
Dynamic Data Structures:
The Interplay of Invariants

and Algorithm Design
Casper Kejlberg-Rasmussen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

ii

Dynamic Data Structures:
The Interplay of Invariants

and
Algorithm Design

A Dissertation
Presented to the Faculty of Science

of Aarhus University
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Casper Kejlberg-Rasmussen

September 30, 2013

iv

Abstract – English

In this thesis I will address three dynamic data structure problems using the concept
of invariants. The first problem is maintaining a dynamically changing set of keys –
a dictionary – where the queries we can ask are: does it contain a given key? and
what is the preceding (or succeeding) key to a given key? The updates we can do
are: inserting a new key or deleting a given key. Our dictionary has the working
set property, which means that the running time of a query depends on the query
distribution. Specifically the time to search for a key depends on when we last
searched for it. Our data structure is implicit, meaning that we do not use any extra
space than that of the input keys. Our data structure is implicitly encoded through
the permutation of the input keys. Other dictionaries with the working set property
have constant factor overhead in the space usage, our dictionary has no overhead
and thus has optimal space usage, while still attaining the working set bound. Our
result is even cache-oblivious and hence also efficient in external memory.

The second problem is to keep a first-in-first-out queue where each element also
has a priority – called a priority queue with attrition. We delete elements at the front
and insert elements at the back. When we insert an element then all elements in the
queue with an equal or larger priority are deleted – also called attrited. We extend
previous solutions by Sundar [Sun89] with the concatenation operation. When we
concatenate two queues, all elements in the first queue which are larger or equal to
the smallest in the second queue are attrited, and the second queue is appended to
the first queue. Our result is also efficient in external memory.

The third problem is to maintain a two-dimensional dynamic point set, where
the queries ask for the skyline of the points contained within a rectangular query
area, i.e., all the points which have no point above them and to the right, within the
query area. These points are called the undominated points of the query area. Our
results are the first dynamic results, that are efficient in external memory.

The central concept we use, throughout this thesis, to solve data structure
problems is invariants. In the design of dynamic data structures we have some set of
query and update operations which we want our data structure to support, but we
do not choose the order that they are performed in. Invariants are logical statements
about our data structure, which are based on the structure of the underlying problem,
that we are trying to solve. We can rely on the properties of the invariants when
performing queries, and in return we need to ensure that the invariants remain true
after we perform updates. When designing data structures there is an interplay
between proposing invariants and checking if they can be efficiently maintained in
updates and are sufficient for answering queries efficiently. We have solved our data
structure problem when we have found a set of “good” invariants that balances these
two sides.

v

vi

Abstract – Dansk

I denne afhandling vil jeg behandle tre dynamiske datastruktursproblemer ved brug
af invarianter. Første problem er at vedligeholde en dynamisk mængde af nøgler
– kaldt en ordbog. Vi kan lave forespørgelserne: er en given nøgle indeholdt? og
hvad er den foregående (eller efterfølgende) nøgle til denne nøgle? Vi kan foretage
opdateringerne: indsæt en ny nøgle eller slet en given nøgle. Vores ordbog har
arbejdsmængde egenskaben, hvilket betyder at udførselstiden for en forespørgsel
afhænger af distributionen af alle forespørgslerne. Udførselstiden for en forespørgsel
afhænger af hvornår vi sidst søgte efter den givne nøgle. Vores datastruktur er implicit
hvilket betyder at vi ikke bruger yderligere plads end det som inputtet bruger. Vores
datastruktur er indkodet implicit i permutationen af inputtet. Andre ordbøger med
arbejdsmængde egenskaben bruger en konstant faktor mere plads, vores ordbog
bruger ingen ekstra plads og har således det optimale pladsforbrug, men opnår stadig
arbejdsmængde egenskaben. Vores resultat er tilmed cache-oblivious og er derfor
også effektivt i ekstern hukommelse.

Andet problem er at vedligeholde en first-in-first-out kø over elementer med
prioriteter – kaldet en prioritetskø med afskæring. Vi sletter elementer i fronten
og indsætter elementer i enden. Når vi indsætter et element så slettes – afskæres
– alle elementer med en nøgle som er større eller lig med den indsatte. Vi udvider
en tidligere løsning af Sundar [Sun89] med en sammenkædningsoperationen. Når vi
sammenkæder to køer så slettes alle elementer i den første kø, der er større eller lig
det mindste element i den anden kø, og den anden kø sammenkædes med den første
kø. Vores resultat er effektivt i ekstern hukommelse.

Tredje problem er at vedligeholde en todimensionel dynamisk punkmængde, hvor
forespørgelserne er at rapportere alle punkter som ikke har nogen punkter over eller
til højre for sig, inde i et rektangulært område. Disse punkter kaldes udominerede
punkter og udgøre skylinen i det rektangulære område. Vores resultater er de første
dynamiske resultater som er effektive i ekstern hukommelse.

I gennem hele afhandlingen bruger vi invarianter til at løse datastrukturspro-
blemer. I designet af dynamiske datastrukturer har vi en mængde af forespørgsler
og opdateringer som vi ønsker at vores datastruktur skal understøtte, men vi væl-
ger ikke selv rækkefølgen som de udføres i. Invarianter er logiske udsagn om vores
datastrukturer som er baserede på strukturen af det problem vi prøver på at løse.
Vi kan afhænge af udsagnene fra invarianterne i vores forespørgsler, men tilgengæld
skal vi garantere at de forbliver sande når vi udfører opdateringer. Når vi designer
datastrukturer er der et samspil mellem at foreslå nye invarianter og at tjekke at
de effektivt kan vedligeholdes ved opdateringer og er tilstrækkelige til effektivt at
besvare forespørgsler. Vi har løst vores datastruktursproblem når vi har fundet en
mængde “gode” invarianter som balancere de to sider.

vii

viii

Preface

During my undergraduate studies in Computer Science I have always been fascinated
by many of the elegant and simple data structures shown to us in our algorithms
courses, which have also popped up in other courses as well. I clearly remember, when
solving exercises in courses, that coming up with a solution to an algorithmic problem
was often very difficult and the reference solutions often occurred as completely black
magic to us - a common phrase of ours in those days was “how did they come up
with that idea?”. It is needless to say that I was intrigued by algorithms design and
analysis, and when I decided to take a PhD, it was obvious which topic I would
choose to do research in.

Within algorithms and data structures there are static and dynamic structures.
The dynamic data structures have always been the most interesting and intriguing to
me, since many problems in the real world are naturally dynamic. The deep interplay
between inherent problem structure and the formulation of invariants has always
fascinated me and I wanted to help contribute to this area of research.

This thesis is divided into four Chapters. The first chapter is an introduction to
the thesis and the universal tool of invariants, then I define the computational models
that our data structures fall within, the problems that we solve and lastly I describe
some of the existing data structures and techniques which we use or build upon. The
next three Chapters contain the technical contribution of our work and my PhD, the
Chapters are, in order, about: Implicit Working-Set Dictionaries, Catenable Priority
Queues with Attrition and Dynamic Planar Skyline Queries.

Bibliography of included work

The bulk of the work in this thesis first appeared in the following three papers of
which I am a co-author:

[BKRT10] Gerth Stølting Brodal, Casper Kejlberg-Rasmussen, and Jakob Truelsen.
A cache-oblivious implicit dictionary with the working set property. In
International Symposium on Algorithms and Computation (ISAAC),
volume 6507, pages 37–48. 2010

This paper defines the moveable dictionary in Section 2.1 and is the first paper to
present an implicit working set dictionary.

[BKR12] Gerth Stølting Brodal and Casper Kejlberg-Rasmussen. Cache-oblivious
implicit predecessor dictionaries with the working-set property. In Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 14,
pages 112–123. 2012

This paper extends the ideas of my first paper and achieves the working set bound
not only for searches, but also for predecessor and successor queries. The working
set dictionary of this paper appears in Section 2.2.

ix

[KRTT+13] Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas
Tsichlas, and Jeonghun Yoon. I/O-efficient planar range skyline and at-
trition priority queues. In Proceedings of ACM Symposium on Principles
of Database Systems (PODS), pages 103–114. 2013

This paper defines the catenable priority queue with attrition, that appears in Chapter
3, and uses it to give dynamic skyline structures for top-open and 4-sided queries. We
also show lower bounds in that paper implying that our 4-sided structure is optimal.
The skyline results appear in Chapter 4. This paper also optimally solves skyline
queries in the static setting, but those results are not covered in this thesis.

I have only included the parts, from the above three papers, of which I have been
a major contributer in the research and writing process. Hence I have left out parts
of the papers that I have not been a major contributer to. I have included two small
results, as an exception to the previous, as the results complement and complete the
other results in the thesis.

Disclaimer

Our last paper [KRTT+13] is a merge of two manuscripts the first by Kostas Tsakalidis,
Kostas Tsichlas and me, and the second by Yufei Tao and Jeonghun Yoon. On request
from Tao and Yoon, I wish to make it clear that Lemma 4.3 and Section 4.2 in
this thesis are written based on Lemma 9 and Subsection 5.2 of the full version
of [KRTT+13] which are the work of Yufei Tao and Jeonghun Yoon, and are included
in this thesis as the results are heavily based on our dynamic top-open structure
from Section 4.1 and the point and query set in Subsection 4.3.1 of this thesis.

x

Acknowledgments

First of all I want to thank Gerth Stølting Brodal for encouraging and accepting me
as a PhD student, and catching my interest for algorithms and data structures and
especially invariants. Thanks to Lars Arge, the father of Madalgo, for creating an
environment with so many good people and interesting visitors. Also a big thanks to
Else Magård, the mother of Madalgo, for creating an atmosphere that always makes
you feel welcome and happy. Else makes everything work in our everyday life, she is
always happy to help with practical stuff and so is Ellen Kjemtrup, who is always
helpful with settling travel expenses.

I also want to thank my two office mates Freek van Walderveen and Jesper
Asbjørn Sindahl Nielsen who I have had many interesting discussion about open
problems, life and occasionally just plain procrastination. And all the many interesting
people at Madalgo, especially Kostas Tsakalidis, Pooya Davoodi, Jakob Truelsen,
Lasse Deleuran, Bryan Wilkinson and Jungwoo Yang. We have had many funny
and interesting discussions, trips, LAN-parties and BBQs. I also want to thank my
co-authors Gerth Stølting Brodal, Jakob Truelsen, Jeonghun Yoon Konstantinos
Tsakalidis, Kostas Tsichlas and Yufei Tao for a great collaboration.

During my stay abroad, I went to Thessaloniki in Greece and Tel Aviv in Israel.
I will firstly thank Kostas Tsichlas, who invited me to the Aristotle University of
Thessaloniki, and his wonderful wife Areti Papathanasiou for helping me find housing
and taking so good care of me in Thessaloniki. Their help has been invaluable to
me. I also want to thank Kostas Tsakalidis who I spent many many hours with
in Thessaloniki and Patras, having fun, doing research and exploring the city and
its many interesting people. Also a big thanks to all the people from the office in
Thessaloniki. I will especially thank Kostas’ family: Athanasios Tsakalidis, Aglaia
Liopa-Tsakalidi and Dimitris Tsakalidis, who let me stay with them, in the easter
and the summer, and took me in as part of their family. We had so many great
experiences together. I will also thank Kostas’ cousins Katerina and Dimitris and
their families along with Valia, Natalia and Katerina for letting us visit and stay at
them, while we where roadtripping Greece.

From Tel Aviv I will firstly thank Orgad Keller, who helped me find housing and
showed me all the great places in Tel Aviv. A big thanks to Moshe Lewenstein for
inviting me to Bar Ilan University. Thanks to all the people from the office, and all
Orgads friends, who he introduced me to. I will also like to thank John Iacono which
was attending the Stringology workshop in Safed and invited me for a trip to Jordan,
we saw many nice attractions, cultures and people, which I will never forget.

Last and most importantly thanks to my parents Else Marie and Niels for always
supporting and encouraging me, and for knowing and telling me that I can achieve
anything I want to. This thesis is dedicated to my father, who sadly is not here
anymore to see me finish.

Casper Kejlberg-Rasmussen,
Aarhus, September 30, 2013.

xi

xii

In memory of my father, who was taken from this world much too early.

xiv

Contents

Abstract – English v

Abstract – Dansk vii

Preface ix

Acknowledgments xi

1 Introduction 1
1.1 Models . 4

1.1.1 Word Random Access Machine 4
1.1.2 Implicit . 5
1.1.3 Pointer Machine . 5
1.1.4 Functional Pointer Machine 5
1.1.5 External Memory . 6
1.1.6 Cache-Oblivious . 7

1.2 Distribution Sensitive Dictionaries 7
1.2.1 Our Contributions . 11

1.3 Priority Queues with Attrition . 13
1.3.1 Our Contributions . 14

1.4 Dynamic Skyline Queries . 14
1.4.1 Our Contributions . 17

1.5 Preliminaries . 18
1.5.1 (a, b)-Tree . 18
1.5.2 Priority Queues with Attrition 21
1.5.3 Double Exponential Layout 22
1.5.4 Functional Pointer Machine Trick 23

2 Implicit Working-Set Dictionaries 25
2.1 Moveable Dictionaries . 25

2.1.1 Invariants . 26
2.1.2 Operations and Jobs . 27
2.1.3 Correctness . 28
2.1.4 Running Time . 30
2.1.5 Cache-Oblivious . 31
2.1.6 Making the Dictionary Implicit 31

2.2 Working-Set Dictionaries . 32
2.2.1 Structure . 33
2.2.2 Notation . 34
2.2.3 Invariants . 35
2.2.4 Operations . 36

xv

2.2.5 Memory Management . 42
2.2.6 Analysis . 44

3 Catenable Priority Queues with Attrition 47
3.1 Structure . 47
3.2 Invariants . 48
3.3 Operations . 49
3.4 Analysis . 53

3.4.1 Correctness and I/O-complexity 53
3.4.2 Catenating a Set of I/O-CPQAs 56

4 Dynamic Planar Skyline Queries 59
4.1 Top-Open Structure . 59

4.1.1 Structure . 61
4.1.2 Invariants . 61
4.1.3 Operations . 61
4.1.4 Analysis . 63

4.2 4-Sided Structure . 64
4.2.1 Structure . 64
4.2.2 Invariants . 64
4.2.3 Operations . 64
4.2.4 Analysis . 65

4.3 Lower Bounds . 66
4.3.1 (ω, λ)-input . 66
4.3.2 Space Lower Bound . 69
4.3.3 Query Lower Bound . 69

Bibliography 73

xvi

Chapter 1

Introduction

The theory of data structures considers the compact representation of data in a
computer such that questions, also called queries, can be answered about the data
efficiently. The data can be anything, but most often it is a collection of strings
and numbers, and in many cases the data can be considered as a vector of values.
The queries can also be anything, but common queries are “what is the name of
the person with this phone number?” or “give me the names of all the persons aged
between 25 and 60 years earning between 25.000 and 45.000 DKK a month”. The
first query is an example of a membership query on a dictionary, which asks for
the value that corresponds to a certain key. The second is an example of a range
query, where we want all the persons who fulfills some range of requirements. If we
do not need to update the data, the problem is called static. If we need to update the
data the problem is called dynamic. The data structuring problem is to construct a
compact representation, that can answer queries fast. If the problem is dynamic the
data structure should also perform updates fast. A data structure gives a solution to
a problem within certain time bounds, so we call a data structure an upper bound. A
natural question now arises: what is the best possible bounds that a data structure for
a given problem can have? To answer such a question, we need to make a statement
that out of all possible data structures, even those that no one has ever thought of
yet. We want to give a proof that no one can do better than a given time bound. Such
a proof is called a lower bound. Since we need to make a proof that says something
about all possible data structures, also those we have not thought of yet, we need
some assumptions about these data structures to give any non-trivial lower bound.
This is where computational models comes into play.

A computational model defines what parameters are available to an algorithm
and which operations the algorithm is allowed to use. A good model is very simple,
i.e., it has few parameters and operations that the algorithm is allowed to use, yet
it models the capabilities of our computers well enough to give good performance
predictions. A simple model is easier to reason about in proofs when making logical
reasoning, but it might not represent the capabilities of computers very well. On
the other hand a very detailed model can represent the computers very well, and
give very accurate time bounds, but it will be difficult to argue about it, because of
the vast amount of parameters and operations available. As a result of these two
naturally contradicting properties of a good model, we have many different models of
computation, that model different aspects of computers. The result of this is two-fold.
Firstly, since each model is reasonably simple, we can devise lower bounds for it.
Secondly since each problem poses different challenges, e.g. some problems are so big
that they do not fit in memory which makes disk input/output critical and not CPU
time, while others do fit in memory so only CPU time is important, we choose the

1

2 Chapter 1. Introduction

Price

Quality

High

Low

High Low

c2

c1

c3

c4

c5

c6

c7 c8

c9

c2
c4
c6
c8

Stack

Quality

High

Low

c2
c4
c9

Stack

PriceHigh Low

c2

c1

c3

c4

c5

c6

c7 c8

c9

Figure 1.1: Finding the best car offers of a continuous stream of cheaper offers. To the
left we receive an offer for car c9 and to the right we update our stack accordingly.

model that addresses these challenges. So, this means that whenever we look at a
problem, we first need to decide which computational model is most relevant for the
problem, then using the operations and following the restrictions of the model we
can design data structures for the problem. Naturally, one problem can have different
complexities in different models, but they are of course related due to the inherent
structural complexities of the problem.

The complexity of data structure problems vary greatly from problem to problem,
for example solving graph connectivity on a static graph is very simple by numbering
each vertex of different connected components using a breadth-first-search. That way
we can determine if two vertices are connected by just looking at their component
number. On the other hand, if we allow changes to the graph by deleting and adding
edges dynamically, then the problem becomes really difficult and solutions are yet
to be found that are anywhere near optimal. Another example is the dictionary
problem, where in its simplest form we just want to test for membership of elements
in a set in the static setting. If we allow insertions and deletions of elements, the
problem complexity stays the same in most models. Also many problems which
might seem to be different, are in fact just the same basic problem in disguise. We
can call these problems the core problems. The hardness of a problem comes from
the structural complexity of the core problems within it. One way to solve the core
problems is to investigate different properties of the problem, and make observations
on it that state logical predicates on and implications for the problem. We use these
observations to formulate invariants, which are conditions of the data structure that
we are designing that will always remain true. Now having formulated a set of “good”
invariants, proving correctness and time complexities of our data structures is usually
easy, as we can rely on the invariants to always be true, and then use their properties
to make our proofs based on structural induction. As an illustration of a problem
and an invariant which directly gives an elegant solution, we can take the following
problem:

“We are looking to buy a new car, and of course want the best quality we
can get for our money. Since production costs of cars fall all the time,
but quality always fluctuates, we know that the price of every new offer
will always decrease, but the quality varies. We want to keep the set of
all offers which have the best price and quality simultaneously”.

The dynamic data structure problem is to maintain the set of best offers, while
we continuously receive new offers. We notice a property of the problem. Given cars
c1 and c2 with prices ci.p and qualities ci.q fulfilling c1.p ≤ c2.p and c1.q ≥ c2.q,
respectively, we can eliminate c2 from our list of offers to select from, since c1 is

3

always better no matter how we value price versus quality. See the left of Figure 1.1.
We now keep a stack of best offers, and make the stack fulfill the following invariant:
the cars in the stack are sorted simultaneously by quality and price. The car in the
bottom of the stack has the highest quality and price and the car in the top has
the lowest quality and price. The stack keeps the currently best offers and when we
receive a new one, the invariant dictates that we remove all the top cars, which have
a lower quality than the new offer, as we already know that the new offer is cheaper
than any of our current offers. Then we add the new offer to the top of the stack,
see the right of Figure 1.1.

Invariants really are the glue of dynamic data structure design, as they are
immensely useful when proving correctness or time bounds of the data structure,
because we can just do a structural induction proof of the different cases that the
invariants define. The big difference between static and dynamic problems is that for
static problems we ourselves can define the order that we process the input data and
build our data structures in. Whereas for dynamic problems we have no control over
which data is inserted or deleted and when queries are asked, so here the invariants
give us a set of rules to follow in designing our procedures to handle the updates
and queries.

Now the big question of course comes to mind: “which invariants are good for my
problem?”. This is where the hard work lies and where the ingenuity, experience and
skills of the researcher comes into play, because identifying the right invariants to
solve a given problem, requires that one understands the problem and can identify
the right structural properties to solve it. We look at the problem and the properties
that we have observed and proved about it, then we suggest a set of invariants and
then we see if we can maintain them for all the update and query procedures of the
problem. If we have a “good” set of invariants, then we can efficiently maintain them
for all update procedures and the invariants are strong enough to make us able to
answer the queries efficiently. But if we have not found a good set of invariants, then
we cannot guarantee that all invariants are true after running some of the update
procedures or the invariants are not sufficient to be able to answer the queries. The
whole process is very similarly to packing a suitcase with clothes and other usefulness
before traveling. We poke something in, that is sticking out of the suitcase, but then
something pops out somewhere else. We poke it back in and yet again something pops
out. Now if the suitcase is not too filled, i.e., the problem at hand is actually solvable
within the desired time bounds, we will eventually succeed in stuffing and closing
the suitcase, and hence solving the problem, but it will take a long time of poking.
Once the right invariants are found, formulating the algorithms to modify and query
the data structure is usually easy or even trivial, and the invariants comprise the
heart of the solution, the actual implementation is usually just details. Discovering
the right invariants is a long and tedious road of trials and errors, and it can take a
long time until a good set of invariants are discovered. Often our failures also gives
us insights that we can use in our next attempt at a good set of invariants. The only
hope we have while walking the path is that out of all the ideas and all the failures
ahead we only need one set of invariants that work, and this is the light ahead the
tunnel that drives us!

In the rest of this thesis we will present new dynamic data structures for dis-
tribution sensitive dictionaries in Section 1.2 and Chapter 2, priority queues with
attrition in Section 1.3 and Chapter 3 and skyline structures along with a few lower
bounds for skyline structures in Section 1.4 and Chapter 4. All our structures will
be efficient in the external memory model and our dictionaries will also be efficient
in the cache-oblivious and implicit models. In Section 1.1 we formally define the
computational models, and in Sections 1.2–1.4 we survey previous work and state

4 Chapter 1. Introduction

our contributions within each problem area. In Section 1.5 we recall previous data
structures and techniques which we use or modify in our data structures before
presenting our solutions in Chapters 2–4.

1.1 Models

In this section we will formally define the models we work under in our results. We
use many different models because they all have benefits and drawbacks as they
address different characteristics of our computers in relation to the two naturally
contradicting parameters of simplicity and modeling the hardware accurately. The
models are the classical random access machine, the implicit model, the pointer
machine and the functional pointer machine which all are concerned with counting
the number of internal memory accesses and CPU instructions used. The last two
are the external memory model and the cache-oblivious model which are concerned
with counting the number of external memory accesses, as these operations are a
million time slower than internal memory accesses and executing CPU instructions.

1.1.1 Word Random Access Machine

The Word Random Access Machine – in short the RAM model – consists of an
infinitely large memory divided into words that are w bits long and is based on the
von Neumann computer architecture [vN45] that all of todays computers use. A
data structure is stored in these words and the content of a word can be considered
as either an integer, a bit pattern, or an address – commonly called a pointer – of
another word. The space usage of a data structure storing n elements is S(n) if
S(n) words of memory are used. Memory management is not considered in this
model, but we implicitly assume that it takes place behind the scene so that the
words used have addresses in [S(n)] = {0, . . . , S(n) − 1}. See Figure 1.2. It is
always assumed that a word can store a pointer to any other word that would
be relevant for the data structure in question, and it is commonly assumed that1
w = Ω(logn). This assumption also ensures that any of the words in [S(n)] can point
to any other word in [S(n)] as long as S(n) = nO(1), i.e., the data structure uses at
most polynomial space. The operations on words are: integer comparisons (<,=, >),
arithmetic (+,−, ∗, /) and bit-wise operations (AND, OR, XOR, NEG and shifts), i.e., the
standard word operations found in any modern programming language.

All operations can be performed in constant time, and the query time Q(n) and
update time U(n) on a data structure are equal to the number of word operations
and words accessed – e.g. by following pointers – performed during the query or
update.

5 7 42 84 94
0 S(n)

5 7 42 84 94
0 n− 1

9 71269

Figure 1.2: Random Access Machine. Figure 1.3: Implicit.

1Notice that all logarithms written as logb x are logb max(b, x) and when we omit the base b
then b = 2.

1.1. Models 5

1.1.2 Implicit
The Implicit model, first defined by [MS79], is a restricted version of the RAM model.
The restrictions imposed are that S(n) = n, i.e., the data structure only consists of a
single array at addresses [n] = {0, . . . , n−1} storing the input elements. Furthermore
the data structure is not allowed to change the content of any words, but it is allowed
to swap two words. See Figure 1.3. At first this seems like a very limited model,
but since there are n! different permutations of the n input elements in the array
storing them, we can encode log(n!) = Θ(n logn) bits of information by selecting the
appropriate permutation to store our data structure in. To utilize this encoding of
information, it is necessary to be able to distinguish elements. So it is often assumed
that all the input elements are distinct, which enables us to store Θ(n logn) bits of
information.

When performing operations on the data structure an additional O(1) words are
allowed to be used to store temporary information. But after the operation ends,
these additional words are erased, so only the single array of the input elements is
stored between operations. Time usage is counted like in the RAM model as the
number of word operations and accessed words.

1.1.3 Pointer Machine
The Pointer Machine – in short the PM model – introduced by [Tar79] consists
of a set of nodes which points to each other. In other words any data structure is
considered as a directed graph G = (V,A) where the nodes of V store an input
element or a constant amount of information in the form of integers, booleans or
pointers to other nodes. The arcs A represent the pointers from nodes to nodes. Each
node is constrained to point to at most a constant number of other nodes, and one
node e ∈ V is designated as the entry node, which all accesses have to go through.
The space usage is the size of G which is |V | as each node contains a constant amount
of information. See Figure 1.4.

Any update or query operation always starts at the entry node e and any other
node to be visited, has to be found by traversing pointers from e or a node reachable
from e. Updates change the information in each node or create new nodes and queries
read the information in each node and follow pointers. The time usage is the total
number of accessed or created nodes during the query or update operations.

8442 5 7

99 5

e 8442 5 7

99 5

99 5

99 5

e

Figure 1.4: Pointer Machine. Figure 1.5: Functional Pointer Machine.

1.1.4 Functional Pointer Machine
The Functional Pointer Machine – in short the FPM model – is based on the
paradigm of functional languages as motivated in [Bac78,Hug89]. The Functional
Pointer Machine is a restricted version of the pointer machine model where it is

6 Chapter 1. Introduction

not allowed to change nodes in V after they are first created, i.e., side-effects are
disallowed exactly as in functional languages. This restriction turns out to be of
little annoyance but of great benefit in achieving desirable properties of the data
structures created which are also highlighted in [KT96,KT99]. See Figure 1.5.

The benefits are that all data structures created are automatically confluently
persistent, which is the most general form of persistence. The other forms of persistence
are full persistence and partial persistence. A normal ephemeral data structure does
not keep track of past versions. When an update is made in an ephemeral data
structure, the current version is destroyed and only the new version remains. The
version graph of an ephemeral data structure is just a single node. A partial persistent
data structure can query all past versions, but only make updates to the current
version. The version graph of a partial persistent data structure is a list, where we
can query any version, but only change the latest version, which adds another node
to the version list. A full persistent data structure can query and update all past
versions. The version graph is a tree, and updating a past version creates a new leaf
on the tree. A confluently persistent data structures can query and update any past
versions, but moreover, we can also combine any past versions into new versions.
The version graph is a DAG.

The only real annoyances of the functional pointer machine model is that it is
impossible to make assignments, hence we cannot create cycles in the data structure
graph G, i.e.,G will always be a DAG, since we can never change a node after it is first
created. This restriction implies that some data structures, say e.g. double-linked lists,
are not possible to create within the model, but alternatives which are significantly
more complex to create, having the same complexities are often possible, e.g. to use
catenable deques [KT99] instead.

1.1.5 External Memory
The External Memory model also called the Input/Output model – in short the EM
or I/O model – was first defined in [AV88]. It consists of a CPU that works on an
internal memory of M words and an external memory of infinite size divided into
consecutive blocks of B words each. The CPU can only work on data in internal
memory, but data can be moved back and forth between internal and external memory
in I/Os, each I/O moving B words at a time. Since I/Os are significantly slower
than CPU instructions, CPU time is considered to be for free and we only count the
number of I/Os used. See Figure 1.6.

The space complexity of a data structure is measured as the number of blocks
used in external memory. The computational complexity is the number of I/Os
performed. An efficient data structure tries to batch words together when doing I/Os
so that the average cost of moving a word in or out of external memory is O(1/B)
I/Os instead of the naive O(1) I/Os.

CPU Internal External

B

M

memory memory CPU Internal External

B4

M4

memory memoryL3

B3

M3

L2

B2

M2

L1

B1

M1

Figure 1.6: External Memory. Figure 1.7: Cache-Oblivious.

1.2. Distribution Sensitive Dictionaries 7

1.1.6 Cache-Oblivious
The Cache-Oblivious model – in short CO model – which first appeared in [FLPR99]
defines a hierarchy of memory levels M1, . . . ,M` and block levels B1, . . . , B`. See
Figure 1.7. The data structure is oblivious to which level 1 ≤ i ≤ ` we are working on
and therefore is not allowed to know neither Bi nor Mi. Hence the data structure is
phrased as if it was for the RAM model, but is analyzed in the EM model where B and
M are parameters of its asymptotic complexities. So an efficient data structure in the
cache-oblivious model is efficient for all values of B and M and hence simultaneously
achieves the same asymptotic space and I/O complexities on all levels 1 through ` of
the memory hierarchy.

Having defined the models of computation used in this thesis, we will now define
the problems we are going to solve, survey previous work about each problem area
and state our research contributions.

1.2 Distribution Sensitive Dictionaries
In the dictionary2 problem [CLRS01, Part III, especially Chapter 10] we store a
dynamically changing set S of totally ordered elements in the comparison model and
want to support search3, predecessor and successor queries on S. To be specific we
want to support the operations:

• Insert(e) – inserts element e into the dictionary storing S, i.e., change S to
become S ∪ {e}.

• Delete(e) – deletes element e from the dictionary storing S if it exists, i.e.,
change S to become S\{e}.

• Search(e) – returns a boolean telling if e is in the dictionary storing S, i.e.,
returns true iff e ∈ S.

• Predecessor(e) – returns the largest element smaller than e if it exits, otherwise
−∞ is returned, i.e., returns max{e′ ∈ S ∪ {−∞} | e′ ≤ e}.

• Successor(e) – returns the smallest element larger than e if it exits, otherwise
∞ is returned, i.e., returns min{e′ ∈ S ∪ {∞} | e ≤ e′}.

There are countless implementations of dictionaries in many different models. In the
PM model AVL-trees [AVL62], Red-Black-trees [Bay74] and (a, b)-trees [AHU74, sec.
4.9] are the most well known implementations which support all operations in worst-
case time O(logn).

In the RAM model the best solutions solve the dictionary problem when the
keys are integers in a universe of size m and we generally assume that n ≤ m, i.e.,
we are not in the comparison model in this case. In [vEB75] van Emde Boas give a
structure using O(m) space and supporting all operations in O(log logm) time. This
result is optimal as shown by Pǎtraşcu and Thorup [PT06]. Later Willard [Wil83]
improved the space when the dictionary contained significantly less than m elements,
i.e., n� m to use O(n) space and still support all operations in O(log logm) time.

In the Implicit model there has been a continuous development of implicit
dictionaries since the sixties. The first milestone was the implicit AVL-tree [Mun86]
having bounds of O(log2 n). The second milestone was the implicit B-tree [FGMP02]

2The variation presented here supporting predecessor and successor queries is also often called
the predecessor problem.

3Also often known as membership queries.

8 Chapter 1. Introduction

having bounds of O
(

log2 n
log logn

)
the third was the flat implicit tree [FG06] obtaining

O(logn) worst-case time for searching and amortized bounds for updates. The fourth
milestone is the optimal implicit dictionary [FG03] obtaining worst-case O(logn) for
search, update, predecessor and successor operations.

In the EM model the most famous dictionary implementation is the B-tree [BM72]
which support all operations in worst-case O(logB n) I/O’s. If we can batch searches
together we can get much better amortized bounds by using the Buffter-tree by
Arge [Arg03]. The Buffer-tree supports updates and batched searches in O(1

B logM
B

n
B)

amortized I/O’s per operation.
In the CO model there are many different dictionary implementations, [BCR02,

FG03] give implementations that support all operations in O(logB n) I/O’s worst-case.
The data structure of [FG03] is even implicit, which we will use in our contributes
to distribution sensitive dictionaries. Like in the EM model if we are satisfied
with amortized bounds [BDF+10] supports predecessor, successor and searches in
O(1

ε logB n
M) worst-case I/O’s and updates in O(1

εB1−ε logB n
M) amortized I/O’s for

0 < ε < 1. Unlike for example the B-tree and the Buffer-tree none of the structures
in [BCR02, FG03, BDF+10] support range queries, but there are structures like
[BDIW02] which support searches in O(logB n) and range queries in O(logB n+ k

B),
but only updates in O(logB n + log2 n

B). Getting the updates down to optimal
O(logB n) I/Os while supporting range queries in O(logB n+ k

B) I/Os worst-case is
a big open problem in the CO model.

If the access sequence does not follow a uniform distribution, we can often give
better amortized bounds for search, predecessor and successor queries. Dictionaries
that give better amortized bounds for an access sequence are called distribution
sensitive dictionaries. There a many different distribution sensitive properties. In
the following we will define the most popular properties. Before the definitions of
the properties we need to define the working set number and the rank distance.

Definition 1.1 (Working Set Number). Let e ∈ S and assume that there have been
accesses to `e distinct elements different from e, since we last accessed e. Then `e is
the working set number of element e.

The working set number `e tells when element e was last searched for. See Figure
1.8, where element h has a working set number of 3, then we search for h and it gets
a working set number of 0, and the working set number of all elements that had a
working set number less than 3 now increase by 1. So the working set number of g, k
and a increase by 1.

g k a h b c
0 1 2 3 4 5

e:
`e:

g k ah b c
0 1 2 3 4 5

e:
`e:

Search(e) g k a h b c
0 1 2 3 4 5

e

i:

f
dS(e, f)

Figure 1.8: Working Set Number. Figure 1.9: Rank Distance.

Definition 1.2 (Rank Distance). Let e, f ∈ S then

dS(e, f) = |{e′ ∈ S | e < e′ < f}|

is the rank distance between elements e and f .

1.2. Distribution Sensitive Dictionaries 9

The rank distance dS(e, f) between two elements e and f in S is simply the
number of elements between them in rank space, see Figure 1.9, where there are two
elements a and h between e and f so dS(e, f) = 2. Now with the working set number
and rank distance defined we can define the distribution sensitive properties.

Definition 1.3 (The Working Set Property). Accessing element e takes O(log `e)
time.

An example of an access sequence of length m ≥ n logn that will take total
time O(m) if searching satisfies the working set property, is the sequence A1 :
1, 2, 3, . . . , n, 1, n, 1, n, . . . , 1, n. The accesses to 1 and n will take O(1) time as they
have working set number at most 1. But there are also access sequences where a work-
ing set dictionary performs bad on, say A2 : 1, 2, 3, . . . , n, 1, 2, 3, . . . , n, 1, 2, 3, . . . , n.
Every time we search for an element e in this sequence it will have working set
number `e = n as we only accessed it n accesses ago, even though we are accessing
an element that is only one position away in key space from the previously accessed
element. So the total time to execute A2 is O(m logn).

There are many structures having the working set bound. In the PM model
the Splay-tree [ST85], the working set structure [Iac01] additionally has worst-case
O(logn) bounds, the skip-list [BDL08] and B-tree variants [BDL08], which also
all have the working set bound. The B-tree is also I/O efficient, giving bounds of
O(logB `e) in the EM model. Bose et. al. [BHM09] give randomized bounds that are
very space efficient, although not implicit as they use O(log logn) additional space.

Definition 1.4 (The Static Finger Property). Assume that there is some fixed ele-
ment f ∈ S that we call the finger. Then accessing element e takes time O(log dS(e, f)).

There are not many structures that attain only the static finger property, most
achieve the stronger dynamic finger property, defined next, and are in the PM model
and a few in the RAM model. In the Implicit model [BNT12] give a structure that
is in between, having the dynamic and static finger search property. It supports
finger search relative to a static finger f in O(log dS(e, f)) time and furthermore
supports changing the finger in O(nε) time. They also prove a lower bound showing
that this is optimal in the implicit model, but their lower bound breaks down if we
allow just one extra word of memory to be stored between operations. Iacono [Iac01]
notices that the static optimality property (which will be defined shortly) implies the
static finger property and that the working set property implies the static optimality
property. So any dictionary with the working set property or the static optimality
property also has the static finger property.

Definition 1.5 (The Dynamic Finger Property). Assume that we accessed element
f , which we call the finger, just before accessing element e. Then accessing element
e takes time O(log dS(e, f)), and e now becomes the new finger f .

The sequence A2 from above will take O(m) time to execute if searching satisfies
the dynamic finger property as all elements accessed are only one position away from
the finger, which is the previously accessed element. The sequence A1 on the other
hand will take O(m logn) time as 1 and n have O(n) positions in difference in key
space.

In the PM model there are many implementations based on different search tree
implementations, [GMPR77] and [HM82] use B-trees as their base structure, [Tsa85]
use AVL-trees and all get the finger search bound of O(log dS(e, f)) in the worst-case.
The Splay-tree [ST85], which is a binary search tree, only gives amortized bounds.
Fleischer [Fle93] support updates in O(log∗ n), this is improved by Brodal [Bro98]

10 Chapter 1. Introduction

who give a near optimal result of O(1) insertion and4 O(log∗ n) deletion and improves
them to both be O(1) in [BLM+02].

In the RAM model [DR94] support finger searches in O(log dS(e, f)) and updates
in O(1) amortized time. This was later improved in [AT00] to support finger searches
in O(

√
log dS(e,f)

log log dS(e,f)) time and updates in O(1) time, which is optimal.
In the Implicit model there only exist one result for finger search [BNT12] as

mentioned before. In the EM model the results [GMPR77] and [HM82] use B-trees,
and hence also give I/O efficient bounds here. In the CO model Bender et. al. [BCR02]
give a dictionary supporting finger search in O(log∗ dS(e, f) + logB dS(e, f)) I/O’s
and in [BDIW02] they improve the bound to O(logB dS(e, f)).

The unified property, which was first defined by [Iac01], combines the working
set property and the dynamic finger search property.

Definition 1.6 (The Unified Property). Accessing element e takes time

O(log min
f∈S

(`f + dS(e, f))).

There are not many structures that have the unified property, in the PM model
[Iac01] give a static structure having the unified bound. This is later extended to be
dynamic in [BD04] having the unified bounds for search and insert, but for delete
the bound is O(log minf∈S(`f + dS(e, f)) + log log |S|). This extra additive term for
delete is later removed in [BCDI07] which attain the unified bound for all operations
search, insert and delete. It is also noteworthy to mention that it is not proved
that Splay-trees [ST85] have the unified bound as stated in Definition 1.6. The
unified theorem in [ST85] is a combination of the working set, static finger and static
optimality theorems, and hence does not capture the dynamic finger search property.
But in [Iac01,BCDI07] they conjecture that Splay-trees [ST85] do have the unified
property stated in Definition 1.6.

In the EM model the structures in [BD04,BCDI07] can easily be extended so
the logarithm is base B, i.e., if [BCDI07] is extended to the EM model the bounds
of all operations would be O(logB minf∈S(`f + dS(e, f))). There are currently no
structures in the RAM, Implicit nor CO model that attain the unified bound.

Definition 1.7 (The Static Optimality Property). Let q(e) be the total accesses to
element e ∈ S. Then all accesses take a total time of

O

 ∑
e∈S,q(e) 6=0

q(e) log m

q(e)

 , where m =
∑
e∈S

q(e).

For static optimality there has been a lot of work in the seventies and eighties,
the most major results are in [Knu71,AM78,FT83,BST85,ST85]. In the PM model
Knuth [Knu71] gave a dynamic programming algorithm to construct an optimal
binary search tree for S in O(n2) time given the access frequencies of each element.
This search tree is optimal and not just a constant factor off like later result, but it is
only for a static set S. In the PM model [AM78] give a dynamic structure attaining
the optimal bound within a constant factor without knowing the access frequencies
nor estimating them. They use a specific update heuristic, which they prove give
the bound of O(

∑
e∈S,q(e)6=0 q(e) log m

q(e)). In [BST85] they estimate the weights and
again get the optimal bound within a constant factor, in [ST85] the famous Splay-tree
also get the optimal bound within a constant factor, again with a heuristic, so they
do not estimate the access frequencies. In the EM model the structure of [BST85] is

4Let log(i) n = log(log(i−1) n) for i ≥ 1 and log(0) n = logn, then log∗ n = min{i| log(i) n < 1}.

1.2. Distribution Sensitive Dictionaries 11

extended to work forB-trees in [FT83] giving bounds ofO(
∑
e∈S,q(e) 6=0 q(e) logB m

q(e)).
There are no previous structures in the Implicit nor CO model that have the static
optimality property. But since the working set property implies the static optimality
property [Iac01], any working set dictionary will automatically also have the static
optimality property.

Contrary to the static optimality property the dynamic optimality property is
defined within a model of supported operations and structural constraints. In such a
model, we want to obtain bounds that are within a constant factor from the optimal
number of operations. The most commonly defined and used search models are:

Definition 1.8 (Search Models). Before any access a finger is initialized at the root
of the structure, which can be considered to be a graph with update operations as
defined:

• In the binary search tree (BST) model the unit-cost operations are following
pointers and performing rotations.

• In the multi-way branching search tree5 (MWBST) model the unit-cost oper-
ations are following child- or sibling-pointers, and performing splits and joins
of nodes.

• In the skip-list (SL) model the unit-cost operations are following forward-,
backwards-, parent-, or child-pointers and incrementing or decrementing the
height of elements.

We are now ready to define the dynamic optimality property.

Definition 1.9 (The Dynamic Optimality Property). Let OPTM (X) be the mini-
mum number of operations needed to perform the access sequence X in model M . An
algorithm A is dynamically optimal if it uses O(OPTM (X)) operations to perform
the access sequence X in model M .

In the search for dynamically optimal structures, the most effort has been put
into the BST model. For the MWBST and SL models optimal structures are given
in [BDL08]. Optimal structures for the BST model remains to be found. It is
conjectured in [ST85] that the Splay-tree is dynamically optimal, and much effort
has been put into trying to prove it, but there has been no success yet. But many
other interesting properties have been proved for Splay-trees i.e., the dynamic finger
conjecture [CMSS00,Col00] the sequential access bound [Tar85, ST85], there are
also some lower bounds for binary search trees with rotations by Wilbers [Wil89].
In [DHIP07] Demaine et. al. give a dynamic search tree that is a O(log logn) factor
from being dynamically optimal and in [DHI+09] an interesting equivalence is made
between binary search trees with rotations and a 2D point set. All these upper and
lower bounds are all for the PM model and there has not been put much effort into
the other models, i.e., RAM, Implicit and CO. In the EM model [BDL08] give a
dynamically optimal B-tree which is optimal both in internal and external memory.

1.2.1 Our Contributions
In Chapter 2 we present the first working set dictionaries, in the implicit model,
supporting search, predecessor and successor queries within the working set bound.
In [BKRT10] we give the first implicit working set dictionary supporting search
within the working set bound, but unfortunately predecessor and successor queries
have bounds of O(logn) time and O(logB n) cache-misses. In [BKR12] we improve

5The fanout of a node is unbounded, i.e., there is no bound of the number of siblings.

12 Chapter 1. Introduction

upon [BKRT10] by also supporting predecessor and successor queries within the
working set bound. The moveable dictionary from [BKRT10] appears in Section
2.1 and the working set dictionary from [BKR12] supporting all queries within the
working set bound appears in Section 2.2.

In Section 2.1 we show how to make the dictionary of [FG03] moveable, i.e.,
supporting the operations of move-left (and move-right), which moves the dictionary
occupying memory addresses [i, j] to [i + 1, j + 1] ([i − 1, j − 1]). We do this by
treating the structure of [FG03] as a black box, and hence our construction is general
and can be applied with other implicit structures inside, say an implicit binary heap.

Our dictionary in [BKRT10] is in addition to being implicit also cache-oblivious.
We support insert, delete, predecessor and successor operations in O(logn) time and
O(logB n) cache-misses and searches in O(log `e) time and O(logB `e) cache-misses.
We obtain the results of [BKRT10] by combining many existing ideas; we use the
double exponential layout to make it easy for us to code numbers and pointers, we
make a moveable version of [FG03] and use this as a black box inside our structure,
lastly we implicitly maintain an estimate of the working set number of each element,
which enables us to give the bounds for search. We make our estimate by having
m = dlog logne blocks where the i’th block has size O(22i) and within each block we
divide the elements into three groups which enables us to estimate the working set
number of each element. In block i we have the groups Li, Ci and Ri. All elements
in Li have a working set number of at least 22i−1 , all elements in Ci have a working
set number of at least |Li| and all elements in Ri have a working set number of at
least 22i . For i < dlog logne we have that |Li|+ |Ri| = 22i . The idea is that when
we search for an element we find it in block i and have spent 2i = O(log `e) time to
find it. We remove the element e from block i and insert it in L0 in block 0 which
overflows, then we move an element from R0 into L1 which overflows block 1 and so
on until we eventually put an element back into block i and fills the hole we made
when removing e.

B
lo
ck

0
1

m

Key space

...
...

e

B
lo
ck

0
1

m

Key space

...
...

e

Figure 1.10: Working set estimate of
[BKRT10].

Figure 1.11: Intervals idea of [BKR12].

The problem with the scheme of [BKRT10] for predecessor and successor searches
is that if we search for the predecessor of, say e, then we have to look through all
blocks i = 0, . . . ,m to be sure that we found the predecessor of e as it might lie in
any level i, see Figure 1.10.

Our dictionary in [BKR12] improves upon [BKRT10] by also making the predeces-
sor and successor operations run within the working set bound, i.e., in O(log `e∗) time
and O(logB `e∗) cache-misses, where e∗ is the predecessor and successor, respectively,
of the element given in the search. The essential idea in getting these better bounds is
to view the elements as points in 2D space and then introduce the notion of intervals
defined over the points. The horizontal axis is the key space and the vertical axis is
the working set estimates of the points, see Figure 1.11. We introduce the notion of
intervals, and a scheme for maintaining them implicitly. We partition the key space
into a set of disjoint intervals of which their union gives the whole key space, we use

1.3. Priority Queues with Attrition 13

some of the elements to encode the intervals, see Figure 1.11. Each interval lies in
exactly one block/level i, and hence when we find the block/level i which contains
an interval that is intersected by e, then we have found the predecessor of e and are
guaranteed that we do not need to look any further in any higher block/levels. The
intervals idea is further described in Section 2.2.

1.3 Priority Queues with Attrition
In 1989 Sundar [Sun89] introduced the priority queue with attrition, termed a PQA.
A PQA Q is a first-in-first-out queue where each element e also has a priority or
key6. A PQA Q supports the following operations:

• Find-Min(Q) returns min(Q).

• Delete-Min(Q) returns min(Q) and removes it from Q. The resulting PQA is
Q′ = Q\{min(Q)} and the old Q is discarded.

• Insert-and-Attrite(Q, e) inserts element e at the end ofQ and attrites all elements
e′ ∈ Q that have a larger key than the key of e. The resulting PQA is Q′ = {e′ ∈
Q | e′ < e} ∪ {e}, and the old Q is discarded. The elements {e′ ∈ Q | e′ ≥ e}
are said to be attrited.

The important difference from a normal FIFO queue and a normal heap is the concept
of attrition, i.e., that the insertion of a new element e into Q can delete - also called
attrite - existing elements in Q which have a higher or equal key to that of e, see
Figure 1.12. The black point with white center is the minimum element of the PQA
and will be returned by Find-Min and Delete-Min, the black point with gray center is
inserted by Insert-and-Attrite and will attrite/delete the gray elements with higher or
equal key value in Q.

Max

Head Tail
Min

K
ey
s

Order

Max

Head Tail
Min

K
ey
s

Order

Figure 1.12: PQA-operation effects. Figure 1.13: Concatenation of PQAs.

It might not be obvious why the attrition property of PQAs is useful but it has
many important applications. The attrition property is essential in river routing
[CS84], which is a special case of VLSI layout. Attrition also elegantly optimally
solves the problem of pagination of scrolls in [LH85], where there have been various
initial solutions [McC77,DF84]. Gajewska and Tarjan give deques with heap order
in [GT86] which implement a similarly structure to the PQA. All these results are
in the PM model. Brodal and Tsakalidis [BT11] use the PQA to solve the problem
of maintaining dynamically a 2D point set on which they can answer 4-sided and
3-sided top-open orthogonal range queries. Their results are in the PM and RAM
model.

6We will not distinguish between an element and its key, and we will use the symbol e of the
element to denote both.

14 Chapter 1. Introduction

PQAs can also be viewed as storing points in 2D. Given two points p, q ∈ R2 lets
say that p dominates7 q iff px ≥ qx and py ≤ qy. If we only want the undominated
points (also called the skyline points) of a point set P then we can just build a PQA
over all p ∈ P where px is the insertion order and py is the key. Another useful
operation on PQAs in relation to computing skyline points is the concatenation
operation, see Figure 1.13:

• Catenate-and-Attrite(Q1, Q2) appends Q2 at the end of Q1 and attrites elements
in Q1. The resulting PQA is Q′ = {e ∈ Q1 | e < min(Q2)} ∪Q2, and Q1 and
Q2 are discarded.

If we assume that all the PQA operations are non-destructible8 then we can build
an (a, b)-tree on the x-axis over the point set P and store PQAs over the elements
in the leafs, where the key of point (x, y) is −y, and store the concatenation of the
children for internal nodes. With this simple structure we can answer 3-sided skyline
queries [x1, x2]× [y,∞[by doing as many Catenate-and-Attrite’s as the height of the
tree times the fanout, plus doing as many Delete-Min’s as the size of the skyline.
This will be explained in detail in Chapter 4.

1.3.1 Our Contributions
In Chapter 3 we present PQAs extended to support the additional operation of
Catenate-and-Attrite. Our extension turns a PQA into a recursively defined tree
structure, these results first appeared in [KRTT+13]. Instead of having a PQA store
elements, it now stores records, where a record consists of a buffer and a pointer to
another PQA. The notion of records with their buffers allows us to make the PQA
I/O-efficient and hence in the EM model we support the operations of Delete-Min,
Find-Min, Insert-and-Attrite and Catenate-and-Attrite in O(1) I/Os and O(1

B) I/Os
amortized assuming O(1) critical records are pre-loaded for each PQA.

The total space usage for a set of k PQAs where we have performed i insertions
and d deletions is O

(
i−d
B

)
blocks and we require that the memory size M fulfills

M = Ω(kB) to guarantee the amortized bounds.
Assuming that we have spent O(1) I/Os beforehand on each PQA to maintain

some property (to be specified in Chapter 3) we show that we can catenate k PQAs
without doing any I/Os, assuming that the critical records of the PQAs are pre-loaded.
This is summarized in Lemma 3.1.

1.4 Dynamic Skyline Queries
Let p, q ∈ Rd be two d-dimensional points over some totally ordered domain R. We
say p dominates q if and only if ∀i = 1, . . . , d : pi ≥ qi, i.e., p has larger or equal
coordinates than q. For a point set P ⊆ Rd we define the skyline of P to be all
undominated points of P . We want to maintain a dynamic point set P ⊆ Rd, and be
able to report the skyline of Q∩P for a given query Q = [α1, β1]×· · ·× [αd, βd] ⊆ Rd.
The domain R is most often chosen to be the set of real numbers R, a general integer
universe U = {1, . . . , |U |} or rank space [n] = {1, . . . , n}. When R is the real domain
R, it costs one time unit to compare two coordinates, where as for integer universe
U and for rank space we can use bit manipulation to compare more coordinates at
once.

7Normally domination is defined as p dominates q iff px ≥ qx and py ≥ qy. We notice from
Figure 1.12 that the definition above is symmetric but different to simplify the presentation.

8Which can easily be achieved as we will see in Chapter 3.

1.4. Dynamic Skyline Queries 15

Skyline points find applications in databases and any kind of optimization where
we are interested in finding the vectors/points with maximal values over multiple
dimensions. One example is keeping a list of cheap and good quality cars as mentioned
in the introduction. A prominent example is the problem of choosing between a range
of products based on their price and quality, see Figure 1.14. The skyline points
are the products for which there are no other products of a lower price and higher
quality, see Figure 1.14, e.g. if we look at points p1 and q1 then p1 dominates q1 by
having a higher quality, and p1 also dominates q2 by having a lower price, finally p1
also dominates q3 by both having a higher quality and a lower price. If we look at p1
and p2 then p1 has a lower price but p2 has a higher quality, so we cannot say one
is better than the other unless we state how much we value a low price compared
to high quality. Skyline queries have applications not only for 2-dimensions but for
arbitrary dimensions. Another example is a tourist looking for a hotel in Bahamas.
The tourist values a low price and a short distance from the hotel to the beach, but
also wants a hotel with a high rating by other customers, see Figure 1.15, here the
skyline points or hotels are again those that are undominated by other hotels and
hence give some compromise between price, distance and rating.

min price

max price
low quality high quality

p1
q1

q2
q3

p2

Distance Price

Rating

Figure 1.14: Price vs. quality of products. Figure 1.15: The skyline of hotels.

The complexity of finding the skyline of a point set is not completely known.
In [KLP75] they show that the total number of needed comparisons Cd(n) to find
the skyline of a point set P with n points is determined by the dimensionality of
the point set. For d = 1 they show that C1(n) = n− 1, for d = 2, 3 they show that
Cd(n) = O(n logn) and for d ≥ 4 they show that Cd(n) = O(n logd−2 n). Finally
they also show that for d ≥ 2 there is a lower bound of Cd(n) ≥ dlogn!e = Ω(n logn).

For d = 1 the problem of finding the skyline is trivial as it only requires a scan
and a stack or list to keep the points with the maximal value. For d = 2 we can
use a PQA after we have pre-sorted the points in one dimension. But for d ≥ 3 the
problem is not so easy.

Skyline queries have been studied extensively in the computer science literature
due to their wide range of applications to multi-criteria optimization of naturally
contradicting attributes, see [BKS01,KLP75,OvL81,FR90,Jan91,dFGT97,Kap00,
BT11,DGK+12,KDKS11,SLNX09,SSK09,ST11,BCP08,KRR02,MPJ07,PTFS05,
CGGL05] and the references within. Within the database community general high
dimensional skyline queries have been of main interest [KLP75,SSK09,ST11,SLNX09,
SSK09,ST11,BKS01,BCP08,KRR02,MPJ07,PTFS05], the focus there has been on
utilizing characteristics of the input data, e.g. queries on pre-sorted data [BCP08], data
sets with low-cardinality domains [MPJ07] or characteristics of the access to the data,
e.g. streaming [SLNX09,SSK09] or how fast query results can be returned [KRR02]
or extending SQL with a skyline operator [BKS01].

16 Chapter 1. Introduction

Within theory the skyline problem has mostly been studied in two dimensions
[KLP75,OvL81,FR90,Jan91,dFGT97,Kap00,BT11,KDKS11,DGK+12], both for
static point sets and dynamic point sets with various update restrictions. Kung et.
al. [KLP75] give upper and lower bounds for the number of needed comparisons to
find the skyline of a static point set. They can find the skyline in O(n logn) time for
d = 2, 3 and in O(n logd−2 n) time for d ≥ 4.

Two Dimensions

For two dimensions there are many variants of the general skyline query Q =
[α1, β1]× [α2, β2] depending on which of the boundaries we put at ±∞, this gives
rise to 7 important subcases, see Figure 1.16. Top-open and right-open queries are
symmetric and similarly left-open and bottom-open queries are symmetric. Contour
and dominance queries are captured within top-open queries and anti-dominance
queries are captured within left- and bottom-open queries. It turns out, as we will
show in Chapter 4 that anti-dominance queries are harder to answer than top-open
queries.

Contour Dominance Anti-Dominance

Top-Open Left-Open Bottom-Open Right-Open

4-Sided

Figure 1.16: All the important subcases of general skyline queries.

In the setting of a dynamic point set in two dimensions using linear O(n) space,
[OvL81] gives a data structure that can maintain the skyline of a point set with a
O(log2 n) time cost per update and report it in O(t) time when the skyline contains t
points. Frederickson et. al. [FR90] improves this to O(logn) time for insertions while
keeping the time for deletion and reporting the skyline unchanged. Janardan [Jan91]
matches the bounds of [FR90] but additionally supports contour queries, i.e., reporting
the skyline withing Q ∩ P where Q =]−∞, β1]×]−∞,∞[. In [dFGT97] d’Amore
et. al. maintains the skyline with O(logn) updates, but they only allow changes
to the point set at the extremes on the x-axis of the point set. Kapoor [Kap00]
gives another structure that maintains the skyline with O(logn) cost per update
without restrictions on which points can be updated, but reporting the skyline takes
O(t+ c logn) time where there are t points in the skyline and c points have been
updated since the skyline was last reported. All the mentioned results are in the
PM model. Finally Brodal and Tsakalidis [BT11] maintain a dynamic point set
P with O(logn) update costs and can report the skyline for top-open queries, i.e.,
queries of the form Q = [α1, β1]× [α2,∞[in O(logn+ t) time in the PM model and
O(logn/ log logn) updates and O(logn/ log logn+ t) queries in the RAM model.

1.4. Dynamic Skyline Queries 17

For general two dimensional queries, i.e., queries of the form Q = [α1, β1]×[α2, β2],
on a dynamic point set, Brodal et. al. [BT11] can answer these in O(log2 n+ t) time
and performs updates in O(log2 n) time using O(n logn) space in the PM model.
For a static point set [KDKS11] improves the query to be O(logn+ t) time using
O(n logn) space. These bounds are in the PM model, in the RAM model [DGK+12]
give a structure taking O(n logn

log logn) space, supporting queries in O(logn
log logn + k) time

on an n× n grid, i.e., in rank space.

Higher Dimensions

There are only a few results for higher dimensions. Kung et. al. [KLP75] find the
skyline of a d-dimensional static point set in O(n logd−2 n) for d ≥ 3. Bentley [Ben80]
give the same bound, but in a generalized framework which solves many more
related geometric problems. Kirkpatrick et. al. [KS85] give output sensitive versions
of [KLP75]. If k is the size of the skyline then [KS85] finds it in O(n log k) time for
d = 2, 3 and in O(n logd−2 k) time for d ≥ 4. If the output is small for d ≥ 4 then
they get better bounds of O(n logd−3 k) when k2 ≤ n and O(n log k) when k2+ε ≤ n.
These bounds are in the PM model, but in RAM Gabow et. al. [GBT84] are able
to do better, for d ≥ 4 they find the skyline in O(n logd−3 n log logn) time. If the
point set follows a distribution such that each coordinate is independent from all the
others [DZ04] show that the skyline can be found in O(n) expected time. Sheng et.
al. [ST11] later extend the bound of [KLP75] into the EM model and finds the skyline
in O(nB logd−2

m/B
n
B) I/Os for d ≥ 3. In [SLNX09] the authors give two multi-pass

streaming algorithms that find the skyline in O(logn) passes using O(m logn) space
and another that finds it using only w space in O(m logn

w) passes, both algorithms
are randomized.

1.4.1 Our Contributions
In Chapter 4 we present the first I/O-efficient dynamic data structures being able to
answer top-open and 4-sided skyline queries. We use the PQA’s extended with the
concatenation operation in the EM model from Chapter 3 as an essential substructure
of our solutions. Our structures use O(nB) blocks of space, the top-open structure
supports updates in O(log2Bε

n
B) I/Os and queries in O(log2Bε

n
B + k

B1−ε) I/Os for
any ε ∈ [0, 1]. Our 4-sided structure supports updates in O(log n

B) I/Os amortized
and queries in O((nB)ε + k

B) I/Os. Our top-open structure consist of an (Bε, 2Bε)-
tree with PQAs build on the leaves and on the children of internal nodes. The
concatenation operation of the PQAs makes updates and queries easy to perform.
Our 4-sided structure uses the dynamic top-open structure as black boxes inside of
it. These results first appeared in [KRTT+13], that paper also gives optimal static
skyline structures for top-open queries.

In the graph traversal framework of Chazelle [Cha90] we give a point and query set
which we use to show that any structure for the anti-dominance reporting problem in
the PM model requires Ω(n logn

log logn) space if queries are supported in O(logO(1) n+k)
time. We furthermore use the point and query set and the indexability theorem
to give a lower bound in the indexability model which states that any structure
supporting anti-dominance queries using O(nB) space must incur Ω((nB)ε + k

B) I/Os
when answering a query. Hence our 4-sided dynamic structure is optimal with respect
to the query, but not the updates as it uses the top-open structure with ε = 0 as a
black box which gives updates taking O(log n

B) I/Os instead of O(logB n
B) I/Os.

As an open problem of [KRTT+13] we want to make the reporting term a clean
O(kB) for our top-open structure. The reason why it is only O(k

B1−ε) now, is that

18 Chapter 1. Introduction

the buffer size of our PQAs is b = B1−ε and the fanout of our (a, 2a)-tree which has
PQAs as secondary structures, is a = 2Bε to make sure that we can load all the
PQAs of the children in O(1) I/Os. If we increase the buffer size to be b = O(B)
we will only be able to have O(1) children, hence the update bounds and the log
term of the query will be base 2 and not base B. We also notice that if we manage
to make an optimal top-open structure supporting queries in O(logB n

B) I/Os and
queries in O(logB n

B + k
B) I/Os then our 4-sided structure will also become optimal

as it uses the top-open structure as a black box.

1.5 Preliminaries
In this section we will restate, for completeness, the previously known data structures
and techniques which we use or modify in our new contributions. We will describe
(a, b)-trees, due to Hopcroft [AHU74, Sec. 4.9], and the augmentation of them with
secondary structures, priority queues with attrition due to Sundar [Sun89] of which
we will give the details which he left out of his third solution, the double exponential
layout and the functional pointer machine trick.

1.5.1 (a, b)-Tree
The (a, b)-tree is a generalization of (2, 3)-trees [AHU74, Sec. 4.9] invented by Hopcroft
in 1970 and B-trees invented by Bayer and McCreight [BM72]. They provided the
basis for the famous Red-Black tree by Bayer [Bay74]. In contrast to Red-Black trees,
(a, b)-trees only have very few invariants, and it is obvious how to maintain them.

Let a, b ∈ N where 2 ≤ a < b and a ≤ b b+1
2 c, an (a, b)-tree consists of internal

nodes and leaf nodes. An internal node contains l keys k1, . . . , kl and l + 1 child
pointers p1, . . . , pl+1 which are ordered as p1, k1, p2, k2, . . . , pl, kl, pl+1, i.e., where all
keys in child pi are larger than ki−1 for i = 2, . . . , l + 1 and strictly smaller than ki
for i = 1, . . . , l where a− 1 ≤ l ≤ b− 1. A leaf node just contains a single key k. The
invariants for an (a, b)-tree are:

I.1 All internal nodes, except the root have between a and b children.

I.2 The root has at most b children.

I.3 All paths from the root to a leaf have the same length.

Let n the number of leafs of the tree and say the height of the tree, i.e., the length
from the root to any leaf, is h. From I.1 and I.3 we have that ah ≤ n hence h ≤ loga n.
But we also need the tree to be high enough to contain all n leaves so we have n ≤ bh
hence logb n ≤ h. Altogether we have that logb n ≤ h ≤ loga n. Since 2 ≤ a < b the
height of the tree is O(log2 n) and it is balanced.

Searching and Reporting

It is easy to search for a key k in the tree. We start at the root r having keys and
child pointers p1, k1, p2, k2, . . . , pl, kl, pl+1, we find the smallest key ki strictly larger
than k and then recursively search the tree pointed to by pi, if no such key exists
we recurse at pl+1. When we end up at a leaf, we simply return true if k is equal to
the key of the leaf, else we return false. In Figure 1.17 if we search for 7, we follow
the first pointer of the root as 55 is the smallest key strictly larger than 7. Then we
follow the second child, as 15 is the smallest key strictly larger than 7, and finally at
the leaf 7 we report true as its key is the same as the search key. To search for the
predecessor of k we do the same as for search, except at a leaf with key k′ if k′ ≤ k

1.5. Preliminaries 19

we report k′, else we report −∞. In Figure 1.17 if we searched for the predecessor of
8 we would find 7, and if we searched for the predecessor of 4, we will end up at 5
and report −∞ as the predecessor. The successor searches are symmetric.

55

48 84

5 7

77

157

15 48 55 62 77 84 99

62 99

skl pkr

π

πl πr

Figure 1.17: Example of an (2, 4)-tree. Figure 1.18: Range search in an (a, b)-tree.

If we want to do range reporting for all keys in the range [kl, kr] we simply find
the two search paths ππl and ππr to the successor leaf skl of kl less than kr and
the predecessor leaf pkr of kr greater than kl, see Figure 1.18. There are O(b loga n)
subtrees hanging completely inside the range [kl, kr]. For each subtree from left to
right we now simply do a post-order traversal of it, reporting the key of every leaf
that we encounter.

Updates

In order to update the (a, b)-tree the concepts of splitting and joining nodes of the
(a, b)-tree are essential. We will now describe the simple updates of inserting and
deleting a key k. Afterwards we will describe how to augment the (a, b)-tree with
secondary structures.

Insert(k) When inserting a new leaf e with key k we find the leaf of the predecessor
k′ of k. We insert e into the parent u of k′. This might violate the degree constraint
of u so it contains b + 1 children. If this happens we will call the split procedure
for u.

b l2c

u

w1 wg1 z1 zg2

d l2e

p

b l2c

u

w1 wg1 z1 zg2

d l2e

v

p

v

Split

Join

Figure 1.19: Splitting and joining nodes of an (a, b)-tree. Node v in the left side is
only relevant for the join procedure.

Split(u) Let u be an internal node with l children. If a ≤ l ≤ b we do nothing, else
if b + 1 ≤ l we split u’s l children into two groups of size g1 = b l2c and g2 = d l2e,
assign the first group to u and make a new node u′ which we assign the second group
to. We now insert u′ - using the insert procedure where u′ plays the role of e and

20 Chapter 1. Introduction

the key k is the key before g2 - as u’s right sibling into u’s parent p if it exists, else
we make a new node r and make u and u′ the children of r and r will now be the
new root. See Figure 1.19.

Delete(k) We find the leaf e with key k by a search for k. When deleting e from
some internal node u, we might violate the degree constraint of u so it contains
l ≤ a− 1 children. If u is the root node and l ≥ 2, this is not a problem. If u is the
root and l = 1 then we delete u and make its single child the new root. Otherwise
we will call the join procedure on node u.

Join(u) Let u be an internal node with l children. If a ≤ l ≤ b we do nothing, else
if l ≤ a− 1 we join u’s l children with its left or right sibling v, we assume9 without
loss of generality that v is the right sibling of u. We take all of v’s children and make
them the rightmost children of u. If this makes u have between a and b children, we
follow the delete procedure where v plays the role of e, else u has between b+ 1 and
a+ b− 1 children, so we delete node v and call split on u. See Figure 1.19.

Time Bounds

We will now analyse the time bounds of the above procedures. Insert does O(b) work
on a leaf or an internal node and might call split on the parent. Likewise split does
O(b) work on an internal node and might call insert on the parent. Hence since the
height of the tree is O(loga n) and we always move one level op the tree in both
insert and split, the total time usage is O(b loga n).

For delete and join, this is similarly. Delete does O(b) work and might call join
on the parent of the node we delete. Join does O(b) work and might call delete on
a sibling of the node we are joining, or call split on the node we are joining. So in
delete we always goes one node up the tree, and in join we either call delete or split,
which goes one node up the tree. So the total time usage is again O(b loga n).

Range reporting takes O(b loga n) time. Finding the two search paths ππl and
ππr. It takes O(t) time to report the leafs inside the two search paths. So in total
reporting takes O(b loga n+ t) time. Searching is a special case of reporting where
t = 1 so it takes time O(b loga n).

The amortized update times of (a, b)-trees are even better than their worst-case
times of O(b loga n). The amortized update time is O(1) when b ≥ 2a starting from
an empty tree [BF00].

Augmenting the Search Tree

In Chapter 4 we will augment an (a, b)-tree with the PQA’s of Chapter 3 as secondary
structures. For completeness I will state the augmentation theorem of [CLRS01, Sec.
14.2] reformulated here for (a, b)-trees.

Theorem 1.1 (Augmenting (a, b)-Trees). Let f be a field that augments an (a, b)-tree
T having n leaf nodes, let f(u) be the value of the field for subtree u and let s(u) be
the size of subtree u. Assume that the contents of f(u) for any internal node u can
be computed using only the information f(ci) stored in u’s children ci for i = 1, . . . , l
in O(t(s(c1), . . . , s(cl))) time, then the augmented (a, b)-tree can be maintained in
O(t(s(c1), . . . , s(cl)) loga n) time per update, when t(s(c1), . . . , s(cl)) is the time to
compute the information f(u) from f(c1), . . . , f(cl).

9In the other case where v is a left sibling of u we simply swap the roles of u and v.

1.5. Preliminaries 21

Proof. Since the information stored in f(u) only depends on the information in f(ci)
for i = 1, . . . , l and can be recomputed in O(t(s(c1), . . . , s(cl)) time, we can update a
leaf and then we only need to re-compute the information in the f field on all nodes
along the leaf-to-root path, which has length at most O(loga n).

1.5.2 Priority Queues with Attrition
In 1989 Sundar introduced the priority queue with attrition [Sun89] or in short the
PQA. He gave three different worst-case implementations where all operations run
in O(1) time. For the third implementation he only sketched the overall details. We
give them here for completeness and preparation for Chapter 3 where we extend the
structure of this solution to make the PQAs I/O-efficient and support the operation
of concatenation.

Max

Min
Head Tail

K
ey
s

Order

Max

Min
K
ey
s

Head TailOrder

Figure 1.20: Min-PQA. Figure 1.21: Max-PQA.

A priority queue with attrition is a FIFO queue where elements can skip ahead
in the queue and kick out other elements. In a Min-PQA the elements e′ kicked out
are the ones in front of an element e, where e′ ≥ e, these elements e′ are said to be
attrited. See Figure 1.20 where the gray elements are attrited and only the black
elements stay. In a Max-PQA the elements e′ in front of an element e, e′ ≤ e are
attrited. See Figure 1.21 where the gray elements are again attrited. A PQA10 Q
supports the operations:

• Find-Min(Q) returns min(Q).

• Delete-Min(Q) returns min(Q) and removes it from Q. The resulting PQA is
Q′ = Q\{min(Q)} and the old Q is discarded.

• Insert-and-Attrite(Q, e) inserts e at the end of Q and attrites all elements before
e that are larger than e. The resulting PQA is Q′ = {e′ ∈ Q|e′ < e} ∪ {e}, the
old Q is discarded. The elements {e′ ∈ Q|e′ ≥ e} are attrited.

A PQA consists of k + 2 deques of elements; the clean deque C, the buffer deque
B and k dirty deques D1, . . . , Dk. Each deque is sorted in strictly ascending order,
and contains no duplicate elements. We have the following invariants for the deques:

I.1) max(C) < min(B) < min(D1)

I.2) min(D1) is the minimum element in all the dirty queues D1, . . . , Dk.

I.3) |C| ≥
∑k
i=1 |Di|+ k

The implementations of the above three operations uses an auxiliary operation
Bias which will increase the value ∆ = |C| −

∑k
i=1 |Di| − k by one if invariant I.3) is

broken.
10When we write PQA without stating if it is a Min- or a Max-PQA, it is a Min-PQA.

22 Chapter 1. Introduction

Find-Min(Q) We just return the element min(C) which from I.1) and I.2) is the
smallest non-attrited element of Q.

Delete-Min(Q) We delete min(C) from C, if this breaks I.3) then we call Bias(Q)
once.

Insert-and-Attrite(Q, e) We have four cases:

1) e ≤ min(C): we delete C, B, D1, . . . , Dk and make a new C consisting only of
e.

2) min(C) < e ≤ max(C): we delete B, D1, . . . , Dk, rename C to B and make a
new D1 which only contains e, put k = 1 and then we call Bias(Q) twice.

3) max(C) < e < min(D1): we delete all the dirty queues D1, . . . , Dk. If further-
more e ≤ min(B) we also delete B. We make a new D1 which only contains e,
put k = 1 and call Bias(Q) twice.

4) min(D1) < e: we add a new dirty queue Dk+1 only containing e, increase k by
one and call Bias(Q) twice.

Bias(Q) We have three cases, in the case where |B| = 0 and k = 0 we do nothing:

1) |B| > 0: we move min(B) from B onto the end of C, now if min(B) ≥ min(D1)
we discard B.

2) |B| = 0 and k > 1: if max(Dk−1) < min(Dk) we concatenate Dk at the
end of Dk−1 and decrease k by one, else max(Dk−1) ≥ min(Dk) so we delete
max(Dk−1) from Dk−1.

3) |B| = 0 and k = 1: we concatenate D1 at the end of C and make k zero.

It is clear that all the operations use O(1) time. The correctness follows from
noticing that we always maintain invariants I.1)–I.3).

1.5.3 Double Exponential Layout
In the implicit model we cannot change the content of the input words or create new
words, so we cannot build a data structure using numbers and pointers. But there is
a trick that is often used to avoid this. Using two consecutive and distinct elements
x and y in memory, we can pair encode a 0 bit by putting the smallest of x and y
first and the largest second, similarly we can encode a 1 bit by placing the largest
first and the smallest second. This way we can encode a pointer or word of dlogne
bits using 2dlogne elements.

B0 B1 Bm−1 BmBi

Figure 1.22: Double exponential layout of implicit data structures.

A problem arises when our data structure changes size from n to n′ and we have
that dlogne 6= dlogn′e. Then we might need to re-encode all pointers and words
which we would like to avoid. Frederickson solved this problem by use of the double
exponential layout [Fre84]. If the data structure in question supports inserts, deletes
and searches, then we distribute our n input elements over m = dlog logne blocks,
where in each block we build our data structure over the elements in that block. Blocks

1.5. Preliminaries 23

i = 0, . . . ,m− 1 have sizes |Bi| = 22i and block m has size |Bm| = n−
∑m−1
i=0 |Bi|

see Figure 1.22.
To make an insert of an element, we just insert it in block Bm. To search for an

element, we search in each block Bi for i = 0, . . . ,m, if we find the element in any of
these blocks we report it. Finally, when we want to delete an element we first find it,
say it is in block Bi, then we exchange it with an arbitrary element from Bm and
then delete the element from Bm.

This way for any block Bi there is an implicit ni attached to that block which
is ni = 22i , and we can then represent pointers or numbers within block Bi in pair
encoding using 2 · 2i elements.

If an operation of a data structure of size n′ uses O(logc n′) time for c = O(1),
then the total time to perform that operation on all blocks is at most

m∑
i=0

logc 22i =
m∑
i=0

(
2i
)c = O(2cm) = O ((2m)c) = O(logc n)

So there is only a constant factor slow-down for operations taking polylogarithmic
time, using the double-exponential layout.

1.5.4 Functional Pointer Machine Trick
In the FPM model all data structures are confluently persistent automatically because
of the properties of the model. This property enables us to do space savings when
augmenting say an (a, b)-tree. Assume that the secondary structure that we augment
the (a, b)-tree with uses O(t(s(c1), . . . , s(cl))) time to compute the augmentation field
f(u) for a node u with children c1, . . . , cl. Then the extra space usage for augmenting
node u is at most O(t(s(c1), . . . , s(cl))) no matter how large the secondary structure
attached to node u actually is. In other words, we only record the changes required to
combine the structures of c1, . . . , cl into the structure for u, and this saves us space.

24 Chapter 1. Introduction

Chapter 2

Implicit Working-Set
Dictionaries

In this chapter we present a Cache-Oblivious Implicit Working-Set Dictionary, pre-
sented in Section 2.2, this is the first dictionary to attain the working set bound in
the implicit model. To obtain our result we also develop a Cache-Oblivious Implicit
Moveable Dictionary, in Section 2.1, which will make the memory management of
the working-set dictionary easier.

Our moveable dictionary will combine a constant number of previously known
non-moveable dictionaries [FG03] into a moveable structure. Our construction only
gives a constant worst-case access overhead and preserves the cache-oblivious and
implicit properties of [FG03].

Our working-set dictionary will use the moveable dictionary as a black box to
ease the memory management. Our working-set dictionary implicitly partitions the
elements into Θ(log logn) levels and maintains lower bounds on their working-set
numbers. This is enough to give the working-set bound for the search operation, but
not for the predecessor and successor operations where we need the idea of intervals.
We furthermore partition the key space into intervals, which are spread across the
levels. We use these intervals and the lower bounds for each level to support the
predecessor and successor operations within the working-set bound.

2.1 Moveable Dictionaries
In this section we describe an implicit moveable dictionary which can be laid out in
an array in the range [i, j]. We can delete in the left or the right end of the array, such
that the structure then lies in the range [i+1, j] or [i, j−1], respectively. Likewise we
can insert in the left or right end such that the structure then lies in the range [i−1, j]
or [i, j + 1], respectively. The structure supports search, predecessor and successor
operations. All operations runs in O(logn) time and O(logB n) cache-misses where
n = j − i+ 1. The moveable dictionary will be implicit except that it stores O(logn)
extra bits, this requirement is removed in Subsection 2.1.6.

The amortized solution is easy to obtain. We use two of the dictionaries by
Franceschini and Grossi [FG03], from here and onwards we will call such a dictionary
a FG dictionary. One dictionary called R located in the range [r, j] growing to the
right as normal, and one called L located in the range [i, r−1] growing to the left, that
is we have inverted all indices of the original FG dictionary. The Insert-Left operation
inserts its element into L, and the Insert-Right operation, inserts its element into R.
Analogously for Delete-Left and Delete-Right. In the special case where L or R are

25

26 Chapter 2. Implicit Working-Set Dictionaries

RL C

or

Figure 2.1: We have three FG dictionaries L,C and R, where L will always
grow/shrink in the left direction, and R will always grow/shrink in the right direction,
and C will change direction during the execution of the jobs to shrink or grow L or
R.

empty we rebuild the data structure such that L and R have the same size. To search
for an element we search in L and then in R, to find the predecessor/successor of an
element we find the predecessor/successor in L and R and return the largest/smallest
of the two. All operations run in O(logn) amortized time and O(logB n) amortized
cache-misses using the potential function Φ = | |L| − |R| |.

We can de-amortize the construction using incremental rebalancing, and placing
an additional FG dictionary C between L and R, see Figure 2.1. The moveable
dictionary will support the following operations:

• Insert-Left/Right(e): inserts an element e into the dictionary which grows in
the left/right side, respectively.

• Delete-Left/Right(x): deletes the element with key x from the dictionary which
shrinks in the left/right side, respectively.

• Search(x): searches for the element e with key x in the dictionary, and returns
e if it exists and nil otherwise.

• Predecessor(x): finds the predecessor of element x in the dictionary and returns
its position, i.e., the position of element max{e′ ∈ P ∪ {−∞} | e′ < e} is
returned.

• Successor(x): finds the successor of element x in the dictionary and returns its
position, i.e., the position of element min{e′ ∈ P ∪ {∞} | e < e′} is returned.

We have minimum and maximum invariants on the sizes of L and R. If L or R are
close to violating these invariants, say L is getting too big, we start a job to make L
smaller. This job is executed incrementally, so each time an Insert/Delete-Left/Right,
Search, Predecessor or Successor operation is executed we perform a constant number
of steps of the current job. We ensure that there is only one job running at a time,
we do this by adding the remaining jobs to a queue. We also ensure that all jobs
complete before their deadlines. A job reaches its deadline if one of L or R breaks
their size invariants. A job, say for shrinking L, has a deadline which is the time
when L grows larger than we allow it to in the invariants. During the execution of a
job we have an extra dictionary, which can be one of either L′, C ′ or R′, depending
on how far we are in the execution of the current job, this will be further clarified in
Subsection 2.1.2.

2.1.1 Invariants
We maintain the following invariants for the moveable dictionary:

I.1 1
24n ≤ |L|+ |L

′|, |R|+ |R′| ≤ 9
24n.

I.2 The job queue has size at most 2.

I.3 All jobs finish before their deadline

2.1. Moveable Dictionaries 27

In Subsection 2.1.3 we use these invariants to prove correctness of our dictionary.
We observe that from I.1 and the identity n = |L|+ |L′|+ |C|+ |C ′|+ |R|+ |R′| we
get 6

24n ≤ |C|+ |C
′| ≤ 22

24n.

2.1.2 Operations and Jobs
We will now describe the search and update operations of the moveable dictionary.
The Insert- and Delete-left operations and Grow- and Shrink-Left jobs described here
have analogous right-versions.

Search(x)

We always have the structures L,C and R, and possibly one of the structures L′, C ′
or R′. So we have at most 4 structures and we search them all, if we find the element
we search for we return a pointer to it, otherwise we return nil.

Predecessor/Successor(x)

As in Search we search for the predecessor/successor in L,C,R and possibly one of
L′, C ′ or R′, then we return the largest/smallest of the 4 candidates.

Insert-Left(e)

We insert e into L, then if |L| ≥ 7
24n we enqueue a Shrink-Left job unless one is

already in the queue.

Delete-Left(x)

We delete the element with key x from L. We can do this even though the element
we want to delete resides in L′, C, C ′, R or R′ by swapping the element we want to
delete with one from L. We can swap elements by two deletions and two insertions.
Then if |L| ≤ 3

24n we enqueue a Grow-Left job unless one is already in the queue.

Grow-Left

The Grow-Left job performs the following steps, see Figure 2.2:

1) If C is not growing to the left then turn C around so it grows toward L. We
turn C around by creating a new C ′ at the growing end of C which grows
towards C, into which we insert all the elements of C, one element at a time.

2) Construct L′ at the beginning of L, growing to the right, of size 2
24n, by taking

elements from C.

3) Turn L′ around so it faces L, like we turned C around in 1).

4) Continue taking an element from C putting it into L′ so it expands into L.
The element overridden in L is moved into the empty place in C where we
took the element to place in L′. We do this by splitting L into two pieces
by address-mapping, see 3) and 4) in Figure 2.2. When we have moved L
completely to the right of L′, then swap the names of L and L′.

5) Merge L′ back into C, by deleting an element from L′ and inserting it into C
until L′ is empty.

28 Chapter 2. Implicit Working-Set Dictionaries

Sh
rin

k-
Le

ft

Gr
ow

-L
ef

t

RL C

RL C

RL C

RL C

1)

2)

3)

4)

5)
RL C

RL C

RL C

RL C

RL C

RL C

RL′ C

RL C

L′

L′

L′

L′

L′

L′

L′

L

1)

2)

3)

4)

5)

Figure 2.2: The steps of the two jobs Grow- and Shrink-Left, notice that they are
almost each other’s inverse. (Left) The five steps of the Grow-Left job are shown,
notice that in 4) the arrow means that we have split L up into two by use of address-
mapping. (Right) The five steps of the Shrink-Left job are shown, in step 3) we have
again used address-mapping to split L in two.

Shrink-Left

The Shrink-Left job consists of the following steps, see Figure 2.2 and notice the
similarity to the Grow-Left job. The Shrink-Left job is the “inverse” job of Grow-Left:

1) If C is not growing to the left then turn C around so it grows toward L.

2) Create L′ by deleting 5
24n elements from C, one element at a time and inserting

them into L′, which we create to the left of C.

3) Swap the names of L and L′. Delete an element from L′ and insert it into C so
it expands into L, then move the element overridden in L to the empty space
to the left of L′, do this one element at a time until L is moved completely to
the left of L′.

4) Turn L′ around so it faces C.

5) Merge L′ back into C.

2.1.3 Correctness
The correctness of the Search and Predecessor/Successor operations are clear as we do
a predecessor/successor operation on each of the FG dictionaries L,L′, C, C ′, R and
R′, that exists, and return the resulting/largest/smallest element found, respectively.
Similarly granted that L and R exists and contains elements, the Delete-Left/Right
and Insert-Left/Right operations are correct. The only thing we need to prove is that
the invariants I.1–I.3 are maintained at all times. Before we prove that I.1–I.3 are
maintained, we will first prove some simple observations, and then use them to prove
that the invariants are maintained.

2.1. Moveable Dictionaries 29

For a job j we define ninit(j) to be the value of n when j is initialized, n0(j) to
be the value of n when j starts running and nfinish(j) the value of n when j finished.
We will also let 0 < β ≤ 1 be a constant which we will give an exact value later.

Observation 2.1. If we perform 5(1+β)
β primitive steps of a job j at each update,

then the job will finish within βn0(j) updates.

Proof. A primitive step is the movement of one element from one dictionary to
another. We want the job to finish within βn0(j) updates, from this bound we know
that during the execution of a job at most βn0(j) updates can occur, hence the
dictionary has size at most (1 + β)n0(j). Each of the five steps in a grow or shrink
job takes at most (1 + β)n0(j) primitive steps, and so the whole job finishes in at
most 5(1 + β)n0(j) primitive steps. If we perform 5(1+β)

β primitive steps per update,
then the job finishes within βn0(j) updates.

Observation 2.2. Any job j under execution will finish within the next βn updates.

Proof. If the job in question has been running for d updates then from Observation 2.1
it needs to run for an additional

βn0(j)− d
(∗)
≤ β(n0(j)− d)

(∗∗)
≤ βn

updates to finish, where we in (∗) used the fact that β ≤ 1 and in (∗∗) we used the
fact that d updates to a dictionary of size n0(j) will result in a dictionary of size
n ∈ [n0(j)− d, n0(j) + d].

Using Observations 2.1–2.2 we will now prove that I.1–I.3 are always true, which
will prove the correctness of the moveable dictionary.

Proof of I.2

We prove that the job queue has size at most 2. If a Grow-Left job is enqueue
there needs to be performed at least 7

24n−
3

24n = 4
24n Insert-Left updates before a

Shrink-Left job is required, and vice-versa. Likewise if a Shrink-Right job is enqueued
there needs to be performed at least 4

24n Delete-Right updates before a Grow-Right
job is required. So if we ensure that a left and a right job can be performed within
4

24n updates, then we will never have more than two jobs queued at a time. From
Observation 2.2 it takes at most βn+β(n+nβ) updates to run two jobs. So we make
the constraint that βn+β(n+nβ) ≤ 4

24n which means that we require β2 + 2β ≤ 4
24 .

Proof of I.1

We prove that 1
24n ≤ |L|+ |L

′|, |R|+ |R′| ≤ 9
24n. If no jobs are queued or running

then we have from the checks in insert and delete that 1
24n ≤

3
24n ≤ |L| ≤

7
24n ≤

9
24n

(this proof is completely symmetric for R).
Now say 7

24n+ d = |L| for d ≥ 1 then we know that a Shrink-Left job is either
running or queued. Let j1 be the job that is currently running and j2 the queued
Shrink-Left job. Then tfinish(j2) ≤ βn− d+ β(n+ βn) as job j1 needs to run for at
most βn− d updates more to finish and j2 then needs to run for at most β(n+ βn)
updates more to finish. We also have that ninit(j2)− d ≤ n ≤ ninit(j2) + d as it is

30 Chapter 2. Implicit Working-Set Dictionaries

only d updates since j2 was created. When j2 is finished we have

|L| ≤ 5
24ninit(j2) + tfinish(j2)

≤ 5
24ninit(j2) + (β2 + 2β)n− d

≤ 5
24(n+ d) + (β2 + 2β)n− d

≤ 5
24n+ d+ (β2 + 2β)n− d

(∗)
≤ 6

24n

where we in (∗) made the constraint that β2+2β ≤ 1
24 . We also have d ≤ (β2+2β)n ≤

1
24n. So at all times we have that |L| ≤ 8

24n ≤
9

24n.
Now say 3

24n = |L| + d for d ≥ 1 then we know that a Grow-Left job is either
running or queued. Let j1 be the job that is currently running and j2 the queued
Grow-Left job. Then tfinish(j2) ≤ βn− d+ β(n+ βn) as job j1 needs to run for at
most βn− d updates more to finish and j2 then needs to run for at most β(n+ βn)
updates more to finish. We also have that ninit(j2)− d ≤ n ≤ ninit(j2) + d as it is
only d updates since j2 was created. When j2 is finished we have

|L| ≥ 5
24ninit(j2)− tfinish(j2)

≥ 5
24ninit(j2)− (β2 + 2β)n+ d

≥ 5
24(n− d)− (β2 + 2β)n+ d

≥ 5
24n− d− (β2 + 2β)n+ d

(∗)
≥ 4

24n

where we in (∗) again made the constraint that β2 + 2β ≤ 1
24 . We again have

d ≤ (β2 + 2β)n ≤ 1
24n. So at all times we have that |L| ≥ 2

24n ≥
1

24n.

Proof of I.3

We prove that all jobs finish before their deadlines. When a job j2 is created, then
there might be at most one other job j1 which is currently running. From Observation
2.2 we know that both jobs finish in at most βn+β(n+βn) updates, and j2’s deadline
occurs after 9−7

24 n = 3−1
24 n updates. So if we require that βn + β(n + βn) ≤ 2

24n,
which means that β2 + 2β ≤ 2

24 then all jobs will finish before their deadline.
We have proved all invariants I.1–I.3 under the condition that β2 + 2β ≤ 1

24 . If
we chose β = 1

49 this constraint is satisfied and from Observation 2.1 we need to
perform 5(1+β)

β = 250 steps per operation on the moveable dictionary to maintain
I.1–I.3.

2.1.4 Running Time
All we require of the black box structure we use, that is the FG dictionary, is
that it has an insert, delete, search, predecessor and successor operation, so lets
assume these use time i(n), d(n), s(n), pred(n) and succ(n), respectively. Then all
update operations on our structure run in O(i(n) + d(n)) time, as we use the update

2.1. Moveable Dictionaries 31

operations on the black box structure a constant number of times for each of our
update operations. Using the FG dictionary from [FG03] we get a time bound of
O(logn) for all our update operations, and the time for Search, Predecessor and
Successor are also O(s(n)), O(pred(n)) and O(succ(n)), respectively.

2.1.5 Cache-Oblivious

We will now show that the implicit moveable dictionary as presented in the previous
sections is in fact cache-oblivious and has a worst-case running time of O(logB n)
cache-misses per operation. We will now go through each operation and look at it
from a cache-oblivious viewpoint.

All operations: Search, Predecessor, Insert-Left, Delete-Left, Insert-Right and Delete-
Right only use a constant number of calls to operations on the FG dictionary, and as
these only incur O(logB n) cache-misses they have the same bound for our moveable
dictionary. So we only need to take a closer look at the jobs Grow-Left and Shrink-Left
(their right versions are analogously so we ignore these).

Grow-Left and Shrink-Left

The Grow-Left job consists of: 1) we turn C around and we simply do this by removing
the right-most element and making a new FG dictionary C ′ containing it, the rest of
the elements in C we also put into C ′ which grows to the left. As we simply perform
a constant number of the FG operations which incurs O(logB n) cache misses per
step, so does 1). In 2) we just take out some elements of C, which we call L′, and 3)
turns L′ around like we did with C in 1), so this also incurs O(logB n) cache-misses
per step. In 4) we split the FG dictionary L into two parts, but this only incurs twice
as many cache-misses when we perform Search, Predecessor and Successor operations
running on L while L is split in two (it is the same when we split C or R). Here each
step also incurs O(logB n) cache-misses. Finally in 5) we just take all elements of L
and insert into C, which again only incurs O(logB n) cache-misses per step.

So all in all the Grow-Left job incurs O(logB n) cache-misses per step, and as the
Shrink-Left job is just the Grow-Left job run backwards (seen from a cache-oblivious
viewpoint) it will also just incur O(logB n) cache-misses per step.

2.1.6 Making the Dictionary Implicit

We now remove the requirement of the O(logn) extra bits of memory between
operations, which we used to remember sizes, directions, starting addresses and
address-splits of the used FG dictionaries. Doing this makes our moveable dictionary
implicit and hence it does not use any extra space between operations. In the
moveable dictionary we need to store the size and starting positions of L,C and R,
along with the direction of C, and furthermore when a job is running we also need
to store the size, starting position and direction of one of L′, C ′ or R′ along with the
memory-mapping split we make of L or L′ (R and R′ in the right versions). We can
easily pair encode this in O(logn) pairs of elements. We will call this list of elements
D and we will store them just to the left of L.

Now depending on which of the operations Insert-Left, Delete-Left, Insert-Right
and Delete-Right we should perform we have to threat D differently. Lets say that
we need to store c words in D then we need |D| ≥ 2cdlogne, but we instead put
|D| = d2c(log(n) + 1)e ≥ 2cdlogne as this will make |D| make smaller jumps in size.
Now for each operation we do:

32 Chapter 2. Implicit Working-Set Dictionaries

• Insert-Left(e): If d2c(log(n+ 1) + 1)e > d2c(log(n) + 1)e then we insert e into D
so it grows to the left, and re-encode D. Else we move the rightmost element
of D to the left side and re-encode D, and then we insert e into L as normal.

• Delete-Left(x): If d2c(log(n− 1) + 1)e < d2c(log(n) + 1)e then we just delete
the element with key x that we want to delete1 from D, so it shrinks to the
left. Else we delete the element with key x from L as normal and move the
leftmost element of D to the right of D and re-encode D.

• Insert-Right(e): If d2c(log(n + 1) + 1)e > d2c(log(n) + 1)e then we delete a
element g from L and insert it into D and re-encode D. In both cases we then
insert e into R like normal.

• Delete-Right(x): If d2c(log(n − 1) + 1)e < d2c(log(n) + 1)e then we delete a
element g from D and insert it into L and re-encode D. In both cases we then
delete the element with key x from R as normal.

When performing Search, Predecessor or Successor operations, we also scan through
D to determine if the element which we are looking for is located in D.

Notice that having D will only incur an additive overhead of O(logn) time for any
operation and O(logn

B) = O(logB n) cache-misses, so all operations on the moveable
dictionary will still take O(logn) time and O(logB n) cache-misses.

2.2 Working-Set Dictionaries
In this section we will construct our implicit working-set dictionary using the moveable
dictionary from Section 2.1 as a black box. Our dictionary will support the following
operations:

• Search(e) determines if e is in the dictionary, if so its working-set number is
set to 0.

• Predecessor(e) will find max{e′ ∈ P ∪ {−∞} | e′ < e}, without changing any
working-set numbers.

• Successor(e) will find min{e′ ∈ P ∪ {∞} | e < e′}, without changing any
working-set numbers.

• Insert(e) inserts e into the dictionary with a working-set number of 0, all other
working-set numbers are increased by one.

• Delete(e) deletes e from the dictionary, and does not change the working-set
number of any element.

Our dictionary will maintain lower bounds on the working set numbers of each
element, this will create a partition of the elements into Θ(log logn) levels. These
levels are enough to guarantee the working set bound for the Search operation, but
not for the Predecessor nor Successor operations. To get the working set bound for
these operations we will introduce another idea, we will furthermore partition the
key space into disjoint intervals that span the whole key space. Each interval will
then be placed within exactly one level, and will give use a termination criteria when
doing predecessor and successor searches.

Our dictionary will furthermore be cache-oblivious due to our use of the move-
able dictionary as a black box. The dictionary supports the operations Insert and

1We assume that the element with key x we want to delete lies in D, if this is not true we can
make it so by swapping the element with key x with some element from D.

2.2. Working-Set Dictionaries 33

B0

1, 2, , n

Arriving Resting Waiting Helping Climbing Guarding

B1 Bi Bm−1 Bm.

Di Ai Ri Wi Hi Ci Gi

Figure 2.3: Overview of how the working set dictionary is laid out in memory. The
dictionary grows and shrinks to the right when elements are inserted and deleted.

Delete in time O(logn) and O(logB n) cache-misses, Search, Predecessor and Succes-
sor in time O(log min(`p(e), `e, `s(e))), O(log `p(e)) and O(log `s(e)), and cache-misses
O(logB min(`p(e), `e, `s(e))), O(logB `p(e)) and O(logB `s(e)), respectively, where p(e)
and s(e) are the predecessor and successor of e, respectively.

2.2.1 Structure
Our structure consists of m = Θ(log logn) blocks B0, . . . , Bm, each block Bi is of
size O(22i+k), where k is a constant. Elements in Bi have a working-set number of at
least 22i+k−1 . The block Bi consists of an array Di of wi = d·2i+k elements, where d is
a constant, and moveable dictionaries Ai, Ri,Wi, Hi, Ci and Gi, for i = 0, . . . ,m− 1,
see Figure 2.3. For block Bm we only have Dm if |Bm\{min(P),max(P)}| ≤ wm,
otherwise we have the same structures as for the other blocks. We use the block Di

to encode the sizes of the movable dictionaries Ai, Ri,Wi, Hi, Ci and Gi so that we
can locate them. Discussion of further details of the memory layout is postponed to
Subsection 2.2.5.

We call elements in the structures Di and Ai for arriving points, and when making
a non-arriving point arriving, we will put it into Ai unless specified otherwise. We
call elements in Ri for resting points, elements in Wi for waiting points, elements
in Hi for helping points, elements in Ci for climbing points and elements in Gi for
guarding points.

Crucial to our data structure is the partitioning of [min(P),max(P)] into intervals.
Each interval is assigned to a level and level i corresponds to block Bi. Consider
an interval lying at level i. The endpoints e1 and e2 will be guarding points stored
at level 0, . . . , i. All points inside of this interval will lie in level i and cannot be
guarding points, i.e.,]e1, e2[∩(

⋃
j 6=iBj ∪Gi) = ∅. We do not allow intervals defined

by two consecutive guarding points to be empty, they must contain at least one
non-guarding point. We also require min(P) and max(P) to be guarding points in
G0 at level 0, but they are special as they do not define intervals to their left and
right, respectively. A query considers B0, B1, . . . until Bi where the query is found
to be in a level i interval where the answer is guaranteed to have been found in
blocks B0, . . . , Bi.

The basic idea of our construction is the following. When searching for an
element, it is moved to level 0. This can cause block overflows (see invariants I.5–I.9
in Subsection 2.2.3), which are handled as follows. The arriving points in level i have
just entered from level i− 1, and when there are 22i+k of them in Ai they become
resting. The resting points need to charge up their working-set number before they
can begin their journey to level i+1. They are charged up when 22i+k further arriving
points have come to level i, then the resting points become waiting points. Waiting
points have a high enough working-set number to begin the journey to level i+ 1,

34 Chapter 2. Implicit Working-Set Dictionaries

0

1

2

.

. . .

.

. . .

Guarding Arriving Resting Waiting Helping ClimbingLegend:

Figure 2.4: The structure of the levels for a dictionary. The levels are indicated to
the left.

but they need to wait for enough points to group up close together in key space so
that they can start the journey. When a waiting point is picked to start its journey
to level i+ 1 it becomes a helping or climbing point, and every time enough helping
points have grouped up, i.e., there are at least c = 5 consecutive of them, then they
become climbing points and are ready to go to level i+ 1. The climbing points will
then incrementally be going to level i + 1. See Figure 2.4 for an example of the
structure of the intervals.

2.2.2 Notation
Before we introduce the invariants we need to define some notation. For a subset
S ⊆ P , we define pS(e) = max{p ∈ S∪{−∞} | p < e} and sS(e) = min{s ∈ S∪{∞} |
e < s}. When we write S≤i we mean

⋃i
j=0 Sj where Sj ⊆ P for j = 0, . . . , i.

For S ⊆ P , we define GILS(e) = S∩]pP\S(e), e[to be the Group of Immediate
Left points of e in S which does not have any other point of P\S in between them,
see Figure 2.5. Similarly we define GIRS(e) = S∩]e, sP\S(e)[to the right of e. We
will notice that we will never find all points of GILS(e) unless |GILS(e)| < c, the
same applies for GIRS(e). For S ⊆ P , we define FGLS(e) = S∩]pP\S(pS(e)), pS(e)]
to be the First Group of points from S Left of e, i.e., the group does not have any
points of P\S in between its points, see Figure 2.5. Similarly we define FGRS(e) =
S ∩ [sS(e), sP\S(sS(e))[. We will notice that we will never find all points of FGLS(e)
unless |FGLS(e)| < c, the same applies for FGRS(e).

We will sometimes use the phrasings a group of points or e’s group of points. This
refers to a group of points of the same type, i.e., arriving, resting, etc., and with no
other types of points in between them. Later we will need to move elements around
between the structures Di, Ai, Ri, Wi, Hi, Ci and Gi. For this we have the notation
X

h→ Y , meaning that we move h arbitrary points from X into Y , where X and Y
can be one of Di, Ai, Ri, Wi, Hi, Ci and Gi for any i.

When we describe the intervals we let]a, b] be an interval from a to b that is

P\S

pP\S(e2) e2 e1pP\S(pS(e1)) pS(e1)

GILS(e2) FGLS(e1)

PSLegend:

Figure 2.5: Here is an illustration of GIL and FGL. Notice that GILS(e1) = ∅ whereas
FGLS(e1) 6= ∅.

2.2. Working-Set Dictionaries 35

open at a and closed at b. We let (a, b) be an interval from a to b that can be open
or closed at a and b. We use this notation when we do not care if a and b are open or
closed. In the operations updating the intervals we will sometimes branch depending
on which type an interval is. For clarity we will explain how to determine this given
the level i of the interval and its two endpoints e1 and e2. The interval (e1, e2) is of
type [e1, e2) if e1 ∈ Gi, else e1 ∈ G≤i−1 and the interval is of type]e1, e2). This is
symmetric for the other endpoint e2.

2.2.3 Invariants
We will now define the invariants which will help us define and prove correctness of our
interface operations: Insert(e), Delete(e), Search(e), Predecessor(e) and Successor(e).
We maintain the following invariants which uniquely determine the intervals2:

I.1 A guarding point is part of the definition of at most two intervals3, one to
its left, at level i and one to its right at level j, where i 6= j. The guarding
point e lies at level min(i, j). The interval at level min(i, j) is closed at e, and
the interval at level max(i, j) is open at e. We also require that min(P) and
max(P) are guarding points stored in G0, but they do not define an interval
to their left and right, respectively, and the intervals they help define are open
in the end they define. A non-guarding point intersecting an interval at level
i, lies in level i. Each interval contains at least one non-guarding point. The
union of all intervals gives] min(P),max(P)[.

I.2 Any climbing point, which lies in an interval with other non-climbing points,
is part of a group of at least c points. In intervals of type [e1, e2] which only
contain climbing points, we allow there to be less than c of them.

I.3 Any helping point is part of a group of size at most c − 1. A helping point
cannot have a climbing point as a predecessor or successor. An interval of type
[e1, e2] cannot contain only helping points.

We maintain the following invariants for the working-set numbers:

I.4 Each arriving point in Di and Ai has a working set value of at least 22i−1+k ,
arriving points in D0 and A0 have a working-set value of at least 0. Each resting
point in Ri will have a working-set value of at least 22i−1+k + |Ai|, resting points
in R0 have a working-set value of at least |A0|. Each waiting, helping or climbing
point in Wi, Hi and Ci, respectively, will have a working-set value of at least
22i+k . Each guarding point in Gi, who’s left interval lies at level i and right
interval lies at level j, has a working set value of at least 22max(i,j)−1+k .

We maintain the following invariants for the size of each block and their components:

I.5 |D0| = min(|B0\{min(P),max(P)}|, w0) and |Di| = min(|Bi|, wi) for i =
1, . . . ,m.

I.6 |Ri| ≤ 22i+k for i = 0, . . . ,m and |Wi| + |Hi| + |Ci| 6= 0 ⇒ |Ri| = 22i+k for
i = 0, . . . ,m.

I.7 |Ai|+ |Wi| = 22i+k for i = 0, . . . ,m− 1, and |Am|+ |Wm| ≤ 22m+k .
2We assume that |P | = n ≥ 2 at all times if this is not the case we only store G0 which contains

a single element and we ignore all invariants.
3Only the smallest and largest guarding points will not participate in the definition of two

intervals, all other guarding points will.

36 Chapter 2. Implicit Working-Set Dictionaries

I.8 |Ai| < 22i+k for i = 0, . . . ,m.

I.9 |Hi|+ |Ci| = 4c22i+k + ci, where ci ∈ [−c, c], for i = 0, . . . ,m− 1.

From the above invariants we have the following observation:

O.1 From I.1 all points in Gi are endpoints of intervals in level i, and each interval
has at most two endpoints. Hence for i = 0, . . . ,m we have that

|Gi| ≤ 2(|Di|+ |Ai|+ |Ri|+ |Wi|+ |Hi|+ |Ci|)
(∗)
≤ (4 + 2d+ 8c) · 22i+k + 2c ,

where we in (∗) we have used I.5, I.6, I.7 and I.9.

From I.1 we have the following lemma.

Lemma 2.1. Let e be an element, e1 = pG≤i(e), e2 = sG≤i(e), I(e1, e2, i) =
]e1, e2[∩

⋃i
j=0 Bj and let i be the smallest integer for which I(e1, e2, i) 6= ∅, then

1. (e1, e2) is an interval at level i if e is non-guarding and

2. (e1, e) or (e, e2) is an interval at level i if e is guarding.

Proof. Assume that i is the minimal i that fulfills I(e1, e2, i) 6= ∅, where e1 = pG≤i(e)
and e2 = sG≤i(e). We will have two cases depending on if e is guarding or not.

Lets first handle case 2) where e is guarding and hence in the dictionary: Since e
is in the dictionary and e1 < e < e2 we have from the minimality of i that e lies in
level i, and from I.1 e is then part of an interval lying in level i either to the left or
to the right. Say e is part of an interval to the left i.e., the interval (e′1, e). If e1 < e′1
then this would contradict that e1 = pG≤i(e) hence e′1 ≤ e1, but since e′1 defines the
interval (e′1, e) left of e then e′1 is also the predecessor of e and we have that e′1 = e1.
So we know that (e1, e) defines an interval at level i. The argument for (e, e2) is
symmetric.

In the case 1) e is non-guarding and e may lie in the dictionary or not: Since
e1 < e < e2 we have from the minimality of i that e lies in level i, hence from I.1 we
have that the interval (e1, e2) lies at level i.

2.2.4 Operations
We will briefly give an overview of the helper operations and state their require-
ments (denoted as R:) and guarantees (denoted as G:), then we will describe the
helper and interface operations in details. Search(e) uses the helper operations as
follows: when a search for element e is performed then the level i where e lies, is found
using Find, then e and O(1) of its surrounding elements are moved into level 0 by use
of Move-Down while maintaining I.1–I.4. Calls to Fix for the levels we have altered
will ensure that I.5–I.8 will be maintained, finally a call to Rebalance-Below(i−1) will
ensure that I.9 is maintained by use of Shift-Up(j) which will take climbing points
from level j and make them arriving in level j + 1 for j = 0, . . . , i− 1. Insert(e) uses
Find to find the level where e intersects an interval, then uses Fix to ensure the size
constraints and finally e is moved to level 0 by use of Search.

• Find(e) - returns the level i of the interval that e intersects along with e’s type
and whatever e is in the dictionary or not. [R&G: I.1–I.9]

• Fix(i) - moves points around inside of Bi to ensure the size invariants for each
type of point. Fix(i) might violate I.9 for level i. [R: I.1–I.4 and that there exist
c̃1, . . . , c̃6 such that |Di|+ c̃1, |Ai|+ c̃2, |Ri|+ c̃3, |Wi|+ c̃4, |Hi|+ c̃5, |Ci|+ c̃6
fulfill I.5–I.8, where |c̃i| = O(1) for i = 1, . . . , 6. G: I.1–I.8].

2.2. Working-Set Dictionaries 37

Find/Predecessor/Successor(e)

i+ 2

i+ 1

i

p1e1
1

p2 e2
1

p3

ee3
1 e3

2

s3

s2e2
2

s1e1
2

. . .

. . .

. . .

. . .

.

. . .

Guarding Arriving Resting Waiting Helping ClimbingLegend:

Figure 2.6: The last three iterations of the while-loop of Find(e), Predecessor(e) and
Successor(e).

• Shift-Down(i) - will move at least 1 and at most c points from level i into
level i− 1. [R: I.1–I.8 and |Hi|+ |Ci| = 4c22i+k + c′i, where 0 ≤ c′i = O(1). G:
I.1–I.8].

• Shift-Up(i) - will move at least 1 and at most c points from level i into level i+1.
[R: I.1–I.8 and |Hi|+ |Ci| = 4c22i+k + c′i, where c ≤ c′i = O(1). G: I.1–I.8].

• Move-Down(e, i, j, tbefore, tafter) - If e is in the dictionary at level i it is moved
from level i to level j, where i ≥ j. The type tbefore is the type of e before the
move and tafter is the type that e should have after the move, unless i = j in
which case e will be made arriving in level j. [R&G: I.1–I.8].

• Rebalance-Below(i) - If any cl > c for l = 0, . . . , i Rebalance-Below(i) will correct
it so I.9 will be fulfilled again for l = 0, . . . , i. [R: I.1–I.8 and

∑i
l=0 slack(cl) =

O(1), where

slack(cl) =
{

0 if cl ∈ [−c, c] ,
|cl| − c otherwise .

G: I.1–I.9].

• Rebalance-Above(i) - If any cl < −c for l = i, . . . ,m − 1 Rebalance-Above(i)
will correct it so I.9 will be fulfilled again for l = i, . . . ,m− 1. [R: I.1–I.8 and∑m−1

l=i slack(cl) = O(1). G: I.1–I.9].

Find(e)

We start at level i = 0. If e < min(P) or max(P) < e we return false and 0. For each
level we let e1 = pG≤i(e), e2 = sG≤i(e), p = pBi\Gi(e) and s = sBi\Gi(e). We find p
and s by querying each of the structures Di, Ai, Ri,Wi, Hi and Ci, we find e1 and e2
by querying Gi and comparing with the values of e1 and e2 from level i− 1. While
p < e1 and e2 < s we continue to the next level, that is we increment i. Now outside
the loop, if e ∈ Bi we return i, the type of e and the boolean true as we found e,
else we return i and false as we did not find e. See Figure 2.6 for an example of the
execution.

38 Chapter 2. Implicit Working-Set Dictionaries

Delete(e) Shift-down(i)

Shift-up(i)

Move-down(e, i, j, ·, ·)

Insert(e)

Non-guarding

Guarding

Min-guarding

Non-guarding

Guarding

e1 e2ei
l

r

l

h

r

i

i + 1

i

i

i

0

i

i− 1

r

i

l

j

h

l
r

i

j

e′′

e′e

t1 t2

s1 s2

hl
cr

e1 p2p1

cl
e e2

e2e1

s1s2s3s4

s5

cr

e2e1 e

crcl

e1 e2a

e1 e2

e1

e2e

cr

crcl

e

cl

p2p1 p1p2

p2p1

s1 s2

. . .

. . .

. . .

. . .
. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Guarding Arriving Resting Waiting Helping ClimbingLegend:

Figure 2.7: Here we see illustrations of how we maintain the intervals when updating
the intervals. These only show single instances of each of the update operations many
different cases.

Predecessor/Successor(e)

We describe the Predecessor (and Successor) operation. We start at level i = 0. If
e < min(P) then return −∞ (min(P)). If max(P) < e then return max(P) (∞). For
each level we let e1 = pG≤i(e), e2 = sG≤i(e) p = pBi\Gi(e), and s = sBi\Gi(e). While
p < e1 and e2 < s we continue to the next level, that is we increment i. When the
loop breaks we return max(e1, p) (min(s, e2)). See Figure 2.6 for an example of the
execution.

Insert(e)

If e < min(P) we insert e as guarding at level 0 and make min(P) arriving at level 0,
call Fix(0), Rebalance-Below(m) and return. If max(P) < e we insert e as guarding
at level 0 and make max(P) arriving at level 0, call Fix(0), Rebalance-Below(m) and
return.

Let cl = GILCi(e), cr = GIRCi(e), hl = GILHi(e) and hr = GIRHi(e). We find the
level i of the interval (e1, e2) which e intersects using Find(e) and let e1 = pG≤i(e),
e2 = sG≤i(e). See Figure 2.7.

If e is already in the dictionary we give an error. If |cl| > 0 or |cr| > 0 or (e1, e2)
is of type [e1, e2] and does not contain non-climbing points then insert e as climbing
at level i. Else if |hl|+ 1 + |hr| ≥ c then insert e as climbing at level i and make the
points in hl and hr climbing at level i. Else insert e as helping at level i. Finally we
call Rebalance-Below(m) and then Search(e) to move e from the current level i down
to level 0.

2.2. Working-Set Dictionaries 39

Search(e)

We first find e’s current level i and its type t, by a call to Find(e). If e is in the
dictionary then we call Move-Down(e, i, 0, t, arriving) which will move e from level
i down to level 0 and make it arriving, while maintaining I.1–I.8, but I.9 might be
broken so we finally call Rebalance-Below(i− 1) to fix this.

Fix(i)

In the following we will be moving elements around between Di, Ai, Ri, Wi, Hi and
Ci. The moves Ai → Ri and Ri → Wi, i.e., between structures which are next to
each other in the memory layout, are simply performed by deleting an element from
the left structure and inserting it into the right structure. The moves Wi → Hi ∪ Ci
and the other way around Hi ∪ Ci →Wi will be explained below.

If |Di| > wi then perform Di
h→ Ai where h = |Di| − wi. If |Di| < wi and

|Bi\{min(P), max(P)}| > |Di| then perform Hi ∪ Ci
h1→ Wi, Wi

h2→ Ri, Ri
h3→ Ai

and Ai
h4→ Di where h1 = min(wi − |Di|, |Hi|+ |Ci|), h2 = min(wi − |Di|, |Wi|+ h1),

h3 = min(wi − |Di|, |Ri|+ h2) and h4 = min(wi − |Di|, |Ai|+ h3).
If |Wi|+|Hi|+|Ci| 6= 0 and |Ri| < 22i+k then perform Hi∪Ci

h1→Wi andWi
h2→ Ri

where h1 = min(22i+k − |Ri|, |Hi| + |Ci|) and h2 = min(22i+k − |Ri|, |Wi| + h1). If
|Ri| > 22i+k then perform Ri

h1→ Ai where h1 = |Ri| − 22i+k .
If i < m and |Ai| + |Wi| < 22i+k then perform Hi ∪ Ci

h1→ Wi, where h1 =
min(22i+k−(|Ai|+|Wi|), |Hi|+|Ci|). If |Ai|+|Wi| > 22i+k then performWi

h1→ Hi∪Ci
where h1 = min(|Ai|+ |Wi| − 22i+k , |Wi|).

If |Ai| ≥ 22i+k then let h1 = |Ai| − 22i+k , delete Wi as it is empty and rename Ri
to Wi. Now move h1 elements from Ai into a new moveable dictionary X, rename
Ai to Ri, rename X to Ai and perform Wi

h1→ Hi ∪ Ci.

Performing Wi → Hi ∪ Ci: Let w = sWi(−∞), cl = GILCi(w), cr = GIRCi(w),
hl = GILHi(w), hr = GIRHi(w), e1 = pG≤i(w) and e2 = sG≤i(w). If |cl| > 0 or
|cr| > 0 or (e1, e2) is of type [e1, e2] and only contains climbing points then make
w climbing at level i. Else if |hl|+ 1 + |hr| ≥ c then make hl, w and hr climbing at
level i. Else make w helping at level i.

Performing Hi ∪Ci →Wi: Let w be the minimum element of sHi(−∞) and sCi(−∞),
and let cr = GIRCi(w). Make w waiting at level i. If w was climbing and |cr| < c
then make cr helping at level i.

Shift-Down(i)

We move at least one element from level i into level i− 1, see Figure 2.7. If |Di| <
wi then we let a be some element in Di. If |Di| < |Bi| then: if |Ai| = 0 we
perform4 Hi ∪ Ci

h1→Wi, Wi
h2→ Ri and Ri

h3→ Ai, where h1 = min(1, |Hi| + |Ci|),
h2 = min(1, |Wi| + h1) and h3 = min(1, |Ri| + h2), now we know that |Ai| > 0
so let a = sAi(−∞), i.e., a is the leftmost arriving point in Ai at level i. We call
Move-Down(a, i, i− 1, arriving, climbing).

4The move Hi ∪ Ci
l→Wi will be performed the same way as we did it in Fix.

40 Chapter 2. Implicit Working-Set Dictionaries

Shift-Up(i)

Assume we are at level i, we want to move at least one and at most c arbitrary points
from Bi into Bi+1. Let5 s1 = sCi(−∞), e1 = pG≤i(s1) and e2 = sG≤i(s1), and let
s2 = sCi∩[e1,e2](s1), s3 = sCi∩[e1,e2](s2), s4 = sCi∩[e1,e2](s3) and s5 = sCi∩[e1,e2](s4),
if they exist, also let cr = GIRCi∩[e1,e2](s4) be the group of climbing elements to the
immediate right of s4, if they exist, see Figure 2.7. We will now move one or more
climbing points from Bi into Bi+1 where they become arriving points. If i = m−1 or
i = m then we put arriving points into Di+1, which we might have to create, instead
of Ai+1.

We now deal with the case where (e1, e2) is of type [e1, e2] and only contains
climbing points. Let l be the level of e1’s left interval, and r the level of e2’s right
interval, also let cI be the number of climbing points in the interval. If l = i + 1
we make e1 arriving, else we make it guarding, at level i + 1. Make the points of
s1, s2, s3 and s4 that exist arriving at level i+ 1. If cI ≤ c then make s5 arriving at
level i+ 1 if it exists, also if r = i+ 1 we make e2 arriving, else we make it guarding,
at level i+ 1. Else make s5 guarding at level i.

We now deal with the cases where (e1, e2) might contain non-climbing points. If
p(s1) = e1 we make s1 and s2 waiting and guarding at level i, respectively, else we
make s1 guarding at level i and s2 arriving at level i+ 1. Now in both cases we make
s3 arriving at level i+ 1 and s4 guarding at level i. If 〈(s4, e2) is not of type [s4, e2]
or contains non-climbing points〉 and |cr| < c, i.e., there are less than c consecutive
climbing points to the right of s4, then we make the points cr helping at level i.

We have moved climbing points from Bi into Bi+1, and made them arriving.
Finally we call Fix(i) and Fix(i+ 1).

Move-Down(e, i, j, tbefore, tafter)

Depending on the type tbefore of point e we have different cases, see Figure 2.7.

Non-guarding Let e1 = pG≤i(e), e2 = sG≤i(e) and let l be the level of the left interval
of e1 and r the level of the right interval of e2. Also let p2 = p(Bi\Gi)∩[e1,e2](p1),
p1 = p(Bi\Gi)∩[e1,e2](e), s1 = s(Bi\Gi)∩[e1,e2](e) and s2 = s(Bi\Gi)∩[e1,e2](s1), let
cl = FGLCi∩[e1,e2](e) be the elements in the first climbing group left of e, and
let cr = FGRCi∩[e1,e2](e) be the elements in the first climbing group right of e.

Case i = j: make e arriving in level j, if |cl| < c then make the points in cl
helping at level j, if |cr| < c then make the points in cr helping at level j. Finally
call Fix(j).

Case i > j: If both p2 and p1 exists we make p1 guarding in level j and let e′1
denote p1, else make e1 guarding in level min(l, j), and let e′1 denote e1. If p1 exists
we make p1 of type tafter at level j. If both s1 and s2 exists we make s1 guarding
at level j, and let e′2 denote s1, else make e2 guarding at level min(j, r) and let e′2
denote e2. If s1 exists we make s1 of type tafter at level j. Lastly we make e of type
tafter in level j. Now let c′l denote the elements of cl which we have not moved in the
previous steps, likewise let c′r denote the elements of cr which we have not moved.
If 〈(e1, e

′
1] is not of type [e1, e

′
1] or contains non-climbing points〉 and |c′l| < c then

make c′l helping at level i. If 〈[e′2, e2) is not of type [e′2, e2] or contains non-climbing
points〉 and |c′r| < c then make c′r helping at level i. Call Fix(i), Fix(j), Fix(min(l, i))
and Fix(min(i, r)).

Guarding If e = min(P) or e = max(P) we simply do nothing and return. Let
e1 = pG≤h(e) be the left endpoint of the left interval (e1, e[lying at level h and

5See the analysis in Subsection 2.2.6 for a proof that |Ci| > 0.

2.2. Working-Set Dictionaries 41

e2 = sG≤i(e) be the right endpoint of the right interval [e, e2) lying at level i, we
assume without loss of generality that h > i, the case h < i is symmetric. Also let l
be the level of the left interval of e1 and r the level of the right interval of e2. Let
p2 = p(Bh\Gh)∩[e1,e](p1) and p1 = p(Bh\Gh)∩[e1,e](e) be the two left points of e, if
they exists, s1 = s(Bi\Gi)∩[e,e2](e) and s2 = s(Bi\Gi)∩[e,e2](s1) the two right points of
e, if they exits. Also let cl = FGLCh∩[e1,e](e) and cr = FGRCi∩[e,e2](e).

If p2 does not exist we make e1 guarding at level min(l, j), we make p1 of type
tafter at level j and let e′1 denote e1, else we make p1 guarding at level j and let e′1
denote p1. If it is the case that i > j then we check: if s2 does not exist then we make
s1 of type tafter at level j, e2 guarding at level min(j, r) and let e′2 denote e2, else we
make s1 guarding at level j and let e′2 denote s1. We make e of type tafter at level j.

Now let c′l be the points of cl which was not moved and c′r the points of cr which
was not moved. If |c′l| < c then make c′l helping at level h. We now have two cases if
e′2 exists: if |c′r| < c then make c′r helping at level i. The other case is if e′2 does not
exist: if 〈(e′1, e2) is not of type [e′1, e2] or contains non-climbing points〉 and |c′r| < c
then make c′r helping at level i. In all cases call Fix(min(l, h)), Fix(h) and Fix(i). If
i > j then call Fix(j) and Fix(min(j, r)).

Delete(e)

We first call Find(e) to get the type of e and its level i, if e is not in the dictionary we
just return. If e is in the dictionary we have two cases, depending on if e is guarding
or not.

Non-guarding Let cl = GILCi(e) be the elements in the climbing group immediately
left of e, let cr = GIRCi(e) be the elements in the climbing group immediately right
of e, let hl = GILHi(e) be the elements in the helping group immediately left of e,
and let hr = GIRHi(e) be the elements in the helping group immediately right of e.
Let e1 = pG≤i(e) and let e2 = sG≤i(e). Let l be the level of the interval left of e1 and
r the level of the interval right of e2. See Figure 2.7.

We have two cases, the first is |]e1, e2[∩Bi| = 1: if l > r make e1 guarding and e2
arriving at level r, if l < r then make e1 arriving and e2 guarding at level l. If l = r
and |P | = n ≥ 4 then make e1 and e2 arriving at level l = r. Delete e, call Fix(r),
Fix(l), Fix(i) and Rebalance-Above(1).

The other case is |]e1, e2[∩Bi| > 1: If 〈(e1, e2) is not of type [e1, e2] or contains
non-climbing points〉 and |cl| + |cr| < c then make cl and cr helping at level i. If
|hl| + |hr| ≥ c then make hl and hr climbing at level i. Delete e, call Fix(i) and
Rebalance-Above(1).

Min-guarding If e = min(P) then let e′ = sG≤m(e) and e′′ = sG≤m(e′) where 0 is the
level of (e, e′) and i is the level of (e′, e′′). The case of e = max(P) is symmetric.
Also let s1 = s(B0\G0)∩[e,e′](e), s2 = s(B0\G0)∩[e,e′](s1), t1 = s(Bi\Gi)∩[e′,e′′](e′) and
t2 = s(Bi\Gi)∩[e′,e′′](t1). See Figure 2.7.

If s2 exists then delete e make s1 guarding at level 0 and call Fix(0). If s2 does
not exist and t2 exists then delete e make s1 and t1 guarding and e′ arriving at level
0 and finally call Fix(0) and Fix(i). If s2 does not exist and t2 does not exist then
delete e, make s1 and e′′ guarding and e′ and t1 arriving at level 0 and call Fix(0)
and Fix(i). Finally call Rebalance-Above(1).

Guarding Let e1 = pG≤h(e) and e2 = sG≤h(e), where h is the level of the left interval
(e1 : e[, i the level of the right interval [e : e2) and l the level of the left interval that
e1 participates in. We assume without loss of generality that h > i, the case h < i

42 Chapter 2. Implicit Working-Set Dictionaries

is symmetric. Let p2 = p(Bh\Gh)∩[e1,e](p1), p1 = p(Bh\Gh)∩[e1,e](e) and cl = FGLCi(e)
be the points in the first group of climbing points left of e. See Figure 2.7.

If p2 exist we make p1 guarding at level i, and let e′ denote p1, else we make
e1 guarding at level min(l, i), let e′ denote e1 and if [e′, e2) is of type [e′, e2] and
contains only climbing points then we make p1 climbing at level i else we make p1
waiting at level i. Let c′l be the points in cl which was not moved in the previous
movement of points. If |c′l| < c make c′l helping at level h. If e′ is e1 then call Fix(l).
Delete e, call Fix(h), Fix(i) and Rebalance-Above(1).

Rebalance-Below(i)

For each level l = 0, . . . , i we perform a Shift-Up(l) while c < cl.

Rebalance-Above(i)

For each level l = i, . . . ,m− 1 we perform Shift-Down(l + 1) while cl < −c.

2.2.5 Memory Management
We will now deal with the memory layout of the data structure. We will put the
blocks in the order B0, . . . , Bm, where block Bi has its dictionaries in the order
Di, Ai, Ri,Wi, Hi, Ci and Gi, see Figure 2.3. Block Bm grows and shrinks to the
right when elements are inserted and deleted from the working set dictionary.

The Di structure is not a moveable dictionary as the other structures in a block
are, it is simply an array of wi = d · 2i+k elements which we use to encode the size of
each of the structures Ai, Ri,Wi, Hi, Ci and Gi along with their own auxiliary data,
as they are not implicit and need to remember O(2i+k) bits which we store here.
As each of the moveable dictionaries in Bi have size O(22i+k) we need to encode
numbers of O(2i+k) bits in Di.

We now describe the memory management concerning the movement, insertion
and deletion of elements from the working-set dictionary. First notice that the
operations Find, Predecessor and Successor do not change the working-set dictionary
or memory layout. Also the operations Shift-Down, Search, Rebalance-Below and
Rebalance-Above only call other operations, hence their memory management are
handled by the operations they call. The only operations where actual memory
management comes into play are in Insert, Shift-Up, Fix, Move-Down and Delete.
We will now describe two operations Internal-Movement – which handles movement
inside a single block/level – and External-Movement – which handles movement
across different blocks/levels. Together these two operations handle all memory
management.

Internal-Movement(i,m1, . . . ,ml)

Internal-Movement performs the list of internal moves m1, . . . ,ml on block Bi at
level i, where l = O(1) and we assume that there is sufficient space to the right of
block Bi for Internal-Movement to perform all its moves. Move mj consists of:

• the index γ = Di, Ai, Ri,Wi, Hi, Ci, Gi of the dictionary to change, where we
assume6 that mj .γ < mh.γ, for j < h,

• the set of elements Sin to put into γ, where |Sin| = O(1),
6We will misuse notation and let γ + 1 denote the next in the total order D,A,R,W,H,C,G.

We will also compare mj .γ and mh.γ with ≤ in this order.

2.2. Working-Set Dictionaries 43

• the set of elements Sout to take out of γ, where |Sout| = O(1) and

• the total size difference δ = |Sin| − |Sout| of γ after the move.

Internal-Movement(i,m1, . . . ,ml)

move |mi.δ| positions
Sout

Sin

Di mj .γ mj .γ + 1 Gi.

Figure 2.8: Memory movement of Internal-Movement inside of a block Bi.

For j = 1, . . . , l do: if mj .δ < 0 then remove Sout from γ, insert Sin into γ and move
γ + 1, . . . , G left |mj .δ| positions, where we move them in the order γ + 1, . . . , G. If
mj .δ > 0 then move γ + 1, . . . , G right mj .δ positions, where we move them in the
order G, . . . , γ + 1, remove Sout from γ and insert Sin into γ. See Figure 2.8.

External-Movement(M1, . . . ,Ml)

External-Movement takes a list of external moves M1, . . . , Ml, where l = O(1). Move
Mj consists of:

• the index 0 ≤ γ ≤ m of the block/level to perform the internal moves
m1, . . . ,mq on, where Mj .γ < Mh.γ for j < h,

• the list of internal moves m1, . . . ,mq to perform on block γ, where q = O(1),
and

• the total size difference ∆ =
∑q
h=1 mh.δ of block γ after all the internal moves

m1, . . . ,mq have been performed.

Let ∆ =
∑l
i=1 Mi.∆ be the total size change of the dictionary after the external-

moves have been performed. If ∆ = 0 then we let γend = Ml.γ else we let γend = m.
Let pend =

∑γend
j=0 |Bj |+∆ be the last address of the right most block γend that we need

to alter. Let s1, . . . , sk be the sublist of the indexes {1, . . . , l} where Msi .∆ ≤ 0 for
i = 1, . . . , k. Let a1, . . . , ah be the sublist of the indexes {1, . . . , l} where Mai .∆ > 0
for i = 1, . . . , h.

External-Movement operates as follows: 1) We first perform all the internal moves
of each of the external moves Ms1 , . . . ,Msk . 2) We compact all the blocks i right,
where i ∈ [M1.γ, γend], so the rightmost block ends at position pend. 3) We compact
blocks i ∈ [M1.γ,Ma1 .γ] to the left so they align with block M1.γ − 1. 4) Finally for
each block Mai .γ, for i = 1, . . . , h, we compact all blocks i ∈ [Mai−1 .γ + 1,Mai .γ]
left and perform each internal move of the external move Mai on block Mai .γ. See
Figure 2.9.

Memory Management in Updates of Intervals

With the above two operations we can perform the memory management when
updating the intervals in Subsection 2.2.4: Whenever an element moves around,
is deleted or inserted, it is simply put in one or two internal moves. All internal
moves in a single block/level are grouped into one external move. Since all updates
of intervals only move around a constant number of elements, the requirements for
internal/external-movement that l = O(1) and q = O(1) are fulfilled.

44 Chapter 2. Implicit Working-Set Dictionaries

External-Movement(M1, . . . ,Ml)

BMs1 .γ BMa1 .γ BMai−1 .γ+1 BMai .γ
BMsj .γ

BMsk .γ
BMah.γ

BmB0

BMs1 .γ BMa1 .γ BMai−1 .γ+1 BMai .γ
BMsj .γ

BMsk .γ
BMah.γ

BmB0

BMs1 .γ BMa1 .γ BMai−1 .γ+1 BMai .γ
BMsj .γ

BMsk .γ
BMah.γ

B0

BMs1 .γ BMa1 .γ BMai−1 .γ+1 BMai .γ
BMsj .γ

BMsk .γ
BMah.γ

BmB0

Bm

1)

2)

3)

4)

Compact

Compact

Compact

In Out In Out In Out

In Out

Figure 2.9: Memory movement of External-Movement across multiple blocks
BM1.γ , . . . , BMl.γ .

2.2.6 Analysis
We will leave it for the reader to check that the pre-conditions for each operation
in Subsection 2.2.4 are fulfilled and that the operations maintains all invariants.
We will instead concentrate on using the invariants to prove correctness of the
Find, Predecessor, Successor and Shift-Up operations along with proving time and
cache-miss bounds for these. We will leave the time and cache-miss bounds of Search,
Rebalance-Above, Rebalance-Below, Shift-Down, Insert, Delete and Fix for the reader
as they are all similarly in nature. At the end of this subsection we will have proved
Theorem 2.1:

Theorem 2.1. There exists a cache-oblivious implicit dynamic dictionary with
the working-set property that supports the operations Insert and Delete in
time O(logn) and O(logB n) cache-misses, Search, Predecessor and Successor
in time O(log min(`p(e), `e, `s(e))), O(log `p(e)) and O(log `s(e)), and cache-misses
O(logB min(`p(e), `e, `s(e))), O(logB `p(e)) and O(logB `s(e)), respectively, where p(e)
and s(e) are the predecessor and successor of e, respectively.

Find(e)

We only consider the cases where min(P) < e < max(P), the other cases trivially gives
the correct answer in O(1) time and cache-misses as min(P),max(P) ∈ G0. Assume
that Find(e) stops at level i, then we have that e1 ≤ p or s ≤ e2 so I(e1, e2, i) 6= ∅
and i is the minimal i where this happens, see Lemma 2.1. Notice that e1 = pG≤i(e)
and e2 = sG≤i(e), so e1 and e2 are the same as in Lemma 2.1. When the while loop
breaks we have all the preconditions for Lemma 2.1. Now e is either in the dictionary,
or not, and if e is in the dictionary it is either guarding or not, so we have three
cases.

Case 1) e is in the dictionary and is non-guarding: then we have from Lemma
2.1 that (e1, e2) is an interval at level i and e ∈ Bi. From this we also have that
log(`e) ≥ log(22i+k−1).

Case 2) e is not in the dictionary: from Lemma 2.1 the interval (e1, e2) lie at
level i and we know that e intersects it. Since e is not in the dictionary `e = n and
then log(`e) ≥ log(22i+k−1).

Case 3) e is in the dictionary and is guarding: from Lemma 2.1 we have that
either (e1, e) or (e, e2) lie in level i, hence e ∈ Gi ⊆ Bi. From this we also have that
log(`e) ≥ log(22max(i,j)+k−1) ≥ log(22i+k−1).

2.2. Working-Set Dictionaries 45

From the above we see that Find(e) runs in O(log(22i+k−1)) = O(log min(`p(e), `e,
`s(e))) time. When we look at the cache-misses we will first notice that the first
blog logBc levels will fit in a single cache-line because all levels are next to each
other in the memory layout, so the total cache-misses will be

O

1 +
i∑

j=blog logBc+1

(
1 + logB

(
22j+k

))
= O

(
2i+k

logB

)
= O(logB min(`p(e), `e, `s(e))).

Predecessor/Successor(e)

We will only handle the Predecessor operation, the case for the Successor is symmetric.
Since we have the same condition in the while loop as for Find, we know that when
it breaks it implies that I(e1, e2, i) 6= ∅. So from Lemma 2.1, e intersects an interval
at level i and the predecessor of e is now max(e1, p).

From I.4 we know that log(`p) ≥ log(22i+k−1) and the total time usage is∑i
j=0O(log(22i+k)) = O(2i+k) = O(log(`p)). Like in Find, the first blog logBc levels

fit into one block/cache-line hence the total cache-misses will be O(logB(`p)).

Shift-Up(i)

For Shift-Up to work for level i it is mandatory that |Ci| > 0 so that sCi(−∞) will
return an element which can be moved to level i+ 1. From the precondition that
|Hi|+ |Ci| = 4c22i+k + c′i, where c ≤ c′i = O(1), we have that

|Ci| = 4c22i+k + c′i − |Hi| ≥ 4c22i+k − c− |Hi|

so proving that |Hi| < 4c22i+k − c is enough. From I.3 we can at most have c − 1
helping points in a helping group, so for every c−1 helping points we need a separating
point, the role of the separating point can be played by a point from Di, Ai, Ri,Wi

or G≤i−1. These are the only ways to contribute points to Hi hence for i ≥ 1 we
have this bound

|Hi| ≤ (c− 1)(|Di|+ |Ai|+ |Ri|+ |Wi|+ |G≤i−1|)

(1)
≤ (c− 1)

wi + 2 · 22i+k +
i−1∑
j=0

(
(4 + 2d+ 8c)22j+k

+ 2c
)

≤ (c− 1)

wi + 2 · 22i+k + 2ci+ (4 + 2d+ 8c)
i−1∑
j=0

22j+k

(2)
≤ (c− 1)

(
d · 2i+k + 2 · 22i+k + (4 + 2d+ 8c) · 2 · 22i+k−1

+ 2ci
)

Where we in (1) have used I.5, I.6 I.7 and O.1, and in (2) we used that
∑i−1
j=0 22j+k

≤ 2 · 22i−1+k , which can easily be prove by induction in i with the base case of i = 1.
If we now use that c = 5 then we get

|Hi| ≤ 8 · 22i+k + (88 + 16d) · 22i+k−1
+ 4d · 2i+k + 40i

(3)
≤ 11 · 22i+k

46 Chapter 2. Implicit Working-Set Dictionaries

where we in (3) require that 88 + 16d ≤ 22i+k−1 , 4d · 2i+k ≤ 22i+k and 40i ≤ 22i+k .
Since i ≥ 1, we can insert i = 1 as that will make all the requirements the strongest.
From the first we get k ≥ log log(88 + 16d), the second k ≥ log k and the third
k ≥ log log(40)− 1. Which are satisfied for k ≥ max(log log(88 + 16d), 2). This gives
us that |Ci| ≥ 4c22i+k − c− |Hi| > 0 for i = 1, . . . ,m− 1.

For i = 0 we have a different bound as G≤i−1 is empty, we get the bound

|H0| ≤ (c− 1)(|Di|+ |Ai|+ |Ri|+ |Wi|)

≤ (c− 1)
(
d · 2i+k + 2 · 22i+k

)
If we again insert that c = 5 we get that

|H0| ≤ 4
(
d · 2i+k + 2 · 22i+k

)
= 8 · 22k + 4d · 2k
(4)
≤ 9 · 22k

where we in (4) require that 4d · 2k ≤ 22k which is true when k ≥ log log(4d) + 1,
which is already true when k ≥ max(log log(88 + 16d), 2). So we have proved that
|Ci| > 0 for level i = 0, . . . ,m− 1.

Move-Down(e, i, j, tbefore, tafter)

Move-Down moves a constant number of points around and into level j from level
i. If e is non-guarding we call Fix(i), Fix(j), Fix(min(l, i)) and Fix(min(i, r)). If
e is guarding where h > i we call Fix(min(l, h)), Fix(h) and Fix(i), and if i >
j we also call Fix(j) and Fix(min(j, r)). In the non-guarding case the time is
bounded by O(log 22i+k) = O(log `e) and the cache-miss bounds are dominated by
O(logB 22i+k) = O(logB `e). In the guarding case the time is bounded by O(log 22h+k)
= O(log `e) and the cache-miss bounds are dominated byO(logB 22h+k) = O(logB `e).

Internal-Movement(i,m1, . . . ,ml)

It takes O(log(22i+k)) = O(2i+k) time and O(logB(22i+k)) = O(2i+k
logB) cache-misses

to perform move j. In total all the moves m1, . . . ,ml use O(2i+k) time and O(2i+k
logB)

cache-misses, as l = O(1).

External-Movement(M1, . . . ,Ml)

It takes O(l log(22i+k)) = O(l2i+k) time and O(l logB(22i+k)) = O(l 2i+k
logB) cache-

misses to perform the internal moves on level i. In total all the external moves
M1, . . . ,Ml use O(2γend+k) time and O(2γend+k

logB) cache-misses, as the external move
at level γend dominates the rest and l = O(1).

Chapter 3

Catenable Priority Queues
with Attrition

In this chapter we will present ephemeral I/O-efficient catenable priority queues
with attrition (I/O-CPQAs) that store a set of elements from a total order. The
I/O-CPQAs support the operations of Find-Min, Delete-Min, Insert-and-Attrite and
Catenate-and-Attrite in O(1) worst-case I/Os and O(1/b) amortized I/Os. For the
amortized bound we need to pre-load a constant number of blocks into main memory
for every root I/O-CPQA, for any parameter 1 ≤ b ≤ B. We call these pre-loaded
records critical records. For the sake of simplicity, we identify an element with its
value. Denote by Q an I/O-CPQA and by min(Q) the smallest element stored in Q.
We denote by Q also the set of elements in I/O-CPQA Q. An I/O-CPQA supports
the operations formally defined as:

• Find-Min(Q) returns min(Q).

• Delete-Min(Q) removes min(Q) from Q and returns it. The resulting I/O-CPQA
is Q′ = Q\{min(Q)}, and Q is discarded.

• Catenate-and-Attrite(Q1, Q2) catenates I/O-CPQA Q2 at the end of another
I/O-CPQA Q1, removes all elements in Q1 that are larger than or equal
to min(Q2) (attrition), and returns the result as a combined I/O-CPQA Q′1 =
{e ∈ Q1 | e < min(Q2)} ∪Q2. The old I/O-CPQAs Q1 and Q2 are discarded.

• Insert-and-Attrite(Q, e)1 appends e to the end of Q while attriting elements
larger than e. The resulting I/O-CPQA is Q′ = {e′ ∈ Q | e′ < e} ∪ {e}.

3.1 Structure
An I/O-CPQA Q consists of two sorted buffers, called the first buffer F (Q) with
[b, 4b] elements and the last buffer L(Q) with [0, 4b] elements, and kQ + 2 deques
of records, called the clean deque C(Q), the buffer deque B(Q) and the dirty de-
ques D1(Q), . . . , DkQ(Q), where kQ ≥ 0. A record r = (l, p) consists of a buffer l
of [b, 4b] sorted elements and a pointer p to an I/O-CPQA. A record is simple when
its pointer p is nil. The definition of I/O-CPQAs implies an underlying tree structure
when pointers are considered as edges and I/O-CPQAs as subtrees. We define the
ordering of the elements in a record r to be all elements of its buffer l followed by

1Insert-and-Attrite(Q, e) is implemented by a call to Catenate-and-Attrite(Q1, Q2), where Q2
contains only element e.

47

48 Chapter 3. Catenable Priority Queues with Attrition

all elements in the I/O-CPQA referenced by pointer p. We define the queue order
of I/O-CPQA Q to be F (Q), C(Q), B(Q) and D1(Q), . . . , DkQ(Q) and L(Q). It
corresponds to an Euler tour over the tree structure. See Figure 3.1 for an overview
of the structure.

C(Q) B(Q) D1(Q) DkQ−1(Q) DkQ(Q)
F (Q) L(Q)

Figure 3.1: The records in C(Q) and B(Q) are simple, the records
of D1(Q), . . . , DkQ(Q) may contain pointers to other I/O CPQAs. I/O-CPQAs
imply a tree structure. Dark gray records are critical.

Given a record r = (l, p), the minimum and maximum elements in the buffer of r,
are denoted by min(r) = min(l) and max(r) = max(l), respectively. They appear
respectively first and last in the queue order of l, since the buffer of r is sorted
by value. Given a deque q, the first and the last records are denoted by first(q)
and last(q), respectively. Also, rest(q) denotes all records of the deque q excluding
the record first(q). Similarly, front(q) denotes all records of the deque q excluding
the record last(q). The size |F (Q)| (|L(Q)|) of the buffer F (Q) (L(Q)) is defined to
be the number of elements in F (Q) (L(Q)). The size |r| of a record r is defined to
be the number of elements in its buffer. The size |q| of a deque q is defined to be
the number of records it contains. The size |Q| of the I/O-CPQA Q is defined to
be the number of elements (both attrited and non-attrited) that Q contains. For
an I/O-CPQA Q we denote by first(Q) and last(Q), respectively, the first and last
records out of all the records of all the deques C(Q), B(Q), D1(Q), . . . , DkQ(Q) that
exist in Q.

3.2 Invariants
Having defined the structure of the I/O-CPQA we will now state the invariants that
we will maintain and use later to prove correctness and I/O bounds.

I.1) For every record r = (l, p) where pointer p references I/O-CPQA Q′, max(l) <
min(Q′) holds.

I.2) In all deques of Q where record r1 = (l1, p1) precedes record r2 = (l2, p2):
max(l1) < min(l2) holds.

I.3) For the buffer F (Q) and deques C(Q), B(Q), D1(Q): max(F (Q)) <
min(first(C(Q))) < max(last(C(Q))) < min(first(B(Q))) < min(first(D1(Q)))
holds.

I.4) Element min(first(D1(Q))) is the smallest element in the dirty deques
D1(Q), . . . , Dk(Q).

I.5) min(first(D1(Q))) < min(L(Q)).

I.6) All records in the deques C(Q) and B(Q) are simple.

I.7) |C(Q)| ≥
∑kQ
i=1 |Di(Q)|+ kQ.

I.8) |F (Q)| < b holds iff |Q| < b holds.

I.9) If Q is a child of another I/O-CPQA then F (Q) = ∅ and L(Q) = ∅ holds.

3.3. Operations 49

From invariants I.2), I.3), I.4) and I.5), we have that min(Q) = min(F (Q)). Define
the state ∆(Q) of Q to be:

∆(Q) = |C(Q)| −
kQ∑
i=1
|Di(Q)| − kQ

We say that an operation improves or aggravates the inequality of Invariant I.7)
by a parameter c for I/O-CPQA Q, when the operation, respectively, increases or
decreases the state ∆(Q) of Q by c.

To argue about the O(1
b) amortized I/O bounds we need more definitions.

By records(Q) we denote all records in Q and the records in the I/O-CPQAs
pointed to by Q and its descendants. We call an I/O-CPQA Q large if |Q| ≥ b and
small otherwise. We define the following potential functions for large and small
I/O-CPQAs. In particular, for large I/O-CPQAs Q the potential Φ(Q) is defined as

Φ(Q) = ΦF (|F (Q)|) + |records(Q)|+ ΦL(|L(Q)|),

where

ΦF (x) =

 5− 2x
b , b ≤ x < 2b

1, 2b ≤ x < 3b
2x
b − 5, 3b ≤ x ≤ 4b

and

ΦL(x) =

x
b , 0 ≤ x < b
1, b ≤ x ≤ 3b

2x
b − 5, 3b < x ≤ 4b

For small I/O-CPQAs Q, the potential Φ(Q) is defined as

Φ(Q) = 3|Q|
b

The total potential ΦT is defined as

ΦT =
∑
Q

Φ(Q) +
∑

Q : b≤|Q|

1,

where the first sum is the total potential of all I/O-CPQAs Q and the second sum
counts the number of large I/O-CPQAs Q.

3.3 Operations
In the following, we describe the algorithms that implement the operations supported
by the I/O-CPQA Q. Most of the operations call the auxiliary operations Bias(Q)
and Fill(Q), which we describe last. Bias improves the inequality of I.7) for Q by at
least 1 if Q contains any records. Fill(Q) ensures that I.8) is maintained.

Find-Min(Q)

Find-Min(Q) returns the value min(F (Q)).

Delete-Min(Q)

Delete-Min removes element e = min(F (Q)) from the first buffer F (Q), calls Fill(Q)
and returns e.

50 Chapter 3. Catenable Priority Queues with Attrition

Catenate-and-Attrite(Q1, Q2)

Catenate-and-Attrite(Q1, Q2) creates a new I/O-CPQA Q′1 by modifying Q1 and Q2,
and by calling Bias(Q′1), Bias(Q2), Fill(Q′1) and Fill(Q2).

If |Q1| < b holds, then Q1 consists only of the first buffer F (Q1). Let F ′(Q1) be
the non-attrited elements of F (Q1), under attrition by min(F (Q2)). Prepend F ′(Q1)
onto the first buffer F (Q2) of Q2. If this prepend causes |F (Q2)| > 4b, then we take
the last 2b elements out of F (Q2), make a new record out of them and we prepend
it onto the deque C(Q2).

If |Q2| < b holds, then Q2 only consists of F (Q2). If |Q1| < b then we delete the
attrited elements in F (Q1) and append F (Q2) onto F (Q1). We now assume that
|Q1| ≥ b. We have three cases, depending on how much of Q1 is attrited by Q2. Let
r = (l, ·) = last(Q1) and let e = min(Q2).

1. e ≤ min(r): Delete r. We now have four cases:

1) If e ≤ min(F (Q1)) holds, we discard I/O-CPQA Q1 and set Q′1 = Q2.
2) Else if e ≤ max(last(C(Q1))) holds, we prepend F (Q1) onto C(Q1), set

F (Q′1) = ∅, C(Q′1) = ∅, B(Q′1) = C(Q1), kQ′1 = 0 and L(Q′1) = F (Q2).
We call Bias(Q′1) once to restore I.7) and then call Fill(Q′1) once to restore
Invariant I.8).

3) Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1))) holds, we set
Q′1 = Q1 and kQ′1 = 0 and set L(Q′1) = F (Q2). If e ≤ min(first(B(Q1)))
holds, we set B(Q′1) = ∅, else we set B(Q′1) = B(Q1).

4) Else, letL′(Q1) be the non-attrited elements under attrition by min(F (Q2)).
If |L′(Q1)|+ |F (Q2)| ≤ 4b then append F (Q2) to L′(Q1), else |L′(Q1)|+
|F (Q2)| > 4b so take the first 4b elements of L′(Q1) and F (Q2) and make
into a new record in a new last dirty queue of Q′1, leave the rest in L(Q′1),
set kQ′1 = kQ1 + 1 and call Bias(Q′1) twice to restore I.7).

2. Else if e ≤ min(L(Q1)), we set Q′1 = Q1 and L(Q′1) = F (Q2).

3. Else min(L(Q1)) < e: Let l′ be the non-attrited elements of l, under attrition
by min(L(Q1)), and L′(Q1) be the non-attrited elements, under attrition by e.
If |L′(Q1)|+ |F (Q2)| > 4b holds, we do the following: if |l′| < |l| holds, we put
the first 4b−|l′| elements of L′(Q1) and F (Q2) into l along with l′. Moreover, if
we still have more than 3b elements left in L′(Q1) and F (Q2), we put the first
3b elements into a new last record of DkQ1

(Q1). Finally, we leave the remaining
elements in L(Q1). If we added a new last record to DkQ1

(Q1), we also call
Bias(Q) once.

We have now entirely dealt with the cases where |Q1| < b or |Q2| < b holds, so in
the following we assume that |Q1| ≥ b and |Q2| ≥ b hold, i.e., any I/Os incurred in
the cases (1–4) below are already paid for, since the total number of large I/O-CPQAs
decreases by one. Let e = min(Q2).

1. If e ≤ min(F (Q1)) holds, we discard I/O-CPQA Q1 and set Q′1 = Q2.

2. Else if e ≤ max(last(C(Q1))) holds, we prepend F (Q1) onto C(Q1) and F (Q2)
onto C(Q2). We remove the simple record (l, ·) = first(C(Q2)) from C(Q2),
set Q′1 = Q1, F (Q′1) = ∅, C(Q′1) = ∅, B(Q′1) = C(Q1), D1(Q′1) = (l, p),
kQ′1 = 1, L(Q′1) = L(Q2) and L(Q′2) = ∅, where p points to Q′2 if it exists. This
gives ∆(Q′1) = −2, thus we call Bias(Q′1) twice and Fill(Q′1) once.

3.3. Operations 51

3. Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1))) holds, we prepend
F (Q2) onto C(Q2) and remove the simple record (l, ·) = first(C(Q2)) from C(Q2),
set Q′1 = Q1, D1(Q′1) = (l, p), kQ′1 = 1, L(Q′1) = L(Q2), L(Q′2) = ∅ and set p
to point to Q′2, if it exists. If e ≤ min(first(B(Q1))) holds, we set B(Q′1) = ∅,
else we set B(Q′1) = B(Q1). This gives ∆(Q′1) = −2 in the worst-case, thus we
call Bias(Q′1) twice.

4. Else let L′(Q1) be the non-attrited elements of L(Q1), under attrition by F (Q2).
If |L′(Q1)|+ |F (Q2)| ≤ 4b holds, then we make L′(Q1) and F (Q2) into the first
record of C(Q2). Else we make them into the first two records of C(Q2) of size
b(|L′(Q1)|+ |F (Q2)|)/2c and d(|L(Q1)|+ |F (Q2)|)/2e each. We set Q′1 = Q1,
F (Q′2) = ∅, L(Q′1) = L(Q2), L(Q′2) = ∅, remove (l2, ·) = first(C(Q2)) from
C(Q2). Moreover, we add (l2, p) as a new single record in DkQ1 +1(Q′1), where p
points to the rest of Q′2, if it exists, and set kQ′1 = kQ1 + 1. All this aggravates
the inequality of I.7) for Q′1 by at most 2, so we call Bias(Q′1) twice.

Fill(Q)

Fill(Q) restores invariant I.8), if it is violated. In particular, if |F (Q)| < b and |Q| ≥ b,
let r = (l, ·) = first(C(Q)). If |l| ≥ 2b holds, then we take the b first elements of l
and append them to F (Q). Else |l| < 2b holds, so we append l to F (Q), discard r
and call Bias(Q) once.

Bias(Q)

Bias(Q) improves the inequality of I.7) for Q by at least 1 if Q contains any records.
It also ensures that invariant I.8) is maintained. We distinguish two basic cases with
respect to |B(Q)|, namely |B(Q)| = 0 and |B(Q)| > 0.

1. |B(Q)| > 0: We have two cases depending on if kQ ≥ 1 or kQ = 0.

1) kQ = 0: Let e = min(L(Q)), if it exists. We remove the first record
r1 = (l1, ·) = first(B(Q)) from B(Q). Let l′1 be the non-attrited elements
of l1, under attrition by element e. If |l′1| = |l1| holds, nothing is attrited,
so we just add r1 = (l1, ·) at the end of C(Q).
Else |l′1| < |l1| holds, so we set B(Q) = ∅. If |l′1| ≥ b holds, then we make
record r1 with buffer l′1 into the new last record of C(Q). Else |l′1| < b
holds, so if |l′1|+ |L(Q)| ≤ 3b also holds, we add l′1 to L(Q) and discard
r1. Else |l′1|+ |L(Q)| > 3b also holds, so we take the 2b first elements of l′1
and L(Q) and put them into r1, making it the new last record of C(Q).

2) kQ ≥ 1: Let e = min(first(D1(Q))). We remove the first record r1 =
(l1, ·) = first(B(Q)) from B(Q). Let l′1 be the non-attrited elements of l1,
under attrition by element e.
If |l′1| = |l1| or b ≤ |l′1| < |l1| holds, we just add r1 = (l′1, ·) at the end
of C(Q) and if |l′1| < |l1| we set B(Q) = ∅. Else |l′1| < b hold, we set
B(Q) = ∅, let r2 = (l2, p2) = first(D1(Q)). If |l′1| + |l2| ≤ 4b holds, we
discard r1 and prepend l′1 onto l2 of r2. Else |l′1|+ |l2| > 4b holds, so we
take the first 2b elements of l′1 and l2 and put them in r1, making it the
new last record of C(Q). If this causes min(L(Q)) ≤ min(first(D1(Q))),
we discard all dirty queues.

If r1 was discarded, then we have that |B(Q)| = 0 and we call Bias recursively,
which will not invoke this case again. In all cases the inequality of I.7) for Q is
improved by 1.

52 Chapter 3. Catenable Priority Queues with Attrition

2. |B(Q)| = 0: we have three cases depending on the number of dirty queues,
namely cases kQ > 1, kQ = 1 and kQ = 0.

1) kQ > 1: If min(L(Q)) ≤ min(first(DkQ(Q))) holds, we set kQ = kQ − 1
and discard DkQ(Q). This improves the inequality of I.7) for Q by at
least 2. Else let e = min(first(DkQ(Q))).
If e ≤ min(last(DkQ−1(Q))) holds, we remove the record last(DkQ−1(Q))
from DkQ−1(Q). This improves the inequality of I.7) for Q by 1.
If min(last(DkQ−1(Q))) < e ≤ max(last(DkQ−1(Q))) holds, we remove
record r1 = (l1, p1) = last(DkQ−1(Q)) from DkQ−1(Q), and let r2 =
(l2, p2) = first(DkQ(Q)). We delete any elements in l1 that are attrited
by e, and let l′1 denote the set of non-attrited elements. If |l′1|+ |l2| ≤ 4b
holds, we prepend l′1 onto l2 of r2 and discard r1. Else we take the first
b(|l′1| + |l2|)/2c elements of l′1 and l2 and replace r1 of DkQ−1(Q) with
them. Finally, we concatenate DkQ−1(Q) and DkQ(Q) into a single deque.
This improves the inequality of I.7) for Q by at least 1.
Else max(last(DkQ−1(Q))) < e holds and we just concatenate the de-
ques DkQ−1(Q) and DkQ(Q), which improves the inequality of I.7) for Q
by 1.

D1(Q)

C(Q′) B(Q′) D1(Q′) DkQ′ (Q
′)

C(Q)
F (Q) L(Q)

Figure 3.2: Merging I/O-CPQAs Q and Q′. This case can only occur when B(Q) = ∅
and kQ = 1.

2) kQ = 1: In this case Q contains only deques C(Q) and D1(Q). Let
r = (l, p) = first(D1(Q)). If min(L(Q)) ≤ min(first(rest(D1(Q)))) holds,
we discard all dirty queues, except for record r of D1(Q).
If min(L(Q)) ≤ max(l) holds, we discard all the dirty deques and let l′ be
the non-attrited elements of l. If |l′|+ |L(Q)| ≤ 3b holds, we prepend l′
onto L(Q). Else |l′|+ |L(Q)| > 3b holds, so we take the first 2b elements
of l′ and L(Q) and make them the new last record of C(Q) and leave the
rest in L(Q). This improves the inequality of I.7) for Q by 1.
Else max(`) < min(L(Q)) holds, so we remove r and insert buffer l
into a new record at the end of C(Q). This improves the inequality
of I.7) for Q by at least 1. If r is not simple, let the pointer p of r ref-
erence I/O-CPQA Q′. We restore I.6) for Q by merging I/O-CPQAs Q
and Q′ into one I/O-CPQA; see Figure 3.2. In particular, let e =
min(min(first(D1(Q))),min(L(Q))).
We proceed as follows: If e ≤ min(Q′) holds, we discard Q′. The inequal-
ity of I.7) for Q remains unaffected. Else if min(first(C(Q′))) < e ≤
max(last(C(Q′)) holds, we set B(Q) = C(Q′) and discard the rest of Q′.
The inequality of I.7) for Q remains unaffected.
Else if max(last(C(Q′)) < e ≤ min(first(D1(Q′))) holds, we concatenate
the deque C(Q′) at the end of C(Q). If moreover min(first(B(Q′))) < e

3.4. Analysis 53

holds, we set B(Q) = B(Q′). Finally, we discard the rest of Q′. This
improves the inequality of I.7) for Q by |C(Q′)|.
Else min(first(D1(Q′))) < e holds. We concatenate the deque C(Q′) at
the end of C(Q), we set B(Q) = B(Q′), we set D1(Q′), . . . , DkQ′ (Q

′) as
the first kQ′ dirty queues of Q and we set D1(Q) as the last dirty queue
of Q. This improves the inequality of I.7) for Q by ∆(Q′) ≥ 0, since Q′
satisfied Invariant I.7) before the operation.

3) kQ = 0: If all deques are empty, L(Q) 6= ∅ and |F (Q)| ≤ 2b hold, we take
the first b elements of L(Q) and append to F (Q). The inequality of I.7)
for Q remains ∆(Q) = 0.

3.4 Analysis
In this section we will prove correctness and I/O-complexity for the I/O-CPQA,
we will do this in Subsection 3.4.1. In Subsection 3.4.2 we show how to change the
Catenate-and-Attrite operation to concatenate an arbitrary number l of I/O-CPQAs
without doing any I/Os, assuming that the I/O-CPQAs fulfill and extra requirement.

3.4.1 Correctness and I/O-complexity
We will now prove correctness and I/O complexity of the operations of the I/O-CPQA.
The correctness follows by closely noticing that we maintain invariants I.1)–I.9),
which in turn imply that Delete-Min(Q) and Find-Min(Q) always return the minimum
element of Q. The O(1) worst-case I/O bound is trivial as every operation only
accesses O(1) records. Although Bias is recursive, notice that in the case where
|B(Q)| > 0, Bias only calls itself after making |B(Q)| = 0, so it will not end up in
this case again.

For the amortized I/O-complexity we will use a potential analysis and in the
following we will elaborate on all the operations that modify the I/O-CPQA in order
to argue for the amortized bounds. At the end of this subsection we will have proven
the following theorem:

Theorem 3.1. An I/O-CPQA supports Find-Min, Delete-Min, Catenate-and-Attrite
and Insert-and-Attrite in O(1) I/Os per operation. It occupies O(n−mB) blocks after
calling Catenate-and-Attrite and Insert-and-Attrite n times and Delete-Min m times,
respectively.

All operations are supported by a set of ` I/O-CPQAs in O(1
b) amortized I/Os,

when M = Ω(`b), using O(n−mb) blocks of space, for any parameter 1 ≤ b ≤ B.

Delete-Min

If |F (Q)| ≥ b holds after deleting min(F (Q)), then no I/Os are incurred and we only
pay an amortized cost of ≤ 3

b for increasing the potential. Else |F (Q)| = b− 1 holds,
so ΦF (|F (Q)|) ≥ 3 also holds, which pays for any I/Os in calling Fill and Bias.

Catenate-and-Attrite

If |Q1| < b holds, then we prepend the non-attrited elements F ′(Q1) onto F (Q2).
So if |F ′(Q1)| + |F (Q2)| ≤ 4b holds, then each element of F (Q1) has a potential
of 3

b , which is higher than the potential for each element in ΦF (x), independent
of the value of x. Thus Φ(|F (Q1)|) pays for any increase in potential. If instead

54 Chapter 3. Catenable Priority Queues with Attrition

|F ′(Q1)|+ |F (Q2)| > 4b holds, then |F (Q2)| > 3b holds, so

∆ΦT =
(

3|F (Q1)|
b

+ ΦF (|F (Q2)|)
)
− (1 + 1)

≥ |F ′(Q1)|
b

+ 2(|F ′(Q1)|+ |F (Q2)|)
b

− 7 > 1

which pays for making the new first record of C(Q2).
If |Q2| < b holds, then we have three cases depending on how much of Q1 is

attrited by Q2. Let e = min(Q2) and r = (l, ·) = last(Q1):

1. e ≤ min(last(DkQ1
(Q1))): We discard r which releases 1 potential and have

the four cases:

1) If e ≤ min(F (Q1)): The potential decreases, because we only discard
records.

2) Else if e ≤ max(last(C(Q1))): We prepend F (Q1) onto C(Q) and discard
records, which only decreases the potential, since ΦF (x) ≥ 1 when x ≥ b.
Our calls to Bias and Fill are paid for as we discard r.

3) Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1))): We set L(Q1) =
F (Q2) and discard records, which only decreases the potential, since
ΦL(x) ≤ ΦF (x) for all x.

4) Else: If |L′(Q1)|+ |F (Q2)| ≤ 4b we append F (Q2) to L′(Q1) and ΦF (|Q2|)
pays. Else we make a new dirty queue with one new record, which costs 1
potential and 1 potential to cover the I/Os in Bias. The total potential
difference is

∆ΦT ≥ (ΦL(|L(Q1)|) + Φ(|Q2|))− (1 + 1)

≥
(

2(|L′(Q1)|+ |F (Q2)|)
b

+ |F (Q2)|
b

)
− 7

> 1

2. e ≤ min(L(Q1)): We set L(Q′1) = F (Q2), which again only decreases the
potential.

3. min(L(Q1)) < e: If |L′(Q1)|+ |F (Q2)| > 4b holds, then if furthermore |l′| < |l|
we put the first 4b−|l′| elements of L′(Q1), F (Q2) and l′ into l, with no change
in potential. If there are still more than 3b elements left in L′(Q1) and F (Q2),
then we put the first 3b elements into a new last record of DkQ1

(Q1) for a cost
of 1 in potential and call Bias for a cost of 1 for I/Os, and leave the remaining
≤ 2b elements in L(Q1) for a cost of ≤ 1. All this is paid for, as the total
decrease in potential is

∆ΦT ≥ (ΦL(|L(Q1)|) + ΦF (|F (Q2)|))− (1 + 1 + 1)

= 2|L(Q1)|
b

+ 3|F (Q2)|
b

− 8

≥ 2(|L′(Q1)|+ |F (Q2)|)
b

+ |F (Q2)|
b

− 8 > 0

Both Q1 and Q2 are large in all the cases (1–4), hence when we concatenate them, we
decrease the potential by at least 1, since the number of large I/O-CPQA’s decreases
by one, which is enough to pay for any other I/Os incurred, also in Bias and Fill. So
we only need to argue that the potential does not increase in any of the cases.

3.4. Analysis 55

1. If e ≤ min(F (Q1)): the potential decreases, since we discard Q1.

2. Else if e ≤ max(last(C(Q1))): we prepend F (Q1) onto C(Q1) and F (Q2) onto
C(Q2), discard and move around records, which only decreases the potential,
as ΦF (x) ≥ 1 when x ≥ b.

3. Else if e ≤ min(first(B(Q1))): we prepend F (Q2) onto C(Q2), discard and
move around records, which only decreases the potential, as ΦF (x) ≥ 1 when
x ≥ b.

4. Else: We make L′(Q1) and F (Q2) into the first one or two records of C(Q2).
Since Q2 is large, |F (Q2)| ≥ b holds, and hence we have that ΦF (|F (Q2)|) ≥ 1.
If we only make one new record, ΦF (|F (Q2)|) pays for it. If we make two
records, then |L′(Q1)|+ |F (Q2)| > 4b holds. So if |L′(Q1)| ≥ b moreover holds,
then ΦL(|L(Q1)|) ≥ 1 pays for the other record. Else |L′(Q1)| < b holds, but
then |F (Q2)| > 3b also holds, so

ΦL(|L(Q1)|) + ΦF (|F (Q2)|)

= |L(Q1)|
b

+ 2|F (Q2)|
b

− 5

≥ |L
′(Q1)|+ |F (Q2)|

b
+ |F (Q2)|

b
− 5 > 2

which pays for both new records.

Insert-and-Attrite

The total cost is O(1
b) I/Os amortized, since creating a new I/O-CPQA with only

one element and calling Catenate-and-Attrite only costs as much.

Fill

Any I/Os incurred, are prepaid by a decrease in potential made in the procedure
calling Fill, so we only need to argue that the potential does not increase. If |F (Q)| < b
and |Q| ≥ b then we append at most 2b elements to F (Q), hence ΦF (|F (Q)|) will
only decrease.

Bias

All I/Os have been paid for by a decrease in potential caused by the caller of Bias.
So we only need to argue that the potential does not increase because of Bias.

1. |B(Q)| > 0: We discard, move around and merge records, but we do not create
new ones. Thus the potential will only decrease.

2. |B(Q)| = 0: We follow the cases of Bias.

1) kQ > 1: We again discard and move around records, and rearrange their
elements, but we do not create new records, so the potential will only
decrease.

2) kQ = 1: Let r = (l, p) = first(D1(Q)). If min(L(Q)) ≤ max(l) holds, we
might prepend l′ onto L(Q), but only if |l′|+ |L(Q)| ≤ 3b. This will not
increase the potential of L(Q) by more than 1, and r pays for that. For
the rest of the case, we discard and move around records and rearrange
their elements, but we do not create new records, so the potential only
decreases.

56 Chapter 3. Catenable Priority Queues with Attrition

3) kQ = 0: If we append the first b elements of L(Q) onto F (Q), then
|F (Q)| ≤ 2b holds, so ΦF (|F (Q)|) can only decrease. Likewise, when
taking at most b elements from L(Q), then ΦL(|L(Q)|) will only decrease.

3.4.2 Catenating a Set of I/O-CPQAs
Define the critical records of an I/O-CPQA Q, to be the first three records of C(Q),
last(C(Q)), first(B(Q)), first(D1(Q)), last(DkQ(Q)) and last(front(DkQ(Q))), if it
exists. Otherwise last(DkQ−1(Q)) is critical.

Lemma 3.1. A set of I/O-CPQAs Qi for i ∈ [1, `] can be concatenated into a single
I/O-CPQA without doing any I/Os, by calling only Catenate-and-Attrite operations,
provided that for all i:

1. ∆(Qi) ≥ 2 holds, unless Qi contains only one record, in which case ∆(Qi) = 0
or Qi contains only two records, in which case ∆(Qi) = +1 suffices.

2. The critical records of Qi are loaded in main memory.

Proof. The algorithm considers the I/O-CPQAs Qi in decreasing index i (from right
to left). It first sets Q` = Q` and constructs the temporary I/O-CPQA Q`−1 by
calling Catenate-and-Attrite(Q`−1,Q`). After the end of the sequence of operations,
the resulting I/O-CPQA Q1 is the concatenation of all I/O-CPQAs Qi.

To avoid any I/Os during the sequence of Catenate-and-Attrite’s, we ensure
that Bias and Fill are not called, and that no more than the critical records need
to be already loaded into memory. To avoid calling Bias we maintain the following
invariant during the sequence of concatenations.

I.10) Each I/O-CPQAs Qi, i ∈ [1, `] constructed during the sequence of catenations
is in state at least +1 unless it consists only of the front buffer in which case it
is in state 0.

We prove the invariant inductively on the sequence of operations. Let the invariant
hold for Qi+1 and let Qi be constructed by Catenate-and-Attrite(Qi,Qi+1). In the
following, we parse the cases of the Catenate-and-Attrite algorithm assuming that
e = min(Qi+1).

If |Qi| < b holds, then Bias is not invoked and the state of Qi+1 remains ≥ 1 or
is increased by 1.

If |Qi+1| < b and |Qi| ≥ b then we have to go through the three respective cases,
where r = (l, ·) = last(Qi).

1. If e ≤ min(r): if record r exists then the state of Qi is increased by 1 and it
becomes ≥ 3.

1) If e ≤ min(F (Q1)): Since Bias is not called I.10) holds trivially.
2) Else if e ≤ max(last(C(Q1))): Qi is constructed as before and we then do

the following. Since kQi = 0, we take out the first two records of B(Qi)
which are critical since they came from F (Qi) and first(Qi). Then, we fill
F (Qi) with one of these records provided that no attrition was enforced
by L(Qi). In this case, the state of Qi is ≥ 1 and the invariant holds. If
attrition took place then B(Qi) is discarded and the at most two records
of C(Qi) and the buffer L(Qi) are combined (notice that all of them are
critical) to make Qi consisting only of records in F (Qi) and C(Qi) and
thus I.10) holds.

3) Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1))): Since Bias is not
called I.10) holds trivially.

3.4. Analysis 57

4) Else: the state at the end is ≥ 0, since the state of Qi was ≥ 2 by the
induction hypothesis. To restore the invariant that the state of Qi should
be ≥ 1 we check whether last(DkQi

(Qi)) is attrited or not by the new
dirty queue. Since both are critical this can be done with no I/Os and
thus the state of Qi is increased to ≥ 1.

2. Else if e ≤ min(L(Q1)): since we do not call Bias, I.10) holds trivially.

3. Else min(L(Q1)) < e: the state of Qi is only reduced by 1 which makes the
state of Qi being ≥ 1 which is sufficient to maintain I.10).

Now we move to the more general case where |Q1| ≥ b and |Q2| ≥ b.

1. If e ≤ min(F (Q1)): we do not call Bias, so I.10) holds trivially.

2. Else if e ≤ max(last(C(Q1))): To increase the state of Qi from −2 to ≥ 1 we
do as follows. We extract the 4 records of B(Qi), which incurs no I/Os since all
four of them are critical (the first was from F (Qi) and the other three from the
first 3 critical records of C(Qi)). If no attrition was enforced by e = min(Qi+1),
then the state of Qi is ≥ 1. If attrition is enforced then there are not that
many records in B(Qi), then Qi+1 is reconstructed (just prepend (l, ·), which
was the old first(C(Qi+1)), onto C(Qi+1) and then prepend the non-attrited
records (at most 4 records) from Qi onto C(Qi+1) remaking F (Qi+1). At the
end of this process, the new I/O-CPQA Qi has state at least equal to Qi+1,
which is ≥ 1 by the induction hypothesis and hence I.10) holds.

3. Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1))): we will only consider
the case where kQi = 0 before the concatenation, since otherwise the state of
Qi will be equal or larger to the state of Qi, which by the inductive hypothesis
is ≥ 2. Since Qi must be in state ≥ 2, there are either at least three records in
C(Qi), in which case I.10) holds and the case is terminated. Otherwise, exactly
two records exist in C(Qi) and B(Qi) is non-empty or there are less than two
records in C(Qi) (so the state of Qi is ≥ 1 or 0) and B(Qi) is empty. In the
case where two records exist in C(Qi) and B(Qi) is non-empty: if first(B(Qi))
is not attrited by e we put this record into C(Qi) and now the final I/O-CPQA
Qi has state ≥ 1. Otherwise, we restructure Qi+1 (as done in the previous
case) and prepend the non-attrited elements of Qi onto Qi+1 resulting in an
I/O-CPQA with state at least ≥ 1 since this was the state of Qi+1. We follow
exactly the same approach in the latter case where C(Qi) contains less than
two records and B(Qi) is empty.

4. Else: the algorithm works exactly as before with the following exception. At
the end, Qi will be in state ≥ 0, since we added the deque DkQi+1 +1 with a new
record and the inequality of I.7) is aggravated by 2. To restore the invariant
we apply Case 2. 1) of Bias. This step requires access to records last(DkQi−1)
and first(DkQi

). These records are both critical, since the former corresponds
to last(DkQi+1) and the latter to first(C(Qi+1)). In addition, Bias(Qi+1) need
not be called, since by the invariant, Qi+1 was in state ≥ 1 before the removal
of first(C(Qi+1)). In this way, we improve the inequality for Qi by 1 and hence
I.10) holds.

58 Chapter 3. Catenable Priority Queues with Attrition

Chapter 4

Dynamic Planar Skyline
Queries

In this chapter we present two linear size dynamic data structures for skyline queries.
The first is for top-open queries and uses I/O-CPQAs as an essential ingredient.
The second is for 4-sided queries and it uses our top-open structure as a black box.
Finally we create a point and query set which we use to give two lower bounds: a
space lower bound in the framework of Chazelle and Liu [CL04] and a query lower
bound in the indexability model of [HKM+02].

The dynamic top-open data structure uses linear space and can be build in a
linear number of I/Os, assuming the input is pre-sorted. The data structure supports
top-open queries in O(log2Bε

n
B + k

B1−ε) I/Os and updates in O(log2Bε
n
B) I/Os, for

any parameter 0 ≤ ε ≤ 1. Our upper bound is inspired by the approach of Overmars
and van Leeuwen [OvL81] for maintaining the planar skyline in the pointer machine.
As a brief review of [OvL81], a dynamic binary base tree indexes the x-coordinates
of P , and every internal node stores the skyline of the points in its subtree using a
secondary search tree. More specifically, the skyline of an internal node is (L\L′)∪R,
where L (resp. R) is the skyline of its left (resp. right) child node, and L′ is the set
of points in L dominated by the leftmost (and thus also highest) point of R. We use
I/O-CPQAs from Chapter 3 to maintain the sets L and R in internal nodes, and we
generalize this to (a, b)-trees.

The dynamic 4-sided data structure uses linear space and answers queries in
O((nB)ε + k

B) I/Os and support updates in amortized O(log n
B) I/Os. We utilize

an (a, b)-tree augmented with our right-open structure (which is symmetric to the
top-open structure) on internal nodes and then answers the 4-sided queries by issuing
right-open queries.

Our point and query sets are given in the framework proposed by Chazelle
and Liu [CL04] in which we give two lower bounds. The first lower bound is a
space lower bound saying if we support queries in O(logγ n+ k) time then we need
Ω(n logn

log logn) space. The second is a query lower bound in the indexability model,
with the indivisibility assumption, saying that if we want O(nB) space then the query
will spent Ω((nB)ε + k

B) I/Os to report the skyline within a query range.

4.1 Top-Open Structure
Our approach is based on I/O-CPQAs, as described in Chapter 3. We observe that
attrition can be utilized to maintain the internal node skylines in [OvL81], after

59

60 Chapter 4. Dynamic Planar Skyline Queries

mirroring the y-axis. To explain this, let us first map the input set P to its y-mirrored
counterpart P̃ = {(xp,−yp) | (xp, yp) ∈ P}. In the context of PQAs, we will interpret
each point (x̃p, ỹp) ∈ P̃ as an element with “key” value ỹp that is inserted at “time”
x̃p. To formalize the notion of time, we define the <x-ordering of two elements
p̃, q̃ ∈ P̃ to be p̃ <x q̃, if and only if x̃p < x̃q holds. We see that element p̃ ∈ P̃ is
attrited by element q̃ ∈ P̃ , i.e., ỹp ≥ ỹq, if and only if point p ∈ P is dominated by
point q ∈ P . We have that

q̃ attrites p̃
⇔ x̃p ≤ x̃q ∧ ỹp ≥ ỹq
⇔ xp ≤ xq ∧ −yp ≥ −yq
⇔ xp ≤ xq ∧ yp ≤ yq
⇔ q dominates p

From this we see that if we build a PQA on the point set P̃ the non-attrited points
in the PQA are exactly the skyline points. See Figure 4.1 for a geometric illustration
of the mirroring transformation and the effects of attrition.

x1 x2

y

−y

Figure 4.1: The skyline problem (above) mirrored to the attrition problem (below).
White points are reported for the gray query area [x1, x2]×[y,∞[and are non-attrited,
while gray points are attrited within [x1, x2].

Thus, we index the <x-ordering of P̃ in a (2Bε, 4Bε)-tree, for a parameter 0 ≤
ε ≤ 1, and employ I/O-CPQAs as secondary structures, such that the I/O-CPQA
at an internal node is simply the concatenation of its children’s I/O-CPQAs. To
obtain logarithmic query and update I/Os, this sequence of consecutive Catenate-
and-Attrite operations at an internal node must be performed in O(1) I/Os, which
we can do thanks to Lemma 3.1. The presented I/O-CPQAs are ephemeral (not
persistent), and thus the supported operations are destructive, as they destroy the
initial configuration of the structure. This only preserves the I/O-CPQA that is the
final result of all concatenations and resides at the root of the base tree. However,
in order to support top-open queries efficiently, accessing the I/O-CPQAs at the
internal nodes is required. This is made possible by non-destructive operations.
Therefore, we render the I/O-CPQAs confluently persistent by merely replacing the
catenable deques, which are used as black boxes in our ephemeral construction, with
real-time purely functional catenable deques [KT99]. Since the imposed overhead
is O(1) worst-case I/Os, confluently persistent I/O-CPQAs ensure the same I/O
bounds as their ephemeral counterparts.

4.1. Top-Open Structure 61

4.1.1 Structure
The data structure consists of a base tree, implemented as a dynamic (a, 2a)-tree
where the leaves store between k and 2k elements. We set a = d2Bεe and k = B, for a
given 0 ≤ ε ≤ 1. The base tree indexes the <x-ordering of P̃ , and is augmented with
confluently persistent I/O-CPQAs with buffer size b = B1−ε as secondary structures.
See Figure 4.2. In particular, after constructing the base tree, we augment it with
secondary I/O-CPQAs in a bottom-up manner, as follows. For every leaf we make one
I/O-CPQA over its elements, and execute an appropriate amount of Bias operations,
such that the state of the I/O-CPQA satisfies Lemma 3.1. We associate the I/O-
CPQA with the leaf. In a second pass over the leaves, we gather its critical records
into a representative block in its parent. The procedure continues one level above. For
every internal node u, we access the representative blocks that contain the critical
records of the children’s I/O-CPQAs of u, and Catenate-and-Attrite them into a new
I/O-CPQA as implied by Lemma 3.1. We execute Bias on the I/O-CPQA enough
times such that its state also satisfies Lemma 3.1. We associate the I/O-CPQA
with node u and put its critical records in the representative block of u’s parent.
After the level has been processed, the representative blocks for the I/O-CPQAs
associated with the nodes of the current level are ready for use in the level above.
The augmentation ends at the root node of the base tree. We will ensure that our
algorithms access the I/O-CPQA associated with a node through the representative
block stored at the parent of the node. Thus, it will suffice to explicitly store only
the representative blocks of the children in every internal node and the I/O-CPQAs
of the leafs.

O(B1−ε)
[2Bε, 4Bε]

[B, 2B]

.

Figure 4.2: The skyline structure is a (d2Bεe, d4Bεe)-tree augmented with I/O-CPQAs
on the internal nodes and the leafs.

4.1.2 Invariants
We are using a (d2Bεe, d4Bεe)-tree augmented with I/O-CPQAs. We will maintain
the invariants from Subsection 1.5.1 for the (a, b)-tree along with the invariants from
Chapter 3 for the I/O-CPQAs.

4.1.3 Operations
Having defined the (a, b)-tree and the invariants about how to augment it, we are
ready to define the update and query operations.

62 Chapter 4. Dynamic Planar Skyline Queries

α1 α2

`2`1

π

π1 π2

Figure 4.3: A top-open query is answered by calling Catenate-and-Attrite on `1, the
gray subtrees and `2 returning one I/O-CPQA and then calling Delete-Min on it.

Updates

To insert (delete) a point p into (from) P , we insert (delete) p̃ = (x̃p, ỹp) in (from)
the structure. In particular, we first find the leaf to insert into (delete from) that
contains the predecessor of x̃p (contains x̃p), by a top-down traversal of the path
from the root of the base tree. For every node u on the path, we also discard the
part of its representative block corresponding to the child that the search path goes
into, and u’s associated I/O-CPQA by discarding the changes from the operations
that created it. Next we insert (delete) p̃ into (from) the accessed leaf, and rebalance
the base tree by executing the appropriate splits and merges on the nodes along
the path in a bottom-up manner. Moreover, we recompute the I/O-CPQA of every
accessed node on the path, as described above. See Figure 4.2.

Queries

To report the skyline points of P that reside within a given top-open query range
[α1, α2] × [β,∞[, we first traverse top-down the two search paths π̃1 = ππ1 and
π̃2 = ππ2 from the root of the base tree to the leaves `1 and `2 containing α1 and
α2 in the <x-ordering, respectively. See Figure 4.3. Let node u be on the path
π1 ∪ π2, and let c(u) be the children nodes of u whose subtrees are fully contained
within [α1, α2]. For every node u, we load its representative block into memory in
order to access the critical records of the I/O-CPQAs associated with c(u) and to
Catenate-and-Attrite them into a temporary I/O-CPQA, as implied by Lemma 3.1.
We consider the temporary I/O-CPQAs over the nodes u and the I/O-CPQAs of
the leaves `1 and `2 from right to left, and we Catenate-and-Attrite them into one
auxiliary I/O-CPQA. The I/O-CPQAs for `1 and `2 are created only on the points
within the x-range [α1, α2] in O(1) I/Os. See Figure 4.3.

To report the skyline points within the query range, we call Delete-Min on the

4.1. Top-Open Structure 63

auxiliary I/O-CPQA. The procedure stops as soon as a point with ỹp > −β is
returned, or when the auxiliary I/O-CPQA becomes empty.

4.1.4 Analysis

We will now analyse the space usage, pre-processing, update and query I/O complexity
of the skyline structure which will serve as the proof of Theorem 4.1 below.

Theorem 4.1. There is a linear-size dynamic data structure on n points in R2 that
supports top-open range skyline queries in O(log2Bε

n
B + k

B1−ε) I/Os when k points
are reported, and updates in O(log2Bε

n
B) I/Os for any parameter 0 ≤ ε ≤ 1. The

structure can be constructed in O(nB) I/Os, assuming an initial sorting on the input
points’ x-coordinates.

Space and Preprocessing

Lets first look at the space usage of the skyline structure. Since every leaf contains
O(B) elements, the base tree has O(nB) leaves and thus also O(nB) internal nodes.
Every internal node has Θ(Bε) children, each associated with an I/O-CPQA with
O(1) critical records of size O(B1−ε). Thus the representative blocks stored in the
internal node occupy O(1) blocks of space. Thus the structure occupies O(nB) blocks
in total.

We will now look at the pre-processing required to build the skyline structure
on a non-empty point set P . Assume that P̃ is already sorted by the <x-ordering.
The leaves’ I/O-CPQAs are created in O(1) I/Os, since they contain at most O(B)
elements. All representative blocks are created in O(nB) I/Os. To create the internal
nodes’ I/O-CPQAs, we need only O(1) I/Os to access the representative blocks and
to execute Bias on the resulting I/O-CPQA. Its representative blocks residing in
memory thus are written to disk in O(1) I/Os. Thus the total pre-processing cost is
O(nB) I/Os, assuming the input is already pre-sorted.

Update Cost

When we perform an update of the skyline structure we spend O(1) I/Os on each
node to first discard all the I/O-CPQAs on the path to the leaf. Then we spend O(1)
I/Os to rebalance every accessed node on the path from the leaf to the root. We do
splits and joins and recompute each nodes secondary structures, i.e., concatenating
the children’s I/O-CPQAs into one I/O-CPQA , calling Bias on it and storing its
critical records in the representative block of its parent. The total update cost is
O(log2Bε

n
B) I/Os, in the worst-case, as this is also the height of the tree.

Query Cost

There are O(log2Bε
n
B) nodes on the search paths π1 ∪ π2 to the leafs `1 and `2. We

spend O(1) I/Os to access the representative block of each node and concatenating its
children within [α1, α2] together, by use of Lemma 3.1. After this, the construction of
the auxiliary I/O-CPQA by concatenating the auxiliary I/O-CPQAs for all subtrees
within [α1, α2] costs O(log2Bε

n
B) I/Os. Finally reporting the k output points costs

O(k
B1−ε + 1) I/Os, since the buffer sizes of the I/O-CPQAs are O(B1−ε). Therefore

the query takes O(log2Bε
n
B + k

B1−ε) I/Os in total.

64 Chapter 4. Dynamic Planar Skyline Queries

4.2 4-Sided Structure
In this section we will use our dynamic top-open structure to develop a linear size
dynamic 4-sided structure that can answer queries in O

((
n
B

)ε + k
B

)
I/Os and support

updates in amortized O
(
log n

B

)
I/Os.

4.2.1 Structure
We maintain an augmented (f, 2f)-tree T on the x-coordinates of the points in P
where f = (nB)ε

log n
B
. Each leaf node of T has capacity k ∈ [B, 2B], and each internal

node has Θ(f) child nodes. For a node u in T , let P (u) be the set of points whose x-
coordinates are in the subtree of u. We augment each node u with with a right-open1
structure R(u) of Theorem 4.1.

4.2.2 Invariants
For the (f, 2f)-tree T we maintain the invariants from Subsection 1.5.1 along with the
invariants of Section 4.1, required to maintain the augmentation of the (f, 2f)-tree
with the right-open structures.

4.2.3 Operations
Having described the structure and the invariants we are now ready to describe the
query and update operations.

Queries

Given a 4-sided query with search rectangle Q = [α1, α2] × [β1, β2], we find the
leaf nodes `1 and `2 of T containing the successor and predecessor of α1 and α2
respectively, among the x-coordinates indexed by T . See Figure 4.4. If `1 = `2, solve
the query by loading the O(B) points of leaf `1 into memory and answer the query
internally.

We now consider the case where `1 6= `2. Let π1 (π2) be the path from the lowest
common ancestor of `1 and `2 to `1 (`2). Let u be a node on the path π1 ∪ π2 and
let c(u) be the children of u that are fully contained within [α1, α2], these are the
light gray subtrees in Figure 4.4.

Find the skyline of P (`2) ∩ Q, let β∗ be the y-coordinate of the highest point
in this skyline. Next we process the children v ∈ c(u) for each node u on the path
π1 ∪ π2, from right-to-left. We perform a right-open query with]−∞,∞[×[β∗, β2]
on R(v), and output all the points retrieved. If the query returns at least one point,
update β∗ to the y-coordinate of the highest point returned. Finally, issue a 4-sided
query with [α1, α2]× [β∗, β2] on the leaf `1.

Updates

To insert (delete) a point p into (from) P , first descend a root-to-leaf path π to the
leaf node ` of T where px should be inserted into (deleted from). For each internal
node u along π, insert (delete) p into (from) R(u). Next, update the base tree T by
inserting (deleting) px. If an internal node u is split (joined), we construct R(u′) for
each new node u′ from scratch by simply inserting into R(u′) all the relevant points.

We reconstruct the entire structure after Ω(n) updates to make sure that the
height does not change until T is rebuilt next time.

1Notice that top-open and right-open queries are symmetric.

4.2. 4-Sided Structure 65

α1 α2

`2`1

π

π1 π2

β2

β1

Figure 4.4: We solve a 4-sided query by doing O(f) queries on the augmenting
right-open structures.

4.2.4 Analysis
We will now analyse the I/O bounds of the 4-sided structure, at the end of this
subsection we will have proved the following Theorem.

Theorem 4.2. There is a linear-size structure on n points in R2 such that, 4-sided
range skyline queries can be answered in O((nB)ε + k

B) I/Os, where k is the number
of reported points. The structure can be updated in O(log n

B) I/Os amortized.

Space Usage

Since T has fanout Θ(f) = Θ
(

(nB)ε
log n

B

)
the height h of the tree will be

O
(

logf
n

B

)
= O

 log n
B

log
(

(nB)ε
log n

B

)
 = O(1).

The right-open structures of all nodes at the same level of T consume a total of
O(nB) blocks of space and as T only has a constant number of levels, the total space
usage is O(nB) blocks.

Query Cost

The correctness follows as we first find the skyline of `2 then we find the skyline for
each subtree fully contained in [α1, α2] from right-to-left by querying the secondary
structures taking into account the leftmost and highest skyline point returned from
the previously queried subtree and `2. Likewise when querying `1 we take into account
the highest skyline point from the subtrees and `2.

In T we first find the leafs `1 and `2 in O(hf) I/Os. Then we answer the query by
making Θ(f) queries to the right-open structure of the Θ(f) subtrees fully contained

66 Chapter 4. Dynamic Planar Skyline Queries

within the x-interval [α1, α2] on each of the h = O(1) levels of the tree T . Each query
reports the skyline points within its subtree in O(log n

B + k
B) I/Os. The total I/O

cost is then

O
(
hf log n

B
+ k

B

)
= O

(((
n
B

)ε
log n

B

)
log n

B
+ k

B

)
= O

((n
B

)ε
+ k

B

)
.

Update Cost

It is trivial to argue for the correctness of the update as we clearly maintain the
augmenting structures doing the update.

The navigation to the leaf ` costs O(log f) I/Os on each of the h levels. Therefore
the total cost of the navigation is O(h log n

B) I/Os. Updating each of the right-open
structures on the path to ` costs O(log n

B) I/Os. When rebalancing T by splitting
and joining nodes, we simply rebuild the right-open structure R(u) for the new node
u in question by inserting all the points in R(v) of the children v, one by one, this
will take O(|S(u)| log n

B) I/Os if the subtree of the new node u has size S(u). The
factor |S| is amortized away, as mentioned in Subsection 1.5.1, because a node will
only split or join after a constant fraction of the points in its subtree have been
deleted or inserted. The total amortized cost of an update is then O(log n

B).
After Θ(n) updates we build a new structure T ′ from T in order to preserve that

the height of the tree is O(1). This will take O(n log n
B) I/Os. So amortized this

rebuilding of T gives an additive overhead of O(log n
B) to the updates.

4.3 Lower Bounds
In this section we will prove two lower bounds for anti-dominance queries as these
are not symmetric nor subsumed by top-open queries. It would be nice if they could
be answered in O(logB n + k

B) I/Os by a linear-size structure. Unfortunately, we
will prove its impossibility. We prove that anti-dominance, left-open and 4-sided
queries are just as hard as each other, by giving a lower bound for anti-dominance
queries that match our upper bound for 4-sided queries in Section 4.2. The first is
a space lower bound in the PM model, it proves that if we want polylogarithmic
queries O(logγ n+ k) then we will need super-linear space Ω(n logn

log logn). The second
is a query lower bound in the Indexability Model of [HKM+02], it will show that
if we require our data structure to use linear space O(nB) in the EM model then
anti-dominance queries will require Ω((nB)ε + k

B) I/Os. Both lower bounds have, as
the essential ingredient, a point and query set inspired by the low-discrepancy point
sets proposed by Chazelle and Liu [CL04], which we will describe next in Subsection
4.3.1.

4.3.1 (ω, λ)-input
Before formally defining the (ω, λ)-input we will first recall the formal setting and
definitions of [CL04] in which we will phrase our (ω, λ)-input and one of our lower
bounds. In the PM model, as described in Subsection 1.1.3, a data structure that
stores a data set S and supports range reporting queries for a query set Q, can be
modelled as a directed graph G of bounded out-degree with some nodes being entry
nodes. In particular, every node in G may be assigned an element of S or may contain
some other useful information. For a query range Qi ∈ Q, the algorithm navigates
over the edges of G in order to locate all nodes that contain the answer to the query.

4.3. Lower Bounds 67

The algorithm may also traverse other nodes. The time complexity of reporting the
output of Qi is at least equal to the number of nodes accessed in graph G for Qi.

Given a directed graph G modelling a data structure in the PM, Chazelle and
Liu [Cha90,CL04] define two properties of the graph G.

Definition 4.1 ((α, ω)-effective from [CL04, Definition 2.1]). A search structure G
for a data set S is (α, ω)-effective, with α being a positive constant and ω an additive
overhead, if for any query q, we have |G(q)| ≤ α(k+ω). Here G(q) is the set of nodes
visited in G while answering query q and k is the number of objects in S intersected
by q.

Definition 4.2 ((m,ω)-favorable from [CL04, Definition 2.2]). A collection of queries
Q = {Qi} is (m,ω)-favorable with m > 1 for S, if Q satisfies the relevance and
independence conditions:

• Relevance: |S ∩Qi| ≥ ω, for any Qi ∈ Q.

• Independence: |S ∩Qi1 ∩ . . . ∩Qim | = O(1) for all i1 < . . . < im.

Intuitively, the first part of this property requires that the size of the output is
large enough (at least ω) so that it dominates the additive factor of ω in the time
complexity. The second part requires that the query outputs have minimum overlap,
in order to force G to be large, without many nodes containing the output of many
queries. The following lemma exploits these properties to provide a lower bound on
the minimum size of G:

Lemma 4.1 (From [CL04, Lemma 2.3]). For an (α, ω)-effective graph G for the data
set S, and for an (m,ω)-favorable set of queries Q, the graph G contains Ω(|Q|ωα)
nodes, for constant m and α and for any large enough ω.

Let S be a set of n points in R2. Let Q = {Qi ⊆ R2} be a set of orthogonal
2-sided query ranges Qi = [qix ,∞[×[qiy ,∞[⊆ R2. Query range Qi is the subspace
of R2 that dominates a given point qi ∈ R2 in the positive x- and y- direction (the
“upper-right” quadrant defined by qi). Let Si = S ∩Qi be the set of all points in S
that lie in the range Qi. An inverse anti-dominance reporting query Qi contains the
points of Si that do not dominate any other point in Si. This problem is equivalent
to the anti-dominance problem, of Section 1.4, by inverting the coordinates of all
points and of the query. By making a crucial observation on a variant of the low-
discrepancy point set proposed by Chazelle and Liu [CL04], we manage to prove the
next geometric fact:

Lemma 4.2. For any integer ω ≥ 1 and λ ≥ 1, there is a set P of ωλ points in
R2 and a set G of λωλ−1 anti-dominance queries that is (2, ω)-favorable, i.e., such
that (i) each query in G retrieves ω points of P , and (ii) at most one point in P is
returned by two different queries in G simultaneously.

Proof. We will now construct a (2, ω)-favorable query set Q and its corresponding
point set S, where ω > 1. Without loss of generality, we assume that n = ωλ, where
λ > 0, since this restriction generates a countably infinite number of inputs and thus
the lower bound is general. Let us write 0 ≤ i < n as i = i

(ω)
0 i

(ω)
1 . . . i

(ω)
λ−1, where i

(ω)
j

is the j-th digit of number i in base ω (i(ω)
λ−1 is the least significant and i(ω)

0 is the
most significant digit.). Then define

ρω(i) = (ω − i(ω)
λ−1 − 1)(ω − i(ω)

λ−2 − 1) . . . (ω − i(ω)
0 − 1)

So ρω(i) is the integer obtained by writing 0 ≤ i < n using λ digits in base ω, by first
reversing the digits and then taking their complement with respect to ω. We define

68 Chapter 4. Dynamic Planar Skyline Queries

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i

ρw(i)

15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0

0 3
1 2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 4.5: An example for ω = 4 and
λ = 2, the point set S is shown with circles
and the queries Q are shown with crosses.
Two examples of queries are shown, the
first in black/white, the second in gray.

Figure 4.6: The corresponding trie that
we used to generate the point set, here
the black/white and the gray queries are
also shown, along with the internal node
which generated the queries.

the points of S to be the set {(i, ρω(i))|0 ≤ i < n}. Figure 4.5 shows an example
with ω = 4 and λ = 2.

To define the query set Q, we encode the set of points {ρω(i)|0 ≤ i < n} in a
full trie structure of depth λ. Recall that n = ωλ. Notice that the trie structure is
implicit and it is used only for presentation purposes. Input points correspond to
the leaves of the trie and their y value is their label at the edges of the trie, where
the edges at the root have labels ω − i(ω)

λ−1 − 1 and the edges at the leafs of the
trie have labels ω − i(ω)

0 − 1. Let v be an internal node at depth d (namely v has d
ancestors), whose prefix v0, v1, . . . , vd−1 corresponds to the path from the root r of
the trie to v. We take all points in its subtree and sort them by y. From this sorted
list we construct groups of size ω by always picking every ωλ−d−1-th element starting
from the smallest non-picked element for each group. In this case, we say that the
query is associated to node v. Each such group corresponds to the output of a query.
See Figure 4.5 and 4.6 for an example.

A node at depth d has n
ωd

points in its subtree and thus it defines at most n
ωd+1

queries. Thus, the total number of queries is:

|Q| =
λ−1∑
d=0

ωd
n

ωd+1 =
λ−1∑
d=0

n

ω
= λn

ω

In the following we prove that Q is (2, ω)-favorable. To achieve that we need to
prove that ∀Qi ∈ Q : |S ∩Qi| ≥ ω and ∀i1 < i2 : |S ∩Qi1 ∩Qi2 | = O(1).

First we prove that we can construct the queries so that they have output
size ω. Assume that we take one of the groups of ω points associated to node v
at depth d. Let the y-coordinates of these points be ρω(i1), ρω(i2), . . . , ρω(iω) in
increasing order. These have a common prefix of length d since they all belong
to the subtree of v. But we also choose these points so that ρω(ij) − ρω(ij−1) =
ωλ−d−1, 1 < j ≤ ω. This means that these numbers differ only at the λ− d− 1-th
digit. By inversing the procedure to construct these y-coordinates, the corresponding
x-coordinates ij , 1 ≤ j ≤ ω are determined. By complementing we take the increasing
sequence ρ̄ω(iω), . . . , ρ̄ω(i2), ρ̄ω(i1), where ρ̄ω(ij) = ωλ − ρω(ij)− 1 and ρ̄ω(ij−1)−

4.3. Lower Bounds 69

ρ̄ω(ij) = ωλ−d−1, 1 < j ≤ ω. By reversing the digits we finally get the increasing
sequence of x-coordinates iω, . . . , i2, i1, since the numbers differ at only one digit.
Thus, the y-coordinate of the group of ω points are decreasing as the x-coordinates
increase, and as a result a query q whose horizontal line is just below ρω(i1) and the
vertical line just to the left of ρω(iω) will certainly contain this set of points in the
query. In addition, there cannot be any other points between this sequence and the
horizontal or vertical lines defining query q. This is because all points in the subtree
of v have been sorted with respect to y, while the horizontal line is positioned just
below ρω(i1), so that no other element lies in between. In the same manner, no points
to the left of ρω(iω) exist, when positioning the vertical line of q appropriately. Thus,
for each query q ∈ Q, it holds that |S ∩ q| = ω.

We now want to prove that for any two query ranges p, q ∈ Q, |S ∩ q ∩ p| ≤ 1
holds. Assume that p and q are associated to nodes v and u, respectively, and that
their subtrees are disjoint. That is, u is not a proper ancestor or descendant of v. In
this case, p and q share no common point, since each point is used only once in the
trie. For the other case, assume without loss of generality that u is a proper ancestor
of v (u 6= v). By the discussion in the previous paragraph, each query contains ω
numbers that differ at one and only one digit. Since u is a proper ancestor of v, the
corresponding digits will be different for the queries defined in u and for the queries
defined in v. This implies that there can be at most one common point between
these sequences, since the digit that changes for one query range is always set to a
particular value for the other query range.

We use the term (ω, λ)-input to refer to the point set P , obtained in Lemma 4.2,
after ω and λ have been fixed. We can now use the (ω, λ)-input to prove two lower
bounds: the space lower bound in Subsection 4.3.2 and the query lower bound in the
Subsection 4.3.3.

4.3.2 Space Lower Bound
We will now combine our (ω, λ)-input with Lemma 4.1 to get our space lower bound
for anti-dominance reporting queries in the PM model:

Theorem 4.3. The anti-dominance reporting problem in the Pointer Machine
requires Ω(n logn

log logn) space, if the query is supported in O(logγ n+ k) time, where k
is the size of the answer to the query and parameter γ fulfills 0 < γ = O(1).

Proof. From Lemma 4.2 we have a (2, ω)-favorable point set of size n = ωλ and
query set Q of size λωλ−1. From Lemma 4.1 we have that a (α, ω)-effective graph for
an (m,ω)-favorable set of queries Q must contain Ω(|Q|ωα) nodes. If we put α = O(1),
m = 2, ω = logγ n and λ = b logn

1+γ log lognc for some constant 0 < γ = O(1), then the
number of nodes in the graph is at least:

Ω
(
ω|Q|
α

)
= Ω

(
ω(λωλ−1)

α

)
= Ω

(
ωλλ

)
= Ω

(
n

logn
log logn

)
.

Thus the query time of α(ω + k) = O(logγ n + k), for output size k, can only be
achieved at a space cost of Ω(n logn

log logn).

4.3.3 Query Lower Bound
In this subsection we will give a query lower bound with the indivisibility assumption
in the Indexability and EM model, when we require the data structure to use at
most linear space. We will use the (ω, λ)-input along with the Indexability Theorem

70 Chapter 4. Dynamic Planar Skyline Queries

of [HKM+02] to prove the following Lemma, which we will then use to prove our
query lower bound in Theorem 4.5:

Lemma 4.3. Any structure supporting anti-dominance queries in O((nB) 1
25c + k

B)
I/Os in the worst-case on n points in R2, in the indexability model, must use cn

B
blocks of space, where c ≥ 1 is a constant and k is the result size.

Before we continue we will first state the definitions necessary to understand
the Indexability Theorem which we will use to prove Lemma 4.3. We will need the
following definitions of [HKM+02] from the indexability model.

Definition 4.3 (Indexing Workload from [HKM+02]). An Indexing Workload W is
a tuple W = (D, I,Q) where D is a non-empty domain, I ⊆ D is a finite input set,
the instance, and Q ⊆ 2I is the set2 of queries.

Definition 4.4 (Indexing Scheme from [HKM+02]). An Indexing Scheme S is a
tuple S = (W,B) where W = (D, I,Q) is an indexing workload and B ⊆ 2I is a cover
of I, i.e. a blocking of the input I.

Definition 4.5 (Storage Redundancy from [HKM+02]). Let S = (W,B) be an
indexing scheme over an indexing workload W = (D, I,Q) with blocking B. Define
r(x) = |{b ∈ B | x ∈ b}| to be the redundancy of element x ∈ I. The Storage
Redundancy r of S is:

r = 1
|I|
∑
x∈I

r(x).

Definition 4.6 (Access Overhead from [HKM+02]). Given an indexing scheme
S = (W,B) over indexing workload W = (D, I,Q), let Q ∈ Q be a query. Let CQ ⊆ B
be the minimal set such that Q ⊆

⋃
b∈CQ b. The access overhead for query Q is:

A(Q) = |CQ|⌈
|Q|
B

⌉ .
The Access Overhead for indexing scheme S is A = maxQ∈Q{A(Q)}.

Theorem 4.4 (Indexability Theorem from [HKM+02]). Let S = (W,B) be an
indexing scheme with access overhead A ≤

√
B

4 and let Q1, . . . , Qm be queries such
that for 1 ≤ i ≤ m:

• |Qi| ≥ B
2 and

• |Qi ∩Qj | ≤ B
16A2 for 1 ≤ i < j ≤ m.

Then the redundancy r is bounded by:

r ≥ 1
12|I|

m∑
i=1
|Qi|.

Having stated all the definitions and the Indexability Theorem, we are ready to
give the proof of Lemma 4.3 and then use it to finally prove our query lower bound
in Theorem 4.5.

2The notation 2I denotes the set of all subsets of I.

4.3. Lower Bounds 71

Proof of Lemma 4.3. Let S be an indexing scheme for the (ω, λ)-input, with access
overhead A ≤

√
B

4 . Lets put ω = B and λ = 12c+ 11
10 where c ≥ 1. We first notice

that from Lemma 4.2 we have that n = ωλ, m = λn
ω and any of the queries Qi of

the (ω, λ)-input fulfills that |Qi| = ω. Also for any two different queries Qi and Qj
we have that |Qi ∩Qj | ≤ 1. So Theorem 4.4 applies and gives us that:

rn = r|I| ≥ 1
12

m∑
i=1
|Qi| =

1
12
λ

ω
nω =

(12c+ 11
10)n

12 ≥ cn

when A ≤
√
B

4 . So each point has redundancy r and the blocking of S must use at
least cn

B blocks of space.
Consider any data structure D on the (ω, λ)-input which can answer a query in

O((nB) 1
25c + k

B) I/Os, this data structure is an indexing scheme. For a query of size
k = ω we have for some constant a that

A ≤ a

((
ωλ

B

) 1
25c

+ ω

B

)
= aB

120
250 + 1

250c + a

≤ aB
121
250 + a.

Now when B is sufficiently large we have that aB 121
250 +a ≤

√
B

4 and hence A ≤
√
B

4 , so
from before we have that the data structure must use at least cn

B blocks of space.

Theorem 4.5. Any linear space structure supporting anti-dominance queries on n
points in the indexability model must incur Ω((nB)ε + k

B) I/Os, where ε > 0 can be
an arbitrarily small constant, and k is the result size.

Proof. Assume for contradiction that there exists a data structure D using at most dnB
blocks of space, for some constant d, which can answer queries in o((nB)

1
25(d+1) + k

B)
I/Os. Then we can choose c = d + 1 in Lemma 4.3 and prove that D will use
(d+1)n
B > dn

B blocks of space, which is a contradiction to our assumption.

72 Chapter 4. Dynamic Planar Skyline Queries

Bibliography

[AHU74] Alfred Vaino Aho, John Edward Hopcroft, and Jeffrey David Ullman.
The Design and Analysis of Computer Algorithms. Addison-Wesley
Longman Publishing Company Incorporated, 1974. ISBN 0-201-00029-
6.

[AM78] Brian Allen and James Ian Munro. Self-organizing binary search trees.
Journal of the ACM (JACM), 25(4):526–535, 1978.

[Arg03] Lars Arge. The buffer tree: A technique for designing batched external
data structures. Algorithmica, 37(1):1–24, 2003.

[AT00] Arne Andersson and Mikkel Thorup. Tight(er) worst-case bounds
on dynamic searching and priority queues. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 335–342. ACM,
2000.

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity
of sorting and related problems. Communications of the ACM (CACM),
31:1116–1127, 1988.

[AVL62] Georgy Adelson-Velsky and Evgenii Mikhailovich Landis. An informa-
tion organization algorithm. In Doklady Akademia Nauk SSSR, volume
146, pages 263–266, 1962.

[Bac78] John Backus. Can programming be liberated from the von neumann
style?: A functional style and its algebra of programs. Communications
of the ACM (CACM), 21:613–641, 1978.

[Bay74] Rudolf Bayer. Symmetric binary b-trees: Data structure and mainte-
nance algorithms. Acta Informatica, 1(4):290–306, 1974.

[BCDI07] Mihai Bǎdoiu, Richard Cole, Erik D. Demaine, and John Iacono. A uni-
fied access bound on comparison-based dynamic dictionaries. Theoretical
Computer Science (TCS), 382(2):86–96, 2007.

[BCP08] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient sort-based
skyline evaluation. ACM Transactions on Database Systems (TODS),
33(4), 2008.

[BCR02] Michael Anthony Bender, Richard Cole, and Rajeev Raman. Exponential
structures for efficient cache-oblivious algorithms. In International
Colloquium on Automata, Languages and Programming (ICALP), pages
195–207. LNCS, 2002.

73

74 Bibliography

[BD04] Mihai Bǎdoiu and Erik D. Demaine. A simplified and dynamic unified
structure. In Latin American Symposium on Theoretical Informatics
(LATIN), pages 466–473. LNCS, 2004.

[BDF+10] Gerth Stølting Brodal, Erik D. Demaine, Jeremy T. Fineman, John
Iacono, Stefan Langerman, and James Ian Munro. Cache-oblivious
dynamic dictionaries with update/query tradeoffs. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1448–1456. SIAM, 2010.

[BDIW02] Michael Anthony Bender, Ziyang Duan, John Iacono, and Jing Wu. A
locality-preserving cache-oblivious dynamic dictionary. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 29–38. ACM-SIAM, 2002.

[BDL08] Prosenjit Bose, Karim Douïeb, and Stefan Langerman. Dynamic optimal-
ity for skip lists and B-trees. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1106–1114. SIAM,
2008.

[Ben80] Jon Louis Bentley. Multidimensional divide-and-conquer. Communica-
tions of the ACM (CACM), 23:214–229, 1980.

[BF00] Gerth Stølting Brodal and Rolf Fagerberg. Amortized analysis of (a, b)-
trees, 2000. URL http://www.cs.au.dk/~gerth/emF01/Notes/BF00.
ps.gz.

[BHM09] Prosenjit Bose, John Howat, and Pat Morin. A distribution-sensitive
dictionary with low space overhead. In Algorithms and Data Structures
Workshop (WADS), volume 5664 of LNCS, pages 110–118, 2009.

[BKR12] Gerth Stølting Brodal and Casper Kejlberg-Rasmussen. Cache-oblivious
implicit predecessor dictionaries with the working-set property. In Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 14,
pages 112–123. 2012.

[BKRT10] Gerth Stølting Brodal, Casper Kejlberg-Rasmussen, and Jakob Truelsen.
A cache-oblivious implicit dictionary with the working set property. In
International Symposium on Algorithms and Computation (ISAAC),
volume 6507, pages 37–48. 2010.

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The sky-
line operator. In Proceedings of International Conference on Data
Engineering (ICDE), pages 421–430, 2001.

[BLM+02] Gerth Stølting Brodal, George Lagogiannis, Christos Makris, Athana-
sios Konstantinou Tsakalidis, and Kostas Tsichlas. Optimal finger search
trees in the pointer machine. In Proceedings of ACM Symposium on
Theory of Computing (STOC), pages 381–418. ACM, 2002.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and maintenance
of large ordered indexes. Acta Informatica, 1:173–189, 1972.

[BNT12] Gerth Stølting Brodal, Jesper Sindahl Nielsen, and Jakob Truelsen.
Finger search in the implicit model. In International Symposium on
Algorithms and Computation (ISAAC), volume 7676, pages 527–536.
2012.

Bibliography 75

[Bro98] Gerth Stølting Brodal. Finger search trees with constant insertion
time. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 540–549. SIAM, 1998.

[BST85] Samuel Watkins Bent, Daniel Dominic Sleator, and Robert Endre Tarjan.
Biased search trees. SIAM Journal of Computing, 14:545–568, 1985.

[BT11] Gerth Brodal and Konstantinos Tsakalidis. Dynamic planar range
maxima queries. In International Colloquium on Automata, Languages
and Programming (ICALP), pages 256–267. LNCS, 2011.

[CGGL05] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline
with presorting: Theory and optimizations. In Intelligent Information
Systems (IIS), pages 595–604, 2005.

[Cha90] Bernard Chazelle. Lower bounds for orthogonal range searching: I. the
reporting case. Journal of the ACM (JACM), 37(2):200–212, 1990.

[CL04] Bernard Chazelle and Ding Liu. Lower bounds for intersection searching
and fractional cascading in higher dimension. Journal of Computer and
System Sciences (JCSS), 68(2):269–284, 2004.

[CLRS01] Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and
Clifford Stein. Introduction to Algorithms. McGraw-Hill, 2 edition, 2001.
ISBN 0-07-013151-1.

[CMSS00] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On
the dynamic finger conjecture for splay trees. part i: Splay sorting log
n-block sequences. SIAM Journal of Computing, 30:1–43, 2000.

[Col00] Richard Cole. On the dynamic finger conjecture for splay trees. part ii:
The proof. SIAM Journal of Computing, 30:44–85, 2000.

[CS84] Richard Cole and Alan Siegel. River routing every which way, but
loose. In Proceedings of Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 65–73, 1984.

[DF84] George Diehr and Bruce Faaland. Optimal pagination of b-trees with
variable-length items. Communications of the ACM (CACM), 27:241–
247, 1984.

[dFGT97] Fabrizio d’Amore, Paolo Giulio Franciosa, Roberto Giaccio, and Maurizio
Talamo. Maintaining maxima under boundary updates. In International
Conference on Algorithms and Complexity (CIAC), pages 100–109, 1997.

[DGK+12] Ananda Swarup Das, Prosenjit Gupta, Anil Kishore Kalavagattu, Jatin
Agarwal, Kannan Srinathan, and Kishore Kothapalli. Range aggre-
gate maximal points in the plane. In Workshop on Algorithms and
Computation (WALCOM), pages 52–63, 2012.

[DHI+09] Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai
Pǎtraşcu. The geometry of binary search trees. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
496–505. SIAM, 2009.

[DHIP07] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu.
Dynamic optimality – almost. SIAM Journal of Computing, 37:240–251,
2007.

76 Bibliography

[DR94] Paul F. Dietz and Rajeev Raman. A constant update time finger search
tree. Information Processing Letters (IPL), 52:147–154, 1994.

[DZ04] H. K. Dai and X. W. Zhang. Improved linear expected-time algorithms
for computing maxima. In Latin American Symposium on Theoretical
Informatics (LATIN), pages 181–192. LNCS, 2004.

[FG03] Gianni Franceschini and Roberto Grossi. Optimal worst-case opera-
tions for implicit cache-oblivious search trees. In Algorithms and Data
Structures Workshop (WADS), volume 2748 of LNCS, pages 114–126,
2003.

[FG06] Gianni Franceschini and Roberto Grossi. Optimal implicit dictionaries
over unbounded universes. Theoretical Computer Science (TCS), 39:
321–345, 2006.

[FGMP02] Gianni Franceschini, Roberto Grossi, James Ian Munro, and Linda
Pagli. Implicit B-trees: New results for the dictionary problem. In
Proceedings of Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 145–154, 2002.

[Fle93] Rudolf Fleischer. A simple balanced search tree with O(1) worst-
case update time. In International Symposium on Algorithms and
Computation (ISAAC), volume 762, pages 138–146. 1993.

[FLPR99] Matteo Frigo, Charles Eric Leiserson, Harald Prokop, and Sridhar Ra-
machandran. Cache-oblivious algorithms. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages
285–297. IEEE, 1999.

[FR90] Greg Norman Frederickson and Susan Rodger. A new approach to
the dynamic maintenance of maximal points in a plane. Discrete &
Computational Geometry, 5(1):365–374, 1990.

[Fre84] Greg Norman Frederickson. Self-organizing heuristics for implicit data
structures. SIAM Journal of Computing, 13:277–291, 1984.

[FT83] Joan Feigenbaum and Robert Endre Tarjan. Two new kinds of biased
search trees. The Bell System technical journal, 62(10):3139–3158, 1983.

[GBT84] Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling
and related techniques for geometry problems. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 135–143. ACM,
1984.

[GMPR77] Leonidas John Guibas, Edward M. McCreight, Michael Frederick Plass,
and Janet R. Roberts. A new representation for linear lists. In Pro-
ceedings of ACM Symposium on Theory of Computing (STOC), pages
49–60. ACM, 1977.

[GT86] Hania Gajewska and Robert Endre Tarjan. Deques with heap order.
Information Processing Letters (IPL), 22:197–200, 1986.

[HKM+02] Joseph M. Hellerstein, Elias Koutsoupias, Daniel P. Miranker, Christos H.
Papadimitriou, and Vasilis Samoladas. On a model of indexability and
its bounds for range queries. Journal of the ACM (JACM), 49(1):35–55,
2002.

Bibliography 77

[HM82] Scott Huddleston and Kurt Mehlhorn. A new data structure for repre-
senting sorted lists. Acta Informatica, 17(2):157–184, 1982.

[Hug89] John Hughes. Why functional programming matters. The Computer
Journal, 32:98–107, 1989.

[Iac01] John Iacono. Alternatives to splay trees with O(logn) worst-case access
times. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 516–522. SIAM, 2001.

[Jan91] Ravi Janardan. On the dynamic maintenance of maximal points in the
plane. Information Processing Letters (IPL), 40:59–64, 1991.

[Kap00] Sanjiv Kapoor. Dynamic maintenance of maxima of 2-d point sets.
SIAM Journal of Computing, 29:1858–1877, 2000.

[KDKS11] Anil Kishore Kalavagattu, Ananda Swarup Das, Kishore Kothapalli,
and Kannan Srinathan. On finding skyline points for range queries in
plane. In Proceedings of the Canadian Conference on Computational
Geometry (CCCG), 2011.

[KLP75] H. T. Kung, Fabrizio L Luccio, and Franco P Preparata. On finding
the maxima of a set of vectors. Journal of the ACM (JACM), 22(4):
469–476, 1975.

[Knu71] Donald Ervin Knuth. Optimum binary search trees. Acta Informatica,
1:14–25, 1971.

[KRR02] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in
the sky: An online algorithm for skyline queries. In Proceedings of Very
Large Data Bases (VLDB), pages 275–286, 2002.

[KRTT+13] Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas
Tsichlas, and Jeonghun Yoon. I/O-efficient planar range skyline and at-
trition priority queues. In Proceedings of ACM Symposium on Principles
of Database Systems (PODS), pages 103–114. 2013.

[KS85] David G. Kirkpatrick and Raimund Seidel. Output-size sensitive algo-
rithms for finding maximal vectors. In Proceedings of Symposium on
Computational Geometry (SoCG), pages 89–96. ACM, 1985.

[KT96] Haim Kaplan and Robert Endre Tarjan. Purely functional representa-
tions of catenable sorted lists. In Proceedings of ACM Symposium on
Theory of Computing (STOC), pages 202–211. ACM, 1996.

[KT99] Haim Kaplan and Robert Endre Tarjan. Purely functional, real-time
deques with catenation. Journal of the ACM (JACM), 46(5):577–603,
1999.

[LH85] Lawrence Louis Larmore and Daniel S Hirschberg. Efficient optimal
pagination of scrolls. Communications of the ACM (CACM), 28:854–856,
1985.

[McC77] Edward M. McCreight. Pagination of b-trees with variable-length
records. Communications of the ACM (CACM), 20:670–674, 1977.

[MPJ07] Michael David Morse, Jignesh Manubhai Patel, and H. V. Jagadish. Ef-
ficient skyline computation over low-cardinality domains. In Proceedings
of Very Large Data Bases (VLDB), pages 267–278, 2007.

78 Bibliography

[MS79] James Ian Munro and Hendra Suwanda. Implicit data structures (pre-
liminary draft). In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 108–117. ACM, 1979.

[Mun86] James Ian Munro. An implicit data structure supporting insertion,
deletion, and search in O(log2 n) time. Journal of Computer and System
Sciences (JCSS), 33:66–74, 1986.

[OvL81] Mark Hendrik Overmars and Jan van Leeuwen. Maintenance of configu-
rations in the plane. Journal of Computer and System Sciences (JCSS),
23:166–204, 1981.

[PT06] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predeces-
sor search. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 232–240. ACM, 2006.

[PTFS05] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progres-
sive skyline computation in database systems. ACM Transactions on
Database Systems (TODS), 30(1):41–82, 2005.

[SLNX09] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Jun Xu. Ran-
domized multi-pass streaming skyline algorithms. Proceedings of the
VLDB Endowment (PVLDB), 2(1):85–96, 2009.

[SSK09] Mehdi Sharifzadeh, Cyrus Shahabi, and Leyla Kazemi. Processing spatial
skyline queries in both vector spaces and spatial network databases.
ACM Transactions on Database Systems (TODS), 34(3), 2009.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. Journal of the ACM (JACM), 32:652–686, 1985.

[ST11] Cheng Sheng and Yufei Tao. On finding skylines in external memory.
In Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pages 107–116, 2011.

[Sun89] Rajamani Sundar. Worst-case data structures for the priority queue
with attrition. Information Processing Letters (IPL), 31:69–75, 1989.

[Tar79] Robert Endre Tarjan. A class of algorithms which require nonlinear time
to maintain disjoint sets. Journal of Computer and System Sciences
(JCSS), 18:110–127, 1979.

[Tar85] Robert Endre Tarjan. Sequential access in splay trees takes linear time.
Combinatorica, 5(4):367–378, 1985.

[Tsa85] Athanasios Konstantinou Tsakalidis. Avl-trees for localized search.
Information and Control, 67(1–3):173–194, 1985.

[vEB75] Peter van Emde Boas. Preserving order in a forest in less than logarith-
mic time. In Proceedings of Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 75–84, 1975.

[vN45] John von Neumann. First draft of a report on the edvac. Technical
Report W-670-ORD-4926, 1945.

[Wil83] Dan E. Willard. Log-logarithmic worst-case range queries are possible
in space Θ(N). Information Processing Letters (IPL), 17:81–84, 1983.

[Wil89] Robert Wilber. Lower bounds for accessing binary search trees with
rotations. SIAM Journal of Computing, 18:56–67, 1989.

