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iAbstratThis thesis presents an implementation and experimental study of the statiahe oblivious string ditionary found in [Brodal and Fagerberg, 2006℄. The-oretially a root to leaf searh path in the ahe oblivious string ditionaryis performed in O(logB(n) + |P |/B) I/Os, where B is the blok size, n thenumber of strings in the ditionary and P the query string. This bound istested by a variety of experiments using the ahe oblivious string ditionarystruture and a naive trie struture. The implementation over the aheoblivious layout and searh algorithm.Given a trie as input a ahe oblivious string ditionary is onstrutedusing the data strutures blind tries, gira�e trees, weight balaned trees(Hu�man trees) and weight balaned searh trees (Leaf oriented optimalbinary searh trees). The struture is laid out using a van Emde Boas layout.The I/O bound is arhived using redundany, i.e paths in the trie is storedmultiple times. Even so the ahe oblivious string ditionary struture usesonly linear spae.The ahe oblivious layout in this thesis is not build ahe oblivious.Therefore, the Hu�man tree is used instead of the tree from [Brodal andFagerberg, 2006℄ Setion 5.The experiments show exeution times for various parameters for theahe oblivious layout, in a attempt to establish the best. The result of theexperiments show that a ahe oblivious layout have superior exeution timeompared to a naive implementation of a trie.





iiiIntrodutionPeople often think of a heavy book when hearing the word ditionary. Forpeople in omputer siene a ditionary is equivalent with the trie data stru-ture. The trie struture stores strings and supports queries for these. Theontent of the strings are not limited to a ertain type. They an for instaneontain DNA sequenes, integers or simply words from a Shakespeare play.The hallenge is to onstrut the trie, so that the searhes for a pre�x queryis e�ient. Espeially when the trie is laid out in external memory. The bestknown bound for a pre�x query is O(|P |+ log(n)) for unbounded alphabetsin internal memory.Over the last deade the interest for I/O e�ient algorithms has inreased.This is mainly due to the inreasing amount of data needed to be proessedin still shorter time. Even though the apaity of ahes and memory layerskeep inreasing, e�ient queries on stored data is still an issue. Not only inexternal memory but also in main memory. Cahe oblivious algorithms areattempts to store data allowing queries to be answered e�iently, both inmemory but espeially in external memory.It an be proved that it is not possible to lay out a trie in external memoryahieving a query time of O(logB(n) + |P |/B) I/Os in the worst ase. It ispossible though, by other means than the trie struture. Using strutureslike blind tries, gira�e trees and weight balaned searh trees, [Brodal andFagerberg, 2006℄ ahieved a query time of O(logB(n) + |P |/B) I/Os worstase. This thesis is an implementation of the theory in [Brodal and Fagerberg,2006℄The thesis is omposed in �ve parts. The �rst part desribes the datastrutures and models used in the onstrution of the ahe oblivious stringditionary. The next part onerns the onstrution of the ahe obliviousstring ditionary together with proof of the time bound O(logB(n) + |P |/B)and spae bound O(N). The subjet of the third part is the implementationof the ahe oblivious string ditionary together with the searh algorithm.The next to last part presents the results of the experiments, where di�erentvalues of parameters have been tested. The �nal part is the appendix. In theappendix a user manual is inluded together with tables showing the outputfrom onstrution of the various layouts.





Part IStrutures and models





1 Analysis ModelsTo analysis an algorithm, an analysis model must be desribed. Three of themost widely used are the von Neumann RAM model, the I/O model and theahe oblivious model.1.1 Von Neumann RAM ModelThe Von Neumann RAM2 model, [von Neumann, 1945℄, is used to analyseoperations done in main memory. It is assumed that only one proessor isused and no onurrent operations is allowed. Eah instrution is harged aost of units, making it possible to analyse the ost of algorithms working inmain memory.Before the RAM model an be used to analyse the running time of analgorithm, the instrution set must be desribed and the ost of eah instru-tion spei�ed. Basi instrutions as arithmeti (add, subtrat, multiply,divide, remainder, floor, eiling,), movement (move, opy, store) andontrol (if, if else, return) are typially harged a onstant number ofunits. The ost of instrutions like sort is depended on the number andtimes the basi operations are used and the ost of these.The loser to reality the instrutions set with the ost of eah instrutionis, the more realisti will the analysis in the RAM model be.1.2 I/O ModelComputer storage is typially ordered in a hierarhy, where eah layer atsas a ahe for the next larger but also slower layer. The I/O model is usedfor modelling data transfers between these layers of storage. This annot bedone by the RAM model, sine it only onerns operations done in one layer.The most ommonly used I/O model is the two layered model [Aggarwaland Je�rey, 1988℄, where the �rst layer is fast and of size M and the seondlayer is slow but in�nitely large. Data is transferred between the layers inbloks of B elements. It is only possibly to do omputation on the elementsin the �rst layer. Figure 1 shows this model.In this model operations done on elements in the �rst layer is free ofharge while data transfers, i.e. reading or writing, is harged by a ost.The two-layered model is widely used sine the analysis in this model easilyextends to models ontaining more layers.2Random Aess Mahine. 3



DiskMemoryProcessor
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Figure 1: The I/O Model1.3 Cahe-Oblivious ModelThe ahe oblivious model [Frigo et al., 1999℄ is a generalisation of the I/Omodel. Algorithms using the ahe oblivious model are not allowed to assumeanything about the values of B and M . This means these algorithms mustbe desribed in the RAM model, but analysed in the I/O model.Sine nothing is known about M , ahe replaements are assumed tohappen automatially by an optimal o�ine ahe strategy. The beauty ofthe ahe oblivious model is that sine the analysis applies for any M and B,it applies for all layers of memory.1.4 Cahe missesMost modern day CPUs have several layers of ahe. When a CPU enounterdata it needs it will �rst searh the �rst layer of ahe. If the data is notpresent there, it will proeed to the next layer and so forth. If the dataannot be found in a layer a ahe miss our, indiating that the data needsto be fethed.When a blok of data is loaded into a ahe layer, it replaes another ablok of data. Whih blok to hoose is determined by an evition strategy.One of these strategies is the LRU 3 whih hooses the data blok least re-ently used. Another strategy is the FIFO4 whih hooses the blok who hasbeen in the ahe longest.1.5 Data prefethingAs most CPUs are build around a pipeline arhiteture a ahe miss anslow down the proess signi�antly. Therefore most CPUs have prefethingmehanism [Pan et al., 2007℄. This mehanism tries to predit the data3Least Reently Used.4First In First Out. 4



needed next and then loading it in advane. The data is loaded into a speialbu�er in the level 2 ahe. If a ahe miss ours this bu�er is hekedbefore the ahe layer. Algorithms onsidering the prefething mehanisman sometimes outperform ahe oblivious and ahe aware algorithms.

5



2 TrieThe Trie struture5 [Fredkin, 1960℄ is a tree struture used for storing a setof strings. After storing the strings it is possible to searh in the tree, makingit ideal as a ditionary. Figure 2 shows an example of a trie.
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Figure 2: A trie example showing the tree where the strings "foo", "football","footnote", "wine", "winebar", "winebottle", "wines" are inserted. A shadednode indiates that a string has ended at this node, i.e. the node is marked.The number of hildren6 for eah node is determined by the size of thealphabet used. Eah node an have as many hildren as there are haratersin the alphabet7.2.1 SearhA searh for a string is done by traversing the trie top-down while sanningthe string left to right. If the urrent node visited has a hild with the5Also known as a Radix tree.6The hildren of a node are the nodes right beneath it.7If the alphabet is in�nite, a node an arbitrary many hildren.6



sanned harater, the hild is visited and the next harater is sanned. Ifno suh a hild exists, the string is not in the trie. When the end of the stringis reahed, the urrent node is examined to hek if it is marked or not. If itis marked, the trie ontains the string.2.2 InsertWhen a string is inserted into the trie, the trie is traversed top-down whilesanning the string left to right. If the urrent node has a hild ontaining thesanned harater, this hild is visited and the next harater is sanned. Ifno suh hild exists, a new hild is reated ontaining the sanned harater.The new hild is then visited and the next harater is sanned. If there areno more haraters in the string the hild is marked, indiating that a stringhas ended at this node.2.3 ComplexityLet S = {s1, s2, . . . , sm} be the set of inserted strings, where the length of siis |si|. In the worst ase, the spae usage is
m
∑

i=1

|si| ∈ O(|S|)sine all strings an start with a unique harater, making it impossible toshare any of the nodes in the trie.Sine all haraters must be examined, inserting a string si takes timelinear to the length of the string |si| together with the time taken to searhamong the hildren at eah node. If eah node ontains a balaned searh treeof the hildren8, searhing takes log(n), where n is the number of hildren.The total time used when inserting a string si is
O(|si| · log(n))The time used to searh for a string is identially.If the alphabet is �nite, the hildren an be stored using a hash table9.Searhing among the hildren is thereby done in onstant time. Therefore,the time used to insert or searh for a string si is O(|si|).8Assuming some order of the alphabet, making it possible to ompare haraters lexi-ographially.9Or something similar for instane a vetor.7



3 Blind TrieThe Blind Trie struture10 [Morrison, 1968℄ is used for storing strings in atree struture. It is usually onstruted from a trie by eliminating all nodeswith only one hild, i.e. ollapsing nodes.As with the trie, it is possible to searh in the blind trie. In this setiontwo di�erent strutures are desribed. The �rst is the standard version of ablind trie while the seond is slightly altered to satisfy the results in [Brodaland Fagerberg, 2006℄.3.1 Standard versionIn the standard version, the haraters from the ollapsed nodes are storedon the edges. The leaves ontains the remaining haraters of the insertedstring, if any. The root node are always an ε-node. Figure 3 shows theonstruted blind trie, when given the trie from �gure 2 as input.
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Figure 3: A blind trie example showing the (ollapsed) tree where the strings"foo", "football", "footnote", "wine", "winebar", "winebottle", "wines" areinserted. The haraters from the ollapsed nodes are stored on the edges.Leaves stores the rest of the haraters, if any. A shaded node indiates that astring has ended at this node, i.e. the node is marked.3.1.1 SearhingA searh in the blind trie struture is similar to a searh in the trie struture,sine all the information from the original trie is present. The blind trie issearhed top down while the string is sanned left to right. When taking apath from one node to another, the haraters on the edge has to be hekedagainst the orresponding haraters in the string.10Also known as a Patriia trie. 8



When the end of the string is reahed, two ases exists. Either the searhends in a node whih has to be examined to see if it has been marked. Ifthe node is a leaf the haraters ontained in the leaf are heked against theharaters in the string to see if the string mathes. It ould also be the asethat the last harater in the string is on the traversed edge, and a way ofheking whether or not haraters on the edge has been marked is needed.3.1.2 InsertingInserting a string in a blind trie is possible, as all string information is on-tained within the struture. It requires splitting edges, insertion of at mosttwo new nodes and a few updates loal to the inserted node.3.1.3 ComplexitySine a standard blind trie stores the same number of haraters as the triegiven as input, it uses the same amount of spae as the trie. Searhingand insertion bounds are the same as the trie, as it might not be possibleto ollapse any nodes of the input trie. Replaing an edge an be done inonstant time.3.2 Altered versionAnother way of onstruting a blind trie, is to store the number of ollapsednodes on the edges. Figure 4 show an example of this, also given the triefrom �gure 2 as input. The leaves only ontain one harater. The rest areomitted, if any.
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Figure 4: A blind trie example showing the (ollapsed) tree where the strings"foo", "football", "footnote", "wine", "winebar", "winebottle", "wines" areinserted. The number of ollapsed nodes is stored on the edges. A shaded nodeindiates that a string has ended at this node, i.e. the node is marked.9



3.2.1 SearhingThe altered version struture, where only numbers of ollapsed nodes arestored, makes searhing somewhat inomplete. It is only possible to partlyhek whether a string is present or not, sine only some of the haratersin the string an be veri�ed. In order to do a omplete hek of the string,another struture is needed to �ll in the blanks.The hek an be done in the same way as with the standard blind trie.The blind trie is searhed top-down while sanning the string left to right,only heking the haraters in the nodes with the orresponding haratersin the string.3.2.2 InsertingInserting in the altered version is not possible without an additional datastruture, sine the haraters between nodes are missing, making it impos-sible to replae edges.3.2.3 ComplexityThe altered version uses in the worst ase the same amount of spae as a trie,as it might not be possible to ollapse any nodes of the input trie. Using thisargument again, searhing is also the same as the trie.

10



4 Gira�e TreeA Gira�e Tree [Brodal and Fagerberg, 2006℄ is de�ned as a tree having atleast half of its nodes as anestors to all the leaves. An example of this isshown in Figure 5.
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Figure 5: An example of a gira�e tree. The shaded nodes are that half of thenodes whih must be anestors of all the leaves.Gira�e trees are used together with the altered version of blind tries.Sine the blind trie does not store the haraters of the ollapsed nodes, it isonly possible to partly hek whether a string is ontained in the blind trieor not. Using a set of gira�e trees overing the input trie ompletely, it ispossible to hek a string as the gira�e trees ontains all the haraters fromthe input trie. Eah node in a blind trie refers to a orresponding gira�etree, i.e. a gira�e tree overing the same node. The idea is to make a fasthek of the string at ertain positions in the blind trie, and if this hek issuessful do a thorough hek of the string in a gira�e tree.4.1 Covering a trie with gira�e treesCovering a trie by a set of gira�e trees an be done in di�erent ways. Figure 6show an algorithm doing this in a greedy manner. T i;j is denoting a treeovering the leaves from i to j.The algorithm sans the leaves left to right maintaining a set of leavesovered by a gira�e tree. In eah iteration it is heked whether the setinluding the next leaf is still overed by a gira�e tree. If the set is stillovered by a gira�e tree, the leaf is added to the set. If not, the gira�e treeis outputted, the set emptied, and the leaf added to the set.Eah leaf in a trie is overed by exatly one gira�e tree, while the internalnodes an be overed by more than one. Figure 7 shows the overing of atrie using the greedy algorithm. 11



i = 1while(i <= n) do{j = iwhile(j < n and T i;j+1 is a giraffe tree) do{j = j+1}output T i;ji = j+1} Figure 6: Algorithm for overing a tree with gira�e trees.
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4.2 SearhingWhen validating a string, the blind trie is �rst traversed from root to leaf,partly heking the string against the haraters stored in the nodes of theblind trie. If this hek is suessful, the gira�e tree attahed to the blindtrie leaf is traversed from root to leaf, validating the string ompletely. Asthe gira�e tree is just a searh tree, the traversal is done like any other.The advantage of using the gira�e tree, is that when validating a stringin a gira�e tree, half of the string is stored in the nek of the gira�e tree. Asthe nodes in the nek are unary, validating the nodes in the nek is a matterof sanning.

13



5 Weight balaned treesA weight balaned tree is a tree balaned by the weights of its nodes. It isnot a spei� data struture, but a term used to desribe that the nodes areplaed aordingly to a ertain weight. A 'weight' of a node ould be howoften it is searhed for in a searh tree. Therefore, it would be an advantageto plae 'heavy' nodes, so that they are found early in a searh through thetree.The goal of onstruting a weight balaned tree is to minimise the to-tal weight of the tree. The total weight, W , for a tree with n nodes,
m1, m2, . . . , mn, inserted is de�ned as

W =
n
∑

i=1

|di| · wiwhere |di| is the depth of node mi having weight wi. As a weight balanedtree is balaned by weights and not height, it is rarely the ase that it haslogarithmi height, i.e. log(n).Some weight balaned tree are also searh trees. If the order of the nodesare taken into onsideration when onstruting the tree, it an be possibleto searh in the tree afterwards. Construting a searh tree often results inlonger onstrution time or a higher total weight.5.1 Hu�man treeA Hu�man tree, [Hu�man, 1952℄ is a weight balaned tree and is introduedin an algorithm for reating an optimal pre�x ode, known as the Hu�manode. The algorithm enodes the pre�xes using a binary tree, plaing thepre�xes that our the most at the top of the tree. This tree is known as theHu�man tree. The ode for the pre�x is then the binary representation of thepath down the tree. The Hu�man ode is often used in data ompression.5.1.1 Construting a Hu�man treeA Hu�man tree is onstruted by �rst inserting the weighted nodes intoa priority queue, and then repeatedly merging two nodes. The nodes aremerged by making the two lightest nodes in the priority queue hildren ofa new node, whih has the sum of its hildren weights as its weight. Thisnew node is then inserted into the priority queue, and the merging ontinues.When all nodes are merged into one tree the merging stops. The algorithmin Figure 8 reates a Hu�man tree in this greedy manner.14



Insert all weighted nodes into priority queue Qwhile(1 < Q.size()) do{node left = Q.min()node right = Q.min()Q.insert(new node(left, right, left.weight + right.weight))}return Q.min()Figure 8: Algorithm for the Hu�man tree.An example of a Hu�man tree is shown in Figure 9. Eah node has a keyassoiated showing that searhing e�iently in a Hu�man tree is not alwayspossible, as the keys are not sorted left to right in the �nal tree.
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(d) (e) (f)Figure 9: Example of onstruting a Hu�man tree.5.1.2 ComplexityConstruting a Hu�man tree takes time O(n log(n)), where n is the numberof leafs in the tree, as the priority queue needs to sort all the nodes. Themerging takes time O(n) sine only n−1 merges are needed to onstrut thetree.
15



5.2 Artile treeThe artile tree is taken from the algorithm in Lemma 5.1 from [Brodal andFagerberg, 2006℄ and is a weight balaned searh tree. It is onstruted intime O(n) and the depth of a leaf with key ki is 2 + 2⌈log(W/wi)⌉, where wiis the weight of ki and
W =

n
∑

i=1

wifor n leaves. See Setion 11 for a detailed analysis.Figure 11 shows the algorithm onstruting the artile tree. The leavesin the tree ontain the original values, while the internal nodes are used fordireting a searh down to the right leaf. The rank-funtion used in thealgorithm is de�ned as rank(w) = ⌈log(w)⌉The algorithm takes a list of sorted keys as input. It iterates throughthe list while maintaining a stak of trees where the ranks of the trees arestritly dereasing from bottom to top. For eah key the algorithm deter-mines whether zero or more linkings should take plae. This is done byexamining the rank of the urrent key and the rank of the tree on top ofthe stak. A linking links the two trees at the top of the stak into one andpushes the new tree onto the stak.Figure 10 shows an example of the algorithm. The keys and weights arethe same as used in the Hu�man example.key a b  d e fweights 3 1 4 3 2 1
a;5 b;2 c;10 d;6 e;4 f;1 a;5 a;5 b;2 c;10 d;6 e;4 f;1

a;7

a;7 a;5 b;2

c;10

d;6 e;4 f;1

a;7

a;17

a;17(a) (b) ()
a;5 b;2

c;10

d;6 e;4 f;1

a;7

a;17

a;17

d;6

e;4

f;1

a;5 b;2

c;10 d;6

e;4 f;1

a;7

a;17

a;17

e;5

d;11

a;28

(d) (e)Figure 10: Example of onstruting a weight balaned searh tree.16



funtion link(SearhTree t1, SearhTree t2){weight = t1.weight + t2.weightkey = largestKeyInTree(t1)st = new SearhTree(key, weight)st.left = t1st.right = t2return st;}L = list of pairs (key, weight) sorted by keyvalueS = empty stak of searh treesforeah (k,w) in L do{if(S.empty() or rank(w) < rank(S.top().w)) do{S.push(new SearhTree(k, w))}else{st = lowest tree in S for whih rank(st) <= rank(w)if(st != S.top()){while(st is not involved in a link) do{// Link two top treesS.push(link(S.pop(), S.pop()))}}if(rank(S.top().w) <= rank(w)){S.push(new SearhTree(k, w))S.push(link(S.pop(), S.pop()));while(two top trees in S are of same rank and 1 < S.size()) do{S.push(link(S.pop(), S.pop()));}}else{ // rank(w) < rank(S.top().w)while(two top trees in S are of same rank and 1 < S.size()) do{S.push(link(S.pop(), S.pop()));}S.push(new SearhTree(k, w))}}}while(1 < S.size()) do{S.push(link(S.pop(), S.pop()));}Figure 11: An algorithm for onstruting a weight balanes searh tree.17



5.3 Optimal binary searh treeA optimal binary searh tree is a tree whose expeted searh ost is thesmallest. Given a set of keys with di�erent probabilities, it is onstruted byexhaustively heking all possible trees using dynami programming11. Thetree with the smallest expeted searh ost is not neessary the tree with thesmallest overall height or has root the key with the highest possibility.The foundation for the optimal binary searh tree is the observation, thatthe two subtrees of an optimal binary tree also are optimal. Given a set ofsorted keys k1, k2, . . . , kn where ki < ki+1, one of these must be at the root.If this is ki then the keys smaller than ki must form an optimal binary searhtree, and the same with the keys bigger than ki. Figure 12 illustrates thisidea. In the �gure, key i have been hosen to be the root, in the left subtreekey j and in the right key l.
1 nij l

i

j lFigure 12: The basi idea behind the onstrution of a optimal binary searhtree.To �nd the optimal tree, all keys are tested. To avoid this from taking toolong as many subtrees are the same for di�erent roots, every time a subtreeis found to be optimal its result is stored in a table. The size of this tableis O(n2). The next time the subtree has to be alulated, the result an befound in the table avoiding the alulation.For instane when examine key k5 as the root of the tree ontaining thekeys k1, k2, . . . km, 5 ≤ m the optimal root for subtree k1 . . . k4 has to be found.Later when examine another key ki, 5 < i as root, the optimal subtree forkey k1, k2, . . . , k4 an be found by a lookup in the table storing all alulatedsubtrees.The algorithm uses not only the set of keys k1, k2, . . . , kn but also a setof dummy keys d1, d2, . . . , dn+1. The dummy keys are plaed at the bottomof the tree as leaves. A leaf represents a searh not in the tree, i.e. reahing11The algorithm is not presented in this thesis. It an be found in [Cormen et al., 2003℄page 361. 18



a dummy node in a searh means, that the searh is unsuessful. There are
n + 1 dummy keys as all failed searhes must be direted to a dummy key.The order of the keys are

d1 < k1 < d2 < k2 < d3 < . . . < dn < kn < dn+1The algorithm uses the probabilities of eah key and dummy key to determinethe expeted searh ost.The time used to onstrut and �nd the optimal tree is O(n3) when usingdynami programming and storing of previous results. This omes from threenested for-loops and only O(1) lookups in the table.5.4 Leaf oriented optimal binary searh treeA leaf oriented optimal binary searh tree is onstruted in the same way as anoptimal binary searh tree. The only di�erene is that the probabilities of thekeys k1, k2, . . . , kn are stored in dummy keys d1, d2, . . . , dn, i.e. E(di) = E(ki).Afterwards the tree is onstruted using the d− i dummy keys and the i− 1�rst keys. These keys are all given the probability 0. The onstrutionalgorithm is the same as in Setion 5.3.

19



6 van Emde Boas Tree LayoutThe van Emde Boas layout [van Emde Boas et al., 1977℄ is a reursive methodof doing a layout of a binary tree. The layout is often used in ahe-obliviousalgorithms, sine the layout is well suited for these algorithms.The van Emde Boas layout of a binary tree is done reursively by �rsthalving the tree T into a top T1 and bottom trees T2, T3, . . . , Tn. Then thetop T1 is reursive laid out followed by a reursive layout of the bottom trees
T2, T3, . . . , Tn in a left to right order, Figure 13. The reursion stops whenthe height of the tree drops below a ertain threshold, for instane when theheight is 1.
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T2 Tn...

T2 ... Tn(a) (b)Figure 13: The theoretially van Emde Boas layout.The tree is laid out in memory the same way it is reursively traversed.This is indiated by the Memory bar at the bottom of Figure 13 (a) and (b).The order of the trees is important. Following a searh path root to leaf inthe tree an be done by sanning forward in memory, i.e. it is never neessaryto searh bakward.To larify this, Figure 14 shown an example of a binary tree layout. Thetree in (a) is �rst halved into top and bottom resulting in the �ve trees in (b).These are further divided into top and bottom, and then laid out in memory,as the trees now have height one ()12. Now searhing the path ajl is amatter of sanning or following pointers forwards (d).
12Only the top tree T1 is showed. 20
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Part IICahe-Obliious String Ditonary





7 Previous workThe trie struture provides a string ditionary struture whih an be usedin pattern mathing suh as pre�x searhes. The time ost of onstrutingand searhing in the RAM model has been known for some time, but is stillnot settled in the I/O and ahe oblivious model.In the RAM model, the searh time for a string P in a string ditionarystruture over n strings is O(log(n) + |P |) for unbounded alphabets, and
O(|P |) for bounded. The orresponding onstrution time isO(n log(n)+|N |)for unbounded and O(N) for bounded alphabets, where N is the total lengthof all the inserted strings. This is ahieved using weight balaned searhtrees to store the hildren at eah internal node and the telesope property.A searh path P from root to leaf ost

|P |
∑

i=1

(

1 + log

(

wi

wi+1

))

= |P | + log

(

w1

w|P |

)

≤ |P | + log(n)where wi are the total weight of the weight balaned searh trees storing thehildren at node i.A su�x tree an be onstruted13 in O(sort(N))14 in both the I/O andahe oblivious model. However, searhing is not trivial. It an be provedthat it is not possible to lay out a trie in external memory ahieving a worstase searh time of O(logB(n) + |P |/B). Using the string B-tree [Ferraginaand Grossi, 1999℄, whih is a ombination of a B-tree and a blind trie, it anbe ahieved in the I/O model. The B-tree depends heavily on the value of
B, making it useless in the ahe oblivious model.

13Using sorting and sanning steps, [Farah-Colton et al., 2000℄.14Or more preise O(N/B logM/B(N/B)).25



8 Overview of strutureIn this setion an overview of the struture is given. Starting with a triestruture T , the struture is deomposed into onneted omponents. Eahomponent ontains blind tries and gira�e trees. To onnet the omponentsweight balaned searh trees are used. Figure 15 shows an example of a trie.The trie will be used as an example in the rest of the thesis.
T

Internal node

Leaf

Child-Parent relationFigure 15: The input trie T with the labels omitted for simpliity.8.1 De�nitionsBefore desribing how to deompose an arbitrary rooted tree into omponentsand layers a few de�nitions is needed.Let T be a tree15, v a node in T and Tv the subtree rooted at v. Then nvis the number of leaves in the subtree Tv. The depth of v, depth(v), is thenumber of edges on the path from v to the root. The rank of v, rank(v), isde�ned as rank(v) =

{

0 if nv = 0
⌈log(nv)⌉ elseFigure 16 shows nv and rank(nv) of the example trie from Figure 15.8.2 Partition a tree into omponentsThe omponents of a tree are identi�ed reursively top-down, starting withthe root of the tree. From the root the nodes are divided into strata and an-15For instane a trie. 26
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i(a) (b)Figure 16: (a) The example trie with nv for eah node and (b) the rank of eahnode.didates for the omponent are identi�ed. The onneted andidates startingat the root form the omponent. Non-andidate nodes having their parentinside the omponent form new roots in new omponents. For eah new rootnew strata and andidates are found.Let r be the root of the tree, or a non-andidate node, whose parent isassigned to a omponent. Starting at r the nodes in Tr is divided into strataby a depth ondition. Let the node in question be denoted v. Ifdepth(v) − depth(r) < 220then node v belong to strata 0. If this is not the ase, then v belongs tostrata i for whih the following is true
22i−1

≤ depth(v) − depth(r) < 22ifor i = 1, 2, . . .. Figure 17 shows the depths and strata for the nodes in theexample trie, where r is the root.When the nodes in Tr are divided into strata it is possible to �nd theandidates for the omponent. Let ε ∈ (0, 1] be a onstant, used to in�uenethe size of omponents. For small values of ε the omponents will ontainfew nodes, and for large values more nodes. A node in Tr is a andidate, ifthe following is true rank(r) − rank(v) < ε2i27
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8.3 Divide a omponent into layersIt is straightforward to divide a omponent into layers. When a node isontained in a omponent, the strata in whih it is ontained beomes thelayer Strata i beomes layer i.Figure 18 (b) shows the layer in whih eah node is ontained. If a node hasmore than one hild in the next layer, a dummy node16 is inserted betweenthe node and it hildren. This node will be ontained in the same layer asthe hildren. The shaded node in Figure 18 (b) is an example of a dummynode.Let the omponent rooted at node v be denoted by Cv and the layer i inthe subtree Tv be denoted by Li
v. Then Cv and Li

v an be de�ned as
Lo

v = {w ∈ Tv | rank(w) = rank(v) ∧ (1)depth(w) − depth(v) < 220

}

Li
v = {w ∈ Tv | rank(v) − rank(w) < ε2i ∧ (2)

22i−1

≤ depth(w) − depth(v) < 22i

∧
(

∃u ∈ Li−1
v : depth(u) − depth(v) = 22i−1

− 1 ∧ w ∈ Tu

)

}

Cv =

∞
⋃

i=0

Li
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shows the blind tries and gira�e trees of omponent 2 put together, enablinga searh through the omponent.8.5 BridgesGira�e nodes do not have a diretly referene to roots in other omponents.Instead they have a referene to a weight balaned searh tree17, in whihit is possible to searh for the roots. When onstruting the bridge, the nvvalues stored in the roots are used as weights.
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When reating the omponent tree, eah omponent needs to identifythose nodes inside the omponent having hildren in other omponents.These nodes are used to reate a binary weight balaned tree18 representingthe omponent. The weight of a node, when reating the weight balanedtree, is the sum of the nv values of its hildren loated in other omponents.A binary weight balaned tree ould be reated by the Hu�man algorithm,the artile algorithm.or even the leaf oriented optimal binary searh treealgorithm.The weight balaned trees representing the omponents are glued togetherusing the bridges19 onstruted earlier. This is done by onneting the nodeshaving hildren in other omponents with the orresponding roots of thebridges. Figure 23 (a) shows the omponent tree for the �nal struturein Figure 22. In this example all the trees representing omponents onlyontains a single node20. The red nodes are the same as in both �gures.
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ure 23 (b) shows the original trie with labels inserted into the nodes. Thegreen path is the searh path when searhing for the string addab. The
ε-node at the top is just a dummy node used as a starting point.The same searh is shown in Figure 24 where the blind tries, gira�e treesand weight balaned searh trees are traversed. The nodes uses the samelabels as in the original trie. As seen, there is a great di�erene in the searhpatterns.
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9 Memory layoutA van Emde Boas layout of the omponent tree T ′ is not trivial, as thestruture ontains blind tries, gira�e trees and weight balaned searh trees.The van Emde Boas layout of the omponent tree is used to determine inwhat order the di�erent omponent are laid out in memory, while the depthof the reursion determines the order of the layers.9.1 Layout of omponent tree T ′There are two kind of trees in the omponent tree. The �rst is the weightbalaned tree indued by the bridge nodes in eah omponent. The seondis the weight balaned searh tree onneting the omponents. The layout ofa node depends on whih kind of tree it belongs to.In a weight balaned tree, only the root is laid out in memory. The restare onsidered dummy nodes. Doing a layout of the root, means doing alayout of the blind trie and the assoiated gira�e trees, loated in the �rstlayer21 of the omponent. The rest of the omponent, layer 1, 2, . . . , k, arelaid out later, Setion 9.2. The dummy nodes are ignored and thus not laidout.The nodes in a weight balaned searh tree do not represent any ompo-nents and are simply laid out when reahed in the reursion.Figure 26 shows the reursive all on the top of the omponent tree fromSetion 8, Figure 25. In the �gure the layout at the bottom is only a pseudolayout illustrating the order of the nodes. Only the omponent roots areshown, hiding the details of the blind tries and gira�e nodes. The trianglesrepresent the di�erent reursions of the layout.
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9.2 Depth of reursionIn a van Emde Boas layout of a omponent tree, the depth of the reursionis used to determine in whih order to lay out the di�erent layers of the om-ponents. The depth of the reursion is numbered in reverse order, beginningwith the inner most reursive all. This is illustrated in Figure 27.
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returns to depth 2, whih overs all the omponents. Therefore, their nextlayer is laid out, (j). As no more reursive all have been made, i.e. there isno reursion of depth 3, the rest of the omponents layers (if any) are laidout.9.3 Blind trie and gira�e tree layoutWhen doing a layout of a layer, all the blind tries ontained in the layerfollowed by the assoiated gira�e trees are laid out. Both a blind trie and agira�e tree is laid out top to bottom in BFS 23 order. Figure 29 shows anexample, taken from setion 8. The labels are for illustrating purpose only.
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a b c d e f g a h b d e a i c f gFigure 29: The layout of layer 2 of omponent 2. First the blind trie is laid outin BFS order followed by the two gira�e trees assoiated with the blind trie, alsoin BFS order.9.4 Layout exampleTo omplete the example from Setion 8 a omplete layout of the ahe obliv-ious string ditionary struture is given. Figure 30 (a) shows the omponenttree, (b) the van Emde Boas reursions and Figure 31 the struture and thelayout.23Breadth First Searh 39
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10 SearhingThe searh for a string s is done in three di�erent strutures, the blindtrie struture, the gira�e tree struture and the weight balaned searh treestruture. Validating whether or not a string is present in the ahe obliviousstring ditionary requires traversal of these strutures.When searhing for a string s in a ahe oblivious string ditionary stru-ture, the �rst part of the string is heked in the blind trie loated at theroot. This results in a veri�ation in a gira�e tree, whih direts the searhfor the next part of s into another blind trie, possibly using a weight bal-aned searh tree. This ontinues until a mismath our or s is found to beontained.10.1 Searhing in a blind trieA searh for a string s in a blind trie is done top-down. When reahing anode the label at that node is not ompared to the orresponding string.Instead the hildren are searhed. As the reahed node ontains how manyharaters there have been omitted, it is possible to �nd the harater in s towhih at most one of the hildren must math. As the hildren have di�erentlabels, only one of the hildren an math the orresponding harater in s.Therefore, the searh in the blind trie is unique.When a leaf is reahed, the gira�e tree assoiated with the leaf is returned.This gira�e tree ontains all haraters between the blind trie root and theleaf, inluding all the omitted haraters. Therefore, it an be used to do aomplete hek of the part in s heked by the blind trie.If a mismath is found at a node, i.e. none of the hildren mathes, itsorresponding gira�e tree is returned. The reason is that the searh to theparent orresponded to s, but the searh from parent to hild did not. It ispossible that somewhere between the parent and hild, the searh needed toontinue in another omponent. This an only be veri�ed by traversing thegira�e tree, as the blind trie is onstruted of the internal nodes in the layer.10.2 Searhing in a gira�e treeSearhing in a gira�e tree is similar to searhing in a blind trie. The searhis done top-down, and sine no haraters were omitted when the gira�e treewas onstruted s an be fully heked.The result of a searh in a gira�e tree is either a blind trie root or noth-ing. A searh is only ontinued into a hild node if the parent mathes theorresponding harater in s, and the hild mathes the next harater in s.42



If the parent mathes and none of the hildren does, the searh annotontinue in the gira�e tree. Then the weight balaned searh tree loated atthe node is searhed. If the searh is suessful, the blind trie reahed in theweight balaned searh tree is returned. If not the searh is ended as s didnot have a math in the gira�e tree.When a gira�e leaf is reahed, the weight balaned searh tree is searhedfor the next harater in s. If a math is found the blind trie from this searhis returned. Otherwise, the blind trie referened to from the gira�e leaf (ifany) is returned.10.3 Searhing in a weight balaned searh treeA weight balaned searh tree is traversed as any other searh tree. Ateah node the label stored at the node is heked against the orrespondingharater in s, and the searh ontinues into the left or right hild. When aleaf is reahed, the leafs label is ompared with the orresponding haraterin s. If it is a math, the blind trie referened at the leaf is returned.10.4 Example of searhingReturning to the searh example in Figure 24 from Setion 8 it is now possibleto desribe the searh in details.1. First the blind trie at the root is searhed for the harater a. The
ε-node mathes everything so the searh ontinues. As the node is aleaf, the gira�e tree referened at the node is returned2. The gira�e tree is used for heking the math of a. As an ε-nodemathes everything, the searh proeeds into the hild, where a mathis found. As the hild is a leaf, the searh is direted to the weightbalaned searh tree, searhing for the letter d. A math is found tothe right24 and the blind trie whose root ontains the harater d isreturned.3. The blind trie is searhed for the harater d. As the blind trie onsistsof just an ε-leaf the gira�e tree assoiated are returned. The gira�etree is used for validating the result. The blind trie referened from thegira�e tree leaf is returned.24In the example drawing.
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4. The searh in the blind trie and gira�e tree mathes the harater aand the searh ontinues into the weight balaned searh tree at thebottom, where a math is found.5. The blind trie returned from the weight balaned searh tree is searhedfor the letter b. Again the blind trie is an ε-node and the heking in thegira�e tree is suessful. As s ontains no more haraters, the gira�enode is heked for any strings ending at this node in the original trie.This information is stored in the gira�e node, and this result is returnedending the searh.
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11 AnalysisThe analysis is divided into two part. The �rst part analyses the spaeusage of the ahe oblivious string ditionary struture and the seond partanalyses the searh time. Before analysing the spae usage a small lemmaand theorem is presented, setting an upper bound on the number of leavesin a layer, and the number of omponents in the struture.Lemma 11.11. If a node w ∈ Cv has a hild u with rank(u) = rank(w), then w and uare in the same omponent.2. If a node w ∈ T has only one hild u, then w and u are in the sameomponent.3. Li
v is a forest with at most 2ε2i+1 leaves.4. Li
v ontains at most (22i

− 22i−1

)2ε2i+1 nodes.5. For a node w ∈ Li
v, w 6= v, with a hild u /∈ Cv, then rank(v)−rank(u) ≥

ε2i.Proof1. Sine rank(v) − rank(w) < ε2i so is rank(v) − rank(u) and thus thehild u is a andidate, if w is a andidate. (The andidate requirementis rank(v) − rank(w) < ε2i for a node w ∈ Li
v)2. Same argument as (1). Sine they both have the same number of leaves,

nw = nu, they have the same rank.3. First let w1, w2, . . . , wk be leaves of Li
v. A leaf is a node in Li

v having nohild in Li
v. As the subtrees Tw1

, Tw2
, . . . , Twk

(of Tv) are disjoint then
nw1

, nw2
, . . . , nwk

≤ nv. From the andidate requirement, it follows thatfor a leaf wj, 1 ≤ j ≤ k, it is know thatrank(v) − rank(wj) ≤ ε2i ⇒

⌈log(nv)⌉ − ⌈log(nwj
)⌉ ≤ ε2i ⇒

2⌈log(nv)⌉ − 2⌈log(nwj
)⌉ ≤ 2ε2i

⇒

2⌈log(nv)⌉

2ε2i ≤ 2⌈log(nwj
)⌉ ⇒45



nv

2 · 2ε2i =
nv

2ε2i+1
≤ nwj

⇒

nv

nwj

≤ 2ε2i+1from whih it an be onluded, that Li
v has at most 2ε2i+1 leaves.4. Let w be a leaf in Li

v. It has at most 22i

− 22i−1 anestors in Li
vsine it ful�l the strata requirement 22i−1

≤ depth(w) − depth(v) <
22i . As there an be at most 2ε2i+1 leafs in Li

v, (3), there are at most
(22i

− 22i−1

)2ε2i+1 nodes in Li
v.5. Let w ∈ Li

v, w 6= v and let u /∈ Cv be a hild of w. Sine u /∈ Cvthis mean, that u does not ful�l the andidate requirement, and henerank(v) − rank(u) 6< ε2i ⇒ ε2i ≤ rank(v) − rank(u)

�Theorem 11.1 On a root-to-leaf path in a tree T with n leaves, there are atmost 1 + ⌈log(n)⌉ omponentsProof As the ranks of the omponent roots are stritly dereasing, lemma11.1 (1), there an be at most ⌈log(n)⌉ + 1 omponents, as the �rst hasrank = log(n), the seond rank = log(n − 1) and so on.
�11.1 Spae usageThe spae usage of a blind trie overing the trie T is dominated by the spaeusage of the assoiated overing of T by gira�e trees. Therefore, it is su�ientto look at the spae usage of this overing of gira�e trees.Lemma 11.2 The algorithm in Figure 6 onstruts a overing of T withgira�e trees of total size O(N) where N is the number of nodes in TProof Let T i:j and T j+1:k be two onseutive gira�e trees onstruted usingthe algorithm in Figure 6. Observe that the only nodes from T i:j whih anappear in any sueeding gira�e tree onstruted after T i:j are those on thepath to leaf lj+1, i.e. the rightmost ones.For the onstrution of T i:j two sets, Ai:j and Bi:j will be harged. Ai:jis the set of nodes in T i:j whih is not on the path to lj+1. Bi:j is the set46



of nodes on the path to lj+1 but not on the path to li. Figure 32 shows twoases of these sets25.
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A nodes
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Giraffe nodes

A nodes

B nodes(a) (b)Figure 32: Two ases showing the sets Ai:j and Bi:j.As T i:j and T j+1:k are two onseutive gira�e trees, this means that T i:j+1annot be a gira�e tree, i.e. its nek is too short. Removing all the nodesin Ai:j and Bi:j from T i:j+1 leaves only the setion of the nek shared by T i:jand T i:j+1. This implies26
|Ai:j| + |Bi:j| >

|T i:j+1|

2and
|T i:j| < |T i:j+1| < 2

(

|Ai:j| + |Bi:j|
)A node is only ontained in Ai:j exatly one, whih is in the last gira�etree using it. Similar a node is ontained at most one in Bi:j. This is whenit is used in the tree onstruted prior to the tree, where it is ontained in theleftmost path for the �rst time. Notie, for the last tree to be onstruted,

T k:n, no leaf ln+1 exists, therefore, Ak:n = T k:n. From this follows
∑

T i:j

|T i:j| <
∑

T i:j

2
(

|Ai:j| + |Bi:j|
)

≤ 4N

�In order to analyse the spae usage of a subtree of the van Emde Boaslayout, the height of the weight balaned tree is needed, as this is used in the25Both taken from [Brodal and Fagerberg, 2006℄.26Beause of the short nek. 47



omponent tree. The algorithm used to onstrut the weight balaned treeis analysed in the following lemma.Lemma 11.3 Let x1 ≤ x2 ≤ . . . ≤ xn be a list of n keys in sorted order,and let eah key xi have an assoiated weight wi ∈ R+. Let W =
∑n

i=1 wi.The algorithm in �gure 11 onstruts a binary searh tree where eah key xiis ontained in a leaf of depth at most 2 + 2⌈log(W/wi)⌉.Proof Let the rank of a node be the rank of the tree rooted at the node.Denote an edge e�ient if the rank of its upper node is larger than the rankof its lower node. Let an ine�ient edge be overed if the edge immediatelyafter is e�ient. To see there are k e�ient edges in a root to leaf path eahlinking in the algorithm must be examined.Consider the linking of trees on the stak S inluding st (Lowest tree in Sfor whih rank(st) ≤ rank(T ′)). As all trees in S have di�erent rank, and theranks are dereasing from bottom to top, eah linking of the two top treeswill ontain at least one e�ient edge, Figure 33. This way of linking insuresthat all ine�ient edges are overed (Exept possibly edges to the root andinident to leaves).
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Efficient edge
Edge(a) (b) () (d)Figure 33: Linking trees from the stak results in all ine�ient edges will beovered.After the linking up until st, three ases exists:rank(T ′) < rank(S.top) As T ′ is just pushed onto the stak S, no linkinginvolving T ′ happens.rank(T ′) = rank(S.top) The �rst linking of T ′ and S.top will result in twoe�ient edges, as the new tree will have rank(T ′) + 1, Figure 34 (a).rank(T ′) > rank(S.top) The linking of S.top and T ′ results in one e�ientedge, Figure 34 (b).Sine there are k e�ient edges in a root-to-leaf path, there an be atmost 2k + 2 edges inluding edges to the root and inident to leaves. Goingfrom the root to a leaf ontaining key xi, it follows that48
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T’(a) (b)Figure 34: Linking S.top with T ′ results in at least one e�ient edge.
⌈log(wi)⌉ + k ≤ ⌈log(W )⌉ ⇒

log(wi) + k < 1 + log(W ) ⇒

k < 1 + log

(

W

wi

)

⇒

k ≤

⌈

log

(

W

wi

)⌉as k is an integer.
�Now is it possibly to analyse the height of the omponent tree T ′. Thisis done in theorem 11.2.Theorem 11.2 The height of T ′ is O(log(n)) where n is the number of leavesin T .Proof A root to leaf path in T orresponds to a root to leaf path in T ′. Thenumber of omponents traversed in a root to leaf path is O(log(n)), theorem11.1. Eah of these omponents are replaed by a weight balaned tree in

T ′. In a root to leaf path in T ′ the number of nodes visited in the weightbalaned tree for omponent i is 2 + 2 log(wi+1/wi), lemma 11.3. Therefore,the total number of nodes visited is
O





log(n)
∑

i=0

2 + 2

⌈

log

(

wi+1

wi

)⌉



 = O



2 log(n) + 2

log(n)
∑

i=0

(

1 + log

(

wi+1

wi

))





= O



4 log(n) +

log(n)
∑

i=0

log

(

wi+1

wi

)





= O

(

4 log(n) + log

(

wlog(n)

w0

))

= O (log(n))49



using the telesope property (log(x/y) + log(y/z) = log(x/z)).
�As the height of the omponent tree is bounded, only the spae requiredfor eah layer is missing. The spae usage for layer i is found in lemma 11.4.Lemma 11.4 Storing Li

v uses O(|Li
v|) spae, whih is O(22i+1

).Proof From lemma 11.2 the total spae required for Li
v is O(N). By Lemma11.1 (4) this is dominated by O((22i

−22i−1

)2ε2i

). Sine ε ≤ 1 this is O(22i+1

)

�It is now �nally possibly to analyse the spae usage of a subtree X of T ′.Theorem 11.3 A subtree X of T ′ of height 2i in the van Emde Boas layoutof T ′ requires spae ((22i

)3).Proof As T ′ is a binary tree, so is X. Sine the height of X is 2i, it ontainsat most 22i leaves, Figure 35.
X

T’

2
i

2
i2Figure 35: The subtree X inside the binary tree T ′.Therefore, X ontains O(22i

) omponent nodes, eah having their layer
0, 1, . . . , i = log(2i) inside X. The rest of the layers are plaed outside X.As eah layer uses O(22i+1

) spae, lemma 11.4, the spae usage is O(22i

·
∑i

j=0 22j+1

). In the sum, layer i dominates the previous layers, implying thespae usage is 50



O

(

22i

·

i
∑

j=0

22j+1

)

= O
(

22i

· 22i+1
)

= O
(

22i

· 2(2i)2
)

= O

(

22i

·
(

22i
)2
)

= O

(

(

22i
)3
)

�11.2 Time usageTraversing the ahe oblivious string ditionary is a matter of traversing blindtries and gira�e trees. The following theorem bounds the I/Os of traversinga blind trie, ompared to the previous traversed gira�e tree.Theorem 11.4 The number of I/Os that may be done in traversing thepattern while searhing in the blind trie for the given ith layer is at most aonstant fator greater than the number of I/Os done in traversing the gira�etrees for the previous layerProof An ith layer ontains at most 2ε2i+1 leaves, lemma 11.1 (3), searhingthe assoiated blind trie takes at most O(2ε2i+1) I/Os. The root-to-leaf pathof the gira�e tree from the previous layer ontains at most O(22i−1

) nodes,thus traversing the gira�e from the previous layer takes at most O(22i−1

/B)I/Os.
�Sine traversing a blind trie is only a onstant fator greater than travers-ing the previous gira�e tree, it is interesting to bound the number of I/Osused traversing a gira�e tree.Lemma 11.5 Let T be a gira�e tree with N nodes stored in BFS layout.Traversing a path of length p starting at the root of T requires O(p/B) I/Os.Proof There exists two ases. If p < N/2 then p is ontained in the topmostnodes of the gira�e, whih all are laid out onseutively left to right. There-fore, aessing the path requires O(p/B) I/Os. Otherwise the path might go51



from the root to a leaf. As the nodes are laid out in BFS that is they arelaid left to right in memory, following the path is bounded by sanning thearray ontaining all the nodes O(N/B) = O(p/B) I/Os.
�The previous lemma leads to the following theorem.Theorem 11.5 Given a tree T with N nodes, there exists a ahe obliviousovering of T by subtrees (gira�e trees) where the total spae requirement ofthe overing is O(N), eah root-to-leaf path is present in one subtree andthe pre�x of length p of a predetermined root-to-leaf path an be traversed in

O(p/B) I/Os.Proof This follows diretly from lemma 11.5 and 11.2. As eah leaf is hargedas an Ai:j exatly one, eah root-to-leaf path is present in one subtree.
�Finally it is possible to bound the number of I/Os used, when searhingin a ahe oblivious string ditionary.Theorem 11.6 Pre�x queries for a query string P in a string ditionarystoring n strings use O(logB(n) + |P |/B) I/Os.Proof The number of I/Os used in a searh in the ahe oblivious stringditionary are aused by either aessing the searh string P or by aessingthe string ditionary struture. First the number of I/Os used when aessing

P is analysed and seond aessing the ahe oblivious string ditionarystruture.Sanning P from left to right takes ⌈|P |/B⌉ I/Os. Unfortunately, theblind trie uses random I/Os when looking ahead in P , so extra are needto be taken to bound the number of random I/Os. Assume without lossof generality, that the next Θ(M) unmathed haraters of P are kept inmemory. Only look-ahead of Ω(M) haraters an now ause a random I/O.Consider the ase where an aess to Li
v auses a look-ahead of Ω(M)during the blind trie searh for Li

v, i.e. Ω(M) = 22i. As Li
v has size O(2ε2i

),lemma 11.1 (3), and thereby O(2ε2i

) possibly random I/Os, then in orderfor the math haraters, Ω(22i−1

), in the previous layer Li−1
v to pay for therandom I/Os then

B · 2ε2i

= O(22i−1

) (4)is needed. 52



Assuming a tall ahe assumption B2+δ ≤ M for some onstant δ > 0,(4) an be shown. Using the assumption
B ≤ M

1

2+δ ≤
(

22i
) 1

2+δsine M ≤ 22i. Using this, it follows that
(

22i
)

1

2+δ

· 2ε2i

≤ 22i−1

⇒

22i· 1

2+δ
+ε2i

≤ 22i−1

⇒

2i ·
1

2 + δ
+ ε2i ≤ 2i−1 ⇒

2i

(

1

2 + δ
+ ε

)

≤ 2i ·
1

2
⇒

1

2 + δ
+ ε ≤

1

2
⇒

ε ≤
1

2
+

1

2 + δshowing, that for a onstant δ > 0, with the orresponding ε, then themathed haraters in P in Li−1
v an pay for the random I/Os aused bylook-ahead in P for layer Li

v.For ounting the I/Os aused by aessing T ′, a searh path in T ′ isonsidered. From theorem 11.3 it follows that a subtree of height 2t in the vanEmde Boas layout, ontaining the t �rst Li
v, uses spae O((22t

)3). Assumingthat the urrently traversed height 2t subtree is always kept in memory, then
(

22t
)3

≤ B ⇒ 2t ≤
1

3
log(B)If the searh path only searhes the t �rst layers in eah omponent, then aroot-to-leaf searh in T ′ will ause

log(n)
1
3
log(B)

= 3 logB(n) = O(logB(N))I/Os.To aount for the rest of the layers Lt+1
v , Li+2

v , . . . , Ls
v, a little more isneeded. Assume without loss of generality that eah Li

v, (t < i < s), needs tobe read into memory. Using lemma 11.1 (3) and theorem 11.5 eah of theseneeds 53



O

(

2ε2i

B
+

pi

B
+ 1

)I/Os, where pi is the length of the path mathed in Li
v. For

ε ≤
1

2
⇒ 2ε2i

≤ 22i−1the sanning of the blind trie for Li
v is dominated by the mathed part of

Li−1
v

O

(

2ε2i

B

)

= O
(pi−1

B

)making the total number of I/Os
O

(

s
∑

i=t+1

pi

B
+ 1

)It now remains to harge the +1 in the sum, as pi/B are the ost ofsanning pi. Sine (22t+1

)3 = 22t+3

= Ω(B) and pi = Θ(22i

) this implies thatthe two layers, t+1 and t+2, might not �ll a blok B fully, i.e. pi/B = o(1).The same applies for layer s, as it might not be searhed fully. For the rest ofthe layers t+3, t+4, . . . , s−1, the +1 an be harged pi/B as pi/B = Ω(B),i.e. the searh in the gira�e for Li+1
v pays for the searh in the blind trie in

Li
v.From lemma 11.1 (5) it follows that the rank dereases by at least ε2kwhen hanging omponent at Lk

v , t < k. As (22t+1

)3 = Ω(B) this impliesthat ε2k = Ω(log(B)). Sine hanging omponent only an happen at most
O(log(N)) times, this means, that the harging of O(1) at most happens
O(log(N)/ log(B)) = O(logB(N)) times.

�
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Part IIIImplementation





12 IntrodutionFor this thesis the programming language C++ have been used27. The pri-mary reason is that the language allows high level ode while at the sametime makes it possibly to do low level ode with a minimum of overhead.C++ is designed to have an optimal run-time e�ieny, so its standard li-brary, STL28, uses tehniques suh as red-blak searh trees to ahieve bestperformane possibly.This part is divided into three setions. The �rst desribes the imple-mentation of the trie struture used to experiment against the ahe oblivi-ous string ditionary struture. The seond setion desribes how the aheoblivious string ditionary layout is ahieved and how it is stored into a �le.The last setion desribes the implementation of the ahe oblivious stringditionary searh algorithm.Only the ahe oblivious string ditionary searh algorithm from [Brodaland Fagerberg, 2006℄ has been implemented. Therefore, the onstrutionof the ahe oblivious string ditionary layout is done in a simple and non-omplex manner. Even though the alphabet is assumed to be in�nitely largein [Brodal and Fagerberg, 2006℄, it is restrited in the implementation to beof 255 haraters, just enough to be stored in a har. This is not exploitedin any way, by for instane storing hildren in arrays of size 255.13 TrieThe implementation of the trie is simple. Every alloation of a new trie nodeis done by using the keyword new, allowing C++ to put the struture anywhereit pleases (in memory). No part of the trie struture have been optimised inany way, in order to keep the trie as simple as possible. The trie node lassis shown in �gure 36.lass TrieNode{ChildTree *hildren;har label;bool isend; // is-end -> Is an endnode for a string}Figure 36: The trie node lass showing the variables ontained in a trie node.27More preise g++ (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1). The program havebeen ompiled with the parameters: -pedanti -Wall -O3 -g28Standard Template Library. 57



13.1 Child treeEah node has a pointer to a ChildTree struture ontaining the hildrenof the node. The hild tree struture an be build in di�erent ways. Forinstane by using a red-blak searh tree or a vetor29. The pointer makesit possible to hange the hild tree. Even though the alphabet is restritedin size, a searh tree is used for storing the hildren, maintaining the desiredomplexity of log(n). In this thesis the std::set from STL is used, sineit is a red-blak searh tree. The hild tree is also alloated using the newkeyword.lass ChildTree{void insert(TrieNode *n);TrieNode *searh(har );int size();}Figure 37: The hild tree struture for the trie struture showing the funtions.13.2 Insertion and searhingInsertion is done top down, heking the hild tree at eah node. Therefore,the omplexity for both insertion and searhing in the trie struture is
O(|si| · log(n))where |si| is the length of the inserted string or the searh string, n is thenumber of hildren. Therefore, searhing for or inserting k strings is

O(|N | · log(n)), N =

k
∑

i=1

|si|

29Also know as an array. 58



14 Cahe oblivious layoutThis setion desribes the implementation of the onstrution of the aheoblivious string ditionary struture. The onstrution algorithm works insteps, eah adding new struture to the urrent, for �nally being able to doa layout.14.1 TrieThe trie is the �rst struture to be onstruted. It resemble the trie struturefrom Setion 13, but has a lot of funtionality added, suh as pointers to theblind tries and gira�e trees, omponent id, layer number and number of leavesbeneath it, Figure 38.lass TrieNode{vetor<TrieNode *> internalhildren, externalhildren;BridgeNode *externalsearhtree;GiraffeNode *giraffenode;BlindTrieNode *blindtrienode;har label;int omponentid, layer, rank, nv, depth, nv;bool isend;}Figure 38: The struture for the trie nodes in the ahe oblivious string ditionarystruture.After onstruting the trie, all nodes are updated onerning their depth,number of leaves and rank. It is done by traversing the trie top-down ina reursive manner. Afterwards the omponents an be identi�ed. Thisis done top-down identifying one omponent at a time using the andidaterequirement. If a node fails to be a andidate in the urrent omponent, itis push onto a stak of failed andidates. These are to beome a roots innew omponents later. When all nodes for the urrent omponent have beenfound, the next node on the stak is seleted and the identi�ation of a newomponent an begin.When all omponents have been identi�ed, it is time to divide the hildrenat eah node into internal and external hildren whih is done top-down.When onstruting the trie, the hildren of a node are kept in a vetor. Whenthe hildren are divided they are plaes in two vetors. One for internalhildren and one for external. These two vetors are sorted. All hildrenontained in another omponent than their parent, are plaed in the externalhildren vetor. 59



After dividing all the hildren into two vetors, a weight balaned searhtree is onstruted using the external hildren. This searh tree is later usedwhen reating the omponent tree, and a pointer to the searh tree are keptat the node. Two di�erent searh trees have been implemented. One usingthe algorithm from [Brodal and Fagerberg, 2006℄ and another using the leaforiented optimal binary searh tree algorithm.At the same time as the hildren are divided a blind trie node is on-struted at eah omponent root. The reason is that when onstruting thegira�e trees, the leaves must be able to refer to the next blind trie to betraversed in a searh path. Having reated the root of eah blind trie, theleaves an do this. The blind tries are later fully reated. The blind trieroots are also used in the omponent tree onstrution.Finally the trie is traversed one again, updating the nv variable. Thisvariable indiates how many leaves a node has inside the urrent layer. Thevariable is used when reating the gira�e trees.14.2 Component treeOne all omponents have been identi�ed, and the weight balaned searhtrees reated, the omponent tree an be onstruted. Again it is a top-downtraversal of the trie struture. For eah omponent the root is identi�edtogether with the bridge nodes for the omponent. A weight balaned treeis reated using the bridge nodes with the root as the top node. To do thiseither the Hu�man algorithm or weight balaned tree algorithm from [Brodaland Fagerberg, 2006℄ is used.For onstruting the omponent tree, three lasses are implemented. InFigure 39 only the relevant details are shown for these three lasses. Thetwo sublasses VEBBridgeNode and VEBComponentNode30 inherits from theVEBNode lass.A VEBComponentNode is used for eah node in the weight balaned treeinside the omponent. Only the node at the top refers to the blind trie atthe omponent root. The rest are dummy nodes disarded when doing thelayout. The VEBBridgeNode lass are used for the weight balaned searhtree, onneting the omponents. In this way a binary omponent tree isonstruted.30The VEB refers to van Emde Boas.
60



lass VEBNode{VEBNode *left, *right;}lass VEBComponentNode : publi VEBNode{BlindTrieNode *blindtrienode;}lass VEBBridgeNode : publi VEBNode{BridgeNode *bridgenode;} Figure 39: The nodes used to reate the omponent tree.14.3 Gira�e treesThe gira�e trees are onstruted traversing the trie top-down. At eah om-ponent, the gira�e trees are reated in a depth �rst manner, swithing be-tween layers as the omponent are traversed. The gira�e trees are reatedusing the greedy algorithm. Figure 40 shows the gira�e node lass. As allinformation are kept inside eah trie nodes, assigning the variables inside thegira�e node is easy.lass GiraffeNode{vetor<GiraffeNode *> hildren;BridgeNode *externalsearhtree;BlindTrieNode *omponentroot;har label;bool isend;} Figure 40: The gira�e node lass.Eah trie node is overed by at least one gira�e tree. The gira�e treepointer inside a trie node is referring to one of these. The pointer is set whenthe gira�e trees are onstruted. Sine the gira�e tree pointer is pointing ata gira�e tree when the blind tries are onstruted, it is possible for the blindtrie nodes to refer to the right gira�e tree.14.4 Blind trieThe last struture to add is the blind trie. Again it is a top-down traversal,doing a depth �rst searh in one omponent at a time. As before the trie61



nodes keeps all needed information for the blind trie nodes. Figure 41 showsthe blind trie node lass.lass BlindTrieNode{vetor<BlindTrieNode *> hildren;GiraffeNode *giraffetree;har label;int labelskips;} Figure 41: The blind trie node lass.14.5 Cahe oblivious layoutThe layout of the ahe oblivious string ditionary struture is done in twopasses. The �rst is a pseudo layout used to alulate the address of eah node,when laid out in memory. Assuming the �rst node is laid out at address 0,the rest are assigned an address in the order they are traversed, following thevan Emde Boas layout algorithm on the omponent tree.The seond pass writes the layout to a �le on the disk. The output iskept in ASCII format making it possible for a human to read the �nal layout.The �rst line in the layout �le is the number of bytes used. Eah node iswritten on one line starting with an node id followed by the variables neededby the node. When writing a pointer to the �le, the address of the node itpoints to is written. This makes it possible for the struture to be rereatedby the searh algorithm when loaded from a �le. It is also the reason for the�rst pass.To keep trak of when a layout of the di�erent layers should be done, thestd::queue is used. In eah reursive all in the van Emde Boas algorithm,a queue is given as argument. When returning from the reursive all, thisqueue ontains the next layers to be laid out.Using Figure 27 as example, when a reursive all of depth 2 is alled,it is given a queue Q as argument. In the reursive all of depth 2 a newqueue Q′ is reated and given as argument to the reursive alls of depth 1.When all reursive alls of depth 1 within the reursive all of depth 2 havereturned, Q′ ontains all layer 2 of eah reursive all of depth 1. Layer 0and 1 have been laid out in the reursive alls of depth 0 and 1. The layersin Q′ are now laid out, and all layer 3 are added to Q.When doing a layout of a layer, a layout of the blind tries ontained insidethe layer and a layout of the assoiated gira�e trees is done. Both the blindtries and gira�e trees are laid out in BFS order. This means that the hildren62



of a node is plaed next to eah other, and a searh through these are just amatter of sanning from one end to the other14.6 Time and spae usageThe trie struture are traversed eight times to reate the ahe obliviousstring ditionary struture, and the ahe oblivious string ditionary stru-ture twie during the layout phase. The nodes of the trie struture are sortedtwie. The �rst time is when reating the weight balaned searh trees on-neting the omponents and the seond time when reating the weight bal-aned trees inside eah omponent.If the input is n strings and N =
∑

n |si|, then the time used for reatingthe ahe oblivious string ditionary struture and doing a layout of it is
O(sort(N)) using the weight balaned searh tree algorithm from [Brodaland Fagerberg, 2006℄ to onnet the omponents. If instead the leaf orientedoptimal binary searh tree algorithm is used, then onstrition time is O(N3).The spae usage is O(N) but with a very large onstant in front, as eahnode is represented in the trie, possibly in a blind trie, one or more gira�etrees and possibly in the omponent tree.
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15 Cahe oblivious searhThe searh algorithm is implemented as desribed in [Brodal and Fagerberg,2006℄. Unlike the onstrution of the ahe oblivious layout, the searh isahe oblivious.15.1 Loading the CO layoutThe ahe oblivious layout is loaded from a layout �le. The �rst line ontainsa number indiating how many bytes is used in the layout. An equivalentamount of bytes are alloated in memory before proeeding to load the nodes.The nodes are loaded one by one and plaed in the alloated memory inthe order they are read. When a node is read, it is �rst identi�ed by its id.Then a struture mathing the node id is reated, and its variables are readfrom the �le. As the di�erent strutures are laid out in BFS order, they areread and plaed in memory in BFS order. Figure 42 show the strutures usedin the ahe oblivious layout.strut st_blindtrienode { // ID 1har label;int labelskips;st_giraffenode *giraffe;int no_of_hildren;st_blindtrienode *hildren;}strut st_giraffenode { // ID 2har label;bool stringend;st_bridgenode *bridge;st_blindtrienode *blindtrie;int no_of_hildren;st_giraffenode *hildren;}strut st_bridgenode { // ID 3har label;st_bridgenode *left;st_bridgenode *right;st_blindtrienode *blindtrie;} Figure 42: The strutures laid out in memory.The pointers in the strutures are handled di�erent than the other vari-64



ables. Instead of reading a pointer from the �le an address is read. Theaddress indiates where in memory the struture of the pointer is loated, ifthe alloated memory started at address 0. This means that the start ad-dress of the alloated memory is added to the address read in order for thepointer to point at the right struture. The struture may or may not havebeen reated yet making it vital that all strutures/nodes are read before asearh is started.15.2 Searhing in the CO layoutSearhing in the struture is done as explained in Setion 10. When all nodeshave been read, all pointers point to the right struture, and searhing is amatter of heking labels, sanning in hildren and following pointers.
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Part IVExperiments





16 Hardware and softwareThe experiments are run on three di�erent omputers, the Internal om-puter, the Swap omputer and the Cahe omputer. The omputer namerefers to the experiment type that is run on the omputer. The hardwarespei�ation is listed in �gure 1.Name DesriptionInternal Intel Xeon 3,0 GHz proessor16 KB level 1 ahe2 MB level 2 ahe800 MHz FSB2 modules of 512 MB Single Rank DDR2 RAM1 x 80 GB SATA 7200rpm harddisk.The omputer is running Fedora Core 5 SMP - version2.6.18-1.2200.Swap Intel Xeon 3,0 GHz proessor16 KB level 1 ahe2 MB level 2 ahe800 MHz FSB2 modules of 512 MB Single Rank DDR2 RAM1 x 80 GB SATA 7200rpm harddisk.The omputer is running Fedora Core 5 SMP - version2.6.18-1.2200, booted with 80 MB RAM.Cahe Intel Pentium 4 proessor 3,4 GHz16 KB level 1 ahe1 MB level 2 ahe800MHz FSB2 modules of 512 MB DDR2 400 NECC Dual ChannelRAM3 x 400 GB SATA 7200 rpm harddisk.The omputer is running Fedora Core 3 SMP - version2.6.12-1.1381 booted with PAPI inluded in the kernel.Table 1: Hardware spei�ations for eah omputer used in the experiments. Theomputer name refers to the kind of experiments that are tested on the omputer.On the Internal omputer the experiments are run in internal memory only. TheSwap omputer is used for experiments where swapping to external memory isrequired and the Cahe omputer are used to ount the number of ahe misses.A few software programs have been used in onnetion with the experi-ments. Some of these are used as a part of the experiments, and some for69



analysing the result of the experiments. These programs are shortly desribedin the following subsetions.16.1 PAPIThe PAPI [Dongarra et al., 2003℄ software makes it possible to ount thenumber of ahe misses in ahe level 1 and 2 on the CPU. A modi�ed linuxkernel inluding the PAPI library is needed to enable the use of the PAPIlibrary in C++.The level 1 ahe is usually divided into two parts. One is holding theprogram instrutions and the other the data to be proessed. This makesit possible to ount the data ahe misses and the instrution ahe missesseparately in the level 1 ahe. The level 2 ahe is not divided and therefore,it is not possible to tell the di�erent kinds of ahe misses from eah other.Only the number of total ahe misses are available.16.2 PerlIn order to perform the experiments in suession and to minimise user in-teration, the experiments are exeuted by programs written in Perl [Wall,2006℄. As this is the ase for all experiments the small amount of memoryused by the Perl interpreter, is similar for all experiments.16.3 GnuplotThe graphs used to analyse the data are all made in Gnuplot [Williams andKelley, 2004℄, from the raw data output of the experiments.
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17 Data setsTo get useful information from the experiments, a large amount of data havebeen generated. The data are generated to have spei� properties that areinteresting in the ontext of the experiments. The ahe oblivious stringditionary struture have also been tested with real life data, as performanemeasurement on syntheti data not neessarily behave the same way. Everysyntheti experiment has been generated in 5 variations.All data for the experiments are denoted by a letter and a number. Thisis done to be able to distinguish them from eah other. When referring todata by a single letter, the whole data set with this letter is referred to. Forinstane the data set A inludes the data elements A1, A2, A3, A4 and A5.The data sets A to D are all syntheti generated, while E and F aremade from real life data. The syntheti data are generated to give ertainproperties to the trie struture that are formed when the data is inserted.These properties are interesting when the omponents, blind tries and gira�etrees are build.For eah individual set of strings generated for a data set, a similar set isgenerated. In this similar set a harater in eah string is replaed by anotherharater, whih is not in the original alphabet. This is done to be able torun experiments, where the strings do not math, but still ompletes part ofa searh. The harater to be replaed is hosen randomly.17.1 Data set A: Long strings with few splitsThe strings in this set are all of the same length. They are generated sothat the paths in the trie strutures onsists of many unary nodes. Eahpath splits ten times. A path splits into at least two and at most threepaths. Figure 43 (a) shows an example o� suh a trie and Table 2 shows thevariations of the number of strings and their length.Sine the paths in the trie struture onsists of many unary nodes, therank of the nodes does not inrease very often. This will result in fairly largeomponents. The long paths without splits will result in small blind tries,but long gira�e trees.The data is generated bottom up using the parameters in Table 2. Theonstrution algorithm starts by reating the last 9% of all strings. These9% are all di�erent from eah other. Then for eah three strings the pathsare merged. This is done by letting the three strings share the haraters inthe next 9% of their length.As the �nal result should be a tree with ten splits on a root to leaf path,mergin three strings at a time may be too muh. Therefore, when the number71



of individual strings reahes the amount needed to merge only two strings ata time this will happen.
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(a) (b) () (d)Figure 43: Example strutures of the data sets A, B, C and D. An example ofdata set A is illustrated in (a), an example of data set B in (b), an example ofdata set C in () and an example of data set D in (d).Name Numberof strings String lengthA1 5000 4400A2 7500 3200A3 10000 2275A4 12500 1825A5 15000 1275Table 2: Properties of data set A17.2 Data set B: Short string with many splitsThis data set is similar to A. The only di�erene is that the paths in thetrie struture is very short. Again the strings are all of the same length, butwith few unary nodes. The variations of the data is shown in Table 3 and inFigure 43 (b) an example of the trie struture is given.The resulting trie will have many omponents as the rank often shifts.The resulting blind tries will almost be identially to the original trie.The data is generated top down, by adding pre�xes to the already existingstrings. Every time three di�ent pre�xes is added to an already existing72



Name Number of strings Number of nodesbefore splitB1 1250000 0B2 750000 1B3 500000 2B4 425000 3B5 375000 4Table 3: Properties of data set BName Number ofstrings String length Max strings withsame pre�xC1 15000 1500 5000C2 15000 1500 7500C3 15000 1500 10000C4 15000 1500 12500C5 15000 1500 15000Table 4: Properties of data set Cstring. This is done for all existing strings before starting to add pre�xes tothe newly generated strings. The length of the added pre�x and the numberof generated strings are varied.When the required number of strings is generated, the remaining strings(if any) strings are padded so that the number of strings remains the sameand the length is the same for all strings.17.3 Data set C: Long strings with many splits at theendStrings in this set have more than 70 % of their pre�x in ommon. The triestruture will onsist of one or more long path of unary nodes for the �rst70%. The last 30% is the bottom, where eah node an have several hildren.Figure 43 () show an example of this. All the strings in this struture hasthe same length. The variations of the data is shown in Table 4.The data are generated to test behaviour on very large omponents. Theentire trie is generated with a long path of unary nodes before any split.Therefore, the rank does not hange in the topmost strata. This results inone big omponent at the top and several small in the bottom. The gira�etrees for this data set should be very large beause of the long unary path.73



Name Number of strings Number of initialstringsD1 130000 20D2 130000 30D3 130000 40D4 130000 50D5 130000 60Table 5: Properties of data set DWhen generating the strings in this set, a single string is reated.The generation of strings is started by generating a single string. Theremaining strings are generated with a random perentage between 70% and95% of the �rst string as pre�x. All strings have the same length as the �rst.17.4 Data set D: Long strings with many splitsThis set onsists of two subsets, a parent set and a hildren set. The parentset onsists of long strings sharing only some of their pre�x. In Figure 43 (d)this is the long straight highlighted lines.The elements in the hild set are build from elements from the parentset. Eah element in the hild set shares all but one harater of one of theelements in the parent set. The hild elements are those ending in one nodebranhing from the highlighted lines in Figure 43 (d). The variations of thedata is shown in Table 5.The data results in omponents with inreasing size, as the number ofhildren dereases by one every time the depth inreases by one. The blindtries is almost similar to the original trie, as the original trie splits at everynode.The data is generated by �rst generating a long string. This string issplit up in a number of initial strings depending on the parameter. Then foreah initial string, a string is generated that has all but the last haraterof the initial string. The new string is then appended two new haraters.This happens for all initial strings, then for the newly generated strings andso forth until the required amount of strings is reahed.17.5 Data set E: ShakespeareThe strings are made up of all the individual words from the olletion ofShakespeare omedies and tragedies. The trie struture will onsist of rel-74



Property ValueNumber of strings 67505Average string length 7.5Average fan out (over all nodes) 1.55Average fan out (where nodes split) 3.63Table 6: Properties of data set Eatively short strings. Some nodes will have a big fan out while others onlyhave a few. The properties are shown in Table 6.17.6 Data set F: DNA stringsThe data set onsists of substrings of length 100 from a representation of ahuman hromosome. This data is di�erent from the E experiment, in thathromosome data only onsist of a small number of di�erent letters, and inthat repetitions are ommon. The properties are shown in Table 7.Property ValueNumber of strings 51878Average string length 100Average fan out (over all nodes) 1.01Average fan out (where nodes split) 2.55Table 7: Properties of data set F
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18 Experiment proedureAll the experiments have been exeuted by Perl sripts. As experiments onthe naive trie struture and the ahe oblivious string ditionary strutureare exeutes by the sripts, the small amount of memory usage aused bythe sripts are the same.Eah searh is performed two times for eah input to minimise �utuationsin the running time of the experiments. The two searhes are not performedin suession to be sure none of the used data still resides in the ahe afterthe �rst experiment.The experiments inludes exeution on the Internal , the Swap and theCahe omputer. All data are kept in internal memory when experimentingon the Internal omputer. When experimenting on the Swap omputer,some of the data are kept in swap memory. The experiments for data sets Dand E are not performed on the Swap omputer, as the data �t into internalmemory. When experimenting on the Cahe omputer, the number of ahemisses are ounted using PAPI. All data are kept in main memory whenusing the Cahe omputer.18.1 Trie strutureAn experiment on the trie struture starts by loading all strings withouterrors31into memory. Then the strings are inserted into the trie struture.The trie is searhed for both the set of strings without errors and the set ofstring with errors. This is done independent of eah other. The onstrutionof the trie struture and the searhing for eah set is timed.18.2 Cahe oblivious string ditionaryAn experiment on the ahe oblivious string ditionary struture is startedby �rst onstruting a layout of the orresponding trie struture32. This isdone by one program. The trie struture is generated as desribed in Setion18.1. Then the ahe oblivious string ditionary struture is reated and laidout in a �le.Another program reads this �le together with the set of strings to beexamined. When both the layout and all the strings are ontained in memory,the searh is started. Again both the set of string without errors and the setwith errors are tested.31The set of string, where no harater has been replaed, Setion 17.32If suh a layout already exists, this step is skipped.76



The onstrution of the layout �le and the assoiated loading of the layoutis timed. So are the searhes in the loaded struture.The layout �les are onstruted on di�erent omputers. This is done asthe ahe oblivious string ditionary struture takes up a lot of memory33,and beause the total size of all layout �les exeeds the maximum availablespae on one omputer. The sript �les take this in aount when runningthe experiments.18.3 Cahe misses hangesWhen experimenting on the Cahe omputer, a modi�ed version of the pro-gram searhing in the ahe oblivious string ditionary is used. It has beenmodi�ed to use the PAPI library so it an ount the ahe misses in level 1ahe level 2 ahe. Apart from the ounting funtions the program is thesame.

33See Setion 14.6. 77



19 Trie experimentsThe trie experiments onsist of testing the naive trie struture on all data setson all three omputers34. This is done to analyse the behaviour in internalmemory, swap and to look at the generated ahe misses.
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searh in a vetor will result in fewer ahe misses than the red-bak searhtree. This theory is baked up by the graph in Figure 45.
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20 Weight balaned treesIn [Brodal and Fagerberg, 2006℄ a weight balaned searh tree is desribed.The onstrution algorithm takes a list of sorted key with weights as inputand reates a weight balaned tree35. A leaf in this tree with key xi andweight wi is at most at depth 2 + 2⌈log(W/wi)⌉, where W is the sum of theweights of the keys. This tree an be onstruted ahe oblivious in O(n)time using O(n/B) I/Os. Sine the onstrution algorithm in this thesis isnot ahe oblivious, other trees an be used instead.20.1 Other weight balaned treesThe artile tree is used in two di�erent onstrutions in the ahe obliviousstring ditionary. It is used as a weight balaned tree inside omponents andas a weight balaned searh tree onneting the omponents. To replae theweight balaned tree the Hu�man tree is hosen and to replae the weightbalaned searh tree the leaf oriented optimal binary searh tree36 is hosen.
 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 1.055

 1.06

 1.065

 1  2  3  4  5  6  7  8  9  10

R
at

io

Experiment number

Synthetic data. 128 nodes with weight between [1;10]

Article/Huffman
Article/LOOBST

 1.04

 1.045

 1.05

 1.055

 1.06

 1.065

 1.07

 1  2  3  4  5  6  7  8  9  10

R
at

io

Experiment number

Synthetic data. 1024 nodes with weight between [1;49]

Article/Huffman
Article/LOOBST

(a) (b)Figure 47: The ratio between the Hu�man tree, the artile tree and the leaforiented optimal binary searh tree. In (a) 128 leaves are used eah with weightsbetween 1 and 9 uniformly distributed. In (b) 1024 leaves are used with weightsbetween 1 and 49 uniformly distributed. A total of 10 trees have been on-struted.Figure 47 shows the ratio between these searh trees and the artile tree.The ratio is found by dividing the total weight of the artile tree with thetotal weight37 of either the Hu�man tree or leaf oriented optimal binarysearh tree. In Figure 47 (a) a tree is onstruted using as input 128 nodes35Denoted as the artile tree.36LOOBST for short.37See Setion 5 for a de�nition of the total weight.81



with a weight ∈ [1; 9]. In (b) 1024 nodes are used all with a weight ∈ [1; 49].The weights are uniformly distributed. It is lear, that in both ases theHu�man tree and the leaf oriented optimal binary searh tree is superior tothe artile tree as all values is above 1.20.2 Hu�man tree vs. Artile treeAlthough the Hu�man tree is superior to the artile tree on uniformly dis-tributed data, this is not neessarily the ase with the experiment data, i.e.the data sets A to F. As the fan out is at most three in the data sets A toD, only the data sets E and F are interesting.
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(a) (b)Figure 48: The ratio of the total weights in the Hu�man tree and the artiletree when onstruting the weight balaned tree inside omponents in data setsE (a) and F (b).In Figure 48 the ratio is shown for the Hu�man tree and the artile tree forthe data sets E and F. The total weight for eah weight balaned tree in eahomponent is measured. It shows that only in a very few ases the Hu�mantree performs better. In most of the ases the weights are the same. Thedi�erene between using the Hu�man tree and the artile tree is negligible.20.3 Leaf oriented optimal binary searh tree vs. Arti-le treeAs with the Hu�man tree, the ratio between the artile tree and the leaforiented optimal binary searh tree for the data sets E and F is measured.Figure 49 shows the ratio ourrenes. The ratio is measured for eah bridgetree, i.e. the trees onneting the omponents.82



The results di�er slightly from the Hu�man results. In some ases theleaf oriented optimal binary searh tree is better than the artile tree. Theratio indiates though that the di�erene in not muh.
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.95  1  1.05  1.1  1.15  1.2  1.25  1.3  1.35

O
cc

ur
re

nc
e

Article tree/LOOBST ratio

Article/LOOBST

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.95  1  1.05  1.1  1.15  1.2  1.25  1.3  1.35  1.4

O
cc

ur
re

nc
e

Article tree/LOOBST ratio

Article/LOOBST

(a) (b)Figure 49: The ratio of the total weights in the leaf oriented optimal binary searhtree and the artile tree when onstruting the searh tree between omponentsfor data sets E (a) and F (b).20.4 Conrete exampleTo see if there are any gain in exeution time when using either the Hu�mantree or the leaf oriented optimal binary searh tree experiments on the datasets A to F have been run. The results38. for the Hu�man experiment isshown in Figure 50The olumns in Figure 50 (a) shows that the exeution time is almostidential. However, the results for the swap experiments does show a dif-ferene. The Hu�man tree is not always better, but for the majority of thetests it is.The same is done the leaf oriented optimal binary searh tree. The resultsare shown in Figure 51. The tendeny is the same, when using the Internalomputer but opposite when using the Swap omputer.
38The results from the data set D is omitted as the olumn would be to high to �t intothe diagram. 83
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21 ε experimentsWhen onstruting the ahe oblivious string ditionary from a data set, theomponents generated depend on whih strata the nodes from the original trieis plaed in, and the di�erene of rank between the nodes. The theory ditatesthat two nodes are in the same omponent as long as rank(a)−rank(b) < ε2i,where i is the strata to whih they belong.Aording to the theory, ε should be < 1/2 for a searh path P to betraversed in O(logB(n) + |P |/B) I/Os. This is not neessarily true when theinput is not worst ase. Therefore, the experiments in this setion is run forvalues of ε > 1/2.The experiments are run with the Hu�man tree inside the omponents,the artile tree onneting the omponents and gira�e trees where half of thenodes are anestors.21.1 Data set AThe results of the experiments on the data set A is shown in �gure 52. Thegraph shows that the exeution time is best for large values of ε. This doesnot orrespond well with the theory, as ε < 1
2
should be best. Table 8indiates that the exeution time depends heavily on the number of totalbridge nodes in the layout. The overhead from searhing in the bridge nodesis the ourse for the exeution times.
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The number of bridge nodes depends of how many omponents there arein the layout. Table 8 shows the di�erent number of omponents for the A1experiment. The number of omponent shifts muh for small values of ε.This is beause when ε is 0.25 or 0.75 the last part of eah string beomesa omponent. The data set A is onstruted so that the rank shifts at thesame plae for eah subtree.
ε Bridge node size Components0.25 142064 54270.5 4784 1860.75 136160 51951 0 1Table 8: Properties of the layout of A1 for varying ε.
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Figure 53: Level 1 data ahe misses for data set A for various values of ε.The graph in Figure 53 shows that the number of level 1 ahe missesinreases when ε inreases. The reason for the inrease is likely to be due tothe number of nodes inluded in a layer. If a path in the trie do not splitoften, the orresponding gira�e tree will ontain many nodes and few splits.As the number of nodes in the layers inreases, the length of the gira�e treeswill inrease.When the gira�e trees are short, they are able to �t into memory. Someof them may then be reused when searhing for the next string. The longgira�es annot be reused often as they typially only have a few hildren.86



Many of the long gira�e trees will be idential along the nek, but havedi�erent hildren. This means that many almost identially gira�e trees areloaded into memory.As the gira�e trees beomes very long, the exeution time is still quitegood even though the number of ahe misses is high. This an be seen bylooking at the exeution time for experiment A5 and the number of level 1ahe misses. The reason is that modern CPUs uses prefething, meaningthey do some read ahead. When a blok of data have been proessed, thenext blok have already been fethed. It might be that the fethed blok isnot the next to be proessed, but in most ases it is. Even though, fethingthe blok ounts as a ahe miss.21.2 Data set BThe experiments on data set B behaves somewhat similar to the experimentson data set A. For large ε the exeution time gets better. There are alsosome spikes in the behaviour of the of the graph for data B1.It an be seen in Figure 54 that the graphs behaves the same for ε uptil 1. This is beause the data are onstruted with a large number of pathsthat splits often. Eah node has 3 hildren so the di�erene in ranks will beeither 1 or 2 from node to node.
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Figure 54: Exeution time for the ahe oblivious string ditionary struture onthe data sets B for various values of ε.Beause of the rank di�erene between eah node, every node in B1 willreate a new omponent when ε ≤ 1. This has a drasti e�et on the exeu-87



tion time. Changing from one node to a hild node means going through ablind trie node, a gira�e tree node and a bridge of up to three nodes.When ε beomes 1.25 the nodes where the rank di�erene is only 1 willbeome one omponent. This means the total number of omponents willdrop. As all strings are searhed for, the total number of traversed bridgenodes will also drop making the exeution time smaller.Looking at the graph for B1 in Figure 54, there is a inrease for ε = 2.This is beause the number of one-node omponents39 inreases from when
ε was 1.25 (and 1.5). When the number of one-node omponents inreases,then the number of bridge node traversed in a searh path inreases. Figure55 shows this by a small example.

a

b

c’

E

E

a

b’

b’’b’

c’’c

b’

b

b b’’

b’

E

b’’

E

b

E

c

c

c’

c’ c’’

c

E

c’’

E

c’

one-node component tree

E

a

E

c

c

c’

c’ c’’

c

E

c’’

E

c’

b b’’b’

b

a

b’

a

b’’

one-layer component treeSearch path for "abc"

i Blind trie node with label

i Giraffe tree node with label

i Bridge node with label

Reference

Reference (Search path)

i Trie node with label

Figure 55: A searh path in a trie (left), in a one-node omponent tree (middle)and a one-layer omponent tree (right).The searh path in the trie is shown to the left. The middle tree showsthe same searh path in a one-node omponent tree and the right tree showsthe searh path in a one-layer40 omponent tree. The nodes are ordered sothat b′ < b < b′′ and c < c′ < c′′. The di�erene between the searh path inthe one-node omponent and one-layer omponent is three bridge nodes.The graph in Figure 56 shows level 1 data ahe misses. It has a nieoherene with the graph in �gure 54. The inreased in the number of bridge39Components ontaining only one node.40Components with only one layer. 88



nodes also inreases the number of ahe misses, as less data are reusable inthe next searh.
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Figure 56: Level 1 data ahe misses for data set B for various values of ε.21.3 Data set CThe results for various ε on data set C show the opposite behaviour than theexperiments on A and B did. Figure 57 shows the results for the experimentson C for various ε.The steep inrease in exeution time for ε = 1 is due to the entire struturebeing in one omponent. As data set C onsist of strings sharing 70 % to95 % of their pre�x, the gira�e trees will have at least 2 hildren eah andprobably around 4 in average. The exat ount for data C1 for ε = 5 is 3348gira�e trees. As there is 15000 strings this is a bit less than 5 hildren foreah gira�e tree.As eah string is searhed for, eah �fth string requires an entire quitelarge gira�e tree to be loaded. For a small ε, there will be many omponentssharing the same gira�e tree. Sine the gira�e tree will be small it an bekept in the ahe. Therefore, the number of ahe misses will derease. Thisan be seen in �gure 58. The ahe misses are more than halved for small εresulting in the derease in time.
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Figure 57: Exeution time for the ahe oblivious string ditionary struture onthe data sets C for various values of ε.
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Figure 58: Level 1 data ahe misses for data set C for various values of ε.
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21.4 Data set DFigure 59 shows the exeution times for data set D. It resembles Figure 60.The exeution time rises drastially when ε ≥ 1.25.
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Figure 59: Exeution time for the ahe oblivious string ditionary struture onthe data sets D for various values of ε.The reason is very long gira�e trees, overing the same nek with onlyrelatively few hildren. In data set D there is 130000 strings, whih results in130000 hildren in the trie. The root will then have rank 18. As an be seenin Setion 17, the trie have nodes with rank one at every level down the trie.At strata 4 for ε = 1 the rank di�erene should be below 1 · 24 = 16. As thisis not the ase every end node of a string in strata 4 is put in a omponent.When ε = 1.25 the di�erene should be below 20 so the single nodes instrata 4 does not need to be put in their own omponents. This results in avery large omponent overed by long gira�e trees, whih will only be reuseda small amount of times when searhing for the strings. As seen in Figure60 this results in many ahe misses, and also in inreased exeution time.21.5 Data set ENot muh is known about the layout of data E. As seen in �gure 61 theexeution time delines steadily, as ε rises. This is the result of fewer om-ponents for larger ε resulting in fewer bridge nodes. The number of bridgenodes in the layout dereases from 119864 to 8999. The steepest derease91
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Figure 60: Level 1 data ahe misses for data set D for various values of ε.is around ε = 1.25 where the bridge node ount derease with almost 33 %.This an also be seen in both Figure 61 end 62.
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Figure 61: Exeution time for the ahe oblivious string ditionary struture onthe data sets E for various values of ε.
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Figure 62: Level 1 data ahe misses for data set E for various values of ε.21.6 Data set FFigure 63 shows the exeution time for data F. It is approximately the sameas 61. The explanation is again that the bridge node ount dereases rapidly.The two string sets made from real life data behaves very similar, even thoughthey are taken from two ompletely di�erent real life situations.
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Figure 63: Exeution time for the ahe oblivious string ditionary struture onthe data sets F for various values of ε.93
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Figure 64: Level 1 data ahe misses for data set F for various values of ε.21.7 Comparison of exeution timesFigure 65 shows the exeution time for the naive trie and the ahe obliviousstring ditionary. Only the best and worst ε is shown. The times indiatesthat searhing in the ahe oblivious string ditionary is faster for the right
ε for most of the data sets.The type of data where searhing in the ahe oblivious string ditionaryare best, are data that has many unary nodes in suession. In these ases thenumber of ahe misses an be redued and the CPU prefething mehanismis working perfetly.The naive trie has better exeution time when searhing in the data el-ements B1 and B5. In the data set B there are few unary nodes are insuession and most of the omponents ontain only one node. The over-head in traversing bridge nodes and gira�e nodes beomes an disadvantagefor the ahe oblivious string ditionary. It is the same ase for the data setE. When looking at the exeution times in swap, the result is di�erent.Figure 65 shows that for the right ε, searhing in the ahe oblivious stringditionary is better than searhing in the naive trie. The right ε an varyfrom data set to data set. In most of the ases, hoosing a poor ε results inan exeution time not far from the exeution time of the naive trie.When plaing the layout in swap memory, the overhead from bridges indata set B is negligible. 94



 0

 5

 10

 15

 20

 25

 30

 35

FEC5C1B5B1A5A1

S
ec

on
ds

Data

COSD - best epsilon
Naive trie

COSD - worst epsilon

Data element COSD, best Naive trie COSD, worstD1 41.4 799.9 219.1D5 29.9 319.7 105.1Figure 65: Exeution times using the ahe oblivious string ditionary (best andworst ε) and the naive trie.

 0

 500

 1000

 1500

 2000

 2500

 3000

FC5C1B5B1A5A1

S
ec

on
ds

Data

COSD - best epsilon
Naive trie

COSD - worst epsilon

Figure 66: Exeution time for searhing in the ahe oblivious string ditionary(best and worst ε) and the naive trie on the Swap omputer95



21.8 ConlusionIt is hard to establish an ε that is optimal. It seems that ε < 1/2 works wellon most of the syntheti data that has a large number of sueeding unarynodes. The larger ε is better for the syntheti data set B as well as for dataset E and F.As E and F onsists of real life data it an be argued that it will be best tohave a large ε. However, the speedup is very small ompared to the penaltythe other data sets su�er from large epsilon. A relatively low ε seems to bethe best solution.The omparison between the trie and the best parameter of ε suggestthat the ahe oblivious string ditionary is superior for the right ε.
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22 Gira�e tree experimentsAn interesting experiment is to hange the theoretial length of the gira�etrees. The theory states that a gira�e tree is a tree where more than N/2of the nodes are anestors to all leaves. The proof for the exeution timeand spae usage still hold if the nek of the gira�e tree is di�erent from 1/2.Every onstant number K in ]0, 1[ an be used.
|Ai:j| + |Bi:j| >

|T i:j+1|
1

1−K

⇒

|T i:j| < |T i:j+1| <
1

1 − K

(
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)
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∑

T i:j

|T i:j| <
∑

T i:j

1

1 − K

(

|Ai:j| + |Bi:j|
)

≤ 2
1

1 − K
NThe same holds of the proof of exeution time. If the string searhed foris less than N · K and as the gira�e tree is laid in memory in BFS layout,then the searh time is O(p/B). Is the searh string more than N · K, thenit has already mathed the �rst N ·K and is at most 1

K
·O(p/B) = O(p/B).When the nek of the gira�e is a large perentage of the tree the spaeusage inreases, while the searh time dereases. The opposite is also true.The experiments hanges the perentage of the nodes needed to be anestors.The Hu�man tree is used inside the omponents, while the leaf orientedoptimal binary searh tree is used to reate the searh tree onneting theomponents. ε is 0.5.
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Figure 67: Gira�e tree spae usage for various gira�e nek perentage of A1.97



The perentage of the gira�e nek is varied between 0.2 and 0.6. A higherperentage than 0.6 is not used beause the spae usage inreases as moregira�e trees are needed. Figure 67 illustrates the inrease in spae usage asthe perentage inreases.22.1 Data set AFigure 68 shows that the exeution time do not seem to �utuate by varyingthe nek perentage. However, it do seem that it in�uenes the amount ofahe misses, Figure 69. This is aordane with the theory as the theoretialsearh time should derease, when the spae usage and amount of gira�e treesinreases.
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Figure 68: Exeution time for the ahe oblivious string ditionary struture onthe data sets A for various gira�e trees.When searhing a gira�e tree, where the nodes of the nek only onstitute20 % of the gira�e, more data needs to be proessed than when searhinga gira�e where the nek onstitutes 60 %. However, it do not seem to in-�uene exeution time. This an be due to the fat that a gira�e tree liesonsequently in memory so that the CPUs prefething mehanism will haveit ready when the data is needed.
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Figure 69: Level 1 data ahe misses for data set A for various gira�e trees.

 0

 0.5

 1

 1.5

 2

 2.5

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6

S
ec

on
ds

Giraffe neck percentage

C1
C2
C3
C4
C5

Figure 70: The graph shows the exeution time for the ahe oblivious stringditionary for various gira�e trees for data set C.22.2 Data sets B, C, D, E and FThe analysis for data set A does not hold for the other data sets. The Figures70 and 71 shows the results for data set C, whih is representative for the restof the data sets. The omponents in these sets onsists mainly of either one99



node or many unary nodes. When hanging the perentage, the new gira�etrees are more or less the same as before.
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Figure 71: The graph shows the level 1 ahe misses for the ahe obliviousstring ditionary for various gira�e trees for data set C.22.3 Comparison of exeution timesThe omparison of exeutions time for the gira�e experiments yeilds the sameresults as the omparison for various ε. Again long path of unary nodes favorsthe ahe oblivious string ditionary searh algorithm. In the data sets withmany bridge nodes the overhead of searhing in these nodes is too large forthe ahe oblivious string ditionary. Figure 72 shows the exeution timesfor experiments on the Internal omputer.When performing the experiments on the Swap omputer, the results arethe same with the ε experiments. Choosing a suitable perentage of nodesas anestors makes searhing in the ahe oblivious string ditionary fasterthan in the naive trie. Figure 73 illustrates this.
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Figure 73: Exeution time for searhing in the ahe oblivious string ditio-nary (best and worst perentage of gira�enek) and the naive trie.on the Swapomputer. 101



22.4 ConlusionThe hange of gira�e nek perentage does not e�et the exeution time muhwhen searhing in the ahe oblivious string ditionary. This is probablybeause the omponents are fairly small and therefore the gira�e trees donot hange muh when varying the anestor perentage. In some experimentsthere are small variations in the number of ahe misses. This do not seemto in�uene the exeution time whih is most likely due to prefething.
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23 Constrution timeThe previous setions shows that searhing in the ahe oblivious string di-tionary an be faster than searhing in the naive trie. Espeially when datais put in swap memory.However, in the previous setions the onstrution time is not inludedin the results. As both the naive trie and ahe oblivious string ditionaryneeds to build their struture before searhing, this is an important issue.Figure 74 shows the onstrution time for the naive trie struture and theahe oblivious string ditionary layout. The ahe oblivious string ditionarylayout is reated with ε = 0.5, gira�e perentage at 0.5 (50%), Hu�man treesand the artile tree onneting the omponents.
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Figure 74: Comparison of onstrution time between the naive trie and the aheoblivious string ditionary. The ahe oblivious string ditionary layout is reatedwith ε = 0.5, gira�e perentage at 0.5 (50%), Hu�man trees and the artile treeonneting the omponents.The experiments so far onlude that the orunner is superier to thetrierunner for almost all of the data sets, and all when needing to swap.The orunner is not superier however when fatoring in the time to onstrutthe layout of the ahe oblivious string ditonary.As seen on Figure 74 the onstrution time of the ahe oblivious layoutis muh more time onsuming. This an be outweighed if there will be manysearhes for a onstruted ditonary.The �gure shows that the onstrution time for the ahe oblivious stringditionary are muh worse than for the naive trie. This means that if searh-103



Name Constrution of trie Constrution of COSDD1 77.9 1131.4D5 31.5 519.7Table 9: Comparison of onstrution time between the naive trie and the aheoblivious string ditionary. The ahe oblivious string ditionary layout is reatedwith ε = 0.5, gira�e perentage at 0.5 (50%), Hu�man trees and the artile treeonneting the omponents.ing in the data is only done a few times, the ahe oblivious string ditionaryannot ompete with the naive trie. Even if the naive trie has to onstrutis struture eah time.
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24 Strings with errorsThere are not muh di�erene in the behaviour between the experimentsusing the strings with error and those without. The exeution time is ofause smaller as no string is searhed fully.
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Figure 75: Exeution times for the ahe oblivious string ditionary on errorstring from data set D for various ε.Figure 75 show the exeution time for the data set D using the stringswith errors. Compared with �gure 59 where the strings without errors areused, the same patterns an be found.The graph for data set D is hosen as representative for the rest of thedata sets. All the graphs where the strings with errors are used show thesame patterns as the graphs where the string without errors are used. Theonly di�erene is the exeution time, whih is smaller when the strings witherrors are used.The omparison between the ahe oblivious string ditionary and thenaive trie using strings with errors is shown in �gure 76. Again there are nosigni�ant di�erene between searhing for strings with errors and searhingfor strings without errors, Figure 65. The only di�erene is smaller exeutiontime. Even though only graphs for variation of ε is shown, the same appliesfor the variation of the gira�e nek perentage.
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Figure 76: Exeution times using the ahe oblivious string ditionary (best andworst ε) and the naive trie both searhing for strings with errors.
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25 Final onlusionIn this thesis the ahe oblivious string ditionary have been implemented.It is ompared to a naive trie struture to see if the ahe oblivious approahwould yield any signi�ant improvements in exeution time.The experiments show that the ahe oblivious string ditionary an per-form better than the naive trie. Depending on the type of data di�erentparameters need to be right for the ahe oblivious string ditionary to per-form optimal.When hanging the ε value the hange in exeution time is notable. It isnot possible to hoose a �xed ε for all data types. For eah data type, an εvalue needs to found, as the value sometime must be small and some timeslarge. The experiments show that small values of ε is mostly preferable. Thetime gain from moving to larger ε for the data sets requiring it, is smallerthen the loss for the sets not requiring it.When hanging the number of anestor nodes in a gira�e tree the experi-ments show no real di�erene in exeution time. The only notable di�ereneis the spae usage whih inreases as the number of anestor nodes grows.As the onstrution algorithm in this thesis is not ahe oblivious, di�er-ent weight balaned trees have been examined as replaements for the artiletree. Both the Hu�man tree and the leaf oriented optimal binary searh treeperforms better than the artile tree, but only at a fration.When moving to swap the experiments perform signi�antly better thanthe naive trie struture. This is the result of inreased aess time, whihin�uenes the the ahe oblivious layout less than the trie.Experimenting with string with errors both in memory and swap yieldedno interesting results, as the performane di�erene is similar.Before hoosing the ahe oblivious string ditionary struture over thenaive trie struture, the onstrution time of the ahe oblivious layout needsto be addressed. The experiments show that the onstrution time of theahe oblivious string ditionary is signi�antly larger than the naive trie.Furthermore, it is not possible to delete or insert new strings into the aheoblivious string ditionary.It an be onluded that the ahe oblivious string ditionary struturean outperform the naive trie both in memory and swap. However, this isonly possible when a large amount of searhes are performed.25.1 Future workIn the future is would be interesting to tune the trie struture. This ouldbe done by a van Emde Boas layout of the trie or a simple BFS layout. It107



would be interesting to examine whether or not the ahe oblivious stringditionary still perform well in omparisons.The onstrution time is also an issue. Beause of the large overhead, thestruture is not ompetitive in a wide variety of appliations. Reduing theoverhead, by for instane storing the omponent in di�erent �les, and thenproess them one by one until the �nal layout is possible, ould make thestruture a whole lot more interesting.
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Part VAppendix





A Soure odeThe soure ode an be downloaded at the web addresshttp://www.daimi.au.dk/~stumme/Download/Thesis-soureode.tar.bzTo extrat the ode from the �le typetar -xvzf Thesis-soureode.tar.bzA folder named Thesis will be reated. To ompile the soure ode type(inside the Thesis folder) make. Three programs will be reated. One forrunning the naive trie, trierunner, one for doing the ahe oblivious layout,olayouter, and one for searhing in the ahe oblivious layout, orunner.A.1 Input �le formatThe trierunner and olayouter program both requires an input �le. This�le onsists of ASCII strings, one on eah line. The only harater values notallowed is 0-33, 69, 127 and 128 as these are speial purpose haraters.A.2 The naive trie programThe trie program takes several parameters as input. These are shown inFigure 77.trierunner -i <INPUT_FILE> <ARGUMENTS*>-i <INPUT-FILE> (REQUIRED)-t <TEST-FILE> (REQUIRED)- <CHILD-TREE> (Standard 0) 0 : Red-Blak Tree, 1 : Sorted Vetor-v <SHOW INFO> (Standard 0) 0 : None, 1 : All-r <REPETITION OF TEST-FILE> (Standard 1) Values must be an integer above zeroFigure 77: The arguments possible for the trierunner program.INPUT-FILE An input �le as desribed in setion A.1.TEST-FILE A �le ontaining strings as desribed in setion A.1. Thesestrings are then searh for in the trie.CHILD-TREE The searh tree used to store the hildren.SHOW INFO Displays the proess of the program.111



REPETITION OF TEST-FILE If a test �le is given this arguments in-diates how many times the strings in the test �le is searh for. It isdone in a round robin fashion.The output of the program is1. Number of trie nodes.2. Total size of trie struture (in bytes).3. Constrution time (in seonds).4. Running time (in seonds).5. Number of searh strings found.6. Number of searh strings not found.in that order.A.3 The ahe oblivious layout programThe layout program takes several parameters as input. Only the input �le isrequired. The parameters are shown in Figure 78.olayout -i <INPUT-FILE> <ARGUMENTS*>-i <INPUT-FILE> (REQUIRED)-o <OUTPUT-FILE> (If none, output is:layout-<INPUT-FILE>-<EPSILON>-<LAYER-MULTIPLIER>-<COMPONENT-TREE>-<BRIDGE-ALGORITHM>.veb)-e <EPSILON> (Standard: 0.5)-b <BRIDGE-ALGORITHM> (Standard: 0)0 : Weight balaned searh tree,1 : Optimal searh tree- <COMPONENT-TREE> (Standard: 0)0 : Huffman,1 : Weight balaned searh tree-v <SHOW INFO> (Standard: 0) 0 : None, 1 : All-w <WRITE-METAPOST-LATEX> (Standard: 0) 0 : No, 1 : Yes-d <% OF GIRAFFE> (Standard: 0.5) Used in giraffe treeFigure 78: The arguments possible for the olayouter program.INPUT-FILE An input �le as desribed in setion A.1.112



OUTPUT-FILE The layout of the input �le. A prede�ned is used if noargument is given41.EPSILON The value of ε.BRIDGE-ALGORITHM The tree algorithm used to onnet the ompo-nents.COMPONENT-TREE The tree algorithm used inside the omponents.SHOW INFO Displays the proess of the program.WRITE-METAPOST-LATEX Creates a Metapost �le and a assoiatedlatex �le for all trees in the layout. Note, that the Metapost algorithmfor drawing the trees takes long time for even small trees.% OF GIRAFFE Indiates how many proentage of the nodes are anes-tors before it is a legal gira�e tree. The given parameter ∈ (0.0; 1.0).The output of the program to standard out is1. Total spae usage (in bytes).2. Blind trie spae usage (in bytes).3. Gira�e tree spae usage (in bytes).4. Bridge spae usage (in bytes).5. Constrution time (in seonds).6. Number of trie nodes.7. Number of omponents.8. Average number of nodes inside omponents.9. Number of blind tries.10. Number of gira�e trees.11. Number of bridges.in that order.41See Figure 78 for the prede�ned �le name.113



A.4 The ahe oblivious searh programThe ahe oblivious searh program takes several parameters as input. Onlythe input �le is required. The parameters are shown in Figure 79.orunner -i <INPUT-FILE> <ARGUMENTS*>-i <INPUT-FILE> (REQUIRED veb-file)-t <TEST-FILE> (If none given, user interation is possible)-v <SHOW INFO> (Standard 0) 0 : None, 1 : All-r <REPETITION OF TEST-FILE> (Standard 1)Values must be an integer above zero- <COUNTER ON> (Standard: 0) 0 : No, 1 : YesFigure 79: The arguments possible for the orunner program.INPUT-FILE An input �le reated by the olayouter program.TEST-FILE A �le ontaining strings as desribed in setion A.1. Thesestrings are then searh for in the trie. If no �le is given, it is possibleto type searh strings.SHOW INFO Displays the proess of the program.REPETITION OF TEST-FILE The number of times the strings in thetest �le is tested. This is done in a round robin fashion.COUNTER ON Displays number of searhes ompleted of the total num-ber of searhes.The output to standard out is1. Load time (in seonds).2. Running time (in seonds).3. The number of strings found.4. The number of strings not found.in that order.
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B Constrution tablesIn this setion the output from the layout program is displayed. The di�erentshortening is brie�y explained below.
ε Value of ε.% Proentage of nodes needed as anestors for a valig gira�e tree.No. TN Number of trie nodes.No. C Number of omponents.No. BT Number of blind tries.No. G Number of gira�e trees.No. B Number of bridges.Nodes / C Number of nodes per omponent (Average).BT spae Total spae usage for the blind tries nodes (in bytes).G spae Total spae usage for the gira�e tree nodes (in bytes).B spae Total spae usage for the bridge nodes (in bytes).Total spae Total spae usage (in bytes).Cons. time Constrution time for the layout (in seonds).
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Data for A1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.25 3014010 5427 26229 27756 1973 555.373 573580 73829500 142064 74545144 127.5520.500 3014010 186 930 4099 71 16204.400 172460 105646220 4784 105823464 136.6450.750 3014010 5195 25179 25566 1878 580.175 557400 81125180 136160 81818740 129.5471.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 145.6661.250 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.9711.500 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 145.1852.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 145.0503.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.9564.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.9645.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.998Data for A2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 3379858 8149 39330 41632 2969 414.757 858700 79995100 213232 81067032 111.4970.500 3379858 279 1395 6148 107 12114.200 257400 112361600 7184 112626184 121.5800.750 3379858 7821 37808 38380 2837 432.152 835100 90514100 204848 91554048 115.0801.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.4681.250 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.5211.500 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.3742.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.3723.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.6774.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.2135.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.274
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Data for A3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 3377396 13523 54108 54916 5099 249.752 1115920 70799240 351120 72266280 77.9100.500 3377396 387 2610 11517 140 8727.120 358780 132504960 10112 132873852 96.5210.750 3377396 3335 23342 23711 1261 1012.710 711480 76462120 86512 77260112 78.9831.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.4601.250 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.3861.500 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.0572.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.4513.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.2364.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.0435.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.493Data for A4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 3281877 17847 71495 72113 6789 183.890 1449680 67047200 462448 68959328 56.3230.500 3281877 480 3261 15282 171 6837.240 448520 118989880 12592 119450992 71.4710.750 3281877 4168 29174 37378 1569 787.399 889440 98395820 108240 99393500 65.1591.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.9111.250 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 79.2231.500 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.2852.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.6283.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.2804.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.4805.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.545
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Data for A5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2812226 20918 82843 84082 7860 134.440 1696020 58945760 543584 61185364 43.7970.500 2812226 586 7258 18430 215 4799.020 604980 82865060 15280 83485320 49.5850.750 2812226 5001 20008 30561 1917 562.333 766680 84234120 129328 85130128 50.1461.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.7151.250 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.9971.500 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 70.1312.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.9993.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.8334.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.8405.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.963Data for B1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 121.3570.500 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.5340.750 2019486 1849067 1849077 1849078 618171 1.092 36981580 40389780 49279376 126650736 122.0611.000 2019486 1849067 1849077 1849078 618171 1.092 36981580 40389780 49279376 126650736 121.3541.250 2019486 1647177 1655029 1770161 562516 1.226 36992740 42739100 43709376 123441216 114.6591.500 2019486 1647171 1655024 1770161 562515 1.226 36992760 42739220 43709200 123441180 114.4962.000 2019486 1605981 1657938 1807970 544913 1.257 37891900 44425140 42672752 124989792 112.8943.000 2019486 16242 332118 1094488 5693 124.337 43359980 67428200 428624 111216804 55.0614.000 2019486 48783 358448 1139128 15873 41.397 43225320 67055140 1307056 111587516 55.4765.000 2019486 1216901 1217007 1325887 409877 1.660 37030960 54216880 32382768 123630608 138.352
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Data for B2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.8150.500 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.4480.750 3078176 1034633 1501049 1559959 359136 2.975 31854560 63346700 27362048 122563308 98.0211.000 3078176 1077949 1529046 1559989 373970 2.856 31545280 62501240 28510816 122557336 99.1941.250 3078176 532365 1139591 1527265 183749 5.782 34836600 74010200 14095664 122942464 83.2341.500 3078176 350025 477810 992597 118587 8.794 25356060 86149060 9303376 120808496 71.9012.000 3078176 237326 913658 1469043 82295 12.970 36268860 80504040 6277680 123050580 72.4253.000 3078176 3050 15726 538498 1055 1009.240 23061200 120673920 80688 143815808 61.9904.000 3078176 1 6490 523814 0 3078180.000 22938380 124877900 0 147816280 64.3385.000 3078176 1 6490 523814 0 3078180.000 22938380 124877900 0 147816280 64.513Data for B3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2286364 759600 1504644 1504644 260495 3.010 30092880 45727300 20139248 95959428 77.0530.500 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 76.9680.750 2286364 674787 1427277 1475145 232305 3.388 30067460 46845880 17876272 94789612 73.1091.000 2286364 700989 1431010 1460914 240708 3.262 29614520 46830940 18580288 95025748 73.8251.250 2286364 180144 847927 1227296 61033 12.692 28560400 56566600 4788048 89915048 54.2861.500 2286364 497013 1032868 1199775 168031 4.600 25925260 58599120 13215888 97740268 65.7152.000 2286364 163892 822140 1176875 55458 13.950 28373220 55867480 4357184 88597884 53.7083.000 2286364 1 250 171985 0 2286360.000 15214800 95698640 0 110913440 47.1004.000 2286364 1 250 171985 0 2286360.000 15214800 95698640 0 110913440 47.3015.000 2286364 1 250 171985 0 2286360.000 15214800 95698640 0 110913440 47.093
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Data for B4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2753553 645854 1337054 1337054 221573 4.263 26741080 55071080 17122128 98934288 76.4540.500 2753553 588747 1251119 1285208 203821 4.677 26059220 56108100 15578736 97746056 73.2880.750 2753553 221261 632110 910185 76542 12.445 21104400 63526160 5855648 90486208 56.3321.000 2753553 466654 1036621 1150292 162110 5.901 24199520 59261420 12339136 95800076 67.7311.250 2753553 28659 125886 513904 9919 96.080 14869020 85558880 758352 101186252 49.8241.500 2753553 339806 746166 845133 114923 8.103 21057840 67503620 9034992 97596452 62.0972.000 2753553 186073 546328 806186 62936 14.798 20136540 68785540 4947328 93869408 56.5023.000 2753553 1 88 139365 0 2753550.000 12933200 124218220 0 137151420 57.1204.000 2753553 1 88 139365 0 2753550.000 12933200 124218220 0 137151420 57.0855.000 2753553 1 88 139365 0 2753550.000 12933200 124218220 0 137151420 56.895Data for B5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 3195515 569757 1681091 1681091 195390 5.609 33621820 63910320 15105952 112638092 82.4590.500 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.0640.750 3195515 185899 555960 807594 64285 17.189 18774060 69121560 4920176 92815796 56.1021.000 3195515 417098 1243333 1340105 144702 7.661 27816100 67067440 11031872 105915412 72.4071.250 3195515 62540 222036 525815 21434 51.096 14580900 108508220 1658304 124747424 59.9241.500 3195515 30636 248679 532107 10455 104.306 15765660 88378900 813040 104957600 53.5762.000 3195515 162867 491625 722001 55628 19.620 17966200 76511120 4321664 98798984 57.1543.000 3195515 2 53 92058 1 1597760.000 11408820 123860000 16 135268836 58.1784.000 3195515 1 34 92058 0 3195520.000 11408460 124646960 0 136055420 58.1005.000 3195515 1 34 92058 0 3195520.000 11408460 124646960 0 136055420 57.543
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Data for C1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2811774 18467 67301 67301 4591 152.259 1346020 56235500 517456 58098976 47.4680.500 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 45.7420.750 2811774 17401 66077 66227 4441 161.587 1353700 56241420 485744 58080864 46.0941.000 2811774 4 16 3350 1 702944.000 391800 121690240 80 122082120 69.0831.250 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.8481.500 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.6362.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.8583.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.6984.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.4845.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 69.083Data for C2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2825918 19277 68051 68051 5030 146.595 1361020 56518380 536352 58415752 47.4400.500 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.2900.750 2825918 17716 66345 66482 4895 159.512 1370420 56564800 488560 58423780 47.5901.000 2825918 3 11 3380 1 941973.000 400540 122550980 48 122951568 69.4721.250 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.5081.500 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.6122.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.5193.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.7424.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.6945.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.971
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Data for C3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2844036 19325 68187 68187 5080 147.169 1363740 56880740 537088 58781568 47.0110.500 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.1930.750 2844036 18713 67434 67564 4950 151.982 1366120 56885840 519584 58771544 46.6341.000 2844036 2 10 3401 1 1422020.000 401480 123326400 16 123727896 69.8861.250 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.7691.500 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.4782.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 70.0943.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.7374.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.7315.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 70.989Data for C4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2817974 19498 68307 68307 5260 144.526 1366140 56359500 539744 58265384 46.8050.500 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.4050.750 2817974 18679 67380 67477 5161 150.863 1371760 56363300 515120 58250180 46.4161.000 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 70.1501.250 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 70.0381.500 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 69.5472.000 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 69.5333.000 2817974 1 9 3358 0 2817970.000 405020 122106480 0 122511500 69.7774.000 2817974 1 9 3358 0 2817970.000 405020 122106480 0 122511500 69.9925.000 2817974 1 9 3358 0 2817970.000 405020 122106480 0 122511500 69.910
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Data for C5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 2816441 20006 68733 68733 5412 140.780 1374660 56328840 553568 58257068 46.5250.500 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 45.7350.750 2816441 19311 67907 68037 5282 145.846 1377120 56333880 533408 58244408 46.4121.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.1781.250 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.4681.500 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.3342.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.7823.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.4294.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.2775.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.886Data for D1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 254051 123672 123924 123924 123550 2.054 2478480 5081040 1980672 9540192 1137.3000.500 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1131.3900.750 254051 123220 123294 123445 123199 2.062 2479920 5132240 1971824 9583984 1137.2601.000 254051 123570 123586 123603 123530 2.056 2472520 5115080 1977728 9565328 1137.5001.250 254051 1100 1114 1565 1099 230.955 4920320 14480940 17584 19418844 1242.3401.500 254051 1100 1114 1565 1099 230.955 4920320 14480940 17584 19418844 1248.1902.000 254051 1100 1114 1565 1099 230.955 4920320 14480940 17584 19418844 1247.1003.000 254051 1 15 494 0 254051.000 4942300 14545400 0 19487700 1248.5904.000 254051 1 15 494 0 254051.000 4942300 14545400 0 19487700 1241.7605.000 254051 1 15 494 0 254051.000 4942300 14545400 0 19487700 1244.630
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Data for D2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 254550 123743 124136 124136 123549 2.057 2482720 5091020 1982960 9556700 700.1480.500 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 702.0660.750 254550 123048 123149 123377 123017 2.069 2484260 5283340 1969232 9736832 703.8001.000 254550 123581 123596 123623 123520 2.060 2473080 5258460 1978240 9709780 701.4651.250 254550 819 830 1273 818 310.806 4925840 14444400 13088 19383328 758.2931.500 254550 819 830 1273 818 310.806 4925840 14444400 13088 19383328 754.0812.000 254550 819 830 1273 818 310.806 4925840 14444400 13088 19383328 755.2773.000 254550 1 12 474 0 254550.000 4942200 14491960 0 19434160 755.1864.000 254550 1 12 474 0 254550.000 4942200 14491960 0 19434160 761.6005.000 254550 1 12 474 0 254550.000 4942200 14491960 0 19434160 754.948Data for D3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 255018 123797 124327 124328 123516 2.060 2486580 5100800 1985216 9572596 556.4140.500 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 555.0960.750 255018 122854 122984 123286 122813 2.076 2487880 5540760 1966288 9994928 553.1941.000 255018 123558 123571 123609 123478 2.064 2473020 5507500 1978176 9958696 553.5091.250 255018 692 702 1139 691 368.523 4927100 14440200 11056 19378356 589.3851.500 255018 692 702 1139 691 368.523 4927100 14440200 11056 19378356 593.3882.000 255018 692 702 1139 691 368.523 4927100 14440200 11056 19378356 596.1083.000 255018 1 11 465 0 255018.000 4940920 14486060 0 19426980 596.0684.000 255018 1 11 465 0 255018.000 4940920 14486060 0 19426980 598.1345.000 255018 1 11 465 0 255018.000 4940920 14486060 0 19426980 594.071
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Data for D4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 255450 123797 124453 124455 123448 2.063 2489140 5110780 1986304 9586224 508.7020.500 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 506.9930.750 255450 122617 122777 123157 122566 2.083 2490900 5902460 1962656 10356016 511.2831.000 255450 123500 123512 123560 123400 2.068 2472240 5859760 1977568 10309568 509.1141.250 255450 654 664 1089 653 390.596 4925160 14244880 10448 19180488 539.6171.500 255450 654 664 1089 653 390.596 4925160 14244880 10448 19180488 539.1812.000 255450 654 664 1089 653 390.596 4925160 14244880 10448 19180488 539.2803.000 255450 1 11 452 0 255450.000 4938220 14285740 0 19223960 539.1484.000 255450 1 11 452 0 255450.000 4938220 14285740 0 19223960 538.8395.000 255450 1 11 452 0 255450.000 4938220 14285740 0 19223960 542.896Data for D5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 256019 123931 124700 124702 123517 2.066 2494080 5122260 1989488 9605828 520.2590.500 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 10768956 519.7260.750 256019 113560 113750 114289 113500 2.254 2675760 7033680 1817888 11527328 519.5041.000 256019 123573 123589 123650 123456 2.072 2474300 6314520 1979008 10767828 518.9551.250 256019 623 633 1047 622 410.945 4928520 14103920 9952 19042392 544.7741.500 256019 623 633 1047 622 410.945 4928520 14103920 9952 19042392 550.1632.000 256019 623 633 1047 622 410.945 4928520 14103920 9952 19042392 550.5703.000 256019 1 11 440 0 256019.000 4940960 14142080 0 19083040 550.0634.000 256019 1 11 440 0 256019.000 4940960 14142080 0 19083040 548.4385.000 256019 1 11 440 0 256019.000 4940960 14142080 0 19083040 545.304
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Data for E for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 143617 69998 94803 94803 20130 2.052 1896060 2872360 1917824 6686244 7.3270.500 143617 67815 92998 93791 19160 2.118 1898840 2899520 1863488 6661848 7.1720.750 143617 59972 87207 91439 16187 2.395 1919540 3007700 1660080 6587320 6.9161.000 143617 56977 84065 90153 15387 2.521 1919760 3059740 1577040 6556540 6.8951.250 143617 41926 71586 84391 10617 3.425 1924460 3236740 1171728 6332928 6.1511.500 143617 38555 67616 82314 9743 3.725 1917680 3297500 1077840 6293020 6.1062.000 143617 31233 59408 78701 7751 4.598 1918660 3438840 875408 6232908 5.8173.000 143617 17061 42334 70690 4050 8.418 1909800 3733340 481120 6124260 5.2184.000 143617 8857 28822 60942 1946 16.215 1825600 3975020 252256 6052876 4.9925.000 143617 5233 20854 53480 1465 27.445 1742340 4114020 143984 6000344 5.591Data for F for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.250 4815484 83291 241944 242018 33327 57.815 4842080 96324560 2132048 103298688 50.0500.500 4815484 81226 236337 237251 32428 59.285 4765940 96380920 2080352 103227212 49.5250.750 4815484 72149 222171 226979 28522 66.744 4639560 96533300 1852384 103025244 49.1131.000 4815484 71531 220324 225523 28112 67.320 4620120 96560600 1839168 103019888 49.1541.250 4815484 42117 186608 202720 18322 114.336 4388160 96858460 1054560 102301180 48.3071.500 4815484 41618 185050 201519 17990 115.707 4371400 96883380 1043904 102298684 48.3822.000 4815484 33136 166501 188366 14401 145.325 4226600 97103080 829904 102159584 47.7463.000 4815484 16887 124028 158258 8065 285.159 3800280 97737960 411312 101949552 66.5084.000 4815484 45657 189612 204329 25450 105.471 4433800 97259140 1053792 102746732 48.2565.000 4815484 101 51611 102157 39 47678.100 2735900 101210580 2576 103949056 45.994
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Data for A1 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 3014010 186 930 2419 71 16204.400 172460 73768260 4784 73945504 127.4030.300 3014010 186 930 2427 71 16204.400 172460 73831400 4784 74008644 127.2860.400 3014010 186 930 2427 71 16204.400 172460 73823400 4784 74000644 127.2860.500 3014010 186 930 4099 71 16204.400 172460 105646220 4784 105823464 136.8960.600 3014010 186 930 5765 71 16204.400 172460 137179320 4784 137356564 146.647Data for A2 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 3379858 279 1395 3632 107 12114.200 257400 79854260 7184 80118844 111.6380.300 3379858 279 1395 3632 107 12114.200 257400 79764260 7184 80028844 113.0550.400 3379858 279 1395 3647 107 12114.200 257400 80227800 7184 80492384 111.7870.500 3379858 279 1395 6148 107 12114.200 257400 112361600 7184 112626184 121.4980.600 3379858 279 1395 8648 107 12114.200 257400 144560360 7184 144824944 131.188Data for A3 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 3377396 387 2610 4844 140 8727.120 358780 76363340 10112 76732232 79.1340.300 3377396 387 2610 4860 140 8727.120 358780 76623660 10112 76992552 79.7380.400 3377396 387 2610 8196 140 8727.120 358780 104676840 10112 105045732 88.1720.500 3377396 387 2610 11517 140 8727.120 358780 132504960 10112 132873852 96.8290.600 3377396 387 2610 11529 140 8727.120 358780 132713560 10112 133082452 96.913
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Data for A4 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 3281877 480 3261 6056 171 6837.240 448520 71018460 12592 71479572 56.9720.300 3281877 480 3261 6074 171 6837.240 448520 71210180 12592 71671292 57.2830.400 3281877 480 3261 10710 171 6837.240 448520 95258360 12592 95719472 64.7310.500 3281877 480 3261 15282 171 6837.240 448520 118989880 12592 119450992 71.5770.600 3281877 480 3261 15349 171 6837.240 448520 119255420 12592 119716532 71.730Data for A5 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2812226 586 7258 7355 215 4799.020 604980 56776920 15280 57397180 42.3430.300 2812226 586 7258 13425 215 4799.020 604980 71035440 15280 71655700 46.5990.400 2812226 586 7258 18425 215 4799.020 604980 82840660 15280 83460920 50.2780.500 2812226 586 7258 18430 215 4799.020 604980 82865060 15280 83485320 49.9510.600 2812226 586 7258 18491 215 4799.020 604980 83469040 15280 84089300 49.818Data for B1 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.8510.300 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.8160.400 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.9350.500 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 122.4230.600 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.873
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Data for B2 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.5940.300 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.4810.400 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.9700.500 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.6420.600 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.534Data for B3 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2286364 757859 1503757 1503765 259629 3.017 30109920 45744520 20097392 95951832 76.8290.300 2286364 757859 1503757 1504617 259629 3.017 30109920 45761560 20097392 95968872 77.4710.400 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 77.0780.500 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 76.9680.600 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 77.119Data for B4 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2753553 588747 1251119 1284509 203821 4.677 26059220 56079920 15578736 97717876 73.4180.300 2753553 588747 1251119 1285197 203821 4.677 26059220 56107440 15578736 97745396 73.3320.400 2753553 588747 1251119 1285197 203821 4.677 26059220 56107440 15578736 97745396 73.4520.500 2753553 588747 1251119 1285208 203821 4.677 26059220 56108100 15578736 97746056 73.4170.600 2753553 588747 1251119 1285208 203821 4.677 26059220 56108100 15578736 97746056 73.302
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Data for B5 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 3195515 517990 1538207 1568547 179269 6.169 31706140 64525280 13707344 109938764 78.6170.300 3195515 517990 1538207 1569175 179269 6.169 31706140 64550400 13707344 109963884 78.5010.400 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.5560.500 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.5140.600 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.147Data for C1 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 46.0040.300 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 45.9350.400 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 46.2510.500 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 45.8540.600 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 46.133Data for C2 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.1890.300 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.3130.400 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.1840.500 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.9250.600 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 45.943
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Data for C3 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.6900.300 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.3420.400 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.7690.500 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.4990.600 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.510Data for C4 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.1890.300 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.4840.400 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.5050.500 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.2410.600 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.229Data for C5 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.1870.300 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.1220.400 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.4770.500 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 45.8870.600 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.480
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Data for D1 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1134.1500.300 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1137.8300.400 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1131.7900.500 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1137.5800.600 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1134.100Data for D2 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 700.6590.300 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 701.4180.400 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 701.0420.500 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 699.6170.600 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 704.443Data for D3 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 555.3240.300 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 558.4950.400 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 559.1760.500 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 558.4650.600 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 556.699
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Data for D4 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 255450 123564 123781 123815 123407 2.067 2477340 5600440 1979504 10057284 509.5200.300 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 507.3770.400 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 511.8380.500 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 511.5630.600 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 511.978Data for D5 for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 256019 123652 123910 123941 123466 2.070 2480320 5613760 1981376 10075456 517.4880.300 256019 123652 123910 123953 123466 2.070 2480320 5945840 1981376 10407536 517.0680.400 256019 123652 123910 123962 123466 2.070 2480320 6263180 1981376 10724876 522.1980.500 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 10768956 523.0880.600 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 10768956 519.987Data for E for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 143617 67815 92998 93107 19160 2.118 1898840 2884560 1863488 6646888 7.2260.300 143617 67815 92998 93301 19160 2.118 1898840 2888740 1863488 6651068 7.1540.400 143617 67815 92998 93763 19160 2.118 1898840 2898200 1863488 6660528 7.3690.500 143617 67815 92998 93791 19160 2.118 1898840 2899520 1863488 6661848 7.2760.600 143617 67815 92998 93903 19160 2.118 1898840 2904460 1863488 6666788 7.225
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Data for F for varying % of gira�e nek% No. TN No. C No. BT No. G No. B Nodes / C BTspae G spae B spae Totalspae Cons.time0.200 4815484 81226 236337 237098 32428 59.285 4765940 96355580 2080352 103201872 49.4990.300 4815484 81226 236337 237188 32428 59.285 4765940 96364860 2080352 103211152 49.5530.400 4815484 81226 236337 237223 32428 59.285 4765940 96374360 2080352 103220652 49.4570.500 4815484 81226 236337 237251 32428 59.285 4765940 96380920 2080352 103227212 49.5080.600 4815484 81226 236337 237272 32428 59.285 4765940 96386980 2080352 103233272 49.520
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