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Abstract

This thesis presents an implementation and experimental study of the static
cache oblivious string dictionary found in [Brodal and Fagerberg, 2006|. The-
oretically a root to leaf search path in the cache oblivious string dictionary
is performed in O(logg(n) + |P|/B) 1/0s, where B is the block size, n the
number of strings in the dictionary and P the query string. This bound is
tested by a variety of experiments using the cache oblivious string dictionary
structure and a naive trie structure. The implementation cover the cache
oblivious layout and search algorithm.

Given a trie as input a cache oblivious string dictionary is constructed
using the data structures blind tries, giraffe trees, weight balanced trees
(Huffman trees) and weight balanced search trees (Leaf oriented optimal
binary search trees). The structure is laid out using a van Emde Boas layout.
The 1/0O bound is archived using redundancy, i.e paths in the trie is stored
multiple times. Even so the cache oblivious string dictionary structure uses
only linear space.

The cache oblivious layout in this thesis is not build cache oblivious.
Therefore, the Huffman tree is used instead of the tree from [Brodal and
Fagerberg, 2006] Section 5.

The experiments show execution times for various parameters for the
cache oblivious layout, in a attempt to establish the best. The result of the
experiments show that a cache oblivious layout have superior execution time
compared to a naive implementation of a trie.
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Introduction

People often think of a heavy book when hearing the word dictionary. For
people in computer science a dictionary is equivalent with the trie data struc-
ture. The trie structure stores strings and supports queries for these. The
content of the strings are not limited to a certain type. They can for instance
contain DNA sequences, integers or simply words from a Shakespeare play.
The challenge is to construct the trie, so that the searches for a prefix query
is efficient. Especially when the trie is laid out in external memory. The best
known bound for a prefix query is O(|P| + log(n)) for unbounded alphabets
in internal memory.

Over the last decade the interest for /O efficient algorithms has increased.
This is mainly due to the increasing amount of data needed to be processed
in still shorter time. Even though the capacity of caches and memory layers
keep increasing, efficient queries on stored data is still an issue. Not only in
external memory but also in main memory. Cache oblivious algorithms are
attempts to store data allowing queries to be answered efficiently, both in
memory but especially in external memory.

It can be proved that it is not possible to lay out a trie in external memory
achieving a query time of O(logg(n) + |P|/B) 1/Os in the worst case. It is
possible though, by other means than the trie structure. Using structures
like blind tries, giraffe trees and weight balanced search trees, |[Brodal and
Fagerberg, 2006| achieved a query time of O(logg(n) + |P|/B) 1/Os worst
case. This thesis is an implementation of the theory in [Brodal and Fagerberg,
2006]

The thesis is composed in five parts. The first part describes the data
structures and models used in the construction of the cache oblivious string
dictionary. The next part concerns the construction of the cache oblivious
string dictionary together with proof of the time bound O(loggz(n) + |P|/B)
and space bound O(N). The subject of the third part is the implementation
of the cache oblivious string dictionary together with the search algorithm.
The next to last part presents the results of the experiments, where different
values of parameters have been tested. The final part is the appendix. In the
appendix a user manual is included together with tables showing the output
from construction of the various layouts.






Part 1
Structures and models






1 Analysis Models

To analysis an algorithm, an analysis model must be described. Three of the
most widely used are the von Neumann RAM model, the 1/O model and the
cache oblivious model.

1.1 Von Neumann RAM Model

The Von Neumann RAM? model, [von Neumann, 1945], is used to analyse
operations done in main memory. It is assumed that only one processor is
used and no concurrent operations is allowed. Each instruction is charged a
cost of units, making it possible to analyse the cost of algorithms working in
main memory.

Before the RAM model can be used to analyse the running time of an
algorithm, the instruction set must be described and the cost of each instruc-
tion specified. Basic instructions as arithmetic (add, subtract, multiply,
divide, remainder, floor, ceiling,), movement (move, copy, store) and
control (if, if else, return) are typically charged a constant number of
units. The cost of instructions like sort is depended on the number and
times the basic operations are used and the cost of these.

The closer to reality the instructions set with the cost of each instruction
is, the more realistic will the analysis in the RAM model be.

1.2 1/0 Model

Computer storage is typically ordered in a hierarchy, where each layer acts
as a cache for the next larger but also slower layer. The I/O model is used
for modelling data transfers between these layers of storage. This cannot be
done by the RAM model, since it only concerns operations done in one layer.

The most commonly used I/0O model is the two layered model [Aggarwal
and Jeffrey, 1988], where the first layer is fast and of size M and the second
layer is slow but infinitely large. Data is transferred between the layers in
blocks of B elements. It is only possibly to do computation on the elements
in the first layer. Figure 1 shows this model.

In this model operations done on elements in the first layer is free of
charge while data transfers, i.e. reading or writing, is charged by a cost.
The two-layered model is widely used since the analysis in this model easily
extends to models containing more layers.

2Random Access Machine.
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Figure 1: The I/O Model

1.3 Cache-Oblivious Model

The cache oblivious model [Frigo et al., 1999] is a generalisation of the 1/0
model. Algorithms using the cache oblivious model are not allowed to assume
anything about the values of B and M. This means these algorithms must
be described in the RAM model, but analysed in the I/O model.

Since nothing is known about M, cache replacements are assumed to
happen automatically by an optimal offline cache strategy. The beauty of
the cache oblivious model is that since the analysis applies for any M and B,
it applies for all layers of memory.

1.4 Cache misses

Most modern day CPUs have several layers of cache. When a CPU encounter
data it needs it will first search the first layer of cache. If the data is not
present there, it will proceed to the next layer and so forth. If the data
cannot be found in a layer a cache miss occur, indicating that the data needs
to be fetched.

When a block of data is loaded into a cache layer, it replaces another a
block of data. Which block to choose is determined by an eviction strategy.
One of these strategies is the LRU?® which chooses the data block least re-
cently used. Another strategy is the FIFO* which chooses the block who has
been in the cache longest.

1.5 Data prefetching

As most CPUs are build around a pipeline architecture a cache miss can
slow down the process significantly. Therefore most CPUs have prefetching
mechanism [Pan et al., 2007|. This mechanism tries to predict the data

3Least Recently Used.
4First In First Out.



needed next and then loading it in advance. The data is loaded into a special
buffer in the level 2 cache. If a cache miss occurs this buffer is checked
before the cache layer. Algorithms considering the prefetching mechanism
can sometimes outperform cache oblivious and cache aware algorithms.



2 Trie

The Trie structure® [Fredkin, 1960] is a tree structure used for storing a set
of strings. After storing the strings it is possible to search in the tree, making
it ideal as a dictionary. Figure 2 shows an example of a trie.

foo
football
footnote
wine
winebar
winebottle

wines

Figure 2: A trie example showing the tree where the strings "foo", "football",
"footnote", "wine", "winebar", "winebottle", "wines" are inserted. A shaded
node indicates that a string has ended at this node, i.e. the node is marked.

The number of children® for each node is determined by the size of the
alphabet used. Each node can have as many children as there are characters
in the alphabet’.

2.1 Search

A search for a string is done by traversing the trie top-down while scanning
the string left to right. If the current node visited has a child with the

% Also known as a Radiz tree.
6The children of a node are the nodes right beneath it.
If the alphabet is infinite, a node can arbitrary many children.



scanned character, the child is visited and the next character is scanned. If
no such a child exists, the string is not in the trie. When the end of the string
is reached, the current node is examined to check if it is marked or not. If it
is marked, the trie contains the string.

2.2 Insert

When a string is inserted into the trie, the trie is traversed top-down while
scanning the string left to right. If the current node has a child containing the
scanned character, this child is visited and the next character is scanned. If
no such child exists, a new child is created containing the scanned character.
The new child is then visited and the next character is scanned. If there are
no more characters in the string the child is marked, indicating that a string
has ended at this node.

2.3 Complexity

Let S = {s1,S2,...,8n} be the set of inserted strings, where the length of s;
is |s;|. In the worst case, the space usage is

>_lsil € O(15))

since all strings can start with a unique character, making it impossible to
share any of the nodes in the trie.

Since all characters must be examined, inserting a string s; takes time
linear to the length of the string |s;| together with the time taken to search
among the children at each node. If each node contains a balanced search tree
of the children®, searching takes log(n), where n is the number of children.
The total time used when inserting a string s; is

O(lss] - log(n))
The time used to search for a string is identically.
If the alphabet is finite, the children can be stored using a hash table®.
Searching among the children is thereby done in constant time. Therefore,
the time used to insert or search for a string s; is O([s;]).

8 Assuming some order of the alphabet, making it possible to compare characters lexi-
cographically.
90Or something similar for instance a vector.



3 Blind Trie

The Blind Trie structure'® [Morrison, 1968| is used for storing strings in a
tree structure. It is usually constructed from a trie by eliminating all nodes
with only one child, i.e. collapsing nodes.

As with the trie, it is possible to search in the blind trie. In this section
two different structures are described. The first is the standard version of a
blind trie while the second is slightly altered to satisfy the results in [Brodal
and Fagerberg, 2006].

3.1 Standard version

In the standard version, the characters from the collapsed nodes are stored
on the edges. The leaves contains the remaining characters of the inserted
string, if any. The root node are always an e-node. Figure 3 shows the
constructed blind trie, when given the trie from figure 2 as input.

foo
football
footnote
wine
winebar
winebottle

wines

r ttle

Figure 3: A blind trie example showing the (collapsed) tree where the strings
"foo", "football", "footnote", "wine", "winebar", "winebottle", "wines" are
inserted. The characters from the collapsed nodes are stored on the edges.
Leaves stores the rest of the characters, if any. A shaded node indicates that a
string has ended at this node, i.e. the node is marked.

3.1.1 Searching

A search in the blind trie structure is similar to a search in the trie structure,
since all the information from the original trie is present. The blind trie is
searched top down while the string is scanned left to right. When taking a
path from one node to another, the characters on the edge has to be checked
against the corresponding characters in the string.

10Also known as a Patricia trie.



When the end of the string is reached, two cases exists. Either the search
ends in a node which has to be examined to see if it has been marked. If
the node is a leaf the characters contained in the leaf are checked against the
characters in the string to see if the string matches. It could also be the case
that the last character in the string is on the traversed edge, and a way of
checking whether or not characters on the edge has been marked is needed.

3.1.2 Inserting

Inserting a string in a blind trie is possible, as all string information is con-
tained within the structure. It requires splitting edges, insertion of at most
two new nodes and a few updates local to the inserted node.

3.1.3 Complexity

Since a standard blind trie stores the same number of characters as the trie
given as input, it uses the same amount of space as the trie. Searching
and insertion bounds are the same as the trie, as it might not be possible
to collapse any nodes of the input trie. Replacing an edge can be done in
constant time.

3.2 Altered version

Another way of constructing a blind trie, is to store the number of collapsed
nodes on the edges. Figure 4 show an example of this, also given the trie
from figure 2 as input. The leaves only contain one character. The rest are
omitted, if any.

foo
football
footnote
wine
winebar

winebottle

wines

Figure 4: A blind trie example showing the (collapsed) tree where the strings
"foo", "football", "footnote", "wine", "winebar", "winebottle", "wines" are
inserted. The number of collapsed nodes is stored on the edges. A shaded node
indicates that a string has ended at this node, i.e. the node is marked.



3.2.1 Searching

The altered version structure, where only numbers of collapsed nodes are
stored, makes searching somewhat incomplete. It is only possible to partly
check whether a string is present or not, since only some of the characters
in the string can be verified. In order to do a complete check of the string,
another structure is needed to fill in the blanks.

The check can be done in the same way as with the standard blind trie.
The blind trie is searched top-down while scanning the string left to right,
only checking the characters in the nodes with the corresponding characters
in the string.

3.2.2 Inserting

Inserting in the altered version is not possible without an additional data
structure, since the characters between nodes are missing, making it impos-
sible to replace edges.

3.2.3 Complexity

The altered version uses in the worst case the same amount of space as a trie,
as it might not be possible to collapse any nodes of the input trie. Using this
argument again, searching is also the same as the trie.

10



4 Giraffe Tree

A Giraffe Tree |Brodal and Fagerberg, 2006] is defined as a tree having at
least half of its nodes as ancestors to all the leaves. An example of this is
shown in Figure 5.

O Internal node
D Leaf

Figure 5: An example of a giraffe tree. The shaded nodes are that half of the
nodes which must be ancestors of all the leaves.

Giraffe trees are used together with the altered version of blind tries.
Since the blind trie does not store the characters of the collapsed nodes, it is
only possible to partly check whether a string is contained in the blind trie
or not. Using a set of giraffe trees covering the input trie completely, it is
possible to check a string as the giraffe trees contains all the characters from
the input trie. Each node in a blind trie refers to a corresponding giraffe
tree, i.e. a giraffe tree covering the same node. The idea is to make a fast
check of the string at certain positions in the blind trie, and if this check is
successful do a thorough check of the string in a giraffe tree.

4.1 Covering a trie with giraffe trees

Covering a trie by a set of giraffe trees can be done in different ways. Figure 6
show an algorithm doing this in a greedy manner. 7% is denoting a tree
covering the leaves from 7 to j.

The algorithm scans the leaves left to right maintaining a set of leaves
covered by a giraffe tree. In each iteration it is checked whether the set
including the next leaf is still covered by a giraffe tree. If the set is still
covered by a giraffe tree, the leaf is added to the set. If not, the giraffe tree
is outputted, the set emptied, and the leaf added to the set.

Each leaf in a trie is covered by exactly one giraffe tree, while the internal
nodes can be covered by more than one. Figure 7 shows the covering of a
trie using the greedy algorithm.

11



i=1
while(i <= n) do{
jo=i
while(j < n and T%/*! is a giraffe tree) do{
3=+
}
output T4
i= j+1

Figure 6: Algorithm for covering a tree with giraffe trees.

Figure 7: Example of tree covering by giraffe trees.

12



4.2 Searching

When validating a string, the blind trie is first traversed from root to leaf,
partly checking the string against the characters stored in the nodes of the
blind trie. If this check is successful, the giraffe tree attached to the blind
trie leaf is traversed from root to leaf, validating the string completely. As
the giraffe tree is just a search tree, the traversal is done like any other.

The advantage of using the giraffe tree, is that when validating a string
in a giraffe tree, half of the string is stored in the neck of the giraffe tree. As
the nodes in the neck are unary, validating the nodes in the neck is a matter
of scanning.

13



5 Weight balanced trees

A weight balanced tree is a tree balanced by the weights of its nodes. It is
not a specific data structure, but a term used to describe that the nodes are
placed accordingly to a certain weight. A ’weight’ of a node could be how
often it is searched for in a search tree. Therefore, it would be an advantage
to place 'heavy’ nodes, so that they are found early in a search through the
tree.

The goal of constructing a weight balanced tree is to minimise the to-
tal weight of the tree. The total weight, W, for a tree with n nodes,
mi, Mo, ..., m,, inserted is defined as

where |d;| is the depth of node m; having weight w;. As a weight balanced
tree is balanced by weights and not height, it is rarely the case that it has
logarithmic height, i.e. log(n).

Some weight balanced tree are also search trees. If the order of the nodes
are taken into consideration when constructing the tree, it can be possible
to search in the tree afterwards. Constructing a search tree often results in
longer construction time or a higher total weight.

5.1 Huffman tree

A Huffman tree, [Huffman, 1952] is a weight balanced tree and is introduced
in an algorithm for creating an optimal prefix code, known as the Huffman
code. The algorithm encodes the prefixes using a binary tree, placing the
prefixes that occur the most at the top of the tree. This tree is known as the
Huffman tree. The code for the prefix is then the binary representation of the
path down the tree. The Huffman code is often used in data compression.

5.1.1 Constructing a Huffman tree

A Huffman tree is constructed by first inserting the weighted nodes into
a priority queue, and then repeatedly merging two nodes. The nodes are
merged by making the two lightest nodes in the priority queue children of
a new node, which has the sum of its children weights as its weight. This
new node is then inserted into the priority queue, and the merging continues.
When all nodes are merged into one tree the merging stops. The algorithm
in Figure 8 creates a Huffman tree in this greedy manner.

14



Insert all weighted nodes into priority queue Q

while(1 < Q.size()) do{

node left = Q.min()

node right = Q.min()

Q.insert (new node(left, right, left.weight + right.weight))
}

return Q.min()

Figure 8: Algorithm for the Huffman tree.

An example of a Huffman tree is shown in Figure 9. Each node has a key
associated showing that searching efficiently in a Huffman tree is not always
possible, as the keys are not sorted left to right in the final tree.

(a) (b)

Figure 9: Example of constructing a Huffman tree.

5.1.2 Complexity

Constructing a Huffman tree takes time O(nlog(n)), where n is the number
of leafs in the tree, as the priority queue needs to sort all the nodes. The
merging takes time O(n) since only n — 1 merges are needed to construct the
tree.

15



5.2 Article tree

The article tree is taken from the algorithm in Lemma 5.1 from |Brodal and
Fagerberg, 2006] and is a weight balanced search tree. It is constructed in
time O(n) and the depth of a leaf with key k; is 2 4 2[log(W/w;)], where w;
is the weight of k; and

=1

for n leaves. See Section 11 for a detailed analysis.

Figure 11 shows the algorithm constructing the article tree. The leaves
in the tree contain the original values, while the internal nodes are used for
directing a search down to the right leaf. The rank-function used in the
algorithm is defined as

rank(w) = [log(w)]

The algorithm takes a list of sorted keys as input. It iterates through
the list while maintaining a stack of trees where the ranks of the trees are
strictly decreasing from bottom to top. For each key the algorithm deter-
mines whether zero or more linkings should take place. This is done by
examining the rank of the current key and the rank of the tree on top of
the stack. A linking links the two trees at the top of the stack into one and
pushes the new tree onto the stack.

Figure 10 shows an example of the algorithm. The keys and weights are
the same as used in the Huffman example.

key ‘a‘b‘c
weights [3 [ 1]4[3[2]1

(c)

o | =
2B

o
%

@l

()

Figure 10: Example of constructing a weight balanced search tree.
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function link(SearchTree t1, SearchTree t2){
weight = tl.weight + t2.weight
key = largestKeyInTree(tl)

st = new SearchTree(key, weight)
st.left = t1

st.right = t2

return st;

L = list of pairs (key, weight) sorted by keyvalue
empty stack of search trees

9]
1]

foreach (k,w) in L do{
if(S.empty() or rank(w) < rank(S.top().w)) do{
S.push(new SearchTree(k, w))
}
else{
st = lowest tree in S for which rank(st) <= rank(w)

if(st !'= S.top(O){
while(st is not involved in a link) do{
// Link two top trees
S.push(1ink(S.pop(), S.pop()))
}
}

if (rank(S.top() .w) <= rank(w)){
S.push(new SearchTree(k, w))
S.push(link(S.pop(), S.pop()));

while(two top trees in S are of same rank and 1 < S.size()) do{
S.push(1ink(S.pop(), S.pop());
}
}
else{ // rank(w) < rank(S.top().w)
while(two top trees in S are of same rank and 1 < S.size()) do{
S.push(1ink(S.pop(), S.pop());
}

S.push(new SearchTree(k, w))
}
}
}

while(1l < S.size()) do{

S.push(link(S.pop(), S.pop()));
}

Figure 11: An algorithm for construgting a weight balances search tree.



5.3 Optimal binary search tree

A optimal binary search tree is a tree whose expected search cost is the
smallest. Given a set of keys with different probabilities, it is constructed by
exhaustively checking all possible trees using dynamic programming!!. The
tree with the smallest expected search cost is not necessary the tree with the
smallest overall height or has root the key with the highest possibility.

The foundation for the optimal binary search tree is the observation, that
the two subtrees of an optimal binary tree also are optimal. Given a set of
sorted keys kq, ko, ..., k, where k; < k; 1, one of these must be at the root.
If this is k; then the keys smaller than k; must form an optimal binary search
tree, and the same with the keys bigger than k;. Figure 12 illustrates this
idea. In the figure, key ¢ have been chosen to be the root, in the left subtree
key j and in the right key [.

Figure 12: The basic idea behind the construction of a optimal binary search
tree.

To find the optimal tree, all keys are tested. To avoid this from taking too
long as many subtrees are the same for different roots, every time a subtree
is found to be optimal its result is stored in a table. The size of this table
is O(n?). The next time the subtree has to be calculated, the result can be
found in the table avoiding the calculation.

For instance when examine key ks as the root of the tree containing the
keys k1, ks, ...k, 5 < m the optimal root for subtree k; . .. k4 has to be found.
Later when examine another key k;,5 < ¢ as root, the optimal subtree for
key ki, ks, ..., ks can be found by a lookup in the table storing all calculated
subtrees.

The algorithm uses not only the set of keys ki, ko, ..., k, but also a set
of dummy keys di,ds, ..., d,r1. The dummy keys are placed at the bottom
of the tree as leaves. A leaf represents a search not in the tree, i.e. reaching

1 The algorithm is not presented in this thesis. It can be found in [Cormen et al., 2003]
page 361.
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a dummy node in a search means, that the search is unsuccessful. There are
n + 1 dummy keys as all failed searches must be directed to a dummy key.
The order of the keys are

di <k <dy<ky<dy<...<d, <k, <dn

The algorithm uses the probabilities of each key and dummy key to determine
the expected search cost.

The time used to construct and find the optimal tree is O(n*) when using
dynamic programming and storing of previous results. This comes from three
nested for-loops and only O(1) lookups in the table.

5.4 Leaf oriented optimal binary search tree

A leaf oriented optimal binary search tree is constructed in the same way as an
optimal binary search tree. The only difference is that the probabilities of the
keys ki1, ko, ..., k, are stored in dummy keys dy, ds, ..., d,, i.e. E(d;) = E(k;).
Afterwards the tree is constructed using the d — i dummy keys and the ¢ — 1
first keys. These keys are all given the probability 0. The construction
algorithm is the same as in Section 5.3.
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6 van Emde Boas Tree Layout

The van Emde Boas layout |[van Emde Boas et al., 1977| is a recursive method
of doing a layout of a binary tree. The layout is often used in cache-oblivious
algorithms, since the layout is well suited for these algorithms.

The van Emde Boas layout of a binary tree is done recursively by first
halving the tree T" into a top 7T} and bottom trees 15,73, ...,7T,. Then the
top T} is recursive laid out followed by a recursive layout of the bottom trees
T, T;3,...,T, in a left to right order, Figure 13. The recursion stops when
the height of the tree drops below a certain threshold, for instance when the
height is 1.

T1

T2 Tn

Memory: ‘ T1 ‘TZ ‘ ™ ‘ n

(a) (b)

Figure 13: The theoretically van Emde Boas layout.

Memory: | T

The tree is laid out in memory the same way it is recursively traversed.
This is indicated by the Memory bar at the bottom of Figure 13 (a) and (b).
The order of the trees is important. Following a search path root to leaf in
the tree can be done by scanning forward in memory, i.e. it is never necessary
to search backward.

To clarify this, Figure 14 shown an example of a binary tree layout. The
tree in (a) is first halved into top and bottom resulting in the five trees in (b).
These are further divided into top and bottom, and then laid out in memory,
as the trees now have height one (¢)'?. Now searching the path acjl is a
matter of scanning or following pointers forwards (d).

120nly the top tree Ty is showed.
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T1 T2 T3 T4 T5

()

Figure 14: An example on a van Emde Boas layout.
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Cache-Oblicious String Dictonary






7 Previous work

The trie structure provides a string dictionary structure which can be used
in pattern matching such as prefix searches. The time cost of constructing
and searching in the RAM model has been known for some time, but is still
not settled in the I/O and cache oblivious model.

In the RAM model, the search time for a string P in a string dictionary
structure over n strings is O(log(n) + |P|) for unbounded alphabets, and
O(|P|) for bounded. The corresponding construction time is O(n log(n)+|N|)
for unbounded and O(N) for bounded alphabets, where N is the total length
of all the inserted strings. This is achieved using weight balanced search
trees to store the children at each internal node and the telescope property.
A search path P from root to leaf cost

|P|

Z (1 + log < i )) = |P| +log (ﬂ> < |P| + log(n)
i1 Wi41 W\ p|

where w; are the total weight of the weight balanced search trees storing the
children at node .

A suffix tree can be constructed' in O(sort(N))' in both the I/O and
cache oblivious model. However, searching is not trivial. It can be proved
that it is not possible to lay out a trie in external memory achieving a worst
case search time of O(logz(n) + |P|/B). Using the string B-tree [Ferragina
and Grossi, 1999], which is a combination of a B-tree and a blind trie, it can
be achieved in the I/O model. The B-tree depends heavily on the value of
B, making it useless in the cache oblivious model.

13Using sorting and scanning steps, [Farach-Colton et al., 2000].
'Or more precise O(N/Blogy,,(N/B)).
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8 Overview of structure

In this section an overview of the structure is given. Starting with a trie
structure 7', the structure is decomposed into connected components. Each
component contains blind tries and giraffe trees. To connect the components
weight balanced search trees are used. Figure 15 shows an example of a trie.
The trie will be used as an example in the rest of the thesis.

—> Child-Parent relation

[ tea
O Internal node

Figure 15: The input trie 7" with the labels omitted for simplicity.

8.1 Definitions

Before describing how to decompose an arbitrary rooted tree into components
and layers a few definitions is needed.

Let T be a tree'®, v a node in T and T, the subtree rooted at v. Then n,
is the number of leaves in the subtree T,. The depth of v, depth(v), is the
number of edges on the path from v to the root. The rank of v, rank(v), is
defined as

0 ifn,=0
rank(v) = { [log(n,)] else

Figure 16 shows n, and rank(n,) of the example trie from Figure 15.

8.2 Partition a tree into components

The components of a tree are identified recursively top-down, starting with
the root of the tree. From the root the nodes are divided into strata and can-

I5For instance a trie.
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—> Child-Parent relation

m Leaf with rank(nv)
@ Internal node with
rank(nv)

—> Child-Parent relation

@ Internal node with nv

Figure 16: (a) The example trie with n, for each node and (b) the rank of each
node.

didates for the component are identified. The connected candidates starting
at the root form the component. Non-candidate nodes having their parent
inside the component form new roots in new components. For each new root
new strata and candidates are found.

Let r be the root of the tree, or a non-candidate node, whose parent is
assigned to a component. Starting at r the nodes in 7, is divided into strata
by a depth condition. Let the node in question be denoted v. If

depth(v) — depth(r) < 2%

then node v belong to strata 0. If this is not the case, then v belongs to
strata ¢ for which the following is true

227" < depth(v) — depth(r) < 2%

for © = 1,2,.... Figure 17 shows the depths and strata for the nodes in the
example trie, where r is the root.

When the nodes in 7, are divided into strata it is possible to find the
candidates for the component. Let ¢ € (0, 1] be a constant, used to influence
the size of components. For small values of £ the components will contain
few nodes, and for large values more nodes. A node in T, is a candidate, if
the following is true

rank(r) — rank(v) < £2°
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—> Child-Parent relation

m Leaf with depth
@ Interal node with
depth

—> Child-Parent relation

m Leaf with com-
ponent number
@ Internal node with

component number

28

—> Child-Parent relation

m Leaf with strata
@ Internal node with
strata

Figure 17: (a) The example trie with depths for each node and (b) the strata
of each node using the root as 7.

where 7 is the strata of node v. Figure 18 (a) shows the components of the
example trie.

Child-Parent relation
inside components

m Leaf with layer
number
@ Internal node with

layer number

—>

Figure 18: (a) Components of the example trie with ¢ = 1 and (b) the layers of
each component. The shaded node is an inserted e-node.



8.3 Divide a component into layers

It is straightforward to divide a component into layers. When a node is
contained in a component, the strata in which it is contained becomes the
layer

Strata ¢ becomes layer i.

Figure 18 (b) shows the layer in which each node is contained. If a node has
more than one child in the next layer, a dummy node'® is inserted between
the node and it children. This node will be contained in the same layer as
the children. The shaded node in Figure 18 (b) is an example of a dummy
node.

Let the component rooted at node v be denoted by C,, and the layer ¢ in
the subtree T, be denoted by L!. Then C, and L! can be defined as

L} = {w e T,|rank(w) = rank(v) A (1)
depth(w) — depth(v) < 22"}
L} = {we€T,|rank(v) — rank(w) < 2" A (2)

22" < depth(w) — depth(v) < 22 A
<E|u € Li™' : depth(u) — depth(v) = 22" —1Aw e Tu>}

¢, = i ®)
=0

8.4 Blind tries and giraffe trees

Each layer contains one or more subtries, which all are compressed into blind
tries. As these subtries are part of the original trie, nodes inside the subtrie
might have children in other layers or components. When constructing a
blind trie, only nodes inside the current layer of the subtrie are used. Blind
tries do not have nodes in other layers or components.

In Figure 19 (a) the blind tries for component 2 of Figure 18 are shown.
The blind tries will be used as a look-ahead structure, validating only parts
of the search string. Validating the missing part is done in a giraffe tree, so
each subtrie is covered by a forest of giraffe trees. Figure 19 (b) shows the
giraffe trees for component 2. Giraffe trees have no nodes in other layers but
are allowed to have references to roots in other components.

16 An e-node.

29



Child-Parent relation
inside components

Child-Parent relation
inside components

m Leaf with layer
number
@ Internal node with

layer number

Leaf with layer
number

@H |

Internal node with
layer number

Figure 19: (a) The blind tries representing the left most component in Figure
18, i.e. component 2. (b) The giraffe trees for the same component.

In order to do a complete check of a search string, each blind trie node
must have a reference to a giraffe tree covering the same trie node as the
blind trie node in the original trie. In this way each time a blind trie leaf is
reached, the string can be validated in the corresponding giraffe tree.

If a mismatch occurs when searching in the blind trie, it might be that
the string is not inserted in the original trie. But it could also be that the
search should continue in another component. As a search in a blind trie
cannot be directed into another component, the giraffe trees are used. The
giraffe nodes use their references to other components to direct the searches.

@ T Q —> Child-Parent relation

— = > Reference
@ m Leaf as a giraffe node
with layernumber
f -7 @ Internal node as giraffe node

with layer number
m Leaf as blind trie node
with layer number

@ Internal node as blind trie node

SO with layer number

Figure 20: The blind tries and giraffe trees of component 2 put together.

Only a leaf in a giraffe tree has a reference to a blind trie. The blind trie
is contained in the next layer in the same component. If a leaf is reached
when validating a search string, and the string is still valid, the search is
to continue in the next layer. Therefore, searching inside a component is a
matter of searching in blind tries and validating in giraffe trees. Figure 20
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shows the blind tries and giraffe trees of component 2 put together, enabling
a search through the component.

8.5 Bridges

Giraffe nodes do not have a directly reference to roots in other components.
Instead they have a reference to a weight balanced search tree'”, in which
it is possible to search for the roots. When constructing the bridge, the n,
values stored in the roots are used as weights.

@

Child-Parent relation
Reference

Internal Giraffe node with
component number

L IO

—> Child-Parent relation Component root

) 4
@ Internal node with ‘ Weight balanced search
component number 6 tree node with key
H H H H . Component root 6 6
| | | I
(a) (b)

Figure 21: (a) The top of the trie where the roots of component 1, 2, 3, 4 and
5 are shown. (b) The weight balanced search tree for component roots 2, 3, 4
and 5 attached to a giraffe node from component 1.

Figure 21 (a) shows the top of the original trie, and (b) the corresponding
weight balanced search tree attached to the last giraffe node of component
1. The references to component roots are in fact references to the roots
of the blind tries of these components. Putting it all together, blind tries
references giraffe trees. The giraffe trees references other blind tries and
weight balanced search trees. The weight balanced trees references to blind
tries and so on. Figure 22 shows the final structure of the example trie, when
all is put together.

8.6 Component tree

The last structure presented in this section is a component tree, denoted T,
used to do a van Emde Boas layout of the final structure, the cache oblivious
string dictionary. As the van Emde Boas layout uses a binary search tree, a
binary tree representing the cache oblivious string dictionary structure must
be created.

7 Also called a bridge.
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Child-Parent relation
References

Leaf as a giraffe node

with component number
Internal node as giraffe node
with component number
Leaf as blind trie node

with component number
Internal node as blind trie node
with component number
Weight balanced search tree
node with key

Figure 22: The final structure, where all blind tries, giraffe trees and weight
balanced search trees are put together.
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When creating the component tree, each component needs to identify
those nodes inside the component having children in other components.
These nodes are used to create a binary weight balanced tree'® representing
the component. The weight of a node, when creating the weight balanced
tree, is the sum of the n, values of its children located in other components.
A binary weight balanced tree could be created by the Huffman algorithm,
the article algorithm.or even the leaf oriented optimal binary search tree
algorithm.

The weight balanced trees representing the components are glued together
using the bridges'? constructed earlier. This is done by connecting the nodes
having children in other components with the corresponding roots of the
bridges. Figure 23 (a) shows the component tree for the final structure
in Figure 22. In this example all the trees representing components only
contains a single node?. The red nodes are the same as in both figures.

1
T . —» Child-Parent relation

| - —» Reference

Component root

Weight balanced search
tree node with key

—> Child-Parent relation

m Leaf with label
@ Interal node
with label

%ol

a) (b)

Figure 23: (a)The complete component tree for the example structure. (b) The
example trie with labels inserted. The green path highlight a search for the string
addab. Nodes who label is E is epsilon (dummy) nodes.

—~

8.7 Search example

To illustrate how different the trie structure is from the cache oblivious string
dictionary structure in Figure 22, a short search example is presented. Fig-

8Note it need not be a search tree.
19The weight balanced search trees.
20These are the green nodes.
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ure 23 (b) shows the original trie with labels inserted into the nodes. The
green path is the search path when searching for the string addab. The
e-node at the top is just a dummy node used as a starting point.

The same search is shown in Figure 24 where the blind tries, giraffe trees
and weight balanced search trees are traversed. The nodes uses the same
labels as in the original trie. As seen, there is a great difference in the search
patterns.

® ©

@@

Fr® @ @@

@ @@

Child-Parent relation
References

Leaf as a giraffe node
with label

Internal node as giraffe node
with label

|
Leaf as blind trie node
E B B
. @ Internal node as blind trie node
@ @ with label

Weight balanced search tree
node with key (label)

O,

Figure 24: A search for the string addab in the cache oblivious string dictionary
structure. The path is highlighted with green, showing which nodes are traversed
during the search. A node labelled with an E indicates an e-node.
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9 Memory layout

A van Emde Boas layout of the component tree 7" is not trivial, as the
structure contains blind tries, giraffe trees and weight balanced search trees.
The van Emde Boas layout of the component tree is used to determine in
what order the different component are laid out in memory, while the depth
of the recursion determines the order of the layers.

9.1 Layout of component tree 7"

There are two kind of trees in the component tree. The first is the weight
balanced tree induced by the bridge nodes in each component. The second
is the weight balanced search tree connecting the components. The layout of
a node depends on which kind of tree it belongs to.

In a weight balanced tree, only the root is laid out in memory. The rest
are considered dummy nodes. Doing a layout of the root, means doing a
layout of the blind trie and the associated giraffe trees, located in the first
layer?! of the component. The rest of the component, layer 1,2,...,k, are
laid out later, Section 9.2. The dummy nodes are ignored and thus not laid
out.

The nodes in a weight balanced search tree do not represent any compo-
nents and are simply laid out when reached in the recursion.

Figure 26 shows the recursive call on the top of the component tree from
Section 8, Figure 25. In the figure the layout at the bottom is only a pseudo
layout illustrating the order of the nodes. Only the component roots are
shown, hiding the details of the blind tries and giraffe nodes. The triangles
represent the different recursions of the layout.

@ —> Child-Parent relation
|

~ = » Reference

Component root

Weight balanced search
tree node with key

@ Ignored node

®<4

®©-®
@@

@

§°

Q)
®©

O

o o

Figure 25: The top of the component tree from Section 8.
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Figure 26: The recursions of a van Emde Boas layout on the top of the example
trie from Section 8. Instead of component numbers, each node has been given
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a letter, making it easier to identify it in the memory layout
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9.2 Depth of recursion

In a van Emde Boas layout of a component tree, the depth of the recursion
is used to determine in which order to lay out the different layers of the com-
ponents. The depth of the recursion is numbered in reverse order, beginning
with the inner most recursive call. This is illustrated in Figure 27.

Recursion depth 0

\ Recursion depth 1
A Recursion depth 2
2
1 1

Figure 27: The depth of recursive calls is numbered in reverse order, starting
with the inner most recursive call.

The reason for this is that the depth now correspond to the layers of the
components when these are laid out. Roughly speaking, when a component??
is contained in a recursion of depth 0, then its layer 0 is laid out. When it is
contained in depth 1, its layer 1 are laid out and so on. The layers are always
laid out in increasing order, so layer 0 is the first to be laid out, then layer 1
and so forth. Put in another way, when a components ith layer is laid out,
its (i + 1)th layer is laid out in the recursive call it returns to.

To illustrate this, Figure 28 shows an example of this. Starting with a
recursive call at depth 2, the tree is divided into one top and two bottom
trees. The top is recursively divided again into a top node and a bottom
node (a). As component 1 is contained in a recursive call at depth 0, height
of the tree is 1, its layer 0 is laid out. Following the van Emde Boas layout,
the bottom node is visited and laid out, as it is a weight balanced search tree
node, (b). Now the call returns to recursion depth 1 of the top tree, and all
components contained inside the top triangle will have their next layer laid
out. In this case layer 1 of component 1, (c).

Next in the layout, the left bottom tree is visited, and its top node laid
out, (d). Then layer 0 of component 2 is laid out, as it is visited at recursion
depth 0, (e). Returning to recursion depth 1 of the left bottom tree, layer 1
of component 2 is laid out, (f). The same happens to the right bottom tree,
(g), (h), (i). Returning from depth 1 of the bottom right tree, the recursion

22By component means the root of the weight balanced tree.
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Figure 28: Pseudo layout of a tree showing the order of the different layers.
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returns to depth 2, which covers all the components. Therefore, their next
layer is laid out, (j). As no more recursive call have been made, i.e. there is
no recursion of depth 3, the rest of the components layers (if any) are laid
out.

9.3 Blind trie and giraffe tree layout

When doing a layout of a layer, all the blind tries contained in the layer
followed by the associated giraffe trees are laid out. Both a blind trie and a
giraffe tree is laid out top to bottom in BFS #* order. Figure 29 shows an
example, taken from section 8. The labels are for illustrating purpose only.

Memory:

@POHEREGE®W®ldlc{l@®@/il

Figure 29: The layout of layer 2 of component 2. First the blind trie is laid out
in BFS order followed by the two giraffe trees associated with the blind trie, also
in BFS order.

9.4 Layout example

To complete the example from Section 8 a complete layout of the cache obliv-
ious string dictionary structure is given. Figure 30 (a) shows the component
tree, (b) the van Emde Boas recursions and Figure 31 the structure and the
layout.

23Breadth First Search
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Figure 30: (a) The component tree from Section 8 and (b) the van Emde Boas recursions of the component tree with
the pseudo layout. Non-existing layers are removed from the layout.
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Figure 31: The whole structure of the example tree and its layout using van
Emde Boas layout in Figure 30. The label E indicates an e-node.
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10 Searching

The search for a string s is done in three different structures, the blind
trie structure, the giraffe tree structure and the weight balanced search tree
structure. Validating whether or not a string is present in the cache oblivious
string dictionary requires traversal of these structures.

When searching for a string s in a cache oblivious string dictionary struc-
ture, the first part of the string is checked in the blind trie located at the
root. This results in a verification in a giraffe tree, which directs the search
for the next part of s into another blind trie, possibly using a weight bal-
anced search tree. This continues until a mismatch occur or s is found to be
contained.

10.1 Searching in a blind trie

A search for a string s in a blind trie is done top-down. When reaching a
node the label at that node is not compared to the corresponding string.

Instead the children are searched. As the reached node contains how many
characters there have been omitted, it is possible to find the character in s to
which at most one of the children must match. As the children have different
labels, only one of the children can match the corresponding character in s.
Therefore, the search in the blind trie is unique.

When a leaf is reached, the giraffe tree associated with the leaf is returned.
This giraffe tree contains all characters between the blind trie root and the
leaf, including all the omitted characters. Therefore, it can be used to do a
complete check of the part in s checked by the blind trie.

If a mismatch is found at a node, i.e. none of the children matches, its
corresponding giraffe tree is returned. The reason is that the search to the
parent corresponded to s, but the search from parent to child did not. It is
possible that somewhere between the parent and child, the search needed to
continue in another component. This can only be verified by traversing the
giraffe tree, as the blind trie is constructed of the internal nodes in the layer.

10.2 Searching in a giraffe tree

Searching in a giraffe tree is similar to searching in a blind trie. The search
is done top-down, and since no characters were omitted when the giraffe tree
was constructed s can be fully checked.

The result of a search in a giraffe tree is either a blind trie root or noth-
ing. A search is only continued into a child node if the parent matches the
corresponding character in s, and the child matches the next character in s.
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If the parent matches and none of the children does, the search cannot
continue in the giraffe tree. Then the weight balanced search tree located at
the node is searched. If the search is successful, the blind trie reached in the
weight balanced search tree is returned. If not the search is ended as s did
not have a match in the giraffe tree.

When a giraffe leaf is reached, the weight balanced search tree is searched
for the next character in s. If a match is found the blind trie from this search
is returned. Otherwise, the blind trie referenced to from the giraffe leaf (if
any) is returned.

10.3 Searching in a weight balanced search tree

A weight balanced search tree is traversed as any other search tree. At
each node the label stored at the node is checked against the corresponding
character in s, and the search continues into the left or right child. When a
leaf is reached, the leafs label is compared with the corresponding character
in s. If it is a match, the blind trie referenced at the leaf is returned.

10.4 Example of searching

Returning to the search example in Figure 24 from Section 8 it is now possible
to describe the search in details.

1. First the blind trie at the root is searched for the character a. The
e-node matches everything so the search continues. As the node is a
leaf, the giraffe tree referenced at the node is returned

2. The giraffe tree is used for checking the match of a. As an e-node
matches everything, the search proceeds into the child, where a match
is found. As the child is a leaf, the search is directed to the weight
balanced search tree, searching for the letter d. A match is found to
the right?* and the blind trie whose root contains the character d is
returned.

3. The blind trie is searched for the character d. As the blind trie consists
of just an e-leaf the giraffe tree associated are returned. The giraffe
tree is used for validating the result. The blind trie referenced from the
giraffe tree leaf is returned.

24In the example drawing.
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4. The search in the blind trie and giraffe tree matches the character a
and the search continues into the weight balanced search tree at the
bottom, where a match is found.

5. The blind trie returned from the weight balanced search tree is searched
for the letter b. Again the blind trie is an e-node and the checking in the
giraffe tree is successful. As s contains no more characters, the giraffe
node is checked for any strings ending at this node in the original trie.
This information is stored in the giraffe node, and this result is returned
ending the search.
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11

Analysis

The analysis is divided into two part. The first part analyses the space
usage of the cache oblivious string dictionary structure and the second part
analyses the search time. Before analysing the space usage a small lemma
and theorem is presented, setting an upper bound on the number of leaves
in a layer, and the number of components in the structure.

Lemma 11.1

1.

Proof

1.

If a node w € C, has a child u with rank(u) = rank(w), then w and u
are in the same component.

If a node w € T has only one child u, then w and u are in the same
component.

L is a forest with at most 25! leaves.
; . i i—1 i
L contains at most (2% — 2% )27 podes.

For anodew € L\, w # v, with a childu ¢ C,, then rank(v)—rank(u) >
e2",

Since rank(v) — rank(w) < €2¢ so is rank(v) — rank(u) and thus the
child u is a candidate, if w is a candidate. (The candidate requirement
is rank(v) — rank(w) < £2° for a node w € L)

Same argument as (1). Since they both have the same number of leaves,
Ny = Ny, they have the same rank.

First let wy, ws, . . ., wy be leaves of L. A leafis a node in L having no
child in Li. As the subtrees Ty, To,, - - -, T, (of T,,) are disjoint then
Ny s Mags - - - > My, < Ny From the candidate requirement, it follows that
for a leaf w;, 1 < j <k, it is know that

rank(v) — rank(w;) < 2=
[log(n,)] — [log(nu,)] < 22" =
ollog(nv)] _ gllog(nu;)l < 9e2' s
log(nv
M < gllog(nw;)]
9e2? —
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Ty Ty

9. 9e2 ezl < Ny =
M ge2itl
N,

J

from which it can be concluded, that L has at most 252"+ leaves.

4. Let w be a leaf in Li. Tt has at most 22 — 2% ancestors in L
since it fulfil the strata requirement 22" < depth(w) — depth(v) <
2%. As there can be at most 2°**! leafs in L, (3), there are at most
(2% — 22712521 nodes in LY,

5. Let w € L', w # v and let u ¢ C, be a child of w. Since u ¢ C,
this mean, that u does not fulfil the candidate requirement, and hence
rank(v) — rank(u) £ £2° = €2' < rank(v) — rank(u)

O

Theorem 11.1 On a root-to-leaf path in a tree T with n leaves, there are at
most 1+ [log(n)] components

Proof As the ranks of the component roots are strictly decreasing, lemma
11.1 (1), there can be at most [log(n)] + 1 components, as the first has
rank = log(n), the second rank = log(n — 1) and so on.

O

11.1 Space usage

The space usage of a blind trie covering the trie T" is dominated by the space
usage of the associated covering of T' by giraffe trees. Therefore, it is sufficient
to look at the space usage of this covering of giraffe trees.

Lemma 11.2 The algorithm in Figure 6 constructs a covering of T with
giraffe trees of total size O(N) where N is the number of nodes in T

Proof Let T% and T7+t1* he two consecutive giraffe trees constructed using
the algorithm in Figure 6. Observe that the only nodes from 7% which can
appear in any succeeding giraffe tree constructed after 7% are those on the
path to leaf [;,;, i.e. the rightmost ones.

For the construction of 7% two sets, A* and B*J will be charged. A%
is the set of nodes in 7%/ which is not on the path to [;;;. B% is the set
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of nodes on the path to [;;; but not on the path to [;. Figure 32 shows two
cases of these sets?.

j+1

OD Giraffe nodes | L= OD Giraffe nodes

OD A nodes ! OD A nodes
OD B nodes f OD B nodes i

(a) (b)

Figure 32: Two cases showing the sets A%/ and B%*J.

As T% and T7T* are two consecutive giraffe trees, this means that 777+
cannot be a giraffe tree, i.e. its neck is too short. Removing all the nodes
in A% and B% from T%*! leaves only the section of the neck shared by 7%/
and 7%+ This implies?0

iij+1
| 4 |pia) > T
2
and

IT¥9] < [T+ < 2 (|A%] 4 | B¥))

A node is only contained in A%/ exactly once, which is in the last giraffe
tree using it. Similar a node is contained at most once in B*J. This is when
it is used in the tree constructed prior to the tree, where it is contained in the
leftmost path for the first time. Notice, for the last tree to be constructed,
T*n no leaf [, exists, therefore, A¥" = T*"_ From this follows

M| <Y 2(|AY| +|BY|) < 4N
T T

O

In order to analyse the space usage of a subtree of the van Emde Boas
layout, the height of the weight balanced tree is needed, as this is used in the

25 Both taken from [Brodal and Fagerberg, 2006].
26Because of the short neck.

47



component tree. The algorithm used to construct the weight balanced tree
is analysed in the following lemma.

Lemma 11.3 Let z1 < 29 < ... < x, be a list of n keys in sorted order,
and let each key x; have an associated weight w; € Ry. Let W = Y7 wj.
The algorithm in figure 11 constructs a binary search tree where each key x;
is contained in a leaf of depth at most 2 + 2[log(W/w;)].

Proof Let the rank of a node be the rank of the tree rooted at the node.
Denote an edge efficient if the rank of its upper node is larger than the rank
of its lower node. Let an inefficient edge be covered if the edge immediately
after is efficient. To see there are k efficient edges in a root to leaf path each
linking in the algorithm must be examined.

Consider the linking of trees on the stack S including st (Lowest tree in S
for which rank(st) < rank(7")). As all trees in S have different rank, and the
ranks are decreasing from bottom to top, each linking of the two top trees
will contain at least one efficient edge, Figure 33. This way of linking insures
that all inefficient edges are covered (Except possibly edges to the root and
incident to leaves).

(b)

Figure 33: Linking trees from the stack results in all inefficient edges will be
covered.

After the linking up until st, three cases exists:

rank(7") < rank(S.top) As 7" is just pushed onto the stack S, no linking
involving 7" happens.

rank(7") = rank(S.top) The first linking of 7" and S.top will result in two
efficient edges, as the new tree will have rank(7") + 1, Figure 34 (a).

rank(7") > rank(S.top) The linking of S.top and 7" results in one efficient
edge, Figure 34 (b).

Since there are k efficient edges in a root-to-leaf path, there can be at
most 2k + 2 edges including edges to the root and incident to leaves. Going
from the root to a leaf containing key x;, it follows that
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A Tree A Tree
) ---- Efficient edge ) ---- Efficient edge
s.top T _ Edge T — Edge

(a)

Figure 34: Linking S.top with 7" results in at least one efficient edge.

[log(w;)] +k < [log(W)] =
log(w;)) +k < 14log(W)=

et (2
< )]

as k is an integer.
O

Now is it possibly to analyse the height of the component tree T”. This
is done in theorem 11.2.

Theorem 11.2 The height of T' is O(log(n)) where n is the number of leaves
in T.

Proof A root to leaf path in T" corresponds to a root to leaf path in T”. The
number of components traversed in a root to leaf path is O(log(n)), theorem
11.1. Each of these components are replaced by a weight balanced tree in
T'. In a root to leaf path in 7" the number of nodes visited in the weight
balanced tree for component i is 2 + 2 log(w;,1/w;), lemma 11.3. Therefore,
the total number of nodes visited is

logznuz[ (’“ﬂ = 0| 2log(n +2logzn (1+1 (’“))

log(n)
Wi+1
= 41 1
O | 4log(n) + g og( ” )

i=0 v

= 0 (4 log(n) + log (%))
0

= O(log(n))
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using the telescope property (log(z/y) + log(y/z) = log(x/2)).
[

As the height of the component tree is bounded, only the space required
for each layer is missing. The space usage for layer 7 is found in lemma 11.4.

Lemma 11.4 Storing L uses O(|LL|) space, which is O(2% ™).

Proof From lemma 11.2 the total space required for L} is O(N). By Lemma
11.1 (4) this is dominated by O((2% —22"")2°%'). Since € < 1 this is O(2*™")

O

It is now finally possibly to analyse the space usage of a subtree X of 7T".
Theorem 11.3 A subtree X of T' of height 2" in the van Emde Boas layout
of T' requires space ((2%)3).

Proof AsT" is a binary tree, so is X. Since the height of X is 2, it contains
at most 22" leaves, Figure 35.

Figure 35: The subtree X inside the binary tree T".

Therefore, X contains 0(221) component nodes, each having their layer
0,1,...,7 = log(2') inside X. The rest of the layers are placed outside X.
As each layer uses 0(222“) space, lemma 11.4, the space usage is O(22i .
Z;‘:o 22]+1). In the sum, layer ¢ dominates the previous layers, implying the
space usage is
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0 (2 3 2> ~ o)
j=0

11.2 Time usage

Traversing the cache oblivious string dictionary is a matter of traversing blind
tries and giraffe trees. The following theorem bounds the I/Os of traversing
a blind trie, compared to the previous traversed giraffe tree.

Theorem 11.4 The number of I1/Os that may be done in traversing the
pattern while searching in the blind trie for the given ith layer is at most a
constant factor greater than the number of 1/0s done in traversing the giraffe
trees for the previous layer

Proof An ith layer contains at most 252'+1 leaves, lemma 11.1 (3), searching
the associated blind trie takes at most O(2°%' 1) 1/Os. The root-to-leaf path
of the giraffe tree from the previous layer contains at most 0(221_1) nodes,
thus traversing the giraffe from the previous layer takes at most 0(221_1/3)
I/Os.

O

Since traversing a blind trie is only a constant factor greater than travers-
ing the previous giraffe tree, it is interesting to bound the number of 1/Os
used traversing a giraffe tree.

Lemma 11.5 Let T be a giraffe tree with N nodes stored in BFS layout.
Traversing a path of length p starting at the root of T requires O(p/B) I/0s.

Proof There exists two cases. If p < N/2 then p is contained in the topmost
nodes of the giraffe, which all are laid out consecutively left to right. There-
fore, accessing the path requires O(p/B) 1/Os. Otherwise the path might go
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from the root to a leaf. As the nodes are laid out in BFS that is they are
laid left to right in memory, following the path is bounded by scanning the
array containing all the nodes O(N/B) = O(p/B) 1/0s.

O

The previous lemma leads to the following theorem.

Theorem 11.5 Given a tree T with N nodes, there exists a cache oblivious
covering of T by subtrees (giraffe trees) where the total space requirement of
the covering is O(N), each root-to-leaf path is present in one subtree and
the prefix of length p of a predetermined root-to-leaf path can be traversed in

O(p/B) 1/0s.

Proof This follows directly from lemma 11.5 and 11.2. As each leaf is charged
as an A% exactly once, each root-to-leaf path is present in one subtree.

O

Finally it is possible to bound the number of 1/Os used, when searching
in a cache oblivious string dictionary.

Theorem 11.6 Prefiz queries for a query string P in a string dictionary
storing n strings use O(logg(n) + |P|/B) 1/0s.

Proof The number of 1/0Os used in a search in the cache oblivious string
dictionary are caused by either accessing the search string P or by accessing
the string dictionary structure. First the number of I/Os used when accessing
P is analysed and second accessing the cache oblivious string dictionary
structure.

Scanning P from left to right takes [|P|/B] 1/Os. Unfortunately, the
blind trie uses random I/Os when looking ahead in P, so extra care need
to be taken to bound the number of random I/Os. Assume without loss
of generality, that the next ©(M) unmatched characters of P are kept in
memory. Only look-ahead of Q(M) characters can now cause a random 1/0.

Consider the case where an access to L causes a look-ahead of Q(M)
during the blind trie search for L, i.e. Q(M) = 2*. As L has size O(2°%),
lemma 11.1 (3), and thereby O(2°%") possibly random I/Os, then in order
for the match characters, 9(22271), in the previous layer L~! to pay for the
random I/Os then

B-22% =0(2* ) (4)

is needed.
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Assuming a tall cache assumption B> < M for some constant § > 0,
(4) can be shown. Using the assumption

1
2+46

BgMﬁg<ﬂ)

since M < 22, Using this, it follows that

(221) T ge2t o g2l
92" g te2t L 927!
1 .
20— +e2 < 27 =
510 +e2" <
2 1 +e) < 2 1 =
2490 - 2
! +e < ! =
R 8 J—
246 -2
< 1 n 1
=272

showing, that for a constant § > 0, with the corresponding &, then the
matched characters in P in L' can pay for the random 1/Os caused by
look-ahead in P for layer L.

For counting the 1/Os caused by accessing T’, a search path in 7" is
considered. From theorem 11.3 it follows that a subtree of height 2! in the van
Emde Boas layout, containing the t first L, uses space O((2%)%). Assuming
that the currently traversed height 2¢ subtree is always kept in memory, then

03 1
(?)SB#TS?%@)

If the search path only searches the t first layers in each component, then a
root-to-leaf search in 7" will cause

log(n)
= 3logp(n) = O(logs(NV))
§log(B) ? ?
I/Os.
To account for the rest of the layers LI Lit2 . L[5 a little more is

needed. Assume without loss of generality that each L!, (t < i < s), needs to
be read into memory. Using lemma 11.1 (3) and theorem 11.5 each of these
needs
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252i i
O —+1
I/Os, where p; is the length of the path matched in L{. For

e < % = 272 < 227!

the scanning of the blind trie for L! is dominated by the matched part of

it
o(%) -0 (%)

making the total number of I/0Os

: Di
O I
i=t+1

It now remains to charge the +1 in the sum, as p;/B are the cost of
scanning p;. Since (227')% = 22 = Q(B) and p; = ©(2?') this implies that
the two layers, t+ 1 and ¢+ 2, might not fill a block B fully, i.e. p;/B = o(1).
The same applies for layer s, as it might not be searched fully. For the rest of
the layers t+3,t+4,...,s—1, the +1 can be charged p;/B as p;/B = Q(B),
i.e. the search in the giraffe for Li™ pays for the search in the blind trie in
L.

From lemma 11.1 (5) it follows that the rank decreases by at least £2*
when changing component at L, ¢ < k. As (227)3 = Q(B) this implies
that £2F = Q(log(B)). Since changing component only can happen at most
O(log(N)) times, this means, that the charging of O(1) at most happens
O(log(N)/log(B)) = O(logg(N)) times.

O
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Part 111
Implementation






12 Introduction

For this thesis the programming language C++ have been used?’. The pri-
mary reason is that the language allows high level code while at the same
time makes it possibly to do low level code with a minimum of overhead.
C++ is designed to have an optimal run-time efficiency, so its standard li-
brary, STL?®, uses techniques such as red-black search trees to achieve best
performance possibly.

This part is divided into three sections. The first describes the imple-
mentation of the trie structure used to experiment against the cache oblivi-
ous string dictionary structure. The second section describes how the cache
oblivious string dictionary layout is achieved and how it is stored into a file.
The last section describes the implementation of the cache oblivious string
dictionary search algorithm.

Only the cache oblivious string dictionary search algorithm from [Brodal
and Fagerberg, 2006] has been implemented. Therefore, the construction
of the cache oblivious string dictionary layout is done in a simple and non-
complex manner. Even though the alphabet is assumed to be infinitely large
in [Brodal and Fagerberg, 2006, it is restricted in the implementation to be
of 255 characters, just enough to be stored in a char. This is not exploited
in any way, by for instance storing children in arrays of size 255.

13 Trie

The implementation of the trie is simple. Every allocation of a new trie node
is done by using the keyword new, allowing C++ to put the structure anywhere
it pleases (in memory). No part of the trie structure have been optimised in
any way, in order to keep the trie as simple as possible. The trie node class
is shown in figure 36.

class TrieNodeq{
ChildTree *children;
char label;
bool isend; // is-end -> Is an endnode for a string

}

Figure 36: The trie node class showing the variables contained in a trie node.

2TMore precise g++ (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1). The program have
been compiled with the parameters: -pedantic -Wall -03 -g
28Gtandard Template Library.
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13.1 Child tree

Each node has a pointer to a ChildTree structure containing the children
of the node. The child tree structure can be build in different ways. For
instance by using a red-black search tree or a vector?”. The pointer makes
it possible to change the child tree. Even though the alphabet is restricted
in size, a search tree is used for storing the children, maintaining the desired
complexity of log(n). In this thesis the std::set from STL is used, since
it is a red-black search tree. The child tree is also allocated using the new
keyword.

class ChildTree{
void insert(TrieNode *n);
TrieNode *search(char c);
int size();

}

Figure 37: The child tree structure for the trie structure showing the functions.

13.2 Insertion and searching

Insertion is done top down, checking the child tree at each node. Therefore,
the complexity for both insertion and searching in the trie structure is

O(|si] - log(n))

where |s;| is the length of the inserted string or the search string, n is the
number of children. Therefore, searching for or inserting k strings is

O(IN]-log(n)), N = Z!si\

29 Also know as an array.
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14 Cache oblivious layout

This section describes the implementation of the construction of the cache
oblivious string dictionary structure. The construction algorithm works in
steps, each adding new structure to the current, for finally being able to do
a layout.

14.1 'Trie

The trie is the first structure to be constructed. It resemble the trie structure
from Section 13, but has a lot of functionality added, such as pointers to the
blind tries and giraffe trees, component id, layer number and number of leaves
beneath it, Figure 38.

class TrieNodeq{
vector<TrieNode *> internalchildren, externalchildren;
BridgeNode *externalsearchtree;
GiraffeNode *giraffenode;
BlindTrieNode *blindtrienode;
char label;
int componentid, layer, rank, nv, depth, cnv;
bool isend;

Figure 38: The structure for the trie nodes in the cache oblivious string dictionary
structure.

After constructing the trie, all nodes are updated concerning their depth,
number of leaves and rank. It is done by traversing the trie top-down in
a recursive manner. Afterwards the components can be identified. This
is done top-down identifying one component at a time using the candidate
requirement. If a node fails to be a candidate in the current component, it
is push onto a stack of failed candidates. These are to become a roots in
new components later. When all nodes for the current component have been
found, the next node on the stack is selected and the identification of a new
component can begin.

When all components have been identified, it is time to divide the children
at each node into internal and external children which is done top-down.
When constructing the trie, the children of a node are kept in a vector. When
the children are divided they are places in two vectors. Onme for internal
children and one for external. These two vectors are sorted. All children
contained in another component than their parent, are placed in the external
children vector.
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After dividing all the children into two vectors, a weight balanced search
tree is constructed using the external children. This search tree is later used
when creating the component tree, and a pointer to the search tree are kept
at the node. Two different search trees have been implemented. One using
the algorithm from [Brodal and Fagerberg, 2006] and another using the leaf
oriented optimal binary search tree algorithm.

At the same time as the children are divided a blind trie node is con-
structed at each component root. The reason is that when constructing the
giraffe trees, the leaves must be able to refer to the next blind trie to be
traversed in a search path. Having created the root of each blind trie, the
leaves can do this. The blind tries are later fully created. The blind trie
roots are also used in the component tree construction.

Finally the trie is traversed once again, updating the cnv variable. This
variable indicates how many leaves a node has inside the current layer. The
variable is used when creating the giraffe trees.

14.2 Component tree

Once all components have been identified, and the weight balanced search
trees created, the component tree can be constructed. Again it is a top-down
traversal of the trie structure. For each component the root is identified
together with the bridge nodes for the component. A weight balanced tree
is created using the bridge nodes with the root as the top node. To do this
either the Huffman algorithm or weight balanced tree algorithm from [Brodal
and Fagerberg, 2006] is used.

For constructing the component tree, three classes are implemented. In
Figure 39 only the relevant details are shown for these three classes. The
two subclasses VEBBridgeNode and VEBComponentNode?® inherits from the
VEBNode class.

A VEBComponentNode is used for each node in the weight balanced tree
inside the component. Only the node at the top refers to the blind trie at
the component root. The rest are dummy nodes discarded when doing the
layout. The VEBBridgeNode class are used for the weight balanced search
tree, connecting the components. In this way a binary component tree is
constructed.

30The VEB refers to van Emde Boas.
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class VEBNodeq{
VEBNode *left, *right;
}

class VEBComponentNode : public VEBNodef{
BlindTrieNode *blindtrienode;
}

class VEBBridgeNode : public VEBNode{
BridgeNode *bridgenode;
}

Figure 39: The nodes used to create the component tree.

14.3 Giraffe trees

The giraffe trees are constructed traversing the trie top-down. At each com-
ponent, the giraffe trees are created in a depth first manner, switching be-
tween layers as the component are traversed. The giraffe trees are created
using the greedy algorithm. Figure 40 shows the giraffe node class. As all
information are kept inside each trie nodes, assigning the variables inside the
giraffe node is easy.

class GiraffeNode{
vector<GiraffeNode *> children;
BridgeNode *externalsearchtree;
BlindTrieNode *componentroot;
char label;
bool isend;

Figure 40: The giraffe node class.

Each trie node is covered by at least one giraffe tree. The giraffe tree
pointer inside a trie node is referring to one of these. The pointer is set when
the giraffe trees are constructed. Since the giraffe tree pointer is pointing at
a giraffe tree when the blind tries are constructed, it is possible for the blind
trie nodes to refer to the right giraffe tree.

14.4 Blind trie

The last structure to add is the blind trie. Again it is a top-down traversal,
doing a depth first search in one component at a time. As before the trie
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nodes keeps all needed information for the blind trie nodes. Figure 41 shows
the blind trie node class.

class BlindTrieNode{
vector<BlindTrieNode *> children;
GiraffeNode *giraffetree;
char label;
int labelskips;

Figure 41: The blind trie node class.

14.5 Cache oblivious layout

The layout of the cache oblivious string dictionary structure is done in two
passes. The first is a pseudo layout used to calculate the address of each node,
when laid out in memory. Assuming the first node is laid out at address 0,
the rest are assigned an address in the order they are traversed, following the
van Emde Boas layout algorithm on the component tree.

The second pass writes the layout to a file on the disk. The output is
kept in ASCII format making it possible for a human to read the final layout.
The first line in the layout file is the number of bytes used. Each node is
written on one line starting with an node id followed by the variables needed
by the node. When writing a pointer to the file, the address of the node it
points to is written. This makes it possible for the structure to be recreated
by the search algorithm when loaded from a file. It is also the reason for the
first pass.

To keep track of when a layout of the different layers should be done, the
std: :queue is used. In each recursive call in the van Emde Boas algorithm,
a queue is given as argument. When returning from the recursive call, this
queue contains the next layers to be laid out.

Using Figure 27 as example, when a recursive call of depth 2 is called,
it is given a queue () as argument. In the recursive call of depth 2 a new
queue (' is created and given as argument to the recursive calls of depth 1.
When all recursive calls of depth 1 within the recursive call of depth 2 have
returned, @)’ contains all layer 2 of each recursive call of depth 1. Layer 0
and 1 have been laid out in the recursive calls of depth 0 and 1. The layers
in Q' are now laid out, and all layer 3 are added to Q.

When doing a layout of a layer, a layout of the blind tries contained inside
the layer and a layout of the associated giraffe trees is done. Both the blind
tries and giraffe trees are laid out in BFS order. This means that the children
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of a node is placed next to each other, and a search through these are just a
matter of scanning from one end to the other

14.6 Time and space usage

The trie structure are traversed eight times to create the cache oblivious
string dictionary structure, and the cache oblivious string dictionary struc-
ture twice during the layout phase. The nodes of the trie structure are sorted
twice. The first time is when creating the weight balanced search trees con-
necting the components and the second time when creating the weight bal-
anced trees inside each component.

If the input is n strings and N = ) |s;|, then the time used for creating
the cache oblivious string dictionary structure and doing a layout of it is
O(sort(N)) using the weight balanced search tree algorithm from [Brodal
and Fagerberg, 2006] to connect the components. If instead the leaf oriented
optimal binary search tree algorithm is used, then constriction time is O(N?).

The space usage is O(N) but with a very large constant in front, as each
node is represented in the trie, possibly in a blind trie, one or more giraffe
trees and possibly in the component tree.

63



15 Cache oblivious search

The search algorithm is implemented as described in [Brodal and Fagerberg,
2006]. Unlike the construction of the cache oblivious layout, the search is
cache oblivious.

15.1 Loading the CO layout

The cache oblivious layout is loaded from a layout file. The first line contains
a number indicating how many bytes is used in the layout. An equivalent
amount of bytes are allocated in memory before proceeding to load the nodes.

The nodes are loaded one by one and placed in the allocated memory in
the order they are read. When a node is read, it is first identified by its id.
Then a structure matching the node id is created, and its variables are read
from the file. As the different structures are laid out in BF'S order, they are
read and placed in memory in BFS order. Figure 42 show the structures used
in the cache oblivious layout.

struct st_blindtrienode { // ID 1
char label;
int labelskips;
st_giraffenode *giraffe;
int no_of_children;
st_blindtrienode *children;

}

struct st_giraffenode { // ID 2
char label;
bool stringend;
st_bridgenode *bridge;
st_blindtrienode *blindtrie;
int no_of_children;
st_giraffenode *children;

}

struct st_bridgenode { // ID 3
char label;
st_bridgenode *left;

st_bridgenode *right;
st_blindtrienode *blindtrie;

Figure 42: The structures laid out in memory.

The pointers in the structures are handled different than the other vari-
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ables. Instead of reading a pointer from the file an address is read. The
address indicates where in memory the structure of the pointer is located, if
the allocated memory started at address 0. This means that the start ad-
dress of the allocated memory is added to the address read in order for the
pointer to point at the right structure. The structure may or may not have
been created yet making it vital that all structures/nodes are read before a
search is started.

15.2 Searching in the CO layout

Searching in the structure is done as explained in Section 10. When all nodes
have been read, all pointers point to the right structure, and searching is a
matter of checking labels, scanning in children and following pointers.
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16 Hardware and software

The experiments are run on three different computers, the Internal com-
puter, the Swap computer and the Cache computer. The computer name
refers to the experiment type that is run on the computer. The hardware
specification is listed in figure 1.

‘ Name Description

Internal | Intel Xeon 3,0 GHz processor

16 KB level 1 cache

2 MB level 2 cache

800 MHz FSB

2 modules of 512 MB Single Rank DDR2 RAM

1 x 80 GB SATA 7200rpm harddisk.

The computer is running Fedora Core 5 SMP - version
2.6.18-1.2200.

Swap Intel Xeon 3,0 GHz processor

16 KB level 1 cache

2 MB level 2 cache

800 MHz FSB

2 modules of 512 MB Single Rank DDR2 RAM

1 x 80 GB SATA 7200rpm harddisk.

The computer is running Fedora Core 5 SMP - version
2.6.18-1.2200, booted with 80 MB RAM.

Cache Intel Pentium 4 processor 3,4 GHz

16 KB level 1 cache

1 MB level 2 cache

800MHz FSB

2 modules of 512 MB DDR2 400 NECC Dual Channel
RAM

3 x 400 GB SATA 7200 rpm harddisk.

The computer is running Fedora Core 3 SMP - version
2.6.12-1.1381 booted with PAPT included in the kernel.

Table 1: Hardware specifications for each computer used in the experiments. The
computer name refers to the kind of experiments that are tested on the computer.
On the Internal computer the experiments are run in internal memory only. The
Swap computer is used for experiments where swapping to external memory is
required and the Cache computer are used to count the number of cache misses.

A few software programs have been used in connection with the experi-
ments. Some of these are used as a part of the experiments, and some for
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analysing the result of the experiments. These programs are shortly described
in the following subsections.

16.1 PAPI

The PAPI [Dongarra et al., 2003| software makes it possible to count the
number of cache misses in cache level 1 and 2 on the CPU. A modified linux
kernel including the PAPI library is needed to enable the use of the PAPI
library in C++,

The level 1 cache is usually divided into two parts. One is holding the
program instructions and the other the data to be processed. This makes
it possible to count the data cache misses and the instruction cache misses
separately in the level 1 cache. The level 2 cache is not divided and therefore,
it is not possible to tell the different kinds of cache misses from each other.
Only the number of total cache misses are available.

16.2 Perl

In order to perform the experiments in succession and to minimise user in-
teraction, the experiments are executed by programs written in Perl [Wall,
2006]. As this is the case for all experiments the small amount of memory
used by the Perl interpreter, is similar for all experiments.

16.3 Gnuplot

The graphs used to analyse the data are all made in Gnuplot [Williams and
Kelley, 2004], from the raw data output of the experiments.
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17 Data sets

To get useful information from the experiments, a large amount of data have
been generated. The data are generated to have specific properties that are
interesting in the context of the experiments. The cache oblivious string
dictionary structure have also been tested with real life data, as performance
measurement on synthetic data not necessarily behave the same way. Every
synthetic experiment has been generated in 5 variations.

All data for the experiments are denoted by a letter and a number. This
is done to be able to distinguish them from each other. When referring to
data by a single letter, the whole data set with this letter is referred to. For
instance the data set A includes the data elements A1, A2, A3, A4 and A5.

The data sets A to D are all synthetic generated, while E and F are
made from real life data. The synthetic data are generated to give certain
properties to the trie structure that are formed when the data is inserted.
These properties are interesting when the components, blind tries and giraffe
trees are build.

For each individual set of strings generated for a data set, a similar set is
generated. In this similar set a character in each string is replaced by another
character, which is not in the original alphabet. This is done to be able to
run experiments, where the strings do not match, but still completes part of
a search. The character to be replaced is chosen randomly.

17.1 Data set A: Long strings with few splits

The strings in this set are all of the same length. They are generated so
that the paths in the trie structures consists of many unary nodes. Each
path splits ten times. A path splits into at least two and at most three
paths. Figure 43 (a) shows an example off such a trie and Table 2 shows the
variations of the number of strings and their length.

Since the paths in the trie structure consists of many unary nodes, the
rank of the nodes does not increase very often. This will result in fairly large
components. The long paths without splits will result in small blind tries,
but long giraffe trees.

The data is generated bottom up using the parameters in Table 2. The
construction algorithm starts by creating the last 9% of all strings. These
9% are all different from each other. Then for each three strings the paths
are merged. This is done by letting the three strings share the characters in
the next 9% of their length.

As the final result should be a tree with ten splits on a root to leaf path,
mergin three strings at a time may be too much. Therefore, when the number
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of individual strings reaches the amount needed to merge only two strings at
a time this will happen.

Figure 43: Example structures of the data sets A, B, C and D. An example of
data set A is illustrated in (a), an example of data set B in (b), an example of
data set C in (c) and an example of data set D in (d).

Name | Number | String length
of strings
Al 5000 4400
A2 7500 3200
A3 10000 2275
A4 12500 1825
A5 15000 1275

Table 2: Properties of data set A

17.2 Data set B: Short string with many splits

This data set is similar to A. The only difference is that the paths in the
trie structure is very short. Again the strings are all of the same length, but
with few unary nodes. The variations of the data is shown in Table 3 and in
Figure 43 (b) an example of the trie structure is given.

The resulting trie will have many components as the rank often shifts.
The resulting blind tries will almost be identically to the original trie.

The data is generated top down, by adding prefixes to the already existing
strings. Every time three diffent prefixes is added to an already existing
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Name | Number of strings | Number of nodes
before split
B1 1250000 0
B2 750000 1
B3 500000 2
B4 425000 3
B5 375000 4

Table 3: Properties of data set B

Name | Number of | String length Max strings with
strings same prefix
C1 15000 1500 5000
C2 15000 1500 7500
C3 15000 1500 10000
C4 15000 1500 12500
Ch 15000 1500 15000

Table 4: Properties of data set C

string. This is done for all existing strings before starting to add prefixes to
the newly generated strings. The length of the added prefix and the number
of generated strings are varied.

When the required number of strings is generated, the remaining strings
(if any) strings are padded so that the number of strings remains the same
and the length is the same for all strings.

17.3 Data set C: Long strings with many splits at the
end

Strings in this set have more than 70 % of their prefix in common. The trie
structure will consist of one or more long path of unary nodes for the first
70%. The last 30% is the bottom, where each node can have several children.
Figure 43 (¢) show an example of this. All the strings in this structure has
the same length. The variations of the data is shown in Table 4.

The data are generated to test behaviour on very large components. The
entire trie is generated with a long path of unary nodes before any split.
Therefore, the rank does not change in the topmost strata. This results in
one big component at the top and several small in the bottom. The giraffe
trees for this data set should be very large because of the long unary path.
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Name | Number of strings | Number of initial
strings
D1 130000 20
D2 130000 30
D3 130000 40
D4 130000 50
D5 130000 60

Table 5: Properties of data set D

When generating the strings in this set, a single string is created.

The generation of strings is started by generating a single string. The
remaining strings are generated with a random percentage between 70% and
95% of the first string as prefix. All strings have the same length as the first.

17.4 Data set D: Long strings with many splits

This set consists of two subsets, a parent set and a children set. The parent
set consists of long strings sharing only some of their prefix. In Figure 43 (d)
this is the long straight highlighted lines.

The elements in the child set are build from elements from the parent
set. Each element in the child set shares all but one character of one of the
elements in the parent set. The child elements are those ending in one node
branching from the highlighted lines in Figure 43 (d). The variations of the
data is shown in Table 5.

The data results in components with increasing size, as the number of
children decreases by one every time the depth increases by one. The blind
tries is almost similar to the original trie, as the original trie splits at every
node.

The data is generated by first generating a long string. This string is
split up in a number of initial strings depending on the parameter. Then for
each initial string, a string is generated that has all but the last character
of the initial string. The new string is then appended two new characters.
This happens for all initial strings, then for the newly generated strings and
so forth until the required amount of strings is reached.

17.5 Data set E: Shakespeare

The strings are made up of all the individual words from the collection of
Shakespeare comedies and tragedies. The trie structure will consist of rel-
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| Property | Value |

Number of strings 67505
Average string length 7.5
Average fan out (over all nodes) 1.55
Average fan out (where nodes split) | 3.63

Table 6: Properties of data set E

atively short strings. Some nodes will have a big fan out while others only
have a few. The properties are shown in Table 6.

17.6 Data set F: DNA strings

The data set consists of substrings of length 100 from a representation of a
human chromosome. This data is different from the E experiment, in that
chromosome data only consist of a small number of different letters, and in
that repetitions are common. The properties are shown in Table 7.

‘ Property ‘ Value ‘
Number of strings 51878
Average string length 100
Average fan out (over all nodes) 1.01
Average fan out (where nodes split) | 2.55

Table 7: Properties of data set F
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18 Experiment procedure

All the experiments have been executed by Perl scripts. As experiments on
the naive trie structure and the cache oblivious string dictionary structure
are executes by the scripts, the small amount of memory usage caused by
the scripts are the same.

Each search is performed two times for each input to minimise fluctuations
in the running time of the experiments. The two searches are not performed
in succession to be sure none of the used data still resides in the cache after
the first experiment.

The experiments includes execution on the Internal , the Swap and the
Cache computer. All data are kept in internal memory when experimenting
on the Internal computer. When experimenting on the Swap computer,
some of the data are kept in swap memory. The experiments for data sets D
and E are not performed on the Swap computer, as the data fit into internal
memory. When experimenting on the Cache computer, the number of cache
misses are counted using PAPI. All data are kept in main memory when
using the Cache computer.

18.1 Trie structure

An experiment on the trie structure starts by loading all strings without
errors®'into memory. Then the strings are inserted into the trie structure.
The trie is searched for both the set of strings without errors and the set of
string with errors. This is done independent of each other. The construction
of the trie structure and the searching for each set is timed.

18.2 Cache oblivious string dictionary

An experiment on the cache oblivious string dictionary structure is started
by first constructing a layout of the corresponding trie structure®?. This is
done by one program. The trie structure is generated as described in Section
18.1. Then the cache oblivious string dictionary structure is created and laid
out in a file.

Another program reads this file together with the set of strings to be
examined. When both the layout and all the strings are contained in memory,
the search is started. Again both the set of string without errors and the set
with errors are tested.

*1The set of string, where no character has been replaced, Section 17.
321f such a layout already exists, this step is skipped.
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The construction of the layout file and the associated loading of the layout
is timed. So are the searches in the loaded structure.

The layout files are constructed on different computers. This is done as
the cache oblivious string dictionary structure takes up a lot of memory??,
and because the total size of all layout files exceeds the maximum available
space on one computer. The script files take this in account when running
the experiments.

18.3 Cache misses changes

When experimenting on the Cache computer, a modified version of the pro-
gram searching in the cache oblivious string dictionary is used. It has been
modified to use the PAPI library so it can count the cache misses in level 1
cache level 2 cache. Apart from the counting functions the program is the
same.

33See Section 14.6.
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19 Trie experiments

The trie experiments consist of testing the naive trie structure on all data sets
on all three computers®**. This is done to analyse the behaviour in internal
memory, swap and to look at the generated cache misses.

12 : :
Search tree  m—
Sorted vector sssssss

Seconds
o
T
Il

Al A5 Bl B5 C1 C5 E F
Data

Data set | Childtree Execution time
(in seconds)
D1 Search tree 799.1
D1 Sorted vector HH&.8
D5 Search tree 319.7
D5 Sorted vector 249.9

Figure 44: Execution time for the trie structure on the data sets A to F (D
in table) in internal memory. Only the two extreme elements from each set is
shown.

As describes in Section 13.1, two different child trees are implemented.
One using a vector and one using a red-black search tree. As both have the
same theoretical search time, O(log(n)), it is expected that the results will
be similar. This is however not the case when looking at the results in figure
44. The figure shows the results of the experiments done in internal memory.
It shows that in most cases it is faster to use the sorted vector.

However, this might be due to implementation specific details in the
std::set. The nodes in the red-black search tree might be places arbi-
trary in memory, while a sorted vector is placed in succession. In this way a

34The Internal , Swap and Cache computer.
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search in a vector will result in fewer cache misses than the red-back search
tree. This theory is backed up by the graph in Figure 45.
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Data set ‘ Childtree ‘ Cache misses ‘

D1 Search tree 6.54 % 1010
D1 Sorted vector | 4.04 % 10'°
D5 Search tree 3.43 % 100
D5 Sorted vector | 2.58 % 1010

Figure 45: Level 1 cache misses for the trie structure using either a sorted vector
or a red-black tree.

It is not much that can be concluded from the results of the swap experi-
ments. One reason is that it is not known how the trie structure is laid out in
memory. The difference in execution times in figure 46 is possibly a result of
an alignment fitting for the block size. It can be concluded that storing the
children in a vector is superior to storing the children in a red-black search
tree, when experimenting on the data set C. The execution time is also much
higher when swapping as expected.
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Figure 46: Execution time for the trie structure on the data sets A, B, C and F
when swapping. Only the two extreme elements from each set is shown. Each
data element uses approximately 120 MB of memory.
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20 Weight balanced trees

In [Brodal and Fagerberg, 2006] a weight balanced search tree is described.
The construction algorithm takes a list of sorted key with weights as input
and creates a weight balanced tree®>. A leaf in this tree with key z; and
weight w; is at most at depth 2 4 2[log(WW/w;)], where W is the sum of the
weights of the keys. This tree can be constructed cache oblivious in O(n)
time using O(n/B) 1/0s. Since the construction algorithm in this thesis is
not cache oblivious, other trees can be used instead.

20.1 Other weight balanced trees

The article tree is used in two different constructions in the cache oblivious
string dictionary. It is used as a weight balanced tree inside components and
as a weight balanced search tree connecting the components. To replace the
weight balanced tree the Huffman tree is chosen and to replace the weight
balanced search tree the leaf oriented optimal binary search tree® is chosen.

Synthetic data. 128 nodes with weight between [1:10] Synthetic data. 1024 nodes with weight between [1;49]

Aticle/Huffnan — +' Atticle/Huffian — +'
Aficle/LOOBST ArlicielLOOBST

1015 Lt L L L L L L L L 104

Experiment number Experiment number

Figure 47: The ratio between the Huffman tree, the article tree and the leaf
oriented optimal binary search tree. In (a) 128 leaves are used each with weights
between 1 and 9 uniformly distributed. In (b) 1024 leaves are used with weights
between 1 and 49 uniformly distributed. A total of 10 trees have been con-
structed.

Figure 47 shows the ratio between these search trees and the article tree.
The ratio is found by dividing the total weight of the article tree with the
total weight®” of either the Huffman tree or leaf oriented optimal binary
search tree. In Figure 47 (a) a tree is constructed using as input 128 nodes

35Denoted as the article tree.
36LOOBST for short.
37See Section 5 for a definition of the total weight.
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with a weight € [1;9]. In (b) 1024 nodes are used all with a weight € [1;49].
The weights are uniformly distributed. It is clear, that in both cases the
Huffman tree and the leaf oriented optimal binary search tree is superior to
the article tree as all values is above 1.

20.2 Huffman tree vs. Article tree

Although the Huffman tree is superior to the article tree on uniformly dis-
tributed data, this is not necessarily the case with the experiment data, i.e.
the data sets A to F. As the fan out is at most three in the data sets A to
D, only the data sets E and F are interesting.

" Article/Huffan + " " j j j T AriCleMuftman +

Article tree/Huffman trre ratio

Figure 48: The ratio of the total weights in the Huffman tree and the article
tree when constructing the weight balanced tree inside components in data sets

E (a) and F (b).

In Figure 48 the ratio is shown for the Huffman tree and the article tree for
the data sets E and F. The total weight for each weight balanced tree in each
component is measured. It shows that only in a very few cases the Huffman
tree performs better. In most of the cases the weights are the same. The
difference between using the Huffman tree and the article tree is negligible.

20.3 Leaf oriented optimal binary search tree vs. Arti-
cle tree

As with the Huffman tree, the ratio between the article tree and the leaf

oriented optimal binary search tree for the data sets E and F is measured.

Figure 49 shows the ratio occurrences. The ratio is measured for each bridge
tree, i.e. the trees connecting the components.
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The results differ slightly from the Huffman results. In some cases the
leaf oriented optimal binary search tree is better than the article tree. The
ratio indicates though that the difference in not much.
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Figure 49: The ratio of the total weights in the leaf oriented optimal binary search
tree and the article tree when constructing the search tree between components
for data sets E (a) and F (b).

20.4 Concrete example

To see if there are any gain in execution time when using either the Huffman
tree or the leaf oriented optimal binary search tree experiments on the data
sets A to F have been run. The results®®. for the Huffman experiment is
shown in Figure 50

The columns in Figure 50 (a) shows that the execution time is almost
identical. However, the results for the swap experiments does show a dif-
ference. The Huffman tree is not always better, but for the majority of the
tests it is.

The same is done the leaf oriented optimal binary search tree. The results
are shown in Figure 51. The tendency is the same, when using the Internal
computer but opposite when using the Swap computer.

38 The results from the data set D is omitted as the column would be to high to fit into
the diagram.
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Figure 50: Execution time for the cache oblivious string dictionary when using the
Huffman tree instead of the article tree inside components. In (a) the Internal
computer is used and in (b) the Swap computer.
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Figure 51: Execution time for the cache oblivious string dictionary when using
the leaf oriented optimal binary search tree instead of the article tree inside com-
ponents. In (a) the Internal computer is used and in (b) the Swap computer.

84



21 ¢ experiments

When constructing the cache oblivious string dictionary from a data set, the
components generated depend on which strata the nodes from the original trie
is placed in, and the difference of rank between the nodes. The theory dictates
that two nodes are in the same component as long as rank(a) —rank(b) < £2¢,
where ¢ is the strata to which they belong.

According to the theory, ¢ should be < 1/2 for a search path P to be
traversed in O(logg(n) + |P|/B) I/Os. This is not necessarily true when the
input is not worst case. Therefore, the experiments in this section is run for
values of ¢ > 1/2.

The experiments are run with the Huffman tree inside the components,
the article tree connecting the components and giraffe trees where half of the
nodes are ancestors.

21.1 Data set A

The results of the experiments on the data set A is shown in figure 52. The

graph shows that the execution time is best for large values of . This does

not, correspond well with the theory, as ¢ < % should be best. Table 8

indicates that the execution time depends heavily on the number of total
bridge nodes in the layout. The overhead from searching in the bridge nodes

is the course for the execution times.
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Figure 52: Execution time for the cache oblivious string dictionary structure on
the data sets A for various values of ¢.
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The number of bridge nodes depends of how many components there are
in the layout. Table 8 shows the different number of components for the A1
experiment. The number of component shifts much for small values of «.
This is because when ¢ is 0.25 or 0.75 the last part of each string becomes
a component. The data set A is constructed so that the rank shifts at the
same place for each subtree.

‘ € ‘ Bridge node size | Components ‘
0.25 | 142064 5427
0.5 | 4784 186
0.75 | 136160 5195
1 0 1

Table 8: Properties of the layout of Al for varying e.
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Figure 53: Level 1 data cache misses for data set A for various values of ¢.

The graph in Figure 53 shows that the number of level 1 cache misses
increases when ¢ increases. The reason for the increase is likely to be due to
the number of nodes included in a layer. If a path in the trie do not split
often, the corresponding giraffe tree will contain many nodes and few splits.
As the number of nodes in the layers increases, the length of the giraffe trees
will increase.

When the giraffe trees are short, they are able to fit into memory. Some
of them may then be reused when searching for the next string. The long
giraffes cannot be reused often as they typically only have a few children.
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Many of the long giraffe trees will be identical along the neck, but have
different children. This means that many almost identically giraffe trees are
loaded into memory.

As the giraffe trees becomes very long, the execution time is still quite
good even though the number of cache misses is high. This can be seen by
looking at the execution time for experiment A5 and the number of level 1
cache misses. The reason is that modern CPUs uses prefetching, meaning
they do some read ahead. When a block of data have been processed, the
next block have already been fetched. It might be that the fetched block is
not the next to be processed, but in most cases it is. Even though, fetching
the block counts as a cache miss.

21.2 Data set B

The experiments on data set B behaves somewhat similar to the experiments
on data set A. For large € the execution time gets better. There are also
some spikes in the behaviour of the of the graph for data B1.

It can be seen in Figure 54 that the graphs behaves the same for  up
til 1. This is because the data are constructed with a large number of paths
that splits often. Each node has 3 children so the difference in ranks will be
either 1 or 2 from node to node.
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Figure 54: Execution time for the cache oblivious string dictionary structure on
the data sets B for various values of ¢.

Because of the rank difference between each node, every node in B1 will
create a new component when ¢ < 1. This has a drastic effect on the execu-
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tion time. Changing from one node to a child node means going through a
blind trie node, a giraffe tree node and a bridge of up to three nodes.

When e becomes 1.25 the nodes where the rank difference is only 1 will
become one component. This means the total number of components will
drop. As all strings are searched for, the total number of traversed bridge
nodes will also drop making the execution time smaller.

Looking at the graph for B1 in Figure 54, there is a increase for ¢ = 2.
This is because the number of one-node components® increases from when
e was 1.25 (and 1.5). When the number of one-node components increases,
then the number of bridge node traversed in a search path increases. Figure
55 shows this by a small example.

Search path for "abc" one-node component tree one-layer component tree

() © @ E
®) (o) @) 0 O,

Trie node with label

Blind trie node with label
Giraffe tree node with label

Bridge node with label

Reference E G @ G
Reference (Search path) 0 0 0

Figure 55: A search path in a trie (left), in a one-node component tree (middle)
and a one-layer component tree (right).

N JOXOXO

The search path in the trie is shown to the left. The middle tree shows
the same search path in a one-node component tree and the right tree shows
the search path in a one-layer*’ component tree. The nodes are ordered so
that b’ < b < b” and ¢ < ¢ < ¢”. The difference between the search path in
the one-node component and one-layer component is three bridge nodes.

The graph in Figure 56 shows level 1 data cache misses. It has a nice
coherence with the graph in figure 54. The increased in the number of bridge

39 Components containing only one node.
40Components with only one layer.
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nodes also increases the number of cache misses, as less data are reusable in
the next search.
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Figure 56: Level 1 data cache misses for data set B for various values of ¢.

21.3 Data set C

The results for various € on data set C show the opposite behaviour than the
experiments on A and B did. Figure 57 shows the results for the experiments
on C for various €.

The steep increase in execution time for € = 1 is due to the entire structure
being in one component. As data set C consist of strings sharing 70 % to
95 % of their prefix, the giraffe trees will have at least 2 children each and
probably around 4 in average. The exact count for data C1 for € = 5 is 3348
giraffe trees. As there is 15000 strings this is a bit less than 5 children for
each giraffe tree.

As each string is searched for, each fifth string requires an entire quite
large giraffe tree to be loaded. For a small ¢, there will be many components
sharing the same giraffe tree. Since the giraffe tree will be small it can be
kept in the cache. Therefore, the number of cache misses will decrease. This

can be seen in figure 58. The cache misses are more than halved for small
resulting in the decrease in time.
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Figure 57: Execution time for the cache oblivious string dictionary structure on
the data sets C for various values of .
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Figure 58: Level 1 data cache misses for data set C for various values of «.
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21.4 Data set D

Figure 59 shows the execution times for data set D. It resembles Figure 60.
The execution time rises drastically when ¢ > 1.25.
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Figure 59: Execution time for the cache oblivious string dictionary structure on
the data sets D for various values of ¢.

The reason is very long giraffe trees, covering the same neck with only
relatively few children. In data set D there is 130000 strings, which results in
130000 children in the trie. The root will then have rank 18. As can be seen
in Section 17, the trie have nodes with rank one at every level down the trie.
At strata 4 for € = 1 the rank difference should be below 1-2* = 16. As this
is not the case every end node of a string in strata 4 is put in a component.

When ¢ = 1.25 the difference should be below 20 so the single nodes in
strata 4 does not need to be put in their own components. This results in a
very large component covered by long giraffe trees, which will only be reused
a small amount of times when searching for the strings. As seen in Figure
60 this results in many cache misses, and also in increased execution time.

21.5 Data set E

Not much is known about the layout of data E. As seen in figure 61 the
execution time declines steadily, as e rises. This is the result of fewer com-
ponents for larger € resulting in fewer bridge nodes. The number of bridge
nodes in the layout decreases from 119864 to 8999. The steepest decrease
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Figure 60: Level 1 data cache misses for data set D for various values of «.

is around ¢ = 1.25 where the bridge node count decrease with almost 33 %.

This can also be seen in both Figure 61 end 62.
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Figure 61: Execution time for the cache oblivious string dictionary structure on

the data sets E for various values of €.
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Figure 62: Level 1 data cache misses for data set E for various values of ¢.

21.6 Data set F

Figure 63 shows the execution time for data F. It is approximately the same
as 61. The explanation is again that the bridge node count decreases rapidly.
The two string sets made from real life data behaves very similar, even though
they are taken from two completely different real life situations.

Cache misses

Figure 63: Execution time for the cache oblivious
the data sets F for various values of ¢.
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Figure 64: Level 1 data cache misses for data set F for various values of ¢.

21.7 Comparison of execution times

Figure 65 shows the execution time for the naive trie and the cache oblivious
string dictionary. Only the best and worst € is shown. The times indicates
that searching in the cache oblivious string dictionary is faster for the right
¢ for most of the data sets.

The type of data where searching in the cache oblivious string dictionary
are best, are data that has many unary nodes in succession. In these cases the
number of cache misses can be reduced and the CPU prefetching mechanism
is working perfectly.

The naive trie has better execution time when searching in the data el-
ements Bl and B5. In the data set B there are few unary nodes are in
succession and most of the components contain only one node. The over-
head in traversing bridge nodes and giraffe nodes becomes an disadvantage
for the cache oblivious string dictionary. It is the same case for the data set
E.

When looking at the execution times in swap, the result is different.
Figure 65 shows that for the right e, searching in the cache oblivious string
dictionary is better than searching in the naive trie. The right ¢ can vary
from data set to data set. In most of the cases, choosing a poor ¢ results in
an execution time not far from the execution time of the naive trie.

When placing the layout in swap memory, the overhead from bridges in
data set B is negligible.
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Figure 65: Execution times using the cache oblivious string dictionary (best and
worst €) and the naive trie.
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Figure 66: Execution time for searching in the cache oblivious string dictionary
(best and worst ) and the naive trie on the Swap computer

95



21.8 Conclusion

It is hard to establish an € that is optimal. It seems that ¢ < 1/2 works well
on most of the synthetic data that has a large number of succeeding unary
nodes. The larger ¢ is better for the synthetic data set B as well as for data
set B and F.

As E and F consists of real life data it can be argued that it will be best to
have a large €. However, the speedup is very small compared to the penalty
the other data sets suffer from large epsilon. A relatively low ¢ seems to be
the best solution.

The comparison between the trie and the best parameter of ¢ suggest
that the cache oblivious string dictionary is superior for the right e.
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22 Giraffe tree experiments

An interesting experiment is to change the theoretical length of the giraffe
trees. The theory states that a giraffe tree is a tree where more than N/2
of the nodes are ancestors to all leaves. The proof for the execution time
and space usage still hold if the neck of the giraffe tree is different from 1/2.
Every constant number K in |0, 1] can be used.

o o T’i:j+1
) > DS
1-K
7] < (7941 < 2 (1A 4 |BY]) =
. 1 - . 1
T — (JA¥| + |BH)) < 2——
ST < 3 (1A 1) < o

Ti:j T3

The same holds of the proof of execution time. If the string searched for
is less than N - K and as the giraffe tree is laid in memory in BFS layout,
then the search time is O(p/B). Is the search string more than N - K, then
it has already matched the first N - K and is at most « - O(p/B) = O(p/B).

When the neck of the giraffe is a large percentage of the tree the space
usage increases, while the search time decreases. The opposite is also true.
The experiments changes the percentage of the nodes needed to be ancestors.
The Huffman tree is used inside the components, while the leaf oriented
optimal binary search tree is used to create the search tree connecting the
components. € is 0.5.
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Figure 67: Giraffe tree space usage for various giraffe neck percentage of Al.
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The percentage of the giraffe neck is varied between 0.2 and 0.6. A higher
percentage than 0.6 is not used because the space usage increases as more
giraffe trees are needed. Figure 67 illustrates the increase in space usage as
the percentage increases.

22.1 Data set A

Figure 68 shows that the execution time do not seem to fluctuate by varying
the neck percentage. However, it do seem that it influences the amount of
cache misses, Figure 69. This is accordance with the theory as the theoretical
search time should decrease, when the space usage and amount of giraffe trees
increases.
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Figure 68: Execution time for the cache oblivious string dictionary structure on
the data sets A for various giraffe trees.

When searching a giraffe tree, where the nodes of the neck only constitute
20 % of the giraffe, more data needs to be processed than when searching
a giraffe where the neck constitutes 60 %. However, it do not seem to in-
fluence execution time. This can be due to the fact that a giraffe tree lies
consequently in memory so that the CPUs prefetching mechanism will have
it ready when the data is needed.
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Figure 69: Level 1 data cache misses for data set A for various giraffe trees.
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Figure 70: The graph shows the execution time for the cache oblivious string
dictionary for various giraffe trees for data set C.

22.2 Datasets B, C, D, E and F

The analysis for data set A does not hold for the other data sets. The Figures
70 and 71 shows the results for data set C, which is representative for the rest
of the data sets. The components in these sets consists mainly of either one
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node or many unary nodes. When changing the percentage, the new giraffe
trees are more or less the same as before.
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Figure 71: The graph shows the level 1 cache misses for the cache oblivious
string dictionary for various giraffe trees for data set C.

22.3 Comparison of execution times

The comparison of executions time for the giraffe experiments yeilds the same
results as the comparison for various €. Again long path of unary nodes favors
the cache oblivious string dictionary search algorithm. In the data sets with
many bridge nodes the overhead of searching in these nodes is too large for
the cache oblivious string dictionary. Figure 72 shows the execution times
for experiments on the Internal computer.

When performing the experiments on the Swap computer, the results are
the same with the € experiments. Choosing a suitable percentage of nodes
as ancestors makes searching in the cache oblivious string dictionary faster
than in the naive trie. Figure 73 illustrates this.
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Figure 72: Execution time for searching in the cache oblivious string dictionary
(best and worst percentage of giraffeneck) and the naive trie.
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Figure 73: Execution time for searching in the cache oblivious string dictio-
nary (best and worst percentage of giraffeneck) and the naive trie.on the Swap
computer.
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22.4 Conclusion

The change of giraffe neck percentage does not effect the execution time much
when searching in the cache oblivious string dictionary. This is probably
because the components are fairly small and therefore the giraffe trees do
not change much when varying the ancestor percentage. In some experiments
there are small variations in the number of cache misses. This do not seem
to influence the execution time which is most likely due to prefetching.
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23 Construction time

The previous sections shows that searching in the cache oblivious string dic-
tionary can be faster than searching in the naive trie. Especially when data
is put in swap memory.

However, in the previous sections the construction time is not included
in the results. As both the naive trie and cache oblivious string dictionary
needs to build their structure before searching, this is an important issue.
Figure 74 shows the construction time for the naive trie structure and the
cache oblivious string dictionary layout. The cache oblivious string dictionary
layout is created with e = 0.5, giraffe percentage at 0.5 (50%), Huffman trees
and the article tree connecting the components.
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Figure 74: Comparison of construction time between the naive trie and the cache
oblivious string dictionary. The cache oblivious string dictionary layout is created
with e = 0.5, giraffe percentage at 0.5 (50%), Huffman trees and the article tree
connecting the components.

The experiments so far conclude that the corunner is superier to the
trierunner for almost all of the data sets, and all when needing to swap.
The corunner is not superier however when factoring in the time to construct
the layout of the cache oblivious string dictonary.

As seen on Figure 74 the construction time of the cache oblivious layout
is much more time consuming. This can be outweighed if there will be many
searches for a constructed dictonary.

The figure shows that the construction time for the cache oblivious string
dictionary are much worse than for the naive trie. This means that if search-
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‘ Name ‘ Construction of trie ‘ Construction of COSD ‘

D1 77.9 1131.4
D5 31.5 519.7

Table 9: Comparison of construction time between the naive trie and the cache
oblivious string dictionary. The cache oblivious string dictionary layout is created
with e = 0.5, giraffe percentage at 0.5 (50%), Huffman trees and the article tree
connecting the components.

ing in the data is only done a few times, the cache oblivious string dictionary
cannot compete with the naive trie. Even if the naive trie has to construct
is structure each time.
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24 Strings with errors

There are not much difference in the behaviour between the experiments
using the strings with error and those without. The execution time is of
cause smaller as no string is searched fully.
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Figure 75: Execution times for the cache oblivious string dictionary on error
string from data set D for various ¢.

Figure 75 show the execution time for the data set D using the strings
with errors. Compared with figure 59 where the strings without errors are
used, the same patterns can be found.

The graph for data set D is chosen as representative for the rest of the
data sets. All the graphs where the strings with errors are used show the
same patterns as the graphs where the string without errors are used. The
only difference is the execution time, which is smaller when the strings with
errors are used.

The comparison between the cache oblivious string dictionary and the
naive trie using strings with errors is shown in figure 76. Again there are no
significant difference between searching for strings with errors and searching
for strings without errors, Figure 65. The only difference is smaller execution
time. Even though only graphs for variation of € is shown, the same applies
for the variation of the giraffe neck percentage.
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Figure 76: Execution times using the cache oblivious string dictionary (best and
worst €) and the naive trie both searching for strings with errors.
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25 Final conclusion

In this thesis the cache oblivious string dictionary have been implemented.
It is compared to a naive trie structure to see if the cache oblivious approach
would yield any significant improvements in execution time.

The experiments show that the cache oblivious string dictionary can per-
form better than the naive trie. Depending on the type of data different
parameters need to be right for the cache oblivious string dictionary to per-
form optimal.

When changing the € value the change in execution time is notable. It is
not possible to choose a fixed ¢ for all data types. For each data type, an ¢
value needs to found, as the value sometime must be small and some times
large. The experiments show that small values of € is mostly preferable. The
time gain from moving to larger € for the data sets requiring it, is smaller
then the loss for the sets not requiring it.

When changing the number of ancestor nodes in a giraffe tree the experi-
ments show no real difference in execution time. The only notable difference
is the space usage which increases as the number of ancestor nodes grows.

As the construction algorithm in this thesis is not cache oblivious, differ-
ent weight balanced trees have been examined as replacements for the article
tree. Both the Huffman tree and the leaf oriented optimal binary search tree
performs better than the article tree, but only at a fraction.

When moving to swap the experiments perform significantly better than
the naive trie structure. This is the result of increased access time, which
influences the the cache oblivious layout less than the trie.

Experimenting with string with errors both in memory and swap yielded
no interesting results, as the performance difference is similar.

Before choosing the cache oblivious string dictionary structure over the
naive trie structure, the construction time of the cache oblivious layout needs
to be addressed. The experiments show that the construction time of the
cache oblivious string dictionary is significantly larger than the naive trie.
Furthermore, it is not possible to delete or insert new strings into the cache
oblivious string dictionary.

It can be concluded that the cache oblivious string dictionary structure
can outperform the naive trie both in memory and swap. However, this is
only possible when a large amount of searches are performed.

25.1 Future work

In the future is would be interesting to tune the trie structure. This could
be done by a van Emde Boas layout of the trie or a simple BFS layout. It
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would be interesting to examine whether or not the cache oblivious string
dictionary still perform well in comparisons.

The construction time is also an issue. Because of the large overhead, the
structure is not competitive in a wide variety of applications. Reducing the
overhead, by for instance storing the component in different files, and then
process them one by one until the final layout is possible, could make the
structure a whole lot more interesting.
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Part V
Appendix






A Source code

The source code can be downloaded at the web address

http://www.daimi.au.dk/"stumme/Download/Thesis-sourcecode.tar.bz

To extract the code from the file type

tar -xvzf Thesis-sourcecode.tar.bz

A folder named Thesis will be created. To compile the source code type
(inside the Thesis folder) make. Three programs will be created. One for
running the naive trie, trierunner, one for doing the cache oblivious layout,
colayouter, and one for searching in the cache oblivious layout, corunner.

A.1 Input file format

The trierunner and colayouter program both requires an input file. This
file consists of ASCII strings, one on each line. The only character values not
allowed is 0-33, 69, 127 and 128 as these are special purpose characters.

A.2 The naive trie program

The trie program takes several parameters as input. These are shown in
Figure 77.
trierunner -i <INPUT_FILE> <ARGUMENTSx*>

-i <INPUT-FILE> (REQUIRED)

-t <TEST-FILE> (REQUIRED)

-c <CHILD-TREE> (Standard 0) O : Red-Black Tree, 1 : Sorted Vector

-v <SHOW INFO> (Standard 0) O : None, 1 : All
-r <REPETITION OF TEST-FILE> (Standard 1) Values must be an integer above zero

Figure 77: The arguments possible for the trierunner program.

INPUT-FILE An input file as described in section A.1.

TEST-FILE A file containing strings as described in section A.1. These
strings are then search for in the trie.

CHILD-TREE The search tree used to store the children.

SHOW INFO Displays the process of the program.
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REPETITION OF TEST-FILE If a test file is given this arguments in-
dicates how many times the strings in the test file is search for. It is
done in a round robin fashion.

The output of the program is

1. Number of trie nodes.

2. Total size of trie structure (in bytes).
3. Construction time (in seconds).

4. Running time (in seconds).

5. Number of search strings found.

6. Number of search strings not found.

in that order.

A.3 The cache oblivious layout program

The layout program takes several parameters as input. Only the input file is
required. The parameters are shown in Figure 78.

colayout -i <INPUT-FILE> <ARGUMENTSx*>
-i <INPUT-FILE> (REQUIRED)
-0 <0UTPUT-FILE> (If none, output is:
layout-<INPUT-FILE>-<EPSILON>-<LAYER-MULTIPLIER>-
<COMPONENT-TREE>-<BRIDGE-ALGORITHM>.veb)
-e <EPSILON> (Standard: 0.5)
-b <BRIDGE-ALGORITHM> (Standard: 0)
0 : Weight balanced search tree,
1 : Optimal search tree
-c <COMPONENT-TREE> (Standard: 0)
0 : Huffman,
1 : Weight balanced search tree
-v <SHOW INFO> (Standard: 0) O : None, 1 : All
-w <WRITE-METAPOST-LATEX> (Standard: 0) O : No, 1 : Yes
-d <% OF GIRAFFE> (Standard: 0.5) Used in giraffe tree

Figure 78: The arguments possible for the colayouter program.

INPUT-FILE An input file as described in section A.1.
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OUTPUT-FILE The layout of the input file. A predefined is used if no
argument is given*!.

EPSILON The value of €.

BRIDGE-ALGORITHM The tree algorithm used to connect the compo-
nents.

COMPONENT-TREE The tree algorithm used inside the components.
SHOW INFO Displays the process of the program.

WRITE-METAPOST-LATEX Creates a Metapost file and a associated
latex file for all trees in the layout. Note, that the Metapost algorithm
for drawing the trees takes long time for even small trees.

% OF GIRAFFE Indicates how many procentage of the nodes are ances-
tors before it is a legal giraffe tree. The given parameter € (0.0; 1.0).

The output of the program to standard out is

1. Total space usage (in bytes).
2. Blind trie space usage (in bytes).
3. Giraffe tree space usage (in bytes).
4. Bridge space usage (in bytes).
5. Construction time (in seconds).
6. Number of trie nodes.
7. Number of components.
8. Average number of nodes inside components.
9. Number of blind tries.
10. Number of giraffe trees.

11. Number of bridges.

in that order.

41See Figure 78 for the predefined file name.
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A.4 The cache oblivious search program

The cache oblivious search program takes several parameters as input. Only
the input file is required. The parameters are shown in Figure 79.

corunner -i <INPUT-FILE> <ARGUMENTS*>
-i <INPUT-FILE> (REQUIRED veb-file)
-t <TEST-FILE> (If none given, user interaction is possible)
-v <SHOW INFO> (Standard 0) O : None, 1 : All
-r <REPETITION OF TEST-FILE> (Standard 1)
Values must be an integer above zero
-c <COUNTER ON> (Standard: 0) O : No, 1 : Yes

Figure 79: The arguments possible for the corunner program.

INPUT-FILE An input file created by the colayouter program.

TEST-FILE A file containing strings as described in section A.1. These
strings are then search for in the trie. If no file is given, it is possible
to type search strings.

SHOW INFO Displays the process of the program.

REPETITION OF TEST-FILE The number of times the strings in the
test file is tested. This is done in a round robin fashion.

COUNTER ON Displays number of searches completed of the total num-
ber of searches.

The output to standard out is

1. Load time (in seconds).

[\

. Running time (in seconds).
3. The number of strings found.

4. The number of strings not found.

in that order.
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B Construction tables

In this section the output from the layout program is displayed. The different
shortening is briefly explained below.

e Value of ¢.

% Procentage of nodes needed as ancestors for a valig giraffe tree.
No. TN Number of trie nodes.

No. C Number of components.

No. BT Number of blind tries.

No. G Number of giraffe trees.

No. B Number of bridges.

Nodes / C Number of nodes per component (Average).

BT space Total space usage for the blind tries nodes (in bytes).
G space Total space usage for the giraffe tree nodes (in bytes).
B space Total space usage for the bridge nodes (in bytes).
Total space Total space usage (in bytes).

Cons. time Construction time for the layout (in seconds).
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Data for A1 for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.25 3014010 5427 26229 27756 1973 555.373 573580 | 73829500 142064 | 74545144 127.552
0.500 3014010 186 930 4099 71 16204.400 172460 | 105646220 4784 | 105823464 136.645
0.750 3014010 5195 25179 25566 1878 580.175 557400 | 81125180 136160 | 81818740 129.547
1.000 3014010 1 5 1115 0 | 3014010.000 157820 | 127661060 0 | 127818880 145.666
1.250 3014010 1 5 1115 0 | 3014010.000 157820 | 127661060 0 | 127818880 144.971
1.500 3014010 1 5 1115 0 | 3014010.000 157820 | 127661060 0 | 127818880 145.185
2.000 3014010 1 5 1115 0 | 3014010.000 157820 | 127661060 0 | 127818880 145.050
3.000 3014010 1 5 1115 0 | 3014010.000 157820 | 127661060 0 | 127818880 144.956
4.000 3014010 1 5 1115 0 | 3014010.000 157820 | 127661060 0 | 127818880 144.964
5.000 3014010 1 5 1115 0 | 3014010.000 157820 | 127661060 0 | 127818880 144.998

Data for A2 for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 3379858 8149 39330 41632 2969 414.757 858700 | 79995100 213232 | 81067032 111.497
0.500 3379858 279 1395 6148 107 12114.200 257400 | 112361600 7184 | 112626184 121.580
0.750 3379858 7821 37808 38380 2837 432.152 835100 | 90514100 204848 | 91554048 115.080
1.000 3379858 1 5 1671 0 | 3379860.000 235440 | 141512840 0 | 141748280 131.468
1.250 3379858 1 5 1671 0 | 3379860.000 235440 | 141512840 0 | 141748280 131.521
1.500 3379858 1 5 1671 0 | 3379860.000 235440 | 141512840 0 | 141748280 131.374
2.000 3379858 1 5 1671 0 | 3379860.000 235440 | 141512840 0 | 141748280 131.372
3.000 3379858 1 5 1671 0 | 3379860.000 235440 | 141512840 0 | 141748280 131.677
4.000 3379858 1 5 1671 0 | 3379860.000 235440 | 141512840 0 | 141748280 131.213
5.000 3379858 1 5 1671 0 | 3379860.000 235440 | 141512840 0 | 141748280 131.274




LT1

Data for A3 for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 3377396 13523 54108 54916 5099 249.752 1115920 | 70799240 351120 | 72266280 77.910
0.500 3377396 387 2610 11517 140 8727.120 358780 | 132504960 10112 | 132873852 96.521
0.750 3377396 3335 23342 23711 1261 1012.710 711480 | 76462120 86512 77260112 78.983
1.000 3377396 1 6 2227 0 | 3377400.000 314440 | 143695440 0 | 144009880 101.460
1.250 3377396 1 6 2227 0 | 3377400.000 314440 | 143695440 0 | 144009880 101.386
1.500 3377396 1 6 2227 0 | 3377400.000 314440 | 143695440 0 | 144009880 101.057
2.000 3377396 1 6 2227 0 | 3377400.000 314440 | 143695440 0 | 144009880 101.451
3.000 3377396 1 6 2227 0 | 3377400.000 314440 | 143695440 0 | 144009880 101.236
4.000 3377396 1 6 2227 0 | 3377400.000 314440 | 143695440 0 | 144009880 101.043
5.000 3377396 1 6 2227 0 | 3377400.000 314440 | 143695440 0 | 144009880 101.493

Data for A4 for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 3281877 17847 71495 72113 6789 183.890 1449680 | 67047200 462448 | 68959328 56.323
0.500 3281877 480 3261 15282 171 6837.240 448520 | 118989880 12592 | 119450992 71.471
0.750 3281877 4168 29174 37378 1569 787.399 889440 | 98395820 108240 | 99393500 65.159
1.000 3281877 1 6 2782 0 | 3281880.000 393020 | 136527100 0 | 136920120 78.911
1.250 3281877 1 6 2782 0 | 3281880.000 393020 | 136527100 0 | 136920120 79.223
1.500 3281877 1 6 2782 0 | 3281880.000 393020 | 136527100 0 | 136920120 78.285
2.000 3281877 1 6 2782 0 | 3281880.000 393020 | 136527100 0 | 136920120 78.628
3.000 3281877 1 6 2782 0 | 3281880.000 393020 | 136527100 0 | 136920120 78.280
4.000 3281877 1 6 2782 0 | 3281880.000 393020 | 136527100 0 | 136920120 78.480
5.000 3281877 1 6 2782 0 | 3281880.000 393020 | 136527100 0 | 136920120 78.545
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Data for A5 for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.250 2812226 20918 82843 84082 7860 134.440 1696020 | 58945760 543584 | 61185364 43.797
0.500 2812226 586 7258 18430 215 4799.020 604980 | 82865060 15280 | 83485320 49.585
0.750 2812226 5001 20008 30561 1917 562.333 766680 | 84234120 129328 | 85130128 50.146
1.000 2812226 1 8 4987 0 | 2812230.000 471680 | 144983420 0 | 145455100 69.715
1.250 2812226 1 8 4987 0 | 2812230.000 471680 | 144983420 0 | 145455100 69.997
1.500 2812226 1 8 4987 0 | 2812230.000 471680 | 144983420 0 | 145455100 70.131
2.000 2812226 1 8 4987 0 | 2812230.000 471680 | 144983420 0 | 145455100 69.999
3.000 2812226 1 8 4987 0 | 2812230.000 471680 | 144983420 0 | 145455100 69.833
4.000 2812226 1 8 4987 0 | 2812230.000 471680 | 144983420 0 | 145455100 69.840
5.000 2812226 1 8 4987 0 | 2812230.000 471680 | 144983420 0 | 145455100 69.963
Data for B1 for varying e
€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time

0.250 2019486 1849078 1849078 1849078 618172 1.092 | 36981560 | 40389740 | 49279712 | 126651012 121.357
0.500 2019486 1849078 1849078 1849078 618172 1.092 | 36981560 | 40389740 | 49279712 | 126651012 120.534
0.750 2019486 1849067 1849077 1849078 618171 1.092 | 36981580 | 40389780 | 49279376 | 126650736 122.061
1.000 2019486 1849067 1849077 1849078 618171 1.092 | 36981580 | 40389780 | 49279376 | 126650736 121.354
1.250 2019486 1647177 1655029 1770161 562516 1.226 | 36992740 | 42739100 | 43709376 | 123441216 114.659
1.500 2019486 1647171 1655024 1770161 562515 1.226 | 36992760 | 42739220 | 43709200 | 123441180 114.496
2.000 2019486 1605981 1657938 1807970 544913 1.257 | 37891900 | 44425140 | 42672752 | 124989792 112.894
3.000 2019486 16242 332118 1094488 5693 124.337 | 43359980 | 67428200 428624 | 111216804 55.061
4.000 2019486 48783 358448 1139128 15873 41.397 | 43225320 | 67055140 1307056 | 111587516 55.476
5.000 2019486 1216901 1217007 1325887 409877 1.660 | 37030960 | 54216880 | 32382768 | 123630608 138.352
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Data for B2 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.250 3078176 1139111 1562486 1562486 390508 2.702 | 31249720 | 61563540 | 30203392 | 123016652 101.815
0.500 3078176 1139111 1562486 1562486 390508 2.702 | 31249720 | 61563540 | 30203392 | 123016652 101.448
0.750 3078176 1034633 1501049 1559959 359136 2.975 | 31854560 | 63346700 | 27362048 | 122563308 98.021
1.000 3078176 1077949 1529046 1559989 373970 2.856 | 31545280 | 62501240 | 28510816 | 122557336 99.194
1.250 3078176 532365 1139591 1527265 183749 5.782 | 34836600 | 74010200 | 14095664 | 122942464 83.234
1.500 3078176 350025 477810 992597 118587 8.794 | 25356060 | 86149060 9303376 | 120808496 71.901
2.000 3078176 237326 913658 1469043 82295 12.970 | 36268860 | 80504040 6277680 | 123050580 72.425
3.000 3078176 3050 15726 538498 1055 1009.240 | 23061200 | 120673920 80688 | 143815808 61.990
4.000 3078176 1 6490 523814 0 | 3078180.000 | 22938380 | 124877900 0 | 147816280 64.338
5.000 3078176 1 6490 523814 0 | 3078180.000 | 22938380 | 124877900 0 | 147816280 64.513
Data for B3 for varying e
€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time

0.250 2286364 759600 1504644 1504644 260495 3.010 | 30092880 | 45727300 | 20139248 | 95959428 77.053
0.500 2286364 757859 1503757 1504630 259629 3.017 | 30109920 | 45761820 | 20097392 | 95969132 76.968
0.750 2286364 674787 1427277 1475145 232305 3.388 | 30067460 | 46845880 | 17876272 | 94789612 73.109
1.000 2286364 700989 1431010 1460914 240708 3.262 | 29614520 | 46830940 | 18580288 | 95025748 73.825
1.250 2286364 180144 847927 1227296 61033 12.692 | 28560400 | 56566600 4788048 | 89915048 54.286
1.500 2286364 497013 1032868 1199775 168031 4.600 | 25925260 | 58599120 | 13215888 | 97740268 65.715
2.000 2286364 163892 822140 1176875 55458 13.950 | 28373220 | 55867480 4357184 | 88597884 53.708
3.000 2286364 1 250 171985 0 | 2286360.000 | 15214800 | 95698640 0 | 110913440 47.100
4.000 2286364 1 250 171985 0 | 2286360.000 | 15214800 | 95698640 0 | 110913440 47.301
5.000 2286364 1 250 171985 0 | 2286360.000 | 15214800 | 95698640 0 | 110913440 47.093
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Data for B4 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 2753553 645854 1337054 1337054 221573 4.263 | 26741080 | 55071080 | 17122128 | 98934288 76.454
0.500 2753553 588747 1251119 1285208 203821 4.677 | 26059220 | 56108100 | 15578736 | 97746056 73.288
0.750 2753553 221261 632110 910185 76542 12.445 | 21104400 | 63526160 5855648 | 90486208 56.332
1.000 2753553 466654 1036621 1150292 162110 5.901 | 24199520 | 59261420 | 12339136 | 95800076 67.731
1.250 2753553 28659 125886 513904 9919 96.080 | 14869020 | 85558880 758352 | 101186252 49.824
1.500 2753553 339806 746166 845133 114923 8.103 | 21057840 | 67503620 9034992 | 97596452 62.097
2.000 2753553 186073 546328 806186 62936 14.798 | 20136540 | 68785540 4947328 | 93869408 56.502
3.000 2753553 1 88 139365 0 | 2753550.000 | 12933200 | 124218220 0 | 137151420 57.120
4.000 2753553 1 88 139365 0 | 2753550.000 | 12933200 | 124218220 0 | 137151420 57.085
5.000 2753553 1 88 139365 0 | 2753550.000 | 12933200 | 124218220 0 | 137151420 56.895

Data for B5 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 3195515 569757 1681091 1681091 195390 5.609 | 33621820 | 63910320 | 15105952 | 112638092 82.459
0.500 3195515 517990 1538207 1569184 179269 6.169 | 31706140 | 64550940 | 13707344 | 109964424 78.064
0.750 3195515 185899 555960 807594 64285 17.189 | 18774060 | 69121560 4920176 | 92815796 56.102
1.000 3195515 417098 1243333 1340105 144702 7.661 | 27816100 | 67067440 | 11031872 | 105915412 72.407
1.250 3195515 62540 222036 525815 21434 51.096 | 14580900 | 108508220 1658304 | 124747424 59.924
1.500 3195515 30636 248679 532107 10455 104.306 | 15765660 | 88378900 813040 | 104957600 53.576
2.000 3195515 162867 491625 722001 55628 19.620 | 17966200 | 76511120 4321664 | 98798984 57.154
3.000 3195515 2 53 92058 1| 1597760.000 | 11408820 | 123860000 16 | 135268836 58.178
4.000 3195515 1 34 92058 0 | 3195520.000 | 11408460 | 124646960 0 | 136055420 58.100
5.000 3195515 1 34 92058 0 | 3195520.000 | 11408460 | 124646960 0 | 136055420 57.543
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Data for C1 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 2811774 18467 67301 67301 4591 152.259 1346020 | 56235500 517456 | 58098976 47.468
0.500 2811774 18458 67276 67276 4591 152.334 1345520 | 56235500 517168 | 58098188 45.742
0.750 2811774 17401 66077 66227 4441 161.587 1353700 | 56241420 485744 | 58080864 46.094
1.000 2811774 4 16 3350 1 702944.000 391800 | 121690240 80 | 122082120 69.083
1.250 2811774 1 13 3348 0 | 2811770.000 391800 | 121732540 0 | 122124340 68.848
1.500 2811774 1 13 3348 0 | 2811770.000 391800 | 121732540 0 | 122124340 68.636
2.000 2811774 1 13 3348 0 | 2811770.000 391800 | 121732540 0 | 122124340 68.858
3.000 2811774 1 13 3348 0 | 2811770.000 391800 | 121732540 0 | 122124340 68.698
4.000 2811774 1 13 3348 0 | 2811770.000 391800 | 121732540 0 | 122124340 68.484
5.000 2811774 1 13 3348 0 | 2811770.000 391800 | 121732540 0 | 122124340 69.083

Data for C2 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 2825918 19277 68051 68051 5030 146.595 1361020 | 56518380 536352 | 58415752 47.440
0.500 2825918 19269 68033 68033 5030 146.656 1360660 | 56518380 536096 | 58415136 46.290
0.750 2825918 17716 66345 66482 4895 159.512 1370420 | 56564800 488560 | 58423780 47.590
1.000 2825918 3 11 3380 1 941973.000 400540 | 122550980 48 | 122951568 69.472
1.250 2825918 1 9 3378 0 | 2825920.000 400540 | 122598320 0 | 122998860 69.508
1.500 2825918 1 9 3378 0 | 2825920.000 400540 | 122598320 0 | 122998860 69.612
2.000 2825918 1 9 3378 0 | 2825920.000 400540 | 122598320 0 | 122998860 69.519
3.000 2825918 1 9 3378 0 | 2825920.000 400540 | 122598320 0 | 122998860 69.742
4.000 2825918 1 9 3378 0 | 2825920.000 400540 | 122598320 0 | 122998860 69.694
5.000 2825918 1 9 3378 0 | 2825920.000 400540 | 122598320 0 | 122998860 69.971
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Data for C3 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 2844036 19325 68187 68187 5080 147.169 1363740 | 56880740 537088 | 58781568 47.011
0.500 2844036 19319 68171 68171 5080 147.214 1363420 | 56880740 536896 | 58781056 46.193
0.750 2844036 18713 67434 67564 4950 151.982 1366120 | 56885840 519584 | 58771544 46.634
1.000 2844036 2 10 3401 1| 1422020.000 401480 | 123326400 16 | 123727896 69.886
1.250 2844036 1 9 3400 0 | 2844040.000 401500 | 123328580 0 | 123730080 69.769
1.500 2844036 1 9 3400 0 | 2844040.000 401500 | 123328580 0 | 123730080 69.478
2.000 2844036 1 9 3400 0 | 2844040.000 401500 | 123328580 0 | 123730080 70.094
3.000 2844036 1 9 3400 0 | 2844040.000 401500 | 123328580 0 | 123730080 69.737
4.000 2844036 1 9 3400 0 | 2844040.000 401500 | 123328580 0 | 123730080 69.731
5.000 2844036 1 9 3400 0 | 2844040.000 401500 | 123328580 0 | 123730080 70.989

Data for C4 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 2817974 19498 68307 68307 5260 144.526 1366140 | 56359500 539744 | 58265384 46.805
0.500 2817974 19492 68291 68291 5260 144.571 1365820 | 56359500 539552 | 58264872 46.405
0.750 2817974 18679 67380 67477 5161 150.863 1371760 | 56363300 515120 | 58250180 46.416
1.000 2817974 2 10 3358 1| 1408990.000 405000 | 122098920 16 | 122503936 70.150
1.250 2817974 2 10 3358 1| 1408990.000 405000 | 122098920 16 | 122503936 70.038
1.500 2817974 2 10 3358 1| 1408990.000 405000 | 122098920 16 | 122503936 69.547
2.000 2817974 2 10 3358 1| 1408990.000 405000 | 122098920 16 | 122503936 69.533
3.000 2817974 1 9 3358 0 | 2817970.000 405020 | 122106480 0 | 122511500 69.777
4.000 2817974 1 9 3358 0 | 2817970.000 405020 | 122106480 0 | 122511500 69.992
5.000 2817974 1 9 3358 0 | 2817970.000 405020 | 122106480 0 | 122511500 69.910
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Data for C5 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.250 2816441 20006 68733 68733 5412 140.780 1374660 | 56328840 553568 | 58257068 46.525
0.500 2816441 20002 68724 68724 5412 140.808 1374480 | 56328840 553440 | 58256760 45.735
0.750 2816441 19311 67907 68037 5282 145.846 1377120 | 56333880 533408 | 58244408 46.412
1.000 2816441 1 5 3359 0 | 2816440.000 407720 | 122154940 0 | 122562660 70.178
1.250 2816441 1 5 3359 0 | 2816440.000 407720 | 122154940 0 | 122562660 70.468
1.500 2816441 1 5 3359 0 | 2816440.000 407720 | 122154940 0 | 122562660 70.334
2.000 2816441 1 5 3359 0 | 2816440.000 407720 | 122154940 0 | 122562660 70.782
3.000 2816441 1 5 3359 0 | 2816440.000 407720 | 122154940 0 | 122562660 70.429
4.000 2816441 1 5 3359 0 | 2816440.000 407720 | 122154940 0 | 122562660 70.277
5.000 2816441 1 5 3359 0 | 2816440.000 407720 | 122154940 0 | 122562660 70.886
Data for D1 for varying ¢
€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time

0.250 254051 123672 123924 123924 123550 2.054 2478480 5081040 1980672 9540192 | 1137.300
0.500 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 | 1131.390
0.750 254051 123220 123294 123445 123199 2.062 2479920 5132240 1971824 9583984 | 1137.260
1.000 254051 123570 123586 123603 123530 2.056 2472520 5115080 1977728 9565328 | 1137.500
1.250 254051 1100 1114 1565 1099 230.955 4920320 | 14480940 17584 19418844 | 1242.340
1.500 254051 1100 1114 1565 1099 230.955 4920320 | 14480940 17584 19418844 | 1248.190
2.000 254051 1100 1114 1565 1099 230.955 4920320 | 14480940 17584 19418844 | 1247.100
3.000 254051 1 15 494 0 254051.000 4942300 | 14545400 0 19487700 | 1248.590
4.000 254051 1 15 494 0 254051.000 4942300 | 14545400 0 19487700 | 1241.760
5.000 254051 1 15 494 0 254051.000 4942300 | 14545400 0 19487700 | 1244.630




Vel

Data for D2 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 254550 123743 124136 124136 123549 2.057 2482720 5091020 1982960 9556700 700.148
0.500 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 702.066
0.750 254550 123048 123149 123377 123017 2.069 2484260 5283340 1969232 9736832 703.800
1.000 254550 123581 123596 123623 123520 2.060 2473080 5258460 1978240 9709780 701.465
1.250 254550 819 830 1273 818 310.806 4925840 | 14444400 13088 19383328 758.293
1.500 254550 819 830 1273 818 310.806 4925840 | 14444400 13088 19383328 754.081
2.000 254550 819 830 1273 818 310.806 4925840 | 14444400 13088 19383328 755.277
3.000 254550 1 12 474 0 254550.000 4942200 | 14491960 0 19434160 755.186
4.000 254550 1 12 474 0 254550.000 4942200 | 14491960 0 19434160 761.600
5.000 254550 1 12 474 0 254550.000 4942200 | 14491960 0 19434160 754.948

Data for D3 for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 255018 123797 124327 124328 123516 2.060 2486580 5100800 1985216 9572596 556.414
0.500 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 555.096
0.750 255018 122854 122984 123286 122813 2.076 2487880 5540760 1966288 9994928 553.194
1.000 255018 123558 123571 123609 123478 2.064 2473020 5507500 1978176 9958696 553.509
1.250 255018 692 702 1139 691 368.523 4927100 | 14440200 11056 19378356 589.385
1.500 255018 692 702 1139 691 368.523 4927100 | 14440200 11056 19378356 593.388
2.000 255018 692 702 1139 691 368.523 4927100 | 14440200 11056 19378356 596.108
3.000 255018 1 11 465 0 255018.000 4940920 | 14486060 0 19426980 596.068
4.000 255018 1 11 465 0 255018.000 4940920 | 14486060 0 19426980 598.134
5.000 255018 1 11 465 0 255018.000 4940920 | 14486060 0 19426980 594.071




Gzl

Data for D4 for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 255450 123797 124453 124455 123448 2.063 2489140 5110780 1986304 9586224 508.702
0.500 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 | 10309784 506.993
0.750 255450 122617 122777 123157 122566 2.083 2490900 5902460 1962656 10356016 511.283
1.000 255450 123500 123512 123560 123400 2.068 2472240 5859760 1977568 10309568 509.114
1.250 255450 654 664 1089 653 390.596 4925160 | 14244880 10448 19180488 539.617
1.500 255450 654 664 1089 653 390.596 4925160 | 14244880 10448 19180488 539.181
2.000 255450 654 664 1089 653 390.596 4925160 | 14244880 10448 19180488 539.280
3.000 255450 1 11 452 0 255450.000 4938220 | 14285740 0 19223960 539.148
4.000 255450 1 11 452 0 255450.000 4938220 | 14285740 0 19223960 538.839
5.000 255450 1 11 452 0 255450.000 4938220 | 14285740 0 19223960 542.896

Data for D5 for varying e

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.

space space time
0.250 256019 123931 124700 124702 123517 2.066 2494080 5122260 1989488 9605828 520.259
0.500 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 10768956 519.726
0.750 256019 113560 113750 114289 113500 2.254 2675760 7033680 1817888 11527328 519.504
1.000 256019 123573 123589 123650 123456 2.072 2474300 6314520 1979008 10767828 518.955
1.250 256019 623 633 1047 622 410.945 4928520 | 14103920 9952 19042392 544.774
1.500 256019 623 633 1047 622 410.945 4928520 | 14103920 9952 19042392 550.163
2.000 256019 623 633 1047 622 410.945 4928520 | 14103920 9952 19042392 550.570
3.000 256019 1 11 440 0 256019.000 4940960 | 14142080 0 19083040 550.063
4.000 256019 1 11 440 0 256019.000 4940960 | 14142080 0 19083040 548.438
5.000 256019 1 11 440 0 256019.000 4940960 | 14142080 0 19083040 545.304




91

Data for E for varying ¢

€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.250 143617 69998 94803 94803 20130 2.052 1896060 2872360 1917824 6686244 7.327
0.500 143617 67815 92998 93791 19160 2.118 1898840 2899520 1863488 6661848 7.172
0.750 143617 59972 87207 91439 16187 2.395 1919540 3007700 1660080 6587320 6.916
1.000 143617 56977 84065 90153 15387 2.521 1919760 3059740 1577040 6556540 6.895
1.250 143617 41926 71586 84391 10617 3.425 1924460 3236740 1171728 6332928 6.151
1.500 143617 38555 67616 82314 9743 3.725 1917680 3297500 1077840 6293020 6.106
2.000 143617 31233 59408 78701 7751 4.598 1918660 3438840 875408 6232908 5.817
3.000 143617 17061 42334 70690 4050 8.418 1909800 3733340 481120 6124260 5.218
4.000 143617 8857 28822 60942 1946 16.215 1825600 3975020 252256 6052876 4.992
5.000 143617 5233 20854 53480 1465 27.445 1742340 4114020 143984 6000344 5.591
Data for F for varying e
€ || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time

0.250 4815484 83291 241944 242018 33327 57.815 4842080 | 96324560 2132048 | 103298688 50.050
0.500 4815484 81226 236337 237251 32428 59.285 4765940 | 96380920 2080352 | 103227212 49.525
0.750 4815484 72149 222171 226979 28522 66.744 4639560 | 96533300 1852384 | 103025244 49.113
1.000 4815484 71531 220324 225523 28112 67.320 4620120 | 96560600 1839168 | 103019888 49.154
1.250 4815484 42117 186608 202720 18322 114.336 4388160 | 96858460 1054560 | 102301180 48.307
1.500 4815484 41618 185050 201519 17990 115.707 4371400 | 96883380 1043904 | 102298684 48.382
2.000 4815484 33136 166501 188366 14401 145.325 4226600 | 97103080 829904 | 102159584 47.746
3.000 4815484 16887 124028 158258 8065 285.159 3800280 | 97737960 411312 | 101949552 66.508
4.000 4815484 45657 189612 204329 25450 105.471 4433800 | 97259140 1053792 | 102746732 48.256
5.000 4815484 101 51611 102157 39 47678.100 2735900 | 101210580 2576 | 103949056 45.994




LC1

Data for A1 for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 3014010 186 930 2419 71 16204.400 172460 | 73768260 4784 | 73945504 127.403
0.300 3014010 186 930 2427 71 16204.400 172460 | 73831400 4784 | 74008644 127.286
0.400 3014010 186 930 2427 71 16204.400 172460 | 73823400 4784 | 74000644 127.286
0.500 3014010 186 930 4099 71 16204.400 172460 | 105646220 4784 | 105823464 136.896
0.600 3014010 186 930 5765 71 16204.400 172460 | 137179320 4784 | 137356564 146.647
Data for A2 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 3379858 279 1395 3632 107 12114.200 257400 | 79854260 7184 | 80118844 111.638
0.300 3379858 279 1395 3632 107 12114.200 257400 | 79764260 7184 | 80028844 113.055
0.400 3379858 279 1395 3647 107 12114.200 257400 | 80227800 7184 | 80492384 111.787
0.500 3379858 279 1395 6148 107 12114.200 257400 | 112361600 7184 | 112626184 121.498
0.600 3379858 279 1395 8648 107 12114.200 257400 | 144560360 7184 | 144824944 131.188
Data for A3 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 3377396 387 2610 4844 140 8727.120 358780 | 76363340 10112 | 76732232 79.134
0.300 3377396 387 2610 4860 140 8727.120 358780 | 76623660 10112 | 76992552 79.738
0.400 3377396 387 2610 8196 140 8727.120 358780 | 104676840 10112 | 105045732 88.172
0.500 3377396 387 2610 11517 140 8727.120 358780 | 132504960 10112 | 132873852 96.829
0.600 3377396 387 2610 11529 140 8727.120 358780 | 132713560 10112 | 133082452 96.913




8¢l

Data for A4 for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 3281877 480 3261 6056 171 6837.240 448520 | 71018460 12592 | 71479572 56.972
0.300 3281877 480 3261 6074 171 6837.240 448520 | 71210180 12592 | 71671292 57.283
0.400 3281877 480 3261 10710 171 6837.240 448520 | 95258360 12592 | 95719472 64.731
0.500 3281877 480 3261 15282 171 6837.240 448520 | 118989880 12592 | 119450992 71.577
0.600 3281877 480 3261 15349 171 6837.240 448520 | 119255420 12592 | 119716532 71.730
Data for A5 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2812226 586 7258 7355 215 4799.020 604980 | 56776920 15280 | 57397180 42.343
0.300 2812226 586 7258 13425 215 4799.020 604980 | 71035440 15280 | 71655700 46.599
0.400 2812226 586 7258 18425 215 4799.020 604980 | 82840660 15280 | 83460920 50.278
0.500 2812226 586 7258 18430 215 4799.020 604980 | 82865060 15280 | 83485320 49.951
0.600 2812226 586 7258 18491 215 4799.020 604980 | 83469040 15280 | 84089300 49.818
Data for B1 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2019486 1849078 1849078 1849078 618172 1.092 | 36981560 | 40389740 | 49279712 | 126651012 120.851
0.300 2019486 1849078 1849078 1849078 618172 1.092 | 36981560 | 40389740 | 49279712 | 126651012 120.816
0.400 2019486 1849078 1849078 1849078 618172 1.092 | 36981560 | 40389740 | 49279712 | 126651012 120.935
0.500 2019486 1849078 1849078 1849078 618172 1.092 | 36981560 | 40389740 | 49279712 | 126651012 122.423
0.600 2019486 1849078 1849078 1849078 618172 1.092 | 36981560 | 40389740 | 49279712 | 126651012 120.873




6¢C1

Data for B2 for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 3078176 1139111 1562486 1562486 390508 2.702 | 31249720 | 61563540 | 30203392 | 123016652 101.594
0.300 3078176 1139111 1562486 1562486 390508 2.702 | 31249720 | 61563540 | 30203392 | 123016652 101.481
0.400 3078176 1139111 1562486 1562486 390508 2.702 | 31249720 | 61563540 | 30203392 | 123016652 101.970
0.500 3078176 1139111 1562486 1562486 390508 2.702 | 31249720 | 61563540 | 30203392 | 123016652 101.642
0.600 3078176 1139111 1562486 1562486 390508 2.702 | 31249720 | 61563540 | 30203392 | 123016652 101.534
Data for B3 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2286364 757859 1503757 1503765 259629 3.017 | 30109920 | 45744520 | 20097392 | 95951832 76.829
0.300 2286364 757859 1503757 1504617 259629 3.017 | 30109920 | 45761560 | 20097392 | 95968872 77.471
0.400 2286364 757859 1503757 1504630 259629 3.017 | 30109920 | 45761820 | 20097392 | 95969132 77.078
0.500 2286364 757859 1503757 1504630 259629 3.017 | 30109920 | 45761820 | 20097392 | 95969132 76.968
0.600 2286364 757859 1503757 1504630 259629 3.017 | 30109920 | 45761820 | 20097392 | 95969132 77.119
Data for B4 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2753553 588747 1251119 1284509 203821 4.677 | 26059220 | 56079920 | 15578736 | 97717876 73.418
0.300 2753553 588747 1251119 1285197 203821 4.677 | 26059220 | 56107440 | 15578736 | 97745396 73.332
0.400 2753553 588747 1251119 1285197 203821 4.677 | 26059220 | 56107440 | 15578736 | 97745396 73.452
0.500 2753553 588747 1251119 1285208 203821 4.677 | 26059220 | 56108100 | 15578736 | 97746056 73.417
0.600 2753553 588747 1251119 1285208 203821 4.677 | 26059220 | 56108100 | 15578736 | 97746056 73.302




0€T

Data for B5 for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 3195515 517990 1538207 1568547 179269 6.169 | 31706140 | 64525280 | 13707344 | 109938764 78.617
0.300 3195515 517990 1538207 1569175 179269 6.169 | 31706140 | 64550400 | 13707344 | 109963884 78.501
0.400 3195515 517990 1538207 1569184 179269 6.169 | 31706140 | 64550940 | 13707344 | 109964424 78.556
0.500 3195515 517990 1538207 1569184 179269 6.169 | 31706140 | 64550940 | 13707344 | 109964424 78.514
0.600 3195515 517990 1538207 1569184 179269 6.169 | 31706140 | 64550940 | 13707344 | 109964424 78.147
Data for C1 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2811774 18458 67276 67276 4591 152.334 1345520 | 56235500 517168 | 58098188 46.004
0.300 2811774 18458 67276 67276 4591 152.334 1345520 | 56235500 517168 | 58098188 45.935
0.400 2811774 18458 67276 67276 4591 152.334 1345520 | 56235500 517168 | 58098188 46.251
0.500 2811774 18458 67276 67276 4591 152.334 1345520 | 56235500 517168 | 58098188 45.854
0.600 2811774 18458 67276 67276 4591 152.334 1345520 | 56235500 517168 | 58098188 46.133
Data for C2 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2825918 19269 68033 68033 5030 146.656 1360660 | 56518380 536096 | 58415136 46.189
0.300 2825918 19269 68033 68033 5030 146.656 1360660 | 56518380 536096 | 58415136 46.313
0.400 2825918 19269 68033 68033 5030 146.656 1360660 | 56518380 536096 | 58415136 46.184
0.500 2825918 19269 68033 68033 5030 146.656 1360660 | 56518380 536096 | 58415136 46.925
0.600 2825918 19269 68033 68033 5030 146.656 1360660 | 56518380 536096 | 58415136 45.943




I€T1

Data for C3 for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2844036 19319 68171 68171 5080 147.214 1363420 | 56880740 536896 | 58781056 46.690
0.300 2844036 19319 68171 68171 5080 147.214 1363420 | 56880740 536896 | 58781056 46.342
0.400 2844036 19319 68171 68171 5080 147.214 1363420 | 56880740 536896 | 58781056 46.769
0.500 2844036 19319 68171 68171 5080 147.214 1363420 | 56880740 536896 | 58781056 46.499
0.600 2844036 19319 68171 68171 5080 147.214 1363420 | 56880740 536896 | 58781056 46.510
Data for C4 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2817974 19492 68291 68291 5260 144.571 1365820 | 56359500 539552 | 58264872 46.189
0.300 2817974 19492 68291 68291 5260 144.571 1365820 | 56359500 539552 | 58264872 46.484
0.400 2817974 19492 68291 68291 5260 144.571 1365820 | 56359500 539552 | 58264872 46.505
0.500 2817974 19492 68291 68291 5260 144.571 1365820 | 56359500 539552 | 58264872 46.241
0.600 2817974 19492 68291 68291 5260 144.571 1365820 | 56359500 539552 | 58264872 46.229
Data for C5 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 2816441 20002 68724 68724 5412 140.808 1374480 | 56328840 553440 | 58256760 46.187
0.300 2816441 20002 68724 68724 5412 140.808 1374480 | 56328840 553440 | 58256760 46.122
0.400 2816441 20002 68724 68724 5412 140.808 1374480 | 56328840 553440 | 58256760 46.477
0.500 2816441 20002 68724 68724 5412 140.808 1374480 | 56328840 553440 | 58256760 45.887
0.600 2816441 20002 68724 68724 5412 140.808 1374480 | 56328840 553440 | 58256760 46.480




43!

Data for D1 for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 | 1134.150
0.300 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 | 1137.830
0.400 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 | 1131.790
0.500 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 | 1137.580
0.600 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 | 1134.100
Data for D2 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 700.659
0.300 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 701.418
0.400 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 701.042
0.500 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 699.617
0.600 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 704.443
Data for D3 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 555.324
0.300 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 558.495
0.400 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 559.176
0.500 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 558.465
0.600 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 556.699




eel

Data for D4 for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 255450 123564 123781 123815 123407 2.067 2477340 5600440 1979504 | 10057284 509.520
0.300 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 | 10309784 507.377
0.400 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 | 10309784 511.838
0.500 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 | 10309784 511.563
0.600 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 | 10309784 511.978
Data for D5 for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 256019 123652 123910 123941 123466 2.070 2480320 5613760 1981376 | 10075456 517.488
0.300 256019 123652 123910 123953 123466 2.070 2480320 5945840 1981376 | 10407536 517.068
0.400 256019 123652 123910 123962 123466 2.070 2480320 6263180 1981376 | 10724876 522.198
0.500 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 | 10768956 523.088
0.600 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 | 10768956 519.987
Data for E for varying % of giraffe neck
% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 143617 67815 92998 93107 19160 2.118 1898840 2884560 1863488 6646888 7.226
0.300 143617 67815 92998 93301 19160 2.118 1898840 2888740 1863488 6651068 7.154
0.400 143617 67815 92998 93763 19160 2.118 1898840 2898200 1863488 6660528 7.369
0.500 143617 67815 92998 93791 19160 2.118 1898840 2899520 1863488 6661848 7.276
0.600 143617 67815 92998 93903 19160 2.118 1898840 2904460 1863488 6666788 7.225




vel

Data for F for varying % of giraffe neck

% || No. TN | No. C No. BT | No. G No. B Nodes / C | BT G space | B space | Total Cons.
space space time
0.200 4815484 81226 236337 237098 32428 59.285 4765940 | 96355580 2080352 | 103201872 49.499
0.300 4815484 81226 236337 237188 32428 59.285 4765940 | 96364860 2080352 | 103211152 49.553
0.400 4815484 81226 236337 237223 32428 59.285 4765940 | 96374360 2080352 | 103220652 49.457
0.500 4815484 81226 236337 237251 32428 59.285 4765940 | 96380920 2080352 | 103227212 49.508
0.600 4815484 81226 236337 237272 32428 59.285 4765940 | 96386980 2080352 | 103233272 49.520
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