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iAbstra
tThis thesis presents an implementation and experimental study of the stati

a
he oblivious string di
tionary found in [Brodal and Fagerberg, 2006℄. The-oreti
ally a root to leaf sear
h path in the 
a
he oblivious string di
tionaryis performed in O(logB(n) + |P |/B) I/Os, where B is the blo
k size, n thenumber of strings in the di
tionary and P the query string. This bound istested by a variety of experiments using the 
a
he oblivious string di
tionarystru
ture and a naive trie stru
ture. The implementation 
over the 
a
heoblivious layout and sear
h algorithm.Given a trie as input a 
a
he oblivious string di
tionary is 
onstru
tedusing the data stru
tures blind tries, gira�e trees, weight balan
ed trees(Hu�man trees) and weight balan
ed sear
h trees (Leaf oriented optimalbinary sear
h trees). The stru
ture is laid out using a van Emde Boas layout.The I/O bound is ar
hived using redundan
y, i.e paths in the trie is storedmultiple times. Even so the 
a
he oblivious string di
tionary stru
ture usesonly linear spa
e.The 
a
he oblivious layout in this thesis is not build 
a
he oblivious.Therefore, the Hu�man tree is used instead of the tree from [Brodal andFagerberg, 2006℄ Se
tion 5.The experiments show exe
ution times for various parameters for the
a
he oblivious layout, in a attempt to establish the best. The result of theexperiments show that a 
a
he oblivious layout have superior exe
ution time
ompared to a naive implementation of a trie.





iiiIntrodu
tionPeople often think of a heavy book when hearing the word di
tionary. Forpeople in 
omputer s
ien
e a di
tionary is equivalent with the trie data stru
-ture. The trie stru
ture stores strings and supports queries for these. The
ontent of the strings are not limited to a 
ertain type. They 
an for instan
e
ontain DNA sequen
es, integers or simply words from a Shakespeare play.The 
hallenge is to 
onstru
t the trie, so that the sear
hes for a pre�x queryis e�
ient. Espe
ially when the trie is laid out in external memory. The bestknown bound for a pre�x query is O(|P |+ log(n)) for unbounded alphabetsin internal memory.Over the last de
ade the interest for I/O e�
ient algorithms has in
reased.This is mainly due to the in
reasing amount of data needed to be pro
essedin still shorter time. Even though the 
apa
ity of 
a
hes and memory layerskeep in
reasing, e�
ient queries on stored data is still an issue. Not only inexternal memory but also in main memory. Ca
he oblivious algorithms areattempts to store data allowing queries to be answered e�
iently, both inmemory but espe
ially in external memory.It 
an be proved that it is not possible to lay out a trie in external memorya
hieving a query time of O(logB(n) + |P |/B) I/Os in the worst 
ase. It ispossible though, by other means than the trie stru
ture. Using stru
tureslike blind tries, gira�e trees and weight balan
ed sear
h trees, [Brodal andFagerberg, 2006℄ a
hieved a query time of O(logB(n) + |P |/B) I/Os worst
ase. This thesis is an implementation of the theory in [Brodal and Fagerberg,2006℄The thesis is 
omposed in �ve parts. The �rst part des
ribes the datastru
tures and models used in the 
onstru
tion of the 
a
he oblivious stringdi
tionary. The next part 
on
erns the 
onstru
tion of the 
a
he obliviousstring di
tionary together with proof of the time bound O(logB(n) + |P |/B)and spa
e bound O(N). The subje
t of the third part is the implementationof the 
a
he oblivious string di
tionary together with the sear
h algorithm.The next to last part presents the results of the experiments, where di�erentvalues of parameters have been tested. The �nal part is the appendix. In theappendix a user manual is in
luded together with tables showing the outputfrom 
onstru
tion of the various layouts.





Part IStru
tures and models





1 Analysis ModelsTo analysis an algorithm, an analysis model must be des
ribed. Three of themost widely used are the von Neumann RAM model, the I/O model and the
a
he oblivious model.1.1 Von Neumann RAM ModelThe Von Neumann RAM2 model, [von Neumann, 1945℄, is used to analyseoperations done in main memory. It is assumed that only one pro
essor isused and no 
on
urrent operations is allowed. Ea
h instru
tion is 
harged a
ost of units, making it possible to analyse the 
ost of algorithms working inmain memory.Before the RAM model 
an be used to analyse the running time of analgorithm, the instru
tion set must be des
ribed and the 
ost of ea
h instru
-tion spe
i�ed. Basi
 instru
tions as arithmeti
 (add, subtra
t, multiply,divide, remainder, floor, 
eiling,), movement (move, 
opy, store) and
ontrol (if, if else, return) are typi
ally 
harged a 
onstant number ofunits. The 
ost of instru
tions like sort is depended on the number andtimes the basi
 operations are used and the 
ost of these.The 
loser to reality the instru
tions set with the 
ost of ea
h instru
tionis, the more realisti
 will the analysis in the RAM model be.1.2 I/O ModelComputer storage is typi
ally ordered in a hierar
hy, where ea
h layer a
tsas a 
a
he for the next larger but also slower layer. The I/O model is usedfor modelling data transfers between these layers of storage. This 
annot bedone by the RAM model, sin
e it only 
on
erns operations done in one layer.The most 
ommonly used I/O model is the two layered model [Aggarwaland Je�rey, 1988℄, where the �rst layer is fast and of size M and the se
ondlayer is slow but in�nitely large. Data is transferred between the layers inblo
ks of B elements. It is only possibly to do 
omputation on the elementsin the �rst layer. Figure 1 shows this model.In this model operations done on elements in the �rst layer is free of
harge while data transfers, i.e. reading or writing, is 
harged by a 
ost.The two-layered model is widely used sin
e the analysis in this model easilyextends to models 
ontaining more layers.2Random A

ess Ma
hine. 3



DiskMemoryProcessor
B

Figure 1: The I/O Model1.3 Ca
he-Oblivious ModelThe 
a
he oblivious model [Frigo et al., 1999℄ is a generalisation of the I/Omodel. Algorithms using the 
a
he oblivious model are not allowed to assumeanything about the values of B and M . This means these algorithms mustbe des
ribed in the RAM model, but analysed in the I/O model.Sin
e nothing is known about M , 
a
he repla
ements are assumed tohappen automati
ally by an optimal o�ine 
a
he strategy. The beauty ofthe 
a
he oblivious model is that sin
e the analysis applies for any M and B,it applies for all layers of memory.1.4 Ca
he missesMost modern day CPUs have several layers of 
a
he. When a CPU en
ounterdata it needs it will �rst sear
h the �rst layer of 
a
he. If the data is notpresent there, it will pro
eed to the next layer and so forth. If the data
annot be found in a layer a 
a
he miss o

ur, indi
ating that the data needsto be fet
hed.When a blo
k of data is loaded into a 
a
he layer, it repla
es another ablo
k of data. Whi
h blo
k to 
hoose is determined by an evi
tion strategy.One of these strategies is the LRU 3 whi
h 
hooses the data blo
k least re-
ently used. Another strategy is the FIFO4 whi
h 
hooses the blo
k who hasbeen in the 
a
he longest.1.5 Data prefet
hingAs most CPUs are build around a pipeline ar
hite
ture a 
a
he miss 
anslow down the pro
ess signi�
antly. Therefore most CPUs have prefet
hingme
hanism [Pan et al., 2007℄. This me
hanism tries to predi
t the data3Least Re
ently Used.4First In First Out. 4



needed next and then loading it in advan
e. The data is loaded into a spe
ialbu�er in the level 2 
a
he. If a 
a
he miss o

urs this bu�er is 
he
kedbefore the 
a
he layer. Algorithms 
onsidering the prefet
hing me
hanism
an sometimes outperform 
a
he oblivious and 
a
he aware algorithms.

5



2 TrieThe Trie stru
ture5 [Fredkin, 1960℄ is a tree stru
ture used for storing a setof strings. After storing the strings it is possible to sear
h in the tree, makingit ideal as a di
tionary. Figure 2 shows an example of a trie.
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Figure 2: A trie example showing the tree where the strings "foo", "football","footnote", "wine", "winebar", "winebottle", "wines" are inserted. A shadednode indi
ates that a string has ended at this node, i.e. the node is marked.The number of 
hildren6 for ea
h node is determined by the size of thealphabet used. Ea
h node 
an have as many 
hildren as there are 
hara
tersin the alphabet7.2.1 Sear
hA sear
h for a string is done by traversing the trie top-down while s
anningthe string left to right. If the 
urrent node visited has a 
hild with the5Also known as a Radix tree.6The 
hildren of a node are the nodes right beneath it.7If the alphabet is in�nite, a node 
an arbitrary many 
hildren.6



s
anned 
hara
ter, the 
hild is visited and the next 
hara
ter is s
anned. Ifno su
h a 
hild exists, the string is not in the trie. When the end of the stringis rea
hed, the 
urrent node is examined to 
he
k if it is marked or not. If itis marked, the trie 
ontains the string.2.2 InsertWhen a string is inserted into the trie, the trie is traversed top-down whiles
anning the string left to right. If the 
urrent node has a 
hild 
ontaining thes
anned 
hara
ter, this 
hild is visited and the next 
hara
ter is s
anned. Ifno su
h 
hild exists, a new 
hild is 
reated 
ontaining the s
anned 
hara
ter.The new 
hild is then visited and the next 
hara
ter is s
anned. If there areno more 
hara
ters in the string the 
hild is marked, indi
ating that a stringhas ended at this node.2.3 ComplexityLet S = {s1, s2, . . . , sm} be the set of inserted strings, where the length of siis |si|. In the worst 
ase, the spa
e usage is
m
∑

i=1

|si| ∈ O(|S|)sin
e all strings 
an start with a unique 
hara
ter, making it impossible toshare any of the nodes in the trie.Sin
e all 
hara
ters must be examined, inserting a string si takes timelinear to the length of the string |si| together with the time taken to sear
hamong the 
hildren at ea
h node. If ea
h node 
ontains a balan
ed sear
h treeof the 
hildren8, sear
hing takes log(n), where n is the number of 
hildren.The total time used when inserting a string si is
O(|si| · log(n))The time used to sear
h for a string is identi
ally.If the alphabet is �nite, the 
hildren 
an be stored using a hash table9.Sear
hing among the 
hildren is thereby done in 
onstant time. Therefore,the time used to insert or sear
h for a string si is O(|si|).8Assuming some order of the alphabet, making it possible to 
ompare 
hara
ters lexi-
ographi
ally.9Or something similar for instan
e a ve
tor.7



3 Blind TrieThe Blind Trie stru
ture10 [Morrison, 1968℄ is used for storing strings in atree stru
ture. It is usually 
onstru
ted from a trie by eliminating all nodeswith only one 
hild, i.e. 
ollapsing nodes.As with the trie, it is possible to sear
h in the blind trie. In this se
tiontwo di�erent stru
tures are des
ribed. The �rst is the standard version of ablind trie while the se
ond is slightly altered to satisfy the results in [Brodaland Fagerberg, 2006℄.3.1 Standard versionIn the standard version, the 
hara
ters from the 
ollapsed nodes are storedon the edges. The leaves 
ontains the remaining 
hara
ters of the insertedstring, if any. The root node are always an ε-node. Figure 3 shows the
onstru
ted blind trie, when given the trie from �gure 2 as input.
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Figure 3: A blind trie example showing the (
ollapsed) tree where the strings"foo", "football", "footnote", "wine", "winebar", "winebottle", "wines" areinserted. The 
hara
ters from the 
ollapsed nodes are stored on the edges.Leaves stores the rest of the 
hara
ters, if any. A shaded node indi
ates that astring has ended at this node, i.e. the node is marked.3.1.1 Sear
hingA sear
h in the blind trie stru
ture is similar to a sear
h in the trie stru
ture,sin
e all the information from the original trie is present. The blind trie issear
hed top down while the string is s
anned left to right. When taking apath from one node to another, the 
hara
ters on the edge has to be 
he
kedagainst the 
orresponding 
hara
ters in the string.10Also known as a Patri
ia trie. 8



When the end of the string is rea
hed, two 
ases exists. Either the sear
hends in a node whi
h has to be examined to see if it has been marked. Ifthe node is a leaf the 
hara
ters 
ontained in the leaf are 
he
ked against the
hara
ters in the string to see if the string mat
hes. It 
ould also be the 
asethat the last 
hara
ter in the string is on the traversed edge, and a way of
he
king whether or not 
hara
ters on the edge has been marked is needed.3.1.2 InsertingInserting a string in a blind trie is possible, as all string information is 
on-tained within the stru
ture. It requires splitting edges, insertion of at mosttwo new nodes and a few updates lo
al to the inserted node.3.1.3 ComplexitySin
e a standard blind trie stores the same number of 
hara
ters as the triegiven as input, it uses the same amount of spa
e as the trie. Sear
hingand insertion bounds are the same as the trie, as it might not be possibleto 
ollapse any nodes of the input trie. Repla
ing an edge 
an be done in
onstant time.3.2 Altered versionAnother way of 
onstru
ting a blind trie, is to store the number of 
ollapsednodes on the edges. Figure 4 show an example of this, also given the triefrom �gure 2 as input. The leaves only 
ontain one 
hara
ter. The rest areomitted, if any.
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Figure 4: A blind trie example showing the (
ollapsed) tree where the strings"foo", "football", "footnote", "wine", "winebar", "winebottle", "wines" areinserted. The number of 
ollapsed nodes is stored on the edges. A shaded nodeindi
ates that a string has ended at this node, i.e. the node is marked.9



3.2.1 Sear
hingThe altered version stru
ture, where only numbers of 
ollapsed nodes arestored, makes sear
hing somewhat in
omplete. It is only possible to partly
he
k whether a string is present or not, sin
e only some of the 
hara
tersin the string 
an be veri�ed. In order to do a 
omplete 
he
k of the string,another stru
ture is needed to �ll in the blanks.The 
he
k 
an be done in the same way as with the standard blind trie.The blind trie is sear
hed top-down while s
anning the string left to right,only 
he
king the 
hara
ters in the nodes with the 
orresponding 
hara
tersin the string.3.2.2 InsertingInserting in the altered version is not possible without an additional datastru
ture, sin
e the 
hara
ters between nodes are missing, making it impos-sible to repla
e edges.3.2.3 ComplexityThe altered version uses in the worst 
ase the same amount of spa
e as a trie,as it might not be possible to 
ollapse any nodes of the input trie. Using thisargument again, sear
hing is also the same as the trie.

10



4 Gira�e TreeA Gira�e Tree [Brodal and Fagerberg, 2006℄ is de�ned as a tree having atleast half of its nodes as an
estors to all the leaves. An example of this isshown in Figure 5.
 

 

 

 

 

 

 Internal node

Leaf

Figure 5: An example of a gira�e tree. The shaded nodes are that half of thenodes whi
h must be an
estors of all the leaves.Gira�e trees are used together with the altered version of blind tries.Sin
e the blind trie does not store the 
hara
ters of the 
ollapsed nodes, it isonly possible to partly 
he
k whether a string is 
ontained in the blind trieor not. Using a set of gira�e trees 
overing the input trie 
ompletely, it ispossible to 
he
k a string as the gira�e trees 
ontains all the 
hara
ters fromthe input trie. Ea
h node in a blind trie refers to a 
orresponding gira�etree, i.e. a gira�e tree 
overing the same node. The idea is to make a fast
he
k of the string at 
ertain positions in the blind trie, and if this 
he
k issu

essful do a thorough 
he
k of the string in a gira�e tree.4.1 Covering a trie with gira�e treesCovering a trie by a set of gira�e trees 
an be done in di�erent ways. Figure 6show an algorithm doing this in a greedy manner. T i;j is denoting a tree
overing the leaves from i to j.The algorithm s
ans the leaves left to right maintaining a set of leaves
overed by a gira�e tree. In ea
h iteration it is 
he
ked whether the setin
luding the next leaf is still 
overed by a gira�e tree. If the set is still
overed by a gira�e tree, the leaf is added to the set. If not, the gira�e treeis outputted, the set emptied, and the leaf added to the set.Ea
h leaf in a trie is 
overed by exa
tly one gira�e tree, while the internalnodes 
an be 
overed by more than one. Figure 7 shows the 
overing of atrie using the greedy algorithm. 11



i = 1while(i <= n) do{j = iwhile(j < n and T i;j+1 is a giraffe tree) do{j = j+1}output T i;ji = j+1} Figure 6: Algorithm for 
overing a tree with gira�e trees.
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T 5;5 T 6;8Figure 7: Example of tree 
overing by gira�e trees.12



4.2 Sear
hingWhen validating a string, the blind trie is �rst traversed from root to leaf,partly 
he
king the string against the 
hara
ters stored in the nodes of theblind trie. If this 
he
k is su

essful, the gira�e tree atta
hed to the blindtrie leaf is traversed from root to leaf, validating the string 
ompletely. Asthe gira�e tree is just a sear
h tree, the traversal is done like any other.The advantage of using the gira�e tree, is that when validating a stringin a gira�e tree, half of the string is stored in the ne
k of the gira�e tree. Asthe nodes in the ne
k are unary, validating the nodes in the ne
k is a matterof s
anning.

13



5 Weight balan
ed treesA weight balan
ed tree is a tree balan
ed by the weights of its nodes. It isnot a spe
i�
 data stru
ture, but a term used to des
ribe that the nodes arepla
ed a

ordingly to a 
ertain weight. A 'weight' of a node 
ould be howoften it is sear
hed for in a sear
h tree. Therefore, it would be an advantageto pla
e 'heavy' nodes, so that they are found early in a sear
h through thetree.The goal of 
onstru
ting a weight balan
ed tree is to minimise the to-tal weight of the tree. The total weight, W , for a tree with n nodes,
m1, m2, . . . , mn, inserted is de�ned as

W =
n
∑

i=1

|di| · wiwhere |di| is the depth of node mi having weight wi. As a weight balan
edtree is balan
ed by weights and not height, it is rarely the 
ase that it haslogarithmi
 height, i.e. log(n).Some weight balan
ed tree are also sear
h trees. If the order of the nodesare taken into 
onsideration when 
onstru
ting the tree, it 
an be possibleto sear
h in the tree afterwards. Constru
ting a sear
h tree often results inlonger 
onstru
tion time or a higher total weight.5.1 Hu�man treeA Hu�man tree, [Hu�man, 1952℄ is a weight balan
ed tree and is introdu
edin an algorithm for 
reating an optimal pre�x 
ode, known as the Hu�man
ode. The algorithm en
odes the pre�xes using a binary tree, pla
ing thepre�xes that o

ur the most at the top of the tree. This tree is known as theHu�man tree. The 
ode for the pre�x is then the binary representation of thepath down the tree. The Hu�man 
ode is often used in data 
ompression.5.1.1 Constru
ting a Hu�man treeA Hu�man tree is 
onstru
ted by �rst inserting the weighted nodes intoa priority queue, and then repeatedly merging two nodes. The nodes aremerged by making the two lightest nodes in the priority queue 
hildren ofa new node, whi
h has the sum of its 
hildren weights as its weight. Thisnew node is then inserted into the priority queue, and the merging 
ontinues.When all nodes are merged into one tree the merging stops. The algorithmin Figure 8 
reates a Hu�man tree in this greedy manner.14



Insert all weighted nodes into priority queue Qwhile(1 < Q.size()) do{node left = Q.min()node right = Q.min()Q.insert(new node(left, right, left.weight + right.weight))}return Q.min()Figure 8: Algorithm for the Hu�man tree.An example of a Hu�man tree is shown in Figure 9. Ea
h node has a keyasso
iated showing that sear
hing e�
iently in a Hu�man tree is not alwayspossible, as the keys are not sorted left to right in the �nal tree.
a;5 b;2 c;10 d;6 e;4 f;1 a;5b;2 c;10 d;6 e;4f;1
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;7(a) (b) (
)
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d;6
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b;2
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e;4

f;1

;3
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;11;17

a;5

b;2

c;10 d;6

e;4

f;1

;3

;7

;11;17

;28

(d) (e) (f)Figure 9: Example of 
onstru
ting a Hu�man tree.5.1.2 ComplexityConstru
ting a Hu�man tree takes time O(n log(n)), where n is the numberof leafs in the tree, as the priority queue needs to sort all the nodes. Themerging takes time O(n) sin
e only n−1 merges are needed to 
onstru
t thetree.
15



5.2 Arti
le treeThe arti
le tree is taken from the algorithm in Lemma 5.1 from [Brodal andFagerberg, 2006℄ and is a weight balan
ed sear
h tree. It is 
onstru
ted intime O(n) and the depth of a leaf with key ki is 2 + 2⌈log(W/wi)⌉, where wiis the weight of ki and
W =

n
∑

i=1

wifor n leaves. See Se
tion 11 for a detailed analysis.Figure 11 shows the algorithm 
onstru
ting the arti
le tree. The leavesin the tree 
ontain the original values, while the internal nodes are used fordire
ting a sear
h down to the right leaf. The rank-fun
tion used in thealgorithm is de�ned as rank(w) = ⌈log(w)⌉The algorithm takes a list of sorted keys as input. It iterates throughthe list while maintaining a sta
k of trees where the ranks of the trees arestri
tly de
reasing from bottom to top. For ea
h key the algorithm deter-mines whether zero or more linkings should take pla
e. This is done byexamining the rank of the 
urrent key and the rank of the tree on top ofthe sta
k. A linking links the two trees at the top of the sta
k into one andpushes the new tree onto the sta
k.Figure 10 shows an example of the algorithm. The keys and weights arethe same as used in the Hu�man example.key a b 
 d e fweights 3 1 4 3 2 1
a;5 b;2 c;10 d;6 e;4 f;1 a;5 a;5 b;2 c;10 d;6 e;4 f;1
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a;7 a;5 b;2
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)
a;5 b;2
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d;6 e;4 f;1
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e;4

f;1

a;5 b;2

c;10 d;6

e;4 f;1

a;7

a;17

a;17

e;5

d;11

a;28

(d) (e)Figure 10: Example of 
onstru
ting a weight balan
ed sear
h tree.16



fun
tion link(Sear
hTree t1, Sear
hTree t2){weight = t1.weight + t2.weightkey = largestKeyInTree(t1)st = new Sear
hTree(key, weight)st.left = t1st.right = t2return st;}L = list of pairs (key, weight) sorted by keyvalueS = empty sta
k of sear
h treesforea
h (k,w) in L do{if(S.empty() or rank(w) < rank(S.top().w)) do{S.push(new Sear
hTree(k, w))}else{st = lowest tree in S for whi
h rank(st) <= rank(w)if(st != S.top()){while(st is not involved in a link) do{// Link two top treesS.push(link(S.pop(), S.pop()))}}if(rank(S.top().w) <= rank(w)){S.push(new Sear
hTree(k, w))S.push(link(S.pop(), S.pop()));while(two top trees in S are of same rank and 1 < S.size()) do{S.push(link(S.pop(), S.pop()));}}else{ // rank(w) < rank(S.top().w)while(two top trees in S are of same rank and 1 < S.size()) do{S.push(link(S.pop(), S.pop()));}S.push(new Sear
hTree(k, w))}}}while(1 < S.size()) do{S.push(link(S.pop(), S.pop()));}Figure 11: An algorithm for 
onstru
ting a weight balan
es sear
h tree.17



5.3 Optimal binary sear
h treeA optimal binary sear
h tree is a tree whose expe
ted sear
h 
ost is thesmallest. Given a set of keys with di�erent probabilities, it is 
onstru
ted byexhaustively 
he
king all possible trees using dynami
 programming11. Thetree with the smallest expe
ted sear
h 
ost is not ne
essary the tree with thesmallest overall height or has root the key with the highest possibility.The foundation for the optimal binary sear
h tree is the observation, thatthe two subtrees of an optimal binary tree also are optimal. Given a set ofsorted keys k1, k2, . . . , kn where ki < ki+1, one of these must be at the root.If this is ki then the keys smaller than ki must form an optimal binary sear
htree, and the same with the keys bigger than ki. Figure 12 illustrates thisidea. In the �gure, key i have been 
hosen to be the root, in the left subtreekey j and in the right key l.
1 nij l

i

j lFigure 12: The basi
 idea behind the 
onstru
tion of a optimal binary sear
htree.To �nd the optimal tree, all keys are tested. To avoid this from taking toolong as many subtrees are the same for di�erent roots, every time a subtreeis found to be optimal its result is stored in a table. The size of this tableis O(n2). The next time the subtree has to be 
al
ulated, the result 
an befound in the table avoiding the 
al
ulation.For instan
e when examine key k5 as the root of the tree 
ontaining thekeys k1, k2, . . . km, 5 ≤ m the optimal root for subtree k1 . . . k4 has to be found.Later when examine another key ki, 5 < i as root, the optimal subtree forkey k1, k2, . . . , k4 
an be found by a lookup in the table storing all 
al
ulatedsubtrees.The algorithm uses not only the set of keys k1, k2, . . . , kn but also a setof dummy keys d1, d2, . . . , dn+1. The dummy keys are pla
ed at the bottomof the tree as leaves. A leaf represents a sear
h not in the tree, i.e. rea
hing11The algorithm is not presented in this thesis. It 
an be found in [Cormen et al., 2003℄page 361. 18



a dummy node in a sear
h means, that the sear
h is unsu

essful. There are
n + 1 dummy keys as all failed sear
hes must be dire
ted to a dummy key.The order of the keys are

d1 < k1 < d2 < k2 < d3 < . . . < dn < kn < dn+1The algorithm uses the probabilities of ea
h key and dummy key to determinethe expe
ted sear
h 
ost.The time used to 
onstru
t and �nd the optimal tree is O(n3) when usingdynami
 programming and storing of previous results. This 
omes from threenested for-loops and only O(1) lookups in the table.5.4 Leaf oriented optimal binary sear
h treeA leaf oriented optimal binary sear
h tree is 
onstru
ted in the same way as anoptimal binary sear
h tree. The only di�eren
e is that the probabilities of thekeys k1, k2, . . . , kn are stored in dummy keys d1, d2, . . . , dn, i.e. E(di) = E(ki).Afterwards the tree is 
onstru
ted using the d− i dummy keys and the i− 1�rst keys. These keys are all given the probability 0. The 
onstru
tionalgorithm is the same as in Se
tion 5.3.

19



6 van Emde Boas Tree LayoutThe van Emde Boas layout [van Emde Boas et al., 1977℄ is a re
ursive methodof doing a layout of a binary tree. The layout is often used in 
a
he-obliviousalgorithms, sin
e the layout is well suited for these algorithms.The van Emde Boas layout of a binary tree is done re
ursively by �rsthalving the tree T into a top T1 and bottom trees T2, T3, . . . , Tn. Then thetop T1 is re
ursive laid out followed by a re
ursive layout of the bottom trees
T2, T3, . . . , Tn in a left to right order, Figure 13. The re
ursion stops whenthe height of the tree drops below a 
ertain threshold, for instan
e when theheight is 1.

T

Memory: T

T1

Memory: T1

T2 Tn...

T2 ... Tn(a) (b)Figure 13: The theoreti
ally van Emde Boas layout.The tree is laid out in memory the same way it is re
ursively traversed.This is indi
ated by the Memory bar at the bottom of Figure 13 (a) and (b).The order of the trees is important. Following a sear
h path root to leaf inthe tree 
an be done by s
anning forward in memory, i.e. it is never ne
essaryto sear
h ba
kward.To 
larify this, Figure 14 shown an example of a binary tree layout. Thetree in (a) is �rst halved into top and bottom resulting in the �ve trees in (b).These are further divided into top and bottom, and then laid out in memory,as the trees now have height one (
)12. Now sear
hing the path a
jl is amatter of s
anning or following pointers forwards (d).
12Only the top tree T1 is showed. 20



a

b c

d g j m

e f h i k l n o

Memory:

T

T(a)
a

b c

d g j m

e f h i k l n o

Memory:

T2 T3 T4 T5

T1

T1 T2 T3 T4 T5(b)
a

b c

Memory:

T1

T1

a b c(
)
Memory:

T1 T2 T3 T4 T5

a b c d e f g h i j k l m n o

a

b c

d g j m

e f h i k l n o(d)Figure 14: An example on a van Emde Boas layout.21





Part IICa
he-Obli
ious String Di
tonary





7 Previous workThe trie stru
ture provides a string di
tionary stru
ture whi
h 
an be usedin pattern mat
hing su
h as pre�x sear
hes. The time 
ost of 
onstru
tingand sear
hing in the RAM model has been known for some time, but is stillnot settled in the I/O and 
a
he oblivious model.In the RAM model, the sear
h time for a string P in a string di
tionarystru
ture over n strings is O(log(n) + |P |) for unbounded alphabets, and
O(|P |) for bounded. The 
orresponding 
onstru
tion time isO(n log(n)+|N |)for unbounded and O(N) for bounded alphabets, where N is the total lengthof all the inserted strings. This is a
hieved using weight balan
ed sear
htrees to store the 
hildren at ea
h internal node and the teles
ope property.A sear
h path P from root to leaf 
ost

|P |
∑

i=1

(

1 + log

(

wi

wi+1

))

= |P | + log

(

w1

w|P |

)

≤ |P | + log(n)where wi are the total weight of the weight balan
ed sear
h trees storing the
hildren at node i.A su�x tree 
an be 
onstru
ted13 in O(sort(N))14 in both the I/O and
a
he oblivious model. However, sear
hing is not trivial. It 
an be provedthat it is not possible to lay out a trie in external memory a
hieving a worst
ase sear
h time of O(logB(n) + |P |/B). Using the string B-tree [Ferraginaand Grossi, 1999℄, whi
h is a 
ombination of a B-tree and a blind trie, it 
anbe a
hieved in the I/O model. The B-tree depends heavily on the value of
B, making it useless in the 
a
he oblivious model.

13Using sorting and s
anning steps, [Fara
h-Colton et al., 2000℄.14Or more pre
ise O(N/B logM/B(N/B)).25



8 Overview of stru
tureIn this se
tion an overview of the stru
ture is given. Starting with a triestru
ture T , the stru
ture is de
omposed into 
onne
ted 
omponents. Ea
h
omponent 
ontains blind tries and gira�e trees. To 
onne
t the 
omponentsweight balan
ed sear
h trees are used. Figure 15 shows an example of a trie.The trie will be used as an example in the rest of the thesis.
T

Internal node

Leaf

Child-Parent relationFigure 15: The input trie T with the labels omitted for simpli
ity.8.1 De�nitionsBefore des
ribing how to de
ompose an arbitrary rooted tree into 
omponentsand layers a few de�nitions is needed.Let T be a tree15, v a node in T and Tv the subtree rooted at v. Then nvis the number of leaves in the subtree Tv. The depth of v, depth(v), is thenumber of edges on the path from v to the root. The rank of v, rank(v), isde�ned as rank(v) =

{

0 if nv = 0
⌈log(nv)⌉ elseFigure 16 shows nv and rank(nv) of the example trie from Figure 15.8.2 Partition a tree into 
omponentsThe 
omponents of a tree are identi�ed re
ursively top-down, starting withthe root of the tree. From the root the nodes are divided into strata and 
an-15For instan
e a trie. 26



Internal node with nv

Leaf with nv

Child-Parent relation

0 0 0 0

0 0 0

0 0 0

2

2

2

2

2

2

2

1

1

1

4

4

4

4

4

3

3

10

10

i

i Internal node with
rank(nv)

Leaf with rank(nv)

Child-Parent relation

0 0 0 0

0 0 0

0 0 0

1

1

1

1

1

1

1

0

0

0

2

2

2

2

2

2

2

4

4

i

i(a) (b)Figure 16: (a) The example trie with nv for ea
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hnode.didates for the 
omponent are identi�ed. The 
onne
ted 
andidates startingat the root form the 
omponent. Non-
andidate nodes having their parentinside the 
omponent form new roots in new 
omponents. For ea
h new rootnew strata and 
andidates are found.Let r be the root of the tree, or a non-
andidate node, whose parent isassigned to a 
omponent. Starting at r the nodes in Tr is divided into strataby a depth 
ondition. Let the node in question be denoted v. Ifdepth(v) − depth(r) < 220then node v belong to strata 0. If this is not the 
ase, then v belongs tostrata i for whi
h the following is true
22i−1

≤ depth(v) − depth(r) < 22ifor i = 1, 2, . . .. Figure 17 shows the depths and strata for the nodes in theexample trie, where r is the root.When the nodes in Tr are divided into strata it is possible to �nd the
andidates for the 
omponent. Let ε ∈ (0, 1] be a 
onstant, used to in�uen
ethe size of 
omponents. For small values of ε the 
omponents will 
ontainfew nodes, and for large values more nodes. A node in Tr is a 
andidate, ifthe following is true rank(r) − rank(v) < ε2i27
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8.3 Divide a 
omponent into layersIt is straightforward to divide a 
omponent into layers. When a node is
ontained in a 
omponent, the strata in whi
h it is 
ontained be
omes thelayer Strata i be
omes layer i.Figure 18 (b) shows the layer in whi
h ea
h node is 
ontained. If a node hasmore than one 
hild in the next layer, a dummy node16 is inserted betweenthe node and it 
hildren. This node will be 
ontained in the same layer asthe 
hildren. The shaded node in Figure 18 (b) is an example of a dummynode.Let the 
omponent rooted at node v be denoted by Cv and the layer i inthe subtree Tv be denoted by Li
v. Then Cv and Li

v 
an be de�ned as
Lo

v = {w ∈ Tv | rank(w) = rank(v) ∧ (1)depth(w) − depth(v) < 220

}

Li
v = {w ∈ Tv | rank(v) − rank(w) < ε2i ∧ (2)

22i−1

≤ depth(w) − depth(v) < 22i

∧
(

∃u ∈ Li−1
v : depth(u) − depth(v) = 22i−1

− 1 ∧ w ∈ Tu

)

}

Cv =

∞
⋃

i=0

Li
v (3)8.4 Blind tries and gira�e treesEa
h layer 
ontains one or more subtries, whi
h all are 
ompressed into blindtries. As these subtries are part of the original trie, nodes inside the subtriemight have 
hildren in other layers or 
omponents. When 
onstru
ting ablind trie, only nodes inside the 
urrent layer of the subtrie are used. Blindtries do not have nodes in other layers or 
omponents.In Figure 19 (a) the blind tries for 
omponent 2 of Figure 18 are shown.The blind tries will be used as a look-ahead stru
ture, validating only partsof the sear
h string. Validating the missing part is done in a gira�e tree, soea
h subtrie is 
overed by a forest of gira�e trees. Figure 19 (b) shows thegira�e trees for 
omponent 2. Gira�e trees have no nodes in other layers butare allowed to have referen
es to roots in other 
omponents.16An ε-node. 29
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omponent 2. (b) The gira�e trees for the same 
omponent.In order to do a 
omplete 
he
k of a sear
h string, ea
h blind trie nodemust have a referen
e to a gira�e tree 
overing the same trie node as theblind trie node in the original trie. In this way ea
h time a blind trie leaf isrea
hed, the string 
an be validated in the 
orresponding gira�e tree.If a mismat
h o

urs when sear
hing in the blind trie, it might be thatthe string is not inserted in the original trie. But it 
ould also be that thesear
h should 
ontinue in another 
omponent. As a sear
h in a blind trie
annot be dire
ted into another 
omponent, the gira�e trees are used. Thegira�e nodes use their referen
es to other 
omponents to dire
t the sear
hes.
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h string, and the string is still valid, the sear
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omponent is amatter of sear
hing in blind tries and validating in gira�e trees. Figure 2030



shows the blind tries and gira�e trees of 
omponent 2 put together, enablinga sear
h through the 
omponent.8.5 BridgesGira�e nodes do not have a dire
tly referen
e to roots in other 
omponents.Instead they have a referen
e to a weight balan
ed sear
h tree17, in whi
hit is possible to sear
h for the roots. When 
onstru
ting the bridge, the nvvalues stored in the roots are used as weights.
Internal node with
component number

Child-Parent relation

1

1

2 3 4 5
i

Component rooti

Internal Giraffe node with
component number

Reference
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i
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Weight balanced search
tree node with keyi

3
4
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(a) (b)Figure 21: (a) The top of the trie where the roots of 
omponent 1, 2, 3, 4 and5 are shown. (b) The weight balan
ed sear
h tree for 
omponent roots 2, 3, 4and 5 atta
hed to a gira�e node from 
omponent 1.Figure 21 (a) shows the top of the original trie, and (b) the 
orrespondingweight balan
ed sear
h tree atta
hed to the last gira�e node of 
omponent1. The referen
es to 
omponent roots are in fa
t referen
es to the rootsof the blind tries of these 
omponents. Putting it all together, blind triesreferen
es gira�e trees. The gira�e trees referen
es other blind tries andweight balan
ed sear
h trees. The weight balan
ed trees referen
es to blindtries and so on. Figure 22 shows the �nal stru
ture of the example trie, whenall is put together.8.6 Component treeThe last stru
ture presented in this se
tion is a 
omponent tree, denoted T ′,used to do a van Emde Boas layout of the �nal stru
ture, the 
a
he obliviousstring di
tionary. As the van Emde Boas layout uses a binary sear
h tree, abinary tree representing the 
a
he oblivious string di
tionary stru
ture mustbe 
reated.17Also 
alled a bridge. 31



1

3

3

3 3

4

4

5

5

8

6 7
Internal node as blind trie node
with component number

Leaf as blind trie node 
with component number

Child-Parent relation

2

2

2

2 2

2 2 2 2

i

i

Internal node as giraffe node
with component number

Leaf as a giraffe node
with component number

2

2

2

2

2

2

2

2 2

i

i

2

2

2

2 2

1

1

3

3

3

4

4

4

5

5

5

8

6 7

8

3

2
3

4

3

3

5

2
3 4

6 7

6

5

Weight balanced search tree
node with keyi

References

Figure 22: The �nal stru
ture, where all blind tries, gira�e trees and weightbalan
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When 
reating the 
omponent tree, ea
h 
omponent needs to identifythose nodes inside the 
omponent having 
hildren in other 
omponents.These nodes are used to 
reate a binary weight balan
ed tree18 representingthe 
omponent. The weight of a node, when 
reating the weight balan
edtree, is the sum of the nv values of its 
hildren lo
ated in other 
omponents.A binary weight balan
ed tree 
ould be 
reated by the Hu�man algorithm,the arti
le algorithm.or even the leaf oriented optimal binary sear
h treealgorithm.The weight balan
ed trees representing the 
omponents are glued togetherusing the bridges19 
onstru
ted earlier. This is done by 
onne
ting the nodeshaving 
hildren in other 
omponents with the 
orresponding roots of thebridges. Figure 23 (a) shows the 
omponent tree for the �nal stru
turein Figure 22. In this example all the trees representing 
omponents only
ontains a single node20. The red nodes are the same as in both �gures.
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i(a) (b)Figure 23: (a)The 
omplete 
omponent tree for the example stru
ture. (b) Theexample trie with labels inserted. The green path highlight a sear
h for the stringaddab. Nodes who label is E is epsilon (dummy) nodes.8.7 Sear
h exampleTo illustrate how di�erent the trie stru
ture is from the 
a
he oblivious stringdi
tionary stru
ture in Figure 22, a short sear
h example is presented. Fig-18Note it need not be a sear
h tree.19The weight balan
ed sear
h trees.20These are the green nodes. 33



ure 23 (b) shows the original trie with labels inserted into the nodes. Thegreen path is the sear
h path when sear
hing for the string addab. The
ε-node at the top is just a dummy node used as a starting point.The same sear
h is shown in Figure 24 where the blind tries, gira�e treesand weight balan
ed sear
h trees are traversed. The nodes uses the samelabels as in the original trie. As seen, there is a great di�eren
e in the sear
hpatterns.

E

E

E

a b

E

E

E

E

E

E E
Internal node as blind trie node
with label

Leaf as blind trie node 
with label

Child-Parent relation

E

E

E

a b

a b a b

i

i

Internal node as giraffe node
with label

Leaf as a giraffe node
with label

a

a

a

a

a

a

a

a b

i

i

a

b

a

a b

E

a

b

E

a

c

c

c

d

d

a

b

a b

a

b

a
b

c

E

b

d

a
b c

a b

a

b

Weight balanced search tree
node with key (label)i

References

Figure 24: A sear
h for the string addab in the 
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h. A node labelled with an E indi
ates an ε-node.
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9 Memory layoutA van Emde Boas layout of the 
omponent tree T ′ is not trivial, as thestru
ture 
ontains blind tries, gira�e trees and weight balan
ed sear
h trees.The van Emde Boas layout of the 
omponent tree is used to determine inwhat order the di�erent 
omponent are laid out in memory, while the depthof the re
ursion determines the order of the layers.9.1 Layout of 
omponent tree T ′There are two kind of trees in the 
omponent tree. The �rst is the weightbalan
ed tree indu
ed by the bridge nodes in ea
h 
omponent. The se
ondis the weight balan
ed sear
h tree 
onne
ting the 
omponents. The layout ofa node depends on whi
h kind of tree it belongs to.In a weight balan
ed tree, only the root is laid out in memory. The restare 
onsidered dummy nodes. Doing a layout of the root, means doing alayout of the blind trie and the asso
iated gira�e trees, lo
ated in the �rstlayer21 of the 
omponent. The rest of the 
omponent, layer 1, 2, . . . , k, arelaid out later, Se
tion 9.2. The dummy nodes are ignored and thus not laidout.The nodes in a weight balan
ed sear
h tree do not represent any 
ompo-nents and are simply laid out when rea
hed in the re
ursion.Figure 26 shows the re
ursive 
all on the top of the 
omponent tree fromSe
tion 8, Figure 25. In the �gure the layout at the bottom is only a pseudolayout illustrating the order of the nodes. Only the 
omponent roots areshown, hiding the details of the blind tries and gira�e nodes. The trianglesrepresent the di�erent re
ursions of the layout.
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9.2 Depth of re
ursionIn a van Emde Boas layout of a 
omponent tree, the depth of the re
ursionis used to determine in whi
h order to lay out the di�erent layers of the 
om-ponents. The depth of the re
ursion is numbered in reverse order, beginningwith the inner most re
ursive 
all. This is illustrated in Figure 27.
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Recursion depth 1

Recursion depth 2

0

0 0

0

00

0

00

1

1 1

2

Figure 27: The depth of re
ursive 
alls is numbered in reverse order, startingwith the inner most re
ursive 
all.The reason for this is that the depth now 
orrespond to the layers of the
omponents when these are laid out. Roughly speaking, when a 
omponent22is 
ontained in a re
ursion of depth 0, then its layer 0 is laid out. When it is
ontained in depth 1, its layer 1 are laid out and so on. The layers are alwayslaid out in in
reasing order, so layer 0 is the �rst to be laid out, then layer 1and so forth. Put in another way, when a 
omponents ith layer is laid out,its (i + 1)th layer is laid out in the re
ursive 
all it returns to.To illustrate this, Figure 28 shows an example of this. Starting with are
ursive 
all at depth 2, the tree is divided into one top and two bottomtrees. The top is re
ursively divided again into a top node and a bottomnode (a). As 
omponent 1 is 
ontained in a re
ursive 
all at depth 0, heightof the tree is 1, its layer 0 is laid out. Following the van Emde Boas layout,the bottom node is visited and laid out, as it is a weight balan
ed sear
h treenode, (b). Now the 
all returns to re
ursion depth 1 of the top tree, and all
omponents 
ontained inside the top triangle will have their next layer laidout. In this 
ase layer 1 of 
omponent 1, (
).Next in the layout, the left bottom tree is visited, and its top node laidout, (d). Then layer 0 of 
omponent 2 is laid out, as it is visited at re
ursiondepth 0, (e). Returning to re
ursion depth 1 of the left bottom tree, layer 1of 
omponent 2 is laid out, (f). The same happens to the right bottom tree,(g), (h), (i). Returning from depth 1 of the bottom right tree, the re
ursion22By 
omponent means the root of the weight balan
ed tree.37
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returns to depth 2, whi
h 
overs all the 
omponents. Therefore, their nextlayer is laid out, (j). As no more re
ursive 
all have been made, i.e. there isno re
ursion of depth 3, the rest of the 
omponents layers (if any) are laidout.9.3 Blind trie and gira�e tree layoutWhen doing a layout of a layer, all the blind tries 
ontained in the layerfollowed by the asso
iated gira�e trees are laid out. Both a blind trie and agira�e tree is laid out top to bottom in BFS 23 order. Figure 29 shows anexample, taken from se
tion 8. The labels are for illustrating purpose only.
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Memory:

a b c d e f g a h b d e a i c f gFigure 29: The layout of layer 2 of 
omponent 2. First the blind trie is laid outin BFS order followed by the two gira�e trees asso
iated with the blind trie, alsoin BFS order.9.4 Layout exampleTo 
omplete the example from Se
tion 8 a 
omplete layout of the 
a
he obliv-ious string di
tionary stru
ture is given. Figure 30 (a) shows the 
omponenttree, (b) the van Emde Boas re
ursions and Figure 31 the stru
ture and thelayout.23Breadth First Sear
h 39
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Figure 31: The whole stru
ture of the example tree and its layout using vanEmde Boas layout in Figure 30. The label E indi
ates an ε-node.
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10 Sear
hingThe sear
h for a string s is done in three di�erent stru
tures, the blindtrie stru
ture, the gira�e tree stru
ture and the weight balan
ed sear
h treestru
ture. Validating whether or not a string is present in the 
a
he obliviousstring di
tionary requires traversal of these stru
tures.When sear
hing for a string s in a 
a
he oblivious string di
tionary stru
-ture, the �rst part of the string is 
he
ked in the blind trie lo
ated at theroot. This results in a veri�
ation in a gira�e tree, whi
h dire
ts the sear
hfor the next part of s into another blind trie, possibly using a weight bal-an
ed sear
h tree. This 
ontinues until a mismat
h o

ur or s is found to be
ontained.10.1 Sear
hing in a blind trieA sear
h for a string s in a blind trie is done top-down. When rea
hing anode the label at that node is not 
ompared to the 
orresponding string.Instead the 
hildren are sear
hed. As the rea
hed node 
ontains how many
hara
ters there have been omitted, it is possible to �nd the 
hara
ter in s towhi
h at most one of the 
hildren must mat
h. As the 
hildren have di�erentlabels, only one of the 
hildren 
an mat
h the 
orresponding 
hara
ter in s.Therefore, the sear
h in the blind trie is unique.When a leaf is rea
hed, the gira�e tree asso
iated with the leaf is returned.This gira�e tree 
ontains all 
hara
ters between the blind trie root and theleaf, in
luding all the omitted 
hara
ters. Therefore, it 
an be used to do a
omplete 
he
k of the part in s 
he
ked by the blind trie.If a mismat
h is found at a node, i.e. none of the 
hildren mat
hes, its
orresponding gira�e tree is returned. The reason is that the sear
h to theparent 
orresponded to s, but the sear
h from parent to 
hild did not. It ispossible that somewhere between the parent and 
hild, the sear
h needed to
ontinue in another 
omponent. This 
an only be veri�ed by traversing thegira�e tree, as the blind trie is 
onstru
ted of the internal nodes in the layer.10.2 Sear
hing in a gira�e treeSear
hing in a gira�e tree is similar to sear
hing in a blind trie. The sear
his done top-down, and sin
e no 
hara
ters were omitted when the gira�e treewas 
onstru
ted s 
an be fully 
he
ked.The result of a sear
h in a gira�e tree is either a blind trie root or noth-ing. A sear
h is only 
ontinued into a 
hild node if the parent mat
hes the
orresponding 
hara
ter in s, and the 
hild mat
hes the next 
hara
ter in s.42



If the parent mat
hes and none of the 
hildren does, the sear
h 
annot
ontinue in the gira�e tree. Then the weight balan
ed sear
h tree lo
ated atthe node is sear
hed. If the sear
h is su

essful, the blind trie rea
hed in theweight balan
ed sear
h tree is returned. If not the sear
h is ended as s didnot have a mat
h in the gira�e tree.When a gira�e leaf is rea
hed, the weight balan
ed sear
h tree is sear
hedfor the next 
hara
ter in s. If a mat
h is found the blind trie from this sear
his returned. Otherwise, the blind trie referen
ed to from the gira�e leaf (ifany) is returned.10.3 Sear
hing in a weight balan
ed sear
h treeA weight balan
ed sear
h tree is traversed as any other sear
h tree. Atea
h node the label stored at the node is 
he
ked against the 
orresponding
hara
ter in s, and the sear
h 
ontinues into the left or right 
hild. When aleaf is rea
hed, the leafs label is 
ompared with the 
orresponding 
hara
terin s. If it is a mat
h, the blind trie referen
ed at the leaf is returned.10.4 Example of sear
hingReturning to the sear
h example in Figure 24 from Se
tion 8 it is now possibleto des
ribe the sear
h in details.1. First the blind trie at the root is sear
hed for the 
hara
ter a. The
ε-node mat
hes everything so the sear
h 
ontinues. As the node is aleaf, the gira�e tree referen
ed at the node is returned2. The gira�e tree is used for 
he
king the mat
h of a. As an ε-nodemat
hes everything, the sear
h pro
eeds into the 
hild, where a mat
his found. As the 
hild is a leaf, the sear
h is dire
ted to the weightbalan
ed sear
h tree, sear
hing for the letter d. A mat
h is found tothe right24 and the blind trie whose root 
ontains the 
hara
ter d isreturned.3. The blind trie is sear
hed for the 
hara
ter d. As the blind trie 
onsistsof just an ε-leaf the gira�e tree asso
iated are returned. The gira�etree is used for validating the result. The blind trie referen
ed from thegira�e tree leaf is returned.24In the example drawing.
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4. The sear
h in the blind trie and gira�e tree mat
hes the 
hara
ter aand the sear
h 
ontinues into the weight balan
ed sear
h tree at thebottom, where a mat
h is found.5. The blind trie returned from the weight balan
ed sear
h tree is sear
hedfor the letter b. Again the blind trie is an ε-node and the 
he
king in thegira�e tree is su

essful. As s 
ontains no more 
hara
ters, the gira�enode is 
he
ked for any strings ending at this node in the original trie.This information is stored in the gira�e node, and this result is returnedending the sear
h.
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11 AnalysisThe analysis is divided into two part. The �rst part analyses the spa
eusage of the 
a
he oblivious string di
tionary stru
ture and the se
ond partanalyses the sear
h time. Before analysing the spa
e usage a small lemmaand theorem is presented, setting an upper bound on the number of leavesin a layer, and the number of 
omponents in the stru
ture.Lemma 11.11. If a node w ∈ Cv has a 
hild u with rank(u) = rank(w), then w and uare in the same 
omponent.2. If a node w ∈ T has only one 
hild u, then w and u are in the same
omponent.3. Li
v is a forest with at most 2ε2i+1 leaves.4. Li
v 
ontains at most (22i

− 22i−1

)2ε2i+1 nodes.5. For a node w ∈ Li
v, w 6= v, with a 
hild u /∈ Cv, then rank(v)−rank(u) ≥

ε2i.Proof1. Sin
e rank(v) − rank(w) < ε2i so is rank(v) − rank(u) and thus the
hild u is a 
andidate, if w is a 
andidate. (The 
andidate requirementis rank(v) − rank(w) < ε2i for a node w ∈ Li
v)2. Same argument as (1). Sin
e they both have the same number of leaves,

nw = nu, they have the same rank.3. First let w1, w2, . . . , wk be leaves of Li
v. A leaf is a node in Li

v having no
hild in Li
v. As the subtrees Tw1

, Tw2
, . . . , Twk

(of Tv) are disjoint then
nw1

, nw2
, . . . , nwk

≤ nv. From the 
andidate requirement, it follows thatfor a leaf wj, 1 ≤ j ≤ k, it is know thatrank(v) − rank(wj) ≤ ε2i ⇒

⌈log(nv)⌉ − ⌈log(nwj
)⌉ ≤ ε2i ⇒

2⌈log(nv)⌉ − 2⌈log(nwj
)⌉ ≤ 2ε2i

⇒

2⌈log(nv)⌉

2ε2i ≤ 2⌈log(nwj
)⌉ ⇒45



nv

2 · 2ε2i =
nv

2ε2i+1
≤ nwj

⇒

nv

nwj

≤ 2ε2i+1from whi
h it 
an be 
on
luded, that Li
v has at most 2ε2i+1 leaves.4. Let w be a leaf in Li

v. It has at most 22i

− 22i−1 an
estors in Li
vsin
e it ful�l the strata requirement 22i−1

≤ depth(w) − depth(v) <
22i . As there 
an be at most 2ε2i+1 leafs in Li

v, (3), there are at most
(22i

− 22i−1

)2ε2i+1 nodes in Li
v.5. Let w ∈ Li

v, w 6= v and let u /∈ Cv be a 
hild of w. Sin
e u /∈ Cvthis mean, that u does not ful�l the 
andidate requirement, and hen
erank(v) − rank(u) 6< ε2i ⇒ ε2i ≤ rank(v) − rank(u)

�Theorem 11.1 On a root-to-leaf path in a tree T with n leaves, there are atmost 1 + ⌈log(n)⌉ 
omponentsProof As the ranks of the 
omponent roots are stri
tly de
reasing, lemma11.1 (1), there 
an be at most ⌈log(n)⌉ + 1 
omponents, as the �rst hasrank = log(n), the se
ond rank = log(n − 1) and so on.
�11.1 Spa
e usageThe spa
e usage of a blind trie 
overing the trie T is dominated by the spa
eusage of the asso
iated 
overing of T by gira�e trees. Therefore, it is su�
ientto look at the spa
e usage of this 
overing of gira�e trees.Lemma 11.2 The algorithm in Figure 6 
onstru
ts a 
overing of T withgira�e trees of total size O(N) where N is the number of nodes in TProof Let T i:j and T j+1:k be two 
onse
utive gira�e trees 
onstru
ted usingthe algorithm in Figure 6. Observe that the only nodes from T i:j whi
h 
anappear in any su

eeding gira�e tree 
onstru
ted after T i:j are those on thepath to leaf lj+1, i.e. the rightmost ones.For the 
onstru
tion of T i:j two sets, Ai:j and Bi:j will be 
harged. Ai:jis the set of nodes in T i:j whi
h is not on the path to lj+1. Bi:j is the set46



of nodes on the path to lj+1 but not on the path to li. Figure 32 shows two
ases of these sets25.
i

j

j+1

Giraffe nodes

A nodes

B nodes

i

j

j+1

Giraffe nodes

A nodes

B nodes(a) (b)Figure 32: Two 
ases showing the sets Ai:j and Bi:j.As T i:j and T j+1:k are two 
onse
utive gira�e trees, this means that T i:j+1
annot be a gira�e tree, i.e. its ne
k is too short. Removing all the nodesin Ai:j and Bi:j from T i:j+1 leaves only the se
tion of the ne
k shared by T i:jand T i:j+1. This implies26
|Ai:j| + |Bi:j| >

|T i:j+1|

2and
|T i:j| < |T i:j+1| < 2

(

|Ai:j| + |Bi:j|
)A node is only 
ontained in Ai:j exa
tly on
e, whi
h is in the last gira�etree using it. Similar a node is 
ontained at most on
e in Bi:j. This is whenit is used in the tree 
onstru
ted prior to the tree, where it is 
ontained in theleftmost path for the �rst time. Noti
e, for the last tree to be 
onstru
ted,

T k:n, no leaf ln+1 exists, therefore, Ak:n = T k:n. From this follows
∑

T i:j

|T i:j| <
∑

T i:j

2
(

|Ai:j| + |Bi:j|
)

≤ 4N

�In order to analyse the spa
e usage of a subtree of the van Emde Boaslayout, the height of the weight balan
ed tree is needed, as this is used in the25Both taken from [Brodal and Fagerberg, 2006℄.26Be
ause of the short ne
k. 47




omponent tree. The algorithm used to 
onstru
t the weight balan
ed treeis analysed in the following lemma.Lemma 11.3 Let x1 ≤ x2 ≤ . . . ≤ xn be a list of n keys in sorted order,and let ea
h key xi have an asso
iated weight wi ∈ R+. Let W =
∑n

i=1 wi.The algorithm in �gure 11 
onstru
ts a binary sear
h tree where ea
h key xiis 
ontained in a leaf of depth at most 2 + 2⌈log(W/wi)⌉.Proof Let the rank of a node be the rank of the tree rooted at the node.Denote an edge e�
ient if the rank of its upper node is larger than the rankof its lower node. Let an ine�
ient edge be 
overed if the edge immediatelyafter is e�
ient. To see there are k e�
ient edges in a root to leaf path ea
hlinking in the algorithm must be examined.Consider the linking of trees on the sta
k S in
luding st (Lowest tree in Sfor whi
h rank(st) ≤ rank(T ′)). As all trees in S have di�erent rank, and theranks are de
reasing from bottom to top, ea
h linking of the two top treeswill 
ontain at least one e�
ient edge, Figure 33. This way of linking insuresthat all ine�
ient edges are 
overed (Ex
ept possibly edges to the root andin
ident to leaves).
st

Tree
Efficient edge
Edge

st
Tree
Efficient edge
Edge

st
Tree
Efficient edge
Edge

st
Tree
Efficient edge
Edge(a) (b) (
) (d)Figure 33: Linking trees from the sta
k results in all ine�
ient edges will be
overed.After the linking up until st, three 
ases exists:rank(T ′) < rank(S.top) As T ′ is just pushed onto the sta
k S, no linkinginvolving T ′ happens.rank(T ′) = rank(S.top) The �rst linking of T ′ and S.top will result in twoe�
ient edges, as the new tree will have rank(T ′) + 1, Figure 34 (a).rank(T ′) > rank(S.top) The linking of S.top and T ′ results in one e�
ientedge, Figure 34 (b).Sin
e there are k e�
ient edges in a root-to-leaf path, there 
an be atmost 2k + 2 edges in
luding edges to the root and in
ident to leaves. Goingfrom the root to a leaf 
ontaining key xi, it follows that48



s.top

Tree
Efficient edge
Edge

T’
s.top Tree

Efficient edge
Edge

T’(a) (b)Figure 34: Linking S.top with T ′ results in at least one e�
ient edge.
⌈log(wi)⌉ + k ≤ ⌈log(W )⌉ ⇒

log(wi) + k < 1 + log(W ) ⇒

k < 1 + log

(

W

wi

)

⇒

k ≤

⌈

log

(

W

wi

)⌉as k is an integer.
�Now is it possibly to analyse the height of the 
omponent tree T ′. Thisis done in theorem 11.2.Theorem 11.2 The height of T ′ is O(log(n)) where n is the number of leavesin T .Proof A root to leaf path in T 
orresponds to a root to leaf path in T ′. Thenumber of 
omponents traversed in a root to leaf path is O(log(n)), theorem11.1. Ea
h of these 
omponents are repla
ed by a weight balan
ed tree in

T ′. In a root to leaf path in T ′ the number of nodes visited in the weightbalan
ed tree for 
omponent i is 2 + 2 log(wi+1/wi), lemma 11.3. Therefore,the total number of nodes visited is
O





log(n)
∑

i=0

2 + 2

⌈

log

(

wi+1

wi

)⌉



 = O



2 log(n) + 2

log(n)
∑

i=0

(

1 + log

(

wi+1

wi

))





= O



4 log(n) +

log(n)
∑

i=0

log

(

wi+1

wi

)





= O

(

4 log(n) + log

(

wlog(n)

w0

))

= O (log(n))49



using the teles
ope property (log(x/y) + log(y/z) = log(x/z)).
�As the height of the 
omponent tree is bounded, only the spa
e requiredfor ea
h layer is missing. The spa
e usage for layer i is found in lemma 11.4.Lemma 11.4 Storing Li

v uses O(|Li
v|) spa
e, whi
h is O(22i+1

).Proof From lemma 11.2 the total spa
e required for Li
v is O(N). By Lemma11.1 (4) this is dominated by O((22i

−22i−1

)2ε2i

). Sin
e ε ≤ 1 this is O(22i+1

)

�It is now �nally possibly to analyse the spa
e usage of a subtree X of T ′.Theorem 11.3 A subtree X of T ′ of height 2i in the van Emde Boas layoutof T ′ requires spa
e ((22i

)3).Proof As T ′ is a binary tree, so is X. Sin
e the height of X is 2i, it 
ontainsat most 22i leaves, Figure 35.
X

T’

2
i

2
i2Figure 35: The subtree X inside the binary tree T ′.Therefore, X 
ontains O(22i

) 
omponent nodes, ea
h having their layer
0, 1, . . . , i = log(2i) inside X. The rest of the layers are pla
ed outside X.As ea
h layer uses O(22i+1

) spa
e, lemma 11.4, the spa
e usage is O(22i

·
∑i

j=0 22j+1

). In the sum, layer i dominates the previous layers, implying thespa
e usage is 50



O

(

22i

·

i
∑

j=0

22j+1

)

= O
(

22i

· 22i+1
)

= O
(

22i

· 2(2i)2
)

= O

(

22i

·
(

22i
)2
)

= O

(

(

22i
)3
)

�11.2 Time usageTraversing the 
a
he oblivious string di
tionary is a matter of traversing blindtries and gira�e trees. The following theorem bounds the I/Os of traversinga blind trie, 
ompared to the previous traversed gira�e tree.Theorem 11.4 The number of I/Os that may be done in traversing thepattern while sear
hing in the blind trie for the given ith layer is at most a
onstant fa
tor greater than the number of I/Os done in traversing the gira�etrees for the previous layerProof An ith layer 
ontains at most 2ε2i+1 leaves, lemma 11.1 (3), sear
hingthe asso
iated blind trie takes at most O(2ε2i+1) I/Os. The root-to-leaf pathof the gira�e tree from the previous layer 
ontains at most O(22i−1

) nodes,thus traversing the gira�e from the previous layer takes at most O(22i−1

/B)I/Os.
�Sin
e traversing a blind trie is only a 
onstant fa
tor greater than travers-ing the previous gira�e tree, it is interesting to bound the number of I/Osused traversing a gira�e tree.Lemma 11.5 Let T be a gira�e tree with N nodes stored in BFS layout.Traversing a path of length p starting at the root of T requires O(p/B) I/Os.Proof There exists two 
ases. If p < N/2 then p is 
ontained in the topmostnodes of the gira�e, whi
h all are laid out 
onse
utively left to right. There-fore, a

essing the path requires O(p/B) I/Os. Otherwise the path might go51



from the root to a leaf. As the nodes are laid out in BFS that is they arelaid left to right in memory, following the path is bounded by s
anning thearray 
ontaining all the nodes O(N/B) = O(p/B) I/Os.
�The previous lemma leads to the following theorem.Theorem 11.5 Given a tree T with N nodes, there exists a 
a
he oblivious
overing of T by subtrees (gira�e trees) where the total spa
e requirement ofthe 
overing is O(N), ea
h root-to-leaf path is present in one subtree andthe pre�x of length p of a predetermined root-to-leaf path 
an be traversed in

O(p/B) I/Os.Proof This follows dire
tly from lemma 11.5 and 11.2. As ea
h leaf is 
hargedas an Ai:j exa
tly on
e, ea
h root-to-leaf path is present in one subtree.
�Finally it is possible to bound the number of I/Os used, when sear
hingin a 
a
he oblivious string di
tionary.Theorem 11.6 Pre�x queries for a query string P in a string di
tionarystoring n strings use O(logB(n) + |P |/B) I/Os.Proof The number of I/Os used in a sear
h in the 
a
he oblivious stringdi
tionary are 
aused by either a

essing the sear
h string P or by a

essingthe string di
tionary stru
ture. First the number of I/Os used when a

essing

P is analysed and se
ond a

essing the 
a
he oblivious string di
tionarystru
ture.S
anning P from left to right takes ⌈|P |/B⌉ I/Os. Unfortunately, theblind trie uses random I/Os when looking ahead in P , so extra 
are needto be taken to bound the number of random I/Os. Assume without lossof generality, that the next Θ(M) unmat
hed 
hara
ters of P are kept inmemory. Only look-ahead of Ω(M) 
hara
ters 
an now 
ause a random I/O.Consider the 
ase where an a

ess to Li
v 
auses a look-ahead of Ω(M)during the blind trie sear
h for Li

v, i.e. Ω(M) = 22i. As Li
v has size O(2ε2i

),lemma 11.1 (3), and thereby O(2ε2i

) possibly random I/Os, then in orderfor the mat
h 
hara
ters, Ω(22i−1

), in the previous layer Li−1
v to pay for therandom I/Os then

B · 2ε2i

= O(22i−1

) (4)is needed. 52



Assuming a tall 
a
he assumption B2+δ ≤ M for some 
onstant δ > 0,(4) 
an be shown. Using the assumption
B ≤ M

1

2+δ ≤
(

22i
) 1

2+δsin
e M ≤ 22i. Using this, it follows that
(

22i
)

1

2+δ

· 2ε2i

≤ 22i−1

⇒

22i· 1

2+δ
+ε2i

≤ 22i−1

⇒

2i ·
1

2 + δ
+ ε2i ≤ 2i−1 ⇒

2i

(

1

2 + δ
+ ε

)

≤ 2i ·
1

2
⇒

1

2 + δ
+ ε ≤

1

2
⇒

ε ≤
1

2
+

1

2 + δshowing, that for a 
onstant δ > 0, with the 
orresponding ε, then themat
hed 
hara
ters in P in Li−1
v 
an pay for the random I/Os 
aused bylook-ahead in P for layer Li

v.For 
ounting the I/Os 
aused by a

essing T ′, a sear
h path in T ′ is
onsidered. From theorem 11.3 it follows that a subtree of height 2t in the vanEmde Boas layout, 
ontaining the t �rst Li
v, uses spa
e O((22t

)3). Assumingthat the 
urrently traversed height 2t subtree is always kept in memory, then
(

22t
)3

≤ B ⇒ 2t ≤
1

3
log(B)If the sear
h path only sear
hes the t �rst layers in ea
h 
omponent, then aroot-to-leaf sear
h in T ′ will 
ause

log(n)
1
3
log(B)

= 3 logB(n) = O(logB(N))I/Os.To a

ount for the rest of the layers Lt+1
v , Li+2

v , . . . , Ls
v, a little more isneeded. Assume without loss of generality that ea
h Li

v, (t < i < s), needs tobe read into memory. Using lemma 11.1 (3) and theorem 11.5 ea
h of theseneeds 53



O

(

2ε2i

B
+

pi

B
+ 1

)I/Os, where pi is the length of the path mat
hed in Li
v. For

ε ≤
1

2
⇒ 2ε2i

≤ 22i−1the s
anning of the blind trie for Li
v is dominated by the mat
hed part of

Li−1
v

O

(

2ε2i

B

)

= O
(pi−1

B

)making the total number of I/Os
O

(

s
∑

i=t+1

pi

B
+ 1

)It now remains to 
harge the +1 in the sum, as pi/B are the 
ost ofs
anning pi. Sin
e (22t+1

)3 = 22t+3

= Ω(B) and pi = Θ(22i

) this implies thatthe two layers, t+1 and t+2, might not �ll a blo
k B fully, i.e. pi/B = o(1).The same applies for layer s, as it might not be sear
hed fully. For the rest ofthe layers t+3, t+4, . . . , s−1, the +1 
an be 
harged pi/B as pi/B = Ω(B),i.e. the sear
h in the gira�e for Li+1
v pays for the sear
h in the blind trie in

Li
v.From lemma 11.1 (5) it follows that the rank de
reases by at least ε2kwhen 
hanging 
omponent at Lk

v , t < k. As (22t+1

)3 = Ω(B) this impliesthat ε2k = Ω(log(B)). Sin
e 
hanging 
omponent only 
an happen at most
O(log(N)) times, this means, that the 
harging of O(1) at most happens
O(log(N)/ log(B)) = O(logB(N)) times.

�
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Part IIIImplementation





12 Introdu
tionFor this thesis the programming language C++ have been used27. The pri-mary reason is that the language allows high level 
ode while at the sametime makes it possibly to do low level 
ode with a minimum of overhead.C++ is designed to have an optimal run-time e�
ien
y, so its standard li-brary, STL28, uses te
hniques su
h as red-bla
k sear
h trees to a
hieve bestperforman
e possibly.This part is divided into three se
tions. The �rst des
ribes the imple-mentation of the trie stru
ture used to experiment against the 
a
he oblivi-ous string di
tionary stru
ture. The se
ond se
tion des
ribes how the 
a
heoblivious string di
tionary layout is a
hieved and how it is stored into a �le.The last se
tion des
ribes the implementation of the 
a
he oblivious stringdi
tionary sear
h algorithm.Only the 
a
he oblivious string di
tionary sear
h algorithm from [Brodaland Fagerberg, 2006℄ has been implemented. Therefore, the 
onstru
tionof the 
a
he oblivious string di
tionary layout is done in a simple and non-
omplex manner. Even though the alphabet is assumed to be in�nitely largein [Brodal and Fagerberg, 2006℄, it is restri
ted in the implementation to beof 255 
hara
ters, just enough to be stored in a 
har. This is not exploitedin any way, by for instan
e storing 
hildren in arrays of size 255.13 TrieThe implementation of the trie is simple. Every allo
ation of a new trie nodeis done by using the keyword new, allowing C++ to put the stru
ture anywhereit pleases (in memory). No part of the trie stru
ture have been optimised inany way, in order to keep the trie as simple as possible. The trie node 
lassis shown in �gure 36.
lass TrieNode{ChildTree *
hildren;
har label;bool isend; // is-end -> Is an endnode for a string}Figure 36: The trie node 
lass showing the variables 
ontained in a trie node.27More pre
ise g++ (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1). The program havebeen 
ompiled with the parameters: -pedanti
 -Wall -O3 -g28Standard Template Library. 57



13.1 Child treeEa
h node has a pointer to a ChildTree stru
ture 
ontaining the 
hildrenof the node. The 
hild tree stru
ture 
an be build in di�erent ways. Forinstan
e by using a red-bla
k sear
h tree or a ve
tor29. The pointer makesit possible to 
hange the 
hild tree. Even though the alphabet is restri
tedin size, a sear
h tree is used for storing the 
hildren, maintaining the desired
omplexity of log(n). In this thesis the std::set from STL is used, sin
eit is a red-bla
k sear
h tree. The 
hild tree is also allo
ated using the newkeyword.
lass ChildTree{void insert(TrieNode *n);TrieNode *sear
h(
har 
);int size();}Figure 37: The 
hild tree stru
ture for the trie stru
ture showing the fun
tions.13.2 Insertion and sear
hingInsertion is done top down, 
he
king the 
hild tree at ea
h node. Therefore,the 
omplexity for both insertion and sear
hing in the trie stru
ture is
O(|si| · log(n))where |si| is the length of the inserted string or the sear
h string, n is thenumber of 
hildren. Therefore, sear
hing for or inserting k strings is

O(|N | · log(n)), N =

k
∑

i=1

|si|

29Also know as an array. 58



14 Ca
he oblivious layoutThis se
tion des
ribes the implementation of the 
onstru
tion of the 
a
heoblivious string di
tionary stru
ture. The 
onstru
tion algorithm works insteps, ea
h adding new stru
ture to the 
urrent, for �nally being able to doa layout.14.1 TrieThe trie is the �rst stru
ture to be 
onstru
ted. It resemble the trie stru
turefrom Se
tion 13, but has a lot of fun
tionality added, su
h as pointers to theblind tries and gira�e trees, 
omponent id, layer number and number of leavesbeneath it, Figure 38.
lass TrieNode{ve
tor<TrieNode *> internal
hildren, external
hildren;BridgeNode *externalsear
htree;GiraffeNode *giraffenode;BlindTrieNode *blindtrienode;
har label;int 
omponentid, layer, rank, nv, depth, 
nv;bool isend;}Figure 38: The stru
ture for the trie nodes in the 
a
he oblivious string di
tionarystru
ture.After 
onstru
ting the trie, all nodes are updated 
on
erning their depth,number of leaves and rank. It is done by traversing the trie top-down ina re
ursive manner. Afterwards the 
omponents 
an be identi�ed. Thisis done top-down identifying one 
omponent at a time using the 
andidaterequirement. If a node fails to be a 
andidate in the 
urrent 
omponent, itis push onto a sta
k of failed 
andidates. These are to be
ome a roots innew 
omponents later. When all nodes for the 
urrent 
omponent have beenfound, the next node on the sta
k is sele
ted and the identi�
ation of a new
omponent 
an begin.When all 
omponents have been identi�ed, it is time to divide the 
hildrenat ea
h node into internal and external 
hildren whi
h is done top-down.When 
onstru
ting the trie, the 
hildren of a node are kept in a ve
tor. Whenthe 
hildren are divided they are pla
es in two ve
tors. One for internal
hildren and one for external. These two ve
tors are sorted. All 
hildren
ontained in another 
omponent than their parent, are pla
ed in the external
hildren ve
tor. 59



After dividing all the 
hildren into two ve
tors, a weight balan
ed sear
htree is 
onstru
ted using the external 
hildren. This sear
h tree is later usedwhen 
reating the 
omponent tree, and a pointer to the sear
h tree are keptat the node. Two di�erent sear
h trees have been implemented. One usingthe algorithm from [Brodal and Fagerberg, 2006℄ and another using the leaforiented optimal binary sear
h tree algorithm.At the same time as the 
hildren are divided a blind trie node is 
on-stru
ted at ea
h 
omponent root. The reason is that when 
onstru
ting thegira�e trees, the leaves must be able to refer to the next blind trie to betraversed in a sear
h path. Having 
reated the root of ea
h blind trie, theleaves 
an do this. The blind tries are later fully 
reated. The blind trieroots are also used in the 
omponent tree 
onstru
tion.Finally the trie is traversed on
e again, updating the 
nv variable. Thisvariable indi
ates how many leaves a node has inside the 
urrent layer. Thevariable is used when 
reating the gira�e trees.14.2 Component treeOn
e all 
omponents have been identi�ed, and the weight balan
ed sear
htrees 
reated, the 
omponent tree 
an be 
onstru
ted. Again it is a top-downtraversal of the trie stru
ture. For ea
h 
omponent the root is identi�edtogether with the bridge nodes for the 
omponent. A weight balan
ed treeis 
reated using the bridge nodes with the root as the top node. To do thiseither the Hu�man algorithm or weight balan
ed tree algorithm from [Brodaland Fagerberg, 2006℄ is used.For 
onstru
ting the 
omponent tree, three 
lasses are implemented. InFigure 39 only the relevant details are shown for these three 
lasses. Thetwo sub
lasses VEBBridgeNode and VEBComponentNode30 inherits from theVEBNode 
lass.A VEBComponentNode is used for ea
h node in the weight balan
ed treeinside the 
omponent. Only the node at the top refers to the blind trie atthe 
omponent root. The rest are dummy nodes dis
arded when doing thelayout. The VEBBridgeNode 
lass are used for the weight balan
ed sear
htree, 
onne
ting the 
omponents. In this way a binary 
omponent tree is
onstru
ted.30The VEB refers to van Emde Boas.
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lass VEBNode{VEBNode *left, *right;}
lass VEBComponentNode : publi
 VEBNode{BlindTrieNode *blindtrienode;}
lass VEBBridgeNode : publi
 VEBNode{BridgeNode *bridgenode;} Figure 39: The nodes used to 
reate the 
omponent tree.14.3 Gira�e treesThe gira�e trees are 
onstru
ted traversing the trie top-down. At ea
h 
om-ponent, the gira�e trees are 
reated in a depth �rst manner, swit
hing be-tween layers as the 
omponent are traversed. The gira�e trees are 
reatedusing the greedy algorithm. Figure 40 shows the gira�e node 
lass. As allinformation are kept inside ea
h trie nodes, assigning the variables inside thegira�e node is easy.
lass GiraffeNode{ve
tor<GiraffeNode *> 
hildren;BridgeNode *externalsear
htree;BlindTrieNode *
omponentroot;
har label;bool isend;} Figure 40: The gira�e node 
lass.Ea
h trie node is 
overed by at least one gira�e tree. The gira�e treepointer inside a trie node is referring to one of these. The pointer is set whenthe gira�e trees are 
onstru
ted. Sin
e the gira�e tree pointer is pointing ata gira�e tree when the blind tries are 
onstru
ted, it is possible for the blindtrie nodes to refer to the right gira�e tree.14.4 Blind trieThe last stru
ture to add is the blind trie. Again it is a top-down traversal,doing a depth �rst sear
h in one 
omponent at a time. As before the trie61



nodes keeps all needed information for the blind trie nodes. Figure 41 showsthe blind trie node 
lass.
lass BlindTrieNode{ve
tor<BlindTrieNode *> 
hildren;GiraffeNode *giraffetree;
har label;int labelskips;} Figure 41: The blind trie node 
lass.14.5 Ca
he oblivious layoutThe layout of the 
a
he oblivious string di
tionary stru
ture is done in twopasses. The �rst is a pseudo layout used to 
al
ulate the address of ea
h node,when laid out in memory. Assuming the �rst node is laid out at address 0,the rest are assigned an address in the order they are traversed, following thevan Emde Boas layout algorithm on the 
omponent tree.The se
ond pass writes the layout to a �le on the disk. The output iskept in ASCII format making it possible for a human to read the �nal layout.The �rst line in the layout �le is the number of bytes used. Ea
h node iswritten on one line starting with an node id followed by the variables neededby the node. When writing a pointer to the �le, the address of the node itpoints to is written. This makes it possible for the stru
ture to be re
reatedby the sear
h algorithm when loaded from a �le. It is also the reason for the�rst pass.To keep tra
k of when a layout of the di�erent layers should be done, thestd::queue is used. In ea
h re
ursive 
all in the van Emde Boas algorithm,a queue is given as argument. When returning from the re
ursive 
all, thisqueue 
ontains the next layers to be laid out.Using Figure 27 as example, when a re
ursive 
all of depth 2 is 
alled,it is given a queue Q as argument. In the re
ursive 
all of depth 2 a newqueue Q′ is 
reated and given as argument to the re
ursive 
alls of depth 1.When all re
ursive 
alls of depth 1 within the re
ursive 
all of depth 2 havereturned, Q′ 
ontains all layer 2 of ea
h re
ursive 
all of depth 1. Layer 0and 1 have been laid out in the re
ursive 
alls of depth 0 and 1. The layersin Q′ are now laid out, and all layer 3 are added to Q.When doing a layout of a layer, a layout of the blind tries 
ontained insidethe layer and a layout of the asso
iated gira�e trees is done. Both the blindtries and gira�e trees are laid out in BFS order. This means that the 
hildren62



of a node is pla
ed next to ea
h other, and a sear
h through these are just amatter of s
anning from one end to the other14.6 Time and spa
e usageThe trie stru
ture are traversed eight times to 
reate the 
a
he obliviousstring di
tionary stru
ture, and the 
a
he oblivious string di
tionary stru
-ture twi
e during the layout phase. The nodes of the trie stru
ture are sortedtwi
e. The �rst time is when 
reating the weight balan
ed sear
h trees 
on-ne
ting the 
omponents and the se
ond time when 
reating the weight bal-an
ed trees inside ea
h 
omponent.If the input is n strings and N =
∑

n |si|, then the time used for 
reatingthe 
a
he oblivious string di
tionary stru
ture and doing a layout of it is
O(sort(N)) using the weight balan
ed sear
h tree algorithm from [Brodaland Fagerberg, 2006℄ to 
onne
t the 
omponents. If instead the leaf orientedoptimal binary sear
h tree algorithm is used, then 
onstri
tion time is O(N3).The spa
e usage is O(N) but with a very large 
onstant in front, as ea
hnode is represented in the trie, possibly in a blind trie, one or more gira�etrees and possibly in the 
omponent tree.
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15 Ca
he oblivious sear
hThe sear
h algorithm is implemented as des
ribed in [Brodal and Fagerberg,2006℄. Unlike the 
onstru
tion of the 
a
he oblivious layout, the sear
h is
a
he oblivious.15.1 Loading the CO layoutThe 
a
he oblivious layout is loaded from a layout �le. The �rst line 
ontainsa number indi
ating how many bytes is used in the layout. An equivalentamount of bytes are allo
ated in memory before pro
eeding to load the nodes.The nodes are loaded one by one and pla
ed in the allo
ated memory inthe order they are read. When a node is read, it is �rst identi�ed by its id.Then a stru
ture mat
hing the node id is 
reated, and its variables are readfrom the �le. As the di�erent stru
tures are laid out in BFS order, they areread and pla
ed in memory in BFS order. Figure 42 show the stru
tures usedin the 
a
he oblivious layout.stru
t st_blindtrienode { // ID 1
har label;int labelskips;st_giraffenode *giraffe;int no_of_
hildren;st_blindtrienode *
hildren;}stru
t st_giraffenode { // ID 2
har label;bool stringend;st_bridgenode *bridge;st_blindtrienode *blindtrie;int no_of_
hildren;st_giraffenode *
hildren;}stru
t st_bridgenode { // ID 3
har label;st_bridgenode *left;st_bridgenode *right;st_blindtrienode *blindtrie;} Figure 42: The stru
tures laid out in memory.The pointers in the stru
tures are handled di�erent than the other vari-64



ables. Instead of reading a pointer from the �le an address is read. Theaddress indi
ates where in memory the stru
ture of the pointer is lo
ated, ifthe allo
ated memory started at address 0. This means that the start ad-dress of the allo
ated memory is added to the address read in order for thepointer to point at the right stru
ture. The stru
ture may or may not havebeen 
reated yet making it vital that all stru
tures/nodes are read before asear
h is started.15.2 Sear
hing in the CO layoutSear
hing in the stru
ture is done as explained in Se
tion 10. When all nodeshave been read, all pointers point to the right stru
ture, and sear
hing is amatter of 
he
king labels, s
anning in 
hildren and following pointers.
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Part IVExperiments





16 Hardware and softwareThe experiments are run on three di�erent 
omputers, the Internal 
om-puter, the Swap 
omputer and the Ca
he 
omputer. The 
omputer namerefers to the experiment type that is run on the 
omputer. The hardwarespe
i�
ation is listed in �gure 1.Name Des
riptionInternal Intel Xeon 3,0 GHz pro
essor16 KB level 1 
a
he2 MB level 2 
a
he800 MHz FSB2 modules of 512 MB Single Rank DDR2 RAM1 x 80 GB SATA 7200rpm harddisk.The 
omputer is running Fedora Core 5 SMP - version2.6.18-1.2200.Swap Intel Xeon 3,0 GHz pro
essor16 KB level 1 
a
he2 MB level 2 
a
he800 MHz FSB2 modules of 512 MB Single Rank DDR2 RAM1 x 80 GB SATA 7200rpm harddisk.The 
omputer is running Fedora Core 5 SMP - version2.6.18-1.2200, booted with 80 MB RAM.Ca
he Intel Pentium 4 pro
essor 3,4 GHz16 KB level 1 
a
he1 MB level 2 
a
he800MHz FSB2 modules of 512 MB DDR2 400 NECC Dual ChannelRAM3 x 400 GB SATA 7200 rpm harddisk.The 
omputer is running Fedora Core 3 SMP - version2.6.12-1.1381 booted with PAPI in
luded in the kernel.Table 1: Hardware spe
i�
ations for ea
h 
omputer used in the experiments. The
omputer name refers to the kind of experiments that are tested on the 
omputer.On the Internal 
omputer the experiments are run in internal memory only. TheSwap 
omputer is used for experiments where swapping to external memory isrequired and the Ca
he 
omputer are used to 
ount the number of 
a
he misses.A few software programs have been used in 
onne
tion with the experi-ments. Some of these are used as a part of the experiments, and some for69



analysing the result of the experiments. These programs are shortly des
ribedin the following subse
tions.16.1 PAPIThe PAPI [Dongarra et al., 2003℄ software makes it possible to 
ount thenumber of 
a
he misses in 
a
he level 1 and 2 on the CPU. A modi�ed linuxkernel in
luding the PAPI library is needed to enable the use of the PAPIlibrary in C++.The level 1 
a
he is usually divided into two parts. One is holding theprogram instru
tions and the other the data to be pro
essed. This makesit possible to 
ount the data 
a
he misses and the instru
tion 
a
he missesseparately in the level 1 
a
he. The level 2 
a
he is not divided and therefore,it is not possible to tell the di�erent kinds of 
a
he misses from ea
h other.Only the number of total 
a
he misses are available.16.2 PerlIn order to perform the experiments in su

ession and to minimise user in-tera
tion, the experiments are exe
uted by programs written in Perl [Wall,2006℄. As this is the 
ase for all experiments the small amount of memoryused by the Perl interpreter, is similar for all experiments.16.3 GnuplotThe graphs used to analyse the data are all made in Gnuplot [Williams andKelley, 2004℄, from the raw data output of the experiments.
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17 Data setsTo get useful information from the experiments, a large amount of data havebeen generated. The data are generated to have spe
i�
 properties that areinteresting in the 
ontext of the experiments. The 
a
he oblivious stringdi
tionary stru
ture have also been tested with real life data, as performan
emeasurement on syntheti
 data not ne
essarily behave the same way. Everysyntheti
 experiment has been generated in 5 variations.All data for the experiments are denoted by a letter and a number. Thisis done to be able to distinguish them from ea
h other. When referring todata by a single letter, the whole data set with this letter is referred to. Forinstan
e the data set A in
ludes the data elements A1, A2, A3, A4 and A5.The data sets A to D are all syntheti
 generated, while E and F aremade from real life data. The syntheti
 data are generated to give 
ertainproperties to the trie stru
ture that are formed when the data is inserted.These properties are interesting when the 
omponents, blind tries and gira�etrees are build.For ea
h individual set of strings generated for a data set, a similar set isgenerated. In this similar set a 
hara
ter in ea
h string is repla
ed by another
hara
ter, whi
h is not in the original alphabet. This is done to be able torun experiments, where the strings do not mat
h, but still 
ompletes part ofa sear
h. The 
hara
ter to be repla
ed is 
hosen randomly.17.1 Data set A: Long strings with few splitsThe strings in this set are all of the same length. They are generated sothat the paths in the trie stru
tures 
onsists of many unary nodes. Ea
hpath splits ten times. A path splits into at least two and at most threepaths. Figure 43 (a) shows an example o� su
h a trie and Table 2 shows thevariations of the number of strings and their length.Sin
e the paths in the trie stru
ture 
onsists of many unary nodes, therank of the nodes does not in
rease very often. This will result in fairly large
omponents. The long paths without splits will result in small blind tries,but long gira�e trees.The data is generated bottom up using the parameters in Table 2. The
onstru
tion algorithm starts by 
reating the last 9% of all strings. These9% are all di�erent from ea
h other. Then for ea
h three strings the pathsare merged. This is done by letting the three strings share the 
hara
ters inthe next 9% of their length.As the �nal result should be a tree with ten splits on a root to leaf path,mergin three strings at a time may be too mu
h. Therefore, when the number71



of individual strings rea
hes the amount needed to merge only two strings ata time this will happen.
h
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(a) (b) (
) (d)Figure 43: Example stru
tures of the data sets A, B, C and D. An example ofdata set A is illustrated in (a), an example of data set B in (b), an example ofdata set C in (
) and an example of data set D in (d).Name Numberof strings String lengthA1 5000 4400A2 7500 3200A3 10000 2275A4 12500 1825A5 15000 1275Table 2: Properties of data set A17.2 Data set B: Short string with many splitsThis data set is similar to A. The only di�eren
e is that the paths in thetrie stru
ture is very short. Again the strings are all of the same length, butwith few unary nodes. The variations of the data is shown in Table 3 and inFigure 43 (b) an example of the trie stru
ture is given.The resulting trie will have many 
omponents as the rank often shifts.The resulting blind tries will almost be identi
ally to the original trie.The data is generated top down, by adding pre�xes to the already existingstrings. Every time three di�ent pre�xes is added to an already existing72



Name Number of strings Number of nodesbefore splitB1 1250000 0B2 750000 1B3 500000 2B4 425000 3B5 375000 4Table 3: Properties of data set BName Number ofstrings String length Max strings withsame pre�xC1 15000 1500 5000C2 15000 1500 7500C3 15000 1500 10000C4 15000 1500 12500C5 15000 1500 15000Table 4: Properties of data set Cstring. This is done for all existing strings before starting to add pre�xes tothe newly generated strings. The length of the added pre�x and the numberof generated strings are varied.When the required number of strings is generated, the remaining strings(if any) strings are padded so that the number of strings remains the sameand the length is the same for all strings.17.3 Data set C: Long strings with many splits at theendStrings in this set have more than 70 % of their pre�x in 
ommon. The triestru
ture will 
onsist of one or more long path of unary nodes for the �rst70%. The last 30% is the bottom, where ea
h node 
an have several 
hildren.Figure 43 (
) show an example of this. All the strings in this stru
ture hasthe same length. The variations of the data is shown in Table 4.The data are generated to test behaviour on very large 
omponents. Theentire trie is generated with a long path of unary nodes before any split.Therefore, the rank does not 
hange in the topmost strata. This results inone big 
omponent at the top and several small in the bottom. The gira�etrees for this data set should be very large be
ause of the long unary path.73



Name Number of strings Number of initialstringsD1 130000 20D2 130000 30D3 130000 40D4 130000 50D5 130000 60Table 5: Properties of data set DWhen generating the strings in this set, a single string is 
reated.The generation of strings is started by generating a single string. Theremaining strings are generated with a random per
entage between 70% and95% of the �rst string as pre�x. All strings have the same length as the �rst.17.4 Data set D: Long strings with many splitsThis set 
onsists of two subsets, a parent set and a 
hildren set. The parentset 
onsists of long strings sharing only some of their pre�x. In Figure 43 (d)this is the long straight highlighted lines.The elements in the 
hild set are build from elements from the parentset. Ea
h element in the 
hild set shares all but one 
hara
ter of one of theelements in the parent set. The 
hild elements are those ending in one nodebran
hing from the highlighted lines in Figure 43 (d). The variations of thedata is shown in Table 5.The data results in 
omponents with in
reasing size, as the number of
hildren de
reases by one every time the depth in
reases by one. The blindtries is almost similar to the original trie, as the original trie splits at everynode.The data is generated by �rst generating a long string. This string issplit up in a number of initial strings depending on the parameter. Then forea
h initial string, a string is generated that has all but the last 
hara
terof the initial string. The new string is then appended two new 
hara
ters.This happens for all initial strings, then for the newly generated strings andso forth until the required amount of strings is rea
hed.17.5 Data set E: ShakespeareThe strings are made up of all the individual words from the 
olle
tion ofShakespeare 
omedies and tragedies. The trie stru
ture will 
onsist of rel-74



Property ValueNumber of strings 67505Average string length 7.5Average fan out (over all nodes) 1.55Average fan out (where nodes split) 3.63Table 6: Properties of data set Eatively short strings. Some nodes will have a big fan out while others onlyhave a few. The properties are shown in Table 6.17.6 Data set F: DNA stringsThe data set 
onsists of substrings of length 100 from a representation of ahuman 
hromosome. This data is di�erent from the E experiment, in that
hromosome data only 
onsist of a small number of di�erent letters, and inthat repetitions are 
ommon. The properties are shown in Table 7.Property ValueNumber of strings 51878Average string length 100Average fan out (over all nodes) 1.01Average fan out (where nodes split) 2.55Table 7: Properties of data set F
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18 Experiment pro
edureAll the experiments have been exe
uted by Perl s
ripts. As experiments onthe naive trie stru
ture and the 
a
he oblivious string di
tionary stru
tureare exe
utes by the s
ripts, the small amount of memory usage 
aused bythe s
ripts are the same.Ea
h sear
h is performed two times for ea
h input to minimise �u
tuationsin the running time of the experiments. The two sear
hes are not performedin su

ession to be sure none of the used data still resides in the 
a
he afterthe �rst experiment.The experiments in
ludes exe
ution on the Internal , the Swap and theCa
he 
omputer. All data are kept in internal memory when experimentingon the Internal 
omputer. When experimenting on the Swap 
omputer,some of the data are kept in swap memory. The experiments for data sets Dand E are not performed on the Swap 
omputer, as the data �t into internalmemory. When experimenting on the Ca
he 
omputer, the number of 
a
hemisses are 
ounted using PAPI. All data are kept in main memory whenusing the Ca
he 
omputer.18.1 Trie stru
tureAn experiment on the trie stru
ture starts by loading all strings withouterrors31into memory. Then the strings are inserted into the trie stru
ture.The trie is sear
hed for both the set of strings without errors and the set ofstring with errors. This is done independent of ea
h other. The 
onstru
tionof the trie stru
ture and the sear
hing for ea
h set is timed.18.2 Ca
he oblivious string di
tionaryAn experiment on the 
a
he oblivious string di
tionary stru
ture is startedby �rst 
onstru
ting a layout of the 
orresponding trie stru
ture32. This isdone by one program. The trie stru
ture is generated as des
ribed in Se
tion18.1. Then the 
a
he oblivious string di
tionary stru
ture is 
reated and laidout in a �le.Another program reads this �le together with the set of strings to beexamined. When both the layout and all the strings are 
ontained in memory,the sear
h is started. Again both the set of string without errors and the setwith errors are tested.31The set of string, where no 
hara
ter has been repla
ed, Se
tion 17.32If su
h a layout already exists, this step is skipped.76



The 
onstru
tion of the layout �le and the asso
iated loading of the layoutis timed. So are the sear
hes in the loaded stru
ture.The layout �les are 
onstru
ted on di�erent 
omputers. This is done asthe 
a
he oblivious string di
tionary stru
ture takes up a lot of memory33,and be
ause the total size of all layout �les ex
eeds the maximum availablespa
e on one 
omputer. The s
ript �les take this in a

ount when runningthe experiments.18.3 Ca
he misses 
hangesWhen experimenting on the Ca
he 
omputer, a modi�ed version of the pro-gram sear
hing in the 
a
he oblivious string di
tionary is used. It has beenmodi�ed to use the PAPI library so it 
an 
ount the 
a
he misses in level 1
a
he level 2 
a
he. Apart from the 
ounting fun
tions the program is thesame.

33See Se
tion 14.6. 77



19 Trie experimentsThe trie experiments 
onsist of testing the naive trie stru
ture on all data setson all three 
omputers34. This is done to analyse the behaviour in internalmemory, swap and to look at the generated 
a
he misses.
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ution time(in se
onds)D1 Sear
h tree 799.1D1 Sorted ve
tor 558.8D5 Sear
h tree 319.7D5 Sorted ve
tor 249.9Figure 44: Exe
ution time for the trie stru
ture on the data sets A to F (Din table) in internal memory. Only the two extreme elements from ea
h set isshown.As des
ribes in Se
tion 13.1, two di�erent 
hild trees are implemented.One using a ve
tor and one using a red-bla
k sear
h tree. As both have thesame theoreti
al sear
h time, O(log(n)), it is expe
ted that the results willbe similar. This is however not the 
ase when looking at the results in �gure44. The �gure shows the results of the experiments done in internal memory.It shows that in most 
ases it is faster to use the sorted ve
tor.However, this might be due to implementation spe
i�
 details in thestd::set. The nodes in the red-bla
k sear
h tree might be pla
es arbi-trary in memory, while a sorted ve
tor is pla
ed in su

ession. In this way a34The Internal , Swap and Ca
he 
omputer.78



sear
h in a ve
tor will result in fewer 
a
he misses than the red-ba
k sear
htree. This theory is ba
ked up by the graph in Figure 45.
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Data set Childtree Ca
he missesD1 Sear
h tree 6.54 ∗ 1010D1 Sorted ve
tor 4.04 ∗ 1010D5 Sear
h tree 3.43 ∗ 1010D5 Sorted ve
tor 2.58 ∗ 1010Figure 45: Level 1 
a
he misses for the trie stru
ture using either a sorted ve
toror a red-bla
k tree.It is not mu
h that 
an be 
on
luded from the results of the swap experi-ments. One reason is that it is not known how the trie stru
ture is laid out inmemory. The di�eren
e in exe
ution times in �gure 46 is possibly a result ofan alignment �tting for the blo
k size. It 
an be 
on
luded that storing the
hildren in a ve
tor is superior to storing the 
hildren in a red-bla
k sear
htree, when experimenting on the data set C. The exe
ution time is also mu
hhigher when swapping as expe
ted.
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ution time for the trie stru
ture on the data sets A, B, C and Fwhen swapping. Only the two extreme elements from ea
h set is shown. Ea
hdata element uses approximately 120 MB of memory.
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20 Weight balan
ed treesIn [Brodal and Fagerberg, 2006℄ a weight balan
ed sear
h tree is des
ribed.The 
onstru
tion algorithm takes a list of sorted key with weights as inputand 
reates a weight balan
ed tree35. A leaf in this tree with key xi andweight wi is at most at depth 2 + 2⌈log(W/wi)⌉, where W is the sum of theweights of the keys. This tree 
an be 
onstru
ted 
a
he oblivious in O(n)time using O(n/B) I/Os. Sin
e the 
onstru
tion algorithm in this thesis isnot 
a
he oblivious, other trees 
an be used instead.20.1 Other weight balan
ed treesThe arti
le tree is used in two di�erent 
onstru
tions in the 
a
he obliviousstring di
tionary. It is used as a weight balan
ed tree inside 
omponents andas a weight balan
ed sear
h tree 
onne
ting the 
omponents. To repla
e theweight balan
ed tree the Hu�man tree is 
hosen and to repla
e the weightbalan
ed sear
h tree the leaf oriented optimal binary sear
h tree36 is 
hosen.
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(a) (b)Figure 47: The ratio between the Hu�man tree, the arti
le tree and the leaforiented optimal binary sear
h tree. In (a) 128 leaves are used ea
h with weightsbetween 1 and 9 uniformly distributed. In (b) 1024 leaves are used with weightsbetween 1 and 49 uniformly distributed. A total of 10 trees have been 
on-stru
ted.Figure 47 shows the ratio between these sear
h trees and the arti
le tree.The ratio is found by dividing the total weight of the arti
le tree with thetotal weight37 of either the Hu�man tree or leaf oriented optimal binarysear
h tree. In Figure 47 (a) a tree is 
onstru
ted using as input 128 nodes35Denoted as the arti
le tree.36LOOBST for short.37See Se
tion 5 for a de�nition of the total weight.81



with a weight ∈ [1; 9]. In (b) 1024 nodes are used all with a weight ∈ [1; 49].The weights are uniformly distributed. It is 
lear, that in both 
ases theHu�man tree and the leaf oriented optimal binary sear
h tree is superior tothe arti
le tree as all values is above 1.20.2 Hu�man tree vs. Arti
le treeAlthough the Hu�man tree is superior to the arti
le tree on uniformly dis-tributed data, this is not ne
essarily the 
ase with the experiment data, i.e.the data sets A to F. As the fan out is at most three in the data sets A toD, only the data sets E and F are interesting.
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(a) (b)Figure 48: The ratio of the total weights in the Hu�man tree and the arti
letree when 
onstru
ting the weight balan
ed tree inside 
omponents in data setsE (a) and F (b).In Figure 48 the ratio is shown for the Hu�man tree and the arti
le tree forthe data sets E and F. The total weight for ea
h weight balan
ed tree in ea
h
omponent is measured. It shows that only in a very few 
ases the Hu�mantree performs better. In most of the 
ases the weights are the same. Thedi�eren
e between using the Hu�man tree and the arti
le tree is negligible.20.3 Leaf oriented optimal binary sear
h tree vs. Arti-
le treeAs with the Hu�man tree, the ratio between the arti
le tree and the leaforiented optimal binary sear
h tree for the data sets E and F is measured.Figure 49 shows the ratio o

urren
es. The ratio is measured for ea
h bridgetree, i.e. the trees 
onne
ting the 
omponents.82



The results di�er slightly from the Hu�man results. In some 
ases theleaf oriented optimal binary sear
h tree is better than the arti
le tree. Theratio indi
ates though that the di�eren
e in not mu
h.
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(a) (b)Figure 49: The ratio of the total weights in the leaf oriented optimal binary sear
htree and the arti
le tree when 
onstru
ting the sear
h tree between 
omponentsfor data sets E (a) and F (b).20.4 Con
rete exampleTo see if there are any gain in exe
ution time when using either the Hu�mantree or the leaf oriented optimal binary sear
h tree experiments on the datasets A to F have been run. The results38. for the Hu�man experiment isshown in Figure 50The 
olumns in Figure 50 (a) shows that the exe
ution time is almostidenti
al. However, the results for the swap experiments does show a dif-feren
e. The Hu�man tree is not always better, but for the majority of thetests it is.The same is done the leaf oriented optimal binary sear
h tree. The resultsare shown in Figure 51. The tenden
y is the same, when using the Internal
omputer but opposite when using the Swap 
omputer.
38The results from the data set D is omitted as the 
olumn would be to high to �t intothe diagram. 83
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(a) (b)Figure 50: Exe
ution time for the 
a
he oblivious string di
tionary when using theHu�man tree instead of the arti
le tree inside 
omponents. In (a) the Internal
omputer is used and in (b) the Swap 
omputer.
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omputer is used and in (b) the Swap 
omputer.
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21 ε experimentsWhen 
onstru
ting the 
a
he oblivious string di
tionary from a data set, the
omponents generated depend on whi
h strata the nodes from the original trieis pla
ed in, and the di�eren
e of rank between the nodes. The theory di
tatesthat two nodes are in the same 
omponent as long as rank(a)−rank(b) < ε2i,where i is the strata to whi
h they belong.A

ording to the theory, ε should be < 1/2 for a sear
h path P to betraversed in O(logB(n) + |P |/B) I/Os. This is not ne
essarily true when theinput is not worst 
ase. Therefore, the experiments in this se
tion is run forvalues of ε > 1/2.The experiments are run with the Hu�man tree inside the 
omponents,the arti
le tree 
onne
ting the 
omponents and gira�e trees where half of thenodes are an
estors.21.1 Data set AThe results of the experiments on the data set A is shown in �gure 52. Thegraph shows that the exe
ution time is best for large values of ε. This doesnot 
orrespond well with the theory, as ε < 1
2
should be best. Table 8indi
ates that the exe
ution time depends heavily on the number of totalbridge nodes in the layout. The overhead from sear
hing in the bridge nodesis the 
ourse for the exe
ution times.
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Figure 52: Exe
ution time for the 
a
he oblivious string di
tionary stru
ture onthe data sets A for various values of ε.85



The number of bridge nodes depends of how many 
omponents there arein the layout. Table 8 shows the di�erent number of 
omponents for the A1experiment. The number of 
omponent shifts mu
h for small values of ε.This is be
ause when ε is 0.25 or 0.75 the last part of ea
h string be
omesa 
omponent. The data set A is 
onstru
ted so that the rank shifts at thesame pla
e for ea
h subtree.
ε Bridge node size Components0.25 142064 54270.5 4784 1860.75 136160 51951 0 1Table 8: Properties of the layout of A1 for varying ε.
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Figure 53: Level 1 data 
a
he misses for data set A for various values of ε.The graph in Figure 53 shows that the number of level 1 
a
he missesin
reases when ε in
reases. The reason for the in
rease is likely to be due tothe number of nodes in
luded in a layer. If a path in the trie do not splitoften, the 
orresponding gira�e tree will 
ontain many nodes and few splits.As the number of nodes in the layers in
reases, the length of the gira�e treeswill in
rease.When the gira�e trees are short, they are able to �t into memory. Someof them may then be reused when sear
hing for the next string. The longgira�es 
annot be reused often as they typi
ally only have a few 
hildren.86



Many of the long gira�e trees will be identi
al along the ne
k, but havedi�erent 
hildren. This means that many almost identi
ally gira�e trees areloaded into memory.As the gira�e trees be
omes very long, the exe
ution time is still quitegood even though the number of 
a
he misses is high. This 
an be seen bylooking at the exe
ution time for experiment A5 and the number of level 1
a
he misses. The reason is that modern CPUs uses prefet
hing, meaningthey do some read ahead. When a blo
k of data have been pro
essed, thenext blo
k have already been fet
hed. It might be that the fet
hed blo
k isnot the next to be pro
essed, but in most 
ases it is. Even though, fet
hingthe blo
k 
ounts as a 
a
he miss.21.2 Data set BThe experiments on data set B behaves somewhat similar to the experimentson data set A. For large ε the exe
ution time gets better. There are alsosome spikes in the behaviour of the of the graph for data B1.It 
an be seen in Figure 54 that the graphs behaves the same for ε uptil 1. This is be
ause the data are 
onstru
ted with a large number of pathsthat splits often. Ea
h node has 3 
hildren so the di�eren
e in ranks will beeither 1 or 2 from node to node.
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Figure 54: Exe
ution time for the 
a
he oblivious string di
tionary stru
ture onthe data sets B for various values of ε.Be
ause of the rank di�eren
e between ea
h node, every node in B1 will
reate a new 
omponent when ε ≤ 1. This has a drasti
 e�e
t on the exe
u-87



tion time. Changing from one node to a 
hild node means going through ablind trie node, a gira�e tree node and a bridge of up to three nodes.When ε be
omes 1.25 the nodes where the rank di�eren
e is only 1 willbe
ome one 
omponent. This means the total number of 
omponents willdrop. As all strings are sear
hed for, the total number of traversed bridgenodes will also drop making the exe
ution time smaller.Looking at the graph for B1 in Figure 54, there is a in
rease for ε = 2.This is be
ause the number of one-node 
omponents39 in
reases from when
ε was 1.25 (and 1.5). When the number of one-node 
omponents in
reases,then the number of bridge node traversed in a sear
h path in
reases. Figure55 shows this by a small example.
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Figure 55: A sear
h path in a trie (left), in a one-node 
omponent tree (middle)and a one-layer 
omponent tree (right).The sear
h path in the trie is shown to the left. The middle tree showsthe same sear
h path in a one-node 
omponent tree and the right tree showsthe sear
h path in a one-layer40 
omponent tree. The nodes are ordered sothat b′ < b < b′′ and c < c′ < c′′. The di�eren
e between the sear
h path inthe one-node 
omponent and one-layer 
omponent is three bridge nodes.The graph in Figure 56 shows level 1 data 
a
he misses. It has a ni
e
oheren
e with the graph in �gure 54. The in
reased in the number of bridge39Components 
ontaining only one node.40Components with only one layer. 88



nodes also in
reases the number of 
a
he misses, as less data are reusable inthe next sear
h.
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Figure 56: Level 1 data 
a
he misses for data set B for various values of ε.21.3 Data set CThe results for various ε on data set C show the opposite behaviour than theexperiments on A and B did. Figure 57 shows the results for the experimentson C for various ε.The steep in
rease in exe
ution time for ε = 1 is due to the entire stru
turebeing in one 
omponent. As data set C 
onsist of strings sharing 70 % to95 % of their pre�x, the gira�e trees will have at least 2 
hildren ea
h andprobably around 4 in average. The exa
t 
ount for data C1 for ε = 5 is 3348gira�e trees. As there is 15000 strings this is a bit less than 5 
hildren forea
h gira�e tree.As ea
h string is sear
hed for, ea
h �fth string requires an entire quitelarge gira�e tree to be loaded. For a small ε, there will be many 
omponentssharing the same gira�e tree. Sin
e the gira�e tree will be small it 
an bekept in the 
a
he. Therefore, the number of 
a
he misses will de
rease. This
an be seen in �gure 58. The 
a
he misses are more than halved for small εresulting in the de
rease in time.
89
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Figure 57: Exe
ution time for the 
a
he oblivious string di
tionary stru
ture onthe data sets C for various values of ε.
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Figure 58: Level 1 data 
a
he misses for data set C for various values of ε.
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21.4 Data set DFigure 59 shows the exe
ution times for data set D. It resembles Figure 60.The exe
ution time rises drasti
ally when ε ≥ 1.25.
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Figure 59: Exe
ution time for the 
a
he oblivious string di
tionary stru
ture onthe data sets D for various values of ε.The reason is very long gira�e trees, 
overing the same ne
k with onlyrelatively few 
hildren. In data set D there is 130000 strings, whi
h results in130000 
hildren in the trie. The root will then have rank 18. As 
an be seenin Se
tion 17, the trie have nodes with rank one at every level down the trie.At strata 4 for ε = 1 the rank di�eren
e should be below 1 · 24 = 16. As thisis not the 
ase every end node of a string in strata 4 is put in a 
omponent.When ε = 1.25 the di�eren
e should be below 20 so the single nodes instrata 4 does not need to be put in their own 
omponents. This results in avery large 
omponent 
overed by long gira�e trees, whi
h will only be reuseda small amount of times when sear
hing for the strings. As seen in Figure60 this results in many 
a
he misses, and also in in
reased exe
ution time.21.5 Data set ENot mu
h is known about the layout of data E. As seen in �gure 61 theexe
ution time de
lines steadily, as ε rises. This is the result of fewer 
om-ponents for larger ε resulting in fewer bridge nodes. The number of bridgenodes in the layout de
reases from 119864 to 8999. The steepest de
rease91
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Figure 60: Level 1 data 
a
he misses for data set D for various values of ε.is around ε = 1.25 where the bridge node 
ount de
rease with almost 33 %.This 
an also be seen in both Figure 61 end 62.
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Figure 61: Exe
ution time for the 
a
he oblivious string di
tionary stru
ture onthe data sets E for various values of ε.
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Figure 62: Level 1 data 
a
he misses for data set E for various values of ε.21.6 Data set FFigure 63 shows the exe
ution time for data F. It is approximately the sameas 61. The explanation is again that the bridge node 
ount de
reases rapidly.The two string sets made from real life data behaves very similar, even thoughthey are taken from two 
ompletely di�erent real life situations.
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Figure 63: Exe
ution time for the 
a
he oblivious string di
tionary stru
ture onthe data sets F for various values of ε.93
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Figure 64: Level 1 data 
a
he misses for data set F for various values of ε.21.7 Comparison of exe
ution timesFigure 65 shows the exe
ution time for the naive trie and the 
a
he obliviousstring di
tionary. Only the best and worst ε is shown. The times indi
atesthat sear
hing in the 
a
he oblivious string di
tionary is faster for the right
ε for most of the data sets.The type of data where sear
hing in the 
a
he oblivious string di
tionaryare best, are data that has many unary nodes in su

ession. In these 
ases thenumber of 
a
he misses 
an be redu
ed and the CPU prefet
hing me
hanismis working perfe
tly.The naive trie has better exe
ution time when sear
hing in the data el-ements B1 and B5. In the data set B there are few unary nodes are insu

ession and most of the 
omponents 
ontain only one node. The over-head in traversing bridge nodes and gira�e nodes be
omes an disadvantagefor the 
a
he oblivious string di
tionary. It is the same 
ase for the data setE. When looking at the exe
ution times in swap, the result is di�erent.Figure 65 shows that for the right ε, sear
hing in the 
a
he oblivious stringdi
tionary is better than sear
hing in the naive trie. The right ε 
an varyfrom data set to data set. In most of the 
ases, 
hoosing a poor ε results inan exe
ution time not far from the exe
ution time of the naive trie.When pla
ing the layout in swap memory, the overhead from bridges indata set B is negligible. 94
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21.8 Con
lusionIt is hard to establish an ε that is optimal. It seems that ε < 1/2 works wellon most of the syntheti
 data that has a large number of su

eeding unarynodes. The larger ε is better for the syntheti
 data set B as well as for dataset E and F.As E and F 
onsists of real life data it 
an be argued that it will be best tohave a large ε. However, the speedup is very small 
ompared to the penaltythe other data sets su�er from large epsilon. A relatively low ε seems to bethe best solution.The 
omparison between the trie and the best parameter of ε suggestthat the 
a
he oblivious string di
tionary is superior for the right ε.
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22 Gira�e tree experimentsAn interesting experiment is to 
hange the theoreti
al length of the gira�etrees. The theory states that a gira�e tree is a tree where more than N/2of the nodes are an
estors to all leaves. The proof for the exe
ution timeand spa
e usage still hold if the ne
k of the gira�e tree is di�erent from 1/2.Every 
onstant number K in ]0, 1[ 
an be used.
|Ai:j| + |Bi:j| >

|T i:j+1|
1

1−K

⇒

|T i:j| < |T i:j+1| <
1

1 − K

(

|Ai:j| + |Bi:j|
)

⇒

∑

T i:j

|T i:j| <
∑

T i:j

1

1 − K

(

|Ai:j| + |Bi:j|
)

≤ 2
1

1 − K
NThe same holds of the proof of exe
ution time. If the string sear
hed foris less than N · K and as the gira�e tree is laid in memory in BFS layout,then the sear
h time is O(p/B). Is the sear
h string more than N · K, thenit has already mat
hed the �rst N ·K and is at most 1

K
·O(p/B) = O(p/B).When the ne
k of the gira�e is a large per
entage of the tree the spa
eusage in
reases, while the sear
h time de
reases. The opposite is also true.The experiments 
hanges the per
entage of the nodes needed to be an
estors.The Hu�man tree is used inside the 
omponents, while the leaf orientedoptimal binary sear
h tree is used to 
reate the sear
h tree 
onne
ting the
omponents. ε is 0.5.
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The per
entage of the gira�e ne
k is varied between 0.2 and 0.6. A higherper
entage than 0.6 is not used be
ause the spa
e usage in
reases as moregira�e trees are needed. Figure 67 illustrates the in
rease in spa
e usage asthe per
entage in
reases.22.1 Data set AFigure 68 shows that the exe
ution time do not seem to �u
tuate by varyingthe ne
k per
entage. However, it do seem that it in�uen
es the amount of
a
he misses, Figure 69. This is a

ordan
e with the theory as the theoreti
alsear
h time should de
rease, when the spa
e usage and amount of gira�e treesin
reases.
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Figure 68: Exe
ution time for the 
a
he oblivious string di
tionary stru
ture onthe data sets A for various gira�e trees.When sear
hing a gira�e tree, where the nodes of the ne
k only 
onstitute20 % of the gira�e, more data needs to be pro
essed than when sear
hinga gira�e where the ne
k 
onstitutes 60 %. However, it do not seem to in-�uen
e exe
ution time. This 
an be due to the fa
t that a gira�e tree lies
onsequently in memory so that the CPUs prefet
hing me
hanism will haveit ready when the data is needed.
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Figure 69: Level 1 data 
a
he misses for data set A for various gira�e trees.
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Figure 70: The graph shows the exe
ution time for the 
a
he oblivious stringdi
tionary for various gira�e trees for data set C.22.2 Data sets B, C, D, E and FThe analysis for data set A does not hold for the other data sets. The Figures70 and 71 shows the results for data set C, whi
h is representative for the restof the data sets. The 
omponents in these sets 
onsists mainly of either one99



node or many unary nodes. When 
hanging the per
entage, the new gira�etrees are more or less the same as before.
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Figure 71: The graph shows the level 1 
a
he misses for the 
a
he obliviousstring di
tionary for various gira�e trees for data set C.22.3 Comparison of exe
ution timesThe 
omparison of exe
utions time for the gira�e experiments yeilds the sameresults as the 
omparison for various ε. Again long path of unary nodes favorsthe 
a
he oblivious string di
tionary sear
h algorithm. In the data sets withmany bridge nodes the overhead of sear
hing in these nodes is too large forthe 
a
he oblivious string di
tionary. Figure 72 shows the exe
ution timesfor experiments on the Internal 
omputer.When performing the experiments on the Swap 
omputer, the results arethe same with the ε experiments. Choosing a suitable per
entage of nodesas an
estors makes sear
hing in the 
a
he oblivious string di
tionary fasterthan in the naive trie. Figure 73 illustrates this.
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22.4 Con
lusionThe 
hange of gira�e ne
k per
entage does not e�e
t the exe
ution time mu
hwhen sear
hing in the 
a
he oblivious string di
tionary. This is probablybe
ause the 
omponents are fairly small and therefore the gira�e trees donot 
hange mu
h when varying the an
estor per
entage. In some experimentsthere are small variations in the number of 
a
he misses. This do not seemto in�uen
e the exe
ution time whi
h is most likely due to prefet
hing.
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23 Constru
tion timeThe previous se
tions shows that sear
hing in the 
a
he oblivious string di
-tionary 
an be faster than sear
hing in the naive trie. Espe
ially when datais put in swap memory.However, in the previous se
tions the 
onstru
tion time is not in
ludedin the results. As both the naive trie and 
a
he oblivious string di
tionaryneeds to build their stru
ture before sear
hing, this is an important issue.Figure 74 shows the 
onstru
tion time for the naive trie stru
ture and the
a
he oblivious string di
tionary layout. The 
a
he oblivious string di
tionarylayout is 
reated with ε = 0.5, gira�e per
entage at 0.5 (50%), Hu�man treesand the arti
le tree 
onne
ting the 
omponents.
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Figure 74: Comparison of 
onstru
tion time between the naive trie and the 
a
heoblivious string di
tionary. The 
a
he oblivious string di
tionary layout is 
reatedwith ε = 0.5, gira�e per
entage at 0.5 (50%), Hu�man trees and the arti
le tree
onne
ting the 
omponents.The experiments so far 
on
lude that the 
orunner is superier to thetrierunner for almost all of the data sets, and all when needing to swap.The 
orunner is not superier however when fa
toring in the time to 
onstru
tthe layout of the 
a
he oblivious string di
tonary.As seen on Figure 74 the 
onstru
tion time of the 
a
he oblivious layoutis mu
h more time 
onsuming. This 
an be outweighed if there will be manysear
hes for a 
onstru
ted di
tonary.The �gure shows that the 
onstru
tion time for the 
a
he oblivious stringdi
tionary are mu
h worse than for the naive trie. This means that if sear
h-103



Name Constru
tion of trie Constru
tion of COSDD1 77.9 1131.4D5 31.5 519.7Table 9: Comparison of 
onstru
tion time between the naive trie and the 
a
heoblivious string di
tionary. The 
a
he oblivious string di
tionary layout is 
reatedwith ε = 0.5, gira�e per
entage at 0.5 (50%), Hu�man trees and the arti
le tree
onne
ting the 
omponents.ing in the data is only done a few times, the 
a
he oblivious string di
tionary
annot 
ompete with the naive trie. Even if the naive trie has to 
onstru
tis stru
ture ea
h time.
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24 Strings with errorsThere are not mu
h di�eren
e in the behaviour between the experimentsusing the strings with error and those without. The exe
ution time is of
ause smaller as no string is sear
hed fully.
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Figure 75: Exe
ution times for the 
a
he oblivious string di
tionary on errorstring from data set D for various ε.Figure 75 show the exe
ution time for the data set D using the stringswith errors. Compared with �gure 59 where the strings without errors areused, the same patterns 
an be found.The graph for data set D is 
hosen as representative for the rest of thedata sets. All the graphs where the strings with errors are used show thesame patterns as the graphs where the string without errors are used. Theonly di�eren
e is the exe
ution time, whi
h is smaller when the strings witherrors are used.The 
omparison between the 
a
he oblivious string di
tionary and thenaive trie using strings with errors is shown in �gure 76. Again there are nosigni�
ant di�eren
e between sear
hing for strings with errors and sear
hingfor strings without errors, Figure 65. The only di�eren
e is smaller exe
utiontime. Even though only graphs for variation of ε is shown, the same appliesfor the variation of the gira�e ne
k per
entage.
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25 Final 
on
lusionIn this thesis the 
a
he oblivious string di
tionary have been implemented.It is 
ompared to a naive trie stru
ture to see if the 
a
he oblivious approa
hwould yield any signi�
ant improvements in exe
ution time.The experiments show that the 
a
he oblivious string di
tionary 
an per-form better than the naive trie. Depending on the type of data di�erentparameters need to be right for the 
a
he oblivious string di
tionary to per-form optimal.When 
hanging the ε value the 
hange in exe
ution time is notable. It isnot possible to 
hoose a �xed ε for all data types. For ea
h data type, an εvalue needs to found, as the value sometime must be small and some timeslarge. The experiments show that small values of ε is mostly preferable. Thetime gain from moving to larger ε for the data sets requiring it, is smallerthen the loss for the sets not requiring it.When 
hanging the number of an
estor nodes in a gira�e tree the experi-ments show no real di�eren
e in exe
ution time. The only notable di�eren
eis the spa
e usage whi
h in
reases as the number of an
estor nodes grows.As the 
onstru
tion algorithm in this thesis is not 
a
he oblivious, di�er-ent weight balan
ed trees have been examined as repla
ements for the arti
letree. Both the Hu�man tree and the leaf oriented optimal binary sear
h treeperforms better than the arti
le tree, but only at a fra
tion.When moving to swap the experiments perform signi�
antly better thanthe naive trie stru
ture. This is the result of in
reased a

ess time, whi
hin�uen
es the the 
a
he oblivious layout less than the trie.Experimenting with string with errors both in memory and swap yieldedno interesting results, as the performan
e di�eren
e is similar.Before 
hoosing the 
a
he oblivious string di
tionary stru
ture over thenaive trie stru
ture, the 
onstru
tion time of the 
a
he oblivious layout needsto be addressed. The experiments show that the 
onstru
tion time of the
a
he oblivious string di
tionary is signi�
antly larger than the naive trie.Furthermore, it is not possible to delete or insert new strings into the 
a
heoblivious string di
tionary.It 
an be 
on
luded that the 
a
he oblivious string di
tionary stru
ture
an outperform the naive trie both in memory and swap. However, this isonly possible when a large amount of sear
hes are performed.25.1 Future workIn the future is would be interesting to tune the trie stru
ture. This 
ouldbe done by a van Emde Boas layout of the trie or a simple BFS layout. It107



would be interesting to examine whether or not the 
a
he oblivious stringdi
tionary still perform well in 
omparisons.The 
onstru
tion time is also an issue. Be
ause of the large overhead, thestru
ture is not 
ompetitive in a wide variety of appli
ations. Redu
ing theoverhead, by for instan
e storing the 
omponent in di�erent �les, and thenpro
ess them one by one until the �nal layout is possible, 
ould make thestru
ture a whole lot more interesting.
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Part VAppendix





A Sour
e 
odeThe sour
e 
ode 
an be downloaded at the web addresshttp://www.daimi.au.dk/~stumme/Download/Thesis-sour
e
ode.tar.bzTo extra
t the 
ode from the �le typetar -xvzf Thesis-sour
e
ode.tar.bzA folder named Thesis will be 
reated. To 
ompile the sour
e 
ode type(inside the Thesis folder) make. Three programs will be 
reated. One forrunning the naive trie, trierunner, one for doing the 
a
he oblivious layout,
olayouter, and one for sear
hing in the 
a
he oblivious layout, 
orunner.A.1 Input �le formatThe trierunner and 
olayouter program both requires an input �le. This�le 
onsists of ASCII strings, one on ea
h line. The only 
hara
ter values notallowed is 0-33, 69, 127 and 128 as these are spe
ial purpose 
hara
ters.A.2 The naive trie programThe trie program takes several parameters as input. These are shown inFigure 77.trierunner -i <INPUT_FILE> <ARGUMENTS*>-i <INPUT-FILE> (REQUIRED)-t <TEST-FILE> (REQUIRED)-
 <CHILD-TREE> (Standard 0) 0 : Red-Bla
k Tree, 1 : Sorted Ve
tor-v <SHOW INFO> (Standard 0) 0 : None, 1 : All-r <REPETITION OF TEST-FILE> (Standard 1) Values must be an integer above zeroFigure 77: The arguments possible for the trierunner program.INPUT-FILE An input �le as des
ribed in se
tion A.1.TEST-FILE A �le 
ontaining strings as des
ribed in se
tion A.1. Thesestrings are then sear
h for in the trie.CHILD-TREE The sear
h tree used to store the 
hildren.SHOW INFO Displays the pro
ess of the program.111



REPETITION OF TEST-FILE If a test �le is given this arguments in-di
ates how many times the strings in the test �le is sear
h for. It isdone in a round robin fashion.The output of the program is1. Number of trie nodes.2. Total size of trie stru
ture (in bytes).3. Constru
tion time (in se
onds).4. Running time (in se
onds).5. Number of sear
h strings found.6. Number of sear
h strings not found.in that order.A.3 The 
a
he oblivious layout programThe layout program takes several parameters as input. Only the input �le isrequired. The parameters are shown in Figure 78.
olayout -i <INPUT-FILE> <ARGUMENTS*>-i <INPUT-FILE> (REQUIRED)-o <OUTPUT-FILE> (If none, output is:layout-<INPUT-FILE>-<EPSILON>-<LAYER-MULTIPLIER>-<COMPONENT-TREE>-<BRIDGE-ALGORITHM>.veb)-e <EPSILON> (Standard: 0.5)-b <BRIDGE-ALGORITHM> (Standard: 0)0 : Weight balan
ed sear
h tree,1 : Optimal sear
h tree-
 <COMPONENT-TREE> (Standard: 0)0 : Huffman,1 : Weight balan
ed sear
h tree-v <SHOW INFO> (Standard: 0) 0 : None, 1 : All-w <WRITE-METAPOST-LATEX> (Standard: 0) 0 : No, 1 : Yes-d <% OF GIRAFFE> (Standard: 0.5) Used in giraffe treeFigure 78: The arguments possible for the 
olayouter program.INPUT-FILE An input �le as des
ribed in se
tion A.1.112



OUTPUT-FILE The layout of the input �le. A prede�ned is used if noargument is given41.EPSILON The value of ε.BRIDGE-ALGORITHM The tree algorithm used to 
onne
t the 
ompo-nents.COMPONENT-TREE The tree algorithm used inside the 
omponents.SHOW INFO Displays the pro
ess of the program.WRITE-METAPOST-LATEX Creates a Metapost �le and a asso
iatedlatex �le for all trees in the layout. Note, that the Metapost algorithmfor drawing the trees takes long time for even small trees.% OF GIRAFFE Indi
ates how many pro
entage of the nodes are an
es-tors before it is a legal gira�e tree. The given parameter ∈ (0.0; 1.0).The output of the program to standard out is1. Total spa
e usage (in bytes).2. Blind trie spa
e usage (in bytes).3. Gira�e tree spa
e usage (in bytes).4. Bridge spa
e usage (in bytes).5. Constru
tion time (in se
onds).6. Number of trie nodes.7. Number of 
omponents.8. Average number of nodes inside 
omponents.9. Number of blind tries.10. Number of gira�e trees.11. Number of bridges.in that order.41See Figure 78 for the prede�ned �le name.113



A.4 The 
a
he oblivious sear
h programThe 
a
he oblivious sear
h program takes several parameters as input. Onlythe input �le is required. The parameters are shown in Figure 79.
orunner -i <INPUT-FILE> <ARGUMENTS*>-i <INPUT-FILE> (REQUIRED veb-file)-t <TEST-FILE> (If none given, user intera
tion is possible)-v <SHOW INFO> (Standard 0) 0 : None, 1 : All-r <REPETITION OF TEST-FILE> (Standard 1)Values must be an integer above zero-
 <COUNTER ON> (Standard: 0) 0 : No, 1 : YesFigure 79: The arguments possible for the 
orunner program.INPUT-FILE An input �le 
reated by the 
olayouter program.TEST-FILE A �le 
ontaining strings as des
ribed in se
tion A.1. Thesestrings are then sear
h for in the trie. If no �le is given, it is possibleto type sear
h strings.SHOW INFO Displays the pro
ess of the program.REPETITION OF TEST-FILE The number of times the strings in thetest �le is tested. This is done in a round robin fashion.COUNTER ON Displays number of sear
hes 
ompleted of the total num-ber of sear
hes.The output to standard out is1. Load time (in se
onds).2. Running time (in se
onds).3. The number of strings found.4. The number of strings not found.in that order.
114



B Constru
tion tablesIn this se
tion the output from the layout program is displayed. The di�erentshortening is brie�y explained below.
ε Value of ε.% Pro
entage of nodes needed as an
estors for a valig gira�e tree.No. TN Number of trie nodes.No. C Number of 
omponents.No. BT Number of blind tries.No. G Number of gira�e trees.No. B Number of bridges.Nodes / C Number of nodes per 
omponent (Average).BT spa
e Total spa
e usage for the blind tries nodes (in bytes).G spa
e Total spa
e usage for the gira�e tree nodes (in bytes).B spa
e Total spa
e usage for the bridge nodes (in bytes).Total spa
e Total spa
e usage (in bytes).Cons. time Constru
tion time for the layout (in se
onds).
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Data for A1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.25 3014010 5427 26229 27756 1973 555.373 573580 73829500 142064 74545144 127.5520.500 3014010 186 930 4099 71 16204.400 172460 105646220 4784 105823464 136.6450.750 3014010 5195 25179 25566 1878 580.175 557400 81125180 136160 81818740 129.5471.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 145.6661.250 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.9711.500 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 145.1852.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 145.0503.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.9564.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.9645.000 3014010 1 5 1115 0 3014010.000 157820 127661060 0 127818880 144.998Data for A2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 3379858 8149 39330 41632 2969 414.757 858700 79995100 213232 81067032 111.4970.500 3379858 279 1395 6148 107 12114.200 257400 112361600 7184 112626184 121.5800.750 3379858 7821 37808 38380 2837 432.152 835100 90514100 204848 91554048 115.0801.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.4681.250 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.5211.500 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.3742.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.3723.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.6774.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.2135.000 3379858 1 5 1671 0 3379860.000 235440 141512840 0 141748280 131.274
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Data for A3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 3377396 13523 54108 54916 5099 249.752 1115920 70799240 351120 72266280 77.9100.500 3377396 387 2610 11517 140 8727.120 358780 132504960 10112 132873852 96.5210.750 3377396 3335 23342 23711 1261 1012.710 711480 76462120 86512 77260112 78.9831.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.4601.250 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.3861.500 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.0572.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.4513.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.2364.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.0435.000 3377396 1 6 2227 0 3377400.000 314440 143695440 0 144009880 101.493Data for A4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 3281877 17847 71495 72113 6789 183.890 1449680 67047200 462448 68959328 56.3230.500 3281877 480 3261 15282 171 6837.240 448520 118989880 12592 119450992 71.4710.750 3281877 4168 29174 37378 1569 787.399 889440 98395820 108240 99393500 65.1591.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.9111.250 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 79.2231.500 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.2852.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.6283.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.2804.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.4805.000 3281877 1 6 2782 0 3281880.000 393020 136527100 0 136920120 78.545
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Data for A5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2812226 20918 82843 84082 7860 134.440 1696020 58945760 543584 61185364 43.7970.500 2812226 586 7258 18430 215 4799.020 604980 82865060 15280 83485320 49.5850.750 2812226 5001 20008 30561 1917 562.333 766680 84234120 129328 85130128 50.1461.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.7151.250 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.9971.500 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 70.1312.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.9993.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.8334.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.8405.000 2812226 1 8 4987 0 2812230.000 471680 144983420 0 145455100 69.963Data for B1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 121.3570.500 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.5340.750 2019486 1849067 1849077 1849078 618171 1.092 36981580 40389780 49279376 126650736 122.0611.000 2019486 1849067 1849077 1849078 618171 1.092 36981580 40389780 49279376 126650736 121.3541.250 2019486 1647177 1655029 1770161 562516 1.226 36992740 42739100 43709376 123441216 114.6591.500 2019486 1647171 1655024 1770161 562515 1.226 36992760 42739220 43709200 123441180 114.4962.000 2019486 1605981 1657938 1807970 544913 1.257 37891900 44425140 42672752 124989792 112.8943.000 2019486 16242 332118 1094488 5693 124.337 43359980 67428200 428624 111216804 55.0614.000 2019486 48783 358448 1139128 15873 41.397 43225320 67055140 1307056 111587516 55.4765.000 2019486 1216901 1217007 1325887 409877 1.660 37030960 54216880 32382768 123630608 138.352
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Data for B2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.8150.500 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.4480.750 3078176 1034633 1501049 1559959 359136 2.975 31854560 63346700 27362048 122563308 98.0211.000 3078176 1077949 1529046 1559989 373970 2.856 31545280 62501240 28510816 122557336 99.1941.250 3078176 532365 1139591 1527265 183749 5.782 34836600 74010200 14095664 122942464 83.2341.500 3078176 350025 477810 992597 118587 8.794 25356060 86149060 9303376 120808496 71.9012.000 3078176 237326 913658 1469043 82295 12.970 36268860 80504040 6277680 123050580 72.4253.000 3078176 3050 15726 538498 1055 1009.240 23061200 120673920 80688 143815808 61.9904.000 3078176 1 6490 523814 0 3078180.000 22938380 124877900 0 147816280 64.3385.000 3078176 1 6490 523814 0 3078180.000 22938380 124877900 0 147816280 64.513Data for B3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2286364 759600 1504644 1504644 260495 3.010 30092880 45727300 20139248 95959428 77.0530.500 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 76.9680.750 2286364 674787 1427277 1475145 232305 3.388 30067460 46845880 17876272 94789612 73.1091.000 2286364 700989 1431010 1460914 240708 3.262 29614520 46830940 18580288 95025748 73.8251.250 2286364 180144 847927 1227296 61033 12.692 28560400 56566600 4788048 89915048 54.2861.500 2286364 497013 1032868 1199775 168031 4.600 25925260 58599120 13215888 97740268 65.7152.000 2286364 163892 822140 1176875 55458 13.950 28373220 55867480 4357184 88597884 53.7083.000 2286364 1 250 171985 0 2286360.000 15214800 95698640 0 110913440 47.1004.000 2286364 1 250 171985 0 2286360.000 15214800 95698640 0 110913440 47.3015.000 2286364 1 250 171985 0 2286360.000 15214800 95698640 0 110913440 47.093
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Data for B4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2753553 645854 1337054 1337054 221573 4.263 26741080 55071080 17122128 98934288 76.4540.500 2753553 588747 1251119 1285208 203821 4.677 26059220 56108100 15578736 97746056 73.2880.750 2753553 221261 632110 910185 76542 12.445 21104400 63526160 5855648 90486208 56.3321.000 2753553 466654 1036621 1150292 162110 5.901 24199520 59261420 12339136 95800076 67.7311.250 2753553 28659 125886 513904 9919 96.080 14869020 85558880 758352 101186252 49.8241.500 2753553 339806 746166 845133 114923 8.103 21057840 67503620 9034992 97596452 62.0972.000 2753553 186073 546328 806186 62936 14.798 20136540 68785540 4947328 93869408 56.5023.000 2753553 1 88 139365 0 2753550.000 12933200 124218220 0 137151420 57.1204.000 2753553 1 88 139365 0 2753550.000 12933200 124218220 0 137151420 57.0855.000 2753553 1 88 139365 0 2753550.000 12933200 124218220 0 137151420 56.895Data for B5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 3195515 569757 1681091 1681091 195390 5.609 33621820 63910320 15105952 112638092 82.4590.500 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.0640.750 3195515 185899 555960 807594 64285 17.189 18774060 69121560 4920176 92815796 56.1021.000 3195515 417098 1243333 1340105 144702 7.661 27816100 67067440 11031872 105915412 72.4071.250 3195515 62540 222036 525815 21434 51.096 14580900 108508220 1658304 124747424 59.9241.500 3195515 30636 248679 532107 10455 104.306 15765660 88378900 813040 104957600 53.5762.000 3195515 162867 491625 722001 55628 19.620 17966200 76511120 4321664 98798984 57.1543.000 3195515 2 53 92058 1 1597760.000 11408820 123860000 16 135268836 58.1784.000 3195515 1 34 92058 0 3195520.000 11408460 124646960 0 136055420 58.1005.000 3195515 1 34 92058 0 3195520.000 11408460 124646960 0 136055420 57.543
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Data for C1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2811774 18467 67301 67301 4591 152.259 1346020 56235500 517456 58098976 47.4680.500 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 45.7420.750 2811774 17401 66077 66227 4441 161.587 1353700 56241420 485744 58080864 46.0941.000 2811774 4 16 3350 1 702944.000 391800 121690240 80 122082120 69.0831.250 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.8481.500 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.6362.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.8583.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.6984.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 68.4845.000 2811774 1 13 3348 0 2811770.000 391800 121732540 0 122124340 69.083Data for C2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2825918 19277 68051 68051 5030 146.595 1361020 56518380 536352 58415752 47.4400.500 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.2900.750 2825918 17716 66345 66482 4895 159.512 1370420 56564800 488560 58423780 47.5901.000 2825918 3 11 3380 1 941973.000 400540 122550980 48 122951568 69.4721.250 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.5081.500 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.6122.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.5193.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.7424.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.6945.000 2825918 1 9 3378 0 2825920.000 400540 122598320 0 122998860 69.971
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Data for C3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2844036 19325 68187 68187 5080 147.169 1363740 56880740 537088 58781568 47.0110.500 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.1930.750 2844036 18713 67434 67564 4950 151.982 1366120 56885840 519584 58771544 46.6341.000 2844036 2 10 3401 1 1422020.000 401480 123326400 16 123727896 69.8861.250 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.7691.500 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.4782.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 70.0943.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.7374.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 69.7315.000 2844036 1 9 3400 0 2844040.000 401500 123328580 0 123730080 70.989Data for C4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2817974 19498 68307 68307 5260 144.526 1366140 56359500 539744 58265384 46.8050.500 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.4050.750 2817974 18679 67380 67477 5161 150.863 1371760 56363300 515120 58250180 46.4161.000 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 70.1501.250 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 70.0381.500 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 69.5472.000 2817974 2 10 3358 1 1408990.000 405000 122098920 16 122503936 69.5333.000 2817974 1 9 3358 0 2817970.000 405020 122106480 0 122511500 69.7774.000 2817974 1 9 3358 0 2817970.000 405020 122106480 0 122511500 69.9925.000 2817974 1 9 3358 0 2817970.000 405020 122106480 0 122511500 69.910
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Data for C5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 2816441 20006 68733 68733 5412 140.780 1374660 56328840 553568 58257068 46.5250.500 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 45.7350.750 2816441 19311 67907 68037 5282 145.846 1377120 56333880 533408 58244408 46.4121.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.1781.250 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.4681.500 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.3342.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.7823.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.4294.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.2775.000 2816441 1 5 3359 0 2816440.000 407720 122154940 0 122562660 70.886Data for D1 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 254051 123672 123924 123924 123550 2.054 2478480 5081040 1980672 9540192 1137.3000.500 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1131.3900.750 254051 123220 123294 123445 123199 2.062 2479920 5132240 1971824 9583984 1137.2601.000 254051 123570 123586 123603 123530 2.056 2472520 5115080 1977728 9565328 1137.5001.250 254051 1100 1114 1565 1099 230.955 4920320 14480940 17584 19418844 1242.3401.500 254051 1100 1114 1565 1099 230.955 4920320 14480940 17584 19418844 1248.1902.000 254051 1100 1114 1565 1099 230.955 4920320 14480940 17584 19418844 1247.1003.000 254051 1 15 494 0 254051.000 4942300 14545400 0 19487700 1248.5904.000 254051 1 15 494 0 254051.000 4942300 14545400 0 19487700 1241.7605.000 254051 1 15 494 0 254051.000 4942300 14545400 0 19487700 1244.630
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Data for D2 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 254550 123743 124136 124136 123549 2.057 2482720 5091020 1982960 9556700 700.1480.500 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 702.0660.750 254550 123048 123149 123377 123017 2.069 2484260 5283340 1969232 9736832 703.8001.000 254550 123581 123596 123623 123520 2.060 2473080 5258460 1978240 9709780 701.4651.250 254550 819 830 1273 818 310.806 4925840 14444400 13088 19383328 758.2931.500 254550 819 830 1273 818 310.806 4925840 14444400 13088 19383328 754.0812.000 254550 819 830 1273 818 310.806 4925840 14444400 13088 19383328 755.2773.000 254550 1 12 474 0 254550.000 4942200 14491960 0 19434160 755.1864.000 254550 1 12 474 0 254550.000 4942200 14491960 0 19434160 761.6005.000 254550 1 12 474 0 254550.000 4942200 14491960 0 19434160 754.948Data for D3 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 255018 123797 124327 124328 123516 2.060 2486580 5100800 1985216 9572596 556.4140.500 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 555.0960.750 255018 122854 122984 123286 122813 2.076 2487880 5540760 1966288 9994928 553.1941.000 255018 123558 123571 123609 123478 2.064 2473020 5507500 1978176 9958696 553.5091.250 255018 692 702 1139 691 368.523 4927100 14440200 11056 19378356 589.3851.500 255018 692 702 1139 691 368.523 4927100 14440200 11056 19378356 593.3882.000 255018 692 702 1139 691 368.523 4927100 14440200 11056 19378356 596.1083.000 255018 1 11 465 0 255018.000 4940920 14486060 0 19426980 596.0684.000 255018 1 11 465 0 255018.000 4940920 14486060 0 19426980 598.1345.000 255018 1 11 465 0 255018.000 4940920 14486060 0 19426980 594.071

124



Data for D4 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 255450 123797 124453 124455 123448 2.063 2489140 5110780 1986304 9586224 508.7020.500 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 506.9930.750 255450 122617 122777 123157 122566 2.083 2490900 5902460 1962656 10356016 511.2831.000 255450 123500 123512 123560 123400 2.068 2472240 5859760 1977568 10309568 509.1141.250 255450 654 664 1089 653 390.596 4925160 14244880 10448 19180488 539.6171.500 255450 654 664 1089 653 390.596 4925160 14244880 10448 19180488 539.1812.000 255450 654 664 1089 653 390.596 4925160 14244880 10448 19180488 539.2803.000 255450 1 11 452 0 255450.000 4938220 14285740 0 19223960 539.1484.000 255450 1 11 452 0 255450.000 4938220 14285740 0 19223960 538.8395.000 255450 1 11 452 0 255450.000 4938220 14285740 0 19223960 542.896Data for D5 for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 256019 123931 124700 124702 123517 2.066 2494080 5122260 1989488 9605828 520.2590.500 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 10768956 519.7260.750 256019 113560 113750 114289 113500 2.254 2675760 7033680 1817888 11527328 519.5041.000 256019 123573 123589 123650 123456 2.072 2474300 6314520 1979008 10767828 518.9551.250 256019 623 633 1047 622 410.945 4928520 14103920 9952 19042392 544.7741.500 256019 623 633 1047 622 410.945 4928520 14103920 9952 19042392 550.1632.000 256019 623 633 1047 622 410.945 4928520 14103920 9952 19042392 550.5703.000 256019 1 11 440 0 256019.000 4940960 14142080 0 19083040 550.0634.000 256019 1 11 440 0 256019.000 4940960 14142080 0 19083040 548.4385.000 256019 1 11 440 0 256019.000 4940960 14142080 0 19083040 545.304
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Data for E for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 143617 69998 94803 94803 20130 2.052 1896060 2872360 1917824 6686244 7.3270.500 143617 67815 92998 93791 19160 2.118 1898840 2899520 1863488 6661848 7.1720.750 143617 59972 87207 91439 16187 2.395 1919540 3007700 1660080 6587320 6.9161.000 143617 56977 84065 90153 15387 2.521 1919760 3059740 1577040 6556540 6.8951.250 143617 41926 71586 84391 10617 3.425 1924460 3236740 1171728 6332928 6.1511.500 143617 38555 67616 82314 9743 3.725 1917680 3297500 1077840 6293020 6.1062.000 143617 31233 59408 78701 7751 4.598 1918660 3438840 875408 6232908 5.8173.000 143617 17061 42334 70690 4050 8.418 1909800 3733340 481120 6124260 5.2184.000 143617 8857 28822 60942 1946 16.215 1825600 3975020 252256 6052876 4.9925.000 143617 5233 20854 53480 1465 27.445 1742340 4114020 143984 6000344 5.591Data for F for varying ε
ε No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.250 4815484 83291 241944 242018 33327 57.815 4842080 96324560 2132048 103298688 50.0500.500 4815484 81226 236337 237251 32428 59.285 4765940 96380920 2080352 103227212 49.5250.750 4815484 72149 222171 226979 28522 66.744 4639560 96533300 1852384 103025244 49.1131.000 4815484 71531 220324 225523 28112 67.320 4620120 96560600 1839168 103019888 49.1541.250 4815484 42117 186608 202720 18322 114.336 4388160 96858460 1054560 102301180 48.3071.500 4815484 41618 185050 201519 17990 115.707 4371400 96883380 1043904 102298684 48.3822.000 4815484 33136 166501 188366 14401 145.325 4226600 97103080 829904 102159584 47.7463.000 4815484 16887 124028 158258 8065 285.159 3800280 97737960 411312 101949552 66.5084.000 4815484 45657 189612 204329 25450 105.471 4433800 97259140 1053792 102746732 48.2565.000 4815484 101 51611 102157 39 47678.100 2735900 101210580 2576 103949056 45.994
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Data for A1 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 3014010 186 930 2419 71 16204.400 172460 73768260 4784 73945504 127.4030.300 3014010 186 930 2427 71 16204.400 172460 73831400 4784 74008644 127.2860.400 3014010 186 930 2427 71 16204.400 172460 73823400 4784 74000644 127.2860.500 3014010 186 930 4099 71 16204.400 172460 105646220 4784 105823464 136.8960.600 3014010 186 930 5765 71 16204.400 172460 137179320 4784 137356564 146.647Data for A2 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 3379858 279 1395 3632 107 12114.200 257400 79854260 7184 80118844 111.6380.300 3379858 279 1395 3632 107 12114.200 257400 79764260 7184 80028844 113.0550.400 3379858 279 1395 3647 107 12114.200 257400 80227800 7184 80492384 111.7870.500 3379858 279 1395 6148 107 12114.200 257400 112361600 7184 112626184 121.4980.600 3379858 279 1395 8648 107 12114.200 257400 144560360 7184 144824944 131.188Data for A3 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 3377396 387 2610 4844 140 8727.120 358780 76363340 10112 76732232 79.1340.300 3377396 387 2610 4860 140 8727.120 358780 76623660 10112 76992552 79.7380.400 3377396 387 2610 8196 140 8727.120 358780 104676840 10112 105045732 88.1720.500 3377396 387 2610 11517 140 8727.120 358780 132504960 10112 132873852 96.8290.600 3377396 387 2610 11529 140 8727.120 358780 132713560 10112 133082452 96.913
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Data for A4 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 3281877 480 3261 6056 171 6837.240 448520 71018460 12592 71479572 56.9720.300 3281877 480 3261 6074 171 6837.240 448520 71210180 12592 71671292 57.2830.400 3281877 480 3261 10710 171 6837.240 448520 95258360 12592 95719472 64.7310.500 3281877 480 3261 15282 171 6837.240 448520 118989880 12592 119450992 71.5770.600 3281877 480 3261 15349 171 6837.240 448520 119255420 12592 119716532 71.730Data for A5 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2812226 586 7258 7355 215 4799.020 604980 56776920 15280 57397180 42.3430.300 2812226 586 7258 13425 215 4799.020 604980 71035440 15280 71655700 46.5990.400 2812226 586 7258 18425 215 4799.020 604980 82840660 15280 83460920 50.2780.500 2812226 586 7258 18430 215 4799.020 604980 82865060 15280 83485320 49.9510.600 2812226 586 7258 18491 215 4799.020 604980 83469040 15280 84089300 49.818Data for B1 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.8510.300 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.8160.400 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.9350.500 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 122.4230.600 2019486 1849078 1849078 1849078 618172 1.092 36981560 40389740 49279712 126651012 120.873
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Data for B2 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.5940.300 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.4810.400 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.9700.500 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.6420.600 3078176 1139111 1562486 1562486 390508 2.702 31249720 61563540 30203392 123016652 101.534Data for B3 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2286364 757859 1503757 1503765 259629 3.017 30109920 45744520 20097392 95951832 76.8290.300 2286364 757859 1503757 1504617 259629 3.017 30109920 45761560 20097392 95968872 77.4710.400 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 77.0780.500 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 76.9680.600 2286364 757859 1503757 1504630 259629 3.017 30109920 45761820 20097392 95969132 77.119Data for B4 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2753553 588747 1251119 1284509 203821 4.677 26059220 56079920 15578736 97717876 73.4180.300 2753553 588747 1251119 1285197 203821 4.677 26059220 56107440 15578736 97745396 73.3320.400 2753553 588747 1251119 1285197 203821 4.677 26059220 56107440 15578736 97745396 73.4520.500 2753553 588747 1251119 1285208 203821 4.677 26059220 56108100 15578736 97746056 73.4170.600 2753553 588747 1251119 1285208 203821 4.677 26059220 56108100 15578736 97746056 73.302
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Data for B5 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 3195515 517990 1538207 1568547 179269 6.169 31706140 64525280 13707344 109938764 78.6170.300 3195515 517990 1538207 1569175 179269 6.169 31706140 64550400 13707344 109963884 78.5010.400 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.5560.500 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.5140.600 3195515 517990 1538207 1569184 179269 6.169 31706140 64550940 13707344 109964424 78.147Data for C1 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 46.0040.300 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 45.9350.400 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 46.2510.500 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 45.8540.600 2811774 18458 67276 67276 4591 152.334 1345520 56235500 517168 58098188 46.133Data for C2 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.1890.300 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.3130.400 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.1840.500 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 46.9250.600 2825918 19269 68033 68033 5030 146.656 1360660 56518380 536096 58415136 45.943
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Data for C3 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.6900.300 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.3420.400 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.7690.500 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.4990.600 2844036 19319 68171 68171 5080 147.214 1363420 56880740 536896 58781056 46.510Data for C4 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.1890.300 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.4840.400 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.5050.500 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.2410.600 2817974 19492 68291 68291 5260 144.571 1365820 56359500 539552 58264872 46.229Data for C5 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.1870.300 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.1220.400 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.4770.500 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 45.8870.600 2816441 20002 68724 68724 5412 140.808 1374480 56328840 553440 58256760 46.480
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Data for D1 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1134.1500.300 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1137.8300.400 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1131.7900.500 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1137.5800.600 254051 123602 123717 123726 123541 2.055 2474700 5102640 1978576 9555916 1134.100Data for D2 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 700.6590.300 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 701.4180.400 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 701.0420.500 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 699.6170.600 254550 123619 123767 123789 123527 2.059 2476220 5250000 1979344 9705564 704.443Data for D3 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 555.3240.300 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 558.4950.400 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 559.1760.500 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 558.4650.600 255018 123612 123790 123823 123485 2.063 2477120 5501180 1979792 9958092 556.699
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Data for D4 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 255450 123564 123781 123815 123407 2.067 2477340 5600440 1979504 10057284 509.5200.300 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 507.3770.400 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 511.8380.500 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 511.5630.600 255450 123564 123781 123824 123407 2.067 2477340 5852940 1979504 10309784 511.978Data for D5 for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 256019 123652 123910 123941 123466 2.070 2480320 5613760 1981376 10075456 517.4880.300 256019 123652 123910 123953 123466 2.070 2480320 5945840 1981376 10407536 517.0680.400 256019 123652 123910 123962 123466 2.070 2480320 6263180 1981376 10724876 522.1980.500 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 10768956 523.0880.600 256019 123652 123910 123963 123466 2.070 2480320 6307260 1981376 10768956 519.987Data for E for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 143617 67815 92998 93107 19160 2.118 1898840 2884560 1863488 6646888 7.2260.300 143617 67815 92998 93301 19160 2.118 1898840 2888740 1863488 6651068 7.1540.400 143617 67815 92998 93763 19160 2.118 1898840 2898200 1863488 6660528 7.3690.500 143617 67815 92998 93791 19160 2.118 1898840 2899520 1863488 6661848 7.2760.600 143617 67815 92998 93903 19160 2.118 1898840 2904460 1863488 6666788 7.225
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Data for F for varying % of gira�e ne
k% No. TN No. C No. BT No. G No. B Nodes / C BTspa
e G spa
e B spa
e Totalspa
e Cons.time0.200 4815484 81226 236337 237098 32428 59.285 4765940 96355580 2080352 103201872 49.4990.300 4815484 81226 236337 237188 32428 59.285 4765940 96364860 2080352 103211152 49.5530.400 4815484 81226 236337 237223 32428 59.285 4765940 96374360 2080352 103220652 49.4570.500 4815484 81226 236337 237251 32428 59.285 4765940 96380920 2080352 103227212 49.5080.600 4815484 81226 236337 237272 32428 59.285 4765940 96386980 2080352 103233272 49.520
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