
An optimal minimum spanning

tree algorithm

Master’s Thesis

Claus Andersen, 20030583

November 28, 2008

Department of Computer Science
Aarhus University

Supervisor:
Gerth Stølting Brodal

(gerth@cs.au.dk)

Abstract

This thesis describes the optimal minimum spanning tree algorithm given by Pettie
and Ramachandran (in Journal of the ACM, 2002). The algorithm presented finds a
minimum spanning tree of a graph with n vertices and m edges deterministically in time
O (T ∗ (m, n)), where T ∗ is the minimum number of edge-weight comparisons needed to
determine the solution of the problem. The function T ∗ is the decision tree complexity of
the minimum spanning tree problem, and thus the algorithm shows that the algorithmic
complexity of the problem is equal to its decision tree complexity.

Even though the algorithm runs in optimal time, the exact function describing the running
time is not known at present, and is thus still an open problem. A trivial lower bound is
T ∗ (m, n) = Ω (m). A deterministic upper bound is T ∗ (m, n) = O (m · α(m, n)), due to
Chazelle (in Journal of the ACM, 2000). Here, α is the very slow growing inverse of the
Ackermann function.

The optimal algorithm uses hardwired optimal decision trees for very small graphs
compared to the input graph, but for input graph instances with practical size, the decision
trees are not required to obtain the optimal running time. Because the optimal algorithm is
relatively advanced, the hidden Big-Oh constant of its running time is relatively large. This
thesis implements the optimal algorithm, except for the decision trees, and compares its
running time with minimum spanning tree algorithms with theoretically higher complexity.
The result of the experiments show that some of these algorithms are significantly faster
than the optimal algorithm for practical input graph instances. The overall experiment
winner is the algorithm originally discovered by Jarńık, and later by Prim and Dijkstra,
which in all experiments is significantly faster than the optimal algorithm. However, the
experiments show that for a special graph family, the optimal algorithm is faster than the
earliest minimum spanning tree algorithm known, namely Bor̊uvka’s algorithm.

Consequently, for practical purposes, the algorithm described provides no benefit to the
solution of the minimum spanning tree problem.

Contents

I Introduction 5

1 History of the minimum spanning tree problem 6

2 Mathematical notation and initial notes 7

3 Graph theory 8

4 Minimum spanning trees 11

4.1 Properties . 11

4.2 Minimum spanning forests and graph assumptions 13

4.3 Running times . 14

5 Thesis goal and results 16

II Fundamental building blocks 17

6 Priority queues 18

7 Graph contraction and generic MST algorithms 20

7.1 Generic MST algorithm . 20

7.2 Simple contraction procedure . 21

7.3 Better edge weeding . 23

8 Bor̊uvka’s algorithm 25

8.1 Running time . 25

9 The Dijkstra-Jarńık-Prim (DJP) algorithm 27

9.1 Implementation . 27

9.2 Running time . 28

9.3 Alternative implementation . 28

9.4 A hybrid algorithm . 29

III Advanced building blocks 30

10 The “Dense Case” algorithm 31

10.1 Implementation . 31

10.2 Running time . 32

10.3 Linear running time for the optimal algorithm 35

11 MST decision trees 36

11.1 Graphs . 36

11.2 MST decision tree . 37

11.3 Brute force searching procedure . 38

11.4 Running time . 39

11.5 Maximum partition size for the optimal MST algorithm 41

2

CONTENTS CONTENTS

12 The soft heap 43

12.1 Introduction . 43

12.2 Data structure . 44

12.3 Supporting heap functions . 46

12.4 Heap operations . 46

12.5 Sifting . 47

12.6 DeleteMin continued . 51

12.7 The r function . 52

12.8 Corrupted items analysis . 53

12.9 Running times analysis . 56

12.10Implementation . 59

12.11Additional heap operations . 61

IV The optimal MST algorithm 63

13 Graph representation 64

14 Key lemma and procedure 66

14.1 Key lemma . 66

14.2 The Partition procedure . 69

14.3 Partition running time and implementation 70

15 The optimal MST algorithm 73

15.1 The algorithm . 73

15.2 Visual example . 76

15.3 Running time . 79

15.4 Decision tree analysis . 80

15.5 Deduction of the running time . 85

15.6 Running time for practical graph instances 86

16 Implementation 87

16.1 Implementation details . 87

16.2 Practical information . 87

V Experiments 89

17 Introduction and correctness 90

18 Running times of priority queues 91

19 Running times of MST algorithms 94

19.1 MST algorithms on random graphs . 94

19.2 MST experiment follow-ups . 99

19.3 Worst case graph family for Bor̊uvka’s algorithm 100

19.4 Overall MST experiment results . 103

References 104

Appendix 106

A Index of terms used 106

B MST experiment plots 107

C Source code 111

3

Acknowledgements

I thank my supervisor Gerth Brodal for his help and support during the creation of this
thesis, and for his reviews of this report.

Furthermore I thank Grzegorz Nowak and Henrik Kirk for proofreading.

This report was written in LATEX and the figures were created with Ipe and Dia.

Claus Andersen,
November 28, 2008.

4

Part I

Introduction

5

1 History of the minimum spanning tree
problem

In 1926 the Czech mathematician Otakar Bor̊uvka described a solution to “a certain
minimal problem” [Bor26]. He used the solution to find the optimal way to lay out an
electrical network. The concepts of graphs and minimum spanning trees were not known
at the time Bor̊uvka described the solution. His solution to the problem is what we today
know as a minimum spanning tree algorithm and is the earliest known minimum spanning
tree algorithm. Today this algorithm is known as Bor̊uvka’s algorithm. His algorithm is
studied in Chapter 8. Throughout this thesis, we will refer to a minimum spanning tree
as “MST”.

In 1930 another MST algorithm was discovered by the Czech mathematician Jarńık [Jar30].
This algorithm was independently discovered by the American mathematician and
computer scientist Prim in 1957, and later rediscovered by the Dutch computer scientist
Dijkstra in 1959. The algorithm is therefore sometimes called Prim’s Algorithm, Jarńık’s
algorithm, the Prim-Jarńık algorithm or briefly the DJP algorithm. Throughout this
thesis, we will refer to this algorithm as the DJP algorithm. The DJP algorithm is studied
in Chapter 9.

Many modern MST algorithms utilises the ideas from these two algorithms. In particular
the optimal MST algorithm studied in this thesis heavily utilise the ideas from both
algorithms. Since the invention of these algorithms, the MST problem has been heavily
studied, but no one has found an exact lower bound on the time complexity for the
problem. The MST algorithm studied in this thesis was published by Pettie and
Ramachandran [PR02] in 2002. We can prove that the algorithm runs in optimal time,
but we can not give an exact lower bound. This algorithm is studied in Part IV.

A precise definition of a minimum spanning tree will be given in Chapter 4. An overview
of running times of important MST algorithms will be given in Section 4.3. Before stating
the MST problem formally, we will give some information of the mathematical notation
used in this thesis, as well as a graph theoretic introduction.

6

2 Mathematical notation and initial notes

Otherwise stated explicitly, log n = log2 n, that is the logarithm with base 2.

For integers i ≥ 0 the term log(i) (n) is defined inductively by log(0) (n) = n and
log(i+1) (n) = log log(i) (n). For example log(3) (n) = log log log n.

The iterated logarithm log∗ (n) is defined as min
{

i | log(i) (n) ≤ 1
}

. That is, the number

of times the logarithm function must be applied before the result is ≤ 1. This function
grows very slowly, and log∗ (n) is less than six for all “practical” values of n.

The factorial of a positive integer n, denoted n! is defined as
∏n

i=1 i = 1 · 2 · . . . · (n− 1) ·n.
Hence, it easy to verify that n! ≤ nn. It is inductively defined by 0! = 1 and n! = (n− 1)·n.

For non-negative integers n and m, the Ackermann function A(m, n) can be defined
recursively as follows:

A (m, n) =











n + 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m, n− 1)) else .

The interesting property of A(m, n) is that its value grows very rapidly. Let A′(n) = A(n, n).
Since A′ grows very rapidly, its inverse function A′−1 grows very slowly. This inverse
Ackermann function is denoted α. The function α(n) is less than five for all “practical”
values of n. A two-parameter variation of the inverse Ackermann function can be defined
as α(m, n) = min {i ≥ 1 | A (i, ⌊m/n⌋) ≥ log n}, but the important thing is that α grows
very slowly.

For integers m ≥ 0 and n ≥ 1, the beta function β(m, n) is defined as β (m, n) =

min
{

i | log(i) (n) ≤ m/n
}

. That is, the number of times the logarithm function must

be applied to n before the result is ≤ m/n.

7

3 Graph theory

v1

v2

v3

v4

v5

v6

v7

v8

(v1, v2)

(v2, v3)

(v1, v6)
(v3, v8)

(v4, v8)

(v6, v8)

(v7, v8)

(v5, v6)

(v1, v5)
(v2, v7)(v2, v5)

(v3, v6)

Figure 3.1: A simple connected graph G with n = 8 and m = 12, defined by V =
{v1, . . . , v8} and E = {(v1, v2), (v1, v5), . . . , (v6, v8), (v7, v8)}.
A sequence as (v5, (v2, v5), v2, (v2, v7), v7, (v7, v8), v8) (bold edges) forms a simple path. A
sequence as (v2, (v2, v3), v3, (v3, v6), v6, (v1, v6), v1, (v1, v2), v2) (dash-dotted edges) forms a
simple cycle.

An undirected (multi) graph G is an abstract data type defined by an ordered pair
G = (V, E), where V is a set of vertices and E is a multiset of edges, which are
unordered pairs of vertices. By definition n = |V | and m = |E|, so we have vertices
V = {v1, v2, . . . , vn} and edges E = {e1, e2, . . . , em}. The class of graphs with n vertices
and m edges is denoted by G(m, n). The vertex set of a specific graph G is denoted
by V (G), and the edge set is denoted by E(G).

An edge ei connects two vertices, say va and vb, and is denoted (va, vb). By definition of
an undirected graph, an edge is an unordered pair, so (va, vb) = (vb, va). A visual example
of a graph is given in Figure 3.1. Each edge ei is assigned a positive weight w(ei), that is
the cost of “using” the edge. If w(ei) < w(ej) for i 6= j, then ei is said to be lighter than ej .
Similarly, ej is said to be heavier than ei. For simplicity, all example graphs in this thesis
will have edge-weights corresponding to the Euclidean distance between endpoints. This
is a common assumption in real-world examples, such as road networks and networks of
power or data wires.

The degree of a vertex deg(v) is the number of edges that connect to it. This is also
referred to as the number of edges incident to vertex v.

8

Graph theory

A path in a graph is a sequence of alternating vertices and edges that starts at a vertex and
ends at a vertex, such that each edge is incident to its predecessor and successor vertex.
That is a sequence (vstart, (vstart, va), va, (va, vb), vb, . . . , vend). A cycle is a path with the
same start and end vertex. That is vstart = vend. A simple path is a path where each
vertex is distinct. Similarly, a simple cycle is a cycle where each vertex is distinct, except
for the start and end vertex. See Figure 3.1 for an example of a simple path and a simple
cycle.

A graph is connected if there exists a path between any pair of vertices. That is, if it is
possible to get from one vertex to any other vertex in the graph. A self loop is an edge
that connects a vertex to itself, that is e = (vi, vi). Such edges will be counted twice in
deg(v). Two distinct edges, say e and e′, are parallel if their endpoints are the same. That
is, if e = (vi, vj) = e′. A graph containing parallel edges is called a multi graph, because E
is a multiset as allowed in the first definition of a graph. A simple graph is an undirected
graph with no self-loops and no parallel edges. By definition of a simple graph, E is a
“real” set as opposed to a multiset. The degree of a vertex in a simple graph is at most
n − 1, and the degree is the same as the number of neighbouring vertices. The graph in
Figure 3.1 is simple and connected. If a graph is not connected, its maximal connected
subgraphs are called connected components.

We will show a lower bound on the number of edges in a simple connected graph by
induction. For the base case, consider a trivial simple connected graph G consisting of
one vertex (n = 1), and thus no edges (m = 0). Hence the expression m = n − 1 = 0
holds. Then inductively consider a simple connected graph with n − 1 vertices where
m = (n − 1) − 1 = n − 2 holds. Adding a new vertex to G requires one edge incident to
the new vertex for the graph to be connected, so m = (n − 2) + 1 = n − 1. This proves
that any simple connected graph with n vertices has m ≥ n − 1 edges. It is easy to see
that connecting a graph to an extra isolated vertex with exactly one edge does not induce
a cycle in the simple connected graph. As the graph is connected and has no cycles, there
exists exactly one simple path between each pair of vertices. Hence, adding one more edge
to the graph will add an extra simple path between some pair(s) of vertices, and thus a
cycle. Hence, a connected simple graph with m = n − 1 has no cycles. By definition a
tree is a connected graph without cycles, equivalent to that m = n − 1. A forest is by
definition the union of a set of one or more vertex disjoint trees.

Another special case of a simple connected graph is the complete graph. A complete graph
is a graph which contains all possible edges, that is, each pair of distinct vertices (vi, vj)
where i 6= j are connected by an edge. Every vertex in a complete graph has degree n− 1,
that is one incident edge to every other vertex in the graph. The total number of edges
is the number of distinct vertex pairs: n (n− 1) /2 or equivalently

(

n2 − n
)

/2 which is
O
(

n2
)

edges. The complete graph with n vertices is denoted Kn.

Throughout this thesis1, we will define the density of a graph as the ratio between the
number of edges and number of vertices, that is by m/n. The number of edges m in a
simple connected graph with n vertices is n − 1 ≤ m ≤

(

n2 − n
)

/2. That is m is Ω (n)
and O

(

n2
)

. A sparse graph is loosely defined as a graph where m/n is small. Similarly
a dense graph is loosely defined as a graph where m/n is large. The actual definition of
sparse and dense graphs will be clear in the contexts where the terms are used.

1Except for an experiment in Chapter 19.

9

Graph theory

Yet another special case of a simple connected graph is a planar graph. A planar graph is a
graph which can be drawn in the plane, such that no edges intersect, except for endpoints
at the vertices.

Theorem 3.1. Simple connected planar graphs with n ≥ 3 vertices has m ≤ 3n−6 edges.

Proof. Let f be the number of faces, that is regions bounded by edges including the outer
infinitely large region. If f = 1 (the outer face is the only face), then the graph is a tree
and m = n− 1 ≤ 3n− 6 for n ≥ 3.
For f > 1, a connected graph with n ≥ 3 vertices has m ≥ 3 edges. Euler’s formula [Som58]
states that for a connected planar graph, n −m + f = 2 ⇒ m = n + f − 2. Each face is
bounded by at least 3 edges (a triangular face), and every edge touches at most 2 faces.
Hence, f ≤ 2m/3, so

m ≤ n + 2m/3− 2 ⇒ m/3 ≤ n− 2 ⇒ m ≤ 3n− 6 .

Consequently, for a planar graph, the density is bounded by a constant and m is O (n).

Due to the lower bound of n − 1 edges for simple connected graphs, n is O (m), which
results in O (n + m) = O (m). So the input size of any simple connected graph with
m edges is O (m). Consequently, the time needed to build a simple connected graph with
m edges is Ω (m).

10

4 Minimum spanning trees

Definition Let G be a connected graph. A spanning tree of G is a tree containing all the
vertices and a subset of the edges in G. In other words a tree that spans over all vertices
in G. Hence, each spanning tree of a connected graph with n vertices has exactly n − 1
edges.

Definition Let T be a spanning tree of a connected weighted graph. The weight of T is
defined by the sum of edge weights in T :

w(T) =
∑

e∈E(T)

w(e) .

Definition Let G be a connected weighted graph. A minimum spanning tree (MST) of G
is a spanning tree of G with minimum total edge weight.

The bold edges in the graph on the front page symbolises a MST. It is clear from the
definition of a MST, that a solution to the problem requires comparisons of edge-weights.
A graph with equal edge weights may not have a unique minimum spanning tree, since
the graph can have multiple spanning trees with equal minimum total edge weight. It will
become clear in the subsequent section that if a graph has distinct edges weights, then the
graph has a unique minimum spanning tree.

4.1 Properties

The cycle property

Theorem 4.1. For each possible simple cycle in a connected weighted graph G with
distinct edge weights, the heaviest edge in the cycle does not belong to a MST of G.

Proof. See Figure 4.1a. Assume the contrary, namely that the heaviest edge e belongs to
a MST. Deleting e from a MST would split the tree into two disjoint subtrees with the two
endpoints of e in different subtrees. There exists some edge f 6= e in the cycle with the
two endpoints in different subtrees. As w(f) < w(e), reconnecting the two subtrees with
f will produce a spanning tree of smaller weight. Hence e does not belong to a MST.

11

Minimum spanning trees Properties

e

f

(a) The cycle property. The fat edges are the
assumed MST. The dashed line illustrates the
splitting of the tree.

CV1(G) V2(G)

e

u

v

(b) The cut property. Only edges in the cut C

are shown.

Figure 4.1: The cycle property and the cut property.

The cut property

Definition Let V (G) be the vertex set of a graph G such that |V (G)| ≥ 2. Let V1(G)
and V2(G) be nonempty disjoint partitions of the vertices in V (G). That is V1(G) 6= ∅,
V2(G) 6= ∅, V1(G)∩V2(G) = ∅, and V1(G)∪V2(G) = V (G). Let C be the set of edges with
one endpoint in both V1(G) and V2(V). Then C forms a cut in the graph G

Theorem 4.2. For each possible cut C in a connected weighted graph G with distinct
edge weights, the lightest edge in C belongs to a MST of G.

Proof. See Figure 4.1b. Let u and v denote the endpoint vertices of the lightest edge e.
If e is the only edge in C on any simple path between u and v, then the proof is obvious
because all vertices in G must be connected in a MST. Otherwise, assume the contrary,
namely that the lightest edge e does not belong to a MST. It is obvious that there is
some edge, say f , in C on the path between u and v in the assumed MST, otherwise the
two vertices would not be connected in the MST. As w(e) < w(f), replacing f by e will
produce a spanning tree of smaller weight. Hence e belongs to a MST.

Corollaries

Theorem 4.3. Let G be a connected weighted graph with distinct edge weights, let T be a
MST of G, and let e be an arbitrary edge in E(G). If e ∈ T , then e is the lightest edge in
some cut in G. If e /∈ T , then e is the heaviest edge in some cycle in G.

12

Minimum spanning forests and graph assumptions Minimum spanning trees

Proof. Due to the cycle property (Theorem 4.1) and the cut property (Theorem 4.2), we
can prove this theorem by proving that any edge in E(G) is either the lightest edge in
some cut in G, or the heaviest edge in some cycle in G.

Assume an edge (u, v) exists where this does not apply. If there is a simple path P in G
with endpoints u and v, where every edge is proven to be in the MST by the cut property,
then P ∪ {(u, v)} forms a cycle, and thus (u, v) must be the heaviest edge in this cycle.
Otherwise, then the graph is not connected by MST edges, and thus there exists a cut
without any edges proven to be in the MST, so we can add the lightest edge of this cut
to the MST. Then repeat this procedure until (u, v) is either proven to be in the MST
because it is the lightest edge in such cut, or proven to be the heaviest edge in a cycle.
This will clearly happen at some point, because we repeatedly add a new edge to the MST,
so we have a contradiction.

Uniqueness

Theorem 4.4. A connected weighted graph with distinct edge weights has a unique MST.

Proof. From Theorem 4.3, it is clear that we can find a MST by either:

• Initialise the MST, say T , to be G. Then repeatedly remove the heaviest edge in a
simple cycle in T until the derived graph is a spanning tree for G.

• Initialise the MST, say T , to be V (G). Then for every cut in G, add the lightest
edge to T if it is not already there.

As every edge has a unique weight, there is a unique edge with heaviest weight in any
cycle. Similarly, there is a unique edge with lightest weight in any cut. Consequently, the
graph has a unique MST.

Throughout this thesis, we will assume that all graphs have distinct edge weights, otherwise
stated explicitly. Thus, all graphs will have a unique MST.

4.2 Minimum spanning forests and graph assumptions

We have only defined the MST problem for connected graphs. The connected part makes
sense, since by the definition of a tree, there exists no spanning trees for unconnected
graphs.

A spanning forest is defined by the union of spanning trees for each connected component
in a graph. Similarly a minimum spanning forest (MSF) is defined by the spanning forest
with minimum total weight. Hence, the MSF problem is a generalisation of the MST
problem, and can be solved by solving the MST problem for each connected component
in the graph. It is easy to find the connected components in a graph in linear time

13

Minimum spanning trees Running times

using Depth-First-Search, and then solve the MST problem for each connected component.
Detection of connected components will be described in Chapter 7.

As the MST problem is a specialisation of the MSF problem, we will refer to the two terms
interchangeably when the difference is trivial.

It is easy to verify that any pair in a set of parallel edges forms a simple cycle in the
graph. Due to the cycle property (Theorem 4.1), it is easy to verify that all edges, except
the lightest, in a set of parallel edges not belong to the MST. It is also easy to verify that
every self looping edge does not belong to the MST. Hence, for any input graph that is not
simple, we can perform a precomputing step to remove these edges without any impact
on the final MST result. Such precomputation step can be done in linear time by a call
to contract(), which will be explained in Chapter 7.

Throughout this thesis, we will assume that all graphs are simple and connected.
Otherwise, we can perform the trivial precomputation steps just described. As described
in Chapter 3, these assumptions lead to some nice graph properties, such as E(G) is a
“real” set, and bounds on the number of edges.

4.3 Running times

In this section, we will present the running times of the MST algorithms covered in this
thesis, as well as some other important MST algorithms.

The MST algorithm input graph G has n vertices and m edges. A function describing the
exact complexity of the MST problem for general graphs is not known at present1. This
thesis will show that an algorithm exists which runs in time order of the optimal number
of edge-weight comparisons, even though the function for “optimal” is unknown.

It is easy to verify for all n, m > 2, that it is possible to build a simple graph where
every edge is contained in at least one simple cycle. Hence, to solve the MST problem,
all edge weights must be processed at least once, which implies a trivial lower bound
of Ω (m). The best deterministic upper bound at present is O (m · α(m, n)) due to
Chazelle [Cha00a]. Here, α (m, n) is the very slow growing inverse of the Ackermann
function, which loosely speaking makes the MST complexity “almost linear” in the graph
size. In 1995, Karger et al. [KKT95] presented a randomised (non-deterministic) MST
algorithm with expected running time O (m). This algorithm works under the assumption
that we have access to a stream of truly random bits. However, this thesis will focus only
on worst-case running times for deterministic MST algorithms.

The function T ∗ (m, n) denotes the minimum (optimal) number of edge weight compar-
isons needed to find the MST of any graph with n vertices and m edges. The function
T ∗ (G) denotes the minimum (optimal) number of edge weight comparisons needed to
find the MST of the specific graph G. Table 4.1 shows the running times of various
deterministic MST algorithms (and optimal decision trees) for different graph densities.
Notice, the sparse-dense bound is unique for each algorithm. The algorithms covered in

1This thesis is written in 2008.

14

Running times Minimum spanning trees

this thesis are written with boldface. The algorithm called “Optimal” is the optimal MST
algorithm by Pettie and Ramachandran [PR02], which we will analyse in this thesis.

Table 4.1 shows that MST algorithms exist with linear running times for certain densities.
But for the intermediate class of “sparse” graphs, no MST algorithms with provable linear
running time exist. However as stated above, this thesis will present an algorithm which
runs in order of “optimal” time for all densities.

Algorithm
Running time

Planar Sparse Dense

Bor̊uvka [Bor26], 1926 O (m) O (m log n) O
(

n2
)

DJP [Jar30,FT87], 1930 O (n log n) O (m)

Kruskal, 1956 O (m log n)

Kruskal, edges sorted by weight O (mα (n))

Yao, 1974 O (m log log n)

Dense Case [FT87], 1987 O (m log∗ (n)) O (m)

Bor̊uvka + DJP O (m) O (m log log n) O
(

n2
)

Chazelle [Cha00a], 2000 O (mα (m, n))

Precomputed optimal decision tree for G O (T ∗ (G))

Optimal [PR02], 2002 O (T ∗ (m, n))

Table 4.1: Worst case running times of MST algorithms, ordered by year.

15

5 Thesis goal and results

The goal of this thesis is to describe, analyse, implement, and test the optimal MST
algorithm by Pettie and Ramachandran [PR02]. The running time of the algorithm will be
compared to running times of other MST algorithms with theoretically higher complexities.
The optimal MST algorithm is essentially a composition of known algorithmic methods.
They are presented in Fredman and Tarjan [FT87], Chazelle [Cha00b], Mareš [Mar04],
as well as the early articles by Bor̊uvka [Bor26] and Jarńık [Jar30]. The subsequent two
parts of this thesis are dedicated to describe these methods. The optimal MST algorithm
is finally described and analysed in Chapter 15 and its running time is compared to other
MST algorithms in Chapter 19.

Results

We have tested the running time of the optimal MST algorithm and the other MST
algorithms covered in this thesis1 on various graphs. As the optimal MST algorithm is
a composition of other algorithms, it has a high overhead in running time compared to
the other MST algorithms we have tested. In other words, the hidden Big-Oh constant
of its running time, O (T ∗ (m, n)), is high compared to the other algorithms. So the
hidden Big-Oh constant may dominate the running time of the optimal MST algorithm
for practical graphs instances. Notice, there is a practical upper bound on the size of the
test graphs we are able to create, so this may also apply to our test graph instances. In
brief, this assumption is confirmed by the experiments. With the exception of narrow
intervals of densities, the DJP algorithm is generally fastest and the optimal algorithm is
generally slowest. However for the densities O (log log n) and O (log n) we have observed
that the optimal algorithm is slightly faster than Bor̊uvka’s algorithm for large graphs.
But even for these densities, both algorithms are significantly slower than DJP.

Consequently, for practical graph instances, the optimal MST algorithm given by Pettie
and Ramachandran [PR02] provides no benefit to the solution of the MST problem.

1That is the boldface algorithms in Table 4.1, except precomputed decision trees.

16

Part II

Fundamental building blocks

17

6 Priority queues

A well known abstract data type is the priority queue. A priority queue stores pairs of
(e, k), where e is an element and k is the key associated with e. The priority queues
presented in this thesis are all based on heap ordered trees, in particular they are all
minimum heaps. Briefly a heap is a rooted tree structure, and all nodes are stored in heap
order, where the key of a node always is less than or equal to the keys of its child nodes.
Consequently, the root node always stores a element with minimum key.

Except for the special soft heap, this thesis is not about priority queues, so we will briefly
state the common operation interface of a priority queue:

insert(e, k) Inserts the element e into the queue with key k associated.

findMin Returns the element with minimum key in the queue.

deleteMin Deletes and returns the element with minimum key in the queue.

decreaseKey(e,∆) Decreases the key of element e by ∆. To make this efficient, some
queues also require a reference to the node storing e in the queue.

delete(e) Deletes the element e from the queue. Again, to make this efficient, some
queues also require a reference to the node storing e in the queue.

meld(Q) Merges another queue Q into the queue.

In this thesis, there will be no need for deletion of arbitrary elements nor melding heaps.
Hence, there will be no need for the delete and meld operations.

Briefly, the deleteMin operation of soft heaps [Cha00b] (fully presented in Chapter 12)
may return a wrong element, because the heap corrupts (artificially raises) some of the
element keys. The running time of soft heaps depends on an error rate 0 < ε < 1/2,
that the priority queue must be initialised with. The error rate also dictates an upper
bound on the number of corrupted elements in the heap. The running times of the classic
simple binary heap [Flo64,Wil64], the more advanced Fibonacci heap [FT87,AK07], and
the soft heap1 are presented in Table 6, where n is the number of elements in the heap.

1The decreaseKey operation is not available for the soft heap. See Chapter 12 for more information.

18

Priority queues

Operation
Binary heap Fibonacci heap Soft heap
[Flo64,Wil64] [FT87] [Cha00b]
Worst case Worst case Amortised Amortised

insert O (log n) O (1) O (1) O (log 1/ε)

deleteMin O (log n) O (n) O (log n) O (1)

decreaseKey O (log n) O (n) O (1) N/A

Table 6.1: Running times of binary heaps, Fibonacci heaps, and soft heaps.

19

7 Graph contraction and generic MST algo-
rithms

It is well known that if T is a tree of detected MST edges in a graph G, then we can
contract the connected component induced by T into a single vertex and maintain the
invariant, that the MST of G is the same as the MST edges of the contracted graph plus T .
Contraction of a connected component, such as a tree, means to replace all vertices in the
connected component by a single vertex. The edges with exactly one endpoint in the
connected component are rearranged such that this one endpoint is changed to the new
vertex. The edges with both endpoints in the connected component can either be removed,
or rearranged as self-loops for the new vertex. In a MST context, it is preferred to remove
these edges, because each of them forms a simple cycle consisting of the edge only, and
consequently is not in the MST due to the cycle property (Theorem 4.1). To keep track
of the relation between edges in the original and the contracted graph, each edge in the
contracted graph must have a reference to the corresponding edge (and its endpoints) in
the original graph.

The MST algorithms described in this thesis, including the optimal algorithm, uses graph
contraction, so this section is dedicated to a description of contraction methods. First, a
definition of notation.

Definition Let C be a subgraph of G. The graph derived from G by contracting each of
the connected components in C is denoted G \ C.

7.1 Generic MST algorithm

Many MST algorithms operate by iteratively detecting a MST edge (for instance using
the cut property in Theorem 4.2), connecting two distinct clusters until all MST edges are
found. Here, a cluster is a set of vertices and all clusters are disjoint. Initially we define a
cluster for each vertex. When a new MST edge is detected, it is added to the set of MST
edges, and the clusters of the two endpoints are merged into one cluster, as they together
form a connected component of MST edges. Recall that we assume that the input graph
G is connected, and thus the MST of G has exactly |V (G)|−1 edges. A generic algorithm
showing this scheme is given in Algorithm 7.1. Additionally some MST algorithms (For
example Bor̊uvka’s algorithm in Chapter 8 and the “Dense Case” algorithm in Chapter 10)
operate in steps or passes, where each pass loosely speaking processes every cluster once.

20

Simple contraction procedure Graph contraction and generic MST algorithms

In Algorithm 7.1 this corresponds to an extra inner loop, that runs until all clusters are
processed. In this way, one execution of the outer loop corresponds to a single pass.

Algorithm 7.1: Generic MST algorithm

foreach vertex v of G do Define cluster C(v)← {v}
T ← all vertices of G
while |E(T)| < |V (G)| − 1 do

Find some MST edge (a, b), where C(a) 6= C(b)
Add (a, b) to T
Merge clusters C(a) and C(b) into one cluster

return T

The condition C(a) 6= C(b) is crucial due to the MST cycle property (Theorem 4.1).
One drawback of this method, is that the graph has the same size in all passes, even
though all edges (a, b) for which C(a) = C(b) can not be part of the MST due to the
cycle property. Therefore we wish to remove these edges from consideration. One way
to do this, is to contract every component induced by MST trees, and hence clusters,
in the end of each pass. This way, after the contraction each new vertex corresponds to
a connected component before the contraction. Consequently, before each pass we can
“reset” the clusters, such that we again define a cluster for each new vertex.

7.2 Simple contraction procedure

With contraction in the end of each pass, Bor̊uvka’s algorithm and the “Dense Case”
algorithm have no need to explicitly define and merge distinct clusters. Additionally the
algorithms can restrict them self to only mark a MST edge without adding it to T once
it is detected. This will also make it easier to check if a particular edge is within the
MST. Therefore we will describe contraction for graphs with no clusters associated. The
contraction described first in this chapter can be achieved by:

• Detect components connected by MST-marked edges. Assign to each vertex the
component it belongs to. This is a delayed cluster detection.

• Build a new contracted graph G′ with: 1) One vertex for each component. 2) One
edge for each edge connecting different components1. Each new edge must have a
reference to the edge in the original graph associated.

• Add the MST-marked edges to T . This is possible to do simultaneous with one of
the other two steps.

So in the end of each pass we contract the graph into a smaller graph, where each
component connected by MST-marked edges (equivalent to a cluster in the original generic
algorithm) is contracted to a single vertex. Furthermore some edges guaranteed not to be
in the MST are removed, namely all edges with both endpoints in the same component.

1Will be improved later.

21

Graph contraction and generic MST algorithms Simple contraction procedure

Depth-First Search and detection of connected components

A graph traversal is a method for examining all vertices and edges in a graph. A
Depth-First Search (DFS) of a graph is a standard traversal method. Here, we will give
a simplified version of DFS. Initially all vertices are marked as “unexplored”. Let the
DFS algorithm be a recursive function taking a “current vertex”, say v, as parameter. A
recursion starts by marking v as explored. Then for each incident edge to v, say e, it
checks if the opposite endpoint of e, say u, is unexplored. If so, it calls DFS recursively
on u. When all incident edges are processed, it returns. It is clear that all vertices in a
connected component will be visited by this traversal.

The DFS traversal can easily be extended to detect connected components in a graph,
and associate a unique component number to each vertex: Initially, mark all vertices as
unexplored and set a global component number variable i = 0. Then repeatedly find an
unexplored vertex in the graph, say v, call extended DFS on v, and increase i by one. For
each extended DFS recursion, the algorithm associates the component number i with the
current vertex. An unexplored vertex can efficiently be found be maintaining a reference
to the first unexplored vertex in the list of vertices.

Contraction algorithm

Besides graph contraction, we can easily generalise the generic algorithm to a MSF (as
opposed to MST) algorithm by changing the loop condition. When the MST of a connected
component is found, the component is contracted to a single vertex. Hence, the graph has
an empty edge set when the MST of each connected component is found. So the new loop
condition is that the current graph G has a nonempty edge set.

Let assignComponentNumbers(G) be a modified version of the extended DFS graph
traversal described above, that only processes MSF marked edges in the graph G. Let
C(v) denote the component number assigned to vertex v. That is, C(v) is the MSF
connected component that v belongs to.

The contraction step is formally defined in Algorithm 7.2. The modified generic MSF
algorithm with passes is defined in Algorithm 7.3.

Algorithm 7.2: contract(G,T) - Simple contraction algorithm

assignComponentNumbers (G)
G′ ← new graph with one vertex vi for each connected component in G
forall edges (a, b) in E(G) do

if (a, b) is marked as a MSF edge then
Add the original edge of (a, b) to T

else if C(a) 6= C(b) then
Create a new edge e← (vC(a), vC(b)) with the weight w((a, b)).
Add e to G′ with a reference to the original edge of (a, b).

return (G′,T)

22

Better edge weeding Graph contraction and generic MST algorithms

Algorithm 7.3: Generic MSF algorithm with contraction

T ← all vertices of G
while |E(G)| > 0 do

while pass not done do
Find some MSF edge (a, b)
Mark (a, b) as a MSF edge

(G, T)← contract(G, T)

return T

Running time

The first phase of contract(G,T) is a modified DFS of G, which takes time O (m). The
second phase builds a new graph of maximum n vertices. The time is O (n). The third
phase visits all edges and do constant work in each iteration, so the time is O (m). Thus
the total running time of contract is O (m) where m is the number of edges in the input
graph.

7.3 Better edge weeding

The graph G′ returned from the simple contract function does not have any self loops,
since edges with endpoints in the same component are not added to G′. But G′ can clearly
have parallel edges, that is G′ can be a multi graph. Consider a multiset of parallel edges
between two particular vertices. Each pair of edges forms a cycle in the contracted graph.
Consequently, due to the cycle property (Theorem 4.1), all edges in the multiset, except
the lightest, is not a part of the MST. Therefore we can remove all these edges to reduce
the number of input edges to the next pass even further. Given that one pass in the generic
algorithm takes O (m) time, this process must take O (m) time to avoid breaking the total
worst case running time.

One solution to achieve this improvement is given by Mareš [Mar04]. We will change the
loop of contract(G) in Algorithm 7.2 to:

1. Let n′ = |V (G′)|. That is the number of connected components found. Initialise n′

buckets, say B = (b1, . . . , bn′). Then for each edge in E(G), let i be the maximum
endpoint component number, and insert the edge into bucket bi. Like in the simple
version, add MST marked edges to T and throw away other edges with endpoints in
the same component in this process. Time: O (|E(G)|+ |V (G′)|) = O (|E(G)|).

2. Initialise n′ new buckets of linked lists, say B′ =
(

b′1, . . . , b
′
n′

)

. Then for increasing
i, take each edge in bucket bi: Let j be the minimum endpoint component
number of the edge, and put the edge into bucket b′j . For each bucket in B′,
this process will bring together the edges with the same maximum component
number. That is, parallel edges is brought together. In total that is radix sorting
by endpoint component numbers of edges with endpoints in distinct components.
Time: O (|E(G)|+ |V (G′)|) = O (|E(G)|).

23

Graph contraction and generic MST algorithms Better edge weeding

3. For each bucket of B′ (edges with the same minimum component number): Remove
unnecessary parallel edges. That is, remove all edges except the lightest to each
neighbour component. Time: O (|E(G)|+ |V (G′)|) = O (|E(G)|).

4. Build a new graph G′ with: 1) One vertex for each connected component. 2) One
edge for each remaining edge in the buckets of B′. Each new edge must have a
reference to the edge in the original graph.
Time: O (|E(G′)|+ |V (G′)|) = O (|E(G′)|).

Since |E(G′)| ≤ |E(G)|, this process takes time O (|E(G)|) = O (m) which was the
goal. For general graphs this process does not remove more edges than the first simple
contraction algorithm in the worst case.

Contraction implementation

In this thesis, contraction is implemented with parallel edge weeding. So otherwise stated
explicitly, every call to contract in the succeeding sections of this thesis refers to this
improved edge weeding algorithm. Thus the graph returned from this call is guaranteed
to have no parallel or self-looping edges, that is a simple graph. Additionally, if the input
graph is connected, then the output graph is a simple connected graph.

At a point the optimal algorithm marks some edges as MSF edges, and other edges as
removed before a call to contract. It is an obvious invariant that an edge can not both
be marked as removed and as an MST edge. It is easy to extend the contraction algorithm
to also remove edges marked as removed: It requires an extra conditional construction in
the first edge iteration, throwing away edges marked as removed.

24

8 Bor̊uvka’s algorithm

Bor̊uvka’s algorithm proceeds in a sequence of “Bor̊uvka steps” until all MST edges are
found. In each step the algorithm finds the lightest edge incident to each vertex, and adds
it to the set of MST edges. When a step is done, it contracts each component induced by
MST edges into a single vertex. Hence, it easy to see that the algorithm also can find the
MSF of an unconnected graph. Bor̊uvka’s algorithm is described in Algorithm 8.1.

Algorithm 8.1: Bor̊uvka’s algorithm

T ← trivial forest with all vertices of G
while |E(G)| > 0 do

/* Bor̊uvka step */
forall vertices v ∈ G do

e← the lightest edge incident to v
Mark e as an MST edge

(G, T)← contract(G, T)

return T

For a graph with distinct edge weights, there is a unique MST, and the proof of Bor̊uvka’s
algorithm is trivial due to the cut property (Theorem 4.2): The lightest edge connecting
a vertex to the rest of the graph is chosen to be in the MST. If the graph has edges with
equal weights, there is a risk that the algorithm will mark an edge which will cause a cycle
of “MST edges”. A simple way to fix this problem is to “be on the safe side” and prefer
marked minimum weight edges over non-marked edges, if there exists multiple edges with
minimum weight. This is equivalent to avoid marking an edge if there exists multiple edges
with minimum weight incident to the vertex, and some of them are already marked.

8.1 Running time

Let n′ and m′ be the number of vertices and edges, respectively, in the graph in the
beginning of a Bor̊uvka step. Notice that n′ ≤ n and m′ ≤ m. Each step visits each edge
two times, once for each endpoint. The algorithm utilises contract once in each step.
Thus the running time for a step is O (m′) which is O (m).

In the worst case only n′/2 edges are marked as MST edges in a step. Therefore the number
of vertices (and edges) are reduced by at least n′/2 in each call to contract. Thus the
total running time for general graphs, ignoring that some edges are removed between the
steps, is O (m log n). Because the number of vertices are reduced by at least n′/2 in each

25

Bor̊uvka’s algorithm Running time

call to contract, the number of vertices in the beginning of step i ≥ 0 is at most n/2i

and therefore the number of edges is at most the number of edges in the complete graph
of n/2i vertices, namely ≤

(

n/2i
)2

. The sum
∑∞

i=0

(

n/2i
)2

is dominated by the n2 term.
Thus the running time for general graphs is O

(

n2
)

. Consequently the total running
time for general graphs using Bor̊uvka with contraction is O

(

min
{

m log n, n2
})

. So if
m is O

(

n2/ log n
)

, corresponding to the density m/n is O (n/ log n) (sparse), the running
time is O (m log n). If m is Ω

(

n2/ log n
)

, corresponding to the density m/n is Ω (n/ log n)
(dense), the running time is O

(

n2
)

.

With reference to Theorem 3.1, simple planar graphs has the property that m ≤ 3n − 6,
which implies that m is O (n). The graph after a single Bor̊uvka step is also a simple
planer graph without parallel edges, due to the properties of contract. The number of
edges mi in the beginning of step i is therefore mi ≤ 3n/2i− 6. This gives a total running
time order of

∑

i

mi ≤
∑

i

3
n

2i
− 6 ≤ 3n

∑

i

1

2i
≤ 6n .

This shows that the total running time for Bor̊uvka’s algorithm for planer graphs is linear
in number of vertices and thereby edges in the graph. This was not possible with the
first simple version of contract (Algorithm 7.2), since it does not remove parallel edges.
That is, it does not preserve planarity. From this example, it is easy to see that Bor̊uvka’s
algorithm runs in linear time for very sparse graphs where m is O (n).

26

9 The Dijkstra-Jarńık-Prim (DJP) algorithm

The DJP algorithm uses the greedy method to grow a tree of MST edges. It begins with
a trivial tree T , with one arbitrary “root” vertex. Then, in each step, it finds the lightest
edge e = (u, v) where u ∈ T and v /∈ T . This edge connects a vertex u in T to the
neighbouring vertex v outside T . The tree T is then augmented with the vertex v and
the edge e. The process continues until all vertices of G are in T . The resulting tree T is
a MST of G. It is easy to prove that this method finds a MST due to the cut property
(Theorem 4.2): The algorithm always chooses the lightest edge connecting two disjoint
sets of vertices in G, namely vertices inside and outside the tree T , respectively.

9.1 Implementation

In the DJP algorithm each vertex v has three extra info fields associated. The first is a
state, explored or unexplored. The second is the best current edge for connecting T to v.
The third is the weight of the best current edge for connecting T to v. This field is called
the best current distance from T to v. The state approach is an easy way to tell for a
vertex v, if v ∈ T (explored) or v /∈ T (unexplored).

The algorithm uses a priority queue of unexplored vertices, with their distance to T as
keys. Hence the minimum element in the queue, will always be the vertex with the lightest
edge connecting T to a neighbouring vertex outside T . This queue is initially empty. All
vertices are initialised to the unexplored state and with distance∞ to T . A distance of∞
intuitively means that no edges incident to v have been explored yet, and hence v has no
best current edge yet. An arbitrary vertex is chosen to be the root vertex, v0, its distance
is set to 0 and it is inserted into the heap.

In each step, the vertex v with minimum distance to T is deleted from the heap and
marked as explored. Unless v is the root vertex, the best current edge of v is added to
the set of MST edges. When a new vertex v is explored, the algorithm visits all incident
edges e = (v, u). If u is explored, it is already inside T and nothing is done. If the current
best distance to u is ∞, then e is the first edge connecting u to T . Therefore u is inserted
with e as the best current edge. Otherwise, if the current best distance to u is greater
than w(e), this edge improves the connection from T to u, and hence e is set as the best
current edge from u. Thus the distance of u will also be decreased to w(e).

It is easy to verify that if a vertex is inside T , then it will never be inserted into the queue
again. Thus we can avoid an explicit state variable and instead set the distance to −∞ to
indicate the vertex is inside T .

27

The Dijkstra-Jarńık-Prim (DJP) algorithm Running time

See Algorithm 9.1 for a formal description of the DJP algorithm. It is easy to see at any
time that T is the set of MST-marked edges.

Algorithm 9.1: DJP MST algorithm

Initialise priority queue
forall vertices v ∈ V (G) do key(v)←∞
v0 ← any vertex in V (G)
key(v0)← 0
insert(v0)

while heap is not empty do
v ← deleteMin

key(v)← −∞ /* Do not connect to this vertex */
if v 6= v0 then mark e(v) as an MST edge
forall edges incident to v: (u, v) do

if key(u) > −∞ then /* u is outside the tree */
if w((u, v)) < key(u) then

e(u)← (u, v)

if key(u) =∞ then
key(u)← w((u, v))
insert(u)

else if w((u, v)) < key(u) then
decreaseKey of u to w((u, v))

9.2 Running time

The initialisation phase takes O (n) time. The running time of the while loop is
dominated by the heap operations. Each vertex is inserted and deleted once. The key
of a vertex is decreased at most once for each edge in the graph, that is at most m.
By using a binary heap as priority queue, the running time is O (n log n + m log n) =
O (m log n). After the discovery of Fibonacci heaps [FT87], the running time was reduced
to O (n log n + n + m) = O (n log n + m), due to the constant amortised running time
of the insert and decreaseKey operations. So if m is O (n log n) corresponding to the
density m/n is O (log n) (sparse), the running time is O (n log n). Otherwise, that is, if
m is Ω (n log n) corresponding to the density m/n is Ω (log n) (dense), the running time
is O (m).

9.3 Alternative implementation

We will present a modified implementation for the DJP algorithm, that opposed to
Algorithm 9.1 requires no decreaseKey operation. This is relevant for the Partition
procedure presented in Section 14.2. With this implementation, the priority queue stores
edges with their weights as keys. Consequently we do not assign keys to vertices in
Algorithm 9.1. Instead of initially inserting v0 into the queue, we just add v0 to T and
insert all of its incident edges.

28

A hybrid algorithm The Dijkstra-Jarńık-Prim (DJP) algorithm

Every time a vertex, say v, is explored and the tree T is augmented by v and an edge
connecting T to v, we insert all edges incident to v into the queue1. That is a replacement
of the inner for-loop body in Algorithm 9.1 by an insertion. Hence, the edge of minimum
weight in the queue is always either 1) the lightest edge connecting a vertex in T to a
neighbouring vertex outside T , or 2) some edge with both endpoints in T . So we change
the deleteMin step of Algorithm 9.1, to repeatedly call deleteMin until the edge of
minimum weight is an edge connecting T to a neighbouring vertex v outside T . Then v is
marked as explored, and T is augmented with this edge and neighbouring vertex v.

Every edge is clearly inserted twice, and deleted at most twice. Thus the running time
using a Fibonacci heap, is O (m log m + m) = O (m log m) = O (m log n), as m is O

(

n2
)

.
Consequently, this implementation is not suitable using a Fibonacci heap as priority queue.

9.4 A hybrid algorithm

For sparse graphs, the running time of DJP and Bor̊uvka is O (n log n) and O (m log n),
respectively. A trivial way to get a better running time, is to combine these two MST
algorithms the following way: Firstly, run O (log log n) Bor̊uvka steps. The contracted
graph G′ after these steps will have

O
(n

2log log n

)

= O

(

n

log n

)

vertices and at most m edges. The running time of the Bor̊uvka steps is O (m log log n).
Afterwards, run the DJP algorithm on G′. Using Fibonacci heaps, the running time is

O

(

n

log n
log n + m

)

= O (n + m) = O (m) .

The running time is dominated by the Bor̊uvka steps, so the total running time of the
hybrid algorithm is O (m log log n). For very sparse graphs2 where m/n is O (1), this
algorithm runs in linear time O (m), as Bor̊uvka’s algorithm runs in linear time. Similarly,
for dense graphs where m/n is Ω (n/ log log n), this algorithm runs in time O

(

n2
)

, as
Bor̊uvka’s algorithm runs in O

(

n2
)

time for dense graphs.

1Can be optimised by only inserting edges to unexplored vertices.
2Including planar graphs.

29

Part III

Advanced building blocks

30

10 The“Dense Case” algorithm

Briefly, to make the optimal MST algorithm work, it must be able to find the MST
of a “sufficiently dense” graph in linear time. The density lower bound of Ω (log n) in
the original DJP algorithm (Chapter 9) is too high for this purpose. What sufficiently
dense means will become clear in the end of this chapter. There exists various
deterministic algorithms to achieve a linear running time for dense graphs, but the
simplest is by [FT87], where the Fibonacci heap was presented. As stated in Section 9.2,
the discovery of Fibonacci heaps reduced the running time of the DJP algorithm to
O (n log n + m). A even more important result was a MST algorithm with complexity
O ((log∗ (n)− log∗ (m/n))m), which is O (m) for “sufficiently dense” graphs. Therefore
this section will concentrate on describing this particular“Dense Case”algorithm of [FT87].

The Dense Case algorithm is basically a modified version of the Dijsktra-Jarńık-Prim
(DJP) algorithm. This version utilises Fibonacci heaps [FT87] as the priority queue.
The main idea is to bound the maximum number of neighbouring vertices in the heap to a
certain value k. We will deduce a function for k in Section 10.2. When a vertex is extracted
from the priority queue, it is marked dead, indicating it is a part of a grown tree. If the
heap exceeds the bound k, becomes empty, or the tree connects to a previously grown tree,
we repeat the DJP algorithm with a live vertex as the root vertex. This continues until all
vertices are marked dead, that is, all vertices is contained in a tree. When all vertices are
marked dead, all connected components induced by MST edges are contracted. After that,
the pass is done. That is, every grown tree is a connected component, which is contracted
into a single vertex. The algorithm repeatedly runs such a pass until the full set of MST
edges is found, which is equivalent to when the graph is contracted into a graph without
any edges.

10.1 Implementation

As stated, the DenseCase algorithm uses a modified version of the DJP algorithm. Let
growTree(v) be a embedded version of DJP given in Algorithm 9.1 with the following
small modifications: Do not initialise the priority queue nor initialise the key of each
vertex to ∞. Use the live vertex v as the root v0. When a dead vertex is extracted from
the queue, stop the execution, otherwise mark it dead. Before inserting a vertex into the
heap, stop the execution if the heap is full, that is if it has size k. Thus growTree stops if
it has connected to another tree, the heap is overflowed, or the heap is empty. The “Dense
Case” algorithm is shown in Algorithm 10.1.

31

The “Dense Case” algorithm Running time

Algorithm 10.1: Dense Case MST algorithm

T ← trivial forest with all vertices of G
while E(G) > 0 do

Calculate k for this pass /* To be chosen later in Section 10.2 */
Initialise Fibonacci Heap with bound k
forall vertices v ∈ V (G) do

Mark v live
key(v) =∞

while there is a live vertex v do
growTree (v)
Empty the heap
forall inserted vertices v do key(v)←∞

(G, T)← contract(G, T)

return T

The outer while-loop is the “pass loop” which runs until the graph is contracted into a
graph without any edges. The inner while-loop runs until all vertices in the current graph
are in a tree. Hence, it is easy to see that this algorithm also can find the MSF of an
unconnected graph. Recall that a key of∞ indicates that the vertex is outside the current
tree. So in the end of a growing step, the keys of all inserted vertices are reset to ∞
because they have a finite key after being inserted.

10.2 Running time

Even though this algorithm also works for unconnected graphs, we will only study the
running time for connected graphs. With reference to Section 4.2, it is possible to detect
the connected components of an unconnected graph in linear time, so for the analysis we
can assume the input graph is connected.

Using the following facts about the algorithm, we can bound the number of heap operations
per pass:

• Only vertices adjacent to live vertices are eventually inserted into the heap or have
their keys decreased.

• Each vertex is marked dead when it is deleted from the heap.

• The first vertex deleted in growTree is alive. This vertex is v0.

Let t = |V (G)|, when a pass begins. That is the number of vertices in the contracted
graph. The number of insert and decreaseKey operations is at most 2m, namely at most
once for each endpoint. That is O (m) heap operations with amortised constant running
time. The total number of deleteMin operations is the number of live vertices deleted
plus the number of dead vertices deleted. Due to the second fact, the number of live
vertices deleted is t. Once a dead vertex is deleted, growTree stops and starts again, so
the next vertex to be deleted is live. This means the number of dead vertices deleted is at
most t. In total that is O (t) deleteMin operations on a heap of maximum size k. Besides

32

Running time The “Dense Case” algorithm

the heap operations, the initialisation of a pass takes O (t) time and the contraction step
takes O (m) time. The bookkeeping of inserted vertices is done by adding the vertex to
a list when inserting it. The cost of emptying the heap and resetting the keys to ∞ are
charged to the insert operations. The bookkeeping of finding a live root vertex is done
by maintaining a reference to the first live vertex in the vertex list V (G). When we need
to find a new live vertex, we iterate forward through the vertex list until a live vertex is
found. This sums up to O (t) time per pass. So if the Fibonacci heap bound is k, then the
total time for a complete pass is O (t log(k) + m + t) = O (t log(k) + m).

Intuitively smaller values of k will reduce the running time per pass, but raise the number
of passes. Larger values will reduce the number of passes, but raise the running time per
pass. Values k < ⌈m/t⌉ will not work in general, because trees will eventually not grow
due to heap overflow in the first iteration of each growTree. Values k ≥ t will make a
pass the final pass, because there is room for all trees in the heap. This value will make
a pass identical to the original DJP algorithm. So if k ≥ n in the first pass, the complete
algorithm is identical to DJP.

In [FT87], they chose the following function for k: For a pass with t input vertices, set
k = 22m/t, where m is the original number of edges. With this choice of k each pass takes
O
(

t log 22m/t + m
)

= O (m) time. So each pass takes linear time in the number of edges
in the original graph. Because the number of vertices decreases from pass to pass, the
value of k will increase from pass to pass. It remains to deduce an upper bound of how
many passes are needed to get from t = n to the worst case t = 1, if the input graph is
connected.

A new tree T stops growing because of either:

• The heap size bound of k adjacent vertices is violated, which is equivalent to that T
has at least k adjacent vertices outside T . Thus T has at least k edges with at least
one endpoint in T , namely at least one edge for each adjacent vertex.

• The heap is empty, which is equivalent to that T can not grow bigger.

• T is connected to another tree T ′ (in form of a dead vertex). Here, T ′ is a joint tree
of previously connected grown trees. This option is clearly not the case when the
first tree of a pass stops growing. Therefore T ′ has at least k edges with at least one
endpoint in T ′, and so has the resulting joint tree of T ∪ T ′.

From here, let a tree T be a composite tree of one or more connected trees grown by
growTree. If a pass results with a single tree of MST edges, it is the last pass as it is
contracted to a single vertex. Otherwise, a pass ends with that each tree T has at least k
edges from G with at least one endpoint in T .

Let t be the number of vertices and m′ ≤ m be the number of edges when a pass begins. As
stated above, k is the minimum number of edge endpoints per tree T . The total number
of edge endpoints is 2m′ when a pass begins. The number of trees after a pass, and hence
the number of vertices in the subsequent pass, is therefore t′ ≤ 2m′/k. The heap size
bound for the subsequent pass is k′ = 22m/t′ . As t′ ≤ 2m′/k and m′ ≤ m, we have that
2m/t′ ≥ 2mk/ (2m′) ≥ k, so k′ ≥ 2k. In other words, k is boosted exponential between
each pass.

33

The “Dense Case” algorithm Running time

The initial k in the first pass is 22m/n as the first t = n. When k ≥ n, the first tree will
not stop growing before it contains all vertices, because there is room for all of them in
the heap. This is what happens in the original DJP algorithm, which has no heap size
bound. Consequently when k ≥ n, it is the last pass. So one way to analyse the maximum
number of passes needed, is to find the minimum number of times, say i, we have to
boost the initial k by 2k before k ≥ n. The number i is equal to the number of times the
logarithm function must iteratively be applied to n before the result is less than or equal
to the initial k = 22m/n. Formally the maximum number of passes needed is bounded

by 1 + min
{

i | log(i) (n) ≤ 22m/n
}

. As log(1)
(

22m/n
)

= 2m/n, the maximum number of

passes needed is O (1) + min
{

i | log(i) (n) ≤ 2m/n
}

= O (1) + min
{

i | log(i) (n) ≤ m/n
}

.

In [FT87], they define β (m, n) = min
{

i | log(i) (n) ≤ m/n
}

, so the maximum number of

passes is bounded by

β (m, n) + O (1) .

As stated earlier, each pass takes O (m) time, so the total running time is

O (mβ (m, n)) .

It is easy to see that β (m, n) also can be expressed in terms of the more well-known
“iterated logarithm” or “log-star” function. Intuitively log∗ (n) is loosely the same as the
minimum i plus “the rest” which is log∗ (m/n)−O (1), so the expression for the minimum
i becomes

β (m, n) = log∗ (n)− log∗ (m/n) .

Worst case and linear running times

It becomes clear from β (m, n) that the number of passes does not depend directly on
neither m or n, but instead of the composite edge-to-vertex ratio (graph density) m/n.
We assume the graph is simple and connected. If m < n, then m = n − 1 and the
graph is a tree, so there is no need to run this algorithm. Generally speaking a high
density gives a low worst case running time and vice versa. The worst case is when
m = n ⇒ m/n = 1, so β (m, n) = log∗ (n). The best case is a complete graph, that is
when m is O

(

n2
)

⇒ m/n = O (n), so β (m, n) = O (1). This shows that the worst case
running time for the algorithm is O (m log∗ (n)). On the other hand it runs in linear time
O (m) for sufficiently dense graphs, which is the interesting property for the optimal MST
algorithm.

So what is a sufficiently dense graph? As shown above m/n = O (n) is the upper bound
for density. The lower bound of density depends on the constant, say c, number of
passes wanted. To limit i in β (m, n) to the constant c, set m/n = log(c) (n). This gives

β (m, n) = min
{

i | log(i) (n) ≤ log(c) (n)
}

= c. This property is exploited in the optimal

MST algorithm in Section 15.1, where the constant is c = 3, and consequently the number
of passes is bounded by the constant 3.

34

Linear running time for the optimal algorithm The “Dense Case” algorithm

10.3 Linear running time for the optimal algorithm

We will state a theorem about the Dense Case algorithm, which will be used by the optimal
MST algorithm.

Theorem 10.1. Consider a simple connected graph G of n vertices and m edges, where
m ≥ n. Then consider a graph G′ of n′ ≤ n/ log(3) (n) vertices and m′ ≤ m edges derived
by contracting G. Given that the heap size bound k is calculated as a function of m (as
opposed to m′), then the running time of the Dense Case algorithm for G′ is O (m).

Proof. As k = 22m/t, each pass takes time O
(

t log 22m/t + m′
)

= O (m + m′) = O (m).

The initial k in the first Dense Case pass is k = 22m/n′

and when k ≥ n′ it is the last pass.
With the same arguments as in Section 10.2, the maximum number of Dense Case passes
is

O (1) + β
(

m, n′
)

= O (1) + min
{

i | log(i)
(

n′
)

≤ m/n′
}

.

Raising the left hand side of the inequality will increase i, and so will lowering the right
hand side. So, because n′ ≤ n/ log(3) (n) and m/n ≥ 1, we can conclude

β
(

m, n′
)

= min
{

i | log(i)
(

n′
)

≤ m/n′
}

≤ min

{

i | log(i)

(

n

log(3) (n)

)

≤ m

n
log(3) (n)

}

≤ min
{

i | log(i) (n) ≤ log(3) (n)
}

= 3

= O (1) .

Consequently, the number of passes is bounded by a constant, and thus the running time
is O (m).

35

11 MST decision trees

Briefly, to make the optimal MST algorithm run in optimal time, it must be able to
determine the MST of small graphs relative to the input graph with an optimal number of
edge-weight comparisons. The actual maximum size of the small graphs will be deduced
in the analysis of Section 11.5. For a fixed graph G, this can be achieved by a hardwired
optimal MST decision tree for G. An optimal decision tree for G is an “algorithm” that is
hardwired to G and computes the MST of G for any given permutation of edge-weights
with an optimal number of edge-weight comparisons. Before we can make use of optimal
decision trees, we must build them. Intuitively, for a given number of vertices there exists,
loosely speaking, many distinct graphs, and for each graph there exists, loosely speaking,
many edge-weight permutations. Hence, the time for building an optimal decision tree
for all graphs with a given number of vertices is relatively high. Consequently, we can
only afford to build optimal decision trees for relatively small graphs, and thus we can
assume that the size of the graphs described in this chapter is relatively small. Similarly,
the number of decision trees is relatively small.
Before we describe decision trees and how to build them, we must show how to distinguish
graphs.

11.1 Graphs

As stated in Chapter 3, a graph consists of a set of vertices, V , and a set of edges, E. Let
n and m be the number of vertices and edges in a graph, respectively. In the context of
input graphs to MST decision trees, we assume without loss of generality that a vertex is a
unique integer, such that V = {1, . . . , n}. The set of edges are distinct unordered pairs of
vertices. A graph is uniquely defined by its edge set, ignoring edge weights. The elements
in a set have no specific order, and thus many sequences of edges evaluates to the same
edge set. For instance, {(1, 2), (2, 3)} = {(2, 3), (1, 2)}. To make the detection of a graph
efficient, we need to be a little more restrictive with respect to edges. We require that
edges are ordered lexicographically by their endpoints, for instance by first the smallest
endpoint (vertex number), then by the highest endpoint. Let U be the universe of all
possible edges in a graph of n vertices, that is the edge set in the complete graph. Hence,
there exist 2|U | distinct edge sets, and thus also graphs1 with n vertices. Because edges are
ordered elements, each of them, say e, maps to a distinct integer, say f(e), in the interval
[0 , |U | − 1]. It is easy to convert an arbitrary edge set, say E, into an array of sorted
edges, say S, by radix sorting:

1Inclusive unconnected graphs.

36

MST decision tree MST decision trees

1) Create n buckets, say B = (b1, . . . , bn). Then for each edge in E, let i be the highest
endpoint, and insert the edge into bucket bi. 2) Create n new buckets, say B′ = (b′, . . . , b′n).
Then for increasing i, take each edge in bucket b′i: Let j be the smallest endpoint of the
edge, and put the edge into bucket b′j . 3) Initialise the array S of size m. Then for
increasing j, append the edges of bucket b′j to S. When done, S is a sorted array of edges
S = (e1, . . . , em), where f (ei) < f (ei+1). Consequently, each edge of a specific graph has
a fixed position in this array.

It is easy to verify that the radix sorting process takes time O (n + m) = O (m), which
does not exceed the time for building the graph. A graph is uniquely represented by its
sorted array of edges, S. Let si denote the i’th entry of S. A sorted array S is isomorphic
to a unique number among all graphs with n vertices and m edges:

m−1
∑

i=0

|U |i · f (si)

It takes linear time in the number of edges to calculate this number. Hence, we
can represent each possible graph with n vertices and m edges by a unique number.
Consequently, we can represent any graph by a unique number. From this point, we will
assume that all edge sequences are sorted.

Let (w(e1), . . . , w(em)) be the distinct weights of edges in a graph. The number of edge-
weight permutations for a graph with m edges is m!. Without loss of generality, assume
that the m distinct edge weights are 1, . . . , m. For example, a graph with m = 3 edges
has 3! = 6 edge-weight permutations, which are

(1, 2, 3) , (1, 3, 2) , (2, 1, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1)

We have showed how to sort the edges of a graph in such way that each of them has a fixed
position in an array. We have also showed how to convert a graph (ignoring edge-weights)
to a unique number representing the graph, and thus how to distinguish graphs. Both
computations takes linear time in the size of the graph. It remains to show how to find
the MST of a graph for any possible edge-weight permutation with an optimal number of
edge-weight comparisons.

11.2 MST decision tree

A MST decision tree is a rooted binary tree, which is hardwired to a graph (ignoring
its edge weights). Because the edges are sorted, we can access any particular edge in
constant time. Each internal node of a tree has an edge-weight comparison associated.
The data associated to each internal node is an ordered pair of edges, say (e1, e2). The
edge-weight comparison at an internal node is w(e1) < w(e2). One of the children of an
internal node, say the left, represents that the comparison is false, and the other, say the
right, represents that the comparison is true. Each leaf of a MST decision tree has a set
of edges associated. If the decision tree is correct, then each of these sets is the solution to
the MST problem for a graph with the edge-weight permutations on the root-to-leaf path.
A decision tree is optimal if it is correct and there exists no correct decision trees with
lesser depth. The depth of the optimal decision tree is the worst case number edge-weight

37

MST decision trees Brute force searching procedure

comparisons needed to deduce a MST from the particular graph. See Figure 11.1 for an
example of a graph with its hardwired optimal decision tree.

Figure 11.1: A graph with n = 3 vertices defined by ((1, 2), (1, 3), (2, 3)) and its hardwired
optimal decision tree.

Notice that for graphs with 1 or 2 vertices, the MST problem has a trivial solution and
thus does not need a decision tree to find a solution. A simple graph with n = 1, has no
edges, and thus the set of MST edges is the empty set. A simple graph with n = 2 has
either zero or one edge. We assume the graph is connected, so it has one edge, and thus
the set of MST edges is the set consisting of this edge.

11.3 Brute force searching procedure

We will describe a procedure for finding optimal decision trees for all graphs with maximum
r vertices. The running time of the procedure is deduced in the subsequent section. Due
to the trivial solutions just described, we do not need to find decision trees for r = 1 and
r = 2. Hence, in the analysis, we can assume that the number of vertices is r ≥ 3. We
will find an optimal decision tree for each graph with at most r vertices by brute force
searching. The main idea is to generate all possible decision trees of a particular size, and
then for each graph find an optimal tree among these.

Firstly, calculate an upper bound on the optimal decision tree depth for a graph with
r vertices. The depth corresponds an upper bound on the number of necessary edge-
weight comparisons. We will deduce such an upper bound in the analysis of Section 11.4.
For a graph with r vertices, there is an upper bound on the number of possible edge-pairs,
which also is the number of possibilities for an internal node. Thus, we can also deduce an
upper bound on the number of distinct decision trees. So secondly, generate all possible
decision trees of the calculated depth.

Then, for each possible graph, G, with at most r vertices:

1. Generate all possible edge-weight permutations for G.

2. Solve the MST problem for G with each edge-weight permutation using a standard
MST algorithm, such as DJP, and associate the MST solution with the permutation.

38

Running time MST decision trees

3. Initialise a current optimal decision tree reference T = ⊥ and a current optimal depth
variable, d =∞, to indicate that we have not yet found a correct decision tree for G.

4. For each of the original decision trees (without the modifications made for previous
graphs):

Place all edge-weight permutations with their MST solutions on the root node.
Then, for each tree depth, from root to leaf, do the following for each node:

Check if all MST solutions are equal. If so, then save the MST at this node, and
stop the process on this root-to-leaf path. That is, do not proceed in the subtree of
this node in the subsequent depth steps. Otherwise, then for each permutation:
Perform the edge-weight comparison associated with the node, and move the
permutation with its MST solution to the child corresponding the comparison
result.

Because we check all possible decision trees, some of the comparisons will refer to
an edge which does not exist in G. In that case, reject the current decision tree and
proceed to the next.

If at some depth, the process stops because the MST solution(s) are equal for each
path, then the current decision tree is correct. If the depth is less than d, then
update T to the current tree and d to the depth. The previous optimal decision
tree is thus rejected for G, as we have found one with lesser depth. Otherwise, if
the depth is not lesser than d, then reject the current tree, because one with lesser
depth is already found.

Otherwise, at some point the comparisons reach a leaf node where the edge-weight
permutations still not agree on the MST. In that case, the decision tree is not
correct, so we can reject it for G.

Alternatively, we can reject the current decision tree when the depth exceeds the
current optimal depth d.

5. When we have checked all trees, the tree T with depth d is an optimal decision tree
for G. To reduce the size of T , we remove the subtrees of nodes where we have saved
a MST, such that these nodes become leaf nodes. As we have checked all possible
decision trees, we are sure to find a correct and optimal decision tree for G. Hence,
we hardwire T to G.

11.4 Running time

As stated in Section 11.1, the number of graphs with r vertices is 2|U |, where U is the set
of edges in the complete graph. The number of edges in the complete graph of r vertices
is
(

r2 − r
)

/2 < r2. Hence, there exists at most

g = 2r2

graphs with r vertices. It is clear that this bound dominates the sum of number of graphs
with up to r vertices:

∑r
i=1 2i2 ≤ 2 · 2r2

.

The DJP algorithm (see Chapter 9) uses at most one edge-weight comparison per
edge endpoint, so the maximum number of edge-weight comparisons is r2 − r < r2.

39

MST decision trees Running time

Consequently, this is an upper bound on the depth of an optimal decision tree. The
number of nodes in a binary tree of height h is 2h − 1, hence the tree has < 2r2

internal
nodes. Each internal node must identify an ordered pair of edges, say (e1, e2). As there is
at most r2 edges, there is at most r2 ·r2 = r4 ordered pairs of edges, hence there is at most
r4 possibilities for each internal node. As there is < 2r2

internal nodes and < r4 possibilities
for each internal node, there exists at most

T =
(

r4
)2(r2)

= r4·2(r2)
= r22·2(r2)

= r2(r2+2)

distinct decision trees for graphs with maximum r vertices. As each tree has less than 2r2

internal nodes, it takes time

tcreate = O
(

2r2
T
)

= O (gT)

to create all decision trees.

As there is at most
(

r2 − r
)

/2 < r2 − 2 edges in a graph of r ≥ 3 vertices, there exists at
most

(

r2 − 2
)

! edge weight permutations per graph. As the number of edges in a graph
is O

(

r2
)

, there exists various deterministic MST algorithms, such as the DJP algorithm,
with running time O

(

r4
)

. Hence, it takes time

tdjp = O
((

r2 − 2
)

! · r4
)

= O
((

r2 − 2
)

! · r2 · r2
)

= O
((

r2
)

!
)

to find the correct MST of each edge-weight permutation per graph.

Assuming the MST edge sets are sorted, we can check two sets for equality in O (r) time.
Each decision tree has depth < r2. Hence, it takes time

tcheck = O
((

r2 − 2
)

! · r · r2
)

= O
((

r2
)

!
)

to check if a decision tree is correct.

Summing up, the total running time for finding an optimal decision tree for each graph of
at most r vertices is:

O (tcreate + g (tdjp + Ttcheck)) .

We know that tdjp = tcheck, and tcreate = O (gT), so the time is

O (gT tcheck) = O

(

2r2 · r2(r2+2) ·
(

r2
)

!

)

.

Simplifying the running time

As x! < xx for any integer value x ≥ 2, an upper bound on the time for checking a tree is

tcheck =
(

r2
)

! <
(

r2
)r2

= r2r2
< r2(r2+2)

.

Similarly, an upper bound on the number of graphs is

g = 2r2
< r2(r2)

< r2(r2+2)
.

40

Maximum partition size for the optimal MST algorithm MST decision trees

Consequently we have a running time which is order r2(r2+2)
cubed. Thus, the running

time is order

(

r2(r2+2)
)3

<

(

r2(r2+2)
)4

= r4·2(r2+2)

= r2(r2+4)

=

(

22log(2) (r)

)2(r2+4)

= 22(r2+4)·2(log(2) (r))

= 22(r2+log(2) (r)+4)
.

Notice that

lim
r→∞

log(2) (r) + 4

r
= 0

which implies that log(2) (r) + 4 is o (r). Consequently the time is

O

(

22(r2+o(r))
)

.

11.5 Maximum partition size for the optimal MST algorithm

Briefly, the optimal MST algorithm takes a graph with n vertices and m edges, of which it
divides into small partitions (subgraphs). For each partition, it uses a hardwired optimal
decision tree to find its MST. Hence, the algorithm must find optimal decision trees for
all graphs (that is partitions) of a certain number of vertices, r, which is the maximum
partition size. It remains to find the value r, such that the optimal decision trees can be
precomputed in linear time of the input graph size.

Theorem 11.1. For partitions with maximum r = ⌈log(3) (n)⌉ vertices, the decision trees
for the optimal MST algorithm can be precomputed in o (n) time.

Proof. First, notice that

lim
r→∞

(

log(3) (r)
)2

log(2) (r)
= lim

r→∞

log(3) (r)

log(2) (r)
= 0 ,

which implies that
(

log(3) (r)
)2

is o
(

log(2) (r)
)

and that log(3) (r) is o
(

log(2) (r)
)

.

41

MST decision trees Maximum partition size for the optimal MST algorithm

Setting r = log(3) (n) gives running time order

22

„

(log(3) (n))
2
+o(log(3) (n))

«

= 22(o(log(2) (n))+o(log(2) (n)))

= 22
o(log(2) (n))

= 2o(log n)

= o (n) ,

which proves the theorem.

Notice that we can set r as high as

√

log(2) (n) − 1 and achieve the same running time,
but it provides no benefit to the running time of the optimal MST algorithm.

Impractical method

The number of atoms in the universe is approximately 2265, so with reference to Table 11.1,
for practical values of n, the partition size will never exceed r = 4 vertices. As stated
previously, it is trivial to find the MST of a graph with r = 1 or r = 2. For any connected
graph, if the number of edges is r−1, then the MST is the set of all edges. So with regard
to graphs with r = 3, only one exists where the number of edges exceeds r − 1. This
graph has the edge set which is a cycle of three edges. See the graph in Figure 11.1 for an
illustration. Hence, with reference to the cycle property in Theorem 4.1, the MST of this
graph is the two lightest edges, or equivalently all edges, except the heaviest. So we can
find the MST by scanning the edges, which takes linear time.

Generally, all graphs with up to r = 4 vertices are planar graphs, so Bor̊uvka’s algorithm
(Chapter 8) can find the MST of all such graphs in linear time of the number of edges.
But as r in practice is bounded by a small constant, any MST algorithm can deduce the
MST in constant time. Consequently, the decision trees are needless for all realistic input
graphs to the optimal MST algorithm, as we can run Bor̊uvka’s algorithm instead and
achieve a linear running time.

For that reason, we have not implemented decision trees for the optimal MST algorithm.
Instead, we use one of the methods described above depending on the graph size, as we
are unable to generate test graphs with n > 265536, or n > 2256 for that matter.

n, power of 2
]

22 , 24
]]

24 , 216
]]

216 , 2256
]]

2256 , 265536
]

n, tower of 2’s
]

2220

, 2221
]]

2221

, 2222
]]

2222

, 2223
]]

2223

, 2224
]

r =
⌈

log(3) (n)
⌉

1 2 3 4

Table 11.1: Values of log(3) (n).

42

12 The soft heap

The main data structure utilised by the optimal MST algorithm is the soft heap by
Chazelle [Cha00b]. Chazelle used soft heaps for the MST algorithm presented in [Cha00a],
which at present1 provides the best upper bound on the MST complexity. Recently the
implementation and in particular its analysis has been simplified by [KZ09]. We will give a
full description of Chazelle’s original version of the heap. As the name suggests it is a heap
based priority queue. The soft heap may corrupt some items by artificially raising their
keys in the heap. The data structure must be initialised with an error rate parameter ε,
where 0 < ε < 1/2. The error rate dictates an upper bound on the number of corrupted
items in the priority queue. The following theorem states the main properties of the soft
heap. The proof of Theorem 12.1 follows in Section 12.8 and Section 12.9.

Theorem 12.1. Consider a soft heap with fixed error rate 0 < ε < 1/2 and no prior data.
The amortised running time of each heap operation is constant, except for insert which
takes O (log 1/ε) time. For a mixed sequence of heap operations that involves n inserts,
the heap never contains more than εn corrupted elements.

Notice, that as opposed to most data structures, n is not the current heap size, but the
number of insertions. Consequently, it is theoretically possible, that all elements in the
queue are corrupted at a given time. As a simple example, consider n inserts succeeded
by (1− ε)n deletes or deleteMins on a empty heap. Now, the heap will have size εn which
is the same as the upper bound of corrupted elements.

12.1 Introduction

Like the Fibonacci heap [FT87], a soft heap is a sequence of binomial trees, that are
allowed to be modified by removing subtrees. We will start by describing pure unmodified
binomial trees. A binomial tree is a rooted tree, where each node has a nonnegative integer
rank associated. A node of rank k has exactly k children. The children of a node with
rank k have ranks 0, . . . , k − 1. The rank of an entire tree is defined as the rank of its
root node. The binomial tree of rank k has exactly 2k nodes. Hence, the basic binomial
tree of rank 0 is the trivial tree with one node. The binomial tree of rank k > 0 is formed
by linking two binomial trees of rank k − 1, such that the root node of one tree becomes

1This thesis is written in 2008.

43

The soft heap Data structure

a new child of the root node of the other tree. It is easy to verify by induction that the
combination of two trees of rank k − 1 has 2k nodes.

From this point, we will refer the to modified binomial trees in a soft heap as soft queues.
Unlike the Fibonacci heap, the soft heap only allows distinct soft queue ranks, that is zero
or one soft queue of each rank. Recall that a soft queue is a binomial tree where some
subtrees are removed. Let the master tree of a soft queue be the binomial tree from where
the soft queue is derived from by removing subtrees. The rank of a soft queue node is
defined as its rank in its master tree. That is the number of children in the master tree
before removing children. Therefore the rank of a soft queue node is greater than or equal
to its number of children. The soft heap does not allow an arbitrary number of children of
a root node to disappear. Actually, the following invariant is maintained on the number
of children, deg (v), of a soft queue root node v:

⌊rank (v) /2⌋ ≤ deg (v) ≤ rank (v) .

Unlike normal heap structures, a soft queue node v may store more than one item.
Actually, it may store an entire list of items without any explicit upper bound on the
list size. However, in Section 12.8 we will show that an important implicit upper bound
exists on the list size. Each soft queue node v has associated a “common key” of all items
in its item list. This common value is called the “ckey” of v. The ckey of v is defined as
an upper bound of keys in v’s item list. That is if no items are deleted from the list, then
the ckey is the maximum key among all item keys. A soft queue is heap ordered with
respect to the ckeys. That is the ckey of a node is always less than or equal the ckey

of all its child nodes. Consequently, all items in a list, except those with the key equal
to the ckey, are corrupted, as they may not follow the heap order, and really should stay
closer to the root node. By this definition of a corrupted item, it is easy to see that some
items in a list are corrupted, if the items have two or more distinct keys. It is even easier
to see that any item list of size 1 has no corrupted items, as the key of the item is equal
to the ckey. When a soft heap is created, it calculates a value, r, which is a function of
the fixed error rate ε. During the life time of a soft heap, it keeps the invariant that all
corrupted items are stored at nodes with rank strictly greater than r. This is achieved by
disallowing item lists with multiple items at nodes with rank ≤ r. Consequently, items
stored in the bottom a soft queue are not corrupted until they travel toward the root.

12.2 Data structure

Queue structure

As stated above, each node has a rank, a ckey, and a item list associated. We should
be able to concatenate two item lists in constant time, so each item list must be a linked
list. Therefore, each queue node must have a reference to the head and the tail node of
its item list. We refer to these references as il and il_tail, respectively. Additionally a
node should have references to its children. For a node v, this requires up to k = rank (v)
references. In [Cha00b], Chazelle suggests to represent degree-k nodes as a sequence of
degree-2 nodes, where each node has a child and a next reference. Until the description
of the implementation in Section 12.10, we will view soft queue nodes as degree-k nodes

44

Data structure The soft heap

to make the correspondence to binomial tree nodes clearer. So we assume that each queue
node has a linked list of children.

Thus a queue node has the following fields:
(ckey, rank, il, il_tail, children).

Top structure

The top structure of the soft heap is a double linked list called the head list. From this
point, we will refer to the head nodes as heads. Let m be the number of soft queues. The
head list has m heads, h1, . . . , hm, where each head hi consists of two references. The
first reference, queue, of head hi points to the root of a distinct soft queue ri. We require
that rank (r1) < · · · < rank (rm), so the queue ranks are distinct. The other reference,
suffix_min, of head hi points to the head hj , with minimum ckey among all rj ’s, where
j ≥ i. In other words, it points to the head node with minimum ckey among hi and its
successors. Thus suffix_min is a forward pointer in the head list. Additionally, each head
hi has a rank field associated. When a soft heap is initialised, it creates a static header
and tail virtual head node, links them, and keeps fixed references to them. Therefore, the
complete list of head nodes becomes h0, . . . , hm+1. The header node is used as a fixed
start node of the list. The rank of the tail node is initially set to ∞. The rank of the
header node is unimportant, and rank of any other head node hi always reflects the rank
of the root of its queue: rank (ri).

Thus a head node has the following fields:
(queue, prev, next, suffix_min, rank).

Figure 12.1 shows a snapshot of a soft heap instance.

Figure 12.1: Soft heap data structure with three soft queues. The number inside a squared
head is the queue rank. The number inside a queue node is the ckey. The item lists with
size > 1 is shown next the queue node. Removed subtrees are shown with dashed lines.

45

The soft heap Supporting heap functions

12.3 Supporting heap functions

Queue melding

The purpose of the function meld is to meld a soft queue, q, into the soft heap. Let k
be the rank of q. We meld a queue into the heap by first finding the smallest i such
that rank (hi) ≥ k by walking forward in the head list starting from the successor of the
header node (that is h1). As the rank of the tail is ∞, such head node always exists. If
rank (hi) > k, we create a new head node for q, and insert it right before hi. Otherwise, if
rank (hi) = k, we have a conflict because the two queue ranks are equal, but we disallow
equal queue ranks. Hence we remove hi from the list, and link the two conflicting queues
into one of rank k + 1, by making the root node with the largest ckey a new child of the
other root. Thus, the heap order of the resulting queue is maintained. Now we stand
with a new queue of rank k + 1. If rank (hi+1) = k + 1, then a new conflict arises, and
we remove the head node and link again. This process continues until there are no more
conflicts, and so we insert a new head node with queue pointing to our new queue.

After this process, some of the suffix_min pointers between h1 and the new head node
may point to the wrong head nodes, maybe even dismantled head nodes. This problem is
handled by a procedure called fix_minlist, which is described in the subsequent section.
The updating of pointers is achieved by calling fix_minlist with the new head node as
parameter.

Updating suffix_min pointers

The procedure fix_minlist takes a head node, h, as parameter, and walks backwards
in the head list starting from h, while it updates the suffix_min pointers. As these are
forward pointers, it is assumed, that there is no invalid pointers after h. The updating
takes place by maintaining a pointer to the succeeding head containing the minimum ckey

encountered so far. This pointer is initialised to the suffix_min pointer of h’s successor
head, as this must point to the head with minimum ckey among h’s successors. A special
case arises when the successor head is the tail node, where the pointer is initialised to h
instead, as it has no real successors.

12.4 Heap operations

Finding corrupted items

The task of finding corrupted items in the heap is quite simple. We traverse all soft queues
nodes with rank > r, and for each item list, we report all items where the key differs from
the ckey of the queue node. This can be achieved by a Depth-First-Search of each queue
down to and including nodes with rank r + 1.

46

Sifting The soft heap

Insert

With the melding procedure, it is easy to implement the insert method. Let e be the
new key. We create a simple soft queue with one uncorrupted node v, with item list {e},
and meld the new queue into the heap. That is, the rank of v is 0, the child list is empty,
and the ckey is e.

Notice that so far, the inserting, melding, and hence the entire data structure does not
differ from binomial heaps, as each node stores exactly one item and no subtrees are
removed. Consequently, starting with an empty soft heap and only inserting items, we
will have a series of pure heap ordered binomial trees, and no items will be corrupted.
This is the same picture as with the Fibonacci heap without any decreaseKey nor delete
operations, right after a deleteMin operation, which cleans up and creates a binomial
heap.

Introduction to deleteMin

It is trivial to implement a size counter for the soft heap, so it is easy to detect if the heap
is empty, and report back if it is. The counter must be increased by one for each insertion,
and decreased by one for each deleteMin or delete on a nonempty heap. Therefore, in
the description of deleteMin, we assume that the priority queue is nonempty.

The suffix_min pointer of the first real head node points to the head node containing
the soft queue with the minimum ckey among all queues, and hence in the entire heap.
Therefore it is easy to locate where the minimum ckey “should” be. The problem is that
the item list of the root node may be empty because we are lazy when we delete an item.
This leads to the simple procedure if the item list is nonempty: We simply take the first
item in the list (corrupted or not), delete it from the list, and return it. Hence at some
point, the list becomes empty.

If the item list of the root is empty, we must refill it with items from nodes deeper in the
queue. This leads to the sift function, which is the heart of the soft heap and is what
distinguishes it from other heap types.

12.5 Sifting

To make the description of the advanced soft heap sifting clearer, let us describe the
simpler sifting procedure of a pure binomial queue. To make the procedure as close as
possible to that of the soft heap, we do not want to remove the root node from the binomial
tree. Instead, we set the key of the root node to ∞ to indicate the item is deleted, and
afterwards we sift the new minimum item to the root. Naturally this method preserves
the tree size, but it violates the heap order of the tree after setting the root key to ∞.

Notice that the rank of a tree (or subtree) and its root is equal, so we will use the two
rank terms interchangeably.

47

The soft heap Sifting

Sifting in a binomial queue

Let ckey (v) be the key of a binomial node v. Let r be the empty root node and let
k = rank (r). Then we set ckey (r) = ∞ such that it will travel to the bottom of the
tree when we reestablish the heap order. Now, one of the child nodes of r must have the
minimum key among all keys in the tree, as they are all roots, and thus each of them
contains the minimum key of its subtree. Hence, all child nodes are now candidates to
become the new root. Then we unlink all child nodes from r, so rank (r) = 0. The old
child nodes, or equivalently subtrees, now form k binomial trees with ranks 0, . . . , k − 1.

The sifting procedure maintains a current tree, which it repeatedly relinks with the
unlinked subtrees from the initial root. Let the current root be the root node of the
current tree. Initially, let the single-node tree r be the current tree. Then we repeatedly
relink the current tree with the old subtrees in increasing rank order, 0 . . . k − 1, such
that the heap order is preserved. That is to let the root with largest key become a new
child of the other root. After each linking, let the newly linked tree be the current tree.
When linking, the ranks should be updated, such that the rank of the current root node
is increased by one, corresponding to its new number of children. The rank of the current
tree is clearly also the same as one plus the rank of the old subtree just linked, because
two trees of this rank were linked. When describing soft heap sifting, the latter definition
of rank of the current tree (root) will be used. Similarly, the rank of the new child node is
the same as the rank of the old subtree just linked. The current tree after linking the last
two trees of rank k − 1 has rank k, and forms the new final binomial tree that preserves
the heap order again.

Sifting in a soft queue

The sift procedure of the soft heap is very similar to that of ordinary binomial trees, except
two important differences.

Firstly, by the definition of soft queues, some nodes, and thus also the current root node,
may be missing some children. Consequently, some child ranks among 0 . . . k− 1 may not
exist. Recall that the rank of a soft queue node is not the current number of children, but
the number of children in the master tree. Therefore, it does not make sense to increase
the rank of the current root by one after each linking, as the rank when the relinking is
complete, may differ from the rank in the master tree. Consequently, we need to save
the initial root rank before relinking and assign it back to the final root node when the
relinking is complete. Similarly, if the current root is relinked such that it becomes a child
of an old subtree root, then we need to assign it the rank of the old subtree root. Despite
of the rank complications of soft heap relinking, the current tree relinks with all (existing)
old subtrees in increasing rank order. As the rank of the current root does not follow the
number of children, let us define the current root rank as one plus the rank of the old
subtree just relinked.

Secondly, the most important difference. Under some conditions, sift may call itself after
a relinking step, that is a recursion of the sift function. Such call saves the item list of
the current root, sets its ckey to ∞, and brings further items to the root, which will be
merged with the saved item list in the end of the call. As stated above, each linking step

48

Sifting The soft heap

has a current root rank as with binomial trees. At the time when a recursive call occurs,
some subtrees might not be relinked yet. Hence the current root has only child ranks up
to the rank of the child just linked. Consequently, the recursive call relinks subtrees of
the current root up to this particular rank. That is a repetition of the relinkings up to
the particular rank. The original call to sift without any recursive calls, will not bring
item lists together at the current root, because its item list were empty at the time when
sift were called from deleteMin. A recursive call to sift will clearly bring some items
together in the same item list, as the current root node this time has a nonempty item
list, which we make unavailable by setting its ckey to ∞, indicating that it is ready to be
removed. In other words, setting the ckey of a nonempty node to ∞ makes the number
of available nodes smaller than the number of items, and thus some items must share
nodes (item lists) to remain.

The main condition for recursion is that the current root rank is > r. This is only possible
after the relinking of two trees where the old subtree had rank ≥ r. This condition ensures
that no corrupted items will appear at nodes with rank ≤ r, as item lists are not merged
at nodes with these ranks. In addition, one (or both) of two conditions must hold: 1) The
current root rank must be odd, or 2) the current root must have lost the child with the
current root rank. The latter condition is similar to that the next subtree (in the sequence
of existing subtrees with increasing rank) has a rank that is strictly greater than the
current root rank.

Implementation of sift

To make the sift function uniform, while supporting both the original non-corrupting
and the recursive corrupting calls, we can implement it as follows.

Every execution of sift must have a reference to the root of the current tree. Thus, we
let the function take a reference to the current root as a parameter. Likewise, we let it
return a reference to the current root, such that the caller can update its own reference
when the control returns.

Firstly, save the item list and rank of the current root in local variables, then empty its
item list and assign ∞ to its ckey. Secondly, save the child list, or equivalently subtree
list, in yet another temporary variable, and unlink all children from the current root. Now
we are ready to relink all children to preserve the heap order. So we iterate through
the old subtree list in increasing rank order. For each subtree, (subtree), we check if
ckey (root) < ckey (subtree), where root is the current root. If this is the case, we make
the node pointed to by subtree a new child of the node pointed to by root. Otherwise,
we need to swap the nodes, by making the node pointed to by root a new child of the
node pointed to by subtree, and then update the rank of the new child (that is the node
pointed to by root) to the rank of the old subtree. Lastly, we update the current root
pointer, root, to the node pointed to by subtree. There is one important exception to
the latter case, namely if ckey (root) = ∞. In that case we do not link the two trees, so
the node with infinite ckey disappears from the structure and is thus regarded as removed.
This is the point where the node rank and number of children can be made to differ.

Then we calculate the current root rank, which is rank (root) = rank (subtree) + 1. In
a pure binomial queue this is the target root rank for the relinking step. Then we check

49

The soft heap Sifting

if the recursive condition holds. If so, we call sift recursively with root as parameter.
This call will once again temporary save the item list of the current root, setting its ckey
to ∞, and relink the current children. As we will see in a moment, this call will finally
concatenate the saved item list with that of the resulting root of the call.

When we are done iterating through the subtree list, we assign the initial root rank to
the resulting root, and concatenate the item list of the current root with the saved item
list. Concatenation of item lists in general also requires an update of the corresponding
ckey. We always sift the node with smallest ckey to the root, so the items sifted to
the root the second time, that is in the recursive call, has a larger ckey than the saved
item list. Hence, we let the ckey of the current root remain unchanged. The item list
merging is what Chazelle refers to as the “car pooling” of priority queues, because several
items (respectively, people) share a common node (respectively, car) towards the root
(respectively, job).

To detect if the current root node has lost the child of current root rank, we check if the
subtree of the next linking step has a rank strictly greater than the current root rank.
To make this work in pseudo code, we add a virtual subtree with the same rank as the
initial root of the call to the list of subtrees, such that a subtree always has a next subtree.
Obviously, we must only iterate over the real subtrees.

See a formal description of the sift function in Algorithm 12.1, and a sifting example in
Figure 12.2, which shows four linking states around a recursive call to sift.

Algorithm 12.1: sift(root) - soft heap sifting

rootRank← rank (root)
L← itemList(root)
itemList(root)← ∅
ckey(root)←∞
subtrees← all root’s children ∪ virtual tree with rank ← rootRank
Unlink all children from root
foreach subtree in subtrees in increasing rank order up to rootRank− 1 do

if ckey(subtree) < ckey(root) then
if ckey(root) is finite then

Add root as new child to subtree
rank(root)← rank(subtree) /* Here, root is temporary not a root */

root← subtree
else

Add subtree as new child to root
rank (root)← rank (subtree) + 1
nextSubtree← the next subtree in the rank ordered subtrees sequence
if rank (root) > r and (rank (root) is odd or rank(nextSubtree) > rank (root))
then

root ← sift(root)

rank (root)← rootRank
itemList(root)← itemList(root) ∪ L
return root

50

DeleteMin continued The soft heap

Figure 12.2: Example of sifting, starting in a relinking iteration. Only the current root
and subtree roots are shown. Unlinked subtrees are shown with dashed lines to the root.
The number inside a node is the ckey. The number below a subtree root is the rank. The
number next to the root is the current root rank. The letter next to some nodes is the
item list. a) 10 is just linked with 41. 10 and 6 is about to be linked. b) 10 and 6 linked.
The root has lost the child of current rank 6, so we call recursive. c) Recursive call: The
current unlinked subtrees (3 and 19) are unknown to the recursive call. The item list (B)
at the root is saved, illustrated by the new box. Then the item list at the root is emptied,
the ckey is set to ∞, and the current children are unlinked. The root and 15 is about to
be linked. d) 15 and∞ not linked, but∞ is removed. The next linking step will involve 15
and 70. Assuming no further recursive calls occur, this recursive call will end by swapping
the root (15) and 10, making 10 the new root, and merging the items lists A and B.

12.6 DeleteMin continued

As stated in the introduction to deleteMin, the advanced part occurs when the item list
of the root with minimum ckey is empty. In that case, we first check if the rank invariant
is violated. If so, it is a consequence of previously sifting, as it is the only function that
removes subtrees. Then we simply dismantle the root node, by removing its head node
from the head list. This may induce invalid suffix_min pointers between the previous
head node and the first head node, so we call fix_minlist on the previous head node
to update them. Afterwards we meld the remaining children back into the heap. The
advantage of postponing the rank invariant detection until the root node is empty, is
precisely that it is empty. Otherwise, we would stay with a nonempty item list which
does not belong to any queue node, so what would we do with it? Conversely, if the rank
invariant holds, we call sift to move items towards the root of the queue. Recall that the
root of the queue node may change during this call, and most likely does. Therefore we
update the queue root pointer of the head to that returned by sift. If the entire queue

51

The soft heap The r function

Algorithm 12.2: deleteMin() - soft heap deleteMin

h← suffix min of the first head
root← queue(h)
while itemList(root) is empty do

if deg (root) < ⌊rank (root) /2⌋ then
Remove h from the head list
fix_minlist(prev(h))
foreach child of root do

meld(child)

else
root← sift(root)
if ckey (root) =∞ then

Remove h from the head list
h← prev(h)

fix_minlist(h)
h← suffix min of the first head
root← queue(h)

min← first item in itemList(root)
Remove first item in itemList(root)
return min

was empty, then the ckey of the root will be infinite after the call. If so, we dismantle the
node by removing its head node from the head list. Afterwards we call fix_minlist to
restore suffix_min pointers. If the head node was removed, we call it with the previous
head node as parameter, otherwise with the head node itself.

After the meld or sift action, we once again find the root with the minimum ckey among
all roots by following the suffix_min pointer of the first real head node. If the item list
of this root is also empty, then we repeat the procedure until we find a nonempty root.
When the item list is nonempty, we perform the simple action of extracting the first item,
and returning it.

See a formal description of the deleteMin operation in Algorithm 12.2.

A findMin operation

A findMin operation follows immediately from the deleteMin operation. The only
difference between the two is the deletion of the first item in the item list.

12.7 The r function

To achieve the desired error rate and running time, we set the value of r to the following
function:

r
def
= 2 + 2

⌈

log
1

ε

⌉

. (12.1)

52

Corrupted items analysis The soft heap

The proof that this function achieves the desired error rate and running times will follow
in the analysis of the succeeding sections. It is important to notice that r is always an
even integer.

12.8 Corrupted items analysis

Lemma 12.2. Let v be a node in a soft heap. The size of v’s item list is bounded by

max
{

1, 2⌈(rank(v))/2⌉−r/2
}

.

Proof. If the lemma holds, then it easy to verify that nodes v with rank (v) ≤ r have
maximum list size of 1, as opposed to nodes with rank (v) > r, which have a greater
bound.

Before the first call to sift, all queues are still pure binomial trees, and thus all item lists
have size 1. Hence, the lemma holds for the base case. If sift does not call itself, then
some item list is sifted (relinked) to a node of higher ranking, and thus the lemma still
holds, because this will only raise the value of the second parameter. Otherwise, that is if
sift calls itself, then the item list at the root becomes the concatenation of two item lists,
which both are derived from child nodes of particular ranks. Thus, we must find an upper
bound on the child node item list size. The rank of all children is strictly less than the
current root rank. Merging happens only if the current root rank is > r, and if either it is
odd, or no old subtree exists with rank of the current root rank. A recursive call will just
repeat the procedure of sifting items to the current root. Hence, the following inductive
bounds on the maximum child node list size, is the same for the saved item list and the
one brought to the root by the recursive call.

The induction assumption is that the inequality holds for the children. We have two
inductive cases:

• The current root rank is odd: A lower bound on the real root rank is the current
root rank, so let rank (v) be the current root rank. The rank of a child is at most
rank (v)− 1. Due to the main recursion condition, we know that rank (v) ≥ r +1, so

2⌈(rank(v)−1)/2⌉−r/2 ≥ 2⌈r/2⌉−r/2 ≥ 20 = 1 .

Consequently, we can eliminate the max term, and stick to its last parameter in the
following derivation. By the induction assumption and that rank (v) is odd2, the size
of an item list at a child of v is at most

max
{

1, 2⌈(rank(v)−1)/2⌉−r/2
}

= 2⌈(rank(v)−1)/2⌉−r/2 = 2⌈rank(v)/2⌉−1−r/2 .

• The current root has no child with current root rank and this rank is even: If a node
has lost a child, then the node itself must have a rank greater than the rank of this
child. Hence a lower bound on the real root rank is the current root rank plus one,

2Consequently rank (v) − 1 is even.

53

The soft heap Corrupted items analysis

so let rank (v) be the current root rank plus one. Thus, the rank of a child is at most
rank (v)− 2. Due to the main recursion condition, we know that rank (v) ≥ r +2, so

2⌈(rank(v)−2)/2⌉−r/2 ≥ 2⌈r/2⌉−r/2 ≥ 20 = 1 .

Consequently, we can eliminate the max term, and stick to its last parameter in the
following derivation. By the induction assumption the size of an item list at a child
of v is at most

max
{

1, 2⌈(rank(v)−2)/2⌉−r/2
}

= 2⌈(rank(v)−2)/2⌉−r/2 = 2⌈rank(v)/2⌉−1−r/2 .

The analysis of the case where the current root rank is odd and the current root has lost
a child with this rank is irrelevant, because it is covered by the first case.

It turns out that the two upper bounds on child item list sizes are equal. The concatenation
of two lists with this size (the saved and the one from the recursive call) has size at most

2 · 2⌈rank(v)/2⌉−1−r/2 = 2⌈rank(v)/2⌉−r/2 ,

which proves the lemma.

Lemma 12.3. Let S be the node set of a binomial tree. Then
∑

v∈S

2rank(v)/2 ≤ 4 |S| .

Proof. Recall that a binomial tree of rank k has 2k nodes. Hence, the rank of a
tree with node set S is log |S|. Besides the root node of rank log |S|, for each
rank k ∈ [0 , log |S| − 1], a binomial tree has exactly |S| /2k+1 nodes. Hence a tree has
|S| /2 leafs (rank 0 nodes) and |S| /2k+1 nodes with rank strictly greater than k including
the root.

We know the number of nodes with each possible rank in a tree of |S| nodes, so we can
rewrite the sum:

∑

v∈S

2rank(v)/2 =

log |S|−1
∑

i=0

|S|
2i+1

· 2i/2 + 1 · 2log |S|/2

= |S|
log |S|−1
∑

i=0

2i/2

2i+1
+ |S|1/2

≤ |S|
∞
∑

i=0

1

2i/2+1
+ |S|1/2

= |S|
(

∞
∑

i=1

1

2i
+

∞
∑

i=1

1

2i+1/2

)

+ |S|1/2

≤ |S| (1 + 1) + |S|1/2

≤ 4 |S| ,

which proves the lemma.

54

Corrupted items analysis The soft heap

Lemma 12.4. The soft heap contains at most n/2r−3 corrupted items at any given time.

Proof. Let q be a soft queue, and let q′ be the corresponding master tree. Let R be the
set of nodes with rank > r in q, and let R′ be the set of nodes with rank > r in q′. As q
is derived from q′ by only removing subtrees, q′ can not contain more nodes than q with
any rank, hence |R| ≤ |R′|. We know from the proof of Lemma 12.3 that |R′| is 1/2r+1

of the queue size. The total size of all queues is at most n. Thus, the sum of nodes with
rank > r in all queues is

∑

q′

∣

∣R′
q′
∣

∣ ≤ n

2r+1
≤ n

2r
. (12.2)

From Lemma 12.2 we know that the maximum list size at a node v with rank (v) > r is

2⌈rank(v)/2⌉−r/2 ≤ 2 · 2(rank(v)−r−1)/2 .

Consequently, there is at most 2·2(rank(v)−r−1)/2 corrupted items at nodes with rank (v) > r,
and 0 in nodes with rank (v) ≤ r. An upper bound on the total number of corrupted items,
is the sum of maximum list sizes at nodes with rank > r in the master trees:

∑

q′

∑

v∈R′

q′

2 · 2(rank(v)−r−1)/2 = 2
∑

q′

∑

v∈R′

q′

2(rank(v)−r−1)/2 . (12.3)

Let Sq′ be the nodes of R′
q′ . With reference to Figure 12.3, Sq′ forms a binomial tree,

where the rank of a node v ∈ R′
q′ becomes rank (v)− r − 1 in Sq′ .

Figure 12.3: To the left: A binomial tree, q′, with node ranks. The nodes in R′
q′ have solid

lines. To the right: The binomial tree formed by nodes in Sq′ with node ranks.

Hence, by Lemma 12.3 we can bound Equation 12.3 to

2
∑

q′

∑

v∈Sq′

2(rank(v))/2 ≤ 2
∑

q′

4
∣

∣Sq′
∣

∣ = 8
∑

q′

∣

∣Sq′
∣

∣ = 8
∑

q′

∣

∣R′
q′
∣

∣ .

From Equation 12.2 we have an upper bound on the sum of nodes with rank > r in all
queues, so an upper bound on the number of corrupted items is

8
∑

q′

∣

∣R′
q′
∣

∣ ≤ 8
n

2r
=

n

2r−3
,

which completes the proof.

55

The soft heap Running times analysis

Theorem 12.5. The soft heap contains at most εn corrupted items at any given time.

Proof. Inserting the value of r from Equation 12.1 in the bound from Lemma 12.4 gives

n

2r−3
=

n

2(2+2⌈log 1/ε⌉)−3

=
n

22⌈− log ε⌉−1

= 21−2⌈− log ε⌉n

= 21+2⌊log ε⌋n (as ⌈−x⌉ = −⌊x⌋ for any x)

≤ 21+2 log εn

= 2ε2n

≤ εn , (as 0 < ε < 1/2)

which completes the proof, and partially proves Theorem 12.1 on page 43.

12.9 Running times analysis

Finding corrupted items

The running time for finding corrupted items is clearly proportional to the number of
items in the heap. This number it naturally less than or equal to n. So given that we only
search for corrupted items a constant number of times in the same heap, the cost can be
charged to the insertions.

Initial observations of insert and deleteMin

Except for the melding, it is easy to verify that the insert operation runs in constant
time, as it only creates one new simple queue of one node. With regard to the deleteMin

operation, it is also easy to verify that, except for the loop, it runs in constant time, as it
takes constant time to follow pointers and extract an item from a linked list. The running
time of the loop is dominated by meld, sift, and fix_minlist. Hence we need to analyse
the running time for these functions.

Correlation between deleteMin and findMin

The two operations basically do the same work except for deleting the minimum element, so
findMin runs in constant time except for the loop. It is easy to verify that the total number
of meldings and siftings induced by the two operations depends only on the deleteMins.
Consequently, we can charge the running time of findMin to deleteMin, and we can
restrict ourself to analyse the running time of deleteMin.

56

Running times analysis The soft heap

Updating of suffix_min pointers

The cost of walking in the head list from a head node of rank k to the header node,
while updating suffix_min pointers, is clearly O (k + 1). Hence, the running time of
fix_minlist is O (k + 1), where k is the rank of the starting head.

Meldings

Like binomial trees, we assign one cyber-dollar to each queue. The cost of melding a
queue q into the heap is rank (q)+1 cyber-dollars. The first rank (q) cyber-dollars are used
to find the position for the new queue, that is the minimum i such that rank (hi) ≥ rank (q).
The last cyber-dollar is assigned to the new queue. If there are two queues of the same
rank, we release their two cyber-dollars, spend one for the constant linking cost, and
assign the other to the new queue. The cost of the succeeding call to fix_minlist does
not exceed the cost of finding the position and the linking, because it visits no more head
nodes than meld. As a matter of fact some of them might be removed in the linking steps.
Hence, a general amortised running time of queue meld is O (rank (q) + 1).

So with regard to the insert operation, the amortised cost is constant because it calls
meld with a queue of rank 0.

Melds induced by deleteMin

When deleteMin detects an empty queue root node v, where the number of children
violates the rank invariant (< ⌊rank (v) /2⌋ children), it remelds the remaining children
into the heap, and dismantles the root. At the time when the children existed, their ranks
were 0, . . . , rank (v) − 1. When at least ⌊rank (v) /2⌋ + 1 children are lost, there must
be least one of these which had rank ≥ ⌈rank (v) /2⌉. In the master tree, this particular
lost child was a root in a subtree of at least 2⌈rank(v)/2⌉ nodes. The cost of remelding the
children back into the heap, is the sum of their ranks plus the number of children. Thus
the worst case of remaining children is those with highest ranks. Hence, the total sum of
ranks of the remaining children is at most

rank(v)−1
∑

k=⌈rank(v)/2⌉+1

k ≤
rank(v)
∑

k=0

k =
rank (v)2 + rank (v)

2

which is O
(

rank (v)2
)

. In addition comes the number of children, which is clearly

dominated by this sum.

The number of removed subtree nodes is asymptotic greater than worst case remelding
cost. In other words, the worst case remelding sum is O

(

2⌈rank(v)/2⌉
)

. As a matter of fact
the two functions differ by at most 3 in the interval where the sum of ranks dominates.
This implies that the remelding cost is bounded by a constant for each previously removed
node in the subtree. Consequently, we can charge the melds induced by deleteMin to
these nodes, as they will not be charged again. In other words, the remelding has already
been paid for by the original insertions of these removed nodes.

57

The soft heap Running times analysis

In addition to the cost of the actual melding, comes the cost of the preceding call to
fix_minlist in deleteMin. The cost of this call is the rank of the dismantled root node.
The rank of the highest ranked child is one less, so the cost of fix_minlist has already
been paid for.

We have shown that the total cost of melding is charged to the insert operation, which is
of constant cost per item. Hence the total running time of meld after n insertions is O (n).

Sifting

It is clear that, except for the recursive call, each iteration of the loop takes constant time.
If a recursive call takes constant time, we charge it to the current iteration. The time for
saving the child list and unlinking children is charged to the very same children in the
iteration. The remaining parts of sift clearly run in constant time. So we want to find
the total number of iterations, or equivalently the total number of relinkings.

Let C be the total number of recursive calls to sift, which do not take constant time. This
is equivalent to the number of times the recursion condition holds and the recursive call
does not take constant time. Consider a sequence of consecutive current root ranks > r
encountered in a call to sift. Recall that this sequence is strictly increasing. Then
consider a subsequence of size two, and let k be the first rank. If k is odd, then the
recursion condition holds. Conversely, if k is even, but the second current root rank
is k + 1, then the second rank is odd. If the second current root rank is > k + 1, then
the recursion condition held at the first current root rank. This is because after the first
linking, the next subtree (that is the second in the subsequence) had rank > k + 1, and
thus the next child were missing. Thus in any such subsequence of size two, at least one
recursive call must occur.

The maximum number of linkings starting from a subtree of rank < r to a subtree of
rank r is r + 1, as the smallest possible rank is 0 and sift does not recurse when the
iteration rank is ≤ r. We have just shown that two consecutive iteration ranks > r implies
at least one recursion call. Hence for each current root rank sequence of size r + O (1),
or equivalently O (r), at least one recursive call occurs. This implies there is at most one
sequence of size O (r) per recursive call. A linking of O (r) subtrees takes O (r) time.
Hence the running time is O (rC).

If a root node has no subtrees, because their ckeys were set to ∞, then a recursive call
to sift takes constant time. Conversely, if a root node has at least one subtree, then a
recursive call induces a concatenation of two nonempty item lists. Beginning with n item
lists, each with a single item, the maximum number of possible merges is n − 1. Hence,
the number of non-constant time recursive calls is C ≤ n. Consequently, the total running
time for sifting after n insertions is O (rn).

In addition to the cost of the actual sifting, comes the cost of the succeeding call to
fix_minlist in deleteMin. The cost of this call is at most the rank the root node. Sifting
is only performed if the rank invariant holds. Hence, the root had at least ⌊rank (v) /2⌋
children before the sifting, which implies that sift has performed at least as many linkings.
Consequently, the cost of the call to fix_minlist is bounded by a constant for each of
these relinkings. In other words, the call has already been paid for by the relinkings.

58

Implementation The soft heap

Insert and deleteMin

Summing up, the amortised running time of n inserts without other heap operations is
O (n), or equivalently O (1) per insertion. This is not very interesting, so let us calculate
the general running time.

Theorem 12.6. Consider a soft heap with fixed error rate 0 < ε < 1/2 and no prior
data. The amortised running time of insert is O (log 1/ε). The amortised running time
of deleteMin is O (1).

Proof. As ε < 1/2, inserting the value of r in the running time for sift after n inserts,
gives

O (rn) = O ((2 + 2 ⌈log 1/ε⌉)n) = O ((log 1/ε) n) .

The total running time for meld after n inserts is O (n), so sift dominates the total
running time after n inserts. Hence the amortised cost for each inserted item during
its lifetime is O (log 1/ε), which we charge to the insert operation. Consequently, the
amortised running time of deleteMin is O (1), because the insert operation has paid
for the deleted item during its lifetime. This theorem partially proves Theorem 12.1 on
page 43.

12.10 Implementation

As stated in Section 12.2, Chazelle suggests to represent degree-k nodes as a sequence
of degree-2 nodes, with a next and a child pointer, respectively. This way to view and
represent (modified) binomial tree structures is complicated, as the correspondence to the
standard way of viewing binomial trees is not always very intuitive. In particular, the
correspondence is not very clear for the sift function. Nevertheless, Chazelle’s paper
[Cha00b] includes source code for most soft heap functions, where degree-k nodes are
represented as a sequence of degree-2 nodes. This source code is used as base for the
implementation of the soft heap. We will briefly describe the implementation.

If a node has no children, that is a leaf node, then both pointers are null. Otherwise
child points to a child node, and next points to the next degree-2 node in the sequence.

A trivial rank-0 tree is represented as a single node with both pointers set to null. When
two soft queues of rank k−1 are linked, one of the root nodes becomes the parent (top) of
the other (bottom), and hence the rank of the top node is increased by one. In Chazelle’s
implementation, a new degree-2 node is created with rank k. This new node shows the
parent-child correspondence between the two old roots, and are now considered as the root
node of the resulting tree. The child pointer of the node is set to the bottom node and
the next pointer is set to the top node. The rank of the next node remains unchanged
and thus becomes a holder for a child of the root node. The new node is assigned the ckey
and item list of the next node. A linking example is given in Figure 12.4. If we want to
unlink the two queues, then we just remove the this node, and afterwards the child and
next nodes are root nodes of two individual soft queues again.

59

The soft heap Implementation

Figure 12.4: Linking of two binomial queues with rank 1. The number inside a node is
the ckey. The number below a node is the rank. Top: Chazelle’s representation. Bottom:
Standard view.

Sift

In Chazelle’s implementation [Cha00b], there is no explicit subtree unlinking and relinking
loop in the sift operation. Instead, sift is defined as a recursive constant time function,
which repeatedly calls itself with the next node as current root node.

The execution of sift begins by clearing the item list of the current node. If the node is
a leaf (both pointers are null), then its ckey is set to ∞ and sift returns. As we only
follow next pointers, this node is actually not a leaf in the soft queue, but the last in a
sequence of many degree-2 nodes representing the root. The leaf procedure corresponds
to the part of our sift function before the loop.

If the node is not a leaf, then it calls recursively with next as parameter. When the control
returns from a recursive call, it checks if ckey (next) > ckey (child). If so, it exchanges the
next and child pointers to preserve the heap order. The item list of the current root node
is by now stored at next. Hence, the item list of next is saved in a local variable L. If the
recursive conditions holds, then sift is called again with next as parameter. Afterwards,
the heap order check is performed again, and the item list of next is concatenated with
that of L. This relinking procedure corresponds to one linking iteration in our version of
sift. The heap order check after a potential second recursive call, is performed in the
last linking step before the call returns in our version of sift.

The execution of sift ends by assigning L to the item list of the current node and
cleaning up nodes with rank ∞: It checks if ckey (child) = ∞ and ckey (next) = ∞.
If so, then both references are set to null, to indicate that the node has no children.
Otherwise, if ckey (child) =∞ and ckey (next) 6=∞, then the child pointer is set to the
child pointer of next, and the next pointer is set to the next pointer of next. The list
assigning corresponds to the part of our version of sift right after the loop. The cleanup
procedure corresponds to our version sift where we check if ckey (root) 6=∞.

60

Additional heap operations The soft heap

With this implementation the recursion condition is as follows: The rank of the current
node must be > r and either 1) the current node rank is odd, or 2) the rank of child is
strictly less than the current root rank minus one.

12.11 Additional heap operations

The optimal MST algorithm does not need to utilise soft heap melding3 nor deletion.
Anyway, we will give a brief description of them here. If the soft heap had a decreaseKey

operation, then the algorithm could utilise it. It follows why this operation is hard to
implement.

Melding of two soft heaps

We have already described a function for melding a single soft queue into a soft heap, so
melding of two soft heaps is trivial: Iterate forward through both head lists simultaneously,
while moving queues from the heap of smaller rank into the heap of larger rank. If both
heaps have a queue of equal rank, say k, then a conflict arises, and we link them resulting
in a queue of rank k +1. If one heap contains a queue of rank k +1, then we link again. If
both heaps contain a queue of rank k+1, then we have three queues with equal rank. If so,
we leave the queue from the heap of larger rank in the head list, and link the queue from
the heap of smaller rank with the third queue. With this method, we always temporary
have maximum three queues of equal rank. The resulting soft heap of larger rank will at
most increase its rank by one. When the process stops, we call fix_minlist with the
newest head node as parameter.

The time for all linkings is clearly amortised constant, as each queue has a cyber-dollar to
pay for linkings. But the time for iterating through the head lists is order the rank of the
heap with smallest rank. This can easily be fixed, by increasing the potential function of
a soft heap from the number of queues, say m, to m + k, where k is the heap rank. Then
the m + k cyber-dollars of the heap with smaller rank (plus a constant if the rank of the
heap of larger rank increases by one) will pay for the melding. As k ≤ n, the changing
of the potential function requires the insert operation to pay two cyber-dollars, which is
still a constant. Hence, the heap meld operation runs in amortised constant time.

Delete

Due to the nature of heap ordered trees, an efficient implementation of the delete

operation requires a reference to the item list node where the item is stored. Consequently,
the insert operation must return the item list node, where the new item is stored. When
the item list node is located, we remove it from the item list, which must be a double
linked list to support removes in constant time. Alternatively, we can lazily mark the item
as deleted. The delete operation may result in an empty list or a list where the ckey does
not reflect any of the item list keys. If the item list becomes empty, the heap node becomes

3Melding of two soft heaps, as opposed to melding of a queue into a soft heap.

61

The soft heap Additional heap operations

an unused node, but it will not affect the heap running times, because they depend on
the number of insertions. If the ckey does not reflect any item keys, it is still an upper
bound on the keys, which were already corrupted. As a matter of fact, both scenarios are
also possible for a root node after a deleteMin operation. The operation clearly runs in
constant time.

DecreaseKey

Like delete, an efficient implementation of the decreaseKey operation requires a reference
to the item list node where the item is stored. For a corrupted item list, it is straightforward
to decrease the key of the item, as the ckey of the heap node is an upper bound on the item
keys. The problem arises for the single item uncorrupted item lists, and in particularly
those with rank ≤ r. Decreasing the key of an item will corrupt the item, unless the ckey

is decreased similarly. Decreasing the ckey of the queue node requires references from each
item list node to its queue node. Consequently, these must be updated each time we merge
two item lists. A new problem arises if the decreased ckey is less than the ckey of its
parent. Hence, we need to reconfigure the queue to preserve the heap order. This requires
a reference from each queue node to its parent, as the affected node must move upwards
in the heap. In sum, this method requires a huge modification of the data structure, and
a lot of time.

Another, and simpler method, is to let decreaseKey call delete followed by insert. This
is a standard simple artifice to implement the decreaseKey priority queue operation. With
soft heaps this method has some consequences. Let m denote the number of decreaseKey
operations performed, and still let n denote the number of “real” insert operations
performed. Firstly, the total number of insertions gets increased for each decreaseKey

operation, resulting with the upper bound of ε (n + m) corrupted items in the heap at any
given time. Secondly, the total running time of meld and sift, respectively, will become
O (n + m) and O (r (n + m)), respectively. Consequently, we can not easily deduce a nice
amortised running time for the insert operation, like we could without decreaseKey.

Whichever method we use, it totally breaks apart our analysis of the soft heap, and it
makes the new analysis even more complicated. This may be the reason, that Chazelle
does not describe a soft heap decreaseKey operation in his paper [Cha00b].

The optimal MST algorithm uses a modified version of the DJP algorithm in Chapter 9,
which can be implemented with or without utilising the decreaseKey priority queue
operation. To minimise the running time, this part of the algorithm utilises a soft heap.
Due to the various complications just described, we have not implemented a soft heap
decreaseKey operation, and thus the algorithm performs the modified DJP algorithm
without it.

62

Part IV

The optimal MST algorithm

63

13 Graph representation

Before describing the actual optimal MST algorithm, we will give a brief overview of
how we have implemented our graphs. Chapter 16 gives a description of how the actual
algorithm is implemented.

As we will describe here, graphs, vertices, and edges are implemented as classes.

A graph object has the following fields associated:
(V, E, incidentEdges, n, m).
The V field is an array of vertices in the graph, and the E field is an array of edges in the
graph. The incidentEdges field is an array of indices in E. Each vertex has a pointer
associated to a position in this array, which serves as the incidence array for the vertex.
Thus, the array is a composite incidence array for all vertices in the graph. The n and m

fields are the number of vertices n and number of edges m, respectively.

A vertex object has the following fields associated:
(edges, component, degree).
The edges field is a pointer to a position in the incidentEdges array of its graph. The
component number are used when detecting connected components in a graph. The degree
field is the degree of the vertex, and thus the number of incident edge indices belonging
to the vertex in incidentEdges.

An edge object has the following fields associated:
(a, b, w, inMST, isRemoved, original).
The a and b fields are the indices of its two endpoints in the V array of its graph. The w field
is the weight of the edge. The inMST and isRemoved fields are two boolean values telling
if the edge has been marked as a MST edge or as removed, respectively. The original

field is a pointer to an edge. If the graph is derived from another graph by contraction,
then this is a pointer to the corresponding edge in the original graph. Otherwise, it is a
pointer to the edge itself.

Thus, if we have graph object, then we can access all its vertices and edges through
V and E, respectively. The fields n and m store the size of these arrays. If we have a
vertex object v together with its graph object G, then we can access v’s incident edges
through G.E[v.edges[0, . . . ,v.degree−1]]. If we have an edge object e together
with its graph object G, then we can access e’s endpoint vertices through G.V[e.a] and
G.V[e.b]. Each such access clearly takes constant time.

The array implementation of V (G), E(G) and the composite incidence list, are clearly
inflexible, as we can not remove (add) an edge or vertex from (to) a graph, without

64

Graph representation

rebuilding the graph. But this is not a major issue in the context of the optimal MST
algorithm, because it only needs to alter a graph when contracting it. Contraction takes
linear time in the size of the input graph, so we can afford to build a new (and smaller)
graph.

Assuming we know the graph size when initialising the graph, the array implementation
clearly requires less space (a constant factor) than a linked list implementation. Further-
more, an array implementation requires fewer memory allocations and deallocations, while
data in an array are guaranteed to stay close in memory, as opposed to flexible linked lists
with many small memory allocations from (more or less) arbitrary locations in memory.

One drawback when contracting is that we need to have two graphs in memory
simultaneously. But the input graph to a MST algorithm must stay in memory anyway
if we need to access it afterwards, for example to present the MST of the graph, or as
input to another MST algorithm during a running time experiment. However, after a
contraction step we can remove the input graph if it is unnecessary.

65

14 Key lemma and procedure

In this chapter we will present a key lemma and deduce a theorem, which is utilised by the
optimal MST algorithm. Additionally, in Section 14.2 and Section 14.3, we will present
the key procedure of the optimal MST algorithm and state its properties as a lemma. The
optimal algorithm is finally presented in Chapter 15.

14.1 Key lemma

Before we state the key lemma for the optimal algorithm, we need to state a lemma about
the DJP algorithm in Chapter 9.

Lemma 14.1. Let T be the tree formed after the execution of some number of steps of the
DJP algorithm. Let e and f be two arbitrary edges, each with exactly one endpoint in T .
Let g be the heaviest edge on the path from e to f in T . Then, w(g) ≤ max {w(e), w(f)}.

P

P

e

P ′g P

fP h

(a) When h ∈ P.

P

P

f

e

P ′g P

h

(b) When h is either e or f .

Figure 14.1: Proof of Lemma 14.1. Edges in T are fat. Edges in T ′ are solid. Edges in
(T − T ′) are dashed.

Proof. Let P ⊆ T be the path in T from e to f . Assume the contrary, namely that g is
the heaviest edge in P ∪{e, f}. Consider the step where g is selected by DJP and let T ′ be
the present portion of the tree T . Let P ′ be the present portion of P, that is P ′ = T ′ ∩P.
At this point there is exactly two edges in the set (P − P ′) ∪ {e, f} that are eligible to
be selected. One of these is g in one end of P ′. Let h be the other edge, which is in the
opposite end of P ′. If h ∈ P, then by the definition of g, it must be lighter than g. If h

66

Key lemma Key lemma and procedure

is either e or f , then by our assumption, it must be lighter than g. In both cases g could
not be selected, which is a contradiction. See Figure 14.1 for an illustration.

The optimal MST algorithm finds a tree of some MST edges in a corrupted graph, where
some edge weights have been raised due the use of the soft heap. In particular the algorithm
is using some number of steps of the DJP algorithm to find this tree. We will state a formal
definition regarding these corrupted edges.

Definition Let G be a graph, and let M be a subset of the edges in E(G). A graph derived
from G by raising the weight of each edge in M by an arbitrary amount is denoted G ⇑M .
The edges in M are called corrupted.

Notice the important point, that the real weight of edges in M are not raised, it is only
their keys in the soft heap. Thus the graph itself will not be altered by the soft heap.

Definition Let C be a subgraph, and let M be a set of edges. The subset of edges in M
with exactly one endpoint in C is denoted MC .

Definition Let G be a graph and MC be a set of edges. The graph derived from G by
removing edges in MC is denoted G−MC .

Definition Consider an execution of some steps of the DJP algorithm and let T be the
resulting tree formed. Let C be the subgraph of G induced by T . Then C is said to be
DJP-contractible with respect to G.

We are now ready to state the key lemma:

Lemma 14.2. Let M be a subset of the edges in a graph G. If C is a subgraph of G that
is DJP-contractible with respect to G ⇑M , then MSF (G) is a subset of

MSF (C) ∪MSF (G \ C −MC) ∪MC .

Proof. We will prove for any edge e ∈ G, where e /∈ MSF (C) ∪MSF (G \ C −MC) ∪MC

implies that e /∈ MSF (G). Referring to Theorem 4.3, if an edge e /∈ MSF (G′) for any
graph G′, then it is the heaviest edge in some cycle in G′. Notice that the edge sets E(C),
E(G\C−MC), and MC are pairwise disjoint and their union is E(G). Let H = G\C−MC .
Hence we need to show for edges e ∈ C −MSF (C) and edges e ∈ H −MSF (H), that
e /∈ MSF (G).

If e ∈ C −MSF (C), then e is the heaviest edge in a cycle χ in C, and so it is in G. Hence
e /∈ MSF (G). See Figure 14.2a.

If e ∈ H−MSF (H), then e is the heaviest edge in a cycle χ in H. We have two cases. The
simplest case is when χ does not involve the vertex derived by contracting the subgraph C.
Then the same cycle exists in G, and thus e /∈ MSF (G). See Figure 14.2b.

67

Key lemma and procedure Key lemma

Otherwise, χ does involve the vertex derived by contracting the subgraph C. The cycle χ
in H forms a path P in G. The end edges of P, say (x, w) and (y, z), have exactly
one endpoint in C. As H does not include corrupted edges with one endpoint in C, the
G-weight of (x, w) and (y, z) is the same as their (G ⇑M)-weight. Let T be the spanning
tree of C ⇑ M derived by the DJP algorithm. Let ̺ be the path in T connecting (x, w)
and (y, z), and let g be the heaviest edge in ̺. Notice that P ∪ ̺ forms a cycle in G. See
Figure 14.2c. By Lemma 14.1 one of (x, w) and (y, z) is heavier than the (G ⇑M)-weight
of g. The G-weight of an edge is at most its (G ⇑M)-weight, so one of (x, w) and (y, z) is
heavier than g. As (x, w), (y, z) ∈ P, and e is the heaviest edge in P, e is also the heaviest
edge in P ∪ ̺, which is a cycle in G. Hence e /∈ MSF (G).

e

χ

χ
χ

C

(a) Cycle χ in the subgraph C.

e

χ

χ

χ

χ

C

(b) Cycle χ in H, that does
not involve the vertex derived by
contracting the subgraph C.

y

z

x

w

C

P

P

P

P

P

P

̺

̺
g

e

(c) Cycle χ = P in H, that
does involve the vertex derived
by contracting the subgraph C.

Figure 14.2: Proof of Lemma 14.2.

Before stating the needed theorem, we will show the key lemma applied twice to make it
more clear.

Let the subgraph C1 be DJP-contractible with respect to G ⇑M1. Consider the contracted
graph G \ C1 −MC1 , which is a graph derived by contracting connected components and
by removing some of the edges with one endpoint in a connected component. Let the
subgraph C2 be DJP-contractible with respect to (G \ C1 −MC1) ⇑ M2. By applying
Lemma 14.2 again, MSF (G \ C1 −MC1) is a subset of

MSF (C2) ∪MSF ((G \ C1 −MC1) \ C2 −MC2) ∪MC2 .

As edges in MC1 are removed before C2 is built, it is easy to see for the connected
components C1 and C2, that (G \ C1 −MC1) \ C2 = G \ (C1 ∪ C2) −MC1 so the above
superset is the same as

MSF (C2) ∪MSF (G \ (C1 ∪ C2)− (MC1 ∪MC2)) ∪MC2 ,

and so

MSF (G) ⊆ MSF (C1) ∪MSF (G \ C1 −MC1) ∪MC1

⊆ MSF (C1) ∪MSF (C2) ∪MSF (G \ (C1 ∪ C2)− (MC1 ∪MC2)) ∪MC1 ∪MC2 .

68

The Partition procedure Key lemma and procedure

Theorem 14.3. Let the subgraphs C1, C2, C3, . . . , Ci be DJP-contractible with
respect to G ⇑ M1, (G \ C1 −MC1) ⇑ M2, (G \ (C1 ∪ C2)− (MC1 ∪MC2)) ⇑ M3, . . . ,
(

G \⋃i−1
j=1 Cj −

⋃i−1
j=1 MCj

)

⇑ Mi, respectively, where Mj is the set of corrupted edges

when growing Cj and MCj
is the set of edges in Mj with one endpoint in Cj. That is Cj is

DJP-contractible with respect to a graph derived from G after several rounds of contractions
and edge deletions. Then MSF (G) is a subset of

i
⋃

j=1

MSF (Cj) ∪MSF



G \
i
⋃

j=1

Cj −
i
⋃

j=1

MCj



 ∪
i
⋃

j=1

MCj
.

Proof. Apply Lemma 14.2 repeatedly for the DJP-contractible subgraphs C1, C1, C2, . . . , Ci.

The optimal MST algorithm will repeatedly grow DJP-contractible subgraphs Cj starting
from a non-contracted vertex, using the Partition procedure described in the subsequent
section.

14.2 The Partition procedure

The purpose of the Partition procedure is to repeatedly find relatively small DJP-
contractible subgraphs C1, . . . , Ck, such that all vertices of the graph will be in at least one
subgraph. We will use the terms partition, component and subgraph interchangeably. The
main part of the procedure operates like a modified version of the Dense Case algorithm
(Chapter 10), but with two main differences. Firstly, to minimise the running time, the
DJP trees is grown using a soft heap instead of an ordinary non-corrupting priority queue.
Additionally, in the absence of a decreaseKey operation on the soft heap, the priority queue
will store edges instead of pairs of vertices their and best edges. This version of the DJP
algorithm is described in Section 9.3. Secondly, the priority queue has no size bound, but a
tree will stop growing if it reaches some maximum size of vertices. Due to the properties of
a soft heap, some of the edges in C1, . . . , Ck are corrupted. Besides the input graph G, the
procedure takes as input a maxsize and an ε parameter. The procedure repeatedly grows
DJP-contractible partitions using a fresh soft heap with error parameter ε. A tree stops
growing when the partition reaches maxsize vertices or is connected to a previously grown
partition. Instead of explicitly contracting the graph to G \ Ci −MCi

when Ci is built,
the procedure marks all vertices in Ci dead. This way the procedure can easily detect if
succeeding Ci are connected to an old, and hence contracted Ci. The actual contraction
of connected components is done in a subsequent step to the procedure. Furthermore all
corrupted edges with one endpoint in Ci, that is MCi

, are removed from the graph after
Ci is built. The Partition procedure is formally described in Algorithm 14.1.

The first component C1 will grow to maxsize vertices. Any other component will grow to
at most maxsize vertices. It is clear that if a Ci does not reach maxsize vertices, then it
has connected itself to an existing component, that is a dead vertex. If a component Ci

connects to a dead vertex, then Ci will clearly have the vertex in common with one or more
previously built Ci. Let a conglomerate be a collection of Cj connected by common vertices,
such that a conglomerate is a connected component of partitions in G. A conglomerate

69

Key lemma and procedure Partition running time and implementation

Algorithm 14.1: partition(G, maxsize, ε) - Partition procedure

Input : Connected graph G, partition maxsize and soft heap error rate ε.
Output: Partitions (Ci) of G with at most maxsize vertices each and the corrupted

edges MC .
Mark all vertices live
C ←MC ← ∅
i← 0
while there is a live vertex do

i← i + 1
Vi ← {v}, where v is any live vertex
Initialise soft heap Q with error rate ε
Insert v’s edges into Q
while all vertices in Vi are alive and |Vi| < maxsize do

repeat
(x, y)← Q.deleteMin
Assume x ∈ Vi

until y /∈ Vi

Vi ← Vi ∪ {y}
if y is live then Insert y’s edges into Q

Mark all vertices in Vi dead
MVi

← the corrupted edges in Q with one endpoint in Vi

MC ←MC ∪MVi

G← G−MVi

Empty the soft heap Q
Ci ← the subgraph of G induced by Vi

C ← C ∪ {Ci}
return (MC ,C)

has at least maxsize vertices, as the first grown component of each conglomerate reaches
maxsize vertices.

14.3 Partition running time and implementation

It is easy to verify that each edge is inserted into the heap no more than twice, namely
once for each endpoint. So the number of insert operations is a most 2m. The total
number of deleteMin operations in the inner loop is no more than the number of inserts.
The cost of finding corrupted edges and emptying the heap are charged to the insert

operations which created it.

It seems to that the Partition procedure has a lot of set operations, which are relatively
complex and slow. All union operations in the procedure are on the form A← A ∪ B, in
other words they are an addition to the set A. It will become clear in a moment, that in
practice the operands (A and B) of all the union operations are disjoint. Consequently
Vi, MC and C can be implemented as simple linked lists or array lists with an list append
operation instead of an set union operation.

The statement G ← G −MVi
removes edges in MVi

from the graph G. This suggests

70

Partition running time and implementation Key lemma and procedure

either building a new graph or modifying the existing graph. Building a new graph from
scratch for each Ci will take O(m) time, which is too slow. Modifying the existing graph
in O(1) time per edge in MVi

requires a more complicated graph structure, which also
requires a greater constant in the graph space requirement. The modified structures are
double linked incidence lists and a references from each edge to its position in the incidence
list of each endpoint. A third solution, which is implemented, is to raise a isRemoved flag
for all edges in MVi

. Afterwards, edges with this flag raised, will not be taken into account
when iterating over edges. Thus removed edges will not be inserted into the heap nor be
present in any partition Ci afterwards. Once an edge is removed from the graph, it can
not be corrupted again, as it will not be inserted into the heap again.

It is only edges incident to vertices in Vi that are inserted into the heap. As a result the
heap can contain two copies of the same edge, but only if both endpoints are in Vi. None
of these will appear in MVi

due to its definition, namely vertices with one endpoint in Vi.
Consequently MVi

and MC can be implemented as linked lists. It is clear from the DJP
algorithm that the vertex y is outside the current partition Vi when it is added to the set,
and thus Vi can be implemented as a linked list. It is also clear that all partitions (Ci) are
distinct, so C can also be implemented as a linked list.

The procedure explicitly requires that we must be able to detect if an edge has only one
endpoint in Vi, and if so, which endpoint is inside and outside, respectively. This could be
implemented using a union-find set data structure for Vi. But it is simply implemented
as an extra isInVi flag for each vertex. When the vertex y is added to the Vi list, the
isInVi flag are also raised for y. In the end of the outer while loop these flags are lowered
again. When we check if an edge has exactly one endpoint in Vi, we check if exactly one
of the endpoint flags are raised.

The pseudo code of the Partition procedure builds the partition Ci, which is the subgraph
of G induced by Vi. That is Ci is the subgraph of G which has the vertices in Vi and the
(non-removed) edges connecting them. An important observation is that the edges in MVi

are removed from G after Vi is built, but before Ci is built. But because MVi
by definition

is the set of corrupted edges with one endpoint in Vi, none of these are connecting vertices
in Vi. Consequently it is possible to build the list of edges in Ci once they are detected
during the insert iterations over incident edges. Let Ei be this list of edges, just like Vi

is the list of vertices. Once the procedure extends the partition with a new vertex y,
which is live, it inserts all y’s incident edges into the heap. This insertion procedure is
extended to check if the opposite endpoint of each edge is in Vi. If this is the case, the
corresponding edge is appended to Ei. It is also possible to perform this check (without
inserting the edges) on each incident edge to a dead, and hence the last, vertex y. This
way Ei will contain all edges induced by Vi when building Ci. But in the worst case this
will require a check on the same edge O (n) (number of partitions) times. This will happen
if all partitions, except the first, connects to the same dead vertex. Another solution to
find Ci-edges incident to the dead vertex, is to iterate over all live vertices in Vi. That is
all vertices in Vi before the dead y is appended. For each vertex, perform a check on each
incident edge, if it connects to y. If this is the case, the corresponding edge is appended
to Ei. So while a vertex is alive, its incident edges are visited at least once (the insertion)
and at most twice (if connected to a dead vertex). Once a vertex is dead, its incident
edges will not be visited anymore. So in total each edge are visited at least twice and at
most four times, which is a constant upper bound.

71

Key lemma and procedure Partition running time and implementation

The time to create a subgraph Ci is O (|Ei|+ |Vi|) and is charged to the creation of the
lists, which again is charged to the heap operations. The time to add corrupted edges to
MC is proportional to the size of MVi

which is no more than the number of insertions, and
is charged to the insertions.

As all operations are charged to the heap operations, the total running time depends on
the number of heap operations. Each edge is visited and inserted into the heap a constant
number of times, and all other heap operations have constant running time per edge and
is charged to the insertions. Thus the number of inserts dominate the running time.

The amortised running time of soft heap insert is O (log 1/ε), and the number of inserts
is bounded by 2m, so the total running time of Partition is O (m log 1/ε).

By Theorem 12.1, the number of corrupted edges in the soft heap are bounded by the
number of insertions scaled by ε. The corrupted edges with endpoints in distinct Ci are
a subset of the corrupted edges in the soft heap, so the total sum of edges in each MVi

is
|MC | ≤ 2εm. Thus we can state the following lemma:

Lemma 14.4. Given a connected graph G, an error parameter 0 < ε < 1/2, and a
maxsize, the Partition procedure finds a corrupted edge set MC and subgraphs C1, . . . , Ck

which are edge-disjoint, in time O (m log 1/ε), while satisfying the following conditions:

• For all v ∈ V (G), there is some i such that v ∈ V (Ci).

• For all Ci ∈ C, |V (Ci)| ≤ maxsize.

• For each conglomerate P ∈ ⋃i Ci, |V (P)| ≥ maxsize.

• |MC | ≤ 2ε · |E(G)|.

• MSF (G) ⊆ ⋃i Ci ∪MSF (G \⋃i Ci −MC) ∪MC (By Theorem 14.3).

72

15 The optimal MST algorithm

At this point we have studied all the necessary building blocks for the optimal MST
algorithm. With these algorithms, the optimal MST algorithm is relatively simple. The
necessary building blocks are: Graph contraction (Chapter 7), Bor̊uvka’s MST algorithm
(Chapter 8), the “Dense Case” MST algorithm (Chapter 10), optimal MST decision trees
(Chapter 11), and the Partition procedure (Section 14.2).

Section 15.1 describes the algorithm and Section 15.2 shows a visual example of the
algorithm. Finally we analyse the running time of the algorithm in Sections 15.3–15.6.

15.1 The algorithm

Brief overview

Initially the algorithm precomputes optimal decision trees for very small graphs relative
to the connected input graph.

Afterwards, the algorithm removes some edges guaranteed not to be in the MST, by
detecting a superset of the final MST edges. These are detected by growing very small
partitions using the Partition procedure, finding the MST of each partition with an optimal
decision tree, and running the Dense Case algorithm on the graph derived from contracting
the conglomerates induced by the partitions. Then it finds a subset of the real MST edges
among this superset using two steps of Bor̊uvka’s algorithm. Bor̊uvka’s algorithm contracts
the graph along the real MST edges found, so we repeat the algorithm recursively for the
contracted graph. The recursion stops when the input graph is the trivial graph of one
vertex and no edges.

Detailed description

Here follows a detailed description of the algorithm with supporting pseudo code in
Algorithm 15.1. The subsequent Section 15.2 shows a visual example of the algorithm.

Initialisation and precomputing Build optimal MST decision trees for all graphs
with at most ⌈log(3) (n)⌉ vertices, using the brute force searching procedure described in
Section 11.3. Here, n is the number of vertices in the connected input graph. Then proceed

73

The optimal MST algorithm The algorithm

to the actual recursive algorithm on the input graph. The set of edges returned from the
algorithm forms the MST edges of the input graph.

Recursive algorithm input Let G be the connected input graph for the current
recursion, and let n = |V (G)|, m = |E(G)|. If G is the trivial graph of one vertex
and no edges, then all MST edges are already found and we just return an empty edge set.
Otherwise, we calculate the maximum partition size r = ⌈log(3) (n)⌉ for this recursion, and
proceed.

Partition Grow DJP-contractible subgraphs Ci of maximum number of vertices r using
the Partition procedure (Section 14.2). Let k be the number of partitions grown. The
partitions are grown using a soft heap with error rate 0 < ε < 1/2, which corrupts some,
but no more than 2εm of the inserted keys (edge weights). The actual error rate will be
chosen in Section 15.3. The corrupted edges with endpoints in different components, Ci

and Cj where i 6= j, are marked as removed in G and are finally returned as M . For the
pseudo code, a list of the grown partitions C = (C1, . . . , Ck) is also returned.
This sums to calling Partition(G, r, ε).

Decision trees For each partition Ci returned from Partition: Identify the MST edges
with an optimal number of edge comparisons using an optimal MST decision tree for Ci.
Let Fi be the MST deduced from the decision tree. The edges in Fi are marked as MST
edges in G. For the pseudo code, let DecisionTree(C) denote a function that takes a list
of graphs, C (here, subgraphs), and for each graph Ci ∈ C finds the set of MST edges, Fi.
For the pseudo code, the resulting MST edge sets F1, . . . , Fk are returned as a list F .

Contract graph As stated in Lemma 14.4, each Ci is a part of a conglomerate
(connected component) of at least log(3) (n) vertices. Hence, the MST of each Ci, that
is Fi, is a part of the same connected component of at least log(3) (n) vertices. The
decision tree step has marked edges in F1 ∪ · · · ∪ Fk as MST edges and the Partition
procedure has marked edges in M as removed. So call contract(G) with the input graph
as parameter, to remove edges which are marked as removed and to contract the remaining
graph along the detected MST edges. As each MST connected component has at least
log(3) (n) vertices, the resulting contracted graph has at most n/ log(3) (n) vertices. Let
Ga = G \ (F1 ∪ · · · ∪ Fk)−M denote the resulting contracted graph.

Dense Case Let na = |V (Ga)| and let ma = |E(Ga)|. According to Theorem 10.1, the
“Dense Case” algorithm runs in linear time of m on a graph as Ga with na ≤ n/ log(3) (n)
vertices and ma ≤ m edges. So we call DenseCase(Ga,m) to find the MSF of the
contracted graph Ga in linear time of m. Let F0 denote the resulting set of MSF edges.

Candidate edges As stated in Theorem 14.3, the MST of G is a subset of

k
⋃

j=1

MSF (Cj) ∪MSF



G \
k
⋃

j=1

Cj −
k
⋃

j=1

MCj



 ∪
k
⋃

j=1

MCj
.

74

The algorithm The optimal MST algorithm

The first union of MSF edges are those found by the DecisionTree step. The second set of
MSF edges are those found by the DenseCase step. The third and last set of edges are the
corrupted edges returned by Partition. Consequently, the edges in E (F0 ∪ · · · ∪ Fk)∪M
are MST candidate edges for G. Notice that the MSF edges found so far only are candidate
edges, and not detected as real MST edges. Let Gb = F0 ∪ F1 ∪ · · · ∪ Fk ∪M denote the
graph of all the original vertices in G and these candidate edges. In other words, Gb is a
graph derived from G by eliminating edges that are guaranteed not to belong to the MST
of G.

Bor̊uvka steps Finally we identify some real MST edges from the set of candidate edges
in Gb, and contract the graph along these edges. As stated in Chapter 8, a Bor̊uvka step
runs in linear time in the number of edges. Hence, two (a constant number of) Bor̊uvka
steps also run in linear time. For the pseudo code, let Boruvka2 denote a function running
at most two Bor̊uvka steps. The function returns (T ′, Gc), where T ′ is the MST edges
found, and Gc is the resulting contracted graph. Notice that the number of steps may
be less than two if the input graph is contracted to a single vertex in the first step. The
number of edges in Gb does not exceed m, so running two Bor̊uvka steps takes linear time
in the number of edges in G.

Recursion Lastly, we repeat the algorithm by calling recursively on the contracted
graph Gc, starting from the “Recursive algorithm input” step. Let T be the MST edge set
returned from this call. When the recursive call returns, we merge the set of real MST
found in the Bor̊uvka steps, T ′, with the real MST edges found in the recursive call, T ,
and return this set of MST edges. That is, return T ∪ T ′.

See a formal description of the optimal MST algorithm without the precomputing step in
Algorithm 15.1.

Algorithm 15.1: optimalMST(G) - The optimal MST algorithm

Input : Connected graph G.
Output: The MST of G.
if E(G) = ∅ then return ∅
r ← ⌈log(3) (|V (G)|)⌉
(M, C)← Partition(G, r, ε)

F ← DecisionTree(C)

Let k ← |C| and F = {F1, . . . , Fk}
Ga ← G \ (F1 ∪ · · · ∪ Fk)−M
F0 ← DenseCase(Ga, |E(G)|)
Gb ← F0 ∪ F1 ∪ · · · ∪ Fk ∪M
(T ′, Gc)← Boruvka2(Gb)

T ← OptimalMST(Gc)

return (T ∪ T ′)

The correctness of this algorithm follows directly from Theorem 14.3 and Lemma 14.4.

75

The optimal MST algorithm Visual example

Minor details

Instead of compute decision trees every time the algorithm is invoked, we can save them
at the first invocation, and then load them back in subsequent invocations, assuming that
⌈log(3) (n)⌉ does not exceed the maximum number of vertices for the stored decision trees.
Otherwise, we have to compute new decision trees and save them.

As always we assume the input graph G is connected. So if m = n− 1, then G is already
a tree, and we can return the edges in E(G) before the Partition step. Consequently,
in the analysis we can assume that n ≤ m. If no edges are removed in the Partition

procedure, that is |M | = 0, then we have another special case: Firstly, if all components Ci

are connected, then F1 ∪ · · · ∪Fk forms the MST of G, and we can optimise the algorithm
by returning the edges in E (F1 ∪ · · · ∪ Fk) after the DecisionTree step. Otherwise, then
F0 ∪ · · · ∪ Fk forms the MST of G, and we can optimise the algorithm by returning the
edges in E (F0 ∪ · · · ∪ Fk) after the DenseCase step.

15.2 Visual example

The subsequent two pages are dedicated to show a visual example of a last non-trivial
recursion of the algorithm.

Figure 15.1 shows the input graph G.

Figure 15.2 shows the result of the Partition procedure with a fictive r = 4. The partitions
(the Ci) grown are shown with dash-dotted lines. The removed edges in M are shown with
dotted lines.

Figure 15.3 shows the result of DecisionTree. Only edges with both endpoints in the
same Ci are shown. The Ci are again shown with dash-dotted lines. The MST edges found
by optimal decision trees (the Fi) are shown with fat lines.

Figure 15.4 shows the graph Ga derived by removing edges in M and contracting connected
MST components. In this example, weeding of parallel edges is omitted. That is
Ga = G \ (F1 ∪ · · · ∪ Fk)−M . The super-vertices in Ga (the connected MST components
in G) are shown with fat dash-dotted lines.

Figure 15.5 shows the MST edges found by DenseCase, that is F0. These edges are shown
with fat lines.

Figure 15.6 shows the graph Gb of MST candidate edges. That is Gb = F0∪F1∪· · ·∪Fk∪M .
Edges originating from M and F0 are annotated. The remaining edges originate from
F1, . . . , Fk.

Figure 15.7a shows the MST edges found in the graph Gb by Boruvka2, that is T ′. The
MST edges are shown with fat lines. Boruvka2 will contract this graph to one vertex,
which will make the recursion stop in the subsequent recursive call.

Figure 15.7b shows the same MST edges as Figure 15.7a, but in context of the original
graph G.

76

Visual example The optimal MST algorithm

Figure 15.1: The input graph G. Figure 15.2: After Partition.

Figure 15.3: After DecisionTree. Figure 15.4: The contracted graph Ga.

77

The optimal MST algorithm Visual example

Figure 15.5: After DenseCase.

M

M

M

M

M

M

F0

F0

Figure 15.6: Candidate edges Gb.

(a) Candidate edges Gb context. (b) Original graph G context.

Figure 15.7: MST edges T ′ found by Boruvka2.

78

Running time The optimal MST algorithm

15.3 Running time

According to Theorem 11.1, the optimal MST decision trees can be computed in linear
time of the input graph for our value of r. Let us analyse one execution of optimalMST.
According to Lemma 14.4, the running time of the Partition procedure is O (m log 1/ε),
where m is the number of edges in G. Consequently, setting ε to any constant will give
a linear running time of the Partition procedure. The running time of the decision tree
step is unknown, but known to be optimal for each partition. According to Section 7.3,
removal of edges and contraction of G to Ga takes linear time in m. As stated in the
description, the running time of the Dense Case step is also linear due to the reduction of
vertices from G to Ga. The construction of Gb also takes linear time, since the size of Gb

is at most the size of G. As stated in the description, the running time of the two Bor̊uvka
steps is also linear. Summing up, if ε is constant, then except for the decision tree step,
the running time of one execution without a recursive call is linear in the size of the input
graph. So it remains to find a value for ε and analyse the decision tree complexity.

As stated in Lemma 14.4, the number of corrupted edges with endpoints in distinct
partitions is |M | ≤ 2εm. Pettie and Ramachandran [PR02] choose the constant
ε = 1/8, so |M | ≤ m/4. If no edges are removed during the Partition procedure, then
|E (F0 ∪ · · · ∪ Fk)| = n− 1. Otherwise, removal of edges may result in that the graph Ga

is unconnected, resulting in fewer edges in the set. Hence the number of edges in the set
is < n. Consequently, the number of edges in the graph Gb is

mb ≤
m

4
+ n .

The vertices in Gb are the same as in G, so nb = n. According to Chapter 8, the number
of vertices are reduced by at least a factor of 2 in each Bor̊uvka step, so the number of
vertices in the graph Gc is nc ≤ n/22 = n/4. As each Bor̊uvka contraction step removes
at least as many edges as vertices, the number of edges in the contracted graph Gc after
two Bor̊uvka steps is

mc ≤ mb −
nb

2
− nb

4
= mb −

3nb

4
= mb −

3n

4
.

By inserting mb and because n ≤ m, we have

mc ≤
(m

4
+ n

)

− 3n

4
=

m

4
+

n

4
≤ m

4
+

m

4
=

m

2
.

Consequently, the final graph Gc has ≤ n/4 vertices and ≤ m/2 edges. This implies a
geometric reduction in both the number of edges and the number of vertices in the graph
for the recursive call.

Definition Let T ∗ (H) be the optimal number of comparisons needed to determine the
MST of a specific graph H. That is the depth of an optimal decision tree for H.

Definition Let T ∗ (m, n) be the optimal number of comparisons needed to determine the
MST of any graph with n vertices and m edges. That is, the maximum decision tree height
among the class of graphs with n vertices and m edges. Formally, that is

T ∗ (m, n) = max {T ∗ (H) : |V (H)| = n ∧ |E(H)| = m} .

79

The optimal MST algorithm Decision tree analysis

The function T ∗ is called the decision tree complexity of MST, because its value
corresponds to the height of an optimal decision tree. It follows from the definition of
T ∗ (m, n) that for any graph H:

T ∗ (H) ≤ T ∗ (|V (H)| , |E(H)|) . (15.1)

Let T (m, n) be the running time of optimalMST on a graph G with n vertices and m
edges. Notice that if the input graph G to optimalMST is connected, then Gc is also
connected, and thus the graph of a recursive call is connected. Hence, the base case graph
has one vertex and no edges, and T (0, 1) is equal to a constant. As the running time of
optimalMST is linear in m except for the DecisionTree step and the recursive call, two
constants c1, c2 > 0 exist, such that the running time is

T (m, n) ≤
∑

i

c1T ∗ (Ci) + T
(m

2
,
n

4

)

+ c2m . (15.2)

It remains to show some properties of the T ∗ function to deduce a total running time of
the algorithm. As we have a geometric reduction in the number of vertices and edges for
each recursion, and the Ci are edge-disjoint, it is easy to see by Equation 15.1, that if
T ∗ (m, n) = O (m), then T (m, n) = O (m).

15.4 Decision tree analysis

First a definition, we will use for the rest of this section.

Definition Let C1, . . . , Ck be the edge-disjoint subgraphs grown by the Partition
procedure. Let

H =
k
⋃

i=1

Ci .

That is, H is the union of the grown components. In the example given in Section 15.2,
H is the (unconnected) graph of vertices and edges shown in Figure 15.3.

Notice that H has the same vertices as G and a subset of the edges in G. That is
V (H) = V (G) and E(H) ⊆ E(G).

Properties of the partitions

Lemma 15.1. The structure of H dictates that

MSF (H) =
k
⋃

i=1

MSF (Ci) .

80

Decision tree analysis The optimal MST algorithm

Proof. According to Theorem 4.1 and Theorem 4.3, the heaviest edge in each simple cycle
of H is not in MSF (H), and the remaining edges is in MSF (H). Consequently, if every
simple cycle in H is contained in exactly one Ci, then the lemma holds. We will show that
every simple cycle in H is contained in exactly one Ci.

It is clear from the Partition procedure that a component, Ci, shares at most one vertex
with previously grown components

⋃

j<i Cj . Let χ be a simple cycle in H, and let i be the
largest index, such that Ci contains an edge in χ. Because Ci shares at most one vertex
with

⋃

j<i Cj , the simple cycle χ can only have edges in Ci, which proves the lemma.

Decision tree lemmas

Definition Let an intercomponent comparison denote a decision tree comparison
w(e) < w(f), where e ∈ Ci, f ∈ Cj , and i 6= j.

Definition Let an intra-Ci comparison denote a decision tree comparison w(e) < w(f),
where e, f ∈ Ci.

Lemma 15.2. There exists an optimal decision tree T for H, which makes no inter-
component comparisons.

Proof. As MSF (H) =
⋃k

i=1 MSF (Ci), the decision tree T must determine the MSF of
each Ci correctly. The MSF of each Ci can only be determined by performing intra-Ci

comparisons. Equivalently, any intercomponent comparison will not give any information
about the relative edge weights in the components, and thus no information about the
MSF of the components. Consequently, a correct decision tree without intercomponent
comparison nodes exists, and will have equal or lesser height than a decision tree containing
intercomponent comparison nodes. Hence, there exists an optimal decision tree for H,
which makes no intercomponent comparisons.

Definition Pettie and Ramachandran [PR02] define a canonical decision tree for H the
following way:
A canonical decision tree for H is defined by a decision tree where all intra-Ci comparisons
precedes all intra-Ci+1 comparisons. The canonical decision tree is formed so all subtrees
containing intra-Ci comparisons are identical. That is, they have the same shape, and the
same comparisons associated with corresponding nodes. See Figure 15.8 for an illustration
of a canonical decision tree.

Lemma 15.3.

T ∗ (H) =
∑

i

T ∗ (Ci) .

Proof. It is easy to verify that T ∗ (H) ≤ ∑i T ∗ (Ci): For each i, let Ti be an optimal
decision tree for Ci. We can construct a correct canonical decision tree for H by replacing

81

The optimal MST algorithm Decision tree analysis

C1

C2 C2 C2

Ck Ck Ck

=

=

= =

= = Ck =

Figure 15.8: Canonical decision tree for H with k components.

each leaf of T1 by T2, and then replacing each leaf of the resulting tree by T3 and so forth.
In general that is a replacement of leafs in Ti by Ti+1. The MST edge set at each leaf
of the resulting tree should be the union of the MST edge sets of the original trees on
the root-to-leaf path. The resulting correct tree height is clearly the sum of Ti heights,
∑

i T ∗ (Ci), and thus T ∗ (H) ≤∑i T ∗ (Ci) as there may exist a correct decision tree with
lesser height. It remains to show, that there exists no optimal decision tree for H with
height less than the sum of Ti heights.

Let T be an optimal decision tree for H. As this tree is optimal, we assume with reference
to Lemma 15.2, that T contains no intercomponent comparison nodes. We also know
that T has height ≤ ∑i T ∗ (Ci). We will show that T can be transformed into a correct
canonical decision tree T ′ without increasing the height. As T was optimal and we do not
increase the height, the resulting tree T ′ will have the same height as

∑

i T ∗ (Ci) because
T ′ must contain a path which is the concatenation of the longest path in an optimal
decision tree for each of the Ci. It remains to show how to transform the tree correctly
without increasing the height.

We will start by showing the transformation for the simple case, when there are only two
components, C1 and C2. We start at the deepest level of T , and proceed against the root
while transforming subtrees to the desired form, level by level. For each node v, we assume
inductively that the two subtrees of v have been transformed into the desired form. That
is for each of the two subtrees, the C1 comparisons occur before C2 comparisons and all
C2-subtrees are identical. It is easy to see that the induction assumption holds for the
base case at the deepest level.

We have two cases for a node v with left child x and right child y at the current level:

• The node v is an intra-C1 comparison node: We do not need to move v as it is a
C1 comparison node, and thus should stay in the top of the current structure. We
assume inductively that all C2-subtrees under the left and right child are identical,
respectively. But the C2-subtrees under the two children may not be identical. All
C2-subtrees must compute the same MST edge set for C2. Hence, the subtree rooted
at v can be transformed into the canonical form by replacing all C2-subtrees by the

82

Decision tree analysis The optimal MST algorithm

C2-subtree with minimum height. See Figure 15.9 for an example of this procedure.
This procedure will clearly make all C2-subtrees of v identical and will clearly not
increase the height of T ′.

C2

C2

=

=

C1

C1

v

x y

C1

= =

= =

(a) The subtree rooted at v before the
transformation.

C2 =

v

x y

C1

C1

C2 =

C1

=

= =

= =

(b) The canonical subtree after the transfor-
mation.

Figure 15.9: The node v has an intra-C1 comparison associated. In this example, the
C2-subtrees under x has minimum height. Hence, all C2 subtrees must be replaced
by such subtree.

• The node v is an intra-C2 comparison node: We must move v as it is a C2 comparison
node, and thus should not stay at the top of the current structure. Let XC1 denote
the C1-subtree rooted by x, and let YC1 denote the C1-subtree rooted by y. Let XC2

denote one of the isomorphic C2-subtrees under x, and let YC2 denote one of the
isomorphic C2-subtrees under y. We know that the two C1-subtrees XC1 and YC1

must compute the same MST edge set for C1. Hence, the subtree rooted at v can
be transformed into the canonical form by keeping only one of these: Let Z denote
the C1-subtree among XC1 and YC1 with minimum height, and let Z ′ denote the
opposite subtree. Firstly, we replace v by the subtree Z. Then we unlink all the
isomorphic C2-subtrees from Z, and replace their roots by a new level of leaf nodes
for Z. Then we copy the C2-comparison at v to all these new leafs. For each such
copy, we make XC2 the left subtree of the leaf, and make YC2 the right subtree of
the leaf. This will clearly make the C2-subtrees under Z identical. See Figure 15.10
for an example of this procedure. The composite operation of moving v to a new
level of leafs in Z does not change the height of T ′. As the height of Z was less than
or equal to the height of Z ′, copying an isomorphic C2-subtree from Z ′ to Z does
not increase the height of T ′. Consequently, this procedure does not increase the net
height of T ′.

When the transformations are done at the level of the root node, we have showed by
induction, that the resulting height of T ′ will not exceed the height of T . Consequently,
the lemma holds for the simple case of two components.

Assume inductively that the result holds for k− 1 ≥ 2 components. We can easily extend
the result to be valid for k components C1, . . . , Ck: Group the first k−1 components as C ′

1,
let Ck be C ′

2, and use the above method for C ′
1 and C ′

2. This will make all C ′
2 = Ck subtrees

83

The optimal MST algorithm Decision tree analysis

identical and bring them to the bottom of the tree, without increasing the height. Then
dismantle the Ck-subtrees, and proceed the transformation recursively for the remaining
k − 1 components.

=

=

v

x y

= =

C2

.

XC2

YC2

XC1

YC1

= =

(a) The subtree rooted at v before the transforma-
tion.

x

= =

XC2

YC2

XC2
XC2

YC2
YC2

v v v

XC1

=C2

(b) The canonical subtree after the transformation.
The new identical C2-subtrees are shown with
dashed lines.

Figure 15.10: The node v has an intra-C2 comparison associated. In this example, the left
subtree XC1 of v has minimum height. So we must copy the comparison of v to each node
in a new level of leaf nodes in XC1 , and replace v by x. Additionally we must make XC2

(respectively, YC2) the left (respectively, right) child of each new leaf.

Derivation of equations

It is easy to see for any n, m > 2, that we can build a graph that has a simple cycle that
includes every edge. Every edge in a cycle must participate in a least one edge-weight
comparison, so

m/2 ≤ T ∗ (m, n) ⇔ m ≤ 2T ∗ (m, n) . (15.3)

Adding isolated vertices to a graph will clearly not decrease the height of an optimal
decision tree. Hence, for n′ ≥ n,

T ∗ (m, n) ≤ T ∗
(

m, n′
)

. (15.4)

Similarly, adding edges to a graph will clearly not decrease the height of an optimal decision
tree. Hence, for m′ ≥ m,

T ∗ (m, n) ≤ T ∗
(

m′, n
)

. (15.5)

Hence for n′ ≥ n, m′ ≥ m:

T ∗ (m, n) ≤ T ∗
(

m′, n′
)

. (15.6)

For any graph with n ≥ 1, m ≥ 0, we can make an exact copy, so the resulting
(unconnected) graph has 2n vertices and 2m edges with two identical partitions. The

84

Deduction of the running time The optimal MST algorithm

decision tree complexity of this graph is clearly the double of the original graph. Due to
Equation 15.6 we have

2T ∗ (m, n) ≤ T ∗ (2m, 2n) ⇔ T ∗ (m, n) ≤ 1

2
T ∗ (2m, 2n) . (15.7)

Let nH = |V (H)|, and mH = |E(H)|. As n = nH , m ≥ mH , and by Equation 15.1 and
Equation 15.5, the result of Lemma 15.3 leads to

∑

i

T ∗ (Ci) = T ∗ (H) ≤ T ∗ (mH , nH) ≤ T ∗ (m, n) . (15.8)

15.5 Deduction of the running time

We now have the needed equations to deduce the running time of the algorithm. From
Equation 15.2 we have:

T (m, n) ≤
∑

i

c1T ∗ (Ci) + T
(m

2
,
n

4

)

+ c2m

≤ c1T ∗ (m, n) + T
(m

2
,
n

4

)

+ c2m (Equation 15.8) .

There exists some function f(m, n), so T
(

m
2 , n

4

)

≤ f(m, n) · T ∗
(

m
2 , n

4

)

, and thus

T (m, n) ≤ c1T ∗ (m, n) + T
(m

2
,
n

4

)

+ c2m

≤ c1T ∗ (m, n) + f(m, n) · T ∗
(m

2
,
n

4

)

+ c2m

≤ c1T ∗ (m, n) + f(m, n) · T ∗
(m

2
,
n

4

)

+ 2c2T ∗ (m, n) (Equation 15.3)

≤ c1T ∗ (m, n) +
f(m, n)

2
· T ∗

(

m,
n

2

)

+ 2c2T ∗ (m, n) (Equation 15.7)

≤ c1T ∗ (m, n) +
f(m, n)

2
· T ∗ (m, n) + 2c2T ∗ (m, n) (Equation 15.4)

=

(

c1 +
f(m, n)

2
+ 2c2

)

T ∗ (m, n) .

To complete the inequality, we must find a function for f(m, n), such that
f(m, n) ≥ c1 + f(m, n)/2 + 2c2. Solving this inequality gives

f(m, n) ≥ c1 + f(m, n)/2 + 2c2 ⇒
2f(m, n) ≥ 2c1 + f(m, n) + 4c2 ⇒

c = f(m, n) ≥ 2c1 + 4c2 .

Consequently, the function f(m, n) is equal to a constant.

So, for any constant c ≥ 2c1 + 4c2

T (m, n) ≤ c1T ∗ (m, n) + T
(m

2
,
n

4

)

+ c2m

≤ cT ∗ (m, n)

which gives us the main result of the algorithm.

85

The optimal MST algorithm Running time for practical graph instances

Theorem 15.4. Let T ∗ (m, n) be the decision tree complexity of the MST problem on
graphs with n vertices and m edges. The algorithm optimalMST described in Algorithm 15.1
computes the MST of a connected graph with n vertices and m edges deterministically in
O (T ∗ (m, n)) time.

15.6 Running time for practical graph instances

Theorem 15.4 states that the optimal algorithm runs in time T ∗ (m, n). The result of the
theorem originates from Equation 15.2, which shows that the running time is

T (m, n) ≤
∑

i

c1T ∗ (Ci) + T
(m

2
,
n

4

)

+ c2m .

As stated in Section 11.5, the number of atoms in the universe is approximately 2265,
so in practice n is much smaller. Consequently, for practical graph instances r ≤ 4, so
T ∗ (Ci) = O (|E(Ci)|) for each Ci as Bor̊uvka’s algorithm runs in linear time for these graph
sizes. As the Ci are edge disjoint and we have a geometric reduction of the graph size for
each recursion, there exists a constant c, so Equation 15.2 evaluates to T (m, n) ≤ cm. In
other words, the running time of the optimal MST algorithm is O (m) for practical graph
instances.

86

16 Implementation

16.1 Implementation details

Graphs with vertices and edges are implemented as described in Chapter 13. The
implementation of the building blocks of the optimal algorithm, except the decision trees,
are briefly described in their respective chapters. We will not go into further details of
these.

As stated in Section 11.5, for all practical number of vertices n in the input graph, the
value of r is at most 3 or 4. Hence, in practice, the algorithm only needs to precompute
optimal decision trees for graphs with at most 4 vertices, and grow partitions of at most 4
vertices. As stated in Section 11.5, we can find the MST of such graph in linear time of r
with Bor̊uvka’s algorithm, or just by scanning the edges if r ≤ 3. Consequently, we have
not implemented the decision tree part of the algorithm, but instead we use the methods
just described for the DecisionTree step of the algorithm.

Furthermore, in our implementation, we in fact do not have an explicit DecisionTree

step in the main algorithm, and in the Partition procedure, we do not explicitly build
the C list. Instead, we find the MST of each Ci with the above method, once it is
built. The MST edges found in Ci (that is Fi in the description), are marked as MST
edges in G, like edges in M are marked as removed. Consequently, the contraction of G
to Ga = G \ (F1 ∪ · · · ∪ Fk)−M is performed implicitly by a call to contract(G) (See
Chapter 7) straight after the Partition procedure. With this method we avoid to build the
C and F lists, and to store all Ci and Fi simultaneously, which saves memory.

With graphs implemented as described in Chapter 13, the implementation of optimalMST
and other algorithms described in this thesis is relatively straightforward.

16.2 Practical information

The optimal MST algorithm and the other algorithms described in this thesis are
implemented in the C++ language. The source code is available on a Compact Disc
(CD) in Appendix C.

The files are grouped into multiple folders. The main algorithm optimalMST can be found
in optimalmst/OptimalMST.cpp. Each sub algorithm has its own folder, for example
Partition in the folder partition/. Each MST algorithm is implemented as a class,

87

Implementation Practical information

and they all have a common interface, namely the findMSTedges() method, defined in
graph/MSTFinder.hpp. The attached source code contains no main() function, so it
is not possible to compile it out-of-the-box. But given a Graph instance, say g, with
distinct edge weights and an empty EdgeArray instance, say mst, we can find the MST
by instantiate a MSTFinder object (for instance an OptimalMST object), say finder, and
invoke finder.findMSTedges(g,mst,false); . The third parameter (false) disallows
removal of g during the process.

The project has been compiled with GNU’s C++ compiler (g++) version 4.2.4 on a
machine with a 64-bit Intel(R) Core(TM)2 Duo 2x 2.13 GHz CPU, 2048 kB cache, and
6 GB of main memory. The operation system was Ubuntu 8.04 (Hardy) with 64-bit
Linux kernel version 2.6.24-21-generic.

88

Part V

Experiments

89

17 Introduction and correctness

Introduction

All random numbers used in the following experiments originate from the website
http://random.org, which provides daily updates of files with “truly random” bits. The
randomness of the bits comes from atmospheric noise.

All tests instances are categorised into one of two sizes: For “small” instances, the tests
have been performed six times for the same instance size. The resulting running time is
calculated as the average running time of all six tests, except the minimum and maximum
running time. That is, the average of the four tests closed to the median. For “large”
instances, the tests have been performed three times for the same instance size. The
resulting running time is calculated as the average running time of all three tests.

All experiments have been executed on the machine described in Section 16.2, where
the project was compiled. Non-essential system services, such as graphical user interface
services, were stopped before the experiments were executed.

Correctness

The correctness of the implementation of the optimal algorithm and the other MST
algorithms described in this thesis has been verified, by for several graphs running all
algorithms on the same graph, and testing equality for the resulting sets of MST edges.

Even though the algorithms are correct regarding the resulting set of MST edges, their
running times might break the theoretical running times described in the thesis. For
instance, an inner loop could carelessly be executed too often. Bor̊uvka’s algorithm, the
DJP algorithm, and thus the Hybrid algorithm, as well as the contraction procedure and
the main part of the optimal algorithm, are relatively simple to verify manually. Therefore,
we have restricted our selves to plug in simple counters at nontrivial points in the source
code for the Dense Case algorithm and the Partition procedure. The counters of the
Partition procedure revealed more edge visits than expected during the detection of edges
in a component. Specifically, these edges were visited from a dead vertex endpoint. This
problem were fixed as described in Section 14.3.

90

http://random.org

18 Running times of priority queues

As stated in Chapter 6, the amortised running time for the Fibonacci heap insert and
deleteMin operations is O (1) and O (log n), respectively. The amortised running time for
soft heaps (Chapter 12) with a constant error rate, such as ε = 1/8 used in the Partition
procedure, is O (1) for both operations. Consequently, the running time for the Partition
procedure is theoretically smaller using a soft heap. The Big-Oh notation might hide a big
constant, so we will perform the following running time experiments regarding Fibonacci
heaps and soft heaps with ε = 1/8:

• Running time for n insertions of random keys. Due to constant running time of
both heaps, we expect a linear result for both heaps. As the Fibonacci heap insert
operation is simpler than the soft heap insert operation, we expect Fibonacci heaps
to be fastest, that is a smaller Big-Oh constant. See the result in Figure 18.1.

• Running time for n deleteMins. As the theoretical running time for soft heaps is
asymptotically smaller than for Fibonacci heaps, we expect soft heaps to be fastest
and linear. See the result in Figure 18.2.

• Heap initialised with n (original) elements. Running time for n operations, each with
the probability 0.5. The operation is either insertion of a random key, or deleteMin.
This experiment is referred to as“mixed heap operations”. As the theoretical running
time for soft heaps is asymptotically smaller than for Fibonacci heaps, we expect
soft heaps to be fastest and linear. See the result in Figure 18.3.

Additionally, we will test the running time for finding corrupted elements in a soft heap
after the third test is complete, as well as count the average number of corrupted items.
Here, we expect the running time to be linear. The result of this experiment is presented in
Figure 18.4, where Figure 18.4b shows the ratio between the number of corrupted elements
and original insertions. That is the number of corrupted items from Figure 18.4a divided
by n. As the total number of insertions is ≥ n, and expected to be 1.5n, this is an upper
bound on the actual ratio.

The results of the heap comparisons are as expected, except for some small irregularities
to the right for some plots, which is caused by disk swapping for the large instances.
Figures 18.1b–18.4b show the running time results, where the time is divided by n. These
plots show for all heap experiments, except Fibonacci heap deleteMin and mixed, that the
amortised time per element is constant since they all seem to converge to a constant.
Regarding Fibonacci heap deleteMins and mixed in Figure 18.2b and Figure 18.3b,
the running time does clearly not converge to a constant, which matches the O (log n)
deleteMin running time.

91

Running times of priority queues

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

n x1000000

Fibonacci heaps
Soft heaps

(a) Time in seconds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45

n x1000000

Fibonacci heaps
Soft heaps

(b) Time divided by 10−6n.

Figure 18.1: Time for heap insertions.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

n x1000000

Fibonacci heaps
Soft heaps

(a) Time in seconds.

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45

n x1000000

Fibonacci heaps
Soft heaps

(b) Time divided by 10−6n.

Figure 18.2: Time for heap deleteMins

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45

n x1000000

Fibonacci heaps
Soft heaps

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45

n x1000000

Fibonacci heaps
Soft heaps

(b) Time divided by 10−6n.

Figure 18.3: Time for mixed heap operations.

92

Running times of priority queues

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45
 0

 50

 100

 150

 200

 250

T
im

e

E
le

m
en

ts
 x

10
00

n x1000000

Time
Elements

(a) Time in seconds and the number of corrupted
elements.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35 40 45
 0.005

 0.0052

 0.0054

 0.0056

 0.0058

 0.006

T
im

e
/ n

E
le

m
en

ts
 /

n

n x1000000

Time
Elements

(b) Time divided by 10−6n and number of corrupted
elements divided by n.

Figure 18.4: Time for finding corrupted elements and number of corrupted elements.

As the soft heap error rate (maximum number of corrupted elements per insertion) is set
to ε = 1/8 = 0.125, Figure 18.4b clearly shows for random keys, that the actual number
of corrupted elements are significantly smaller than the upper bound guarantee. In fact
the ratio seems be bounded by the constant 0.0058 < ε.

Conclusion

As expected, for random keys and practical sizes of n, soft heaps are faster than Fibonacci
heaps for non insertion-only operations. The drawback is of course that soft heaps corrupts
some elements, but for random data the number of corrupted elements are significantly
lower than the upper bound guarantee.

93

19 Running times of MST algorithms

19.1 MST algorithms on random graphs

Algorithm
Running time

Planar Sparse Dense

Optimal [PR02], Chapter 15
General: O (T ∗ (m, n))
Practice: O (m)

Bor̊uvka [Bor26], Chapter 8 O (m) O (m log n) O
(

n2
)

DJP [Jar30,FT87], Chapter 9 O (n log n) O (m)

Dense Case [FT87], Chapter 10 O (m log∗ (n)) O (m)

Bor̊uvka + DJP, Section 9.4 O (m) O (m log log n) O
(

n2
)

Table 19.1: Worst case running times of five MST algorithms.

We will test the running time of the five MST algorithms presented in Table 19.1 for
various instances of simple connected random graphs1.

Notice that with reference to Section 15.6, the optimal algorithm is expected to run in
linear time, O (m), for the test graphs we are able to create. The optimal algorithm
is clearly the most complicated among the five algorithms and may have a significant
overhead. Therefore we expect the hidden Big-Oh constant of the optimal algorithm to
be large compared to the other algorithms. The constant may be so large, that the other
algorithms are faster for the graphs with sizes we are able to create. The DJP and Dense
Case algorithms both run in linear time O (m) for dense graphs. As their hidden Big-Oh
constants are smaller, we expect these algorithms to run faster than the optimal algorithm
for dense graphs. The same expectation applies to Bor̊uvka’s algorithm for graphs where
m is O (n).

1To be described in the subsequent subsection.

94

MST algorithms on random graphs Running times of MST algorithms

Random graph

A simple connected random graph of n vertices and m edges is built as follows:

1. Make a spanning tree of n vertices and n− 1 edges: Create n vertices, and initially
pick a random “root” vertex to be in the current tree. Then repeatedly augment
the tree by connecting a random vertex inside the current tree with a random
vertex outside the current tree with an edge. This step ensures the random graph is
connected.

2. For the remaining m−n+1 edges: Repeatedly pick two random vertices not already
connected directly by an edge, and connect these with an edge.

All edges are created with a random integer weight ≥ 1.

Test type 1: Constant density m/n, increasing n

Let mmax = n (n− 1) /2, that is the number of edges in the complete graph Kn, which is
O
(

n2
)

. We will test the running time of the five algorithms for random graphs with the
constant densities presented in Table 19.2 for increasing n.

m = n m = 1.5n
m = n log log n

(one cycle) (very sparse)

m = n log n m = n
√

n m = mmax/ log n

m = mmax/ log log n
m = mmax/1.5 m = mmax

(very dense) (complete)

Table 19.2: Constant densities.

The test results are presented in Figures 19.1–19.4, as well as Figures B.1–B.5 in
Appendix B. The left plots are the running times and the right plots are the running times
divided by m, made to check for linearity. From the plots we can see that the algorithms
can be grouped into three categories: 1) The DJP based (DJP and Dense Case). 2) The
Bor̊uvka based (Bor̊uvka and Bor̊uvka+DJP). 3) The optimal algorithm, based on both
1 and 2.

Except for the densities m = n and m = 1.5n (where m is O (n)) the picture is clear:
The DJP algorithm is the fastest algorithm succeeded by the Dense Case algorithm. Both
algorithms theoretically run in linear time for dense graphs. Theoretically, the Dense Case
algorithm is faster than DJP when m is O (n log n), but this is not reflected by the plots.
Intuitively, the hidden Big-Oh constant of the Dense Case algorithm is greater than for
the DJP algorithm, because the Dense Case algorithm has some overhead, running DJP
multiple times plus some additional work. For sparse graphs where m is O (n), the running
time ratio O (log n/ log∗ (n)) between the two algorithms is relative small for our values of
n, and it looks like it is smaller than the ratio between the hidden Big-Oh constants.

95

Running times of MST algorithms MST algorithms on random graphs

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

1

2

3

4

5

6

0 2 4 6 8 10 12

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.1: Constant density, m = n.

0

50

100

150

200

250

0 2 4 6 8 10 12

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.2: Constant density, m = n log log n.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.3: Constant density, m = n
√

n.

96

MST algorithms on random graphs Running times of MST algorithms

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.4: Constant density, m = mmax.

For all densities, the running times for Bor̊uvka’s algorithm and the Bor̊uvka+DJP
hybrid algorithm are almost indistinguishable. This can easily be explained by the first
log log n steps of Bor̊uvka and Bor̊uvka+DJP are identical. Let n′ be the number of
vertices in the contracted graph after the Bor̊uvka steps. Output from the constant density
experiments shows that the ratio between the worst number of vertices after the Bor̊uvka
steps and n′, that is (n/ log n) /n′, is at least 33. This ratio is clearly greater than log n
for our values of n, and thus the number of vertices are reduced by at least log2 n in
the Bor̊uvka steps. This makes the input graph to DJP very small for our values of n,
and thus the difference in running time between the original Bor̊uvka algorithm and the
Bor̊uvka+DJP algorithm is insignificant. Furthermore the experiments also show that for
some inputs graphs, Bor̊uvka’s algorithm needs ≤ log log n steps to determine the MST,
and thus the DJP is not executed at all in the hybrid algorithm, which makes it identical
to Bor̊uvka’s algorithm. The plot where m = n shows that these algorithm are the fastest,
which matches the linear running time of Bor̊uvka’s algorithm for very sparse graphs. But
even for m = 1.5n in Figure B.1, the DJP algorithm is slightly faster.

It is clear from all plots, except for m = log log n and m = log n, that the running time
of the optimal algorithm grows significantly faster than the running time of any other
algorithm. For our possible test values of n, m, the (relative large) hidden Big-Oh constant
for the optimal algorithm seems to dominate the running time. Only for m = log log n
and m = log n, the running time of the Bor̊uvka based algorithms exceeds the running
time for the optimal algorithm for large values of n.

Type type 2: Constant n, increasing density m/n

n = 29 = 512 n = 211 = 2048 n = 213 = 8192 n = 104 = 10000

Table 19.3: Constant number of vertices.

We will test the running time for increasing densities (equivalently, m) for the constant
values of n presented in Table 19.3. The relative low values of n is because higher values

97

Running times of MST algorithms MST algorithms on random graphs

will cause disk swapping on the test machine for high densities. The results are presented
in Figure 19.5, as well as Figures B.6–B.8 in Appendix B. Again, the left plots are the
running times and the right plots are the running times divided by m, made to check
for linearity. Notice the density values]0 , 1] on the x-axis, which is the density function
m/mmax. Because the interesting densities are very low (relatively sparse graphs), we
have also performed these tests specially for sparse graphs. The results are presented in
Figure 19.6 and Figure 19.7, as well as Figure B.9 and Figure B.10 in Appendix B. To
verify the result that the optimal algorithm is faster than the Bor̊uvka based algorithms
for the densities O (log log n) and O (log n) for large values of n, we have also performed
the test for sparse graphs with large n = 221. The result is presented in Figure 19.8. For
this value of n, we have n log log n/mmax ≈ 4.2 · 10−6.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.5: Constant n = 29 = 512.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.6: Constant n = 29 = 512, sparse.

The plots show nothing notable compared to the plots for constant density: For almost
all densities, DJP is the fastest algorithm succeeded by Dense Case, then comes Bor̊uvka
and the hybrid, and lastly the relative slow optimal algorithm. One exception is for very
sparse graphs, where Bor̊uvka and the hybrid is fastest. The relatively big drop(s) in
running time for the Dense Case algorithm can be explained by a drop in the number of

98

MST experiment follow-ups Running times of MST algorithms

0

0.05

0.1

0.15

0.2

0.25

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.7: Constant n = 104 = 10000, sparse.

0

20

40

60

80

100

120

140

0 1e-06 2e-06 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

1

2

3

4

5

6

7

8

0 1e-06 2e-06 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure 19.8: Constant n = 221, sparse.

passes and therefore time consuming contractions. For low values of n we do not see the
running time of Bor̊uvka and the hybrid exceed the running time of the optimal algorithm
for certain densities. But for n = 221, we see that Bor̊uvka and the hybrid exceeds the
running time for the optimal algorithm around the density m/n = log log n. According to
the constant density experiments, even for this value of n, we expect the running times
of these algorithms to drop below the running time for the optimal algorithm when the
density increases, but the practical limits of the test machine did not allow us to perform
this experiment.

19.2 MST experiment follow-ups

All tests, except where m is O (n), show that the DJP algorithm is the fastest among the
algorithms for random graphs. A simple observation is that all algorithms, except DJP,
uses the contraction procedure. A program profile analysis shows that the average time

99

Running times of MST algorithms Worst case graph family for Bor̊uvka’s algorithm

used for graph contraction in all algorithms is about 40%. So graph contraction is causing
a significant overhead for these algorithms. The Dense Case algorithm has a relatively
low worst case number of passes (O (log∗ (n))) and thus performs a relatively low number
of contractions. This can explain why for most densities, it is the fastest algorithm using
contraction. For practical graph instances, it seems that the optimal algorithm only is able
to beat some of the other algorithms for graphs with a narrow interval of densities, around
m/n = O (log log n) and m/n = O (log n). But here it only beats Bor̊uvka’s algorithm and
the hybrid algorithm. Bor̊uvka’s algorithm is clearly the simplest algorithm among the
algorithms. Due to its simplicity, it is easy to describe a family of worst case graphs for
Bor̊uvka’s algorithm, which presumably will make the difference in running time to the
optimal algorithm even bigger. We will describe such family of graphs in the subsequent
section.

The optimal algorithm detects MST candidate edges from the input graph using the DJP
scheme in two variants, starting by the Partition procedure followed by the Dense Case
algorithm. Hence, designing worst case graphs for the DJP algorithm (or the Dense
Case variant) will presumably also make the optimal algorithm run slower. The optimal
algorithm also uses Bor̊uvka steps to detect MST edges, but the edges are candidate edges
which are only a subset of the edges from the input graph. Hence, designing a worst-
case graph family for Bor̊uvka’s algorithm might give a better test result for the optimal
algorithm on this family of graphs.

19.3 Worst case graph family for Bor̊uvka’s algorithm

We will design a graph which makes Bor̊uvka’s algorithm run the worst-case log n steps,
while maximising the sum of edges in each step compared to the original number of
edges m. Recall that Bor̊uvka’s algorithm reduces the number of vertices by at least
factor 2 per step, and the number of edges by at least the number of reduced vertices.

k

n
′ Kn

′

1 1 1 12 23

1 1 1 12 23

1 1 1 12 23

1 1 1 12 23

4

4

5

Figure 19.9: Bor̊uvka worst case graph with k = 8 and n′ = 4.

With reference to Figure 19.9, consider a connected sub graph of k vertices and k−1 edges
formed as one simple path. We assume without loss of generality, that k = 2a for some
integer a ≥ 1. The edges in the sub graph are assigned weights w = 1, 2, 3, . . . , log k = a
the following way: For integers b ≥ 0, assign weight w to the edges connecting vertex

100

Worst case graph family for Bor̊uvka’s algorithm Running times of MST algorithms

2w−1 + b · 2w and vertex 2w−1 + b · 2w + 1 on the path. This will clearly make Bor̊uvka’s
algorithm run O (log k) steps for such graph, because it will reduce the number of vertices
by exactly 2 for each step. Then consider n′ of these sub graphs of k vertices, and choose an
arbitrary “master vertex” from each sub graph. Then connect all pairs of master vertices
with an edge, resulting in a clique (complete sub graph) Kn′ . We assume without loss of
generality, that n′ = 2a′

for some integer a′. Then consider some simple path in the clique
involving all n′ master vertices, and assign edge weights log k + 1, . . . , log k + 1 + log n′ to
these edges like we did for a sub graph path. Any other edge in the clique is assigned an
arbitrary unique weight > log k + 1 + log n′.

This family of graphs will clearly make Bor̊uvka’s algorithm initially run O (log k)
steps without contracting edges in the clique. After the log k’th step, the contracted
graph will have n′ vertices, namely one for each sub graph. Additionally this graph
is the complete graph of O

(

n′2
)

edges originating from the clique. Then the al-
gorithm will run O (log n′) steps where the clique is contracted. In total that is
O (log k + log n′) = O (log (kn′)) = O (log n) steps for this family of graphs.

It remains to find a k maximising the sum of edges in all steps compared to the original
number of edges m. That is maximise

∑

i mi/m, where mi is the number of edges in the
i’th step.

There are k vertices per n′, summing to n = O (kn′) vertices in the original graph.
There are k − 1 or O (k) edges per n′, and O

(

n′2
)

edges in the clique, summing to
m = O

(

n′2 + n′k
)

edges in the original graph. As the algorithm runs O (log k) steps
before the clique starts to be is contracted, the sum of edges in the first O (log k) steps is
O
(

n′2 log k + n′k
)

. As the clique by definition is a complete graph, the sum of edges in
the subsequent O (log n′) steps is O

(

n′2
)

, which is dominated by the first sum.

Consequently, the ratio between the sum of edges in all steps and the original number of
edges is

∑

i mi

m
= O

(

n′2 log k + n′k

n′2 + n′k

)

= O

(

n′ (n′ log k)

n′ (n′ + k)

)

= O

(

n′ log k

n′ + k

)

.

We can find the maximum point of this function by an extreme analysis. The slope of
a function is zero at its extreme points. We can find where the slope is zero by finding
the first derivative of the function, and calculate points with zero slope. As we must find
a k maximising the function, we must find the first derivative of the function where n′ is
treated as a constant, and solve the equation where the first derivative equals zero.
The first derivative of f(k) = log k = ln k/ ln 2 is f ′(k) = 1/ (k ln 2), which is O (1/k).

The first derivative of a function f(k) = g(k)/h(k) is (g′(k)h(k)− g(k)h′(k)) /h2(k), so we
have

0 =
n′/k · (n′ + k)− n′ log k · 1

(n′ + k)2

= n′2/k + n′ − n′ log k

= n′2 + n′k − n′k log k

= n′
(

n′ + (k − k log k)
)

.

Setting n′ = O (k log k − k) = O (k log k) maximises the function.

101

Running times of MST algorithms Worst case graph family for Bor̊uvka’s algorithm

Consequently, for some k, the worst case number of vertices is n = O (kn′) = O
(

k2 log k
)

,
and the number of edges is m = O

(

n′2 + kn′
)

= O
(

k2 log2 k + k2 log k
)

= O
(

k2 log2 k
)

.
So the density is m/n = O (log k). There exists no non-recursive function for k, but
n = O

(

k2 log k
)

⇒ k = O
(√

n/
√

log k
)

, so

m/n = O
(

log
√

n− log
√

log k
)

= O (log n− log log k) .

As k ≤ n the density is bounded by Ω (log log n) and O (log n). These density bounds
match the results in Figure 19.2 and Figure B.2, where the running time of Bor̊uvka’s
algorithm exceeds the running time of the optimal algorithm.

Results

We have tested the running time for this graph family for the optimal algorithm, Bor̊uvka’s
algorithm, and the Bor̊uvka+DJP hybrid algorithm. Apart from observing better running
times for the optimal algorithm compared to Bor̊uvka, we expect to observe a significant
difference in the running times for Bor̊uvka and Bor̊uvka+DJP, because the hybrid only
runs the first log log n of the log n Bor̊uvka steps.

Figure 19.10a shows the running time results for this graph family as a function of k.
Figure 19.10b shows the same results, but as a function of m. Figure 19.11a shows the
running time divided by m, and Figure 19.11b show the running time divided by m log n,
which is the expected running time for Bor̊uvka’s algorithm.

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

k

Optimal
Boruvka

Boruvka+DJP

(a) Time in seconds as function of k.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

m x1000000

Optimal
Boruvka

Boruvka+DJP

(b) Time in seconds as function of m.

Figure 19.10: Running times for the Bor̊uvka worst case graph.

As expected, the plots show that the optimal algorithm is significantly better than
Bor̊uvka’s algorithm for this graph family. Here for m > 8 · 106. The running time of the
hybrid algorithm is also significantly better than for Bor̊uvka’s algorithm, and moreover
as a side effect, it is also better than for the optimal algorithm. But compared to the
density m = n log log n of random graphs (Figure 19.2), this result is not better, because
1) the optimal algorithm is better for m > 6 · 106 on random graphs, 2) the difference in
running time seems to grow faster for random graphs. Furthermore, for this graph family
the optimal algorithm is slower than the hybrid algorithm.

102

Overall MST experiment results Running times of MST algorithms

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40

m x1000000

Optimal
Boruvka

Boruvka+DJP
Constant

(a) Time divided by 10−6m.

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40

m x1000000

Optimal
Boruvka

Boruvka+DJP
Constant

(b) Time divided by 10−6m log n.

Figure 19.11: Running times for the Bor̊uvka worst case graph.

Consequently, this special worst case graph for Bor̊uvka’s algorithm does not make the
optimal MST algorithm faster compared to Bor̊uvka’s algorithm. A simple explanation is
that even though the Bor̊uvka steps of the optimal algorithm only process a subset of the
original edges of the worst case graph, then these are adequate to also make the optimal
algorithm similar slower for practical instances.

19.4 Overall MST experiment results

For practical graph instances, we have shown that the optimal MST algorithm can be
faster than Bor̊uvka’s algorithm for a narrow interval of graph densities. Even though this
sub result is positive from the perspective of the optimal MST algorithm, for all practical
graph instances, there exists MST algorithms which are significantly faster in practice.
Among the tested algorithms, DJP is clearly the winning algorithm when it comes to
running time in practice. However, with reference to Table 4.1 in Section 4.3, there may
be faster MST algorithms for practical graph instances.

103

References

[AK07] Claus Andersen and Henrik Bitsch Kirk. Advanced algorithms - data structures
2007, projekt 1 - prioritetskøer. 2007.

[Bor26] O. Boru̇vka. O jistém problému minimálńım. Práce Moravské Př́ırodovědecké
Společnosti, 3:37–58, 1926. In Czech.

[Cha00a] Bernard Chazelle. A minimum spanning tree algorithm with inverse-Ackermann
type complexity. J. ACM, 47(6):1028–1047, 2000. Abstract only.

[Cha00b] Bernard Chazelle. The soft heap: An approximate priority queue with optimal
error rate. J. ACM, 47(6):1012–1027, 2000.

[Flo64] Robert W. Floyd. Algorithm 245: Treesort 3. Communications of the ACM,
7(12):701, December 1964.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[Jar30] V. Jarńık. O jistém problému minimálńım. Práca Moravské Pr̆́ırodovĕdecké
Spolec̆nosti, 6:57–63, 1930. In Czech.

[KKT95] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-
time algorithm to find minimum spanning trees. J. ACM, 42(2):321–328, 1995.
Abstract only.

[KZ09] Haim Kaplan and Uri Zwick. A simpler implementation and analysis of
Chazelle’s Soft Heaps. To appear, SODA, 2009.

[Mar04] Martin Mareš. Two linear time algorithms for MST on minor closed graph
classes. Archivum Mathematicum, 40:315–320, 2004.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree
algorithm. J. ACM, 49(1):16–34, 2002.

[Som58] D.M.Y. Sommerville. An introduction to the geometry of N dimensions. Dover
Publ. Inc., New York, 1958. Euler’s formula only.

[Wil64] J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347–348, 1964.

104

Appendix

105

A Index of terms used

DFS Depth-First Search.

DJP Dijkstra-Jarńık-Prim.

MSF Minimum Spanning Forest.

MST Minimum Spanning Tree.

106

B MST experiment plots

Running times for constant density m/n

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.1: Constant density, m = 1.5n.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.2: Constant density, m = n log n.

107

MST experiment plots

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.3: Constant density, m = mmax/ log n.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.4: Constant density, m = mmax/ log log n.

0

20

40

60

80

100

120

0 10 20 30 40 50 60

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

m x1000000

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.5: Constant density, m = mmax/1.5.

108

MST experiment plots

Running times for constant n

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.6: Constant n = 211 = 2048.

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.7: Constant n = 213 = 8192.

109

MST experiment plots

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.8: Constant n = 104 = 10000.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.9: Constant n = 211 = 2048, sparse.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(a) Time in seconds.

0

0.5

1

1.5

2

2.5

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Density

Optimal
Boruvka

DJP
DenseCase

Boruvka+DJP

(b) Time divided by 10−6m.

Figure B.10: Constant n = 213 = 8192, sparse.

110

C Source code

The source code produced for this thesis is attached in the plastic pocket on a
Compact Disc (CD).

111

	I Introduction
	History of the minimum spanning tree problem
	Mathematical notation and initial notes
	Graph theory
	Minimum spanning trees
	Properties
	Minimum spanning forests and graph assumptions
	Running times

	Thesis goal and results

	II Fundamental building blocks
	Priority queues
	Graph contraction and generic MST algorithms
	Generic MST algorithm
	Simple contraction procedure
	Better edge weeding

	Boruvka's algorithm
	Running time

	The Dijkstra-Jarník-Prim (DJP) algorithm
	Implementation
	Running time
	Alternative implementation
	A hybrid algorithm

	III Advanced building blocks
	The ``Dense Case" algorithm
	Implementation
	Running time
	Linear running time for the optimal algorithm

	MST decision trees
	Graphs
	MST decision tree
	Brute force searching procedure
	Running time
	Maximum partition size for the optimal MST algorithm

	The soft heap
	Introduction
	Data structure
	Supporting heap functions
	Heap operations
	Sifting
	DeleteMin continued
	The r function
	Corrupted items analysis
	Running times analysis
	Implementation
	Additional heap operations

	IV The optimal MST algorithm
	Graph representation
	Key lemma and procedure
	Key lemma
	The Partition procedure
	Partition running time and implementation

	The optimal MST algorithm
	The algorithm
	Visual example
	Running time
	Decision tree analysis
	Deduction of the running time
	Running time for practical graph instances

	Implementation
	Implementation details
	Practical information

	V Experiments
	Introduction and correctness
	Running times of priority queues
	Running times of MST algorithms
	MST algorithms on random graphs
	MST experiment follow-ups
	Worst case graph family for Boruvka's algorithm
	Overall MST experiment results

	References
	Appendix
	Index of terms used
	MST experiment plots
	Source code

