
Y

Master's Thesis

Representations for Path Finding
in Planar Environments

Author:

20062154

Andreas Koefoed-Hansen

u062154@cs.au.dk

Supervisor:

Associate Professor

Gerth Stølting Brodal

gerth@cs.au.dk

February 29, 2012

Abstract

In this thesis, di�erent methods of representing planar domains are compared in
the context of path �nding. Three di�erent representations are compared: grids,
visibility graphs and navigation meshes. The �rst part of the thesis is a sur-
vey covering the theoretical details on how the representations are constructed,
how graph search algorithms can be applied to �nd the shortest paths, and
how the path �nding process can be accelerated by using abstractions of the
representations. In the second part of the thesis, the representations are eval-
uated by analyzing theoretical running times and actual running times of the
implementations, the number of states, the length of the paths and the memory
consumption.

Acknowledgements

I would like to thank my supervisor Gerth Stølting Brodal for excellent super-
vision, good advices and proof reading of my thesis.

Contents

1 Introduction 1
1.1 Representations . 3

1.1.1 Grid Representation . 3
1.1.2 Visibility Graph . 4
1.1.3 Navigation Mesh . 4

2 Survey 7
2.1 Grid Representation . 7
2.2 Visibility Graph . 9
2.3 Navigation Mesh . 11

2.3.1 Delaunay Triangulation 11
2.3.2 Constrained Delaunay Triangulation 14
2.3.3 Analysis . 17
2.3.4 Point Location . 19

2.4 Graph Search Algorithms . 22
2.4.1 Dijkstra's Algorithm . 23
2.4.2 A* . 24
2.4.3 Path Planning in Navigation Meshes 25

2.5 Abstractions . 28
2.5.1 Hierarchical Grid Representations 29
2.5.2 Highway-Node Routing 30
2.5.3 Triangulation Graph Reductions 31

3 Implementation 35
3.1 Common Data Structures . 35
3.2 Grid Representation . 36
3.3 Visibility Graph . 36
3.4 Navigation Mesh . 36

3.4.1 Data Structures . 38
3.5 A∗ . 38

3.5.1 Data Structures . 38
3.6 Memory Consumption . 39
3.7 Debugging . 41

4 Experiments 43
4.1 Setup . 43
4.2 Environments . 43

4.2.1 Maze . 43
4.2.2 Convex Polygon . 44
4.2.3 Game Maps . 45

4.3 Results . 45
4.3.1 Insertion of a Point . 45
4.3.2 Point Location . 48
4.3.3 Construction Time . 49
4.3.4 Nodes . 51
4.3.5 Edges . 52
4.3.6 Memory Consumption . 53
4.3.7 Game Maps . 54
4.3.8 Path Time . 55
4.3.9 Expanded Nodes . 57
4.3.10 Path Length . 58

5 Discussion 59

6 Conclusion 61
6.1 Grid Representation . 61
6.2 Visibility Graph . 61
6.3 Navigation Mesh . 62
6.4 Overall . 62

7 Extensions 63
7.1 Point Location . 63
7.2 Nonpoint Objects . 63
7.3 Line of Sight . 63
7.4 Dynamic Changes . 64
7.5 Terrain Traversal Cost . 64

A 65

Index 72

Chapter 1

Introduction

Path planning is used to solve the problem of �nding a path between two points
in a graph. While navigation through graphs, that represent roads or other
point-to-point connections, is widely used in real life applications, navigation
through a terrain is mostly used in virtual environments. This is often com-
puter games where agents have to get from a start point to a goal.

To use the path planning in real terrain, we need to collect data about the
environment. This can be done using an airplane, which measures the height of
the terrain by shooting laser beams down at the ground. It measures the time
it takes for the laser pulse to be re�ected back from the ground to the airplane.
Knowing, that that the pulse is traveling with the speed of light, it is possible to
calculate the distance to the ground. This technology is known as LIDAR [1],
and can be used to generate three-dimensional high resolution grids or meshes.
This data can be used to �nd the obstacles in the environment, and generate
representations for path planning .

The algorithms used to create representations of three-dimensional maps,
are much more complex and time consuming than the algorithms used in two
dimensions. We can avoid this overhead by projecting the map to a plane
before generating the representation. Figure 1.1 illustrates how this could be
done. The gray areas in the grid are the sloped parts of the map, which we
deem impassable. These areas are also marked in the planar grid, and when
representations are made from the grid, we can plan paths around the marked
areas.

To solve the problem of �nding an optimal path, graph search algorithms
are applied. One of the most used algorithms is Dijkstra's algorithm that solves
the single-source shortest path problem for graphs with non-negative weights.
The worst-case upper bound of the algorithm is O(m+ n log n), where n is the
number of vertices and m is the number of edges in the graph [2].

1

Figure 1.1: Three dimensional terrain projected to a plane.

For many applications, the speed of the path calculation is crucial. It could
be in an environment where dynamic changes occur, and frequent recalculations
are required. It is the complexity of the graph, which determines the running
time. This means that we want to have as few nodes and edges as possible,
while still having all the walkable areas in the environment represented. The
graph is called a connectivity graph, and it contains all the valid moves in a
representation. The nodes in the graph correspond to the nodes or states in the
representation, and the edges de�ne the possible moves or transitions between
the nodes.

2

1.1 Representations

Before going into a brief introduction of the representations, a few de�nitions
have to be introduced: A map de�nes the environment for which we create the
representations. The map may contain a number of obstacles, either static or
dynamic, described by a set of constraints. A constraint is a line segment that
can be connected to other segments, in order to outline the obstacles. An illus-
tration of the map elements can be seen in Figure 1.2.

obstacle

co
ns

tr
ai
nt

map

Figure 1.2: A map with an obstacle which is outlined by constraints.

1.1.1 Grid Representation

Grid based representations are composed of a lot of cells arranged in a grid.
The cells are often rectangular and called tiles, but in general any type convex
polygons which can be �t together in a grid, can be used as cells. Each cell has
a cost associated with it that describes if the cell is walkable or not, and if it is,
how much it would cost to move through it. A cell is connected to other cells
in the grid by a number of portals. The number of portals varies, but normally
4 are used because it allows to move to the neighboring cells, which shares an
edge with the current cell. When diagonal movement is required, we have to
introduce more portals. The normal approach is to add 4 additional portals, one
for each of the diagonal neighbors. The cells with 8 portals are called octiles.
An illustration of the moves in the grid can be seen in Figure 1.3a.

3

1.1.2 Visibility Graph

A visibility graph G = (V,E), where V is the set of vertices and E is the set
of edges, can be constructed from a set of constraints and used for planning
routes that does not collide with these constraints. The vertices in the graph
are connected such that only those, which have a clear line of sight between
them, are connected by an edge. An illustration of the moves in the graph can
be seen in Figure 1.3b.

1.1.3 Navigation Mesh

A navigation mesh is any type of polygonal mesh used to represent the walkable
areas of a map. The meshes can be created by triangulating the map while con-
sidering the constraints. The algorithms used to construct the mesh will depend
on the complexity of the environment n. A uniform grid-based representation
will rely on the extend of the environment and the resolution of the grid. This
means that if we have a environment with large walkable areas, a mesh will
have an advantage compared to a grid, where the areas would have to be split
up in many cells [3]. An illustration of the moves in the mesh can be seen in
Figure 1.3c.

(a)

x

(b) (c)

Figure 1.3: (a) The valid moves in a grid representation. The black arrows show
the moves when using normal tiles, and the ones added when using octiles are
colored in gray. (b) The valid moves in a visibility graph from the vertex x. (c)
The valid moves in a navigation mesh.

Even though the three representations might be based on the same environ-
ment, the number of nodes and edges in the connectivity graph will most likely
be di�erent. Figure 1.4 shows an example of this. The grid representation al-
ways has the same number of nodes and edges regardless of how many obstacles
there are. This is not the case with the visibility graph and the navigation mesh,
where the complexity solely relies on the constraints in the map. The worst-case

4

scenario for the visibility graph is that there will be O(n2) edges, where n is the
number of vertices used to represent constraints. The number of triangles and
edges in the navigation mesh will always be O(n).

(a) Grid representation. (b) Visibility graph. (c) Navigation mesh.

Figure 1.4: Di�erent representations of the same map.

5

6

Chapter 2

Survey

In this chapter, we look at some of the contributions made to the academic
community in the �elds of arti�cial intelligence, map representations and path
planning. This will also work as a build up to the following chapters, where
some of the described algorithms will be implemented and compared.

2.1 Grid Representation

Grids are often favored in the choice of map representation for applications such
as Real-Time Strategy (RTS) computer games. This is mainly due to the sim-
plicity of the data structure and the way that the grid easily can be updated.
Besides path �nding, another thing often wanted in such games, is detection of
unit collision. This can be archived by adding a �ag to a cell to indicate if it is
occupied or not. These �ags will have to be updated as the units move around,
but it will allow units to avoid colliding when the �ags are considered in the
graph search algorithm.

As mentioned in Section 1.1.1, octiles allow for diagonal moves. These moves
can often reduce the path length, but allowing them also opens up for possible
ambiguous representations. An example of this can be seen in Figure 2.1. Peter
Yap [4] has looked into this problem and introduced an alternative way of align-
ing the tiles in the grid. Instead of all the tiles being aligned next to each other,
every second column of tiles are moved half a tile-height down. The new cells
in this representation are called texes, and each tex now gets up to 6 directly
connected neighbors. In Figure 2.1, it is shown how it solves the problem of
ambiguity. The empirical results [4] show that compared to the normal tiles,
the use of texes improves the length of the paths by around 20%, and reduces
the time for generating paths signi�cantly, especially when there are a lot of
obstacles on the map [4].

7

??
Octiles

Texes

Figure 2.1: Two di�erent scenarios for diagonal moves. The octiles represents
each scenario the same way, while the texes represents each scenario di�erently.

Peter Yap later wrote a short article [5], where the texes were compared with
both tiles and octiles. Rather than the length of the paths, it was the number of
nodes expanded that was measured. The experiments were made on three types
of maps: obstacle-free, from Baldur's Gate II and random data. Table 2.1 shows
the results of the di�erent maps where an A* algorithm (see Section 2.4.2) has
been used to �nd the paths. The results show that octiles outperform the other
representations, and texes sometimes are better than regular tiles, but on ran-
dom data, they are actually slightly worse.

Type Tiles Texes Octiles

Obstacle free 100% 81% 70%
Baldur's Gate 100% 97% 74%
Random data 100% 105% 95%

Table 2.1: Number of nodes expanded compared to the number of
nodes expanded in the tile representation. The values are calculated as
p = expNodesrep/expNodestile [5].

When constructing the grid representation, the complexity relies on the res-
olution of the grid. Before adding the constraints, the grid has to be initialized.
As we have to go through all the cells of the grid, the running time must be
O(r2), where r is the resolution of the grid. This is under the presumption that
the grid is squared. A constraint is inserted by locating the cells in the grid,
which contains the end points of the constraint (see Figure 2.2a). This step

8

takes constant time. The next step is to mark all the cells that the constraint
is intersecting. This is done by �nding the gradient of the constraint , and using
this to mark the cells between the two endpoints (see Figure 2.2b and 2.2c). The
second step takes O(r) because the constraints in worst-case spans the entire
grid width or height. As this is done for all the constraints in the map, we get
a total worst-case construction time of O(r · n), where n = |C| is the number
of constraints used to describe the obstacles in the map. If we assume that the
cells that the constraints cover do not overlap, we access each cell at most once
during the insertions of the constraints. This means that the worst-case time is
bounded by the time it takes to initialize the grid.

a

b

(a)

a

b

u

(b)

a

b

(c)

Figure 2.2: (a) Locate the cells that contains the endpoints. (b) Find the unit

vector ~u = ~ab/‖ ~ab‖. (c) Locate the cells overlapped by the line ab by adding ~u
to a.

2.2 Visibility Graph

Visibility graphs are not usually used to represent planar environments, but can
be used as an alternative to grid representations. One advantage that visibility
graphs have over grids is that the paths found in a visibility graph, always will
be the actual shortest paths. The length and precision of the paths found in a
grid representation will rely on the resolution of the grid.

The disadvantage is, that if the start and goal points do not exists in the
graph, we will have to add them before �nding the path. In most cases, it will
take longer to add the points, than �nding the path between them.

A visibility graph G = (V,E) can be constructed trivially in O(n3) time [6],
where n = |C|. The �rst step is to add all the endpoints of the constraints as
vertices in the graph. Secondly, for each vertex v ∈ V check if u ∈ V is visible
from v. If this is the case, an edge (u, v) is inserted into E.

9

The construction time can be reduced to O(n2 log n) by using a binary search
tree and a cyclic plane sweep (see Figure 2.3). The idea is, that for each vertex
v ∈ V we sort the other vertices w ∈ C by the angle of the vector ~vw. Then
the sweep is initialized by inserting the constraints intersected by the right go-
ing horizontal ray, starting from v, into a search tree T . The sweep progresses
clockwise and keeps the search tree updated, such that only the constraints

that intersect the sweep line are contained. Each time a new vertex w ∈ C is
encountered, we check if it is visible from v, by looking in the search tree. The
running time of a cyclic plane sweep is dominated by the time it takes to sort the
vertices: O(n log n). Since we have to do a sweep for each of the vertices in V ,
the running time becomes O(n2 log n) [6]. This method will only work if none
of the constraints is intersecting. If the constraints are intersecting, we can split
them up at the intersection points, which are found by a line-line intersection
algorithm.

p

Figure 2.3: A cyclic plane sweep around the point p.

There have been introduced other faster algorithms, and an optimal algo-
rithm that runs in O(E + n log n), where E is the number of edges in the re-
sulting graph [7]. Because the upper bound on edges in a visibility graph is n2,
the running time may be O(n2) for some maps, but it is still an improvement.

10

2.3 Navigation Mesh

Navigation meshes combines the nice properties from the two other representa-
tions, by having a low number of edges per node, like the grid representation,
while still having a linear number of nodes, like the visibility graph.

We will only look at triangular meshes in this thesis, but in general, a nav-

igation mesh can be composed of polygons with an arbitrary number of sides,
as long as they are convex.

The triangulation of a map can be done in O(n log n) time, where n is the
number of vertices inserted. The number of triangles is proportional to the
number of inserted vertices, as each insertion of a vertex results in a constant
increase in the number of triangles [6]. There are di�erent approaches, on how to
perform the triangulation, which have the same worst-case running times. The
most common is to use either a sweep line or divide-and-conquer algorithm. The
advantage of those algorithms is that we can guarantee a worst-case bound to
be O(n log n) for every scenario. There are another kind of algorithms, which
are based on randomization, that in some cases will get a running time of O(n2),
but on average will perform more or less like the other algorithms. The ran-
domized algorithms are incremental, which allows for insertion and removal of
constraints dynamically, without having to rebuild the whole mesh.

An iterative algorithm by Kallmann et al. [8], has been designed speci�cally
to be used for navigation meshes. It allows for dynamic updates in the mesh,
both insertion and removal of constraints, that only a�ects the triangles in mesh
locally. The output will be a Delaunay Triangulation, which will be described
in the section below.

2.3.1 Delaunay Triangulation

In a Delaunay Triangulation, we aim at getting all the triangles to be angle-
optimal. During the construction of the triangulation, the algorithm maximizes
the minimum angle, such that we get as few �skinny� triangles as possible. This
gives us a navigation mesh, where the triangles are as uniform as possible.

In order to ensure that the triangles are angle-optimal we use a circumcircle-
rule. It checks all edges in the triangulation by the following procedure: For
each half-edge e, get the triangle t, which e is a part of. If the circumcircle of
t contains a vertex, e is illegal, but if no vertices are inside the circumcicle it
is legal. If an edge is illegal, we �ip it such that circumcircle of t changes, and
there will be no vertices inside the new circumcircle [6] (See Figure 2.4). If the
triangulation does not contain illegal edges, it is a valid Delaunay Triangulation.

11

c

b

a

v

(a) v inside the circumcircle.

c

b

v

a

(b) v outside the circumcircle.

Figure 2.4: An example of a triangulation before and after an edge �ip.

Using this technique, we can convert any triangulation into a Delaunay Tri-
angulation. Figure 2.5 shows the di�erence between a triangulation before and
after edges have been �ipped.

(a) Before �ips. (b) After �ips.

Figure 2.5: Triangulation before and after edges have been �ipped.

Mark de Berg et al. [6] use a randomized incremental approach by Guibas et
al. [9] when constructing a Delaunay Triangulation. The algorithm starts with
one or more bounding triangles, which will encapsulate all the points P that will
be added to the triangulation. Each point p ∈ P will be added in random order
using the following procedure: First, we �nd the triangle t, in which the point
p is located. This is done by using one of the methods covered in Section 2.3.4.
When the triangle is found, the point is inserted by creating three new triangles

12

and deleting t from the triangulation. The triangles will all share p as a corner
point, and will have edges that connect it to the corner points of t (p1, p2, p3)
(see Figure 2.6a).

In some cases p will be located on an edge e in the triangulation. If this
happens, we locate the two triangles t1 and t2 which shares e. The two triangles
are removed from the triangulation and four new triangles are created. The new
triangles will, like in the previous case, all share p as a corner point, and have
edges connecting it to the points of t1 and t2 (p1, p2, p3, p4) (see Figure 2.6b).

p

p1

p2

p3

(a) Insertion of a point in a triangle.

p1

p2

p3

p4
p

(b) Insertion of a point on an edge.

Figure 2.6: Insertion of points in a Delaunay Triangulation.

The �nal step is to check if the added triangles obey the circumcircle-rule as
described previously. If this is not the case, we need to �ip their edges. The edge
�ips also a�ects the neighboring triangles, and might invalidate the Delaunay

Triangulation. To �x this, we also �ip the edges of the neighboring triangles,
and keep �ipping edges until we get a valid Delaunay Triangulation. In worst-
case, the insertion of a point may require O(n) edge �ips, but for randomized
input the expected number of edge �ips is constant [9].

The algorithm produces a number of triangles, which use a data structure
called SymEdge. For each edge in the triangulation, two half-edges are made.
The two half-edges each originates from a vertex, one from the �rst vertex of
the edge and the other from the second. This makes the two half-edges point in
opposite directions, and makes it possible to determine the previous and next
half-edge that are a part of the triangle. The reason that the data structure
is called SymEdge is that each half-edge has a pointer to its symmetrical edge
(see Figure 2.7). With this information, we are able to �gure out how the tri-
angles in the mesh are connected. This structure is used for both point location

13

and navigation through the mesh. The SymEdge structure stores the same in-
formation as the Double-Connected Edge List (DCEL), used by Mark de Berg
et al. [6].

s sym

s

s
 p

re
v s next

Figure 2.7: The SymEdge data structure.

2.3.2 Constrained Delaunay Triangulation

Given a set of constraints C, where each constraint c ∈ C is a line segment,
a Constrained Delaunay Triangulation, CDT = (V,E), upholds the property
that each constraint is contained in the set of edges E.

The �rst step of constructing a CDT is to build a DT = (V,E) by inserting
the endpoints of the segments. To ensure that the output will be a CDT we have
to check that each constraint c = (p1, p2) is contained in E. If the segment is
not contained, we have to add it using the following procedure by Anglada [10]:
First, we �nd all the triangles intersected by c. This is done by �nding the trian-
gles that have p1 as a corner point, check if an edge of the triangle intersecting
with c. If an intersection is found, the triangle that shares the intersected edge
with the current triangle is returned as the next triangle to look at. If the line
is passing through a triangle, there will be two edge intersections, and we have
to determine which of the neighboring triangles to look at next. This is done
by eliminating the choice of going back to the previous triangle. We keep doing
this until the triangle that contains p2 is found. Finally all the intersected edges
are removed from E, and a polygon made up of the vertices that was connected
by them, will be retriangulated.

The �rst part of the retriangulation, is to split the vertices into two sets,
creating two pseudo-polygons, which share the constraint c (see Figure 2.8).
The two pseudo-polygons are now triangulated individually using the function

14

TriangulatePseduoTriangle. It takes a set of vertices P , a constraint c, and the
list of triangles in the triangulation T as input. If P has more than one vertex,
the vertices are sorted clockwise by angle. Then the �rst vertex is assigned to
the variable x. Each of the vertices v ∈ P is tested to see if they are inside the
circumcircle of the triangle (x, p1, p2). If v is inside the circumcircle it becomes
the new x. The vertices in P is divided into two new sets PE and PD giving
P = PE + x + PD. The function is called recursively with c being (p1, x) and
(x, p2) and P as the two newly created sets respectively. If P is not empty, the
triangle (x, p1, p2) is added to T . An example of a triangulation of a pseudo-

polygon can be seen in Figure 2.8.

x

(a) (b)

(c) (d)

p2

p1 p2

p1

p2

p1

p2

p1

x

x

Figure 2.8: (a) The vertices are divided into two sets split by the segment.
(b) The circumcircle for the triangle (x, p1, p2) are found, where x is the �rst
vertex. (c) The circumcircle for the triangle (x, p1, p2) are found, where x is
the second vertex. (d) As there are no other points within the circumcircle, the
triangles are added to the solution.

An alternative approach of handling the insertion of constraints is presented
by Bernal [11] that are based on the work of Lawson [12]. Instead of deleting
edges and retriangulating the pseudo-polygons, the edges are �ipped to remove
intersections. The result of the two algorithms will be the same, however this
approach will have the advantage that we at all times have a complete trian-
gulation, in contrast to the other approach that uses deletion and reinsertion
of edges. The �ipping approach works as follows: As with the other algorithm,
the intersected triangles and edges are found. Instead of deleting an intersected
edge e, we �nd the quadrilateral q that is spanned by the two triangles, t1 and
t2 that shares e. If q is convex, e is �ipped and the next edge is processed.
If q is concave, we cannot �ip it, as it would create an invalid triangulation.
Instead, we wait until the other edges of t1 and t2 have been processed and then
process e afterwards. A �nal step is to optimize the edges with quadrilaterals
that lie entirely on one side of the inserted constraint . The optimization �ips

15

those edges if the triangles that share the edge will get a larger minimum angle.
An example of the process can be seen in Figure 2.9.

>180°

(a) (b)

(c) (d)

(e) (f)

p2

p1

p2

p1

p2

p1

p2

p1

p2

p1

p2

p1

Figure 2.9: (a) The initial triangulation. The bold line from p1 to p2 is the
constraint . (b) The �rst edge is �ipped. (c) The next edge has a quadrilateral,
which is concave, resulting in the edge being skipped. (d) The �nal edge is
�ipped. (e) Now that the skipped edge no longer has a concave quadrilateral,
and we can �ip it. It becomes the edge connecting p1 and p2. (f) Finally,
the edges can be optimized, such that we maximize the minimum-angle of the
triangulation.

All the triangles in the resulting mesh will have their minimum angle max-
imized, but we cannot ensure that they all will have Delaunay properties. Be-
cause some of the triangles have constrained edges that cannot be �ipped, their
circumcircle might contain other vertices (see Figure 2.10).

16

(a) Graph G = (V,E). (b) DT of V .

e

(c) CDT of G.

Figure 2.10: The process of creating a Constrained Delaunay Triangulation.
Notice how the �ipped edge e in the CDT results in the triangles not upholding
the circumcicle rule.

2.3.3 Analysis

Each time a point p is inserted in the Delaunay Triangulation it is located inside
a triangle or on an edge of a triangle. In the �rst case, we add 3 new edges all
going out from p. In the second case we add 4 new edges going out from p,
but we remove the edge that p was lying on. In both cases, we get an increase
of 3 edges for each point inserted. Each segment in a constraint has 2 points
meaning that we in worst-case has to add 6 new edges, but as one of them will
be constrained we only get 5 edges that we have to consider for the subsequent
insertions. Assuming that none of the constrained edges intersects each other,
we can argue that the order, in which the edges are inserted, has a great impact
on the running time. The reason is that the number of intersections between
a new constrained edge and the existing edges varies a lot, depending on the
order of insertion. Consider the following example: We have three constrained
edges that should be inserted, c1, c2 and c3. In Figure 2.11 and 2.12, the three
edges are inserted in two di�erent orders. The order a results in a total of 5
intersected edges that have to be �ipped, whereas b results in an order where
no additional edges have to be �ipped.

17

c1

(a) Inserting c1.

c2

c1

(b) Inserting c2.

c3

c2

c1

(c) Inserting c3.

Figure 2.11: Incremental Delaunay Triangulation insert order a.

c3

(a) Inserting c3.

c3

c2

(b) Inserting c2.

c3

c2

c1

(c) Inserting c1.

Figure 2.12: Incremental Delaunay Triangulation insert order b.

If we are unlucky, and have a bad order of insertion, we will get a worst-case
time of O(n2), where n is the number of constrained edges, as the number of
intersections will be an arithmetic series [2]:

n∑
k=1

5k + 1 = 6 + 11 + . . .+ 5n+ 1

=
5n+ 2

2
(n+ 1)− 1

= O(n2)

In practice the algorithm will be faster than the worst-case time, but it is
still an open question if it is possible to construct a Constrained Delaunay Tri-

angulations using a randomized algorithm, with an expected running time of
O(n log n) [13].

There exist divide-and-conquer algorithms that can construct Constrained
Delaunay Triangulations in O(n log n) [8].

18

2.3.4 Point Location

The point location is a vital part of the Delaunay Triangulation algorithms. It
is done for every inserted point and thereby has a great impact on the overall
running time. There are di�erent algorithms that vary in both running time
and memory consumption.

Trivial Approach

Simply loops though all the triangles in the triangulation, and �nds the triangle,
which contains the point. It takes O(n) time, and requires no extra memory.

Jump-and-Walk

The algorithm is by Münke et al. and used by Kallman et al. [8]. It works as
follows: First, a random sample of O(n1/3) vertices is chosen from the triangu-
lation, where n is the number of vertices in the triangulation. Then each of the
sample vertices is evaluated, to determine which one is closest to the point p.
Finally an oriented walk towards p is performed, starting from the triangle t,
adjacent to the found vertex. The oriented walk is done by selecting an edge e
from t, which splits the center of t and p into two distinct planes. The triangle
that shares the edge e with t is now selected, and the oriented walk continues
until the triangle containing p is found. The original algorithm is only known
to work for Delaunay Triangulations, and not Constrained Delaunay Triangula-

tions. An example of a how non-delaunay triangulation can get the algorithm to
go into an in�nite loop can be seen in Figure 2.13. This cannot occur in a Delau-
nay Triangulation, as there is a strict ordering of distances between the centers
of circumcircles, c1 and c2, of two triangles, t1 and t2, to the query point q.

q

Figure 2.13: An in�nite oriented walk.

19

Kallman et al. [8] modi�ed the algorithm a bit, to ensure that it also works
on Constrained Delaunay Triangulations. As described earlier the problem with
Constrained Delaunay Triangulations is that we cannot ensure that all triangles
uphold the Delaunay properly . This can make the algorithm visit triangles more
than once, and in some cases enter an endless loop, where the same triangles
are visited over and over. To avoid this, an integer is incremented for each point
location search, and used to update a value on each of the visited triangles.
This value is used as a �ag to determine if the triangle has been visited in this
search, if so; the algorithm will not consider it when doing the oriented walk.
The algorithm takes O(n1/3) time and requires no data structure, hence no ex-
tra memory is needed.

Sector Based Jump-and-Walk

Demyen et al. [14] use a modi�ed version of the jump-and-walk method that
relies on a 2D grid structure. The grid has a prede�ned resolution, and each
cell covers a sector of the map. Each sector has a pointer to the triangle, which
contains the midpoint of that sector. When searching for a triangle, which con-
tains the point p, the algorithm uses the grid to �nd the sector, in which p is
located (see Figure 2.14).

p

Figure 2.14: Sector Based Jump-and-Walk : The sector grid.

The time to �nd the sector is constant, and if the triangles are divided
equally across the sectors, we get an expected running time of O(n/s) where s
is |sectors|. We can however, get triangulations where almost all triangles are
located in one sector, and the running time of a search in that sector will be

20

O(n). For random queries, the average time will still be O(n/s) for those maps.
This is because, query points located in sectors with few triangles, will need few
steps in the walk, to get to the triangle containing the point. The algorithm
requires a static data structure that uses O(s) space.

DAG Structure

Mark de Berg et al. [6, p. 202] use a Directed Acyclic Graph (DAG) by Sei-
del [15] to locate a triangle containing the query point. The DAG is initialized
with a number of nodes corresponding to the triangles in the initial triangu-
lation. When a point is inserted and new triangles are created, the DAG is
updated to re�ect the changes in the triangulation. The node that represents
the triangle, that contains the new point, has three new child nodes added,
which relates to the new triangles that replaces the original triangle. When an
edge is �ipped, and two new triangles are added, both of the old triangles will
get them as children. An illustration showing an insertion of a point, and an
edge �ip, can be seen in Figure 2.15.

Triangulation DAG

Split t1

Flip edge

t1

t1

t1

t1

t2

t2

t2

t2

t2

t3

t3 t4 t5t5
t4

t4 t3 t4 t5

t3

t7

t6 t7t6

Figure 2.15: DAG structure.

21

The construction of the data structure, is done incrementally along with
the triangulation, and do not add an overhead to the overall running time.
Searching for a triangle is expected to take O(log n), if the DAG is balanced.
As with other randomized algorithms, we can get unlucky, and the depth of the
DAG can be linear in the number of nodes. In such a case, the running time
becomes O(n). The DAG stores information about all the triangles created
during the triangulation process, which is expected to be O(n). This means
that the memory consumption is O(n).

2.4 Graph Search Algorithms

The purpose of graph search algorithms, is to �nd the shortest path from one
node in a graph, to either a set of goal nodes (single-source shortest-paths), or
just a single goal node (single-pairs shortest-paths). The worst-case running
time in both scenarios are O(m+n log n), because even if we only need to �nd a
path between a pair of nodes, we might have to visit all the nodes in the graph,
to �nd the path [2]. To achieve this bound, the algorithms rely on a queue to
keep track of what vertices to explore next. The queue support three operations:
insert, decrease key, and extract min. The worst-case time for insert and extract
min operations must be O(log n) and O(1) for the decrease key operation, in or-
der for the algorithm to be able to obtain the worst-case bound of O(m+n log n).

There are several requirements to the path returned by a graph search al-

gorithm. First, the path cannot make the agent reach an invalid state, which
means, that no constraints can ever be intersected by the path. This require-
ment might seem obvious and intuitive, as we as humans would never consider
a path that passes through obstacles, such as walls, to be valid. This might
be why such �aws, when noticed in computer games, seems quite funny to look
at. This could be when a non-player character (NPC) continuously runs into an
obstacle, instead of trying to get around it. However, this problem often re�ects
a �aw in the representation, rather than an error in the graph search algorithm.
Another requirement is that the path should be optimal. The de�nition of op-
timal may vary for di�erent applications, but normally it means that the path
has the shortest length, or it takes the shortest time to traverse. In some repre-
sentation these two might be the same, if all weights on the walkable areas in a
representation have the same cost, in respect to time it takes to move through
the areas. If not, the path should preferably lead the agent around areas with
increased traversal cost, such as mud holes and other di�cult terrain. Another
optimality constraint could be, not to be spotted by enemies, which would mean
that the path should not intersect the line of sight of the enemies.

We will look at two graph search algorithms: Dijkstra's algorithm and A* .

22

2.4.1 Dijkstra's Algorithm

Dijkstra's algorithm [16] solves the single-source shortest-path for directed graphs,
G = (V,E), with non-negative weights. The algorithm keeps track of visited
vertices by adding them to a set S. The inputs for the algorithm are: a graph
G, the source s ∈ V and a set of weights w, that contains the cost of traveling
between the vertices in V .

The algorithm evaluates the input as follows: While there are vertices left in
the minimum-priority queue Q = V − S, extract the vertex v with the smallest
shortest-path estimate from s, called ve, and add v to S. Loop through all the
adjacent nodes of v and relax them. The relaxation simply checks if the adjacent
vertex u, has a shortest-path estimate ue that is greater than ue′ = ve+w(u, v).
If this is the case ue is updated to the new estimate ue′ . When Q is empty, we
have calculated the shortest path from s to every other node in G.

Figure 2.16 contains a small example illustrating how the algorithm works.
In this example, we use the algorithm for a single-pairs shortest-paths search,
and interrupting the search as soon as we reach the goal point.

Figure 2.16: Example of Dijkstra's algorithm. The nodes colored in light gray
are the visited nodes, the dotted nodes are the nodes to be evaluated next, the
lines going out from the dots are the estimated paths, and the dark gray nodes
denotes the �nal path.

23

2.4.2 A*

Dijkstra's algorithm only looks at the cost of the outgoing edges when deter-
mining the next vertex to visit. Other algorithms such as A∗ use heuristics, to
make smarter choices when determining which direction to search in a graph.
This approach is only bene�cial when we know both the source and goal node
in the graph, which makes A∗ a single-pairs shortest-path algorithm.

Given a graph G = (V,E), a start node a ∈ V , an arbitrary node v ∈ V , and
a goal node b ∈ V , we can estimate the length of the path from a to b, going
through v, using the function f(v) = g(v) + h(v). The function g(v) measures
the cost of going from a to v, and h(v) estimates the cost of going from v to b.
The algorithm starts out by looking at a's neighbors, and uses f(v) to estimate
the cost of each of them. The neighbor with the lowest cost is chosen to be the
next node to look at. Now all the not estimated neighbors are estimated, and
next node is selected. This process continues until the goal node is reached.
The path to be returned is extracted by backtracking from the goal node.

To ensure the algorithm works properly and we get optimal paths, we need
to make sure that the heuristics function is admissible. This means that the
function will never overestimate the cost of traveling from a node to the goal
point. This ensures that the A∗ search is complete, and that when we reach the
goal point, we will have the shortest path. Another property that a heuristic
function can have is to be consistent . For a heuristic to be consistent , it needs
to ensure that when we move from one node to another, we cannot get closer to
the goal by more than the cost of traveling between the two nodes. If a heuristic
is consistent , it is admissible as well. [17].

In this thesis, we will use the Euclidean distance heuristic that is known to
be admissible for Euclidean graphs.

A∗ can be a lot faster than Dijkstra's algorithm, given a good heuristic.
While Dijkstra's algorithm keeps expanding nodes that are unlikely to be a
part of the shortest path, A∗ can skip these, and instead focus on the relevant
nodes determined by h(n). An example of how the algorithm works can be seen
in Figure 2.17. Compared to Figure 2.16, fewer nodes are visited and hence
less computation time is needed. A larger example can be seen in Figure A.1 in
the appendix, where the two search graph algorithms are used on the same grid.

24

Figure 2.17: Example of the A∗ algorithm. The nodes colored in light gray are
the visited nodes, the dotted node is the node to be evaluated next, the solid line
going out from the dot is the path from s to v, the dashed line is the estimate
of going from v to b, and the dark gray nodes denotes the �nal path.

2.4.3 Path Planning in Navigation Meshes

Path planning in navigation meshes is a bit more complex, compared to path

planning in the other two representations. The di�erence is that we do not get
the exact path from just using a graph search algorithm on a mesh, as we get
in the other representations. Instead, we get a list of triangles that the path
passes through, and these triangles form a channel (see Figure 2.18a). To get
the actual path from the channel , we have to use a funnel algorithm [18], which
is described later.

Channel

To �nd the channel we need to generate a connectivity graph for the triangles
in the mesh. This graph is used by the graph search algorithm to �nd the tri-
angles, which are traversed by the shortest path from a to b. The graph can be
constructed simply by locating the triangle, which contains the start point p,
and creating connections from p to the middle points of the non-constrained
edges. The graph keeps expanding by creating connections to the middle points
of the edges, in the triangulation. An example of such a graph can be seen
in Figure 2.18b. This graph is generated on the �y while the graph search al-
gorithm is progressing, such that only the relevant edges are added to the graph.

25

a

b

(a)

p

(b)

Figure 2.18: (a) A channel (solid lines) going from a to b. (b) A connectivity

graph (solid lines) going out from p.

Kallman [19] uses the middle points of the edges to estimate the paths in a
triangulation, but this does not always give the shortest path. In Figure 2.19,
it is illustrated how the shortest path from a to b, is di�erent from the esti-
mated path.

a b

path estimated by midpoints
actual shortest path

connectivity graph based on midpoints

Figure 2.19: An example where the estimation using middle points fails to
produce the shortest path.

Demyen et al. [14] recognized this problem, and made a modi�ed version of
A∗ algorithm called Triangulation A∗ (TA*). It works almost like a regular A∗

algorithm, but there is a di�erence in the heuristic function. Instead of using the
middle points, it uses the points on the edges, which have the shortest distance

26

to the goal point. This heuristic is admissible as it uses the Euclidean distance,
which means that we always get the channel that contains the shortest path [14].

Funnel

When the triangles have been found, we need to extract the exact path. As
the channel , which the triangles form, is not necessarily a convex polygon, we
cannot just connect a and b directly. To handle all types of channels, we use
a funnel algorithm that can �nd the shortest path within any polygon in O(n)
time, where n is the number of triangles in the channel .

The funnel algorithm uses three elements:

• A path, which contains the points known to be part of the �nal path, at
a given point in the algorithm.

• A funnel that represents the area yet to be processed, and in which all
shortest paths must lay. It is divided into two parts: The lines turning
clockwise (right, with respect to the apex), and the lines turning counter-
clockwise (left, with respect to the apex). The funnel is represented by a
deque structure (double-ended queue).

• The apex , which is the vertex connecting the path and the funnel .

These three elements are illustrated in Figure 2.20a.

The algorithm begins by assigning the apex to be the start vertex a. The
funnel is at the start expanded by the two vertices of the �rst internal edge.
The internal edges are the ones spanning the channel . The rest of the internal
edges are now added one by one, in the following way:
One of the two vertices from the edge is ignored, as it already exists in the
funnel. The other vertex will be added to either the front or the back of the
deque, depending on which side of the funnel it is. The wedge, in which the new
vertex is contained, is located, and all vertices between the root of the wedge

and the new vertex, are popped from the deque. The wedges can be seen in
Figure 2.20b. If the apex is popped, the vertex next in line becomes the new
apex . Each time the apex is updated, the old apex is added to the path. When
all the internal edges have been processed, the goal vertex is added to either
side of the funnel . The resulting path will consist of the vertices in path, and
the vertices in the side of the funnel, to which the goal point was added. The
process of adding a new vertex is shown in Figure 2.21a and 2.21b.

27

funnel

path apex

a

(a)

path apex

a

(b)

Figure 2.20: (a) The elements of the funnel algorithm. (b) The wedges (dashed
lines).

bwedge
path apex

a

(a)

old apex

b
funnelpath

apex

a

(b)

Figure 2.21: (a) The goal vertex is added, and the wedge containing it, is located.
(b) The vertices from the deque between the root of the wedge and the goal
vertex b is removed, and the apex is updated.

2.5 Abstractions

When a representation contains many nodes, it can become a problem to lo-
cate an optimal path within a small time span. This can be resolved by using
abstractions that stores meta data about the actual representation. There can
be multiple abstraction levels that describe the same map, but with di�erent
level of detail. The abstraction levels are ordered in a hierarchy, such that the
most abstract level (the one with fewest nodes) is searched �rst, and the least
abstract level (the one with the most nodes, besides the original representation)
is searched last.

There are a number of advantages gained by using abstractions. The most
obvious one is the reduced search space, and hence less time required to calcu-
late the paths. The reduction in search space is due to the hierarchical search,
where we only do an exhaustive search on the most abstract level. If a path is
found, we use the nodes from the path to limit the search space for the next
abstract search. Another advantage is, the possibility to quickly determine if a

28

path exists or not by using the abstractions, rather than the original represen-
tation. This can save a lot of computation power, compared to an exhaustive
search.

The di�erent abstraction methods used for the representations are described
in detail in the following subsections.

2.5.1 Hierarchical Grid Representations

Botea et al. [20] have come up with a hierarchical approach, for path �nding in
grid representations. The basic idea is to create abstraction levels, which store
information about regions in the original representation. Each abstraction level
divides the original map into clusters with prede�ned sizes. Figure 2.22 shows
how a 16× 16 map can be divided into 16 clusters.

The clusters are connected through a set of entrances that is located on the
borders between the clusters. An entrance is de�ned by two tiles in the abstrac-
tion. These two tiles de�ne the span of the entrance, which can be as large as
the side of a cluster , or in some cases just one tile. Given the knowledge about
how the clusters are connected, we can apply graph algorithms and �nd the
shortest path from one cluster to another (see Figure 2.22b). When we know
the route through one abstract level, we can use the abstract path to �nd a
more re�ned path, using a more detailed abstract level. For each abstract level
the path gets more and more precise, and when �nally reach original grid, the
path will be as exact as possible. The �nal path can be found by exploring a
very limited search space, outlined by the abstract path from the least abstract
level.

a b

(a)

a

(b)

Figure 2.22: (a) Map divided into clusters. The light gray area denotes the ab-
stract path, and dark gray area is the actual path. (b) The connections between
the clusters (gray), and internal connections between the entries (black).

29

Without the abstraction levels, we would have to store the entire detailed
grid in memory, but with the map divided into clusters, we only need to have
the parts of the map represented by one cluster in memory. One �nal advantage
is, that the path can be calculated one step at the time. For applications such as
computer games where response time is crucial and a full-length detailed path
is not needed instantly, this is ideal. The �rst part of the path will be calcu-
lated quickly, while the rest of the calculations are postponed, and calculated
on demand.

The results of this approach show, that for long paths the number of visited
nodes is reduced to 10%, compared to the original grid representation [20]. For
shorter paths, the di�erence is not that noticeable. The paths found using the
hierarchical approach, will be exactly the same as the paths found using the
original grid representation.

2.5.2 Highway-Node Routing

For visibility graphs, we have to use a di�erent method. The abstractions are
created by removing the least important vertices from the graph, using a tech-
nique called contraction. When a vertex v is contracted , all its edges will be
removed and new shortcut edges will be added between the vertices that was
connected through v, such that a path 〈u, v, w〉 becomes 〈u,w〉. If we divide the
abstractions into multiple levels, we get Contraction Hierarchies [21].

The hierarchical levels consist of overlay graphs, V1 ⊇ V2 ⊇ · · · ⊇ VL, where
V1 has the most vertices and VL has the fewest. The distance between cor-
responding vertices in di�erent levels will be the same, even though some of
the vertices of the low-level paths might be gone in the high-level paths. This
approach is called Highway-Node Routing (HNR) [22]. The overlay graphs are
constructed by iteratively removing the least important vertices by contraction.
The importance of a vertex is estimated by using a heuristic, where multiple
factors are involved. The most prominent factor is the edge di�erence, which
denotes the number of edges in the graph before and after the vertex is removed.
Among the other factors, some ensures uniform picking of vertices to be con-

tracted . This is done to avoid large �holes� in the overlay graphs.

Queries are performed by using a bi-directional search. The forward search
begins at the start node a and expands towards higher level nodes, while the
backwards search starts from the goal node b and expands towards lower level
nodes. If a shortest path exists from a to b, the two searches will meet up at
a node v, which will have the highest order of all nodes in the resulting path.
The search will never move downwards in the hierarchy, which means that the
search space is greatly reduced. The resulting path will be the optimal path.

The speedup gained using this method is tremendous. Experiments on a
graph containing information about the road network in Western Europe, shows

30

that this HNR combined with other methods can improve query times with a
factor of more than 30000, compared to Dijkstra's algorithm [22]. There are
other methods described in the same article, which improves query times even
more (up to a factor 3 million), but these require more pre-computation time
and memory.

2.5.3 Triangulation Graph Reductions

Demyan et al. [14] have developed a technique to create abstractions of trian-
gulations. This is done by having a node for each triangle in the representation.
The nodes are connected in an abstract graph that re�ects the topological struc-
ture of the map.
The goal is to partition the triangles into structures, which are: decision points,
corridors, dead ends or islands. The structures are identi�ed by categorizing the
nodes from level 0 to 3 inclusive, on each triangle. An example of an abstract

graph can be seen in Figure 2.23. As [14] is a conference article, the abstractions
are not described in much detail, due to the lack of space. A much more detailed
description is given in the master's thesis [23] by Demyan.

A short description of the di�erent node types can be found below, along
with an example of a triangulation that has been categorized (Figure 2.24).

Level 1 node
Level 2 node

Level 0 node

Level 3 node
Level 1 tree
Level 2 corridor/ring

Figure 2.23: An abstract graph.

Level 0 Nodes

These nodes are related to triangles that have all their edges constrained. These
are sometimes called islands and do not have any connections to the other nodes
in the abstract graph. If a start point is contained in one of these, there can
only be a valid path if the goal point resides within the same triangle.

31

Level 1 Nodes

They denote �dead ends� and are often connected to other level 1 nodes. A
triangle is labeled as �dead end� if it has either:

• two constrained edges and it is indeed a dead end,

• one constrained edge and it is connected to a level 1 node, or

• no constrained edges and it is connected to at least two level 1 nodes

Adjacent level 1 nodes form trees, which has a root that connects the tree to
other types of nodes. These trees can be ignored in the path �nding process, if
neither the start nor the goal node is located in the tree.

Level 2 Nodes

This type of nodes only has one constrained edge. They de�ne �corridors� and
can form rings of triangles as well. Level 2 nodes can be roots for the level
1 trees and often works as a link between level 3 nodes that denotes �decision
points�. If both the start and goal node are in level 2 nodes we check if they
are in the same corridor. If this is the case, we can determine that a path is
possible, but we still have to check outside the corridor to be sure to �nd the
shortest path.

Level 3 Nodes

These nodes are �decision points� and are identi�ed by triangles which have
no constrained edges. These nodes are used as vertices in a graph called the
most abstract graph, which only contains level 2 and level 3 nodes. If there is
a corridor of level 2 nodes connecting two level 3 nodes, there will be an edge
between those vertices in the most abstract graph.

Searching in the Abstract Graph

As with a normal path search in a triangulation, the �rst step is to locate the tri-
angle in which the start point lies. However, when searching in the abstraction
we also need to know which triangle the goal points lies in to get the abstract
node associated with it. The point location process can be rather costly, de-
pending on which method is used (see Section 2.3.4). Demyan et al. [14] found
that when they experimented with their modi�ed version of A∗, called Triangle

Reduction A∗ (TRA∗), the point location step was talking up a lot of the time,
compared to the time of actually �nding a path. Because of this, they came up
with the Sector Based Jump-and-Walk method, which greatly reduced the time
spend on point location.

During the labeling of the triangles in the graph, the related nodes also keeps
information about which component they are connected to. The generation of

32

Figure 2.24: Categorized triangulation.

the abstract graph starts by identifying the level 0 nodes and giving them a
unique component id. The other nodes will also get a component id assigned,
but they will share it with the triangles to which they are connected. This gives
the possibility abort the path �nding process, if the start and goal point are
located in triangles with di�erent component ids.

There are some special cases, where both the start and goal point are located
in the same part of the map, and the channel can be constructed without using
graph search algorithms. This could be when the two points are located in the
same tree of level 1 nodes, or are in the same corridor or ring composed by level
2 nodes.

If none of the special cases apply we need to use the TRA∗ algorithm to �nd
the triangles connecting the points. The �rst step is to locate the nearest level
3 node for both the start and goal node. When we know the two level 3 nodes,
we can use the most abstract graph to search for the shortest path between the
two nodes. The path between the two level 3 nodes combined with the paths
to reach the nodes from the start and end point, will form the �nal path of
triangles. The paths found using this method will always be optimal, as the
edges in the abstract graph will re�ect the cost of actually moving through the
triangles between the level 3 nodes.

33

The speedup gained by this method varies depending on the path length.
Experiments performed in the thesis [23] by Demyan show a 170 times speedup
at best.

34

Chapter 3

Implementation

The implementation is created in Visual C++, using Microsoft Visual Studio
2010 as IDE and compiler.
The following algorithms and data structures have been implemented in order
to tests the di�erent representations:

• Grid Representation:
O(r2), r = resolution of the grid (see Section 2.1)

• Visibility Graph:
O(n3), n = number of vertices to be inserted (see Section 2.2)

• Navigation Mesh:
O(n2), n = number of vertices to be inserted (see Section 2.3)

� Trivial Point Location:
O(n) (see Section 2.3.4)

� Sectors Based Jump-and-Walk Point Location:
O(n/s), s = |sectors| (see Section 2.3.4)

• A∗:
O((m+ n) log n), m = |E|, n = |V | (see Section 2.4.2)

• Funnel Algorithm:
O(n), n = number of triangles in channel (see Section 2.4.3)

The rest of this chapter contains a short description of each of the algorithms
and data structures used.

3.1 Common Data Structures

To represent a �oating-point number, a wrapper called Real is used. This wrap-
per contains a double precision �oating-point number, and implements various
comparator and arithmetic operations. Each time two Reals are compared, the

35

absolute di�erence between the two doubles are calculated. They are deemed
equal if the di�erence is less than a prede�ned epsilon value.

A point in the plane is represented by the Point class. A Point contains two
Reals, x and y.

To represent the constraints, a Line class is used. A line has two pointers
to Points, one for each end point.

3.2 Grid Representation

The grid is represented by an array that contains pointers to the grid nodes.
The size of the array s is determined by an input parameter which contains
the resolution of the sides of the square grid r: s = r2. The array entries are
initialized to zero and only when a value is set, a node is created and a pointer
to it is placed in the entry. The value can be set either by adding a constraint or
by the graph search algorithm, when it progresses across the map to �nd a path.

3.3 Visibility Graph

The visibility graph constructed by a simple O(n3) algorithm, which checks ev-
ery possible connection between the points to see if they intersect the constrains.
Because the constraints do not have any width, the nodes in the graph can con-
tain edges from both sides of the contained edge. This will result in invalid
paths if graph search algorithms are applied (see Figure 3.1a). To resolve this,
one or more graph nodes are created for each point. The number of created
graph nodes corresponds to the number of constraints meeting up in the point.
The number of created graph nodes will always be twice the number of the
constraints, as each end of a constraint is contributing to a new graph node.
When the graph nodes have been constructed, the edges from the points have
to be divided between graph nodes. The edges are sorted by angle with respect
to the point that they are connected to, and each graph node contains infor-
mation about the visibility span that it has. Using this information, each edge
will be connected to the right nodes, and the paths will not be able to cross the
constraints (see Figure 3.1b).

3.4 Navigation Mesh

The implementation of the Delaunay Triangulation is based on the pseudo-code
in the Computational Geometry book [6]. In order to use the triangulation as
a navigation mesh, the SymEdge structure is used to represent the edges of the

36

(a) (b)

Figure 3.1: Two di�erent paths (gray lines) found in the original visibility
graph (a), and on the computed connectivity graph (b). The dashed lines out-
line the visibility span for each of the four graph nodes created from the center
point.

triangles. The edge �ips that the implementation of the Delaunay Triangula-

tion relies on are also dependent on the SymEdges. When an edge e is �ipped
the algorithm needs to �nd the 2 triangles that share e, which is easy when all
SymEdges store a pointer to the triangle they are a part of. After �nding the
two triangles, it is possible to get the points of the diagonal crossing e, and then
�ip e, such that it uses the points of the diagonal as endpoints.

Two di�erent methods of handling insertions of constrained edges have been
mentioned in the survey (Section 2.3.2). Neither of the two articles related to
constraining edges [10][11] describe how to manage the SymEdge structure, while
handling edges that cross the constrained edges. The �rst method [10] erases
edges and retriangulates the pseudo-polygon using a recursive function. This
made management of the data structure pretty complex and caused the imple-
mentation never to work properly. As an alternative, the second approach [11]
was considered easier to implement, as it relies on the same edge �ips as the
Delaunay Triangulation, which was already implemented and known to work
properly.

As for the point location, which is used both when building the mesh and
afterwards when using the mesh for path �nding, two di�erent methods have
been implemented. The �rst is the trivial one, which just loops through all the
triangles in the triangulation, until it �nds the triangle containing the point.
The second one is based on Sector Based Jump-and-Walk method described in
Section 2.3.4.

37

3.4.1 Data Structures

An edge in a triangulation is described by the SymEdge class as described
previously (Section 2.3.2). A SymEdge is a half-edge spanned by two Points.
It has a number of pointers to other SymEdges, which makes it possible to get
from one edge to any other edge in the graph. It is possible to mark a SymEdge
to be constrained, such that that it will not be �ipped while triangulating.
Making an edge as constrained also tells the graph search algorithm that any
path intersecting the constraint will be invalid.

A Triangle is constructed from 3 SymEdges. The Triangle class does not
contain any information about which other Triangles it is connected to. This
is handled by the individual SymEdges, which have a pointer to the Triangle

incident to them. To �nd a neighboring Triangle, t2, from t1, the twin edge of
one the SymEdges in t1 is found, and its incident Triangle will be t2.

3.5 A∗

To compare the di�erent representations in terms of path �nding, an A∗ algo-
rithm has been implemented. It uses a binary heap, as a queue, to keep track
of the nodes to be evaluated. The heap performs all operations in worst-case
O(log n) time, where n is the number of nodes inserted in the heap. In order to
get the optimal worst-case theoretical bound on the graph search algorithm, we
would have to use a Fibonacci heap, which has a decrease key operation that
runs in a amortized constant time.
The nodes used in the algorithm are all inherited from a class, called Node,
which contains information used while �nding the path. The information are
the g, h and f values (see Section 2.4.2, and a state determining if the node has
been evaluated or not.

As described in Section 2.4.3 we have to use a funnel algorithm to get the
path. The implementation uses a STL deque to represent the funnel , and left-
of / right-of calculations to determine the visibility span of the points in the
funnel .

3.5.1 Data Structures

Each of the representations has their own type of node used for the algorithm.
The nodes used for the grid representation are called GridNodes, and they have
information about where in the grid they are located, by two integers x and y.
They also know if the cell that they represent is traversable or not, and they
have a pointer to the grid array such that they can locate the neighboring cells.

The nodes for the visibility graph store the location of the node by using two
Reals. The visibility span of the node is also stored by using two Reals. The
�rst is used to store the angle of the start of the span, and second is used to
store the angle of the end of the span. As the nodes can have up to n neighbors,
the pointers to these are stored in a vector.

38

The navigation mesh nodes also stores their position using two Reals. They
have a pointer to the triangle that they represent, and have a pointer to the edge
that the algorithm crossed to enter the triangle. The number of neighbors can
be at most three, as there can be only one neighbor for each side of the triangle.
When the triangle has constrained edges, the adjacent triangles separated by
these edges will not be counted as neighbors.

3.6 Memory Consumption

In this section, we will calculate the memory usage of each of the data structures
used. This is done in order to compare the di�erent representations in terms of
memory consumption.

All the classes have a constructor and a number of member functions. This
means that they each have a pointer to a Virtual Method Table (VMT), adding
4 bytes to the size of the objects.

3.6.1 Real

The size of a Real is 12 bytes (8 bytes for the double).

3.6.2 Point

The raw size of a point is 12 bytes (4 bytes for each of the pointers to the Reals),
but it requires two Real objects, which are not shared with other objects. In
total, this gives us a size of 36 bytes.

3.6.3 Line

A Line has two pointers to points, one for each end point. This gives a size of
12 bytes.

3.6.4 SymEdge

The size of a SymEdge is 36 bytes (8 pointers and 1 boolean value).

3.6.5 Triangle

The size of a Triangle is 16 bytes (3 pointers to SymEdges). If the Sector Based
Jump-and-Walk method is used for point location the size is 20 bytes. The
4 additional bytes are for the integer used to store an id, to determine if the
Triangle has been visited or not.

39

3.6.6 Node

It has 3 Reals (48 bytes), one unsigned integer (4 bytes) and one char (1 byte).
The total size is 57 bytes.

3.6.7 Grid Node

A grid node has 1 char, 3 integers and 2 pointers. Counting the size of inherited
variables from Node, the total size is 82 bytes

3.6.8 Visibility Graph Node

It has 4 Reals, 1 pointer and a STL vector. The total size of the node is
(145 + 4 · neighbor count) bytes. This includes the inherited variables.

3.6.9 Triangle Node

The size of a triangle node is 105 bytes (2 Reals, 3 pointers and inherited
variables).

3.6.10 Navigation Mesh

The total size of triangulation will be 36 · |V |+36 · 2 · |E|+20 · |F | bytes, where
|V | is the number of vertices, |E| is the number of edges, and |F | is the number
of faces. The reason for the number of edges being multiplied with 2 is that we
have two SymEdges for each edge in the triangulation. Using Euler's formula
|V |− |E|+ |F | = 2, we can calculate the size just based on the number of points
and triangles in the triangulation. We �rst rewrite the formula to calculate the
number of edges |E| = |V |+ |F |−2. Then we insert the expression into the size
equation: 36 · |V |+36 · 2 · (|V |+ |F | − 2)+ 20 · |F |. Reducing the equation gives
us 108 · |V |+ 92 · |F | − 144 bytes.

3.6.11 Visibility Graph

The size of a visibility graph is 145 · |V |+4 · |E| bytes, where |V | is the number
of vertices and |E| is the number of edges in the graph.

3.6.12 Grid Representation

The total size of a grid is 4 · r2 + 82 · |GN | bytes, where |GN | is the number of
created grid nodes.

40

3.7 Debugging

To ensure correctness of the code a number of asserts are used. The asserts
will be enabled when the program is compiled in debugging mode, and helps
discovering unintended behavior. When an assertion is triggered, a �le is saved,
containing the inserted constraints . The �le can be loaded later to help iden-
tifying the problem while debugging.

Another way to ensure correctness has been to step through the code, using
the build-in debugger in Visual Studio. This helped making sure that the �ow
of the code and the variables was correct.

The implementation enables the user to visualize representations being built,
while this is a nice feature; it also works as an excellent tool for visual debugging.

41

42

Chapter 4

Experiments

This chapter covers the experiments that were made to compare the di�erent
representations. First, the di�erent types of environments will be introduced and
then the results from the experiments will be presented and discussed shortly.
An overall discussion will be available in Chapter 5.

Because the implementation does not use exact arithmetic, some of the rep-
resentations might have �aws. This usually happens when constraints lie close
to each other. In order to avoid experimenting on these �awed representations,
the navigation meshes were build �rst as they are most prone to have �aws. If
it constrained �aws, the test was skipped and another environment was used.

4.1 Setup

The experiments were done using a PC with an Intel Core 2 Duo E8400 CPU
clocked at 3.16 GHz and 4 GB PC3200 DDR2 RAM running Windows 7 32 bit.

4.2 Environments

Three di�erent types of environments were used for the experiments. A short
description of each of them follows in the subsections below.

4.2.1 Maze

The mazes are axis-aligned and are randomly generated using a Depth-First

Search (DFS) algorithm. The algorithm uses a grid to keep track of the cells
in the maze and the walls between them. The �rst step is to locate a random
cell c in the grid. Then a random neighbor n, which has all walls intact, is
selected and the wall between the two cells are removed. The position of c
is now pushed to a queue q, and n is assigned to c. The algorithm progresses

43

evaluating the cells until all cells have been visited. If at some point there are no
more neighbors which have all walls intact, the next c is determined by popping
a position from q. After the routine is �nished, we have a perfect maze where
all cells are connected, and there is a unique path between every pair of cells in
the maze. Figure 4.1 shows the di�erent representations of a maze.

(a) (b) (c)

Figure 4.1: (a) Grid representation of the maze. (b) Visibility graph based on
the maze. (c) Navigation mesh based on the maze.

4.2.2 Convex Polygon

To produce a worst-case scenario for the visibility graph, we generate a convex
polygon. Because every point is visible from every other point in the polygon,
we get O(n2) edges in the visibility graph. The navigation mesh will produce
O(n) triangles and the grid representation will not be a�ected by the speci�c
placement of the constraints. Figure 4.2 shows the di�erent representations with
a polygon inserted.

(a) (b) (c)

Figure 4.2: (a) Grid representation of the polygon. (b) Visibility graph based
on the polygon. (c) Navigation mesh based on the polygon.

44

4.2.3 Game Maps

In order to tests the representations on �real� data, some experiments was done
using maps from WarCraft III, which is a RTS game. The map environment
is described by a 512 × 512 grid, where each cell has a value describing the
area on the map that is covered by that cell. The grid representation will just
use the raw data, while the other two representations have to use a number of
constraints, which are created based on the map data. Figure 4.3 shows the
di�erent representations of a game map.

(a) (b) (c)

Figure 4.3: (a) Grid representation of the game map. The white area is
traversable. (b) Visibility graph based on the game map. The gray area is
all the edges of the graph. (c) Navigation mesh based on the game map.

4.3 Results

All the experiments either measure the time it takes for an operation, a node
or edge count or a ratio. The aim of all the experiments is to get as low values
as possible. In the experiments below the variable n denotes the number of
vertices inserted in the representations.

4.3.1 Insertion of a Point

The experiment were done using a 100 × 100 maze with 6938 constraints and
the same amount of points. The measurements were done for every 100 inserted
point. For each measurement, 100 random points were generated and inserted,
and the average time of the insertions was plotted. Figure 4.4 shows the mea-
surements from the di�erent representations plotted against each other. Fig-
ure 4.4a shows all the representations compared, while Figure 4.4b only shows
the measurements from the grid and the navigation mesh. There are two di�er-
ent navigation mesh implementations: One where the trivial point location is
used and another where the Sector Based Jump-and-Walk method is used. Also,

45

note that the unit di�erence on the y-axis on the two charts. The measurements
of Figure 4.4a are in milliseconds, while they are in microseconds in Figure 4.4b.

n

ti
m
e
in

m
s

0
20
00

40
00

60
00

8
00
0

1000 2000 3000 4000 5000 6000

Grid

Visibility graph

Nav mesh (Trivial)

Nav mesh (Sectors + Jump-and-Walk)

(a)

n

ti
m
e
in
µ
s

50
00

1
00
0
0

15
00
0

1000 2000 3000 4000 5000 6000

Grid

Nav mesh (Trivial)

Nav mesh (Sectors + Jump-and-Walk)

(b)

Figure 4.4: Insertion of points in a maze: n = {100, 200, . . . , 6900}.

The measurements for the visibility graph show that time it takes to insert
at point, increases constantly with the number of inserted points. This makes
sense, as we always have to check for intersections with all constraints, but the
number of checks depends on how the number of points in the graph at the time
the new point is inserted.

The times spend for insertions in the grid representation are always the same.
This is expected, as all that needs to be done is to locate the cell to update,
and this can be done in constant time.

Insertions of points in the navigation mesh using the trivial approach, use
more and more time as the number of inserted points increases. As we insert
more points, the number of triangles in the mesh will increase, and it will take
a longer time to look through them.

For the second approach where sectors and the jump-and-walk method are
used, the measurements are quite di�erent. At �rst, the time for inserting a
point is decreasing, but after a while, it begins to increase (see Figure 4.5). The

46

reason for the decrease in time in the beginning is that the static data structure
has to be updated. Every time a point is inserted, new triangles are created
and the sectors have to be updated. Because of the edge �ips, nearby triangles
might need to be updated as well, and when a triangle is updated, the sectors
have to be updated as well. When the �rst point is inserted, all of the sectors
have to be updated, as the changed triangles will cover the whole of the map (see
Figure A.6 in the appendix). As more points are inserted, and more triangles
are created, the area that the changed triangles cover will be reduced. This
means that fewer sectors have to be updated, and we spend less time inserting
a point (see Figure A.7 in the appendix). When the time of the measurements
increases, it is because the time spend on the updates are lower than the time
it takes to locate the point.

n

ti
m
e
in
µ
s

0
10
0

20
0

30
0

40
0

50
0

20 40 60 80

Nav mesh (Trivial)

Nav mesh (Sectors + Jump-and-Walk)

Figure 4.5: Insertion of points in a maze: n = [0, 100[.

47

4.3.2 Point Location

Only the grid representation and navigation mesh were included in this experi-
ment. The visibility graph cannot represent areas, and we have to insert points
into the graph in order to �nd the connections to the rest of the nodes.
The experiment was done by using the 100 × 100 maze from the previous ex-
periment and performing point location of random points for every 100 inserted
points.

Both of the point location methods for the navigation mesh have their times
plotted in Figure 4.6a, which also have the times for the grid representation.
In Figure 4.6b only has the times for the Sector Based Jump-and-Walk and the
grid representation. The reason for having a second chart, is that the plotted
values of the trivial point location method is so much higher, that it is hard to
tell the other plots from each other.

n

ti
m
e
in
µ
s

0
20
00

40
00

60
00

80
00

1000 2000 3000 4000 5000 6000

Grid

Nav mesh (Trivial)

Nav mesh (Sectors + Jump-and-Walk)

(a)

n

ti
m
e
in
µ
s

10
-2

10
-1
.5

10
-1

10
-0
.5

10
0

10
0.
5

10
1

1000 2000 3000 4000 5000 6000

Grid

Nav mesh (Sectors + Jump-and-Walk)

(b)

Figure 4.6: Point location: n = {100, 200, . . . , 6900}.

The theoretical worst case running time for the trivial point location in
the navigation mesh is O(n). This is in accordance with the empirical results,
which shows that the running time is increasing at an almost constant rate as
n grows. A control chart where the time is divided by n can be seen in Fig-
ure�g:pointLocactionTest1 in the appendix. The curve of the plotted points in
the control chart is not constant, but is negatively sloped, which means that

48

the actual running time is lower than the upper bound. This makes sense when
we locate random points and the algorithm in most cases does not need to loop
through all the triangles.

The Sector Based Jump-and-Walk method has a expected theoretical run-
ning time of O(n/s), where s = |sectors|. The actual running times show, that
the time it takes to locate a triangle is constant for all the measurements. The
constant running time might be due to the oriented walk, which can be very
e�cient, especially if it is started in a triangle close to the query point.

As expected, the running time for point location in the grid representation

is constant. It is a lot faster than the point location methods for the navigation
mesh, as only a few operations is required to �nd the cell, in which the query
point resides.

4.3.3 Construction Time

These experiments were done using mazes of resolution from 2 × 2 to 50 × 50.
For each resolution, 10 di�erent mazes were generated. Each test was performed
10 times, and the average times were used. The results are plotted in the two
charts in Figure 4.7. Because the construction time for the visibility graph is so
much higher than for the other representations, it is hard to tell the di�erence
between them. Therefore, we use two di�erent charts, one with and one without
the visibility graph.

In the chart in Figure 4.7a, clearly shows the e�ect of the O(n3) algorithm for
constructing the visibility graph. When the number of inserted points increases,
the time grows cubically. To verify this, we can look at the control chart in the
appendix (Figure A.3). The measurements in the control chart, were divided by
the expected running time, and the graph converges to a constant as n increases.
This con�rms the construction time to be O(n3). The expected running time is
1
2n

2(n − 1) because the implementation only check for constraint intersections
once for each pair of points, instead of twice. This is done by giving each point
an id. If we want to check a connection between two points p1 and p2 we only
check for intersections if the id of p1 is greater than the id of p2. If we �nd
no intersections between the line p1p2 and the constraints, we add two edges,
one for p1 and one for p2, one in each direction. The total number of intersec-
tion checks now becomes an arithmetic series, n − 1 + n − 2 + . . . + 1, which
multiplied with the number of constraints n, gives us the expected running time.

In the second chart in Figure 4.7b, we can see the di�erence between the
other representations. The grid representations all start at speci�c o�set, which
is due to the time it takes to initialize the grid array. The additional time for
the grid representations is due to the constraints being rasterized, and the con-
struction of grid nodes. As the maze resolution increases, the average length
of the constraints is reduced, but the number of constraints is increased, which

49

n

ti
m
e
in

s

10
0

20
0

30
0

4
00

5
00

6
00

500 1000 1500

Grid 512x512

Grid 256x256

Grid 128x128

Visibility Graph

Nav mesh (Trivial)

Nav mesh (Sectors + Jump-and-Walk)

(a)

n

ti
m
e
in

m
s

50
0

1
00
0

1
50
0

2
00
0

25
00

500 1000 1500

Grid 512x512

Grid 256x256

Grid 128x128

Nav mesh (Trivial)

Nav mesh (Sectors + Jump-and-Walk)

(b)

Figure 4.7: Construction time for the di�erent representations.

means that more grid cells have to be constructed.

Two di�erent times are recorded for the construction of the navigation meshes.
The �rst uses the trivial point location approach, which results in a construction
time of O(n2). This is in accordance with the plotted points where the time
measurements are growing at a quadratic rate. Again, to test this, a control
chart has been made. In Figure A.4 the measurements were divided by n2, and
the resulting graph converges to constant, which supports the claim.

When using the sectors and the jump-and-walk method, the expected run-
ning time is O(n2/sectors). The chart shows, that the actual time for the point
location is neglectable, as the curve is linear. Once again a control chart was
made, this time dividing the measurements with n. The chart can be seen in
Figure A.5, and like the previous control chart, it converges to be constant.

50

4.3.4 Nodes

Like in the previous experiment, this one was done using the mazes of variable
resolution. Again there are two charts, as the number of nodes in the represen-
tations are vastly di�erent, which makes it di�cult to compare them all in one
chart.

n

n
o
d
es

×
1
00
0

0
10
0

20
0

30
0

4
00

500 1000 1500

Grid 512x512

Grid 256x256

Grid 128x128

Visibility graph

Nav mesh

(a)

n

n
o
d
es

50
0

10
00

15
00

20
00

25
0
0

3
00
0

500 1000 1500

Visibility Graph

Nav mesh

(b)

Figure 4.8: The number of nodes in the di�erent representations based on mazes.

In Figure 4.8a, all the representations are shown. As described earlier, the
node count in the grid representations only rely on the resolution of the grid,
and is not a�ected by the number of inserted vertices. It is only the other two
representation that are shown in Figure 4.8b, and both their node counts grow
with a constant rate as the number of inserted vertices increases, as expected.

51

4.3.5 Edges

Both convex polygons and mazes were used in this experiment. Only the visi-
bility graph and navigation mesh were tested in this experiment, as the number
of edges in the grid representation is constant, and only rely on the resolution.

map id

ed
ge
s/
n
o
d
es

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

100 200 300 400

Visibility Graph

Nav mesh

(a)

n

ed
ge
s/
n
o
d
es

10
20

30
4
0

50

20 40 60 80 100

Visibility Graph

Nav mesh

(b)

Figure 4.9: Number of edges per node. (a) Mazes. (b) Convex polygons.

In Figure 4.9a, we look at the number of edges per node in the representation
for mazes. Not surprisingly the ratio for the navigation mesh is 3, as there are
three edges for each triangle. For the visibility graph, the average number of
visible neighbors per node is around 6.

The convex polygons are supposed to generate a worst case scenario for the
visibility graph, resulting in O(n2) edges. In Figure 4.9b we see that this is in
fact the case, as the number of edges per node is n. The number of edges in the
navigation mesh is still 3.

52

4.3.6 Memory Consumption

Again, we used the mazes, and this time we calculate the expected memory con-
sumption for the di�erent representations based on the number of constraints
inserted. The calculations use the sizes of the data structures from Section 3.6.

n

K
B

50
0

10
00

15
00

20
00

25
00

30
00

500 1000 1500

Grid 512x512

Grid 256x256

Grid 128x128

Visibility Graph

Nav mesh

Figure 4.10: Memory consumption in KB.

Figure 4.10 has a chart with all memory sizes in KB. All the grid represen-

tations start at a �xed o�set, which is due to sizes of the arrays that contain
the grid nodes. As constraints are inserted, new nodes have to be created and
more memory is used.

The amounts memory used by the visibility graph and navigation mesh are
almost the same. The navigation mesh requires less space per triangle than the
visibility graph spends per node. This makes the curve for the visibility graph a
bit steeper than the curve for the navigation mesh.

53

4.3.7 Game Maps

A few experiments were made on the game maps, just to show the di�erence
between the representations in a more realistic scenario. The number of nodes
and edges were measured and plotted in the charts shown in Figure 4.11. One
important di�erence between these experiments and the ones on the mazes, is
that not all parts of the map are reachable. This means that a lot of nodes in the
grid representations never will be accessed during the path planning . Because
of this, these nodes were not included in the measurements.

map id

n
o
d
es

×
10
00

0
50

10
0

15
0

20
0

5 10 15 20 25 30 35

Grid 512x512

Visibility Graph

Nav mesh

(a)

map id

ed
ge
s/
n
o
d
es

5
10

15
20

25
30

35

5 10 15 20 25 30 35

Visibility Graph

Nav mesh

(b)

Figure 4.11: (a) The number of nodes in the di�erent representations based on
game maps. (b) Number of edges per node in game maps.

The number of nodes varies a lot in the di�erent maps, as seen in Fig-
ure 4.11a, but the number of nodes in the navigation mesh and visibility graph,
is only a fraction of the node count in the grid representation, regardless of the
number of nodes. As mentioned in Section 1.1.3, it is because the grid represen-
tation relies on the extend of the map, whereas the other representations only
rely on the constraints.

As for the number of edges in the representations, Figure 4.11b shows that
the visibility graph has a around 25 edges per node. This is much higher than
for the visibility graphs of the mazes, which is because the game maps are more
open, and hence more nodes have a clear line of sight between them.

54

4.3.8 Path Time

In this experiment we measured the time spend for �nding paths in the repre-
sentations. Again, we used the mazes, and since they were randomly generated,
we cannot compare the times directly. This is because even though they have
the same sizes and the same amount of obstacles, the obstacles can be placed
di�erently and can result di�erent paths. Instead, we calculate a ratio between
the optimal path time, and the time for �nding the path the di�erent represen-
tations. For the mazes, the optimal path time are gained by using the visibility
graph.

There are two charts. The one in Figure 4.12a have both the grid represen-

tations and the navigation mesh plotted, while the other in Figure 4.12b only
displays the plots for the navigation mesh. The reason for this is, like in the pre-
vious experiments, that the magnitude of the di�erences in the measurements
is too great to get a proper understanding of how the representations perform
against each other, if they are all plotted in one chart.

map id

ti
m
e
ra
ti
o

0
20
0

40
0

60
0

80
0

10
00

100 200 300 400

Grid 512x512

Grid 256x256

Grid 128x128

Nav mesh

(a)

map id

ti
m
e
ra
ti
o

0
2

4
6

8
10

100 200 300 400

Nav mesh (trival)

Nav mesh (sectors)

(b)

Figure 4.12: Path time ratio for the di�erent representations. The ratio calcu-
lated as: r = timerep/timevis.

The time ratios for the grids are greatly reduced as the resolution of the
mazes increase. This not because we spend less for �nding the paths in the
grids, but rather that it takes longer time for �nding the paths in the visibility

55

graph. The time for �nding the paths in the grids are almost the same for all
mazes regardless of size, because they have the same amount of nodes. The grids
with higher resolution have a greater ratio as more nodes have to expanded, in
order to �nd the path.

In Figure 4.12b, we see that the path time for the navigation mesh is lower
when using sectors, which seems reasonable, as the point location step is needed
in order to �nd the starting triangle.

n

ti
m
e
m
s

20
0

40
0

60
0

80
0

10
00

500 1000 1500

Visibility Graph (path)

Visibility Graph (point insert + path)

Figure 4.13: Time for path �nding using the visibility graph, with and without
the time spend for adding points.

We get the fastest path times using the visibility graph, but this is only if
we do not count the time for inserting the start and goal points. In Figure 4.13,
we see the plots of the measured times for �nding paths in the visibility graph,
with and without the time for inserting the points. As mentioned earlier in Sec-
tion 2.2, the time spend inserting the points is much greater than the time of
actually �nding the path. The time for inserting a point is O(n2) in the trivial
implementation, but even with a more e�cient one, the insertion of the points
will still take a lot of time compared to the time of �nding the path.

56

4.3.9 Expanded Nodes

This experiment measures the number of nodes expanded during the path �nd-
ing using the di�erent representations. Like in the previous experiment, we
calculate the ratio between the optimal value, which again is from the visibility
graph, and the measured value from the representation. Figure 4.14 shows the
plotted values, and we can see that there is a connection between this chart and
the one in Figure 4.12a, showing the path times. This connection is due to the
running times of the graph search algorithm are based on how many nodes it
expands, and the number of edges it relaxes.

map id

n
o
d
e
ra
ti
o

0
50

10
0

15
0

20
0

100 200 300 400

Grid 512x512

Grid 256x256

Grid 128x128

Nav mesh

Figure 4.14: Node ratio for the di�erent representations. The ratio calculated
as: r = expNodesrep/expNodesvis.

57

4.3.10 Path Length

In this experiment, we will look at the lengths of the paths found in the di�er-
ent representations. Because both the visibility graph and the navigation mesh

always �nd the optimal paths, they will not be a part of this experiment. This
leaves the grid representations, and we will measure them using three di�erent
resolutions, as shown in Table 4.1. The values are length ratios that are calcu-
lated by dividing the length of the found paths with the optimal path length.

10× 10 20× 20 30× 30 40× 40 50× 50
512× 512 104.85% 105.45% 106.26% 107.17% 108.33%
256× 256 105.38% 107.75% 109.40% 110.85% 112.91%
128× 128 107.28% 113.85% 115.78% 119.34% 124.52%

Table 4.1: Path length ratios for the di�erent grid representations. The column
headings are the resolutions of the mazes, and the row headings are the reso-
lutions of the grids. The ratio calculated as: r = lengthrep/lengthoptimal. The
table shows the average ratios for the 10 random mazes of that resolution.

We can see that the higher the resolution of the grid is, the shorter path
length we get. The higher the resolution of the grid is, the more accurately we
can represent the constraints, and thereby get more accurate paths. In the table
we can see that the larger the mazes become, the more inaccurate the paths are.
This is because there will be more constraints in the larger mazes, and the more
constraints we have to get around the more inaccurate the path becomes.

58

Chapter 5

Discussion

In this chapter, we will short have a discussion of the results from Chapter 4.

In almost all of the experiments where the navigation mesh was involved, it
was the best or at least close to being the best of the compared. This was at
least true when the Sector Based Jump-and-Walk point location method were
used. We see that the point location method has a huge impact on the running
time. The results for the point insertion (Section 4.3.1) and construction (Sec-
tion 4.3.3) where the Sector Based Jump-and-Walk point location method was
used show that it is much faster compared to the trivial point location method.

Paths found using the visibility graph or navigation mesh are always opti-
mal, and the number of nodes expanded during the search compared to the grid
representation is relatively low. The paths found in the grid representation are
suboptimal due to the inaccurate representation of the constraints as seen in
Section 4.3.10. It almost always takes longer to �nd a path in the grid repre-

sentation, as the number of expanded nodes usually is higher (see Section 4.3.8).

The time it takes to �nd a path using the visibility graph, also involves in-
serting both the start and goal point into the graph. This takes a long time, and
especially in our case where we use a trivial algorithm. The extra time spend
makes the visibility graph a less viable representation for planar environments,
compared to the other two representations (see Section 4.3.8).

The grid representations come out last in the experiment about memory con-
sumption (Section 4.3.6), as they have a constant overhead due to the arrays.
The navigation mesh has the lowest memory usage. The amount of memory
used by the visibility graph is nearly as low, but di�erence will be more notice-
able in a worst-case scenario, with n− 1 edges for each node.

Overall, the results show that the navigation mesh is the most viable repre-
sentation for planar environments.

59

60

Chapter 6

Conclusion

Here we will summarize the �ndings and results in this thesis. In the sections
below, there will be a short conclusion for each of the representations, and an
overall conclusion.

6.1 Grid Representation

The grid representation is often used for planar environments, as it can rep-
resent the whole map by dividing it into cells. The grids rely on a prede�ned
resolution, which determines how many cells are used to describe the environ-
ment. Because of the grid structure, where all the cells are aligned side by side,
the representation can only approximate the obstacles in the environment. This
will a�ect the accuracy of the paths found in the representation, and if the res-
olution is not high enough, valid paths might not be found using the grid.

Because the grid representation has a �xed number of cells, the memory us-
age will always have an overhead due to the array that contains the cells. The
number of nodes that have to be explored during a path search will usually be
higher than in the other representations, due to the �xed node sizes and the
way they are connected.

One of the good things about the representation is the simplicity of it. It
makes it easy to implement, and the access time to the nodes is constant.

6.2 Visibility Graph

The visibility graphs are not usually used for representing planar environments,
and we have found out why that is. The necessity of inserting the query points
into the graph before �nding a path causes the total query times to be unac-
ceptable for many applications, especially when used in complex environments.

61

This is con�rmed by the experiments in Section 4.3.1 and 4.3.8.

The advantages of this representation are that it is simple to implement, and
the paths found will always be optimal.

6.3 Navigation Mesh

There are a number of advantages by using a navigation mesh for representing
an environment. Compared to the grid representation, the number of nodes will
be reduced greatly, and as the mesh is based on the obstacles in the environment,
we will always get optimal paths. Even when the obstacles are axis-aligned and
the environment is designed to work with grids, the navigation mesh will have
a fewer nodes, as it represents any area similarly regardless of size. We see this
in the experiments with the game maps, where the number of nodes for the
navigation mesh only is a fraction of that of the grid (see Section 4.3.7.
Because of the low node count, we are able to �nd the paths faster, and use
less memory for the representation. This can be seen in the experiments in
Section 4.3.8 and 4.3.6.

6.4 Overall

We can conclude that navigation meshes are the optimal choice of represen-
tation, for any planar environment that can be represented using constraints.
They are not as simple to implement as the other representations, but the ad-
vantages of fast query times, reduced memory consumption and optimal paths,
outweigh that.

62

Chapter 7

Extensions

In this chapter, we will look at some possible extensions, which could be inter-
esting implement and experiment on.

7.1 Point Location

We saw in experiments (Chapter 4) that the point location method used by the
navigation mesh had a huge impact on the performance. It could be interesting
to implement the other point location methods, described in Section 2.3.4, to
see how they perform in practice.

7.2 Nonpoint Objects

Throughout this thesis, we have only looked at algorithms and representations
for point objects, with zero radiuses, to navigate through the environment. In
order to support nonpoint objects, we could grow all the obstacles by the radius
of the objects and build the representations. The problem is that we would have
to make a new representation each time the radius of the object changes, or if
an object with a di�erent size is used. Demyan et al. [14] have modi�ed both
an A* algorithm and a funnel algorithm to handle arbitrary widths of objects
without changing the navigation mesh. It would be interesting to see how the
performance is a�ected by these modi�cations.

7.3 Line of Sight

Many games use the line of sight between units or objects to determine if they
should be rendered. Using the representations, it is relatively simple to imple-
ment this feature. For the grid representation and navigation mesh, you could
just make an oriented walk between the two query points, and check that no
constraints are intersected [3]. For the visibility graph, you would have to insert

63

the two points and check that they can see each other or just loop through all
the constraints and check for an intersection.

7.4 Dynamic Changes

If the environment is changing, we will have to update the constraints. The
implementation of the navigation mesh does not currently support removal of
constraints, but Kallmann et al. [8] describe how it can be done, such that the
mesh is only modi�ed locally. When a constraint is changed, we need to remove
it from the mesh, and reinsert it again with updated end points. By applying
this, it would possible to avoid collision between moving objects.

7.5 Terrain Traversal Cost

The implementation of the grid representation is the only one that currently
supports traversal costs. In order to get the other representations to support
it as well, we will have to introduce a new kind of constraints that is passable.
These new constraints will encapsulate the areas with changed traversal cost.
Each node or triangle will have to store a cost multiplier, which are used when
the graph search algorithm calculates the paths.

64

Appendix A

a

b

(a) Dijkstra's algorithm

a

b

(b) A*

Figure A.1: Comparison of nodes expanded. The dark gray nodes denote the
path, the light gray nodes are the nodes expanded, and the black nodes are
outlining obstacles.

65

n

ti
m
e/
n

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

1000 2000 3000 4000 5000 6000

Control of Trivial Point Location

Figure A.2: Trivial point location time for the navigation mesh divided by n.

n

2
·t

im
e/
n
2
(n

−
1)

0.
0

0.
2

0.
4

0
.6

0
.8

1
.0

1
.2

500 1000 1500

Control of Visibility Graph

Figure A.3: Construction time for visibility graphs divided by 1
2n

2(n− 1).

66

n

ti
m
e/
n
2

0
1

2
3

4
5

6

500 1000 1500

Control of Nav Mesh (trivial)

Figure A.4: Construction time for navigation meshes using trivial point location
divided by n2.

n

ti
m
e/
n

0
10
0

2
00

3
00

4
00

500 1000 1500

Control of Nav Mesh (sectors)

Figure A.5: Construction time for navigation meshes using Sector Based Jump-

and-Walk divided by n.

67

(a) (b)

Figure A.6: Sector updates after the �rst point insertion. (a) The triangulation
with the updated triangles marked in gray. (b) The sector grid where the sectors
to be checked for updates are marked in gray.

(a) (b)

Figure A.7: Sector updates after the thirteenth point insertion. (a) The trian-
gulation with the updated triangles marked in gray. (b) The sector grid where
the sectors to be checked for updates are marked in gray.

68

Bibliography

[1] W. Schickler and A. Thorpe, �Surface Estimation Based on LIDAR (In-
troduction),� in Proceedings of the ASPRS Annual Conference St, 2001.

[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to

Algorithms (Section 24.3, Appendix A). McGraw-Hill Higher Educa-
tion, 2nd ed., 2001.

[3] M. Kallmann, �Navigation queries from triangular meshes (Introduc-
tion),� vol. 6459 of Lecture Notes in Computer Science, pp. 230�241,
Springer, 2010.

[4] P. Yap, �Grid-Based Path-Finding (Section 4, 5, 7),� in Canadian Con-

ference on AI (R. Cohen and B. Spencer, eds.), vol. 2338 of Lecture Notes
in Computer Science, pp. 44�55, Springer, 2002.

[5] Y. Bjornsson, M. Enzenberger, R. Holte, J. Schaejfer, and P. Yap, �Com-
parison of di�erent grid abstractions for path�nding on maps,� in Proceed-

ings of the 18th international joint conference on Arti�cial intelligence,
pp. 1511�1512, Morgan Kaufmann Publishers Inc., 2003.

[6] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computa-
tional Geometry Algorithms and Applications (Section 2.2, Chapter 15).
Springer-Verlag, 3 ed., 2008.

[7] S. K. Ghosh and D. M. Mount, �An output sensitive algorithm for comput-
ing visibility graphs (Introduction),� in Proceedings of the 28th Annual

Symposium on Foundations of Computer Science, FOCS '87, pp. 11�19,
IEEE Computer Society, 1987.

[8] M. Kallmann, H. Bieri, and D. Thalmann, �Fully Dynamic Constrained
Delaunay Triangulations (Section 4),� in Geometric Modelling for Scien-

ti�c Visualization (H. M. L. L. G. Brunnett, B. Hamann, ed.), pp. 241�257,
Springer-Verlag, �rst ed., 2003. ISBN 3-540-40116-4.

[9] L. J. Guibas, D. E. Knuth, and M. Sharir, �Randomized Incremental Con-
struction of Delaunay and Voronoi Diagrams (Section 3),� in ICALP

(M. Paterson, ed.), vol. 443 of Lecture Notes in Computer Science, pp. 414�
431, Springer, 1990.

69

[10] M. V. Anglada, �An improved incremental algorithm for constructing re-
stricted Delaunay triangulations (Section 4),� Computers and Graphics,
vol. 21, no. 2, pp. 215�223, 1997.

[11] J. Bernal, �Inserting Line Segments into Triangulations and Tetrahedral-
izations (Introduction),� vol. 5596, National Institute of Standards and
Technology, 1995.

[12] C. L. and Lawson, �Transforming Triangulations (Introduction),� Dis-

crete Mathematics, vol. 3, no. 4, pp. 365�372, 1972.

[13] P. K. Agarwal, L. Arge, and K. Yi, �I/O-E�cient Construction of Con-
strained Delaunay Triangulations (introduction),� in ESA (G. S. Brodal
and S. Leonardi, eds.), vol. 3669 of Lecture Notes in Computer Science,
pp. 355�366, Springer, 2005.

[14] D. Demyen and M. Buro, �E�cient triangulation-based path�nding,� in
Proceedings of the 21st National Conference on Arti�cial Intelligence - Vol-

ume 1, AAAI'06, pp. 942�947, AAAI Press, 2006.

[15] R. Seidel, �A Simple and Fast Incremental Randomized Algorithm for Com-
puting Trapezoidal Decompositions and for Triangulating Polygons (Sec-
tion 3),� Comput. Geom., vol. 1, pp. 51�64, 1991.

[16] E. W. Dijkstra, �A Note on Two Problems in connexion with graphs,�
Numerische Mathematik, vol. 1, pp. 269�271, 1959. 10.1007/BF01386390.

[17] P. Hart, N. Nilsson, and B. Raphael, �A Formal Basis for the Heuristic
Determination of Minimum Cost Paths (II.C, III.B),� IEEE Transactions

on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100�107, 1968.

[18] J. Hershberger and J. Snoeyink, �Computing minimum length paths of a
given homotopy class (Section 3),� Comput. Geom. Theory Appl., vol. 4,
pp. 63�97, 1994.

[19] M. Kallmann, �Path Planning in Triangulations (Sections 3-4),� in Pro-

ceedings of the IJCAI Workshop on Reasoning, Representation, and Learn-

ing in Computer Games, 2005.

[20] A. Botea, M. Müller, and J. Schae�er, �Near optimal hierarchical path-
�nding (Section 1, 3.0, 3.1, 3.3, A.2.2),� Journal of Game Development,
vol. 1, pp. 7�28, 2004.

[21] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, �Contraction Hier-
archies: Faster and Simpler Hierarchical Routing in Road Networks (In-
troduction),� in Experimental Algorithms (C. McGeoch, ed.), vol. 5038 of
Lecture Notes in Computer Science, pp. 319�333, Springer Berlin / Heidel-
berg, 2008.

70

[22] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and
D. Wagner, �Combining hierarchical and goal-directed speed-up techniques
for Dijkstra's algorithm (Section 1.1 Hierarchical Approaches),� J.

Exp. Algorithmics, vol. 15, pp. 2.3:2.1�2.3:2.31, 2010.

[23] D. Demyen, �E�cient Triangulation-Based Path�nding (Chapter 6),�
Master's thesis, University of Alberta, Edmonton, Alberta, 2006.

71

Index

A∗, 24�26, 32, 38
A*, 8, 22, 24, 63, 65
abstract graph, 31
Abstractions, 28
admissible, 24, 27
Analysis, 17
apex, 27, 28

binary heap, 38
binary search tree, 10

cell, 3, 8, 9, 20
channel, 25�27, 33
cluster, 29, 30
Common Data Structures, 35
Conclusion, 61
connectivity graph, 2, 4, 25, 26
consistent, 24
Constrained Delaunay Triangulation, 14,

17�20
constraint, 3�5, 8�11, 14�17, 22, 36,

38, 41, 44�46, 49, 53, 54, 58,
59, 62, 64

Construction Time, 49
contraction, 30
Contraction Hierarchies, 30
Convex Polygon, 44
cyclic plane sweep, 10

DAG Structure, 21
Data Structures, 38
Debugging, 41
Delaunay properly, 20
Delaunay Triangulation, 11�13, 17, 19,

36, 37
Depth-First Search, 43
deque, 27, 28

Dijkstra's algorithm, 1, 22�24, 31, 65
Directed Acyclic Graph, 21
Discussion, 59
Double-Connected Edge List, 14
Dynamic Changes, 64

edge di�erence, 30
Edges, 52
Environments, 43
epsilon, 36
Euclidean distance, 24, 27
Expanded Nodes, 57
Experiments, 43
Extensions, 63

Fibonacci heap, 38
funnel, 27, 38
funnel algorithm, 25, 27, 28, 38, 63

Game Maps, 45, 54
graph search algorithm, 22
Grid Node, 40
grid representation, 3, 4, 7�9, 11, 29,

30, 36, 40, 44�46, 48, 49, 51�
55, 58, 59, 61�64

GridNode, 38

half-edge, 13, 38
Hierarchical Grid Representations, 29
Highway-Node Routing, 30

Implementation, 35
Insertion of a Point, 45
internal edge, 27
Introduction, 1

jump-and-walk, 19, 20, 46, 50

72

Level 0 Nodes, 31
Level 1 Nodes, 32
Level 2 Nodes, 32
Level 3 Nodes, 32
Line, 36, 39
Line of Sight, 63

map, 3�5, 7, 9, 11, 20, 21, 28�31, 33,
36, 47, 54, 61

Maze, 43
Memory Consumption, 39, 53
most abstract graph, 32, 33

navigation mesh, 4, 5, 11, 25, 36, 39,
40, 43�46, 48�50, 52�56, 58,
59, 62�64, 66, 67

Node, 38, 40
Nodes, 51
Nonpoint Objects, 63

obstacle, 3, 4, 7, 9, 22, 55, 61, 62
octile, 3, 4, 7, 8
Overall, 62
overlay graph, 30

path, 27
Path Length, 58
path planning, 1, 25, 54
Path Planning in Navigation Meshes,

25
Path Time, 55
Point, 36, 38, 39
Point Location, 19, 48, 63
pseudo-polygon, 14, 15, 37

queue, 22

Real, 35, 36, 38�40
Representations, 3
Results, 45

Searching in the Abstract Graph, 32
sector, 46, 47, 50
Sector Based Jump-and-Walk, 20, 32,

37, 39, 45, 48, 49, 59, 67
Setup, 43
shortcut, 30

single-pairs shortest-path, 22�24
single-source shortest-path, 22, 23
Survey, 7
SymEdge, 13, 14, 36�40

Terrain Traversal Cost, 64
tex, 7, 8
tile, 3, 4, 7, 8, 29
TRA∗, 32, 33
Triangle, 38, 39
Triangle Node, 40
Triangle Reduction A∗, 32
TriangulatePseduoTriangle, 15
Triangulation A∗, 26
Triangulation Graph Reductions, 31
Trivial Approach, 19

Virtual Method Table, 39
visibility graph, 4, 5, 9�11, 30, 36, 38,

40, 44�46, 48, 49, 52�54, 56�
59, 61, 63, 66

Visibility Graph Node, 40

wedge, 27, 28

73

	Introduction
	Representations
	Grid Representation
	Visibility Graph
	Navigation Mesh

	Survey
	Grid Representation
	Visibility Graph
	Navigation Mesh
	Delaunay Triangulation
	Constrained Delaunay Triangulation
	Analysis
	Point Location

	Graph Search Algorithms
	Dijkstra's Algorithm
	A*
	Path Planning in Navigation Meshes

	Abstractions
	Hierarchical Grid Representations
	Highway-Node Routing
	Triangulation Graph Reductions

	Implementation
	Common Data Structures
	Grid Representation
	Visibility Graph
	Navigation Mesh
	Data Structures

	A*
	Data Structures

	Memory Consumption
	Real
	Point
	Line
	SymEdge
	Triangle
	Node
	Grid Node
	Visibility Graph Node
	Triangle Node
	Navigation Mesh
	Visibility Graph
	Grid Representation

	Debugging

	Experiments
	Setup
	Environments
	Maze
	Convex Polygon
	Game Maps

	Results
	Insertion of a Point
	Point Location
	Construction Time
	Nodes
	Edges
	Memory Consumption
	Game Maps
	Path Time
	Expanded Nodes
	Path Length

	Discussion
	Conclusion
	Grid Representation
	Visibility Graph
	Navigation Mesh
	Overall

	Extensions
	Point Location
	Nonpoint Objects
	Line of Sight
	Dynamic Changes
	Terrain Traversal Cost

	
	Index

