanged, but the space usage is reduced to O(n) words. This is because
every node now only uses O(1) bits per point in the subtree, every layer spans
O(n) points and there is O(log n) layers, this gives a total of O(n log n) bits
and this is O(n) words.

30

8 Final structure

This is the final step that implements the final structure from [Brodal and
Larsen, 2014]. It replaces the binary tree structure with the ∆-tree structure
from [Das et al., 2013] and [Brodal and Larsen, 2014] introduces many suc-
cinct substructures. This will result in a preprocessing time of O(n log n),
space consumption of O(n) words and a query time of O(log n/ log logn).

This section is from [Brodal and Larsen, 2014]:
A helpful definition is |innerNode.sortedY | = nc.

Definition 8.1. ∆ = max(2, dlogε ne), were 0 < ε < 1/3.

Definition 8.2. A ∆-tree is a balanced tree with degree ∆ that stores n
points in a left-to-right order with respect to the x axis.

Definition 8.3. The set of points contained in a subtree is called a slab. A
multislab is a set of adjacent slabs from the same inner node. nm is the total
amount of points contained in the multislab.

Definition 8.4. All the subpoints contained in a inner node, P can be
partitioned into n/∆2 amount of blocks, B[], where B[i] = P [(i − 1)∆2 +
1 . . .min(nc, i∆

2)] of ∆2 size each.

The rest of the chapter is about defining different structures and queries
for each inner node, multislab and block so that all the structures at total
gives O(n) words space usage.

8.1 Block structure

This section contains definitions for structures that is saved globally and not
anywhere in the tree. These structures will be used in the later structures
as sub queries or in their preprocessing. They all achieve O(1) query time
and in total uses O(n) bits and O(∆2n) preprocessing time.

Definition 8.5. The block signature σv[i] for a block Bv[i] for a inner node
v is a list of pairs: For each pair p in Bv[i] exists a pair (j, r) where j is
the index of the child where p is stored and r is the rank of p’s x-coordinate
among all the other points in Bv[i] stored at the same child.

Definition 8.6. Below(σ, t, i) given a signature returns the number of points
from p1 . . . pt contained in slab i.

Definition 8.7. Rightmost(σ, b, t, i, j) given a signature returns the index
of the rightmost point from pb . . . pt contained in the multislab [i, j].

Definition 8.8. Topmost(σ, b, t, i, j) given a signature returns the index of
the topmost point from pb . . . pt contained in the multislab [i, j].

31

Definition 8.9. SkyCount(σ, b, t, i, j) given a signature returns the skyline
count from the subset of points pb . . . pt contained in the multislab [i, j].

Lemma 8.10. There exists a structure that can answer the queries from
Definition 8.6, 8.7, 8.8 and 8.9 in O(1) time and uses O(n) bits and uses
O(∆2n) preprocessing time.

Proof. The total amount of bits required for a signature is (∆/2)(log ∆ +
log ∆2) = O(logε n log logn). The size of the arguments for all the queries
are at most |σ|+ 2 log n/2 + 2 log 2 = |σ|+O(log n) = O(logε n log logn), so
all possible combinations are O(2logε n log logn). The space usage of the result
of all the queries are log ∆ + 1 = O(log log n) bits big. This mean that the
size of all the tables will be O(2logε n log logn log log n) = o(n) bits total.

A query in the tables takes O(1) time.
The preprocessing for Below is a iteration over ∆2 points in every block

for each ∆ amount of slabs, there are O(2logε n log logn) different signatures so
this gives O(∆22logε n log logn) = O(∆2n) preprocessing time.

The preprocessing for Rightmost is a RMQ structure over ∆2 points in
every block for each ∆2 amount of multislabs, by Lemma 6.1 the preprocess-
ing of the RMQ structures can be done in O(∆2), there are O(2logε n log logn)
different signatures so this gives O(∆22logε n log logn) = O(∆2n) preprocessing
time.

The preprocessing for Topmost and SkyCount is an iteration over ev-
ery ∆4 combinations of points in every block, with a check in each of
∆2 multislabs, there are O(2logε n log logn) different signatures so this gives
O(∆22logε n log logn) = O(∆2n) preprocessing time.

This all sums up to a preprocessing time of O(∆2n) for the global struc-
ture.

8.2 Inner node structure

This section contains definitions for structures that is saved in every inner
node, these structures will be used in the later structures as sub queries or
in their preprocessing. They all achieve O(1) query time and in total uses
O(n) words and O(n log∆ n) preprocessing time.

Lemma 8.11. There exist a structure for every inner node that can perform
child(i) queries, that for every point in child .sortedY [i] returns the child
that contains child .sortedY [i], for any i = 0 . . . nc− 1. The structure have a
query time of O(1), space usage of O(nc log ∆) bits and a preprocessing time
of O(nc)

Proof. The child structure can be implemented with a lookup table with
O(nc log ∆) bits, a query time of O(1) and a preprocessing of O(nc).

This lemma is from [Raman et al., 2002]:

32

Lemma 8.12. A vector X[1 . . . s] of s zero-one values, with t values equal to
one, can be stored in a data structure of size O(t(1 + log s/t) bits supporting
rank and select queries in O(1) time. A rank(i) query returns the number
of ones in X[0 . . . i], provided X[i] = 1, wheres a select(i) query returns the
position of the i’th one in X. The structure have a preprocessing time of O(s).

Lemma 8.13. There exist a structure for every inner node that can perform
parent(i) query, that for any point innerNode.sortedY [i] returns the index
of the point in parent .sortedY , for any i = 0 . . . nc−1. The structure have a
query time of O(1), space usage of O(nc log ∆) bits and a preprocessing time
of O(np)

Proof. The amount of points in the parent subtree is np. In every inner child
node there is created a bit-vector X with size np, where if X[i] = 1 then
parent .sortedY [i] exists in child .sortedY . By doing the select query from
Lemma 8.12 then the index of the parent node will be returned, because
if 0 ≤ j ≤ k < nc then parent(j) ≤ parent(k). The lemma states that
the structure is capable of querying in O(1) time, and a preprocessing time
of O(np). The space usage is O(t(1 + log s/t) = O(nc(1 + log np/nc) =
O(nc log ∆) bits, because there is a ∆ factor in difference between nc and np
at every layer.

Lemma 8.14. Every inner node have an array of signatures for its blocks
σ(1 . . . dn/∆2e), the space usage is O((nc/∆

2)∆2 log ∆) = O(nc log ∆) bits.

Lemma 8.15. There exist a structure for every inner node that can per-
form predecessor(i, j)/successor(i, j) queries, that for any point sortedY [j]
returns the predecessor/successor of sortedY [j] in the child i’th sorted y list,
for any j = 0 . . . nc− 1 and i = 0 . . .∆− 1. The structure have a query time
of O(1), space usage of O(nc) bits and a preprocessing time of O(nc).

Proof. By defining an array X of size ∆dnc/∆2e, so for every X[k][i] is the
number of points in block k that exists in the i’th child, then the prefix sum,
prefixSum(k, i) =

∑k
r=0X[r][i], of this structure can be stored as described in

Lemma 7.1 usingO(∆(s log (2 + t/s))) = O(∆((nc/∆
2) log 2 + nc/(nc/∆

2))) =
O(∆((nc/∆

2) log ∆2)) = O(nc) bits space, a query time of O(1) and a pre-
processing time of O(nc). Answering the query is then prefixSum(dj/∆2e −
1, i) + Below(σ(dj/∆2e), 1 + (j − 1 mod ∆2), i), that can be answered in
O(1) time and were the Below structure is already counted into the global
tables.

Lemma 8.16. There exist a structure for every inner node that can perform
rightmost(i, j) query, that for any interval sortedY [i . . . j] returns the index
of the point with the maximum x-value in the interval, for any 0 ≤ i ≤ j <
nc. The structure have a query time of O(1), space usage of O(nc) bits and
a preprocessing time of O(nc).

33

Proof. The RMQ structure from Lemma 6.1 can be used on the x-coordinates
of sortedY to achieve O(1) query time, space usage of O(nc) bits and a
preprocessing time of O(nc).

Lemma 8.17. There exist a structure for every inner node that can perform
a skyCount(i, j) query structure, that for any interval sortedY [i . . . j] returns
the skyline count if only the points in the interval were considered, for any
0 ≤ i ≤ j < n. The structure have a query time of O(1), space usage of
O(nc) bits and a preprocessing time of O(nc).

Proof. By using the dominating prefix sum structure from Lemma 7.4 then
the O(1) query time , space usage of O(nc) bits and a preprocessing time of
O(nc) is achieved.

Lemma 8.18. All the structures mentioned in Lemma 8.11, 8.13, 8.14, 8.15,
8.16 and 8.21, can all be queried in O(1) time. There is a total space use of
O(n) words and a preprocessing time of O(n log∆ n) in the whole tree.

Proof. The query time of all the structures are proved in each Lemma indi-
vidually. The total size of all the structures in each inner node is O(nc log ∆)
bits and every layer in the ∆-tree spans n elements, so every layer uses
O(n log ∆) bits. There are O(log∆(n)) layers so the total size of all the in-
ner node structures are O(n log ∆ log∆(n)) = O(n log n) bits that is O(n)
words. If we let the child to parent mapping of Lemma 8.13 count in the
parent node, because there will only be a child to parent mapping if there
is a parent, then for every structure the preprocessing time of O(nc), every
layer spans O(n) points and there are O(log∆(n)) layers this will total up to
O(n log∆ n) preprocessing time.

8.3 Multislab structure

This section contains definitions for structures that is saved in every inner
node one for each ∆2 multislabs in that inner node. This is the last structures
that need to be defined before the orthogonal range skyline counting query
can be implemented. They all achieve O(1) query time and in total uses
O(n) words and O(nlog∆(n)) preprocessing time.

Lemma 8.19. There exist a structure for every inner node that can perform
rightmost(i, j, b, t) query structure, that for any interval B[i . . . j] returns the
point with the maximum x-value in the interval that is within the multislab
[b, t], for any 0 ≤ i ≤ j < n/∆2 and 0 ≤ b ≤ t < ∆. If no point exist
then −1 is returned. The structure have a query time of O(1), space usage
of O(nc/∆

2) bits and a preprocessing time of O(nc/∆
2).

34

Proof. By defining an array X of size n/∆2 for every multislab, where X[s]
returns the maximum point with respect to x axis out of all the points in
block B[s] that is within multislab [b, t], then Lemma 6.1 can be used to
create a RMQ over all those points and returns the index of the block, with
a query time of O(1), space usage of O(nc/∆

2) and a preprocessing time of
O(nc/∆

2).
The query then first queries the RMQ structure for the block l that

contains the point we search for and then queries the block to get the in-
dex of the point. (l − 1)∆2 gives the count of all the points below block
l in sortedY within the multislab [b, t] and a query in the global table
Rightmost(Σ[l], 1,∆2, b, t) (Lemma 8.7) will return the index of the right-
most point of all the points in block l if only the points in multislab [b, t]
were considered, so combined they give the answer to the query.

Lemma 8.20. There exist a structure for every inner node that can perform
topmost(i, j, b, t) query structure, that for any interval B[i . . . j] returns the
point with the maximum y-value in the interval that is within the multislab
[b, t], for any 0 ≤ i ≤ j < n/∆2 and 0 ≤ b ≤ t < ∆. If no point exist
then −1 is returned. The structure have a query time of O(1), space usage
of O(nc/∆

2) bits and a preprocessing time of O(nc/∆
2).

Proof. By defining an arrayX of size n/∆2 for every multislab, whereX[s] =
s if there exist a point in B[s] that is within multislab [b, t], then Lemma
6.1 can be used to create a RMQ over all those points and returns the index
of the block, with a query time of O(1), space usage of O(nc/∆

2) and a
preprocessing time of O(nc/∆

2).
The query then first queries the RMQ structure for the block l that must

be the block with the point with the highest index in sortedY and by that
the topmost point, within the multislab [b, t]. (l − 1)∆2 gives the count
of all the points below block l in sortedY and a query in the global table
Topmost(Σ[l], 1,∆2, b, t) (Lemma 8.8) will return the index of the topmost
point of all the points in block l if only the points in multislab [b, t] were
considered, so combined they give the answer to the query.

Lemma 8.21. There exist a structure for every inner node that can perform
a skyCount(i, j, b, t) query structure, that for any interval B[i . . . j] returns
the skyline count if only the points in the interval that is within the multislab
[b, t] were considered, for any 0 ≤ i ≤ j < /∆2 and 0 ≤ b ≤ t < ∆. The
structure have a query time of O(1), space usage of O((nc/∆

2) log ∆2) bits
and a preprocessing time of O(n/∆2).

35

Proof. By defining an arrayX of size n/∆2 for every multislab, whereX[s] =
skyCount(σ(s), 1,∆2, b, t) (From Lemma 8.9), then Lemma 7.1 can be used
to create a Prefix Sum structure, with a query time of O(1), space usage of
O(s log (2 + t/s)) = O((nc/∆

2) log (2 + nc/(nc/∆
2))) = O((nc/∆

2) log ∆2)
and a preprocessing time of O(n/∆2), for one structure for one multislab.
Because t sums up to nc, because there can maximum be ∆2 points at each
index and there is n/∆2 indexes.

By defining another array Y of size n/∆2 for every multislab, where
Y [s] = y where y is the amount of points dominated by Skyline(σ(s), 1,∆2, t, b)
from Skyline(σ(1 . . . s− 1), 1,∆2, t, b), then Lemmas 7.1 and 7.3 can be used
to create a Prefix Sum structure, with a query time of O(1), space usage of
O(s log (2 + t/s)) = O((nc/∆

2) log (2 + nc/(nc/∆
2))) = O((nc/∆

2) log ∆2)
and a preprocessing time of O(n/∆2), for one structure for one multislab.
Because t sums up to nc, because every point can only be dominated once.

The query will then be answered by aX[s]+(prefixSumX (t)−prefixSumX (k)−
(prefixSumY (t)−prefixSumY (k+1))) where k = drightmost(i, j, b, t)e (Form
Lemma 8.19), in O(1) time. The space usage of the structure for one multi-
slab is O((nc/∆

2) log ∆2) bits and preprocessing is O(n/∆2).

Lemma 8.22. All the structures mentioned in Lemma 8.19, 8.20 and 8.21,
can all be queried in O(1) time. The total space usage for the whole tree
structure for all the multislab structures are O(n) words and have a prepro-
cessing time of O(nlog∆(n))

Proof. There exist ∆2 multislabs in every node, so the space usage for every
inner node is O(∆2(nc/∆

2) log ∆2) = O(nc log ∆) bits, at every layer of the
tree spans O(n) nodes, so the space usage for every layers is O(n log ∆).
There are O(log∆(n)) layers so the total size of all the multislab structures
are O(n log ∆log∆(n)) = O(n log n) bits and this is O(n) words.

There exist ∆2 multislabs in one inner node, so the preprocessing time
for all the multislabs in one inner node is O(nc). One layer in the tree spans
n nodes and there are O(log∆(n)) layers, so the total preprocessing time of
all the multislab structures is O(nlog∆(n)).

8.4 Orthogonal range skyline counting query

Lemma 8.23. There exists a structure that can perform an orthogonal range
skyline count query in O(log n) time, that uses O(n) words space and has a
preprocessing time of O(n log n)

Proof. Only the differences compared to the previous structures will be men-
tioned here.

36

When the super query iterates through the inner nodes of the high and
low x paths, then there will be at most one multislab there is completely
contained in the query range and at most one slab that is partially contained.
The partial contained slab is the next or previous iteration of the query and
will be handled there, so the subquery is on the maximal multislab contained
in the query range for an inner node.

As in the previous steps the iteration of the paths will be done from left
to right, so there can be kept track of lowY through the query. So every
subquery is performed on a inner node in the paths, with a highY , lowY
and a slab interval [i, j]. The query will be done in a series of steps that all
takes O(1) time:

First if the subquery only query one block B[dhighY /∆2e] then that
block only needs to be queried: SkyCount(Σ(dhighY /∆2e), 1 + (lowY −
1 mod ∆2), 1 + (highY − 1 mod ∆2), i, j) (From Lemma 8.9). Else if there is
more than one block then the sub query will go through these steps:

1. The skyline count is calculated for the top block in the query range
by: SkyCountTop = Skycount(σ(dhighY /∆2e), 1, 1 + (highY − 1 mod
∆2), i, j) (From Lemma 8.9).

2. The index of the rightmost point in the top block is calculated by:
p1 = Rightmost(σ(dhighY /∆2e), 1, 1 + (highY − 1 mod ∆2), i, j) +
∆2dhighY /∆2e (From Lemma 8.7).

3. The slab containing p1 is calculated by: k1 = child(p1) (From Lemma
8.11).

4. The skyline count in the slabs [k+1, j] and all the blocks excluding top
and bottom block b[dlowY /∆2e + 1 . . . dhighY /∆2e − 1] is calculated
by: SkylineCountMiddle = SkyCount(dlowY /∆2e + 1, dhighY /∆2e −
1, k + 1, j) (From Lemma 8.21).

5. The index of the topmost point in the slabs [k+1, j] and all the blocks
excluding top and bottom block b[dlowY /∆2e+1 . . . dhighY /∆2e−1] is
calculated by: p2 = Topmost(dlowY /∆2e+1, dhighY /∆2e−1, k+1, j)
(From Lemma 8.20).

6. The index of the rightmost point in the slabs [k+1, j] and all the blocks
excluding top and bottom block b[dlowY /∆2e+ 1 . . . dhighY /∆2e − 1]
is calculated by: p3 = Rightmost(dlowY /∆2e+ 1, dhighY /∆2e−1, k+
1, j) (From Lemma 8.19).

7. The slab containing p3 is calculated by: k3 = child(p3) (From Lemma
8.11).

37

8. The skyline count is calculated for the bottom block in the multislab
[k3+1, j] in the query range by: SkyCountBottom = Skycount(σ(dlowY /∆2e), 1+
(lowY − 1 mod ∆2),∆2, k3 + 1, j) (From Lemma 8.9).

9. The index of the topmost point in the bottom block is calculated by:
p4 = Topmost(σ(dlowY /∆2e), 1 + (lowY − 1 mod ∆2),∆2, k3 + 1, j) +
∆2dlowY /∆2e (From Lemma 8.8).

10. The skyline count is calculated for the points bellow p1 and above p2

in slab k1 in the query range by:

SkyCountK 1 = Skycount(successor(p2, k1), predecessor(p1, k1))−1 (From
Lemma 8.21 and 8.15), the −1 is because p1 should not be counted
twice.

11. The skyline count is calculated for the points bellow p3 and above p4

in slab k1 in the query range by:

SkyCountK 3 = Skycount(successor(p4, k3), predecessor(p3, k3))−1 (From
Lemma 8.21 and 8.15), the −1 is because p3 should not be counted
twice.

12. The skyline count for the slabs [i, j] between highY and lowY is cal-
culated by: SkylineCount = SkyCountTop + SkylineCountMiddle +
SkyCountBottom + SkyCountK 1 + SkyCountK 3.

There are some special cases. If p1 does note exist then k1 = i − 1 and
SkyCountK 1 is not calculated. If P4 does not exist then p4 = lowY when
calculating SkyCountK 3. If p2 and p3 does not exist then SkyCountK 3 and
SkylineCountMiddle are not computed, the leftmost slab of SkyCountBottom
is the k1 + 1 and when calculating SkyCountK 1 then p2 = p4 + 1.

All these steps take O(1) time each, and because the height of the tree
is O(n log n/ log log n) and the query is bounded by the high and low x
paths then the total time of the orthogonal range skyline counting query is
O(n log n/ log log n).

The total space use is the sum of the global tables O(n) bits (Lemma
8.10), the inner node structure O(n) words (Lemma 8.18) and the multislab
structures O(n) words (Lemma 8.22), that totals up to a O(n) words space
usage for the final structure.

The preprocessing time of all the substructures are allO(n log∆ n) (Lemma
8.10, 8.18 and 8.22) but this is less than the initial sorting of the input set
of points, so the preprocessing time of the final structure is O(n log n).

38

9 Tests

9.1 Test machine
OS Windows 7 64 bit
CPU Intel(R) Core(TM) 2 Quad CPU Q9650 3.00GHz
RAM 4 GB
L1 D-cache 4 * 32 KB
L1 I-cache 4 * 32 KB
L2 cache 2 * 6144 KB
L3 cache Not enabled

9.2 Measurement setup

During all tests the space usage, query time, preprocessing time and number
of activated critical sections are measured. Where critical sections are the
time consuming sections of the query. So RMQ simples and Fractionals
critical sections is when a sub query is activated and the Naive has a critical
section for every iteration. The critical sections is usually not shown in this
test section but is used to verify that the tests run the same input, because
the critical sections of RMQ simple and Fractional will be the same on the
same input.

The critical sections are counted in a local variable during the query
and then accessed after the query, at the beginning of a query it gets reset.
These very simple operations happens during the query time measurements
but should not have any visible effect on the measurements.

Query time and preprocessing time is a windows operation system specific
"clock t" system clock that measures "Clock ticks", the length of "Clock
ticks" are system dependent, but because the same machine were used for
every test then "Clock ticks" are constant. In every test the measurements
only measures around the preprocessing and query calls, where the same
query usually gets called many times and the measurement is measuring the
running time of all the queries together. This is because the query time is
usually so low that multiple consecutive calls need to be made, to have some
good data to analyze. Consecutive query calls will be influenced by caching,
so even though this will influence the algorithms getting tested, then the
difference in effect is not expected to be major.

The size of a structure is measured with a recursive call, in the case of
RMQ simple and Fractional through their tree structures, where every node
sums up its total size, and in the Naive case it is the size of the sorted
list. There is a risk that some parts of the structure were forgotten, but
there were no feature that could calculate the size of an object, its internal
substructures and every other object it were dependent on.

39

Figure 7: Two different cases of a right part of a tree, could be RMQ simple
or Fractional. The red circles shows possible critical sections for both trees.
Notice that the only difference between the two cases could be one point in
the query range, so that the three subtrees where queried as on big tree.
This means that even though two query ranges are quite close it could mean
a big difference in querying time.

9.3 Test data

The input for all the algorithms are a set of points, not necessarily sorted, to
be able to generate the structures, for preprocessing, and the two points that
represent the orthogonal range, for the orthogonal range skyline counting
query. This sub section describes, through pseudo code, how all the input
set of points is generated.

The "generateWorstCase" pseudo code will generate a set of points where
every point, in the query range, is on the skyline. If the whole point set is
queried, then it will result in the maximum amount of activated critical
sections for that input size. If the query is smaller then, in the case of RMQ
simple and Fractional as shown in Figure 7, a small change to the query
range could mean a big change in the amount of activated critical sections.

Algorithm 10 generateWorstCase(int size)

worstCaseSet ← point [size]
for i← 0 to size − 1 do

worstCaseSet [i]← point(i, size − i)
return worstCaseSet

The "generateBestCase" pseudo code will generate a set of points where
only one point is on the skyline, as long as at least one point is in the query
range. This results in the least amount of critical sections getting activated
as possible, no matter the query region.

40

Algorithm 11 generateBestCase(int size)

bestCaseSet ← point [size]
for i← 0 to size− 1 do

bestCaseSet [i]← point(i, i)

return bestCaseSet

The "generateBestToWorstCase" pseudo code will generate a set of points,
where there at a maximum query region will be skylineSize points on the
skyline. Because the best and worst case is dependent on how many critical
section gets accessed during the query, then with this code there is a control
over how time consuming the point set could be. But keep in mind the tree
structure of RMQ simple and Fractional, where many new points to the sky-
line could be added to a subtree that is already activated and by that not
adding to the query time.

Algorithm 12 generateBestToWorstCase(int size, int skylineSize)

bestToWorstCaseSet ← point [size]
for i← 0 to size − 1 do

if i < skylineSize then
bestToWorstCaseSet [i]← point(size − i, i)

else
bestToWorstCaseSet [i]← point(size − i, size − i)

return bestToWorstCaseSet

The "generateLogarithmicSizes" pseudo code does not generate a set of
points but it generate a list of sizes. It is given a max size, of a tree, and
returns a list of sizes where every size will activate one more subtree in RMQ
simple and Fractional queries. So the difference in size between the first half
of the points will be increasing binary like 1, 2, 4, 8, 16 because the distance
between them is 0, 1, 2, 4, 8. This is what the first for loop does.

The distance between the last half of the points will be decreasing binary
starting from the value of the previous distance like 1, 2, 4, 8, 16, 24, 28, 30, 31
because the distances is now 0, 1, 2, 4, 8, 8, 4, 2, 1.

The last for loop will put a point in between all the existing points that
have the average value of the point on its side, like:
1, 1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 26, 28, 29, 30, 30, 31.

41

These sizes will usually be used as in "exampleOfUse" pseudo code. If
the sizes only contained the sizes added in the first two for loops, then the
points of iteration i will be able to trigger one more subtree in RMQ simple
and Fractional, on a query over all the points, than the points from iteration
i− 1. The last for loop is there to add some sizes in between so the tests are
able to verify that this is the case.

Algorithm 13 generateLogarithmicSizes(int maxSize)
sizesBeta ← List
for i← 1; i < maxSize/2; i← i ∗ 2 do

sizesBeta.pushBack(i)

currentSize ← |sizesBeta|
newValue ← sizesBeta[|sizesBeta| − 1]
for i← 1 to currentSize do

expandingValue ← sizesBeta[currentSize − i]
newValue ← newValue + expandingValue
sizesBeta.pushBack(newValue)

sizes ← List
for i← 0 to |sizesBeta| − 1 do

sizes.pushBack(sizesBeta[i])
sizes.pushBack(sizesBeta[i] + (sizesBeta[i+ 1]− sizesBeta[i])/2)

return sizes

Algorithm 14 exampleOfUse(int size)

sizes ← generateLogarithmicSizes(size)
for i← 0 to |sizes| − 1 do

points ← generateBestToWorstCase(size, sizes[i])
test RMQ Simple or Fractional

42

9.4 Worst case

The purpose of this test is to observe the effect of an increased input size in
the worst case scenario. The input point set is generated using the "gener-
ateWorstCase" pseudo code, where every point in the set is on the skyline if
they are inside the query range. The input for the orthogonal range skyline
counting query range is two points that spans the whole input point set, the
max query. There will be an individual test for each algorithm. The test per-
forms 66 iterations each with a bigger size, starting from 500 and increasing
with 500 for each step and ending at 33000 points. At every iteration there
will be generated a worst case point set, a structure of the given algorithm
and performed 100000 identical max queries.

It is expected that the Naive algorithms preprocessing step will be faster
than the two other algorithms, not only because the theoretical preprocessing
time is O(n log n) and the others are O(n log2 n), but because there is far
smaller constant hidden in the preprocessing time. Where the RMQ simple
probably will have a smaller preprocessing time than Fractional, because
Fractional have more structures that needs to be preprocessed.

The size is also expected to be in the same order. Because Naive have
much fewer structures than RMQ simple, that have fewer structures than
Fractional.

The query time of Naive is expected to be much higher than RMQ simple,
that will be higher than Fractional. Because in the worst case the maximum
amount of critical sections gets accessed, and Fractional and RMQ simple
have way less than Naive, and Fractionals critical sections takes less time
than RMQ simples does.

Figure 8 shows the query time of all the algorithms in one graph. Here
we can conclude that the Naive quickly becomes slower than the two other
algorithms. Notice that all the graphs have a logarithmic x-axis.

Figure 9 shows just the RMQ simple and the Fractional cascading algo-
rithms query time, and we can conclude that in the worst case Fractional
is faster than RMQ simple. Because the major difference between them is
the binary searches in every subtree in the RMQ simple query, then when
we query every subtree we will get the biggest difference between the two
algorithms. Later there will be a test in how few subtrees need to be queried
before the RMQ simple is better than Fractional.

43

Figure 8: Query time of all the algorithms, worst case.

Figure 9: Query time of RMQ simple and Fractional the algorithms, worst
case.

Figure 10 shows the Fractional query time divided by its theoretical run-
ning time log n and Figure 11 shows fractional divided by log2 n. It does
seem that the running time is closer to log n than log2 n and this holds with
the theory.

44

Figure 10: Fractional divided by its theoretical runningtime log n, worst
case.

Figure 11: Fractional divided by log2 n, worst case.

Figure 12 shows the RMQ simpel query time divided by the theoretical
running time log2 n and Figure 13 shows the RMQ simpel query time divided
by log n. It shows that the running time is somewhere between log2 n and
log n, and it looks surprisingly similar in development to the Fractional. But
figure 14 where RMQ simple query time is subtracted by Fractional query
time, notice the logarithmic x axis, shows that there is a logarithmic differ-
ence between the two algorithms worst case running times and that holds
with the theory.

45

Figure 12: RMQ simple divided by its theoretical runningtime log2 n, worst
case.

Figure 13: RMQ simple divided by log n, worst case.

Figure 15 shows the Naive query time divided by the theoretical running
time n, beside a couple of non reproducible anomalies then it follows the
theoretical running time.

46

Figure 14: RMQ simple query time subtracted by Fractional query time,
worst case.

Figure 15: Naive divided by its theoretical runningtime n, worst case.

Figure 16 shows the structure sizes of all the algorithms and here we can
see that Fractional is bigger than RMQ simple, that is bigger than Naive, as
expected. Figure 17 shows the structure sizes of all the algorithms divided by
their theoretical sizes. We can conclude that the Naive algorithm fits quite
well with the theoretical bound. While both RMQ simpel and Fractional
seems to be a bit lower than there theoretical size. Figure 18 shows Frac-
tional and RMQ simpel both divided by log (n) log (log (n))n, and it seems
to match quite good. There were not found an answer to why this is the
case and it is better than the theory.

47

Figure 16: Structure size of all algorithms, worst case.

Figure 17: Structure size of all algorithms divided by their theoretical size,
worst case.

Figure 19 shows the preprocessing time of all the algorithms and it shows
as expected that Naive is faster than RMQ simple that is faster than Frac-
tional. Figure 20 shows the preprocessing running time of RMQ simple and
Fractional by their theoretical running times, n log2 n, it shows that they are
both faster than the theoretical running times. Figure 21 shows the prepro-
cessing running time of RMQ simple and Fractional divided by, n log n, and
this seems to fit better. There were not found an answer to why this is the
case and it is faster than the theory.

48

Figure 18: RMQ simple and Fractional divided by (log nloglog n)n, worst
case.

Figure 19: Preprocessing running time of all algorithms, worst case.

49

Figure 20: Preprocessing running time of RMQ simple and Fractional by
their theoretical running times n log2 n, worst case.

Figure 21: Preprocessing running time of RMQ simple and Fractional divided
by n log n, worst case.

50

9.5 Best case

The purpose of this test is to observe the effect of an increased input size in
the best case scenario. The input point set is generated using the "gener-
ateBestCase" pseudo code, where there will only be one point on the skyline
as long as there is at least one point in the query range. The input for
the orthogonal range skyline counting query range is two points that spans
the whole input point set, the max query. There will be an individual test
for each algorithm. The test performs 66 iterations each with a bigger size,
starting from 500 and increasing with 500 for each step and ending at 33000
points. At every iteration there will be generated a worst case point set, a
structure of the given algorithm and performed 100000 identical max queries.

Only the parts of the results from this test that deviates from the previ-
ous test will be shown. If the lack of deviation is surprising then it will be
commented.

It is expected that the preprocessing time and size will be unchanged,
because they do not depend on the values of the points added. While the
query time is expected to be faster in every case and the improvement will
be biggest with RMQ simple. This is because in the best case very few crit-
ical sections will be triggered and these are the most time consuming parts
of the query in all the algorithms. Naives critical section is every iteration,
so it will only be limited by the points in the query range. RMQ simples
and Fractionals critical sections are when a sub query is triggered, this only
happens if the sub query will add to the skyline and this can only happen
once. So because there will only be triggered one critical section then the
query time will fall for RMQ simple and Fractional. It is also excpected that
RMQ simple will be faster than Fractional, because Fractional have more
complicated main query that results in a higher constant than RMQ simple.

Figure 22 shows all the query times of the algorithms in the best case,
if it is compared to Figure 8 from worst case, then it can be seen that at
least Naive have become faster, and that apparently the code adding skyline
points had an effect on the running time. Figure 23 shows the query time of
Fractional and RMQ simpel. RMQ simpel have a better running time than
Fractional, as expected. If it is compared to Figure 9 then there is time gain
on the queries, also as expected.

51

Figure 22: Query time of all the algorithms, best case.

Figure 23: Query time of RMQ simple and Fractional algorithms, best case.

Figure 24 and figure 25 shows RMQ simpel and Fractional both divided
by log n. Both figures shows that the algorithms are faster than the log n
boundary. So we can conclude that the absence of querying subtrees have
more than a constant effect on the query time, especially in the RMQ simpel
case. It were not expected to be better than log n because there were still
a binary tree to query through in both cases, but this could be because of
caching.

52

Figure 24: Fractiona divided by log n, best case.

Figure 25: RMQ simple divided by log n, best case.

53

Figure 26: Query time of RMQ simple and Fractional algorithms based on
critical sections, best to worst case.

9.6 Best to worst case

The purpose of this test is to measure when Fractional will be faster than
RMQ simple, with a fixed size case that starts at the best case and turns
more to worst case at every iteration. The input point set is generated using
the "generateBestToWorstCase" pseudo code, where the amount of points
on the skyline can be controlled if the max query is used. The input for the
orthogonal range skyline counting query range is two points that spans the
whole input point set, the max query. There will be an individual test for
each algorithm. The input set size is fixed at 8192 and at every iteration the
amount of points on the skyline changes, so that it will trigger one more sub
tree. This is done by using the pseudo code "exampleOfUse" to generate the
points to iterate over in combination with 100000 identical max queries.

The expectation is that every second iteration will add one more call to
a subtree. This will result in the test starting in the best case and at every
iteration changing more to the worst case. This is done to see how many
sub trees that needs to be activated, critical sections, before Fractional is
better than RMQ simple. Because the critical sections is the main difference
between RMQ simple and Fractional queries, then this is also the primary
reason for the difference in query times relative to each other.

54

Figure 26 shows that Fractional becomes faster around 11 critical sec-
tions, so that is around half of the possible critical sections, 23, but this
is only the smaller critical sections. The first 11 section covers 1024 points
total out of 8190 at maximum. The amount of points in the sub trees ac-
tivated could have a big effect on RMQ simple, because its sub query time
is dependent on the amount of points in the subtree, and Fractional is not.
This will be tested in the last test section.

There is an anomaly around 13 critical sections and this always shows
up in the 24th iteration when testing RMQ simple and Fractional, but not
Naive. This is no matter where in the tree structure this 24 iteration acti-
vates critical sections, so this is very likely some test specific bug that would
no be found.

9.7 Variable query regions

All the tests up to now were max query regions, where every point were in-
cluded in the query, in this test the effect of smaller query sizes is explored.
In this test the input set size is constant at 40000 and generated with the
"generateWorstCase" code. There is four tests that all test each algorithm.
These tests starts with a max query and at every iteration will make the
orthogonal range more narrow by moving one of the sides. So there is a test
were the top, bottom, left and right side is moved for each of the three al-
gorithms. At every iteration the side is changed by a 1000, because the test
uses "generateWorstCase" then this will result in 1000 points being excluded
at every iteration, expect the first and last 1000 points there the distance
of each iteration will be binary increasing or decreasing, starting at 1 and
ending at 1024. This is done to catch the big difference in critical sections
at the beginning and end of the test.

The expectation is that the fewer point that gets queried the fewer crit-
ical sections there will be, resulting in a faster query time. Beside this their
will probably bee a bigger performance boost over the test in the naive case
than at the previous tests, when it were a best case. The difference is that
in this case the Naive solution does not need to iterate over all the points,
because they are not included in the query anymore, this is a better perfor-
mance boost than just not needing to add the point to the skyline count.

55

Figure 27: RMQ simple and Fractional query times in the Bottom test,
Variable query test.

Figure 28: RMQ simple and Fractional query times in the Left test, Variable
query test.

Figure 27, 28, 29 and 30 is very similar, because they do have the same
amount of points that is queried at every iteration, primarily because of the
unique structure of the input set. This test combined with the best to worst
case test shows that what matter is the amount of critical sections in the
query and the size and placement of the query only matters in relation to
how many critical sections it activates.

Figure 31 shows one of the tests together with the Naive algorithm, all
the tests give the same result, so only one were shown. There is a drastic
decline in the query time of Naive through this test, at the last 250 points
it even becomes faster than the two other algorithms.

56

Figure 29: RMQ simple and Fractional query times in the Right test, Vari-
able query test.

Figure 30: RMQ simple and Fractional query times in the Top test, Variable
query test.

57

Figure 31: All the algorithms query time in the Bottom test, Variable query
test.

58

9.8 Random case

The purpose of this test is to analyze random cases and how Fractional
and RMQ simple queries perform in these cases. The current expectation is
that the running time of the query is primarily dependent on the amount of
critical sections accesses and the amount of points the sections span over. It
is also expected that Fractional is better than RMQ simple when there are
more critical sections accesses.

The input set size, size, is fixed at 40000 points, every point in the input
set is generated randomly where 0 ≤ x ≤ size and 0 ≤ y ≤ size. The
input for the orthogonal range skyline counting query range is two points
that is also generated randomly where the coordinates for the lower left is
0 ≤ x < size and 0 ≤ y < size and the top right is lowerLeft .x < x ≤ size
and lowerLeft .y < y ≤ size, to always create a valid query range.

There is 300 iterations during the test, where every iteration generate
a new random input set and for both algorithms a new structure based on
this input. For every iteration there are 50 sub iterations where at every
sub iteration there is generated new random orthogonal range points and
performed 100000 identical queries with that range.

This will result in many measurements with the same amount of critical
sections accesses but different query times, because the size of the critical
section that got accessed have an impact especially on RMQ simple.

Figure 32 shows the distribution of cases over amount of critical sections
accesses for Fractional and RMQ simple. First thing to note is that out
of blog 40000c ∗ 2 = 30 possible critical section accesses then only 14 gets
accessed and in most cases only 4 or 5, so the difference between Fractional
and RMQ simple in this test will probably seem smaller than in the previous
tests. Second thing is because of the normal distribution of the cases then
the data from the extreme high and low cases there is only a couple of
measurements so it probably wont be as trustworthy. A last thing to note is
that Fractional have fewer critical section accesses and this is because there
were implemented more checks before a critical section in Fractional than it
was practical in RMQ simple.

Figure 33, 34 and 35 shows the minimum, maximum and average query
time for each algorithm over the amount of critical section accesses cases.

In the maximum figure it shows that even at one critical section it is pos-
sible for Fractional to be faster than RMQ Simple, this is probably because
that one section were very big and this can have a big impact on the RMQ
simples query time. Another thing to note is that the query time do not rise
with the critical section accesses, it seems like the first couple of big critical
sections uses the majority of the time and compared to them the rest does
not matter.

59

Figure 32: RMQ simple and Fractional distribution of cases over amount of
critical sections accesses, random test.

Figure 33: RMQ simple and Fractional minimum query times, random test.

In the minimum figure it shows that Fractional is slower than RMQ
simple, this is probably because if all the critical sections spans very few ele-
ments, then the bigger structure of Fractional outweighs the small amounts
of time in the binary search of RMQ simples sub queries.

In the average figure it shows that Fractional quickly becomes faster than
RMQ simple and it seems to be a steady development. This happens earlier
than in the best to worst case test, but it is probably because the critical
section that spans a lot of points is both expensive and have a large risk to
be queried, where in the best to worst case the test started with the critical
section that spanned few points.

60

Figure 34: RMQ simple and Fractional maximum query times, random test.

Figure 35: RMQ simple and Fractional average query times, random test.

61

10 Conclusion

The topic of this thesis were to implement and test these steps up to the
final structure:

1. Naive: O(n) query time, O(n log n) preprocessing and O(n) words
space usage. Iteration over a sorted list.

2. RMQ simple: O(log2 n) query time, O(n log2 n) preprocessing and
words space usage. Introducing a binary tree structure and non suc-
cinct range maximum structure [Bender and Farach-Colton, 2000] and
a variation on non succinct dominating prefix sum [Brodal and Larsen,
2014] called non succinct prefix skyline count.

3. Fractional: O(log n) query time, O(n log2 n) preprocessing and words
space usage. Introducing a non succinct fractional cascading predeces-
sor and successor structure [Chazelle and Guibas, 1986].

4. Succinct RMQ:O(log n) query time, O(n log n) preprocessing and words
space usage. Introducing a succinct range maximum structure [Fischer,
2008].

5. Succinct dominating prefix sum and fractional cascading: O(log n)
query time, O(n log n) preprocessing and O(n) words space usage. In-
troducing a succinct dominating prefix sum structure and a succinct
fractional cascading structure, using [Raman et al., 2007].

6. Final Structure: O(log n/ log log n) query time, O(n log n) preprocess-
ing and O(n) words space usage. Introducing a delta tree structure
[Brodal and Larsen, 2014] [Das et al., 2013] and fractional predecessor
and successor structure [Brodal and Larsen, 2014].

The purpose were to test the different steps and compare the performance
to each other. During the paper the first three steps were implemented
and tested. Detailed description of the theory and implementation of the
steps, test settings and test results is found in this paper. The third step
implemented the algorithm with the best query time, for a binary tree, but
without the succinct optimizations to the sub structures so it could achieve
best space usage, for a binary tree. The theory for the rest of the steps are
described in this paper too.

62

The paper concludes through tests that the algorithms follow the query
times, preprocessing times and structure size boundaries set in the theo-
ries. There is also an analysis of the best case scenario where RMQ simple
performed better than Fractional, even though Fractional where better in
the worst case. This got followed by a best to worst case scenario test that
showed RMQ simple quickly became worse than Fractional. At the end there
were a random test that showed RMQ simple in many random cases were
slower than Fractional, because of the high risk of querying a big subtree in
the binary structure.

It could have been interesting to see how the implementation of the suc-
cinct structures would have effected the query time, and if the very complex
final structures many lookups and calculations would have made it slower in
practice, than the binary structures. But this is work for the future.

11 References

[Bender and Farach-Colton, 2000] Bender, M. A. and Farach-Colton, M.
(2000). The lca problem revisited. In Gonnet, G. H., Panario, D., and
Viola, A., editors, LATIN, volume 1776 of Lecture Notes in Computer
Science, pages 88–94. Springer. All chapters.

[Brodal and Larsen, 2014] Brodal, G. S. and Larsen, K. G. (2014). Optimal
planar orthogonal skyline counting queries. In Proc. 14th Scandinavian
Workshop on Algorithm Theory, volume 8503 of Lecture Notes in Com-
puter Science, pages 98–109. Springer Verlag, Berlin. Chapter 1 and 3.

[Chazelle and Guibas, 1986] Chazelle, B. and Guibas, L. J. (1986). Frac-
tional cascading: I. a data structuring technique. Algorithmica, 1(2):133–
162. Chapter 1.

[Das et al., 2012] Das, A. S., Gupta, P., Kalavagattu, A. K., Agarwal, J.,
Srinathan, K., and Kothapalli, K. (2012). Range aggregate maximal points
in the plane. In Rahman, M. S. and Nakano, S.-I., editors, WALCOM,
volume 7157 of Lecture Notes in Computer Science, pages 52–63. Springer.
Chapter 1.

[Das et al., 2013] Das, A. S., Gupta, P., and Srinathan, K. (2013). Count-
ing maximal points in a query orthogonal rectangle. In Ghosh, S. K.
and Tokuyama, T., editors, WALCOM, volume 7748 of Lecture Notes in
Computer Science, pages 65–76. Springer. Chapter 1.

[Fischer, 2008] Fischer, J. (2008). Optimal succinctness for range minimum
queries. CoRR, abs/0812.2775. Chapter 2-3.

63

[JáJá et al., 2004] JáJá, J., Mortensen, C. W., and Shi, Q. (2004). Space-
efficient and fast algorithms for multidimensional dominance reporting and
counting. In Fleischer, R. and Trippen, G., editors, ISAAC, volume 3341
of Lecture Notes in Computer Science, pages 558–568. Springer. Chapter
1.

[Kalavagattu et al., 2012] Kalavagattu, A. K., Agarwal, J., Das, A. S., and
Kothapalli, K. (2012). On counting range maxima points in plane. In
Arumugam, S. and Smyth, W. F., editors, IWOCA, volume 7643 of Lecture
Notes in Computer Science, pages 263–273. Springer. Chapter 1.

[Patrascu, 2007] Patrascu, M. (2007). Lower bounds for 2-dimensional range
counting. In Proceedings of the Thirty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’07, pages 40–46, New York, NY, USA.
ACM. Chapter 1.

[Raman et al., 2002] Raman, R., Raman, V., and Rao, S. S. (2002). Suc-
cinct indexable dictionaries with applications to encoding k-ary trees and
multisets. In Proceedings of the Thirteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’02, pages 233–242, Philadelphia, PA,
USA. Society for Industrial and Applied Mathematics. Chapter 1-2.1.

[Raman et al., 2007] Raman, R., Raman, V., and Satti, S. R. (2007). Suc-
cinct indexable dictionaries with applications to encoding k-ary trees, pre-
fix sums and multisets. ACM Trans. Algorithms, 3(4). Chapter 1-2.1.

64

12 Apendixes A: Table of notation

S Set of points.
S Subset of points S′ ⊂ S.
n Input size.
p A point.
P Set of points.
log Binary log.
A Sorted array of points.
RMQ Range minimum query.
LCA Least common ancestor.
Xmax The leaf containing the point with the maximum x value in the query range.
Xmin The leaf containing the point with the minimum x value in the query range.
low x path The path from Xmax to the LCA.
high x path The path from Xmin to the LCA.
highSky The point on the skyline with the highest y coordinate.
lowSky The point on the skyline with the lowest y coordinate.
sortedY The points an inner node spans, sorted with respect to the y axis, Definition 1.4.
lowY The lowest y value a point can have and still be considered in a sub query.
highY The highest y value a point can have and still be considered in a sub query.
lowerLeft The lower left point of the orthogonal range.
topRight The top right point of the orthogonal range.
RMQ Range maximum query, Lemma 4.5 and 6.2.
RMQ simple The orthogonal range skyline counting query defined by Lemma 4.7.
Fractional Can refer to the orthogonal range skyline counting query defined by Lemma 5.8.
Naive The orthogonal range skyline counting query defined by Lemma 3.3.

65

	Introduction
	Previous work
	Naive
	RMQ simple
	Binary structure
	Prefix skyline count structure
	RMQ structure
	Conclusion

	Fractional cascading
	High x path
	Low x path
	Fractional performance

	Succinct RMQ
	Succinct dominating prefix sum and fractional cascading
	Final structure
	Block structure
	Inner node structure
	Multislab structure
	Orthogonal range skyline counting query

	Tests
	Test machine
	Measurement setup
	Test data
	Worst case
	Best case
	Best to worst case
	Variable query regions
	Random case

	Conclusion
	References
	Apendixes A: Table of notation

