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Abstract

The focus of this dissertation is on algorithms, in particular data structures that
give provably efficient solutions for sequence analysis problems, range queries,
and fault tolerant computing. The work presented in this dissertation is divided
into three parts.

In Part I we consider algorithms for a range of sequence analysis problems
that have risen from applications in pattern matching, bioinformatics, and data
mining. On a high level, each problem is defined by a function and some
constraints and the job at hand is to locate subsequences that score high with
this function and are not invalidated by the constraints. Many variants and
similar problems have been proposed leading to several different approaches
and algorithms. We consider problems where the function is the sum of the
elements in the sequence and the constraints only bound the length of the
subsequences considered. We give optimal algorithms for several variants of
the problem based on a simple idea and classic algorithms and data structures.

In Part II we consider range query data structures. This a category of
problems where the task is to preprocess an input sequence using as little time
and space as possible such that one can efficiently compute a certain function on
the elements in a given query subsequence. There are many types of functions
that has been considered in connection with input from different sources. The
input could be ip-data sorted by ip-address, real estate prices sorted by zip
code, advertising cost sorted by time etc. We consider data structures for two
classic statistics functions, namely median and mode.

Finally, Part III investigates fault tolerant algorithms and data structures.
This deals with the trend of avoiding elaborate error checking and correction cir-
cuitry that would impose non-negligible costs in terms of hardware performance
and money in the design of todays high speed memory technologies. Hardware,
power failures, and environmental conditions such as cosmic rays and alpha
particles can all alter the memory in unpredictable ways. In applications where
large memory capacities are needed at low cost, it makes sense to assume that
the algorithms themselves are in charge for dealing with memory faults. We
investigate searching, sorting and counting algorithms and data structures that
provably returns sensible information in spite of memory corruptions.
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Chapter 1

Introduction

The focus of this dissertation is on algorithms, in particular data structures that
give provably efficient solutions for sequence analysis problems, range queries,
and fault tolerant computing. It is based on eight papers, seven are already pub-
lished and the last paper is in the submission stage. The papers are naturally
divided into three groups which defines the structure of the dissertation.

Part I considers sequence analysis problems and is based on the papers

[D2] A Linear Time Algorithm for the k Maximum Sums Problem with Gerth
Stølting Brodal. Proceedings of the 32nd International Symposium on
Mathematical Foundations of Computer Science, 2007.

[D3] Selecting Sums In Arrays with Gerth Stølting Brodal. Proceedings of the
19th International Symposium on Algorithms and Computation, 2009.

Compared to the published version of [D3] we have added Section 3.2.3 and
Section 3.2.1.

Part II investigates range query data structures and is formed by the papers

[D4] Data Structures for Range Median Queries with Gerth Stølting Bro-
dal. Proceedings of the 20th International Symposium on Algorithms
and Computation, 2009.

[D7] Approximating the Mode and Determining Labels with Fixed Frequency
with Mark Greve, Kasper Dalgaard Larsen and Jakob Truelsen. Manuscript.

Most of Section 4.3 and Section 4.2.4 has been added when compared to [D4].
The added part was in the appendix of the paper when it was submitted. The
paper [D4] has been merged with [47] for a journal submission and parts added
in this dissertation is also included in this merged paper.

Finally, Part III considers algorithms and data structures that are tolerant
to memory faults and it is based on the papers

[D8] Priority Queues Resilient To Memory Faults with Gabriel Moruz and
Thomas Mølhave. Proceedings of the 10th Workshop on Algorithms and
Data Structures, 2007.

1



2 Chapter 1. Introduction

[D1] Optimal Resilient Dictionaries with Gerth Stølting Brodal, Rolf Fager-
berg, Gabriel Moruz, and Thomas Mølhave. Technical Report DAIMI
PB-585, 2007.

[D5] Fault Tolerant External Memory Algorithms with Gerth Stølting Brodal
and Thomas Mølhave. Proceedings of the 11th Workshop on Algorithms
and Data Structures, 2009.

[D6] Counting in the Presence of Memory Faults with Gerth Stølting Brodal,
Gabriel Moruz, and Thomas Mølhave. Proceedings of the 20th Interna-
tional Symposium on Algorithms and Computation, 2009.

The paper [D1] is a technical report which was merged with a paper by Irene
Finocchi, Fabrizio Grandoni and Giuseppe F. Italiano into the paper [C1] pre-
sented at the 15th Annual European Symposium on Algorithms in 2007. Com-
pared to our paper [D5] we have added Section 8.6.

In this chapter we provide a thorough overview and description of the prob-
lems that we have considered in this dissertation. We describe the origin of each
problem and the results we achieve. We also give a description of the ideas and
techniques we used and how we apply them and to obtain the result. This
description is informal and we try to give as much insight as we can without
getting caught in technical issues. These can of course be found later in the
dissertation where all the details are included.

1.1 Selecting and Reporting Sums from Sequences

In Part I we consider sequence analysis problems that have risen from applica-
tions in pattern matching, bioinformatics, and data mining. On a high level,
each problem is defined by a function and some constraints and the job at
hand is to locate subsequences that score high with this function and are not
invalidated by the constraints. Many variants and similar problems have been
proposed leading to several different approaches and algorithms. We consider
problems where the function is the sum of the elements in the sequence and the
constraints bound the length of the subsequences considered.

In an array, A[1, . . . , n], of numbers each subarray, A[i, . . . , j] for 1 ≤ i ≤
j ≤ n, of A defines a sum,

∑j
t=iA[t]. There are

(
n
2

)
+ n different subarrays

each inducing a sum. The task at hand is to locate a subarray A[i, . . . , j] of A
maximizing the sum of its elements,

∑j
t=iA[t]. The problem is known as the

maximal sum problem and was formulated in a pattern matching context by
Ulf Grenander, and has been considered by applications in Data Mining [43]
and Bioinformatics [3].

Bentley describes the problem and an elegant optimal linear time algorithm
credited to Jay Kadane in [18]. The algorithm is based on the following insight:
The largest sum in A[1, . . . , t + 1] is either the largest sum in A[1, . . . , t] or it
is the largest sum that ends at index t + 1. The algorithm scans the input
array from left to right and maintains the best solution, max1≤i≤j≤x

∑j
t=iA[t],
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Problem Time Bound

k Max Sums O(n+ k)

Length Constrained k Max Sums O(n+ k)

Sum Selection Θ(n log(k/n))

Length Constrained Sum Selection O(n log(k/n))

Table 1.1: Results we achieve for selecting and reporting sums in sequences.

and the best suffix solution, max1≤i≤x
∑x

t=iA[t], in the part of the input ar-
ray, A[1, . . . , x], scanned so far. Both values are updated in constant time in
each step yielding a linear time algorithm using O(1) additional space.

The maximal sum problem has been considered in higher dimensions as well.
In two dimensions the input is an m× n matrix of numbers, and the task is to
locate the connected submatrix storing the largest aggregate. This problem can
be solved by a reduction to

(
m
2

)
+ m one-dimensional instances of size n, but

the resulting algorithm is not optimal [87, 88]. As far as we know the fastest
known algorithm uses O(m2n

√
log logm/ logm) time [87]. Interestingly, the

best known lower bound is the trivial bound of Ω(mn) (the time needed to
read input) leaving a significant gap. The two-dimensional version was the first
problem studied, introduced as a method for maximum likelihood estimations
of patterns in digitized images [18].

A natural extension of the maximum sum problem is to compute the k
largest sums for 1 ≤ k ≤

(
n
2

)
+ n. The subarrays are allowed to overlap and

the sums that are output are not required to be sorted. This extended prob-
lem was introduced in [12] and further investigated in [13, 14, 17, 29, 67]. We
refer to this problem as the k maximal sums problem. Another generaliza-
tion of the maximal sum problem is to restrict the length of the subarrays
considered. This generalization is considered in [35,55,69] mainly motivated by
applications in Bioinformatics such as finding tandem repeats [93], locating GC-
rich regions [49], and constructing low complexity filters for sequence database
search [5]. This naturally leads us to the length constrained k maximal sums
problem. Given the input array A and integers l and u, return the k largest
sums consisting of at least l and at most u numbers (length of subarray between
l and u). Of course, the k maximal sums problem is the special case of this
problem where l = 1 and u = n. This problem is considered in [68]. In [67, 68]
the authors generalize the maximal sum problem to sum selection, e.g. return
a k’th largest sum. In [68] the authors consider the length constrained sum
selection problem, e.g. return a k’th largest sum among all sums of length at
least l and at most u.

Our Results: In [D2,D3] we give algorithms for all of these problems based
on the same techniques. We have shown the results we achieve in Table 1.1.
Our algorithms are based on the following idea: Assume that we know the order
of all the sums ending at index t and that we want to compute the order of
all the sums that end at index t + 1. If we ignore the sum that consists only
of A[t + 1] then the sums ending at index t + 1 are ordered exactly like the
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L4 ∪ {0} = {−22, 4, 0, 15, 46}
L4 = {−22, 4, 15, 46}

42-11+37-22+30=76

L5 = {8, 34, 30, 45, 76}
= {x+ 30 | x ∈ L4 ∪ {0}}

42 -11 37 -22 3042 -11 37 -22 30

42-11+37-22=46

37-22=15

-22+30=8

37-22+30=45

-22

-11+37-22=4 -11+37-22+30=34

30

Figure 1.1: Illustration of the relation between sums ending at succeeding in-
dices. The input array is shown twice at the top. On the left side we have
illustrated all sums ending at index 4, and on the right side we have shown all
sums ending at index 5. Li is the sorted version of the sums ending at index i.
Notice how L5 can be constructed from L4.

sums ending at index t, since the only difference is that we add A[t + 1] to all
sums. Thus, to order the sums ending at index t+ 1 we only need to compute
how a single sum relates to the sums ending at index t. This is illustrated in
Figure 1.1.

This also allows for an efficient representation of the O(n2) sums in the array
since the sums ending at index t+ 1 are the same as the sums ending at index
t with a fixed constant added to each, plus one more sum. This is a perfect
place to use persistent data structures [33]. In short, a partially persistent
data structure allows the newest version of the data structure to be updated
(which yields a new version), while supporting queries to the new version and all
previous versions of the data structure. In our papers we use the node copying
technique to achieve partial persistence [33].

1.1.1 Reporting the k largest sums

In [D2], we use this idea and represent the O(n2) sums using O(n) space in
partially persistent heap-ordered binary trees. We use a very simple heap-
ordered binary tree which sole feature is that it supports insertions in amortized
constant time. For t = 1, . . . , n we construct a representation for all sums
ending at index t from the representation of the sums ending at index t− 1 in
constant time1. After this construction, we extract the k largest sums from the n
partially persistent heap-ordered binary trees using Fredericksons heap selection
algorithm [42] that outputs the k largest elements in a heap-ordered binary tree
in O(k) time. As a result we get an optimal O(n + k) time algorithm for the

1we add a constant to all numbers in our data structure by writing it in the root of the
tree and pushing it downwards during traversal
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k maximal sums problem that uses O(n+ k) additional space. By considering
k input elements from the input array at a time, we reduce the additional
space usage of our algorithm to O(k), which is needed to store the output. The
resulting algorithm becomes a natural generalization of Kadanes algorithm. We
also show how to use our algorithm to solve the d dimensional version of the
problem where the input sides have size n1, . . . , nd in O(n1

∏d
i=2 ni

2 + k) time

using O(
∏d−1
i=1 ni + k) additional space. These algorithms are, however, not

optimal for all k.

If we use a heap-ordered binary tree data structure that also supports dele-
tions efficiently our approach immediately gives an O(n log(u − l) + k) time
algorithm for the length constrained k maximal sums problem: In the t’th step
of the construction described above we insert the sum of length l ending at index
t and delete the sum of length u+1 ending at index t. After the construction we
extract the k largest sums with Fredericksons heap selection algorithm. In [D3]
we give an O(n+ k) time algorithm for the length constrained k maximal sums
problem using the same ideas. The only difference compared to the algorithm
described above is how we insert all sums of length between l and u in partially
persistent heap-ordered binary trees without performing deletions. We divide
the input array into slabs of size u− l + 1 and for each slab use the same con-
struction as above, and the same construction applied backwards: If we have a
representation of all sums ending at index t that starts after index s + 1, we
can get a representation of all sums ending at index t starting after index s
by adding the single sum A[s, . . . , t]. This idea allows us to delete the sum of
length u + 1 in each step of the algorithm by considering the previous version
of the representation of these sums. We have illustrated the idea in Figure 1.2.
Again, we use partially persistent heap-ordered binary trees to represent the
sets of sums and Fredericksons heap selection algorithm to extract the k largest
sums.

1.1.2 Selecting the k’th largest sum

We also consider the sum selection problem in [D3]. With our basic approach we
can almost immediately get an O(n log n) time algorithm for the sum selection
problem as follows. Replace the heap-ordered binary trees with weight balanced
search trees [10,72]. Similarly to above, for t = 1, . . . , n, we construct a weight
balanced tree storing the sums ending at index t from the data structure for
t − 1 in O(log n) time. Then, we input the n trees to the sorted column ma-
trix selection algorithm of Frederickson and Johnson [42] that selects the k’th
largest element from a set of n sorted arrays in O(n log(k/n) time. Adapting
Frederickson and Johnsons algorithm to work on the weight balanced trees we
construct instead of sorted arrays is a technical exercise and it is described in
Chapter 3.

We reduce the time for the sum selection problem to O(n log(k/n)) by care-
fully extracting O(k) sums to perform the final selection on. We consider the
input array in consecutive slabs of k/n elements. From this division, we divide
the sums into two overall sets, sums where the start and end index are in the
same slab, and the rest. We represent the O(k) sums that start and end in
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42 -11 37 -22 30

· · ·

30

-22+30=8

42-11+37-22+30=76

︷
︸︸

︷

︷︸
︸︷

︷
︸︸

︷
B1

B2

B5

11 33 12 -22 . . .

︷
︸︸

︷

F3

11+33+12=56

33+12=45

12

74
j j + l − 1

Sj+l−1 = {cj+1,j+l−1+x | x ∈ F3} ∪ {ca,j+l−1 + x | x ∈ Bu−l−2}

i

Figure 1.2: Organizing the sums of length between l and u. The dashed line
depicts the separation of two slabs. Ba is the a shortest sums that end at index
i−1 and the sets are incrementally constructed by scanning backwards. La are
the a shortest sums that end at index i + a − 1 constructed as in Figure 1.1.
The constants ca,b =

∑b
t=aA[t] are the sum of the elements between index a

and b, for any a,b. Sj+l−1 are the u− l+ 1 sums of length between l and u that
end at index j + l − 1, and as it is shown, this is the union of two sets. For
the following index (j + l) we use two different constants and use the previous
version of the B set and the following version of the F set.

the same slab in partially persistent weight balanced trees and these sums are
constructed as earlier, e.g. for every slab we start with the empty tree, and
for the following k/n indices we construct the sums ending there by insert-
ing an element into this partially persistent weight balanced tree. This takes
O(log(k/n)) time per element since there is at most k/n elements in each tree
considered. This takes care of all sums that start and end inside the same slab.
For the remaining sums, each ending in a different slab in which it starts, we use
a partially persistent heap-ordered tree data structure where each node stores
a sorted array of k/n elements (we get a partial order of sorted arrays of size
k/n). This data structure we denote a block heap and it supports the insertion
of k/n elements in O(k/n) amortized time. As several times before, the sums in
this set ending at index i are constructed from the sums ending at index i− 1.
Consider an index i contained inside a slab. The sums ending at index i that
does not start in this slab is the sums ending at index i− 1 that does not start
in this slab with A[i] added to each sum. So getting these from the previous
set is simple. Whenever we finish a slab we add the k/n sums from the weight
balanced tree we created for the last index of the slab to the set by inserting
them into the block heap data structure. In the end we extract the O(k) only
sums that can be the k’th largest sum from the block heaps using Fredericksons
heap selection algorithm. These sums are located in O(n) arrays. Combined
with the O(k) sums stored in the weight balanced trees we have all sums that
could be the k’th largest sum. Next we use Fredericksons and Johnsons sorted
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column matrix selection algorithm that we have adapted and retrieve the k’th
largest sum.

We also prove a matching Ω(n log(k/n)) lower bound on the number of
comparisons between linear combinations of the input elements any algorithm
needs to solve the problem by a reduction from the cartesian sum selection
problem [42]. Finally, we combine our two algorithms described above and
obtain an O(n log(k/n)) time algorithm for the length constrained sum selection
problem.

1.2 Range Queries

There is a large group of problems where the input is an unordered array and
the task is to preprocess this array using as little time and space as possible
such that one can efficiently compute a certain function on the elements in a
given query interval (subrange of the input array). These problems are denoted
range query problems, and natural candidates for such function are

• Sum: This problem is easily solved with O(n) preprocessing time and
space and constant query time by computing prefix sums, since each query
can be answered by subtracting two prefix sums.

• Semigroup operator: This function is harder to compute than the sum,
since subtraction is not available. However, there exists a very efficient
solution. Using O(n) processing time and space, each query can be an-
swered in O(α(n)) time, where α(n) is the inverse Ackerman function [96].
A matching lower bound is known [97].

• Maximum, Minimum: For these particular semigroup operators, the prob-
lem can be solved slightly more efficiently: O(n) preprocessing time and
space is sufficient to allow constant time queries, see e.g. [44].

• Rank: The problem of finding the number of elements smaller than a
query element within a query range. This is a natural problem appearing
frequently in data bases and it has been studied extensively. A linear space
data structure supporting queries in O(log n/ log log n) time is presented
in [57], and a matching lower bound in the cell probe model for any data
structure using O(n logO(1) n) space is shown in [75,76].

Several of these problems have been extended to higher dimensions and have
also been considered in dynamic scenarios. In the following we denote the input
array by A and we let A[i, j] = A[i, . . . , j] denote the subarray of A from index
i to index j, both included. In [D4] we consider the range median problem and
in [D7] we consider the range mode problem. The model of computation is the
RAM model with a word size of w ≥ log n bits.

1.2.1 Range Median

The median of a set S of size n is an element in S that is larger than bn−1
2 c

other elements from S and smaller than dn−1
2 e other elements from S. In the
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Query Time Space Batched Problem

[62] O(log n) O(n log2 n
log logn) -

[79] O(1) O(n2 log2 logn
log2(n)

) -

[50] - - O(n log k + k log(k) log n)

[47] O(log n) O(n) O(n log k + k log n)

Our Results O( logn
log logn) O(n) O(n log k + k logn

log logn)

Table 1.2: Overview of the most important results on range median/selection
queries.

range median problem the input array A must be preprocessed into a data
structure that given indices i and j, 1 ≤ i ≤ j ≤ n, returns an index i′,
i ≤ i′ ≤ j, such that A[i′] is the median of the elements in the subarray A[i, j].
In addition to being a natural extension of the median problem, the problem
has applications in practice, namely obtaining a typical element in a given time
series out of a given time interval [50]. The range median problem is considered
in [45,47,62,78,79].

Consider analyzing logs of internet advertisements run by for instance Google
for various companies. Every click on a sponsored link by an internet user
records a timestamp and the price paid by the advertiser for this click. Ad-
vertisers usually runs several add campaigns over different time intervals and
wants to compare the prices paid with the overall market cost in their campaign
periods. A typical comparison is with the median price paid by all advertisers
in this time interval. This boils down to a range median query for each interval
in an array storing the price of each click sorted by the corresponding times-
tamps. With this and other applications in mind Muthukrisnan and Har-Peled
defined and considered the batched range median problem in [50]. The input to
the batched range median problem is an array of size n and a set of k queries,
(i1, j1), . . . , (ik, jk), and the task is to output the answer to these k queries. We
have shown the most important results for range median queries in Table 1.2.
Range median queries are naturally generalized to range selection, given indices
i, j and s, return the index of the s’th smallest element in A[i, j]. In the follow-
ing we consider these queries instead since they are more general and fits more
naturally with the data structures we develop.

Our Results Our main result is a linear space data structure that answers
range selection queries in O(log n/ log logn) time. Our data structure also sup-
ports range rank queries in O(log n/ log logn) if we can perform a predecessor
search on the elements stored in A in the same time bound, e.g. for instance if
the elements stored in A are integers.

The data structure is based on the following observation, used in [47]. Sup-
pose we partition the elements in A into two arrays: one storing the n/2 smallest
values, and one storing the n/2 largest values, the elements ordered in each array
by their position in A. Denote these two arrays Asmall and Alarge respectively.
Assume we are searching for the element of rank s in A[i, j]. We compute how
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|(∪5i=iTi) ∩A[i, j]|
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T

Figure 1.3: An example of the prefix counts we consider. In this example the
fanout is 5 and the elements in A[i, j] are underlined in the partition of the
elements into 5 subtrees. M is the list of prefix counts for the query A[i, j], e.g
the `’th row stores the number of element from A[i, j] that are contained in the
first ` subtrees. If a query is searching for the fourth smallest element in A[i, j]
it is contained in T2 as indicated by the prefix counts.

many elements from A[i, j] there are in Asmall which is the rank difference be-
tween i− 1 and j in Asmall when elements are represented by their position in
A. Denote this count c. If c ≥ s then the element of rank s in A[i, j] is the
element of rank s in Asmall ∩ A[i, j]. Otherwise, it is the element of rank s− c
in A.high∩A[i, j]. Thus we have to solve the same problem in an array of half
the size. This idea leads naturally to a binary search tree similar in structure
to a range tree.

In [D4] we generalize this idea and develop a data structure that uses O(n)
words of space and supports queries in O(log n/ log log n) time. The idea is to
use a tree with branching factor f = dlogε ne for some 0 < ε < 1, instead of a
binary tree. This reduces the depth of the tree to O(log n/ log log n).

A query is answered by descending the tree, starting from the root, until we
reach the leaf that stores the element of the given rank s in A[i, j]. There are
two different cases for computing the child to continue the descend: First, an
attempt is made to identify the correct child in constant time, by computing, for
every l ∈ {1, . . . , f}, an approximation of how many elements of A[i, j] that are
contained in the first l subtrees (called prefix count in the following). Note that
the element of rank s is contained in the leftmost subtree of Tv whose prefix
count is at least s. Figure 1.3 shows a small example of such prefix counts.
To compute all approximate prefix counts in constant time, the approximation
only computes g = O(log n/f) bits of each prefix count. This approximation
reduces the branching decision to an interval [`1, `2], and this interval is found
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103200345

109002233

109122324

109367210

109666010

112111099

(a)

103 200 345

109 002 233

109 122 324

109 367 210

109 666 010

112 111 099

(b)

Figure 1.4: (a) A set prefix sums (M) as in Figure 1.3 - the numbers are this
large for sake of exposition. (b) A division of the prefix sums into three sec-
tions (columns). Each section stores the same number of digits from each prefix
count and can be stored in one machine word. Our algorithm (approximately)
computes such a section in constant time. If a query searches for the element
of rank 104400234 we can determine in constant time that the second subtree
contains this element just by looking at the first section. However, if a query
searches for the element of rank 109221123 we cannot determine in which sub-
tree to descend from the information in the first section. We can only conclude
that it is between the second and the sixth subtree.

in constant time using word level parallelism. If the interval contains only a
constant number of indices, the branching decision in this node is made in
constant time, by exactly computing the prefix count for these indices. If this
is not the case the correct child is computed using a binary search (where
each step, computes the exact prefix count for a given subtree), which takes
O(log f) = O(log log n) time. An example of the approximation we compute is
shown in Figure 1.4. The important property that we show is that every time
we perform a binary search, the number of relevant bits in all prefix counts
that remains to be considered is reduced by g (in the example from Figure 1.4
this means that in the following nodes the first section contains only zeroes
and is ignored). Therefore, this second case can only occur O(log n/g) = O(f)
times, and the total time for the search is O(f log log n + log n/ log log n) =
O(log n/ log logn).

We use the same idea to design a dynamic data structure for the range
median problem. Basically, we combine the standard dynamization techniques
of using a weight-balanced tree, where associated data structures are rebuilt
from scratch when a rotation occurs, with our static data structure. This way
we get an O(n log n/ log logn) space data structure that supports queries and
updates in O((log n/ log logn)2) time, worst case and amortized respectively.
We also prove a lower bound of Ω(log n/ log logn) on the query time for data
structures that support updates in O(logO(1) n) time by a reduction from the
marked ancestor problem [4].

Our data structure uses O(n) words of space and supports range selection
queries in O(log n/ log log n) time and it can be constructed in O(n log n) time.
Combining this with the algorithm for the batched problem in [47], we get
an algorithm for the batched range median problem with a running time of
O(n log k + k log n/ log logn).
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Problem Query Time Space

Range Mode Ω( logn
log(Sw/n)) S

3-Approximate Range Mode O(1) O(n)

(1 + ε)-Approximate Range Mode O(log 1/ε) O(n/ε)

Range 1-Frequency O(log2 log n) O(n log n)

Range k-Frequency O(log n/ log logn) O(n)

Range k-Frequency Ω( logn
log(Sw/n)) S

Table 1.3: Results we achieved for range mode and related problems. For range
k-frequency the upper bound works for any k while the lower bound holds for
any constant k ≥ 2.

1.2.2 Range Mode

The frequency of a label l in a multiset S of labels, is the number of occurrences
of l in S. The mode of S is the most frequent label in S. In case of ties, any of
the most frequent labels in S can be designated the mode.

The range mode problem has been considered in [62, 78, 79]. We let Mi,j

denote the mode in the subarray A[i, j], and let Fi,j denote the frequency of Mi,j

in A[i, j]. The approximation variant of the range mode problem, we denote the
c-approximate range mode problem. In a c-approximate range mode query in
A[i, j] we are searching for a label that has a frequency that is at most a factor c
from Fi,j . We also define the range k-frequency problem. In a range k-frequency
query in A[i, j] we want to determine whether there is a label occurring precisely
k times in A[i, j].

There are two results on range mode queries neither very satisfying. For any
constant ε ≤ 1

2 , there is a data structure that uses O(n2−2ε) space that supports
range mode queries in O(nε) time [78], and for constant query time the best
space bound achieved is O(n2 log log n/ log2 n) [79]. Given the rather large
bounds for the range mode problem, the approximate variant of the problem
was considered in [22].

Our Results The results on range mode and related problems we achieve
in our paper [D7] are shown in Table 1.3. Our main result is a cell probe
lower bound for range mode data structures. We prove that any data structure
that uses S space needs Ω(log n/ log Sw

n ) time for a range mode query. In
particular this means that nay data structure that supports queries in constant
time needs Ω(n1+O(1)) space and data structures that uses O(n logO(1) n) space
needs Ω(log n/ log log n) time for a range mode query. We prove our lower bound
with the technique developed by Pǎtraşcu and Thorup in [76, 77], by reducing
the lopsided set disjointness problem from a communication complexity to a set
of approximately n/ log n parallel queries on a range mode data structure.

We also consider the range k-frequency problem and using reductions we
show that for any constant k > 1 the problem is equivalent to 2D range stabbing.
In the restricted case where k = 1, the problem corresponds to determining
whether there is a unique label in a subarray. We show, somewhat surprisingly,
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√
n

i j

MultislabSuffix Prefix

Figure 1.5: Idea for our 3-Approximate Range Mode data structure.

that for near-linear space data structures, determining whether there is a label
occurring exactly twice (or k > 1 times) in a subarray, is exponentially harder
than determining if there is a label occurring exactly once. Specifically, we
reduce range 1-frequency to four-sided 3D orthogonal range emptiness, which
can be solved with O(log2 log n) query time and O(n log n) space by a slight
modification of the data structure presented in [1].

We give improved upper bounds for the c-approximate range mode problem.
First we present a data structure for the 3-approximate range mode problem
that uses O(n) space and supports queries in constant time.

Finally, we use our 3-approximate range mode data structure, to develop a
data structure for (1 + ε)-approximate range mode. This data structure uses
O(nε ) space and answers queries in O(log 1

ε ) time. This removes the dependency
on n in the query time compared to the previously best data structure, while
matching the space bound. Thus, we have a linear space data structure with
constant query time for the c-approximate range mode problem for any constant
c > 1. We note that we get the same bound if we build on the 4-approximate
range mode data structure from [22].

Our data structure for 3-approximate range mode it is based on the following
simple idea. Assume that we have partitioned a query into three parts, then the
frequency of the mode in the entire range is at most three times the maximum
individual frequency found in one of the parts. We do a recursive subdivision
based on this insight. The input array of size n is partitioned into

√
n slabs of

equal size and we store the mode for every consecutive sequence of slabs (multi-
slab), and for each slab we additionally store the mode of all prefixes and suffixes
of the slab. This way we can divide all queries that cover a slab into three, a
suffix of one slab, a multi-slab, and a prefix of one slab, see Figure 1.5. Queries
contained in one slab are handled recursively. We employ a lowest common
ancestor (LCA) data structure [44] on top of this tree. We use the LCA data
structure to locate the highest node where the subdivision divides the query,
and in this node we determine the maximum in the three parts that constitute
the query in constant time. Finally we reduce the space to O(n) by using simple
bit packing techniques.

We use our 3-approximate range mode data structure to develop a data
structure for (1 + ε)-approximate range mode. This data structure is based
on the following simple insight also used in [22]. To approximate the answer
to any query starting at index one, we only need to know the indices, t ≥ 1
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1 (1 + ε) (1 + ε)2 (1 + ε)k

. . .

. . .

j1 j2 j3 jk

Ti = j1 j2 j3 . . . jk

Fi,t ≤

i j

i1

Figure 1.6: Idea for (1 + ε)-approximate range mode data structure. The figure
shows the consecutive ranges of A where the frequency of the mode in A[i, t]
for t ≥ 1 is between (1 + ε)k−1 and (1 + ε)k and the indices jk separating them
for k = 1, . . . , log(1+ε)(n). These indices defines the sorted array Ti. An (1 + ε)
approximation of Fi.j can be computed by a predecessor search for j in Ti. In
the example query, this search yields j2, and we know that the frequency of
A[j2] in A[i, j] is at least (1 + ε) and that Fi,j is at most (1 + ε)2.

where F1,t becomes (1 + ε)k for k = 0, 1, . . ., e.g. it has increased by a factor
of (1 + ε). This gives a sorted list of O(log(1+ε)(n)) = O(1

ε log n) indices where
the approximation changes. An approximate range mode query in A[1, j] is
then answered by doing a predecessor search for j in this list, and returning
the associated element. For a simple example see Figure 1.6. We can repeat
this construction for all n possible starting indices which requires O((n/ε) log n)
space. These lists are, however, very similar, and by exploiting this one can
reduce the space needed to store the information contained in these lists to
O(n/ε). In [22] the authors employ partially persistent search trees to represent
these lists in O(n/ε) space while supporting predecessor searches in any version.
This gives a query bound of O(log log(1+ε) n) time. Instead of using persistence
we use various tables to store the O(n/ε) needed values and we employ succinct
rank and select data structures [56] to efficiently extract the information we need
from these tables. We end up with a data structure that can access any entry
in any of the n lists defined above in constant time. To avoid searching a list
of size O(log(1+ε) n) in a query, we initially use our 3-approximate range mode
data structure to reduce the size of the interval of indices we need to consider
to O(log(1+ε) 3) = O(1

ε ) which we then binary search.

In conclusion, our data structure for the (1 + ε) approximate range mode
problem uses O(nε ) space and answers queries in O(log 1

ε ) time. This removes
the dependency on n in the query time compared to the previously best data
structure, while matching the space bound. Thus, we have a linear space data
structure with constant query time for the c-approximate range mode problem
for any constant c > 1.
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1.3 Fault Tolerance

The final part originates from a tendency to avoid sophisticated error checking
and correction circuitry that would impose non-negligible costs in hardware
performance and price in the design of todays high speed memory technologies.
Contemporary memory devices such as SRAM and DRAM can be unreliable
due to a number of factors, such as hardware errors, power failures, radiation,
and cosmic rays that can temporarily affect the memory behavior resulting in
unpredictable, random, independent failures known as soft memory errors. In
applications where large memory capacities are needed at low cost, it makes
sense to assume that the algorithms themselves are in charge for dealing with
memory faults. Since the amount of cosmic rays increases dramatically with
altitude, soft memory errors are of special concern in fields like avionics or space
research.

Memory devices continually become smaller, work at higher frequencies and
lower voltages, and in general have increased circuit complexity [30]. Unfortu-
nately, these improvements come at the cost of reliability [89,90] and soft mem-
ory error rates are expected to rise for both DRAM and SRAM memories [89].

An unreliable memory can cause problems in most software ranging from the
harmless to the very serious, such as breaking cryptographic protocols [20,94],
taking control of a Java Virtual Machine [48] or breaking smart-cards and other
security processors [6, 7, 85]. Corrupted content in memory cells can greatly
affect many standard algorithms. For instance, in a typical binary search in a
sorted array, a single corruption encountered in the early stages of the search
can cause the search path to end Ω(N) locations away from its correct position,
and a single corrupted value can induce as much as Θ(n2) inversions in the
output of a standard implementation of mergesort [39]. Replication of data can
help in dealing with corruptions, but is not always feasible, since the time and
space overheads of storing and fetching replicated values can be significant.

Memory corruptions have been addressed in various ways, both at the hard-
ware and software level. At the hardware level, the soft memory errors can be
handled by means of error detection mechanisms such as parity checking, re-
dundancy or Hamming codes. Unfortunately, implementing these mechanisms
incur penalties with respect to performance, size and money. Therefore, mem-
ories using these technologies are rarely found in large scale computing clusters
or ordinary workstations. On the software level, a series of low-level techniques
have been proposed for dealing with the soft memory errors, many of them
coping with corrupted instructions. Examples include algorithm based fault
tolerance [54], assertions [84], control flow checking [98], or procedure duplica-
tion [82].

A multitude of algorithms that deal with unreliable information in various
ways were developed during the last decades. Aumann and Bender [11] intro-
duced fault tolerant pointer-based data structures. In their model, error detec-
tion is done upon access, i.e. accessing a faulty pointer yields an error message.
Obviously, this is not always the case in practice, since a pointer might get
corrupted to a valid value and thus an error is not reported. Furthermore, their
algorithms allow a certain amount of the data structure to be lost upon corrup-
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tions, and this is not accepted in many practical applications. The liar model
considers algorithms in a comparison model where the result of a comparison is
unreliable. Work in this model include fundamental problems such as sorting
and searching [21,65,83]. A standard technique used in the design of algorithms
in the liar model is query replication, which is not of much help when memory
cells, and not comparisons, are unreliable. Kutten and Peleg [63,64] introduced
the concept of fault local mending in the context of distributed networks. A
problem is fault locally mendable if there exists a correction algorithm whose
running time depends only on the (unknown) number of faults. Some other
works studying network fault tolerance include [32,46,52,53,60,66,74].

Finocchi and Italiano [39] introduced the faulty-memory random access ma-
chine, based on the traditional RAM model. In this model, memory corruptions
can occur at any time and at any place in memory during the execution of an al-
gorithm, and corrupted memory cells cannot be distinguished from uncorrupted
cells. In the faulty-memory RAM, it is assumed that there is an adaptive ad-
versary, that chooses how, where, and when corruptions occur. The model is
parameterized by an upper bound, δ, on the number of corruptions the adver-
sary can perform during the lifetime of an algorithm, and α ≤ δ denotes the
actual number of corruptions that takes place. Note that α is not known by
the algorithm. Motivated by the fact that registers in the processor are con-
sidered incorruptible, O(1) safe memory locations are provided. Moreover, it is
assumed that reading a word from memory is an atomic operation. In random-
ized computation, as defined in [39], the adversary does not see the random
bits used by an algorithm. An algorithm is resilient if it works correctly on the
set of uncorrupted cells in the input. For instance, a resilient sorting algorithm
outputs all uncorrupted elements in sorted order while corrupted elements can
appear at arbitrary positions in the output. We say that a sequence of elements
is faithfully ordered if all the uncorrupted elements in the sequence appear in
sorted order.

Several important results has been achieved in the faulty-memory RAM.
In the original paper, Finocchi and Italiano [39] proved lower bounds and gave
(non-optimal) resilient algorithms for sorting and searching. Algorithms match-
ing the lower bounds for sorting and searching(expected time) were presented
in [36]. An optimal resilient sorting algorithm takes Θ(n log n + δ2) time,
whereas optimal searching is performed in Θ(log n + δ) time. Furthermore,
in [38] a resilient deterministic search tree that performs searches and updates
in O(log n + δ2) time amortized was developed. Finally, in [80] it was shown
that resilient sorting algorithms are of practical interest.

The cost of resilient algorithms can be expressed in two slightly different
ways. For example, a resilient sorting algorithm using O(N logN + δ2) time
can also be described as a sorting algorithm that uses O(N logN) time while
tolerating O(

√
N logN) corruptions. While the former version is more general,

the latter emphasizes the fact that one can use a resilient sorting algorithm for
“free” asymptotically as long as the number of corruptions is O(

√
N logN).



16 Chapter 1. Introduction

Reliable Values Perhaps the most important concept used in the design of
resilient algorithms, in particular resilient data structures, is reliable values (or
variables). A reliable value is stored solely in unreliable memory and can be
retrieved and updated reliably. The idea is fairly simple. To store a value v as
a reliable value, v is written in 2δ+1 consecutive memory cells in the unreliable
memory. The point is that only δ corruptions can occur and thus at least δ+ 1,
more than half, of the cells will always contain v. Here we note that if we use δ
cells or less, they may be all be corrupted and we cannot guarantee that v can
be retrieved. To extract v all, we find the most frequent element in the 2δ + 1
cells and we know that this value appears in more than half of cells. This leads
is to the majority problem considered in [23]. Here, the input is a sequence of k
elements and we are promised that at least dk+1

2 e of the elements are equal. Let
x denote this uniquely determined value. The goal is to recover x from the k
items efficiently. In the comparison model there is a simple algorithm by Boyer
and Moore [23] that extracts x while using O(1) additional space and O(k)
time. The algorithm keeps two variables in memory: a majority candidate, a,
and a counter, c, initially equal to zero. The sequence of elements is scanned
once and in each step one of the following three operations is performed. If c is
zero the current element is made the new candidate stored in a and c is set to
one. If the current element is equal to a, c is incremented by one, and if they
differ c is decremented by one. When the scan has completed, a is the majority
element of the sequence. If the sequence does not have a majority elements the
output of the algorithm is undefined (it returns some arbitrary element).

We can extract a reliable variable v by running the majority algorithm while
keeping the candidate element and the counter in the O(1) safe memory cells.
It follows that any value can be maintained reliably in O(δ) space and it can
be accessed and updated in O(δ) time. This means that we can make any
algorithm or data structure resilient with a multiplicative cost of O(δ) in time
and space. We call these naive algorithms.

1.3.1 Priority Queues Resilient to Memory Faults

In [D8] we give a resilient priority queue that supports insert and deletemin
in O(log n+ δ) amortized time. The deletemin operation of a resilient priority
queue must either return the smallest uncorrupted element in the queue or a
corrupted one. In particular this means that inserting n elements into the pri-
ority queue and calling deletemin n times must be a resilient sorting algorithm.
Our priority queue was the first data structure that achieved a time bound of
O(log n+ δ) for queries and updates.

The organization of our data structure is inspired by the cache oblivious
priority queue in [9], and we make extensive use of the resilient binary merging
algorithm from [40]. We store the elements in levels of increasing size, each level
storing an up buffer and a down buffer. We maintain a natural invariant in our
data structure stating that uncorrupted elements in the down buffer at level i are
smaller than the uncorrupted elements in the up and down buffer at level i+ 1.
We use the resilient merging algorithm to efficiently move the elements between
the levels, such that large elements are pushed upwards into the larger lists and
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small are pulled downwards into the small lists without breaking the invariant.
We use a simple unsorted insertion buffer of size Θ(log n + δ). Whenever this
list is full we merge it with the smallest level where the up and down buffer are
of size Θ(log2 n + δ2). If this level is filled elements are recursively pushed to
the second level, which is twice as large, and so on. In a deletemin we consider
all the elements in the insertion buffer and the smallest O(log n + δ) elements
from the first level. If this deletion makes the lowest level to small we fetch
elements from the next level, and this continues recursively.

The hardest part is to ensure that we maintain the relationship between the
elements in lists of different levels in spite of corruptions when we merge sorted
lists and redistribute the elements. This is a somewhat technical issue that we
will not consider here. The main point is that the extra cost we incur for this
as well as the extra time we need for resilient merging compared to standard
merging is dwarfed because of rather large sizes we have chosen for our buffers.

We also prove a lower bound stating that any data structure that does not
use δ time for an insert followed by a deletemin cannot be a resilient priority
queue. This lower bound is only valid under the assumption that the data struc-
ture does not store any elements in safe memory between operations. Basically,
the lower bound proves that if we insert an element and it is not compared to
at least δ other elements from the data structure, then an adversary can force
the deletemin operation to return a wrong answer. Combining this with the
lower bound of Ω(log n) from the comparison model we get a matching lower
bound of Ω(log n+ δ) comparisons.

1.3.2 Searching in the Presence of Memory Corruptions

In [D1] we consider comparison based search problems in the faulty memory
RAM. A resilient searching algorithm [36] has the following semantics when
searching for an element e in a set S. If there is an uncorrupted copy of e in S
the query must return yes, if zero elements in S are equal to e it must return
no. Otherwise, the result is undefined, e.g. an algorithm cannot give a wrong
answer.

In [D1] we give an optimal resilient algorithm for searching a sorted input
array of n elements. This algorithm uses O(log n+ δ) time, matching the lower
bound proved in [40]. Our algorithm is based on the classic binary search
algorithm which we extend and achieve the following three things. First, we
ensure that we only advance one level in the binary search into the wrong part
of the array for each corrupted element we encounter. This we achieve making
each step verify both the left and the right boundary of the subarray not yet
ruled out by our binary search. Secondly, we design a verification procedure
that determines whether the search has been misled. This is invoked whenever
a binary search would normally end, that is, when the algorithm has located
two consecutive elements that compare differently to the search element. This
algorithm scans the neighborhoods of the these two elements in parallel. An
element to the left agrees if it is smaller than the search element and disagrees
if it is larger. The point is that if we find an agreeing and then a disagreeing
element to the left, then at least one of them is corrupted. If the number of
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. . . 45 51 12 17 78 89 92 96 98 99
L R

0 1 2 1 1 2 3 4

Confidence in L Confidence in R

Figure 1.7: Verifying the result of a binary search. L and R are the left and
right boundary computed by a binary search, and the underlined elements are
corrupted. Each arrow indicate in what direction the search should continue
if you query that element. Two arrows pointing in opposite directions means
that at least one of the two corresponding elements are corrupted. The figure
also shows that if the confidence in L or R reaches zero and we have scanned t
elements in either direction then we have discovered t/2 corrupted elements at
least.

disagreeing elements becomes equal to the number of agreeing elements on one
of the sides the procedure fails. In this case we backtrack the search. If the
difference becomes larger than the number of remaining corruptions possible
on both sides, the procedure succeeds. In this case we know that there is at
least one uncorrupted agreeing element on each side and we can safely end the
search. The important thing about this procedure is that the running time
is linear in the number of corrupted elements it reads or the algorithm ends.
The algorithm is illustrated in Figure 1.7. Finally, we ensure that we only read
each corrupted element once by ensuring that we only read each element once.
This we achieve by considering the input as δ + 1 disjoint sequences, where
the i’th sequence consists of every δ + 1’th element from the input2. Initially,
we search the first sequence and whenever we determine that we have been
misled by a corruption (failed verification) we skip to the following sequence.
These three properties ensure that the combined time we need for verifying and
backtracking our search is O(δ), and we get an algorithm with a running time
of O(log n+ δ).

With our optimal binary search algorithm in hand we design a dynamic data
structure that uses linear space and supports updates and queries in O(log n+δ)
time, amortized and worst case respectively. Our data structure is based on
the binary search trees in [24] that maintain the elements in a tree that is
almost completely balanced, e.g. only the O(1) last levels are not complete,
and standard bucketing techniques.

We divide the elements in sorted order into simple bucket data structures
each storing Θ(δ log n) elements. We represent each bucket by its largest el-
ement and these elements are stored naively in the binary search tree data
structure from [24], e.g. the entire tree is stored as a reliable variable by repli-

2This is not completely true since we also reserve elements to be used only by the verification
algorithm, but almost
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cating both elements and structural information of the tree 2δ + 1 times. The
tree is stored in breadth-first order. In a query we run our resilient binary search
algorithm on the last complete level of the tree and do a naive tree search on
the subtree this search identifies. This yields a simple bucket data structure
which is also searched naively. Since the bucket structures are so large and we
allow them to vary by a constant factor, updates to the top tree are very few
and the amortized cost of these is small.

1.3.3 Fault Tolerant External Memory Algorithms

In [D5] we consider resilient algorithms in the external memory model (IO
model). Memory corruptions are of particular concern for applications dealing
with massive amounts of data since such applications typically run for a very
long time, and are thus more likely to encounter memory cells containing cor-
rupted data. However, algorithms designed in the RAM model assume that an
infinite amount of memory cells are available. This is not true for typical com-
puters where internal memory is limited and elements are transferred between
the memory and a much larger, but dramatically slower, hard drive in large
consecutive blocks. This means that it is important to design algorithms with
a high degree of locality in their memory access pattern, that is, algorithms
where data accessed close in time is also stored close in memory. This situa-
tion is modeled in the I/O model of computation [2]. In this model a disk of
unlimited size and a memory of size M are available. Elements are transferred
between disk and memory in blocks of size B and computation is performed
on elements in memory only. The complexity measure is the number of block
transfers (I/Os) performed.

For the I/O model, a comprehensive list of results have been achieved. It
is shown in [2] that sorting N elements requires Θ(N/B logM/B(N/B)) I/Os.
See recent surveys [8, 92] for an overview of other results. In the I/O model,
a comparison based dictionary with optimal queries can be achieved with a
B-tree [15], which supports queries and updates in O(logB N) I/Os.

Current resilient algorithms do not scale past the internal memory of a
computer and thus, it is currently not possible to work with large sets of data
I/O-efficiently while maintaining resiliency to memory corruptions. Since both
models become increasingly interesting as the amount of data increases, it is
natural to consider whether it is possible to achieve resilient algorithms that
use the disk optimally. Very recently, this was also proposed as an interesting
direction of research by Finocchi et al. [37, 40].

We extend the faulty memory RAM to an external memory equivalent by al-
lowing the adversary to corrupt elements on disk as well as elements in memory.
We give IO efficient versions of all algorithms and data structures considered
in the resilient memory model. These algorithms can tolerate orders of magni-
tude more corruptions compared to their internal memory counterparts without
affecting the asymptotic IO complexity for realistic values of N,B and δ.

We prove an Ω(1
ε logB n + δ/B1−ε) lower bound on the IO complexity for

resilient comparison based search algorithms. This bound is achieved by con-
sidering a worst case adversary model. In this adversary model every block of
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elements fetched from disk is first passed to the adversary who then decides
what elements to corrupt before the algorithm sees them. We let the same ad-
versary decide where the search element resides among the elements that have
not yet been ruled out by previous IOs. The adversary uses the following strat-
egy. The search algorithm performs an IO and fetches B elements from disk.
The adversary artificially divides the sorted set of input elements into Bε slabs
of equal size and finds the slab containing the fewest elements from this last
IO. The adversary decides that search element lies in this slab and corrupts all
the elements in the slab from the IO. This game is then played recursively on
this slab. After a bit of analysis of this strategy we end up with a lower bound
of Ω(1

ε logB n+ δ/B1−ε) IOs.

We design a linear space data structure with a matching query bound by
combining the B-tree with our resilient binary searching algorithm from [D1]
described above. Given a constant 1/ logB < c ≤ 1, we make a tree with
fanout Bc and replicate each guiding element B1−c times. This gives a tradeoff
between the height of the tree and the number of corruptions needed to mis-
guide a search. Similar to the division into n/δ sequences in our binary search
algorithm, we store Θ(δ/B1−c) copies of the tree, such that the tree is stored as
a reliable value, and whenever a query discovers Θ(B1−c) corruptions we switch
to the following tree. We use a verification procedure similar to the procedure
we designed for our optimal binary search algorithm and get a data structure
that supports queries using O(1

c logB N + δ
B1−c ) IOs and O(log n+ δ) time.

We also consider IO efficient resilient sorting algorithms. Under the assump-
tion that δ < Mγ for γ < 1, we can construct a multi-way merging algorithm
based on the resilient binary merging algorithm. This is basically a binary tree
where each node reliably stores a running instance of the resilient merging al-
gorithm from [40]. With this multi-way merging algorithm we can perform the
standard IO efficient version of merge-sort, and we get a sorting algorithm that
uses O(NB logB

N
B ) IOs. The multi-way merging algorithm is also the main com-

ponent in the IO efficient priority queue we design which supports insert and
deletemin in optimal O( 1

B logM/B N/B) IOs and O(log n+ δ) time amortized.

1.3.4 Counting in a Hostile Environment

Finally, in our efforts to understand the possibilities and limits of the model
we consider counter data structures that are stored exclusively in the faulty
memory in [D6]. Such data structures makes sense when ω(1) counters are
needed.

There are some simple lower bounds that set the rules for what we can
achieve with a counter data structure stored solely in corruptible memory. For
instance, if a data structure uses δ space or less then the adversary can corrupt
the entire thing. Secondly, any deterministic query algorithm that uses δ time
or less could end up only reading data controlled by the adversary and cannot
guarantee anything. Finally, if an increment takes t ≤ δ time, the adversary can
simulate δ/t ≥ 1 increments without detection. This lower bound gives a trade-
off between the update time and the accuracy of the counter data structure,
e.g. any data structure that supports increments in t time can only guarantee
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Time (n increments) Query time Additive error γ Space

O(δn) O(δ) 0 O(δ)

O(nt log(δ/t) + α log(α/t)) O(δ) α/t O(δ)

O(n+ α logα) O(δ) α log δ O(δ)

O(n) O(δ2) O(α2) O(δ)

O(n+ α
√
δ) O(δ) α O(δ)

Expected O(n) O(δ) α O(δ)

Table 1.4: Overview of the different trade-offs we obtain for counter data struc-
tures stored solely in corruptible memory. The first data structure is the naive
way of counting.

that a query returns a value that is at most δ/t away from the number of
increments performed. Formally, let C be the number of times a counter has
been incremented, we say that a counter data structure has additive error γ
if it returns a value v ∈ [C − γ,C + γ]. First we note that it is trivial to
store a counter exactly in faulty-memory using O(δ) space and O(δ) time for
increments and queries by storing the value of the counter as a reliable value,
e.g. the naive approach. This only touches one part of the trade-off. In our
paper [D6] we give a range of data structures giving different trade-offs between
the update time and the additive error when the update time is o(δ).

Our Results We have shown the various trade-offs we obtain in Table 1.4.
The first row shows the bounds of the naive approach. The second and

third row in the table are the result of replicating each bit of the number of the
increments depending on the significance of the bit. The fourth data structure
is a simple round robin scheme that obliviously stores Θ(δ) counters that are
incremented in round robin fashion. The interesting part here is that we actu-
ally get a non-trivial bound on the error, albeit the query time is quite large.
The final two data structures uses one cell to store one increment and keeps
the additive error down to one per corruption. Whenever Θ(δ) increments have
been performed we record this in a reliable value and reset the data structure.
The hard part is to find a cell that does not yet store an increment or determine
that Ω(δ) increments have been performed since the last reset. In the deter-
ministic case we get a penalty of O(α

√
δ) time over n increments to actually do

this. When we employ randomization to handle both problems we get a data
structure with amortized constant increment time in expectation.
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Chapter 2

The k Maximal Sums Problem

In the k maximal sums problem the input is an array A of size n and the task
is to compute the k largest sub-vectors for 1 ≤ k ≤

(
n
2

)
+ n. The sub-vectors

are allowed to overlap, and the output is k triples of the form (i, j, sum) where
sum =

∑j
s=iA[s]. The problem in [12] as an extension of the maximal sum

problem. The solution for k = 1 does not seem to be extendable in any simple
manner to obtain a linear algorithm for any k. Therefore, different solutions to
this extended problem have emerged over the past few years. These results are
summarized in Table 2.1.

A lower bound for the k maximal sums problem is Ω(n+k), since an adver-
sary can force any algorithm to look at each of the n input elements and the
output size is Ω(k).

Our Results In this chapter we close the gap between upper and lower
bounds for the k maximal sums problem. We design an algorithm comput-
ing the k sub-vectors with the largest sums in an array of size n in O(n + k)
time. We also describe algorithms solving the problem extended to any dimen-
sion. We begin by solving the two-dimensional problem where we obtain an
O(m2 · n + k) time algorithm for an m × n input matrix with m ≤ n. This
improves the previous best result [29], which was an O(m2 · n + k log k) time
algorithm. This solution is then generalized to solve the d dimensional problem
in O(n2d−1 +k) time, assuming for simplicity that all sides of the d-dimensional
input matrix are equally long. Furthermore we describe how to minimize the
additional space usage of our algorithms. The additional space usage of the
one dimensional algorithm is reduced from O(n+ k) to O(k). The input array
is considered to be read only. The additional space usage for the algorithm
solving the two-dimensional problem is reduced from O(m2 ·n+ k) to O(n+ k)
and for the general algorithm solving the d dimensional problem the space is
reduced from O(n2(d−1) + k) to O(nd−1 + k).

Our main contribution is the first algorithm solving the k maximal sums
problem using O(n + k) time and O(k) space. The result is achieved by gen-

1The k maximal sums problem can also be solved in O(n + k) time by a reduction to
Eppstein’s solution for the k shortest paths problem [34] which also makes essential use of
Fredericksons heap selection algorithm. This reduction was observed independently by Hsiao-
Fei Liu and Kun-Mao Chao [27].
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Paper Time complexity

Bae & Takaoka [12] O(n · k)

Bengtson & Chen [17] O(min{k + n log2 n, n
√
k})

Bae & Takaoka [13] O(n log k + k2)

Bae & Takaoka [14] O((n+ k) log k)

Lie & Lin [68] O(n log n+ k) expected

Cheng et al. [29] O(n+ k log k)

Liu & Chao [27]1 O(n+ k)

Our Contribution O(n+ k)

Table 2.1: Overview of results for the k maximal sums problem

erating a binary heap that implicitly contains the
(
n
2

)
+ n sums in O(n) time.

The k largest sums from the heap are then selected in O(n+ k) time using the
heap selection algorithm of Frederickson [41]. The heap is built using partial
persistence [33]. The space is reduced by only processing k elements at a time.
The resulting algorithm can be viewed as a natural extension of Kadane’s linear
time algorithm for solving the maximum sum problem introduced earlier.

Outline The remainder of this Chapter is structured as follows: In Section 2.1
the overall structure of our solution is explained. Descriptions and details re-
garding the algorithms and data structures used to achieve the result are pre-
sented in Sections 2.2, 2.3 and 2.4. In Section 2.5 we combine the different
algorithms and data structures completing our algorithm. This is followed by
Section 2.6 where we show how to use our algorithm to solve the problem in
d dimensions. Finally in Section 2.7 we explain how to reduce the additional
space usage of the algorithms without penalizing the asymptotic time bounds.

2.1 Basic Idea and Algorithm

The term heap denotes a max-heap-ordered binary tree. The basic idea of our
algorithm is to build a heap storing the sums of all

(
n
2

)
+n sub-vectors and then

use Fredericksons binary heap selection algorithm to find the k largest elements
in the heap.

In the following we describe how to construct a heap that implicitly stores
all the

(
n
2

)
+ n sums in O(n) time. The triples induced by the

(
n
2

)
+ n sums

in the input array are grouped by their end index. The suffix set of triples
corresponding to all sub-vectors ending at position j we denote Qjsuf, and this

is the set {(i, j, sum) | 1 ≤ i ≤ j ∧ sum =
∑j

s=iA[s]}. The Qjsuf sets can be
incrementally defined as follows:

Qjsuf = {(j, j, A[j])} ∪ {(i, j, s+A[j]) | (i, j − 1, s) ∈ Qj−1
suf }. (2.1)

As stated in equation (2.1) the suffix set Qjsuf consists of all suffix sums in Qj−1
suf

with the element A[j] added as well as the single element suffix sum A[j].
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∞

∞

Figure 2.1: Example of a complete heap H constructed on top of the Hj
suf heaps.

The input size is 7.

Using this definition, the set of triples corresponding to all
(
n
2

)
+ n sums

in the input array is the union of the n disjoint Qjsuf sets. We represent the

Qjsuf sets as heaps and denote them Hj
suf. Assuming that for each suffix set

Qjsuf, a heap Hj
suf representing it has been built, we can construct a heap H

containing all possible triples by constructing a complete binary heap on top of
these heaps. The keys for the n − 1 top elements is set to ∞ (see Figure 2.1).
To find the k largest elements, we extract the n− 1 + k largest elements in H
using the binary heap selection algorithm of Frederickson [41] and discard the
n− 1 elements equal to ∞.

Since the suffix sets contain Θ(n2) elements the time and space required
is still Θ(n2) if they are represented explicitly. We obtain a linear time con-
struction of the heap by constructing an implicit representation of a heap that
contains all the sums. We make essential use of a heap data structure to repre-
sent the Qjsuf sets that supports insertions in amortized constant time.

Priority queues represented as heap ordered binary trees supporting inser-
tions in amortized constant time already exist. One such data structure is the
self-adjusting binary heaps of Tarjan and Sleator described in [86] called Skew
Heaps. The Skew heap is a data structure reminiscent of Leftist heaps [31,61].
Even though the Skew heap would suffice for our algorithm, it is able to do
much more than we require. Therefore, we design a simpler heap which we will
name Iheap. The essential properties of the Iheap are that it is represented
as a heap-ordered binary tree and that insertions are supported in amortized
constant time.

We build Hj+1
suf from Hj

suf in O(1) time amortized without destroying Hj
suf

by using the partial persistence technique of [33] on the Iheap. This basically
means that the Hj

suf heaps become different versions of the same Iheap. To
make our Iheap partially persistent we use the node copying technique [33].
The cost of applying this technique is linear in the number of changes in an
update. Since only the insertion procedure is used on the Iheap, the extra cost
of using partial persistence is the time for copying amortized O(1) nodes per
insert operation. The overhead of traversing a previous version of the data
structure is O(1) per data/pointer access.
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Insert 7

Figure 2.2: An example of an insertion in the Iheap. The element 7 is compared
to 2,4 and 5 in that order, and these elements are then removed from the
rightmost path.

2.2 Binary Heaps

The main data structure of our algorithm is a heap supporting constant time
insertions in the amortized sense. The heap is not required to support opera-
tions like deletions of the minimum or an arbitrary element. All we do is insert
elements and traverse the structure top down when we apply Fredericksons
heap selection algorithm. We design a simple binary heap data structure Iheap
by reusing the idea behind the Skew heap and perform all insertions along the
rightmost path of the tree starting from the rightmost leaf.

A new element is inserted into the Iheap by placing it in the first position
on the rightmost path where it satisfies the heap order. This is performed by
traversing the rightmost path bottom up until a larger element is found or the
root is passed. The element is then inserted as a right child of the larger element
found (or as the new root). The element it is replacing as a right child (or as
root) becomes the left child of the inserted element. An insertion in an Iheap is
illustrated in Figure 2.2. If O(`) time is used to perform an insertion operation
because ` elements are traversed, the rightmost path of the heap becomes `− 1
elements shorter. Using a potential function on the length of the rightmost
path of the tree, we get amortized constant time insertion for the Iheap. Each
element is passed on the rightmost path only once, since it is then placed on the
left-hand side of element passing it, and never returns to the rightmost path.

Lemma 2.1 The Iheap supports insertion in amortized constant time.

2.3 Partial Persistence and Hj
suf Construction

As mentioned in Section 2.1 the Hj
suf heaps are built based on equation (2.1)

using the partial persistence technique of [33] on an Iheap.
Data structures are usually ephemeral, meaning that an update to the data

structure destroys the old version, leaving only the new version available for
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use. An update changes a pointer or a field value in a node. Persistent data
structures allow access to any version old or new. Partially persistent data
structures allow updates to the newest version, whereas fully persistent data
structures allow updates to any version. With the partial persistence technique
known as node copying, linked ephemeral data structures, with the restriction
that for any node the number of other nodes pointing to it is O(1), can be
made partially persistent [33]. The Iheap is a binary tree and therefore trivially
satisfies the above condition. The amortized cost of using the node copying
technique is bounded by the cost of copying and storing O(1) nodes from the
ephemeral structure per update.

The basic idea of applying node copying to the Iheap is the following (see [33]
for further details). Each persistent node contains one version of each informa-
tion field in an original node, but it is able to contain several versions of each
pointer (link to other node) differentiated by time stamps (version numbers).
However, there are only a constant number of versions of any pointer, why each
partially persistent Iheap node only uses constant space. Accessing relatives of
a node in a given version is performed by finding the pointer associated with
the correct time stamp. This is performed in constant time making the access
time in the partially persistent Iheap asymptotically equal to the access time
in an ephemeral Iheap.

According to equation (2.1), the set Qj+1
suf can be constructed from Qjsuf by

adding A[i+ 1] to all elements in Qjsuf and then inserting an element represent-

ing A[i + 1]. To avoid adding A[i + 1] to each element in Qjsuf, we represent

each Qjsuf set as a pair 〈δj , Hj
suf〉, where Hj

suf is a version of a partial persistent

Iheap containing all sums of Qjsuf and δj is a value that must be added to all
elements. With this representation a constant can be added to all elements in a
heap implicitly by setting the corresponding δ. Similar to the way the Qjsuf sets
were defined by equation (2.1) we get the following incremental construction of
the pair 〈δj+1, H

j+1
suf 〉:

〈δ0, H
0
suf〉 = 〈0, ∅〉 , (2.2)

〈δj+1, H
j+1
suf 〉 = 〈δj +A[i+ 1], Hj

suf ∪ {−δj}〉 . (2.3)

Let 〈δj , Hj
suf〉 be the latest pair built. To construct 〈δj+1, H

j+1
suf 〉 from this

pair, an element with −δj as key is inserted into Hj
suf. We insert this value,

since δj has not been added to any element in Hj
suf explicitly, and because

the sum A[i + 1] that the new element are to represent must be added to all
elements in Hj

suf to obtain Hj+1
suf . Since we apply partial persistence on the

heap, Hj
suf is still intact after the insertion, and a new version of the Iheap with

the inserted element included has been constructed. Hj+1
suf is this new version

and δj+1 is set to δj +A[i+1]. Therefore, the newly inserted element represents
the sum −δj + δj + A[i + 1] = A[i + 1]. This ends the construction of the

new pair 〈δj+1, H
j+1
suf 〉. Since all sums from Hj

suf get A[i + 1] added because of
the increase of δj+1 compared to δj and the new element represents A[i + 1]

we conclude that 〈δj+1, H
j+1
suf 〉 represents the set Qj+1

suf . The time needed for

constructing Hj+1
suf is the time for inserting an element into a partial persistent
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Iheap. Since the size of an Iheap node is O(1), by Lemma 2.1 and the node
copying technique, this is amortized constant time

Lemma 2.2 The time for constructing the n pairs 〈δj , Hj
suf〉 is O(n).

2.4 Fredericksons Heap Selection Algorithm

The last algorithm used by our algorithm is the heap selection algorithm of
Frederickson, which extracts the k largest2 elements in a heap in O(k) time.
Input to this algorithm is an infinite heap ordered binary tree. The infinite
part is used to remove special cases concerning the leafs of the tree, and is
implemented by implicitly appending nodes with keys of −∞ to the leafs of a
finite tree. The algorithm starts at the root, and otherwise only explores a node
if the parent already has been explored.

The main part of the algorithm is a method for locating an element, e,
such that k is larger than at least k elements and at most ck elements, for
some constant c. After this element is found the input heap is traversed and
all elements larger than e are extracted. Standard selection [19] is then used
to obtain the k largest elements from the O(k) extracted elements. We refer
to [41] for the details.

Theorem 2.1 ( [41]) The k largest elements in a heap can be found in O(k)
time.

2.5 Combining the Ideas

The heap constructed by our algorithm is actually a graph because the Hj
suf

heaps are different versions of the same partially persistent Iheap. Also, the
roots of the Hj

suf heaps include additive constants δj to be added to all of their
descendants. However, if we focus on any one version, it will form an Iheap.
This Iheap we can construct explicitly in a top down traversal starting from the
root of this version, by incrementally expanding it as the partial persistent nodes
are encountered during the traversal. Since the size of a partially persistent
Iheap node is O(1), the explicit representation of an Iheap node in a given
version can be constructed in constant time.

However, the entire partially persistent Iheap does not need to be expanded
into explicit heaps, only the parts actually visited by the selection algorithm.
Therefore, we adjust the heap selection algorithm to build the visited parts of
the heap explicitly during the traversal. This means that before any node in
a Hj

suf heap is visited by the selection algorithm, it is built explicitly, and the
newly built node is visited instead. We remark that the two children of an
explicitly constructed Iheap node, can be nodes from the partially persistent
Iheap.

The additive constants associated with the roots of the Hj
suf are also moved

to the expanding heaps, and they are propagated downwards whenever they are

2Actually Frederickson [41] considers min-heaps.
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encountered. An additive constant is pushed downwards from node v by adding
the value to the sum stored in v, removing it from v, and instead inserting
it into the children of v. Since nodes are visited top down by Fredericksons
selection algorithm, it is possible to propagate the additive constants downwards
in this manner while building the visited parts of the partially persistent Iheap.
Therefore, when a node is visited by Fredericksons algorithm, the key it contains
is equal to the actual sum it represents.

Lemma 2.3 Explicitly constructing t connected nodes in any fixed version of
a partially persistent Iheap while propagating additive values downwards can be
done in O(t) time.

Theorem 2.2 The algorithm described in Section 2.1 is an O(n + k) time
algorithm for the k maximal sums problem.

Proof. Constructing the pairs 〈δj , Hj
suf〉 for i = 1, . . . , n takes O(n) time by

Lemma 2.2. Building a complete heap on top of these n pairs, see Figure 2.1,
takes O(n) time. By Lemma 2.3 and Theorem 2.1 the result follows. 2

2.6 Extension to Higher Dimensions

In this section we use the optimal algorithm for the one-dimensional k maximum
sums problem to design algorithms solving the problem in d dimensions for any
natural number d. We start by designing an algorithm for the k maximal sums
problem in two dimensions, which is then extended to an algorithm solving the
problem in d dimensions for any d.

Theorem 2.3 There exists an algorithm for the two-dimensional k maximal
sums problem, where the input is an m × n matrix, using O(m2 · n + k) time
and space with m ≤ n.

Proof. Without loss of generality assume thatm is the number of rows and n the
number of columns. This algorithm uses the reduction to the one-dimensional
case mentioned in the introduction by constructing

(
m
2

)
+ m one-dimensional

problems. For all i, j with 1 ≤ i ≤ j ≤ m we take the sub-matrix consisting of
the rows from i to j and sum each column into a single entrance of an array.
The array containing the rows from i to j can be constructed in O(n) time
from the array containing the rows from i to j − 1. Therefore, we for each
i = 1, . . . ,m construct the arrays containing rows from i to j for j = i, . . . ,m
in this order.

For each one-dimensional instance we construct the n heaps Hj
suf. These

heaps are then merged into one big heap by adding nodes with ∞ keys, by
the same construction used in the one-dimensional algorithm, and use the heap
selection algorithm to extract the result. This gives (

(
m
2

)
+m) · (n− 1) +

(
m
2

)
+

m− 1 extra values equal to ∞.
It takes O(n) time to build the Hj

suf heaps for each of the
(
m
2

)
+ m one-

dimensional instances and O(m2 · n+ k) time to do the final selection. 2
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The above algorithm is naturally extended to an algorithm for the d-dimensional k
maximum sums problem, for any constant d. The input is a d-dimensional ma-
trix A of size n1 × n2 × · · · × nd.

Theorem 2.4 There exists an algorithm solving the d-dimensional k maximal
sums problem using O(n1 ·

∏d
i=2 ni

2) time and space.

Proof. The dimension reduction works for any dimension d, i.e. we can reduce
an d-dimensional instance to

(
nd
2

)
+ nd instances of dimension d − 1. We iter-

atively use this dimension reduction, reducing the problem to one-dimensional
instances. Let Ai,j be the d−1-dimensional matrix, with size n1×n2×· · ·×nd−1

and Ai,j [i1] · · · [id−1] =
∑j

s=iA[i1] · · · [id−1][s].
We obtain the following incremental construction of a d − 1-dimensional

instance in the dimension reduction, Ai,j = Ai,j−1 + Aj,j . Therefore, we can
build each of the

(
nd
2

)
+ nd instances of dimension d − 1 by adding

∏d−1
i=1 ni

values to the previous instance. The time for constructing all these instances
is bounded by:

T (1) = 1

T (d) =

((
nd
2

)
+ nd

)
·
(
T (d− 1) +

d−1∏

i=1

ni

)
,

which solves to O(n1 ·
∏d
i=2 ni

2) for ni ≥ 2 and i = 1, . . . , d. This adds up

to
∏d
i=2(

(
ni
2

)
+ ni) = O(

∏d
i=2 ni

2) one-dimensional instances in total. For each

one-dimensional instance the n1 heaps, Hj
suf, are constructed. All heaps are

assembled into one complete heap using n1 ·
∏d
i=2

((
ni
2

)
+ ni

)
− 1 infinity keys

(∞) and heap selection is used to find the k largest sums. 2

2.7 Space Reduction

In this section we explain how to reduce the space usage of our linear time
algorithm from O(n + k) to O(k). This bound is optimal in the sense that at
least k values must be stored as output.

Theorem 2.5 There exists an algorithm solving the k maximal sums problem
using O(n+ k) time and O(k) space.

Proof. The original algorithm uses O(n + k) space. Therefore, we only need
to consider the case where k ≤ n. Instead of building all n heaps at once,
only k heaps are built at a time. We start by building the k first heaps, H1

suf

, . . . ,Hk
suf, and find the k largest sums from these heaps using heap selection as

in the original algorithm. These elements are then inserted into an applicant set.
Then all the heaps except the last one are deleted. This is because the last heap
is needed to build the next k heaps. Remember the incremental construction
of Hj+1

suf from Hj
suf defined in equation (2.3) based on a partial persistent Iheap.

We then build the next k heaps and find the k largest elements as before.
These elements are merged with the applicant set and the k smallest are deleted
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using selection [19]. This is repeated until all Hj
suf heaps have been processed.

The space usage of the last heap grows by O(k) in each iteration, ruining the
space bound if it is reused. To remedy this, we after each iteration find the k
largest elements in the last heap and build a new Iheap with these elements using
repeated insertion. The old heap is then discarded. Only the k largest elements
in the last heap can be of interest for the suffix sums not yet constructed, thus
the algorithm remains correct.

At any time during this algorithm we store an applicant set with k elements
and k heaps which in total contains O(k) elements. The time bound remains
the same since there are O(nk ) iterations each performed in O(k) time. 2

In the case where k = 1, it is worth noticing the resemblance between the
algorithm just described and the optimal algorithm of Jay Kadane described
in the introduction. At all times we remember the best sub-vector seen so
far. This is the single element residing in the applicant set. In each iteration
we scan one entrance more of the input array and find the best suffix of the
currently scanned part of the input array. Because of the rebuilding only two
suffixes are constructed in each iteration and only the best suffix is kept for
the next iteration. We then update the best sub-vector seen so far by updating
the applicant set. In these terms with k = 1 our algorithm and the algorithm
of Kadane are the same and for k > 1 our algorithm can be seen as a natural
extension of it.

The original algorithm solving the two-dimensional version of the problem
requires O(m2 · n + k) space. Using the same ideas as above, we design an
algorithm for the two-dimensional k maximal sums problem using O(m2 ·n+k)
time and O(n+ k) space.

Theorem 2.6 There exists an algorithm for the k maximal sums problem in
two dimensions using O(m2 ·n+ k) time where m ≤ n and O(n+ k) additional
space.

Proof. Using O(n) space for a single array we iterate through all
(
m
2

)
+m one-

dimensional instances in the standard reduction creating each new instance
from the last one in O(n) time. We only store in memory

⌈
k
n

⌉
instances at a

time.
We start by finding the k largest sub-vectors from the first

⌈
k
n

⌉
instances

by concatenating them into a single one-dimensional instance separated by −∞
values and use our one-dimensional algorithm. No returned sum will contain
values from different instances because that would imply that the sum also
included a −∞ value. The k largest sums are saved in the applicant set. We
then repeatedly find the k largest from the next

⌈
k
n

⌉
instances in the same way

and update the applicant set in O(k) time using selection. When all instances
have been processed the applicant set is returned.

If k ≤ n we only consider one instance in each iteration. The k largest
sums from this instance is found and the applicant set is updated. This can
all be done in O(n + k) = O(n) time using the linear algorithm for the one-
dimensional problem and standard selection. There are

(
m
2

)
+ m iterations

resulting in an O(m2 · n) = O(m2 · n+ k) time algorithm.
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If k > n each iteration considers
⌈
k
n

⌉
≥ 2 instances. These instances are

concatenated using
⌈
k
n

⌉
− 1 extra space for the ∞ values. The k largest sums

from these instances are found from the concatenated instance using the linear
one-dimensional algorithm in O((

⌈
k
n

⌉
· n) + k) = O(k) time. The number of

iterations is (
(
m
2

)
+m)/

⌈
k
n

⌉
≤ (
(
m
2

)
+m) · nk , leading to an O(m2 · n+ k) time

algorithm.
For both cases the additional space usage is at most O(n+ k) at any point

during the iteration since only the applicant set,
⌈
k
n

⌉
instances, and

⌈
k
n

⌉
− 1

dummy values are stored in memory at any one time. 2 The above

algorithm is extended naturally to solve the problem for d dimensional inputs
of size n1 × n2 × · · · × nd.

Theorem 2.7 There exists an algorithm solving the d-dimensional k maximal
sums problem using O(n1 ·

∏d
i=2 ni

2) time and O(
∏d−1
i=1 ni+k) additional space.

Proof. As in Theorem 2.4, we apply the dimension reduction repeatedly, us-
ing d − 1 vectors of dimension 1, 2, . . . , d − 1 respectively, to iteratively con-
struct each of the

∏d
i=2(

(
ni
2

)
+ ni) = O(

∏d
i=2 ni

2) one-dimensional instances.
Every time a d−1-dimensional instance is created we recursively solve it. Again
only d kn1

e one-dimensional instances and the applicant set is kept in memory at
any one time and the algorithm proceeds as in the two-dimensional case. The
space required for the arrays is

∑d−1
i=1

∏i
j=1 nj = O(

∏d−1
i=1 ni) with ni ≥ 2 for

all i. 2



Chapter 3

Selecting Sums in Arrays

A generalization of the maximal sum problem is to restrict the length of the
subarrays considered. In [55] Huang describes an O(n) time algorithm locat-
ing the largest sum of length at least l, while in [69] an O(n) time algorithm
locating the largest sum of length at most u is described. The algorithms can
be combined into at linear time algorithm finding the largest sum of length at
least l and at most u [69]. In [35] it is shown how to solve the problem in O(n)
time when the input elements are given online one by one.

The length constrained k maximal sums problem is defined as follows. Given
an array A of length n, find the k largest sums consisting of at least l and at most
u numbers. Lin and Lee solved the problem using a randomized algorithm with
an expected running time of O(n log(u− l) + k) [68]. Their algorithm is based
on a randomized algorithm that selects the kth largest length constrained sum
from an array in O(n log(u − l)) expected time. The authors state as an open
problem whether this is optimal. Furthermore, in [67] Lin and Lee describe a
deterministic O(n log n) time algorithm that selects the kth largest sum in an
array of size n. They propose as an open problem whether this bound is tight.
This problem is known as the sum selection problem.

Our Contribution In this chapter we settle the time complexity for the sum
selection problem and the length constrained k maximal sums problem. First,
we describe an optimal O(n + k) time algorithm for the length constrained k
maximal sums problem in Section 3.1. This algorithm is an extension of our
optimal algorithm solving the k maximal sums problem from [D2]. Secondly,
we prove a time bound of Θ(n log(k/n)) for the sum selection problem in Sec-
tion 3.2. An O(n log(k/n)) time algorithm that selects the kth largest sum is
described in Section 3.2.2, and in Section 3.2.4 we prove a matching lower bound
using a reduction from the cartesian sum problem [42]. Finally, in Section 3.3
we combine the ideas from the two algorithms we have designed and obtain an
O(n log(k/n)) time algorithm that selects the kth largest sum among all sums
consisting of at least l and at most u numbers. This bound is always as good
as the previous randomized bound of O(n log(u− l)) by Lin and Lee [68], since
there are

∑u
t=l(n − t + 1) ≤ n(u − l + 1) subarrays of length between l and u

in an array of size n and thus k/n ≤ u− l + 1. The results are summarized in
Table 3.1.

35
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Problem Previous Work Our Contribution

Length Constrained
k Maximal Sums

O(n log(u− l) + k) exp. [68] O(n+ k)

Sum Selection O(n log n) [67] Θ(n log(k/n))

Length Constrained
Sum Selection

O(n log(u− l)) exp. [68] O(n log(k/n))

Table 3.1: Overview of results on length constrained k maximal sums and sum
selection.

3.1 The Length Constrained k Maximal Sums Prob-
lem

In this section we present an optimal O(n + k) time algorithm that reports
the k largest sums of an array A of length n with the restriction that each sum
is an aggregate of at least l and at most u numbers. We reuse the idea from
the k maximal sums algorithm in [D2], and construct a heap1 that implicitly
represents all

∑u
t=l n − t + 1 = O(n(u − l)) valid sums from the input array

using only O(n) time and space. The k largest sums are then retrieved from
the heap using Fredericksons heap selection algorithm [41] that extracts the k
largest elements from a heap in O(k) time. We note that the k maximal sums
algorithm from [D2] can be altered to use a heap supporting deletions to obtain
an O(n log(u − l) + k) algorithm solving the problem without randomization.
The difference between our new O(n + k) time algorithm and the algorithm
solving the k maximal sums problem [D2] is in the way the sums are grouped in
heaps. This change enables us to solve the problem without deleting elements
from a heap. In the following we assume that l < u. If l = u the problem can
be solved in O(n) time using a linear time selection algorithm [19].

3.1.1 A Linear Time Algorithm

For each array index j, for j = 1, . . . , n − l + 1, we build data structures
representing all sums of length between l and u ending at index j + l− 1. This
is achieved by constructing all sums ending at A[j] with length between 1 and
u− l+ 1, and then adding the sum of the l− 1 elements, A[j+ 1, . . . , j + l− 1],
following A[j] in the input array to each sum. To construct these data structures
efficiently, the input array is divided into slabs of w = u−l consecutive elements,
and the sums are grouped in disjoint sets, Q̂j and Q̄j for j = 1, . . . , n, depending
on the slab boundaries.

Let a be the first index in the slab containing index j, i.e. a = 1 +
⌊
j−1
w

⌋
w.

The set Q̂j contains all sums of length between l and u ending at index j+ l−1
that start in the slab containing index j and is defined as follows:

Q̂j = {(i, j + l − 1, sum) | a ≤ i ≤ j, sum = c+
∑j

t=iA[t]} ,
1For simplicity of exposition, by heap we denote a heap ordered binary tree where the

largest element is placed at the root.
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d

c

c

c

c

Figure 3.1: Overview of the sets, l = 4, u = 9, c =
∑j+l−1

t=j+1A[t] and d =∑j+l−1
t=a A[t]. A new slab begins at index a and ends at index b.

where c =
∑j+l−1

t=j+1A[t] is the sum of l − 1 numbers in A[j + 1, . . . , j + l − 1].

The set Q̄j contains the (u − l + 1) − (j − a + 1) = u − l − j + a valid sums
ending at index j + l − 1 that start to the left of index a, thus:

Q̄j = {(i, j + l − 1, sum) | j − u+ l ≤ i < a, sum = d+
∑a−1

t=i A[t]} ,

where d =
∑j+l−1

t=a A[t] is the result of summing the j − a + l numbers in
A[a, . . . , j + l − 1]. The sets are illustrated in Figure 3.1.

By construction, the sets Q̂j and Q̄j are disjoint and their union is the
u− l + 1 sums of length between l and u ending at index j + l − 1.

With the sets of sums defined we continue with the representation of these.
The sets Q̂j and Q̄j are represented by pairs 〈δ̂j , Ĥj〉 and 〈δ̄j , H̄j〉 where Ĥj

and H̄j are partially persistent heaps and δ̂j and δ̄j are constants that must
be added to all elements in Ĥj and H̄j respectively to obtain the correct sums.
For the heaps we use the Iheap from [D2] which supports insertions in amor-
tized constant time. Partial persistence is implemented using the node copying
technique [33].

We construct representations of two sequences of sets, Lj and Rj for j =
1, . . . , n, that depend on the slab boundaries. Consider the slab A[a, . . . , j, . . . , b]
containing index j. The set Lj contains the j − a+ 1 sums ending at A[j] that
start between index a and j. The set Rj contains the b− j + 1 sums ending at
A[b] starting between index j and b, see Figure 3.1.

Each set Lj is represented as a pair 〈δLj , HL
j 〉 where δLj is an additive constant

as above and HL
j is a partially persistent Iheap. The pairs are incrementally

constructed while scanning the input array from left to right as follows:

〈δLa , HL
a 〉 = 〈A[a], {0}〉 ∧

〈δLj , HL
j 〉 = 〈δLj−1 +A[j], HL

j−1 ∪ {−δLj−1}〉 .

These are also the construction equations used in [D2]. Constructing a repre-
sentation of La is simple, and creating a representation for Lj can be done effi-
ciently given a representation of Lj−1. The representation of Lj is constructed
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by implicitly adding A[j] to all elements from Lj−1 by setting δLj = δLj−1 +A[j]

and inserting an element to represent the sum A[j]. Since δLj−1 +A[j] needs to

be added to all elements in the representation of Lj , an element with −δLj−1 as

key is inserted into HL
j−1, yielding HL

j ending the construction. Partial persis-

tence ensures that the Iheap HL
j−1 used to represent Lj−1 is not destroyed. By

the above description and the cost of applying the node copying technique [33]
the amortized time needed to construct a pair is O(1).

The Rj sets are represented by partially persistent Iheaps HR
j , and these

representations are built by scanning the input array from right to left. We get
the following incremental construction equations:

HR
b = {A[b]} ∧

HR
j = HR

j+1 ∪ {
∑b

t=j A[t]} .

Similar to the 〈δLj , HL
j 〉 pairs, constructing a partial persistent Iheap HR

j also
takes O(1) time amortized. Therefore, the time needed to build the represen-
tation of the 2n sets Lj and Rj for j = 1, . . . , n is O(n).

We represent the sets Q̂j and Q̄j using the representations of the sets Lj and
Rj−u+l. Figure 3.1 illustrates the correspondence between Q̂j and Lj and Q̄j
and Rj−u+l. Consider any index j ∈ {1, . . . , n− l+ 1}, and let A[a, . . . , j, . . . , b]

be the current slab containing j. The set Q̂j contains the sums of length between
l and u that start in the current slab and end at index j + l − 1. The set Lj
contains the j − a + 1 sums that start in the current slab and end at A[j].
Therefore, adding the sum of the l−1 numbers in A[j+ 1, . . . , j+ l−1] to each
element in Lj gives Q̂j and thus:

Q̂j = 〈c+ δLj , H
L
j 〉 ,

where c =
∑j+l−1

t=j+1A[t].

Similarly, the set Q̄j contains the u − l + 1 − (j − a + 1) = u − l − j + a
sums of length between l and u ending at A[j + l − 1] starting in the previous
slab. The set Rj−u+l contains the u− l− j− a shortest sums ending at the last
index in the previous slab. Therefore, adding the sum of the j + l− a numbers
in A[a, . . . , j + l − 1] to each element in Rj−u+l gives Q̄j and thus:

Q̄j = 〈d,HR
j−u+l〉 ,

where d =
∑j+l−1

t=a A[t].

Lemma 3.1 Constructing the 2(n− l + 1) pairs that represent Q̂j and Q̄j for
j = 1, . . . , n− l + 1 takes O(n) time.

Proof. Constructing all 〈δLj , HL
j 〉 pairs and all HR

j partial persistent Iheaps
takes O(n) time, and calculating sums c and d takes constant time using a prefix
array. Constructing the prefix array takes O(n) time. Therefore, constructing
Q̂j and Q̄j for j = 1, . . . , n− l + 1 takes O(n) time. 2 After constructing the

2(n− l+ 1) pairs, they are assembled into one large heap using 2(n− l+ 1)− 1
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dummy ∞ keys as in [D2]. The largest 2(n− l + 1)− 1 + k elements are then
extracted from the assembled heap in O(n+ k) time using Fredericksons heap
selection algorithm. The implicit sums given by adding δ values are explicitly
computed while Fredericksons algorithm explores the final heap top down in
the way described in [D2]. The 2(n− l+ 1)− 1 dummy elements are discarded.

Theorem 3.1 The algorithm described reports the k largest sums with length
between l and u in an array of length n in O(n+ k) time.

3.2 Sum Selection Problem

In this section we prove an Θ(n log(k/n)) time bound for the sum selection
problem by designing an O(n log(k/n)) time algorithm that selects the kth
largest sum in an array of size n and by proving a matching lower bound.

The idea of the algorithm is to reduce the problem to selection in a collection
of sorted arrays and weight balanced search trees [10, 72]. The trees and the
sorted arrays are constructed using the ideas from Section 3.1 and [D2]. Select-
ing the kth largest element from a set of trees and sorted arrays is done using an
essential part of the sorted column matrix selection algorithm of Frederickson
and Johnson [42]. The part of Frederickson and Johnsons algorithm that we use
is an iterative procedure named Reduce. In a round of the Reduce algorithm
each array, A, is represented by the 1 + bα|A|c largest element stored in the
array, and a constant fraction of the elements in each array may be eliminated.
This can be approximated in weight balanced search trees and the complexity
analysis from [42] remains valid.

The lower bound is proved using a reduction from the X +Y cartesian sum
selection problem [42].

We note that if k ≤ n then the k maximal sums algorithm from [D2] can be
used to solve the problem optimally in O(n) time.

To construct the sorted arrays efficiently, we use a heap data structure, that
is a generalization of the Iheap, which we name Bheap. The Bheap is a heap
ordered binary tree where each node of the tree contains a sorted array of size
B. By heap order, we mean that all elements in a child of a node v must be
smaller than the smallest element stored in v. Sorted arrays of B elements are
required to be inserted in O(B) time amortized. Our Bheap implementation is
based on ideas from the functional random access lists in [73] and simple bubble
up/down procedures based on merging sorted arrays.

3.2.1 The Bheap

To construct the sorted arrays efficiently, we use a heap data structure, that
is a generalization of the Iheap, which we name Bheap. The Bheap is a heap
ordered binary tree where each node of the tree contains a sorted array of size
B. By heap order, we mean that all elements in a child of a node v must be
smaller than the smallest element stored in v. Sorted arrays of B elements are
required to be inserted in O(B) time amortized. Our Bheap implementation is
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based on ideas from the functional random access lists in [73] and simple bubble
up/down procedures based on merging sorted arrays.

Merging Complete Heaps The main operation used by the Bheap is an
algorithm for merging two complete heaps H1, H2 each containing (2i−1) nodes,
using a node v storing B sorted elements. The operation works as follows.
H1, H2 are set as the children of v. Let the roots of H1, H2 be R1, R2 and let
s1, s2 be the smallest element of R1, R2 respectively. Assume without loss of
generality, that s1 ≤ s2. The algorithm merges the elements in R1, R2, and v
into one sorted sequence S. The largest B elements are put in v, the next B
elements are put into R1, and the remaining B are put into R2.

Since s1 ≤ s2, there are at least 2B elements at least as large as s1 in
R1∪R2, and therefore the smallest element from S put in R1 is greater than or
equal to s1. This means that the binary tree rooted at R1, is still heap ordered.
The root clearly contains the largest elements, thus only the heap order of the
subtree rooted at R2 needs to be restored which is done recursively.

Lemma 3.2 Merging two complete heaps of size 2i−1 using a block of B sorted
elements takes O(iB) time.

Proof. The algorithm merges 3 sorted arrays of size B at most i times 2

Structure of the Bheap The data structure is a tree, where the rightmost
path is a spine. The root is given rank 0, and any other node on the spine has
rank equal to 1 plus rank of its parent. Let vi denote the node on the spine
with rank i. If vi has a left child, then it is a complete heap with 2i − 1 nodes
or 2i+1 − 1 nodes. The latter can occur if vi+1, the right child of vi. also has a
left child of size 2i+1− 1. Remark that the root only has a left child if v1 has a
left child.

Inserting a sorted array b of size B is done as follows. A new node v
containing b is created. If the Bheap does not contain any nodes, v becomes
the root. If the Bheap only contains one element, v is set as right child of
the root. A bubble-up process starting from v is then initiated. The elements
stored in v are merged with the elements stored in v’s parent, p(v). The largest
elements are put in p(v) and the remaining in v. The process is then repeated
in p(v) and stops when it has reached the root. If the last two nodes on the
spine both have left children and they contain the same number of elements, the
spine is extended by one by inserting v at the end. The bubble-up procedure is
then invoked on v. If there are two nodes vi, vi+1 that both have left children
storing 2i+1 − 1 nodes, these two complete heaps are merged into a complete
heap h of size 2i+2− 1 using v. The resulting complete heap is then inserted as
a left child of vi+2 if this node does not already have a left child. If vi+2 does
have a left child it is set as the left child of vi+1. The bubble-up procedure is
then invoked on the root of h. Otherwise, v is inserted as a left child of v1 if v1

does not have a left child, and as a left child of the root otherwise. Again the
bubble-up procedure is invoked on v to restore heap order.
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Lemma 3.3 Inserting B sorted elements into the Bheap takes O(B) time amor-
tized

Proof. Two complete heaps of size 2i−1 are merged every 2i+1−1 insertions in
O(iB) time. The bubble-up procedure performed after the merging also takes
O(iB) time. The spine is extended by one to length i+ 1 one insertion before
two heaps of size 2i+1−1 are merged for the first time, and it takes O(iB) time.
By summing over all insertions the amortized cost becomes O(B). 2

3.2.2 An O(n log(k/n)) Time Algorithm

In this section we reduce the sum selection problem to selection in a set of trees
and sorted arrays. We use the weight balanced B-trees of Arge and Vitter [10]
with degree B = O(1). Similar to the grouping of sums in Section 3.1, each
index j, for j = 1, . . . , n, is associated with data structures representing all
possible sums ending at A[j]. The set representing all sums ending at index j
is defined as follows:

Qj =
{

(i, j, sum) | 1 ≤ i ≤ j, sum =
∑j

t=iA[t]
}
.

The input array is divided into slabs of size w = dk/ne, and the set Qj is repre-
sented by two disjoint sets WBj and BHj that depend on the slab boundaries.
The set WBj contains the sums ending at index j beginning in the current slab,
and BHj contains the sums ending at index j not beginning in the current slab.

Let a = 1 +
⌊
j−1
w

⌋
w, i.e. the first index in the slab containing index j, then:

WBj =
{

(i, j, sum) | a ≤ i ≤ j, sum =
∑j

t=iA[t]
}
∧

BHj =
{

(i, j, sum) | 1 ≤ i < a, sum = c+
∑a−1

t=i A[t]
}
,

where c =
∑j

t=aA[t] is the sum of the j − a+ 1 numbers in A[a . . . j]. The sets
WBj and BHj are disjoint, and WBj ∪ BHj = Qj by construction. The sets
are illustrated in Figure 3.2.

The set WBj is represented as a pair 〈τj , Tj〉 where Tj is a partial persistent
weight balanced B-tree and τj is an additive constant that must be added to
all elements in Tj to obtain the correct sums. The set BHj is represented as
a pair 〈δj , Hj〉 where δj is an additive constant and Hj is a partial persistent
Bheap with B = w.

The pairs 〈τj , Tj〉 are constructed as follows. If j is the first index of a slab,
i.e. j = 1 + tw for some natural number t, then:

〈τj , Tj〉 = 〈A[j], {0}〉 .

This is the start of a new slab, and a new partial persistent weight balanced
B-tree representing A[j], the first element in the slab, is created. If j is not the
first index in a slab then:

〈τj , Tj〉 = 〈τj−1 +A[j], Tj−1 ∪ {−τj−1}〉 ,
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Figure 3.2: Overview of the sets. Slab size w = 5, and A[a, . . . , b] is the slab
containing index j.

i.e. we change the additive constant and insert −τj−1 into the weight balanced
tree Tj−1. These construction equations are identical to the construction equa-
tions from Section 3.1, and partial persistence ensures that Tj−1 is not destroyed
by constructing Tj .

For the 〈δj , Hj〉 pairs representing the sets Q̂j , we observe that if j ≤ w
then BHj = ∅, thus:

〈δj , Hj〉 = 〈0, ∅〉 .
If j > w and j is not the first index in a slab, then adding A[j] to all elements
from the previous set yields the new set, thus:

〈δj , Hj〉 = 〈δj−1 +A[j], Hj−1〉 .

If j is the first index of a slab, i.e. j = 1 + tw for some integer t ≥ 1, all w
sums represented in 〈τj−1, Tj−1〉 are inserted into a sorted array S and each sum
explicitly calculated. This sorted array then contains all sums starting in the
previous slab ending at index j−1. For each element in S the additive constant
δj−1 is subtracted and S is inserted into the Bheap Hj−1. The construction
equation becomes:

〈δj , Hj〉 = 〈δj−1 +A[j], Hj−1 ∪ S〉 ,

where
S =

{
(i, j, s− δj−1) | j − w ≤ i < j, s =

∑j−1
t=i A[t]

}
.

Again, partial persistence ensures that the previous version of the Bheap, Hj−1,
is not destroyed.

Lemma 3.4 Constructing the pairs 〈δj , Hj〉 and 〈τj , Tj〉 for j = 1, . . . , n takes
O(n log(k/n)) time.

Proof. The Bheap and the weight balanced B-trees have constant in and out-
degree. Therefore, partial persistence can be implemented for both using the
node copying technique [33].
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For the Bheap, amortized O(1) pointers and arrays are changed per inser-
tion. The extra cost for applying the node copying technique is O(B) = O(w)
time amortized per insert operation. Constructing the sorted array S from a
weight balanced B-tree takes O(w) time. An insert in a Bheap is only per-
formed every wth step, and calculating additive constants in each step takes
constant time. Therefore, the time used for constructing all 〈δj , Hj〉 pairs is
O(n+ n

ww) = O(n).
Each insert in a weight balanced B-tree is performed on a tree containing

at most w elements using O(logw) time. Therefore, the extra cost of using
the node copying technique is O(logw) time amortized per insert operation.
Calculating an additive constant τj takes constant time, thus, constructing all
〈τj , Tj〉 pairs takes O(n log(k/n)) time. 2

After the n pairs, 〈δi, Hi〉, storing Bheaps are constructed, they are assem-
bled into one large heap in the same way as in Section 3.1. That is, we construct
a complete heap on top of the pairs using n− 1 dummy nodes storing the same
array of w dummy∞ elements. We then use Fredericksons heap selection algo-
rithm in the same way as in Section 3.1 where the representative for each node is
the smallest element in the sorted array stored in it. Using Fredericksons heap
selection algorithm the 2n − 1 nodes with the maximal smallest element and
their 2n children are extracted. This takes O(n) time and the nodes extracted
from the Bheap gives 3n sorted arrays by discarding the n− 1 dummy nodes.

Lemma 3.5 The 3n nodes found as described above contain the k largest sums
contained in the n pairs 〈δi, Hi〉.
Proof. The 4n − 1 nodes found by the heap selection algorithm forms a con-
nected subtree T of the heap rooted at the root of the heap. Any element e
stored in a node ve /∈ T is smaller than all elements stored in any internal node
v ∈ T since, by heap order, e is smaller than the smallest element in the leaf
of T that is on the path from ve to the root. The smallest element in a leaf is
smaller than the smallest element in any internal node since the leaf was not
picked by the heap selection algorithm. There are 2n − 1 internal nodes in T
and n of these does not store dummy elements. Therefore, for each element
not residing in T there at least nw = nd kne ≥ k larger elements in the 3n found
nodes. 2

These 3n sorted arrays of size w and the n pairs 〈τi, Ti〉 storing weight
balanced B-trees of size at most w contain at most 4nw = 4nd kne ≤ 4(k + n)
sums. The 3n arrays and the n weight balanced B-trees are given as input to
the adapted sorted column matrix selection algorithm, which extracts the kth
largest element from these in O(n log(k/n)) time. The fact that the weight
balanced B-trees are partially persistent versions of the same tree and contain
additive constants is handled by expanding the trees and computing the sums
explicitly during the top down traversals performed by the selection algorithm
as in Section 3.1 and [D2].

Theorem 3.2 The algorithm described selects the kth largest sum in an array
of size n in O(n log(k/n)) time.
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3.2.3 Selection in Weight Balanced Trees

Frederickson and Johnson [42] designed an optimal algorithm for selection in a
matrix with sorted columns i.e. an optimal algorithm for selection in a set of
sorted arrays. The algorithm is based on two procedures, CUT and REDUCE,
but for the purpose of our algorithm, only the REDUCE algorithm is needed.
However, the REDUCE algorithm also need to be applied to trees, not only
sorted arrays.

The input to the REDUCE algorithm is n sorted arrays. The ith array has
size ni and N =

∑n
i=1 ni ≤ 9k/2. In one iteration of the REDUCE algorithm

where k > N/2, the 1+bαnc’th smallest element is found for each array, and in
some of the arrays all elements up to and including the 1 + bαnc’th element are
discarded. This is all done in constant time per sorted array. The case where
k ≤ N/2 is similar.

The same thing can be done approximately in a weight balanced tree. We
use the leaf oriented weight balanced B-trees of Arge and Vitter [10], where all
leaves are at the same level. There are two weight parameters b, k ≥ 8.

The weight w(v), of a node v is the number of elements in the leafs of the
subtree rooted at v. In a weight balanced B-tree the following conditions hold:

• All leaves are on the same level (0) and each leaf u has weight 1
4k ≤

w(u) ≤ k

• An internal node v on l has, has weight w(v) ≤ blk.

• Except for the root, an internal node v at level l has weight 1
4b
lk ≤ w(v).

• The root has more than one child

Each node of the tree stores the smallest and the largest element stored in each
its children.

In a weight balanced b-tree, an element with rank βn, where α1 = α/c ≤
β ≤ α = α2 for some constant c, can be located by finding the subtree with
the βn smallest elements. This subtree is found by traversing the leftmost path
in the tree. Eventually the weight of the leftmost child, va, of the current
node, v, at level l becomes smaller than α2n and the traversal stops. However,
w(v) ≥ α2n since we did not stop at v’s parent, and the weight of the root is
n > α2n. Therefore, w(va) ≤ α2n < w(v).

The tree rooted at va is only valid if α1n ≤ w(va) ≤ α2n is satisfied.
Therefore, if we set α1 = α2

4b then

α1n = α2n/4b ≤ blk/4b =
1

4
bl−1k ≤ w(va) ,

and w(va) is in the correct interval.
If α2 is chosen as a small constant, this takes constant time, since only

a constant number of steps is required before 1
4b
lk ≤ α2n when the root has

two children and the weight constraints are valid. Discarding all elements with
rank at most βn is done by discarding the subtree found above, and then apply
rebalancing to maintain the tree weight balanced.
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Usually when a node, v, at level, l, needs rebalancing after deleting an
element, the weight, w(v), is only one smaller than what is required, i.e. w(v) =
1
4b
lk−1. However, in this case an entire subtree is deleted, and the weight w(v)

of the node may be as much as bl−1k to small, i.e. 1
4b
lk − bl−1k ≤ w(v) is the

only guarantee on w(v) after the cut of a subtree.

If the weight constraint is violated, i.e. w(v) < 1
4b
lk, v is fused with its

leftmost sibling s. Since s satisfies the weight constraint, 1
4b
lk ≤ w(s). By

adding up w(v) and w(s) we get:

w(s) + w(v) ≤ 2 · 1

4
blk − bl−1k = bl−1k

(
1

2
b− 1

)
≥ 1

4
blk ,

for b ≥ 4, and the fused node satisfies the lower weight constraint. If the merged
node is heavier than blk after the merge it is split as usual. The path to the root
is then traversed and nodes are fused and split similarly if they are unbalanced.

The REDUCE algorithm uses the linear time weighted selection algorithm
of [59] to find a partition (Q1, xi, Q2) of a set Q consistent with the weighted
selection of an Mth weighted element. Let the jth element in Q be denoted qj
and have weight wj . The weighed selection algorithm partitions Q into three
disjoint sets (Q1, Q2, {qi}) such that

∑
j∈Q1

wj < M ≤ wi +
∑

j∈Q1
wj , where

j ∈ Q1 implies qj ≤ qi and j′ ∈ Q2 implies qi ≤ qj′ .
The REDUCE procedure is used iteratively as in [42]. The n weight bal-

anced b-trees T1, . . . , Tn has size n1, . . . , nn respectively. Instead of an element
with rank 1+ bαnic where α ≤ 1−

√
1/2 + 1/N is a small constant, an element

with rank βini is used where α1 ≤ βi ≤ α2 for tree Ti for i = 1, . . . , n with
α1 = α

4b and α2 = α. When only O(n) elements remain, the kth largest is
found using linear selection.

Therefore, the analysis of the REDUCE procedure which is presented in
Lemma 3 in [42] is done again. Following this analysis, we focus on the case
where k > N/2. Let βin be the actual rank of the element xi used in tree Ti
where α1ni ≤ βini ≤ α2ni. First we analyze how many elements the algorithm
discards in each round. Let (Q1, xi, Q2) be the weighted selection for the α2N ’th
weighed element, where xi ∈ Ti. From all trees Tj ∈ Q1 ∪ {Ti} all elements
ranked smaller as well as the βj ’th ranked element are discarded, and we get
the following bound on the number of elements discarded in an iteration:

βini +
∑

j∈Q1

βjnj ≥ α1


ni +

∑

j∈Q1

nj


 ≥ α1α2N

since ni +
∑

j∈Q1
nj ≥ α2N by weighed selection and βj ≥ α1 for all j. There-

fore, each round discards a constant fraction of the remaining elements.

The largest element removed by the cut is xi. Therefore, if the number of
elements at least as large as xi after the cut is at least N/2 > k, then the kth
largest element remains. No elements from trees in Q2 are cut. For each tree
Tj ∈ Q2 all elements larger than the βjnj ’th element are at least as large as xi
by weighed selection. Clearly this is also true for the remaining elements in Ti.
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We get the following bound on the number of elements left larger than xi

(1− βi)ni +
∑

j∈Q2

(1− βj)nj ≥ (1− α2)


ni +

∑

j∈Q2

nj


 ≥ (1− α2)2N

The last inequality follows from the fact that

ni +
∑

j∈Q2

nj = N −
∑

j∈Q1

nj ≥ N − α2N = (1− α2)N

since
∑

j∈Q1
nj < α2N by weighed selection. Because (1−α2)2N−1 ≥ N/2 for

α2 ≤ 1−
√

1/2 + 1/N we conclude that the kth largest element is not deleted
in an iteration of REDUCE.

Theorem 3.3 Selecting the kth largest element from a set of n ≤ k weight
balanced b-trees and sorted arrays containing O(k) elements in total takes Θ(n+
n log k/n) time.

Proof. The REDUCE algorithm is run iteratively as in [42] and stops when
only O(n) elements remain. In each iteration the trees are handled as described
above and the sorted arrays as in [42]. The time bound follows from the above
analysis, the fact that α1 is only a constant smaller than α2 = α, and [42]. 2

3.2.4 Lower Bound

In this section we prove a matching lower bound of Ω(n log(k/n)) time for the
sum selection problem via a reduction from the X + Y cartesian sum selection
problem. The lower bound model counts the number of comparions between
linear combinations of the input elements.

In the X + Y cartesian sum selection problem as defined in [42], the input
is two unsorted arrays X and Y and an integer k, and the task is to select the
kth largest element in the cartesian sum {x+ y | x ∈ X, y ∈ Y }.

Given an instance of the X + Y cartesian sum selection problem, X =
{x1, . . . , xn}, Y = {y1, . . . , ym}, and k, construct the following array A :

x1 − x2 x2 − x3 · · · xn−1 − xn xn +∞+ y1 y2 − y1 · · · ym − ym−1

where ∞ is a number larger than (n + m) ·max{|x| | x ∈ X} ∪ {|y| | y ∈ Y }.
The sums in A have the following properties:

• A sum ranging from i to j where i ≤ n ≤ j represents the sum (
∑n−1

t=i A[t])+

xn +∞+ y1 + (
∑j

t=n+1A[t]) = xi + yj−n+1 +∞.

• A sum including A[n] = xn+∞+y1 is larger than any sum that does not

There are more sums in the sum selection instance than there are in the
X + Y cartesian sum instance since any sum not containing A[n] does not
correspond to an element in the cartesian sum. However, the kth largest sum
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does contain A[n] and corresponds to the k’th largest sum in the cartesian sum
instance. Therefore, any algorithm that selects the kth largest sum in an array
can be used to select the kth largest element in the cartesian sum.

The lower bound for selecting the kth largest element in the cartesian sum
(X +Y ) is Ω(m+ p log(k/p)) comparisons where |X| = n, |Y | = m with n ≤ m
and p = min{k,m} [42]. In the reduction the size of the array A is n+m− 1,
which is Θ(n+m) = Θ(m), and it can be built in O(m) time.

Theorem 3.4 Any algorithm which makes comparison between linear combi-
nations of the input elements only requires Ω(n log(k/n)) comparisons to select
the kth largest sum in an array of size n.

3.3 Length Constrained Sum Selection

In this section we sketch how to select the kth largest sum consisting of at
least l and at most u numbers from an array of size n in O(n log(k/n)) time.
The algorithm combines the ideas from Section 3.1 and Section 3.2. Similar
to Section 3.2 the algorithm works by reducing the problem to selection in
a collection of weight balanced search trees and sorted arrays. It should be
noted that a deterministic algorithm with running time O(n log(u− l)) can be
achieved by using weight balanced B-trees instead of Iheaps in the algorithm
from Section 3.1, and using these as input to the adapted sorted column matrix
selection algorithm instead of the heap selection algorithm.

To achieve O(n log(k/n)) time, we constrain the lengths of the sums con-
sidered and divide the input array into slabs of size u − l as in Section 3.1.
Subsequently, we efficiently construct representations of the sets Q̂j and Q̄j
defined in Section 3.1 using weight balanced trees and Bheaps by subdividing
each slab into sub-slabs of size d kne as in Section 3.2, recall k/n ≤ u − l + 1.
Weight balanced B-trees are used to represent sums residing inside a sub-slab,
and Bheaps are used to represent sums covering multiple sub-slabs. The sums
are illustrated in Figure 3.3. The Bheaps and the weight balanced B-trees are
constructed efficiently as in Section 3.2 using partial persistence.

After the representations of the sets Q̂j and Q̄j are constructed, the al-
gorithm continues as in Section 3.2. The sorted arrays storing the k largest
sums stored in the Bheaps are extracted using Fredericksons heap selection al-
gorithm. The sorted arrays and the weight balanced B-trees are then given as
input to the adapted sorted column matrix selection algorithm that selects the
kth largest sum.

Theorem 3.5 The kth largest sum of length between l and u in an array of
size n can be selected in O(n log(k/n)) time.
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Figure 3.3: Combining ideas - The sums associated with index j. A new slab
of length u − l starts at index a and a new subslab of length dk/ne = 4 starts

at index b. c =
∑j+l−1

t=j+1A[t] , d =
∑j+l−1

t=b A[t] , e =
∑j+l−1

t=a A[t] and f =∑j+l−1
t=x A[t] where x is the first index in the subslab following the subslab

containing index j − u+ l. The set Q̂j is split into T̂j , represented by a weight

balanced tree, and B̂Hj , represented by a Bheap. The set Q̄j is split similarly.
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Chapter 4

Data Structures for Range Median Queries

The median of a set S of size n is an element in S that is larger than bn−1
2 c

other elements from S and smaller than dn−1
2 e other elements from S. In the

range median problem one must preprocess an input array A of size n into
a data structure that given indices i and j, 1 ≤ i ≤ j ≤ n, a query must
return an index i′, i ≤ i′ ≤ j, such that A[i′] is the median of the elements in
the subarray A[i, j] = [A[i], A[i+ 1], . . . , A[j]]. This range median problem is
considered in [45,47,62,78,79]. In the batched case, the input is an array of size
n and a set of k queries, (i1, j1), . . . , (ik, jk), and the output is the answer to
these k queries [50]. Range median queries are naturally generalized to range
selection, given indices i, j and s, return the index of the s’th smallest element
in A[i, j]. A related problem is range dominance (or range rank) queries, given
indices i, j and a value e, return the number of elements from A[i, j] that are
less than or equal to e (dominated by e). This corresponds to 3-sided range
counting queries for a set of points.

Previously, the best linear space data structure supported range selection
queries in O(log n) time [45, 47]. In the dynamic case the only known data
structure uses O(n log n) space and supports updates and queries in O(log2 n)
time [47]. For dominance queries, linear space data structures supporting
queries inO(log n/ log logn) time is known, as well as a matching lower bound [57,
75, 76]. In the dynamic case [71] describes an O(n) space data structure
that supports dominance queries in O((log n/ log log n)2) time and updates in
O(log9/2 n/(log log n)2) time. A query lower bound of Ω((log n/ log log n)2) for
data structures with O(logO(1) n) update time is proved in [75].

Our Results In this chapter we use the RAM model of computation with
word-size Θ(log n). We design a static linear space data structure that sup-
ports both range selection and range rank queries in O(log n/ log log n) time.
This is the best known for range median data structures using O(n logO(1) n)
space, and for range dominance queries this is optimal. Our dynamic data
structure uses O(n log n/ log logn) space and supports queries and updates
in O((log n/ log log n)2) time. For dominance queries this query time is op-
timal. We prove an Ω(log n/ log logn) time lower bound on range median
queries for data structures that can be updated in O(logO(1) n) time using a
reduction from the marked ancestor problem [4], leaving a significant gap to

51



52 Chapter 4. Data Structures for Range Median Queries

the achieved upper bound. With our static data structure we improve the
O(n log k+k log n) time bound for the batched range median problem achieved
in [47] to O(n log k+ k log n/ log log n) time. If k >

√
n we construct our static

data structure in O(n log n) = O(n log k) time and perform k queries. This
takes O(n log n + k log n/ log log n) = O(n log k + k log n/ log log n) time. If
k <
√
n then O(n log k) time is already achieved by [47,50].

4.1 Simple Range Selection Data Structure

In this section we describe the data structure of Gfeller and Sanders [47], which
uses linear space and supports queries in O(log n) time. First, we describe a
data structure that uses O(n log n) space and supports queries in O(log n) time.
Then the space is reduced to O(n) using standard techniques. The main idea is
the following. Sort the input elements and place them in the leaves of a binary
search tree. Consider a search for the s’th smallest element in A[i, j]. If the left
subtree of the root contains s or more elements from A[i, j] then it contains the
s’th smallest element from A[i, j]. If not, it is in the right subtree. We augment
each node of the tree with prefix sums such that the number of elements from
A[1, j] contained in the left subtree can be determined for any j, and we use
fractional cascading [28] to avoid a search for the needed prefix sums in each
node.

4.1.1 Basic Structure

Let A = [y1, . . . , yn] be the input array. We sort A and build a complete binary
search tree T that stores the n elements in the leaves in sorted order. We
introduce the following notation. For a node v in T , let Tv denote the subtree
rooted at v, and |Tv| the number of leaves in Tv. The x-predecessor of an index
(x-coordinate) i in Tv is the largest index i′ such that i′ ≤ i and yi′ ∈ Tv. If no
such index exists the x-predecessor of i is zero. The x-rank of an index i in Tv
is the number of elements from A[1, i] contained in Tv. An x-rank is essentially
a prefix sum. If we know the x-rank of i−1 and j in Tv, we know the number of
elements from A[i, j] in Tv since this is the difference between the two. Notice
that in Tv, the x-rank of j and the x-rank of the x-predecessor of j are equal.

Each node v of T stores two indices for each element yi ∈ Tv in an array Av
of size |Tv|. Let yi ∈ Tv and ri be the x-rank of i in Tv. The ri’th pair of
indices stored in Av is the x-rank of i in the left subtree, and the x-rank of i
in the right subtree of v. These are fractional cascading indices, meaning that
the x-rank of i in the left (right) subtree is the position of the indices stored for
the x-predecessor of i in the left (right) subtree. The structure is illustrated in
Figure 4.1.

The arrays are constructed by scanning A, starting with y1, and inserting
the elements, yi, in increasing i order into T . For each element yi, the search
path to yi is traversed, and in each visited node v the pair of indices for yi are
appended to Av. The data structure can be built in O(n log n) time and uses
O(n log n) words of space.
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A : y1 . . . 22 . . . 29 . . . 16 . . . 37 . . . 34 . . . 17 . . . 11 . . . 23 . . . yn
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yi ∈ Tv 22 29 16 37 34 17 11 23
Av : (x-rank of i in Tl and Tr) 1 0 1 1 2 1 2 2 2 3 3 3 4 3 4 4

yi ∈ Tvl 22 16 17 11
Avl : (x-rank of i) 0 1 1 1 1 2 2 2

yi ∈ Tvl 29 37 34 23
Avr : (x-rank of i) 1 0 1 1 1 2 2 2

T

i j

Figure 4.1: Range Selection Data Structure. The position of all elements be-
tween 11 and 37 are shown in A. The arrows are added to demonstrate how
the x-ranks work as fractional cascading indices. The search path and x-ranks
used by a query with indices i,j and s=3 are shown in italic. In Av the query
uses the x-ranks defined by the elements 23 and 29, since these are define the
x-predecessor of i−1 and j in Tv respectively. Since there are 3 = 4−1 elements
from A[i, j] in Tvl the search continues in Tvl . In Avl the x-ranks stored for the
(potentially new) x-predecessors are used. These are the x-ranks defined by the
elements 11 and 16, since the positions of these in A are the x-predecessors of
i − 1 and j in Tvl respectively. The positions of these in Avl are given by the
x-ranks (fractional cascading indexes) defined by the elements 23 and 29 in Av.

Range Selection Query A range selection query is given two indices i and j,
and an integer s, where 1 ≤ i ≤ j ≤ n, and must return the s’th smallest
element in A[i, j]. In a node v of T the search is guided using the x-ranks
stored for the x-predecessor of i− 1 and j in Tv. In the root this is the i− 1’th
and j’th pair stored in the root’s array. By subtracting the x-ranks for the
left subtree we learn how many elements, s′, from A[i, j] the left subtree of v
contains. If s ≤ s′ the search continues in the left subtree. Otherwise, we set
s = s − s′ and continue the search in the right subtree. Notice that each step
learns the x-ranks of i − 1 and j in the children nodes, which are needed to
lookup the indices stored for the x-predecessors of i−1 and j in the subsequent
step. A query takes O(log n) time since each step takes constant time. Given
indices i and j in a range median query we return the s = b j−i2 c+ 1’th smallest
element in A[i, j]. Given indices i, j and a value e in a range rank query, we do
a predecessor search for e in T : in each step where the search continues to the
right child, the number of elements from A[i, j] in the left subtree is computed
as above, and these are added up. When a leaf is reached this sum is the rank
of e in A[i, j].

4.1.2 Getting Linear Space

We reduce the space usage of the data structure to O(n) by replacing the arrays
stored in each node by simple rank and select data structures [56] as follows.
In each node v, the array Av is partitioned into chunks of size log n. The
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last entry of each chunk, i.e. every log n’th entry of Av, is stored as before.
For the remaining entries of a chunk, one bit is stored, indicating whether the
corresponding element resides in the left or right subtree. These bits are packed
in order into one word, which we denote a direction word. This reduces the
space to O(n) bits per level of T . Even though v no longer stores an x-rank for
each element in Tv, a needed x-rank is easily computed from the stored chunks
in constant time. Let rj be the x-rank of j in Tv, and let j′ = bj/ log nc. The
indices stored in the j′− 1’th chunk yields the x-rank, rλ, in the left subtree of
yλ ∈ Tv. The first rj − j′ log n bits in the direction word from the j′’th chunk
determines how many elements from A[λ+ 1, j] that reside in the left subtree.
The sum of these is the x-rank of j in the left subtree. The latter is computed
using complete tabulation. The extra table needed for this uses O(n) additional
space.

4.2 Improving Query Time

In this section we generalize the data structure from Section 4.1 and obtain a
linear space data structure that supports range selection and range counting
queries in O(log n/ log log n) time. First, we describe a data structure that sup-
ports queries in O(log n/ log logn) time but uses slightly more than O(n) space.
Then we reduce the space to O(n) by generalizing the ideas from Section 4.1.2.

4.2.1 Structure

The data structure is a balanced search tree T storing the n elements from
A = [y1, . . . , yn] in the leaves in sorted order. The fan-out of T is f =
dlogε ne for some constant 0 < ε < 1. The height of T is O(log n/ log f) =
O(log n/ log log n). Each node v ∈ T contains f · |Tv| prefix sums: For each
element, yi ∈ Tv, and for each child index, 1 ≤ ` ≤ f , v stores the number of
elements from A[1, i] that reside in the first ` subtrees of Tv. We denote by ti`
such a prefix sum. These prefix sums are stored in |Tv| bit-matrices, one matrix
Mi for each yi ∈ Tv. The `’th row of bits in Mi is the number ti`. The rows
form a non-decreasing sequence of numbers by construction. The matrices are
stored consecutively in an array Av as above, i.e. Mi is stored before Mj if
i < j, and the x-rank of i in Tv defines the position of Mi in Av. If yj /∈ Tv
then v does not store a matrix Mj , but it is still well defined and equal to the
matrix Mj′ , that is stored in v, where j′ is the x-predecessor of j in Tv. Each
matrix is stored in two different ways. In the first copy each row is stored in one
word. In the second copy each matrix is divided into sections of g = blog n/fc
columns. The first section contains the first g bits of each of the f rows, and
these are stored in one word. This is the g most significant bits of each prefix
sum stored in the matrix. The second section contains the last three bits of
the first section and then the following g − 3 bits, and so on. The reason for
this overlap of three bits will become clear later. We think of each section as
an f × g bit matrix. For technical reasons, we ensure that the first column of
each matrix only contain zero entries by prepending a column of zeroes to all
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Av = · · · Ma · · · Mb · · · Mc · · · Md · · · Me · · ·

Figure 4.2: A graphic overview of the data structure. As showed in the tree,
yd < yb < ye < ya < yc and they are all contained in Tv. A concrete example
of a matrix is shown in Figure 4.3.

matrices before the division into sections. An overview of the data structure is
shown in Figure 4.2.

4.2.2 Range Selection Query

A query is given indices i, j and s and locates the s’th smallest element in A[i, j].
In each node we consider the matrix M ′ = Mj −Mi−1 (row-wise subtraction).

The `’th row of M ′ is tj`−ti−1
` , i.e. the number of elements from A[i, j] contained

in the first ` subtrees. We compute the smallest ` such that the `’th row in
M ′ stores a number greater than or equal to s, and this defines the subtree
containing the s’th smallest element in Tv. In the following pages we describe
how to compute ` without explicitly constructing the entire matrix M ′.

The intuitive idea to guide a query in a given node, v, is as follows. Let
K = |Tv ∩ A[i, j]| be the number of elements from A[i, j] contained in Tv.
We consider the section from M ′ containing the dlogKe’th least significant
bit of each row. All the bits stored in M ′ before this section are zero and
thus not important. Using word-level parallelism we find an interval [`1, `2] ⊆
[1, f ], where the g bits of M ′ match the corresponding g bits of s and the
following row. These indices define the subtrees of Tv that can contain the
s’th smallest element in Tv. We then try to determine which of these subtrees
contain the s’th smallest element. First, we consider the children of v defined
by the endpoints of the interval, `1 and `2. If neither of these contain the
s’th smallest element in A[i, j], we know that the subtree of Tv containing the
s’th smallest element stores approximately a factor of 2g elements from A[i, j]
fewer than Tv, since the g most significant bits of the prefix sum of the row
corresponding to this subtree are the same as the bits in the preceding row.
Stated differently, the number of elements in this subtree does not influence the
g most important bits of the prefix sum, and thus it must be small. In this
case we determine ` in O(log log n) time using a standard binary search. The
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point is that this can only occur O(log n/g) times, and the total cost of these
searches is O(log n log logn/f) = O(log1−ε n log log n) = o(log n/ log logn). In
the remaining nodes we use constant time.

There are several technical issues that must be worked out. The most im-
portant is that we cannot actually produce the needed section of M ′ in constant
time. Instead, we compute an approximation where the number stored in the
g bits of each row of the section is at most one too large when compared to the
g bits of that row in M ′. The details are as follows.

In a node v ∈ T the search is guided using Mpi and Mpj where pi is the x-
predecessor of i−1 in Tv and pj is the x-predecessor of j in Tv. For clarity we use
Mi−1 and Mj for the description. A query maintains an index c, initially one,
defining which section of the bit-matrices that is currently in use i.e. c defines
the section of M ′ containing the dlogKe’th least significant bit. We maintain
the following invariant regarding the c’th section of M ′ in the remaining subtree:
in M ′, all bits before the c’th section are zero, i.e. the important bits of M ′ are
stored in the c’th section or to the right of it. For technical reasons, we ensure
that the most important bit of the c’th section of M ′ is zero. This is true before
the query starts since the first bit in each row of each stored matrix is zero.

Computing an approximation of M ′ We compute the approximation of
the c’th section of M ′ from the c’th section of Mj and Mi. This approximation
we denote wi,j and think of it as an f × g bit-matrix. Basically, the word con-
taining the c’th section of bits from Mi−1 is subtracted from the corresponding
word in Mj . However, subtracting the c’th section of g bits of ti−1

` from the

corresponding g bits of tj` does not encompass a potential cascading carry from
the lower order bits when comparing the result with the matching g bits of
tj` − ti−1

` , the `’th row of M ′. This means that in the c’th section, the `’th row
of Mi−1 could be larger than `’th row of Mj . To ensure that each pair of rows
is subtracted independently in the computation of wi,j , we prepend an extra
one bit to each row of Mj and an extra zero bit to each row of Mi to deal with
cascading carries. Then we subtract the c section of Mi−1 from the c’th section
of Mj , and obtain wi,j . After the subtraction we ignore the value of the most
significant bit of each row in wi,j (it is masked out). After this computation,
each row in wi,j contain a number that either matches the corresponding g bits
of M ′, or a number that is one larger. Since the most important bit of the c’th
section of M ′ is zero, we know that the computation does not overflow. If all
bits in wi,j are zero the algorithm never needs to consider the current section
again, and it is skipped in the remaining subtree by increasing c by one, without
breaking the invariant, and wi,j is recomputed.

An example of this computation is showed in Figure 4.3.

Searching wi,j Let sb = s1, . . . , sg be the g bits of s defined by the c’th
section, initially the g most important bits of s. If we had actually computed
the c’th section of M ′ then only rows matching sb and the first row containing an
even larger number can define the subtree containing the s’th smallest element.
However, since the rows can contain numbers that are one to large, we also
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Figure 4.3: A concrete example of the matrices used. In this example, f = 4
and g = 5. The figure shows the matrices ML,MR and M ′, how they appear
when they are divided into sections. The figure also shows the f × g matrix
wL,R a query produces. Notice that the third row of wL,R stores a number one
larger than the corresponding bits in matching section of M ′.

consider all rows matching sb + 1, and the first row storing a number even
larger. Therefore, the algorithm locates the first row of wi,j storing a number
greater than or equal to sb and the first row greater than sb + 1. The indices
of these rows we denote `1 and `2, and the subtree containing the s’th smallest
element corresponds to at row between `1 and `2. Subsequently, it is checked
whether the `1’th or `2’th subtree contains the s’th smallest element in Tv using
the first copy of the matrices (where the rows are stored separately). If this is
not the case, then the index of the correct subtree is between `1 + 1 and `2− 1,
and it is determined by a binary search. The binary search uses the first copy
of the matrices. In the c’th section of M ′, the g bits from the `1 + 1’th row
represents at number that is at least sb−1, and the `2−1’th row a number that
is at most sb + 1. Therefore, the difference between the numbers stored in row
`1−1 and `2−1 in M ′ is at most two. This means that in the remaining subtree,
the c’th section of bits from M ′ (tj`−i−1

` for 1 ≤ ` ≤ f) is a number between
zero and two. Since the following section stores the last three bits of the current
section, the algorithm safely skips the current section in the remaining subtree,
by increasing c by one, without violating the invariant. We need two bits to
express a number between zero and two, and the third bit ensures that the most
significant bit of the c’th section of M ′ is zero. After the subtree, T`, containing
the s’th smallest element is located s is updated as before, s = s− (tj`−1− ti−1

`−1).

Let ri−1 = ti−1
` − ti−1

`−1, be the x-rank of i − 1 in T`, and rj = tj` − t
j
`−1, the

x-rank of j in T`. In the subsequent node the algorithm uses the ri−1’th and
the rj ’th stored matrix to guide the search. This corresponds to the matrix
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stored for the x-predecessor of i− 1 and the x-predecessor of j in T` (fractional
cascading).

In the next paragraph we explain how to determine `1 and `2 in constant
time. Thus, if the search continues in the `1’th or `2’th subtree, the algo-
rithm used O(1) time in the node. Otherwise, a binary search is performed,
which takes O(log f) time, but in the remaining subtree an additional section
is skipped. An additional section may be skipped at most d1 + log n/(g− 3)e =
O(f) times. When the search is guided using the last section there will not be
any problems with cascading carries. This means that the search continues in
the subtree corresponding to the first row of wi,j where the number stored is
at least as large as sb, and a binary search is never performed in this case. We
conclude that a query takes O(log n/ log logn + f log f) = O(log n/ log log n)
time.

Given i, j and e in a rank query we use a linear space predecessor data struc-
ture (van Emde Boas tree [91]) that in O(log log n) time yields the predecessor
ep of e in the sorted order of A. Then, the path from ep to the root in T is
traversed, and during this walk the number of elements from A[i, j] in subtrees
hanging of to the left are added up using the first copy of the bit matrices. The
data structures uses O(nf log n/ log logn) = O(n log1+ε n/ log logn) space.

Determining `1 and `2 The remaining issue is to compute `1 and `2. A query
maintains a search word, sw, that contains f independent blocks of the g bits
from s that corresponds to the c’th section. Initially, this is the g most impor-
tant bits of s. To compute sw we store a table that maps each g-bit number to a
word that contains f copies of these g bits. After updating s we update sw using
a bit-mask and a table look-up. A query knows wi,j = v1

1, . . . , v
1
g , . . . , v

d
1 , . . . , v

d
g

and sw which is sb = s1, . . . , sg concatenated f times. The g-bit block v`1, . . . , v
`
g

from wi,j we denote wi,j` and the `’th block of s1, . . . , sg from sw we denote s`w.
We only describe how to find `1, `2 can be found similarly. Remember that
`1 is the index of the first row in wi,j that stores a number greater than or
equal to sb. We make room for an extra bit in each block and make it the most
significant. We set the extra bit of each wi,j` to one and the extra bit of each

s`w to zero. This ensures that wi,j` is larger than s`w, for all `, when both are
considered g + 1 bit numbers. sw is subtracted from wi,j and because of the
extra bit, this operation subtracts s`w from wi,j` , for 1 ≤ ` ≤ f , independently
of the other blocks. Then, all but the most significant (fake) bit of each block
are masked out. The first one-bit in this word reveals the index ` of the first
block where wi,j` is at least as large as s`w. This bit is found using complete
tabulation.

4.2.3 Getting Linear Space

In this section we reduce the space usage of our data structure to O(n) words.
The previous data structure stores a matrix for each element on each level of
the tree, and every matrix uses O(f log n) bits of space. Instead we only store a
matrix for every t = df log ne’th element. In each node, the sequence of matrices
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is divided into chunks of size t and only the last matrix of each chunk is explicitly
stored. For each of the remaining elements in a chunk, dlog fe bits are used
to describe in which subtree it resides. The description for d = blog n/dlog fec
elements are stored in one word, which we denote a direction word. Prefix sums
are stored after each direction word summing up all previous directions words
in the chunk, i.e. storing how many elements that was inserted in the first `
subtrees for ` = 1, . . . , f . Since each chunk stores the direction of t elements,
at most df log t/ log ne = O(1) words are needed to store these f prefix sums.
We denote it a prefix word. The data structure uses O(n) words of space.

Range Selection Query The query works similarly to above. The main dif-
ference is that we do not use the matrices Mi−1 and Mj to compute wi,j since
they are not necessarily stored. Instead, we use two matrices that are stored
which are close to Mi−1 and Mj . The direction and update words enables us to
exactly compute any row of Mj and Mi−1 in constant time. Therefore, the main
difference compared to the previous data structure, is that the potential differ-
ence between wi,j , that we compute, and the c’th section of M ′ is marginally
larger, and for this reason the overlap between blocks is increased to four.

In a node v ∈ T a query is guided as follows. Let ri be the x-rank of i− 1
and rj the x-rank of j in Tv. Let i′ = bri/tc and j′ = brj/tc. The matrices
stored in the i′’th and j′’th chunk respectively are used to guide the search.
These matrices we denote Ma and Mb.

Since v stores a matrix for every t’th element in Tv, we have tR` − tb` ≤ t for
any 1 ≤ ` ≤ f . Now consider the matrix M̄ = Mb −Ma, the analog to M ′ for
a, b. Then the `’th row of M̄ is at most t smaller than or larger than the `’th row
of M ′. If we add the difference between the `’th row of M̄ and M ′ to the `’th of
M̄ and ignore cascading carries then only the least dlog te = d(1 + ε) log log ne
significant bits change. Stated differently, unless we use the last section, the
number stored in the `’th row of the c’th section of M̄ is at most one from the
corresponding number stored in M ′.

We can obtain the value of any row in MR as follows. For each ` between
1 and f , we compute how many of the first rR − R′t elements represented in
the R′+ 1’th chunk that are contained in the first ` children from the direction
and prefix words. These are the elements considered in MR but not in M b.
Formally, the p = b(rR − R′t)/dc’th prefix word stores how many of the first
pd elements from the chunk reside in the first ` children for 1 ≤ ` ≤ f . Using
complete tabulation on the following direction word, we obtain a word storing
how many of the following rR −R′t− pd elements from the chunk reside in the
first ` children for all `, 1 ≤ ` ≤ f . Adding this to the p’th prefix word yields
the difference between the `’th row of MR and Mb, for all 1 ≤ ` ≤ f . The
difference between Ma and ML−1 can be computed similarly. Thus, any row
of MR and ML−1, and the last section of MR and ML−1 can be computed in
constant time.

If the last section is used it is computed exactly in constant time and the
search is guided as above. Otherwise, we compute the difference between each
row in the c’th section of Ma and Mb, yielding wa,b. As above, the computation
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of wa,b does not consider cascading carries from lower order bits and for this
reason the `’th row of wa,b may be one too large when compared to the same
bits in M̄ . Furthermore, the number stored in the `’th row of M̄ could be one
larger or one smaller than the corresponding bits of M ′.

We locate the first row of wa,b that is at least sb − 1 and the first row
greater than sb + 2 as above, and the subtree we are searching for is defined by
a row between these two, and if it is none of these, a binary search is used to
determine it. In this case, by the same arguments as earlier, each row in the
c’th section of M ′ in the remaining subtree, represents a number between zero
and six. Since we have an overlap of four bits between sections, we safely move
to the next section after every binary search.

Range rank queries are supported similarly to above.

Lemma 4.1 The data structure described uses linear space and supports range
selection and range rank queries in O(log n/ log log n) time.

4.2.4 Construction in O(n log n) Time

In this section we describe how to construct the linear space data structure
from the previous section in O(n log n) time. We sort the input elements, and
build a tree with fan-out f on top of them. Then we construct the nodes of the
tree level by level starting with the leafs.

In each node v, we scan the elements in Tv in chunks of size t ordered by
their positions in A, and write the direction and prefix words. After processing
each chunk, we construct its corresponding matrix. We use an array C of length
f , there is one entry in C for each child of v. We scan the elements by their
position in A, and if yi is contained in the `’th subtree then we add one to C[`],
and append ` to the description word using dlog fe bits. After blog n/dlog fec
steps we build a prefix word by making an array D such that D[i] =

∑i
`=1C[i]

and store it in O(1) words. After t steps we store D as a matrix, i.e., the `’th
row of the matrix stores the number D[`]. We make the second copy of the
matrix by repeatedly extracting the needed bits from the first copy. For the
next chunk we reset C and repeat. When we build the next matrix we add the
numbers stored in D to the previously built matrix, and get the first copy. The
second copy is computed as before.

Merging the f lists of elements from the children takes O(|Tv| log f) time.
Adding a number to a direction word takes constant time. Constructing a prefix
word takes O(f) time and we do that for every O(log(n)/ log f)’th element.
Constructing the matrices takes O(f) time for the first copy and O(f2) time
for the second, and we do this for every O(f log n)’th element. We conclude
that we use O(n log f) = O(n log log n) time per level of the tree, and there are
O(log n/ log logn) levels.

Theorem 4.1 The data structure described uses linear space, supports range
selection and range rank queries in O(log n/ log log n) time, and it can be con-
structed in O(n log n) time.
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4.3 Dynamic Range Selection

In this section we show how our data structure can be made dynamic. Our dy-
namic data structure uses O(n log n/ log log n) space and supports queries and
updates in O((log n/ log log n)2) time, worst case and amortized respectively.

Our data structure maintains a set of points, S = {(xi, yi)}, under insertions
and deletions. A query is given values xl, xr and an integer s and returns the
point with the s’th smallest y value among the points in S with x-value between
xl and xr. We store the points from S in a weight-balanced search tree [10,72],
ordered by y-coordinate. In each node of the tree we maintain the bit-matrices,
defined in the static structure, dynamically using a weight-balanced search tree
over the points in the subtree, ordered by x-coordinate. The main issue is
efficient generation of the needed sections of the bit-matrices used by queries.
The quality of the approximation is worse than in the static data structure, and
we increase the overlap between sections to O(log log n). Otherwise, a search
works as in the static data structure.

4.3.1 Structure

The data structure is a weight-balanced B-tree T with B = dlogε ne, where 0 <
ε < 1

2 , containing the n points in S in the leaves, ordered by their y-coordinates.
Each internal node v ∈ T stores a ranking tree Rv. This is also a weight-
balanced B-tree with B = dlogε ne, containing the points stored in Tv, ordered
by their x-coordinates. Each leaf in a ranking tree stores Θ(B2) elements.
Since the data structure depends on n, it is rebuilt every Θ(n) updates. Let
h = O(logB n) be the maximal height the trees can get and f = O(B) the
maximal fan-out of a node (until the next rebuild).

Let v be a node in T and denote the a ≤ f subtrees of v by T1, . . . , Ta. The
ranking tree Rv stored in v is structured as follows. Let u be a node in Rv
and denote its b ≤ f subtrees by R1, . . . , Rb. The node u stores a bit-matrices
Mu

1 , . . . ,M
u
a . In the matrix Mu

q the p’th row stores the number of elements
from

⋃
1≤i≤q Ri that are contained in

⋃
1≤i≤p Ti. Additionally, u also stores up

to B2 updates, each describing from which subtree of v the update came, from
which subtree of u ∈ Rv the update came, and whether it was an insert or a
delete. These updates are stored in O(B2 logB/ log n) = O(1) words.

As in the static case, each matrix is stored in two ways. In the first copy
each row is stored in one word. For the second copy, each matrix is divided into
sections of g = blog n/fc bits, and each section is stored in one word. These
sections have dlog(2h+ 2)e+ 1 = O(log log n) bits of overlap.

Finally, a linear space dynamic predecessor data structure [16] containing
the |Tv| elements in Rv, ordered by x, is also stored.

If we ignore the updates stored in update blocks, each matrix Mj , as de-
fined in the static data structure, corresponds to the row-wise sum of at most h
matrices from Rv. Consider the path from the root of Rv to the leaf storing the
point in Tv with maximal x coordinate smaller than or equal to j, i.e. the pre-
decessor of j in Tv when the points are ordered by their x coordinates. Starting
with the zero matrix we add up matrices as follows. If the path continues in the
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`’th subtree at the node u, then we add the `− 1’th matrix stored at u (Mu
`−1)

to the sum. Summing up, the p’th row of the computed matrix is the number
of points, (x, y) ∈ Tv where x ≤ j, contained in the first p subtrees of Tv, and
this is exactly the definition of Mj in the static data structure.

4.3.2 Range Selection Query

Given values L,R and an index s in a query, we perform a topdown search in
T . As in the static data structure, we maintain an index c that defines which
section of the matrices is currently in use and approximate the c’th section of
the matrix M ′ (as defined in the static data structure).

In a node v ∈ T , we compute an approximation, wL,R, of the c’th section
of M ′ from the associated ranking tree as follows. First, we locate the leafs
of the ranking tree containing the points with maximal x-coordinates less than
L − 1 and R using the dynamic predecessor data structure. Then we traverse
the paths from these two leafs in parallel until the paths merge, which happens
at the latest at the root. We call them the left and right path.

Initially, we set wL,R to the zero matrix. Assume that we reach node uL
from its pL’th child on the left path and the node uR from its pR’th child on
the right path. Then we subtract the c’th section from the pL − 1’th matrix
stored in uL from the c’th section of the pR − 1’th matrix stored in uR. The
subtraction of sections is performed as in the static data structure. We add
the result to wL,R. If the paths are at the same node we stop, otherwise, we
continue up the tree.

Since we do not consider cascading carries each subtraction might produce
a section containing rows that are one to large. Similarly, we add a section to
wL,R in each step, which ignores cascading carries from the lower order bits,
giving numbers that could be one to small. Furthermore, we ignore up to B2

updates in each step.

Now consider the difference between wL,R and the c’th section of M ′. First
of all we have ignored up to B2 updates in two nodes on each level of T , which
means that in the matrices we consider the combined number that is stored
in the `’th row may differ by up to 2hB2 compared to M ′. As in the static
data structure, unless we are using the last section, this only affects the number
stored in each row by one.

Furthermore, in the computation of wL,R we do h subtractions and h ad-
ditions of sections and each of these operations ignores the lower order bits.
Combining this with the ignored updates, we get that each row of wL,R is at
most h smaller or larger than the corresponding value in M ′.

Let sb be the number defined by the c’th section of g bits from s. The query
locates the first row that is at least sb−h and the first row greater than sb +h.
Then the algorithm checks whether either of these corresponds to the subtree
containing the answer. If not, the c’th section of the remaining matrices store a
number between zero and 2h, and for this reason the overlap between sections
is set to dlog(2h + 1)e + 1 = O(log log n) bits. In this case we use a binary
search that in each step traverses Rv as above (path up from leaves containing
the maximal x-coordinate less than L− 1 and R) to compute the needed rows
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of M ′ exactly using the first copy of the stored matrices and the information
stored in the update words. Extracting information from update words is done
by complete tabulation on each of the O(1) update words.

If we are using the last section, there will not be problems with the lower
order bits in the additions and subtractions of sections. We add the changes
stored in the update words on the paths and obtain the last section of M ′

exactly, and a binary search is never performed in this case.

As before, the current section is skipped in the remaining subtree in this
case.

4.3.3 Updates

An element e is inserted into the data structure as follows. First, e is added
to T . If a node in T splits, two new structures are built from the existing one,
and the parent node is rebuilt. Then, we traverse path from e to the root.
In each node v ∈ T on this path, e is inserted into the ranking tree Rv, and
the dynamic predecessor data structure. If a node splits in Rv, two new nodes
are constructed from the old one, and the parent rebuilt. After Rv has been
updated, e is inserted in each node in Rv on the path from e to the root, by
appending a description of the update to the update words. When B2 updates
have been appended to a node in a ranking tree, all bit-matrices in this node are
recomputed and the update words are cleared. Deletes are handled similarly,
except that updates to the base tree and ranking trees are handled using global
rebuilding.

Theorem 4.2 The data structure uses O(n log n/ log log n) space and queries
and updates are supported in O((log n/ log log n)2) time worst case and amor-
tized respectively.

Proof. The height of T is O(log n/ logB) = O(log n/ log logn) and in each
node on a path we traverse a ranking tree of height O(log n/ logB) =
O(log n/ log logn). We do a binary search O(log n/B) times and each binary
search takes O(logB log n/ log logn) = O(log n) time. The combined time for
all binary searches is O(log2 n/B) = o((log n/ log log n)2) time.

Updating the base tree T (splitting nodes) takes O(B) time amortized per
update. Updating a ranking also takes O(B) time amortized per update and
O(log n/ logB) ranking trees are changed in each update. Furthermore, an
update is appended to a node on each level of a ranking tree, on each level of T .
This means that O((log n/ log log n)2) update words are changed. The matrices
stored in a node in a ranking tree can be recomputed in O(f2) = O(B2) time.
This amounts to O(1) time amortized per update added to the node. Each
element defines a node in a ranking tree on each level of T . A node in a
ranking tree stores at most f bit-matrices, each storing f numbers, and up to
B2 updates, each using O(logB) bits of space. Thus, a node in the ranking tree
uses O(f2 + B2 logB/ log n) = O(B2) words of space, and each ranking tree,
Rv, contains O(|Tv|/B2) nodes. 2
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4.4 Lower Bound for Dynamic Data Structures

In this section we describe a reduction from the marked ancestor problem to
a dynamic range median data structure. In the marked ancestor problem the
input is a complete tree of degree b and height h. An update marks or unmarks
a node of the tree, initially all nodes are unmarked. A query is provided a
leaf v of the tree and must return whether there exist a marked ancestor of
v. Let tq and tu be the query and update time for a marked ancestor data
structure. Alstrup et al. proved the following lower bound trade-off for the
problem, tq = Ω( logn

log(tuw logn)) [4], where w is the word size.

Reduction Let T denote a marked ancestor tree of height h and degree b. For
each node v in T we associate two pairs of elements, which we denote start-mark
and end-mark. We translate T into an array of size 4|T | by a recursive traversal
of T , where we for each node v outputs its start-mark, then recursively visit each
of v’s children, and then output v’s end-mark. Start-marks are used to mark
a node, and end-marks ensure that markings only influences the answer for
queries in the marked subtree. When a node v is unmarked, start-mark=end-
mark=(0,1) and when v is marked, start-mark is set to (1,1) and end-mark to
(0,0).

Query A marked ancestor query for a leaf v is answered by returning yes if
and only if the range median from the subarray ranging from the beginning
of the array to the start-mark element associated with v is one. If zero nodes
are marked, the array is on the form [0, 1, . . . , 0, 1]. Since the median in any
range that can be considered by a query is zero, any marked ancestor query
returns no. If v or one of its ancestors is marked there will be more ones than
zeros in the range for v, and the query answers yes. A node u that is not an
ancestor of v has its start-mark and end-mark placed either before v’s marks or
after v’s marks, and independently of whether u is marked or not, it contributes
and equal number of zeroes and ones to v’s query range. Since the reduction
requires an overhead of O(1) for both queries and updates we get the following
lower bound.

Theorem 4.3 Any data structure that supports updates in O(logO(1) n) time
uses Ω(log n/ log logn) time to support a range median query.

4.5 Main Open Problems

There are two main open problems. First, what is the lower bound on the
query time for range selection queries in static O(n logO(1) n) space data struc-
tures? We can prove that any O(n logO(1) n) space data structure needs
Θ(log n/ log log n) time for three-sided range median queries by a reduction
from two dimensional rectangle-stabbing [76]. Furthermore, there is a gap be-
tween the upper and lower bounds for the batched range median problem for
k = Ω(n1+ε), and the lower bound [50] is only valid in the comparison model.



Chapter 5

Cell Probe Lower Bounds and

Approximations for Range Mode

In this chapter we consider the range mode problem, the range k-frequency
problem, and the c-approximate range mode problem. The frequency of a label
l in a multiset S of labels, is the number of occurrences of l in S. The mode
of S is the most frequent label in S. In case of ties, any of the most frequent
labels in S can be designated the mode.

For all the problems we consider the input is an array A of length n con-
taining labels. For simplicity we assume that each label is an integer between
one and n. In the range mode problem, we must preprocess A into a data
structure that given indices i and j, 1 ≤ i ≤ j ≤ n, returns the mode, Mi,j , in
the subarray A[i, j] = A[i], A[i + 1], . . . , A[j]. We let Fi,j denote the frequency
of Mi,j in A[i, j]. In the c-approximate range mode problem, a query is given
indices i and j, 1 ≤ i ≤ j ≤ n, and returns a label that has a frequency of at
least Fi,j/c. In the range k-frequency problem, a query is given indices i and j,
1 ≤ i ≤ j ≤ n, and returns whether there is a label occurring precisely k times
in A[i, j].

For the upper bounds we consider the unit cost RAM, and let w = Θ(log n)
denote the word size. For lower bounds we consider the cell probe model of
Yao [95]. In this model of computation a random access memory is divided into
cells of w bits. The complexity of an algorithm is the number of memory cells
the algorithm accesses and all other computations are free.

Previous Results. The first data structure for the range mode problem
achieving constant query time was developed in [62]. This data structure uses
O(n2 log logn/ log n) space. This was subsequently improved to O(n2/ log n)
space in [78] and finally to O(n2 log log n/ log2 n) in [79]. For non-constant
query time, the first developed data structure uses O(n2−2ε) space and answers
queries in O(nε log n) time, where 0 < ε ≤ 1

2 is a query-space tradeoff con-
stant [62]. The query time was later improved to O(nε) without changing the
space bound [78].

Given the rather large bounds for the range mode problem, the approximate
variant of the problem was considered in [22]. With constant query time, they
solve 2-approximate range mode with O(n log n) space, 3-approximate range

65
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mode with O(n log logn) space, and 4-approximate range mode with linear
space. For (1 + ε)-approximate range mode, they describe a data structure that
uses O(nε ) space and answers queries in O(log log(1+ε) n) = O(log log n+ log 1

ε )
time. This data structure gives a linear space solution with O(log log n) query
time for c-approximate range mode when c is constant.

There are no non-trivial lower bounds for the any of the problems we con-
sider.

Our Results In this chapter we show the first lower bounds for range mode
data structures and range k-frequency data structures and provide new upper
bounds for the c-approximate range mode problem and the range k-frequency
problem.

In Section 5.1 we prove our lower bound for range mode data structures.
Specifically, we prove that any data structure that uses S cells and supports
range mode queries must have a query time of Ω( logn

log(Sw/n)). This means that

any data structure that uses O(n logO(1) n) space needs Ω(log n/ log log n) time
to answer a range mode query. Similarly, any data structure that supports
range mode queries in constant time needs Ω(n1+Ω(1)) space. We suspect that
the actual lower bound for near-linear space data structures for the range mode
problem is significantly larger. However a fundamental obstacle in the cell probe
model is to prove lower bounds for static data structures that are higher than
the number of bits needed to describe the query. The highest known lower
bounds are achieved by the techniques in [76, 77] that uses reductions from
problems in communication complexity. We use this technique to obtain our
lower bound and our bound matches the highest lower bound achieved with
this technique.

Actually our construction proves the same lower bound for queries on the
form, is there an element with frequency at least (or precisely) k in A[i, j], where
k is given at query time. In the scenario where k is fixed for all queries it is trivial
to give a linear space data structure with constant query time for determining
whether there is an element with frequency at least k. In Section 5.2 we consider
the case of determining whether there is an element with frequency exactly k,
which we denote the range k-frequency problem. To the best of our knowledge,
we are the first to consider this problem. We show that 2D rectangle stabbing
reduces to range k-frequency for any constant k > 1. This reduction proves
that any data structure that uses S space, needs Ω(log n/ log(Sw/n)) time
for a query [75, 76], for any constant k > 1. Secondly, we reduce range k-
frequency to 2D rectangle stabbing. This reduction works for any k. This
immediately gives a data structure for range k-frequency that uses linear space,
and answers queries in optimal O(log n/ log log n) time [57] (we note that 2D
rectangle stabbing reduces to 2D range counting). In the restricted case where
k = 1, this problem corresponds to determining whether there is a unique
label in a subarray. The reduction from 2D rectangle stabbing only applies for
k > 1. We show, somewhat surprisingly, that determining whether there is a
label occurring exactly twice (or k > 1 times) in a subarray, is exponentially
harder than determining if there is a label occurring exactly once. Specifically,
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we reduce range 1-frequency to four-sided 3D orthogonal range emptiness, which
can be solved with O(log2 log n) query time and O(n log n) space by a slight
modification of the data structure presented in [1].

In Section 5.3 we present a simple data structure for the 3-approximate
range mode problem. The data structure uses linear space and answers queries
in constant time. In Section 5.4 we develop a data structure for (1 + ε)-
approximate range mode. This data structure uses O(nε ) space and answers
queries in O(log 1

ε ) time.

5.1 Cell Probe Lower Bound for Range Mode

In this section we show a query lower bound of Ω(log n/ log logn) for any range
mode data structure that uses O(n logO(1) n) space for an input array of size n.

We prove the lower bound for the slightly different problem of determining
the frequency of the mode. Since the frequency of an element can be determined
in any range in O(log log n) time (two predecessor searches) the lower bound
for range mode follows.

Communication Complexity and Lower Bounds In communication
complexity we have two players Alice and Bob. Alice receives as input a bit
string x and Bob a bit string y. Given some predefined function, f , the goal
for Alice and Bob is to compute f(x, y) while communicating as few bits as
possible.

Lower bounds on the communication complexity of various functions have
been turned into lower bounds for static data structure problems in the cell
probe model. The idea is as follows [70]: Assume we are given a static data
structure problem and consider the function f(q,D) that is defined as the an-
swer to a query q on an input set D for this problem. If we have a data structure
for the problem that uses S memory cells and supports queries in time t we get
a communication protocol for f where Alice sends t logS bits and Bob sends tw
bits. In this protocol Alice receives q and Bob receives D. Bob constructs the
data structure on D and Alice simulates the query algorithm. In each step Alice
sends logS bits specifying the memory cell of the data structure she needs and
Bob replies with the w bits of this cell. Finally, Alice outputs f(q,D). Thus,
a communication lower bound for f gives a lower bound tradeoff between S
and t.

This construction can only be used to distinguish between polynomial and
exponential space data structures. Since range mode queries are trivially solv-
able in constant time with O(n2) space, we need a different technique to obtain
lower bounds for near-linear space data structures. Pǎtraşcu and Thorup [76,77]
developed a technique for distinguishing between near linear and polynomial
space by considering reductions from communication complexity problems to
k parallel data structure queries. The main insight is that Alice can simulate
all k queries in parallel and only send log

(
S
k

)
= O(k log S

k ) bits to define the k
cells she need in each step. For the right values of k this is significantly less
than k logS bits which Alice would need in each step for performing the queries
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sequentially.

Lopsided Set Disjointness (LSD) In LSD Alice and Bob receive subsets
S and T of a universe U . The goal for Alice and Bob is to compute whether
S ∩ T 6= ∅. LSD is parameterized with the size |S| = N of Alice’s set and
the fraction between the size of the universe and N , which is denoted B, e.g.
|U | = NB. Notice that the size of Bob’s set is arbitrary and could be as large
as NB. We use [X] to denote the set {1, 2, . . . , X}. There are other versions
of LSD where the input to Alice has more structure. For our purpose we
need Blocked-LSD. For this problem the universe is considered as the cartesian
product of [N ] and [B], e.g. U = [N ]× [B] and Alice receives a set S such that
∀j ∈ [N ] there exists a unique bj ∈ [B] such that (j, bj) ∈ S, e.g. S is of the
form {(1, b1), (2, b2), . . . , (N, bN ) | bi ∈ [B]}. The following lower bound applies
for this problem [76].

Theorem 5.1 Fix δ > 0. In a bounded-error protocol for Blocked-LSD, either
Alice sends Ω(N logB) bits or Bob sends Ω(NB1−δ) bits.

Blocked-LSD reduces to N/k parallel range mode queries Given n,
we describe a reduction from Blocked-LSD with a universe of size n (n = NB)
to N/k parallel range mode queries on an input array A of size Θ(n). The size
of A may not be exactly n but this will not affect our result. The parameters
k and B are fixed later in the construction. From a high level perspective we
construct an array of permutations of [kB]. A query consists of a suffix of
one permutation, a number of complete permutations, and a prefix of another
permutation. They are chosen such that the suffix determines a subset of Bob’s
set and the prefix a subset of Alice’s set. The frequency of the mode is equal
to two plus the number of complete permutations spanned by the query if and
only if the two sets intersect.

Bob will store a range mode data structure and Alice will simulate the query
algorithm. First we describe the array A that Bob constructs when he receives
his input. Let T ⊆ [N ] × [B] be this set. The array Bob constructs consists
of two parts which are described separately. We let · denote concatenation of
lists. We also use this operator on sets and in this case we treat the set as a
list by placing the elements in lexicographic order. Bob partitions [N ] into N/k
consecutive chunks of k elements, e.g. the i’th chunk is {(i − 1)k + 1, . . . , ik}
for i = 1, . . . , N/k. With the i’th chunk Bob associates the subset Li of T with
first coordinate in that chunk, e.g. Li ⊆ {(i−1)k+ t | t = 1, . . . , k}× [B]. Each
Li is mapped to a permutation of [kB].

We define the mapping f : (x, y) → (x − 1 mod k)B + y and let the
permutation be ([kB] \ f(Li)) · f(Li). The first part of A is the concate-
nation of the permutations defined for each chunk Li ordered by i, e.g.
([kB] \ f(L1)) · f(L1) · · · ([kB] \ f(LN/k)) · f(LN/k). The second part of A

consists of Bk permutations of [kB]. There is one permutation for each way of
picking a set of the form {(1, b1), . . . , (k, bk) | bi ∈ [B]}. Let R1, . . . , RBk denote
the Bk sets on this form ordered lexicographically. The second part of the array
becomes f(R1) · ([kB] \ f(R1)) · · · f(RBk) · ([kB] \ f(RBk)).
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[
︷ ︸︸ ︷
3, . . .,

︷ ︸︸ ︷
1, 2, 5, 7, 8, 10, . . . ,

︷ ︸︸ ︷
6, 7, 8, 10,

︷ ︸︸ ︷
1, 5, 9, . . . ,

︷ ︸︸ ︷
2, 8, 9, . . . ,

︷ ︸︸ ︷
3, 6, 9, . . .]

f([kb] \ L1) f(L1) f(R1) f(R28) f(R36)
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
3
6
9


Q1 =





Q2 =





L1 =




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

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
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Figure 5.1: An example of the array Bob creates and the queries Alice simulates.
In this example N = 6, B = 4 and k = 3.

We now show how Alice and Bob can determine whether S ∩ T 6= ∅ from
this array. Bob constructs a range mode data structure for A and sends |Li| for
i = 1, . . . , N/k to Alice. Alice then simulates the query algorithm on the range
mode data structure for N/k queries in parallel. The i’th query determines
whether the k elements Qi = {((i − 1)k + 1, b(i−1)k+1), . . . , (ik, bik)} from S
have an empty intersection with T (actually Li) as follows.

Alice determines the end index of f(Qi) in the second part of A. We note
that f(Qi) always exists in the second part of A by construction and Alice
can determine the position without any communication with Bob. Alice also
determines the start index of f(Li) in the first part of A from the sizes she
initially received from Bob. The i’th query computes the frequency Ri of the
mode between these two indices. Let p be the number of permutations of [kB]
stored between the end of f(Li) and the beginning of f(Qi) in A, then Fi−p = 2
if and only if Qi ∩ T 6= ∅, and Fi − p = 1 otherwise. Since each permutation
of [kB] contributes one to Fi, Fi − p is equal to two if and only if at least one
of the elements from Qi is in Li meaning that S ∩ T 6= ∅. We conclude that
Blocked-LSD reduces to N/k range mode queries in an array of size NB+BkkB.

To obtain a lower bound for range mode data structures we consider the
parameters k and B and follow the idea from [76]. Let S be the size of
Bob’s range mode data structure and let t be the query time. In our proto-
col for Blocked-LSD Alice sends t log

(
S
N/k

)
= O(tNk log Sk

N ) bits and Bob sends

twN/k + N/k log(kB) bits. By Theorem 5.1, either Alice sends Ω(N logB)
bits or Bob sends Ω(NB1−δ). Fix δ = 1

2 . Since N/k log(kB) = o(N
√
B)

we obtain that either tNk log(SkN ) = Ω(N logB) or twN/k = Ω(N
√
B). We

constrain B such that B ≥ w2 and logB ≥ 1
2 log(SkN ) ⇒ B ≥ Sk

n and ob-
tain t = Ω(k). Since |A| = NB + BkkB and we require |A| = Θ(n), we set
k = Θ(logB n). To maximize k we choose B = max{w2, Skn }. We obtain that

t = Ω(k) = Ω(logN/ log Swk
n ) = Ω(log n/ log Sw

n ) since w > k.

Theorem 5.2 Any data structure that uses S space needs Ω( logn

log(Sw
n

)
) time for

a range mode query.
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5.2 Range k-Frequency

In this section, we consider the range k-frequency problem and its connection to
classic geometric data structure problems. We show that the range k-frequency
problem is equivalent to 2D rectangle stabbing for any fixed constant k > 1,
and that for k = 1 the problem reduces to four-sided 3D orthogonal range
emptiness.

In the 2D rectangle stabbing problem the input is n axis-parallel rectangles.
A query is given a point, (x, y), and must return whether this point is con-
tained1 in at least one of the n rectangles in the input. A query lower bound
of Ω(log n/ log logn) for data structures using O(n logO(1) n) space is proved
in [76], and a linear space static data structure with this query time can be
found in [57].

In four-sided 3D orthogonal range emptiness, we are given a set P of n points
in 3D, and must preprocess P into a data structure, such that given an open-
ended four-sided rectangle R = [−∞, x] × [y1, y2] × [z,∞], the data structure
returns whether R contains a point p ∈ P . Currently, the best solution for this
problem uses O(n log n) space and supports queries in O(log2 log n) time [1].

For simplicity, we assume that each coordinate is a unique integer between
one and 2n (rank space).

Theorem 5.3 The range k-frequency problem reduces to 2D rectangle stabbing.

Proof. Let A be the input to the range k-frequency problem. We translate the
ranges of A where there is a label with frequency k into O(n) rectangles as
follows. Fix a label x ∈ A, and let sx ≥ k denote the number of occurrences
of x in A. If sx < k then x is irrelevant and we discard it. Otherwise, let
i1 < i2 < . . . < is be the positions of x in A, and let i0 = 0 and is+1 = n + 1.
Consider the ranges of A where x has frequency k. These are the subarrays,
A[a, b], where there exists an integer ` such that i` < a ≤ i`+1 and i`+k ≤ b <
i`+k+1 for 0 ≤ ` ≤ sx − k. This defines sx − k + 1 two dimensional rectangles,
[i` + 1, i`+1]× [i`+k, i`+k+1 − 1] for ` = 0, . . . , sx − k, such that x has frequency
k in A[i, j] if and only if the point (i, j) stabs one of the sx − k + 1 rectangles
defined by x. By translating the ranges of A where a label has frequency k into
the corresponding rectangles for all distinct labels in A, we get a 2D rectangle
stabbing instance with O(n) rectangles. 2

This means that we get a data structure for the range k-frequency problem
that uses O(n) space and supports queries in O(log n/ log logn) time.

Theorem 5.4 For k = 1, the range k-frequency problem reduces to four-sided
orthogonal range emptiness queries in 3D.

Proof. For each distinct label x ∈ A, we map the ranges of A where x has
frequency one (it is unique in the range) to a 3D point. Let i1 < i2 < . . . < is be
the positions of x in A, and let i0 = 0 and is+1 = n+1. The label x has frequency
one in A[a, b] if there exist an integer ` such that i`−1 < a ≤ i` ≤ b < i`+1.

1points on the border of a rectangle are contained in the rectangle
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We define s points, Px = {(i`−1 + 1, i`, i`+1 − 1) | 1 ≤ ` ≤ s}. The label x
has frequency one in the range A[a, b] if and only if the four-sided orthogonal
range query [−∞, a]× [a, b]× [b,∞] contains a point from Px (we say that x is
inside range [x1, x2] if x1 ≤ x ≤ x2). Therefore, we let P =

⋃
x∈A Px and get a

four-sided 3D orthogonal range emptiness instance with O(n) points. 2

Thus, we get a data structure for the range 1-frequency problem that uses
O(n log n) space and supports queries in O(log2 log n) time.

Theorem 5.5 Let k be a constant greater than one. The 2D rectangle stabbing
problem reduces to the range k-frequency problem.

Proof. We show the reduction for k = 2 and then generalize this construction
to any constant value k > 2.

Let R1, . . . , Rn be the input to the rectangle stabbing problem. We con-
struct a range 2-frequency instance with n distinct labels each of which is du-
plicated exactly 6 times. Let R` be the rectangle [x`0 , x`1 ]× [y`0 , y`1 ]. For each
rectangle, R`, we add the pairs (x`0 , `), (x`1 , `) and (x`1 , `) to a list X. Simi-
larly, we add the pairs (y`0 , `), (y`1 , `), and (y`1 , `) to a list Y . We sort X in
descending order and Y in ascending order by their first coordinates. Since we
assumed all coordinates are unique, the only ties are amongst pairs originating
from the same rectangle, here we break the ties arbitrarily. The concatenation
of X and Y is the range 2-frequency instance and we denote it A, i.e. the second
component of each pair are the actual entries in A, and the first component of
each pair is ignored.

We translate a 2D rectangle stabbing query, (x, y), into a query for the
range 2-frequency instance as follows. Let px be the smallest index where the
first coordinate of X[px] is x, and let qy be the largest index where the first
coordinate of Y [py] is y. If A[px] = A[px + 1], two consecutive entries in A are
defined by the right endpoint of the same rectangle, we set ix = px+2 (we move
ix to the right of the two entries), otherwise we set ix = px. Similarly for the y
coordinates, if A[|X|+qy] = A[|X|+qy−1] we set jy = qy−2 (move jy left of the
two entries), otherwise we set jy = qy. Finally we translate (x, y) to the range
2-frequency query [ix, |X| + jy] on A, see Figure 5.2. Notice that in the range
2-frequency queries that can be considered in the reduction, the frequency of a
label is either one, two, three, four or six. The frequency of label ` in A[ix, |X|]
is one if x`0 ≤ x ≤ x`1 , three if x > x`1 and zero otherwise. Similar, the
frequency of ` in A[|X|+ 1, |X|+ jy] is one if y`0 ≤ y ≤ y`1 , three if y > y`1 and
zero otherwise. We conclude that the point (x, y) stabs rectangle R` if and only
if the label ` has frequency two in A[ix, |X| + jy]. Since x, y ∈ {1, . . . , 2n}, we
can store a table with the translations from x to ix and y to jy. Thus, we can
translate 2D rectangle stabbing queries to range 2-frequency queries in constant
time.

For k > 2 we place k−2 copies of each label between X and Y and translate
the queries accordingly. 2

We conclude that for data structures using O(n logO(1) n) space, the range
k-frequency problem is exponentially harder for k > 1 than for k = 1.
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1
2
3
4
5

1 2 3 4 5 6

A
B

C

p5 i5
q3
j3

X Y

A = [BBCCCAABA︸ ︷︷ ︸CBABBAACC]︸ ︷︷ ︸

X=[(6,B)(6,B)(5,C)(5,C)(4,C)(3,A)(3,A)(2,B)(1,A)]

Y=[(1,C)(2,B)(3,A)(4,B)(4,B)(5,A)(5,A)(6,C)(6,C)]

6

Figure 5.2: Reduction from 2D rectangle stabbing to range 2-frequency. The ×
marks a stabbing query, (5, 3). This query is mapped to the range 2-frequency
query [i5, |X| + j3] in A, which is highlighted. Notice that i5 = p5 + 2 since
A[p5] = A[p5 + 1].

5.3 3-Approximate Range Mode

In this section, we construct a data structure that given a range [i, j] computes
a 3-approximation of Fi,j .

We use the following observation from [22]. If we can cover A[i, j] with
three disjoint subintervals A[i, x], A[x+ 1, y] and A[y + 1, j] for which we know
Fi,x, Fx+1,y and Fy+1,j , then

1
3Fi,j ≤ max{Fi,x, Fx+1,y, Fy+1,j} ≤ Fi,j .

First, we describe a data structure that uses O(n log logn) space, and then
we show how to reduce the space to O(n). The data structure consists of a
tree T of polynomial fanout where the i’th leaf stores A[i], for i = 1, . . . , n.
For a node v let Tv denote the subtree rooted at v and let |Tv| denote the
number of leaves in Tv. The fanout of node v is fv = d

√
|Tv|e. The height of T

is Θ(log log n). Along with T , we store a lowest common ancestor (LCA) data
structure, which given indices i and j, finds the LCA of the leaves corresponding
to i and j in T in constant time [51].

For every node v ∈ T , let Rv = A[a, b] denote the consecutive range of
entries stored in the leaves of Tv. The children c1, . . . , cfv of v partition Rv
into fv disjoint subranges Rc1 = A[ac1 , bc1 ], . . . , Rcfv = A[acfv , bcfv ] each of

size O(
√
|Tv|). For every pair of children cr and cs where r < s − 1, we store

Facr+1 ,bcs−1
. Furthermore, for every child range Rci we store Faci ,k and Fk,bci for

every prefix and suffix range of Rci respectively. To compute a 3-approximation
of Fi,j , we find the LCA of i and j. This is the node v in T for which i and j
lie in different child subtrees, say Tcx and Tcy with ranges Rcx = [acx , bcx ] and
Rcy = [acy , bcy ]. We then lookup the frequency Facx+1 ,bcy−1

stored for the pair
of children cx and cy, as well as the suffix frequency Fi,bcx stored for the range
A[i, bcx ] and the prefix frequency Facy ,j stored for A[acy , j], and return the max
of these.

Each node v ∈ T uses O(|Tv|) space for the frequencies stored for each of
the O(|Tv|) pairs of children, and O(|Tv|) for all the prefix and suffix range
frequencies. Since each node v uses O(|Tv|) space and the LCA data structure
uses O(n) space, our data structure uses O(n log log n) space. A query makes
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one LCA query and computes the max of three numbers which takes constant
time.

We just need one observation to bring the space down to O(n). Consider a
node v ∈ T . The largest possible frequency that can be stored for any pair of
children of v, or for any prefix or suffix range of a child of v is |Tv|, and each
such frequency can be represented by b = 1 + blog |Tv|c bits. We divide the
frequencies stored in v into chunks of size b logn

b c and pack each of them in one
word. This reduces the total space usage of the nodes on level i to O(n/2i).
We conclude that the data structure uses O(n) space and supports queries in
constant time.

Theorem 5.6 There exists a data structure for the 3-approximate range mode
problem that uses O(n) space and supports queries in constant time.

5.4 (1 + ε)-Approximate Range Mode

In this section, we describe a data structure using O(nε ) space that given a
range [i, j], computes a (1 + ε)-approximation of Fi,j in O(log 1

ε ) time. We use
that 1

log (1+ε) = O(1
ε ) for any 0 < ε ≤ 1.

Our data structure consists of two parts. The first part solves all queries
[i, j] where Fi,j ≤ d1

εe, and the latter solves the remaining. The first data
structure also decides whether Fi,j ≤ d1

εe.

Small Frequencies For i = 1, . . . , n we store a table, Qi, of length d1
εe, where

the value in Qi[k] is the largest integer j ≥ i such that Fi,j = k. To answer a
query [i, j] we do a successor search for j in Qi. If j does not have a successor
in Qi then Fi,j > d1

εe, and we query the second data structure. Otherwise, let
s be the index of the successor of j in Qi, then Fi,j = s. The data structure
uses O(nε ) space and supports queries in O(log 1

ε ) time.

Large Frequencies For every index 1 ≤ i ≤ n, define a list Ti of length
t = dlog1+ε(εn)e, with the following invariant: For all j, if Ti[k− 1] < j ≤ Ti[k]

then d1
ε (1 + ε)ke is a (1 + ε)-approximation of Fi,j . The following assignment

of values to the lists Ti satisfies this invariant:
Let m(i, k) be the largest integer j ≥ i such that Fi,j ≤ d1

ε (1 + ε)k+1e − 1.
For T1 we set T1[k] = m(1, k) for all k = 1, . . . , t. For the remaining Ti we set

Ti[k] =

{
Ti−1[k] if Fi,Ti−1[k] ≥ d1

ε (1 + ε)ke+ 1

m(i, k) otherwise

The n lists are sorted by construction. For T1, it is true since m(i, k) is increas-
ing in k. For Ti, it follows that Fi,Ti[k] ≤ d1

ε (1 + ε)k+1e − 1 < Fi,Ti[k+1], and
thus Ti[k] < Ti[k + 1] for any k.

Let s be the index of the successor of j in Ti. We know that Fi,Ti[s] ≤
d1
ε (1 + ε)s+1e − 1, Fi,Ti[s−1] ≥ d1

ε (1 + ε)s−1e + 1 and Ti[s − 1] < j ≤ Ti[s]. It
follows that

d1
ε (1 + ε)s−1e+ 1 ≤ Fi,j ≤ d1

ε (1 + ε)s+1e − 1 (5.1)
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and that d1
ε (1 + ε)se is a (1 + ε)-approximation of Fi,j .

The second important property of the n lists, is that they only store O(nε )
different indices, which allows for a space-efficient representation. If Ti−1[k] 6=
Ti[k] then the following d1

ε (1 + ε)k+1e − 1 − d1
ε (1 + ε)ke − 1 ≥ b(1 + ε)kc − 3

entries, Ti+a[k] for a = 1, . . . , b(1 + ε)kc − 3, are not changed, hence we store
the same index at least max{1, b(1 + ε)kc− 2} times. Therefore, the number of
changes to the n lists, starting with T1, is bounded by

t∑

k=1

n

max{1, b(1 + ε)kc − 2}
= O(nε ) .

This was observed in [22], where similar lists are maintained in a partially
persistent search tree [33]. This data structure uses O(nε ) space and supports
queries in O(log log1+εn) time.

We maintain these lists without persistence such that we can access any
entry in any list Ti in constant time. Let I = {1, 1 + t, . . . , 1 + b(n − 1)/tct}.
For every ` ∈ I we store T` explicitly as an array S`. Secondly, for ` ∈ I and
k = 1, . . . , dlog1+εte we define a bit vector B`,k of length t and a change list
C`,k, where

B`,k[a] =

{
0 if T`+a−1[k] = T`+a[k]
1 otherwise

Given a bit vector L, define sel(L, b) as the index of the b’th one in L. We set

C`,k[a] = T`+sel(B`,k,a)[k] .

Finally, for every ` ∈ I and for k = 1+dlog1+εte, . . . , t we storeD`[k] which is the
smallest integer z > ` such that Tz[k] 6= T`[k]. We also store E`[k] = TD`[k][k].
We store each bit vector in a rank and select data structure [56] that uses O( nw )
space for a bit vector of length n, and supports rank(i) in constant time. A
rank(i) query returns the number of ones in the first i bits of the input.

Each change list, Cl,k and every D` and E` list is stored as an array. The
bit vectors indicate at which indices the contents of the first dlog1+εte entries
of T`, . . . , T`+t−1 change, and the change lists store what the entries change
to. The D` and E` arrays do the same thing for the last t − dlog1+εte entries,
exploiting that these entries change at most once in an interval of length t.

Observe that the arrays, C`,k, D`[k] and E`[k], and the bit vectors, B`,k
allow us to retrieve the contents of any entry, Ti[k] for any i, k, in constant
time as follows. Let ` = bi/tct. If k > dlog1+εte we check if D`[k] ≤ i, and if
so we return E`[k], otherwise we return S`[k]. If k ≤ dlog1+εte, we determine
r = rank(i−`) in B`,k using the rank and select data structure. We then return
C`,k[r] unless r = 0 in which case we return S`[k].

We argue that this correctly returns Ti[k]. In the case where k > dlog1+εte,
comparing D`[k] to i indicates whether Ti[k] is different from T`[k]. Since Tz[k]
for z = `, . . . , i can only change once, Ti[k] = E`[k] in this case. Otherwise,
S`[k] = T`[k] = Ti[k]. If k ≤ dlog1+εte, the rank r of i− ` in B`,k, is the number
of changes that has occurred in the k’th entry from list T` to Ti. Since C`,k[r]
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stores the value of the k’th entry after the r’th change, C`,k[r] = Ti[k], unless
r = 0 in which case Ti[k] = S`[k].

The space used by the data structure is O(nε ). We store 3dnt e arrays, S`, D`

and E` for ` ∈ I, each using t space, in total O(n). The total size of the change
lists, C`,k, is bounded by the number of changes across the Ti lists, which is
O(nε ) by the arguments above. Finally, the rank and select data structures,
B`,k, each occupy O( tw ) = O( t

logn) words, and we store a total of dnt edlog1+εte
such structures, thus the total space used by these is bounded by

O

(
t

log n

n

t
log1+εt

)
= O

(
n

log1+εt

log n

)
= O

(
n

ε

log t

log n

)

= O

(
n

ε

log log(εn)
ε

log n

)
= O

(
n

ε

log(n log(εn))

log n

)
= O

(n
ε

)
.

In the last line we used that if d1
εe ≥ n then we only store the small frequency

data structure. We conclude that our data structures uses O
(
n
ε

)
space.

To answer a query [i, j], we first compute a 3-approximation of Fi,j in
constant time using the data structure from Section 5.3. Thus, we find fi,j
satisfying fi,j ≤ Fi,j ≤ 3fi,j . Choose k such that d1

ε (1 + ε)ke + 1 ≤ fi,j ≤
d1
ε (1 + ε)k+1e − 1 then the successor of j in Ti must be in one of the entries,
Ti[k], . . . , Ti[k + O(log1+ε3)]. As stated earlier, the values of Ti are sorted in
increasing order, and we find the successor of j using a binary search on an
interval of length O(log1+ε3). Since each access to Ti takes constant time, we
use O(log log1+ε3) = O(log 1

ε ) time.

Theorem 5.7 There exists a data structure for (1 + ε)-approximate range
mode that uses O(nε ) space and supports queries in O(log 1

ε ) time.

The careful reader may have noticed that our data structure returns a fre-
quency, and not a label that occurs approximately Fi,j times. We can augment
our data structure to return a label instead as follows.

We set ε′ =
√

(1 + ε) − 1, and construct our data structure from above.
The small frequency data structure is augmented such that it stores the label
Mi,Qi[k] along with Qi[k], and returns this in a query. The large frequency
data structure is augmented such that for every update of Ti[k] we store the
label that caused the update. Formally, let a > 0 be the first index such that
Ti+a[k] 6= Ti[k]. Next to Ti[k] we store the label Li[k] = A[i+a−1]. In a query,
[i, j], let s be the index of the successor of j in Ti computed as above. If s > 1
we return the label Li[s−1], and if s = 1 we return Mi,Qi[d1/ε′e], which is stored
in the small frequency data structure.

In the case where s = 1 we know that d 1
ε′ e ≤ Fi,j ≤ d 1

ε′ (1 + ε′)2e − 1 =
d 1
ε′ (1 + ε)e − 1 and we know that the frequency of Mi,Qi[d1/ε′e] in A[i, j] is at

least d 1
ε′ e. We conclude that the frequency of Mi,Qi[d1/ε′e] in A[i, j] is a (1 + ε)-

approximation of Fi,j .
In the case where s > 1, we know that d 1

ε′ (1 + ε′)s−1e + 1 ≤ Fi,j ≤
d 1
ε′ (1 + ε′)s+1e − 1 by equation (5.1), and that the frequency, fL, of the

label Li[s − 1] in A[i, j] is at least d 1
ε′ (1 + ε′)s−1e + 1. This means that
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Fi,j ≤ 1
ε′ (1 + ε′)s+1 ≤ (1 + ε′)2fL = (1 + ε)fL, and we conclude that fL is

a (1 + ε)-approximation of Fi,j .

The space needed for this data structure is O( nε′ ) = O(n(
√

1+ε+1)
ε ) = O(nε ),

and a query takes O(log 1
ε′ ) = O(log 1

ε + log(
√

1 + ε+ 1)) = O(log 1
ε ) time.
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Chapter 6

Priority Queue Resilient to Memory Faults

In this chapter we design and analyze a priority queues in the faulty-memory
RAM model.

Our Results We design a data structure that uses O(n) space for storing
n elements and performs both Insert and Deletemin in O(log n + δ) time
amortized. Our priority queue matches the bounds for an optimal comparison
based priority queue in the RAM model while tolerating O(log n) corruptions.
It is a significant improvement over using the resilient search tree in [38] as a
priority queue, since it uses O(log n+δ2) time amortized per operation and thus
only tolerates O(

√
log n) corruptions to preserve the O(log n) bound per oper-

ation. Our priority queue is the first resilient data structure allowing O(log n)
corruptions, while still matching optimal bounds in the RAM model. Our prior-
ity queue does not store elements in reliable memory between operations, only
structural information like pointers and indices. We prove that any comparison
based resilient priority queue behaving this way requires worst case Ω(logn+δ)
time for either Insert or Deletemin.

The resilient priority queue is based on the cache-oblivious priority queue
by Arge et al. [9]. The main idea is to gather elements in large sorted groups
of increasing size, such that expensive updates do not occur too often. The
smaller groups contain the smaller elements, so they can be retrieved faster
by Deletemin operations. We extensively use the resilient merging algorithm
in [36] to move elements among the groups. Due to the large sizes of the groups,
the extra work required to deal with corruptions in the merging algorithm
becomes insignificant compared to the actual work done.

Outline The remainder of the paper is structured as follows. We give a
detailed description of the resilient priority queue in Section 6.1, while in Sec-
tion 6.2 we prove its correctness and complexity bounds. Finally, in Section 6.3
we prove matching lower bounds for resilient priority queues.

Preliminaries Given two sequences X and Y , we let XY denote the con-
catenation of X and Y . A sequence X is faithfully ordered if its uncorrupted
keys appear in non-decreasing order.
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Definition 6.1 A resilient priority queue maintains a set of elements under
the operations Insert and Deletemin. An Insert adds an element and a
Deletemin deletes and returns the minimum uncorrupted element or a cor-
rupted one.

We note that our definition of a resilient priority queue is consistent with the
resilient sorting algorithms introduced in [39]. Given a sequence of n elements,
inserting all of them into a resilient priority queue followed by n Deletemin
operations yields a faithfully ordered sequence.

6.1 Fault Tolerant Priority Queue

In this section we introduce the resilient priority queue. It resembles the cache-
oblivious priority queue by Arge et al. [9]. The elements are stored in faithfully
ordered lists and are moved using two fundamental primitives, Push and Pull,
based on faithful merging. We describe the structure of the priority queue in
Section 6.1.1 and then introduce the Push and Pull primitives in Section 6.1.2.
Finally, in Section 6.1.3, we describe the Insert and Deletemin operations.

6.1.1 Structure

The resilient priority queue consists of an insertion buffer I together with a
number of layers L0, . . . , Lk, with k = O(log n). Each layer Li contains an
up-buffer Ui and a down-buffer Di, represented as arrays. Intuitively, the up-
buffers contain large elements that are on their way to the upper layers in
the priority queue, whereas the down-buffers contain small elements, on their
way to lower layers. The buffers in the priority queue are stored as a doubly
linked list U0, D0, . . . , Uk, Dk, see Figure 6.1. For each up and down buffer
we reliably store the pointers to their adjacent buffers in the linked list and
their size. In the reliable memory we store pointers to I, U0 and D0, together
with |I|. Since the position of the first element in U0 and D0 is not always
the first memory cell of the corresponding buffer, we also store the index of
the first element in these buffers in reliable memory. The insertion buffer I
contains up to b = δ + log n+ 1 elements. For layer Li we define the threshold
si by s0 = 2 · (δ2 + log2 n) and si = 2si−1 = 2i+1 · (δ2 + log2 n), where n is the
number of elements in the priority queue. We use these thresholds to decide
whether an up buffer contains too many elements or whether a down buffer
has too few. For the sake of simplicity, the up and down buffers are grown
and shrunk as needed during the execution such that they don’t use any extra
space.

To structure the priority queue, we maintain the following invariants for the
up and down buffers.

• Order invariants:

1. All buffers are faithfully ordered.

2. DiDi+1 and DiUi+1 are faithfully ordered, for 0 ≤ i < k.
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Figure 6.1: The structure of the priority queue. The buffers are stored in a
doubly linked list using reliably stored pointers. Additionally, the size of each
buffer is stored reliably.

• Size invariants:

3. si/2 ≤ |Di| ≤ si, for 0 ≤ i < k.

4. |Ui| ≤ si/2, for 0 ≤ i < k.

By maintaining all the up and down buffers faithfully ordered, it is possible
to move elements between neighboring layers efficiently, using faithful merging.
By invariant 2, all uncorrupted elements in Di are smaller than all uncorrupted
elements in both Di+1 and Ui+1. This ensures that small elements belong to the
lower layers of the priority queue. We note that there is no assumed relationship
between the elements in the up and down buffers in the same layer. Finally, the
size invariants allow the sizes of the buffers to vary within a large range. This
way, Ω(si) Insert or Deletemin operations occur between two operations on
the same buffer in Li, yielding the desired amortized bounds.

Since the si values depend on n, whenever the size of the priority queue
increases or decreases by Θ(n), we perform a global rebuilding. This rebuilding
is done by collecting all elements, sorting them with an optimal resilient sorting
algorithm [36], and redistributing the output into the down buffers of all the
layers starting with L0. After the global rebuilding, the up buffers are empty
and the down buffers full, except possibly the last down buffer.

6.1.2 Push and Pull Primitives

We now introduce the two fundamental primitives used by the priority queue.
The Push primitive is invoked when an up buffer contains too many elements,
breaking invariant 4. It “pushes” elements upwards, repairing the size invari-
ants locally. The Pull operation is invoked when a down buffer contains too
few elements, breaking invariant 3. It fills this down buffer by “pulling” ele-
ments from the layer above, again locally repairing the size invariants. Both
operations faithfully merge consecutive buffers in the priority queue and redis-
tribute the resulting sequence among the participating buffers. After merging,
we deallocate the old buffers and allocate new arrays for the new buffers.

Push The Push primitive is invoked when an up buffer Ui breaks invariant 4,
i.e. when it contains more than si/2 elements. In this case we merge Ui, Di

and Ui+1 into a sequence M using the resilient merging algorithm in [36]. We
then distribute the elements in M by placing the first |Di|−δ elements in a new
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buffer D′i, and the remaining |Ui+1| + |Ui| + δ elements in a new buffer U ′i+1.
After the merge, we create an empty buffer, U ′i , and deallocate the old buffers.
If U ′i+1 contains too many elements, breaking invariant 4, the Push primitive
is invoked on U ′i+1. When Li is the last layer, we fill D′i with the first elements
of M and create a new layer Li+1 placing the remaining elements of M into D′i+1

instead of U ′i+1. Since |D′i| is smaller than |Di|, it could violate invariant 3.
This situation is handled by using the Pull operation and is described after
introducing Pull.

Unlike the priority queue in [9], the Push operation decreases the size of a
down buffer. This is required to preserve invariant 2, in spite of corruptions.
After a Push call, D′i can contain elements from Ui ∪ Ui+1. Since there is no
assumed relationship between elements in Ui∪Ui+1 and those in Di+1∪Ui+2, we
need to ensure that each element in D′i originating from Ui ∪ Ui+1 is faithfully
smaller than the elements in Di+1 ∪ Ui+2. Assume the size of Di is preserved,
i.e. |D′i| = |Di|. Consider a corruption that alters an element in Di to some
large value before the Push. This corrupted value could be placed in U ′i+1 and,
since |D′i| = |Di|, an element from Ui ∪ Ui+1 must be placed in D′i. This new
element in D′i potentially violates invariant 2.

Pull The Pull operation is called on a down buffer Di when it contains less
than si/2 elements, breaking invariant 3. In this case, the buffers Di, Ui+1,
and Di+1 are merged into a sequence M using the resilient merging algorithm
in [36]. The first si elements from M are written to a new buffer D′i, and
the next |Di+1| − (si − |Di|)− δ elements are written to D′i+1. The remaining
elements of M are written to U ′i+1. A Pull is invoked on D′i+1, if it is too
small.

Similar to the Push operation, the extra δ elements lost by Di+1 ensure that
the order invariants hold in spite of possible corruptions. That is, a corruption
of an element in Di ∪ Di+1 to a very large value may cause an element from
Ui+1 to take the place of the corrupted element in D′i+1 and this element is
possibly larger than some uncorrupted element in Di+2 ∪ Ui+2.

After the merge, U ′i+1 contains δ more elements than Ui+1 had before the
merge, and thus it is possible that it has too many elements, breaking in-
variant 4. We handle this situation as follows. Consider a maximal series of
subsequent Pull invocations on down buffers Di, Di+1, . . . , Dj , 0 ≤ i < j < k.
After the first Pull call on Di and before the call on Di+1 we store a pointer
to Di in the reliable memory. After all the Pull calls we investigate all the af-
fected up buffers, by simply following the pointers between the buffers starting
from Di, and invoke the Push primitive wherever necessary. The case when
Push operations cause down buffers to underflow is handled similarly.

6.1.3 Insert and Deletemin

An element is inserted in the priority queue by simply appending it to the
insertion buffer I. If I gets full, its elements are added to U0 by first faithfully
sorting I and then faithfully merging I and U0. If U0 breaks invariant 4, we
invoke the Push primitive. If L0 is the only layer of the priority queue and D0
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Figure 6.2: The distribution of M into buffers.

violates the size constraint, we faithfully merge the elements in I with D0

instead.

To delete the minimum element in the priority queue, we first find the
minimum of the first δ + 1 values in D0, the minimum of the first δ + 1 values
in U0, and the minimum element in I. We then take the minimum of these three
elements, delete it from the appropriate buffer and return it. After deleting
the minimum, we right-shift all the elements in the affected buffer from the
beginning up to the position of the minimum. This way we ensure that elements
in any buffer are stored consecutively. If D0 underflows, we invoke the Pull
primitive on D0, unless L0 is the only layer in the priority queue. If U0 or D0

contains Θ(log n+ δ) empty cells, we create a new buffer and copy the elements
from the old buffer to the new one.

6.2 Analysis

In this section we analyze the resilient priority queue. We prove the correctness
in Section 6.2.1 and analyze the time and space complexity in Section 6.2.2.

6.2.1 Correctness

To prove correctness of the resilient priority queue, we show that the
Deletemin operation returns the minimum uncorrupted value or a corrupted
value. We first prove that the order invariants are maintained by the Pull and
Push operations.

Lemma 6.1 The Pull and Push primitives preserve the order invariants.

Proof. Recall that in a Pull invocation on buffer Di, the buffers Di, Ui+1,
and Di+1 are faithfully merged into a sequence M . The elements in M are
then distributed into three new buffers D′i, U

′
i+1, and D′i+1, see Figure 6.2. To

argue that the order invariants are satisfied we need to show that the elements
of the down buffer on layer Lj , for 0 ≤ j < k, are faithfully smaller than
the elements of the buffers on layer Lj+1, where k is the index of the last
layer. The invariants hold trivially for unaffected buffers. The faithful merge
guarantees that D′iD

′
i+1 as well as D′iU

′
i+1 are faithfully ordered, and thus the

individual buffers are also faithfully ordered. Since invariant 2 holds for the
original buffers all uncorrupted elements in Di+1 and Ui+1 are larger than the
uncorrupted elements in Di, guaranteeing that Di−1D

′
i is faithfully ordered.

Finally, we now show that Di+1Di+2 and Di+1Ui+2 are faithfully ordered.
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Letm be the minimum uncorrupted element inDi+2∪Ui+2. We need to show
that all uncorrupted elements in D′i+1 are smaller than m. If no uncorrupted
element from Ui+1 is placed in D′i+1, the invariant holds by the order invariants
before the operation. Otherwise, assume that an uncorrupted element y ∈ Ui+1

is moved to D′i+1. Since |U ′i+1| = |Ui+1|+δ and y is moved to D′i+1, at least δ+1
elements originating from Di ∪Di+1 are contained in U ′i+1. Since there can be
at most δ corruptions, there exists at least one uncorrupted element, x, among
these. By faithful merging, all uncorrupted elements in D′i+1 are smaller than
x, which means that y ≤ x. Since x originates from Di ∪ Di+1, it is smaller
than m. We obtain y ≤ m.

A similar argument proves correctness of the Push operation. We conclude
that both order invariants are preserved by Pull and Push operations.

2

Having proved that the order invariants are maintained at all times, we now
prove the correctness of the resilient priority queue.

Lemma 6.2 The Deletemin operation returns the minimum uncorrupted
value in the priority queue or a corrupted value.

Proof. We recall that the Deletemin operation computes the minimum of the
first δ + 1 elements of U0 and D0. It compares these values with the minimum
of I, found in a scan, and returns the smallest of these elements. Since U0

and D0 are faithfully ordered, the minimum of their first δ + 1 elements is
either the minimum uncorrupted value in these buffers, or a corrupted value
even smaller. Furthermore, according to the order invariants, all the values
in layers L1, . . . , Lk are faithfully larger than the minimum in D0. Therefore,
the element reported by Deletemin is the minimum uncorrupted value or a
corrupted value. 2

6.2.2 Complexity

In this section we show that our resilient priority queue uses O(n) space and
that Insert and Deletemin take O(log n+ δ) amortized time. We first prove
that the Pull and Push primitives restore the size invariants.

Lemma 6.3 If a size invariant is broken for a buffer in L0, invoking Pull or
Push on that buffer restores the invariants. Furthermore, during this opera-
tion Pull and Push are invoked on the same buffer at most once. No other
invariants are broken before or after this operation.

Proof. Assume that Push is invoked on U0, and that it is called iteratively up
to some layer Ll. By construction of Push, the size invariants for all the up
buffers now hold. Since a Push steals δ elements from the down buffers, the
layers L0, . . . , Ll are traversed again and Pull is invoked on these as needed.
The last of these Pull operations might proceed past layer Ll. Similarly, a
Pull may cause an up buffer to overflow. However, since the cascading Push
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operations left |Ui| = 0 for i ≤ l, any new Push are invoked on up buffers only
on layer Ll+1 or higher, thus Push is invoked on each buffer at most once. A
similar argument works for the Pull operation.

2

Lemma 6.4 The resilient priority queue uses O(n + δ) space to store n ele-
ments.

Proof. The insertion buffer always uses O(log n+ δ) space. We prove that the
remaining layers use O(n) space. For each layer we use O(δ) space for storing
structural information reliably. In all layers, except the last one, the down
buffer contains Ω(δ2) elements by invariant 3. This means that for each of these
layers the elements stored in the down buffer dominate the space complexity.
The structural information of the last layer requires additional O(δ) space. 2

The space complexity of the priority queue can be reduced to O(n) without
affecting the time complexity, by storing the structural information of L0 in safe
memory, and by doubling or halving the insertion buffer during the lifetime of
the algorithm such that it always uses O(|I|) space.

Lemma 6.5 Each Insert and Deletemin takes O(log n+δ) amortized time.

Proof. We define the potential function:

Φ =
k∑

i=1

(c1 · (log n− i) · |Ui|+ c2 · i · |Di|)

We use Φ to analyze the amortized cost of a Push operation. In a Push
operation on Ui, buffers Ui, Di, and Ui+1 are merged. The elements are then
distributed into new buffers U ′i , D

′
i, and U ′i+1, such that |U ′i | = 0, |D′i| = |Di|−δ,

and |U ′i+1| = |Ui+1|+ |Ui|+δ. This gives the following change in potential ∆Φ:

∆Φ = −|Ui| · c1 · (log n− i)− δ · c2 · i+ (|Ui|+ δ) · c1(log n− (i+ 1))

= −c1 · |Ui|+ δ(−c2 · i+ c1 · log n− c1 · i− c1) .

Since the Push is invoked on Ui, invariant 4 is not valid for Ui and there-
fore |Ui| ≥ si

2 = 2i (log2 n + δ2). Thus:

∆Φ ≤ −c1 · |Ui|+c1 ·δ · log n ≤ −c1 ·2i · (log2 n+δ2)+c1 ·δ · log n ≤ −c1 ·c′ · |Ui| ,
(6.1)

for some constant c′ > 0.

Since faithfully merging two sequences of size n takes O(n + δ2) time [36],
the time used for a Push on Ui is upper bounded by cm ·(|Ui|+|Di|+|Ui+1|+δ2),
where cm depends on the resilient merge. This includes the time required for
retrieving reliably stored variables. Adding the time and the change in potential
we are able to get the amortized cost less than zero by tweaking c1 based on
equation (6.1). This is because |Ui| is Ω(δ2) and at most a constant fraction
smaller than the participants in the merge.
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A similar analysis works for the Pull primitive. We now calculate the
amortized cost of Insert and Deletemin. We ignore any Push or Pull
operations since their amortized costs are negative. The amortized time for
inserting an element in I, sorting I, and merging it with U0 is O(log n + δ)
per operation. The change in potential when adding elements to L0 is O(log n)
per element. The time needed to find the smallest element in a Deletemin is
O(log n + δ), and the change in potential when an element is deleted from L0

is negative.

The cost of global rebuilding is dominated by the cost of sorting, which
is O(n log n+δ2). There are Θ(n) operations between each rebuild, which leads
to O(log n + δ) time per operation, since δ ≤ n, and this concludes the proof.
2

Theorem 6.1 The resilient priority queue takes O(n) space and uses amor-
tized O(log n+ δ) time per operation.

6.3 Lower bound

In this section we prove that any resilient priority queue takes Ω(log n + δ)
time for either Insert or Deletemin in the comparison model, under the
assumption that no elements are stored in reliable memory between operations.
This implies optimality of our resilient priority queue under these assumptions.
We note that the reliable memory may contain any structural information, e.g.
pointers, sizes, indices.

Theorem 6.2 A resilient priority queue containing n elements, with n > δ,
uses Ω(log n+ δ) comparisons to perform an Insert followed by Deletemin.

Proof. Consider a priority queue Q with n elements, with n > δ, that uses less
than δ comparisons for an Insert followed by a Deletemin. Also, Q does
not store elements in reliable memory between operations. Assume that no
corruptions have occurred so far. Without loss of generality we assume that all
the elements in Q are distinct. We prove there exists a series of corruptions C,
|C| ≤ δ, such that the result of an Insert of an element e followed by a
Deletemin returns the same element regardless of the choice of e.

Let k < δ be the number of comparisons performed by Q during the two
operations. We force the result of each comparison to be the same regardless
of e by suitable corruptions. In all the comparisons involving e, we ensure
that e is the smallest. We do so by corrupting the value which e is compared
against if necessary, by adding some positive constant c ≥ e to the other value.
If two elements different than e are compared, we make sure the outcome is
the same as if no corruptions had happened. If one of them was corrupted,
adding c to the other one reestablishes their previous ordering. If both of them
were corrupted by adding c, their ordering is unchanged and no corruptions are
needed. Forcing any comparison to give the desired outcome requires at most
one corruption, and therefore |C| ≤ k < δ.
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We now consider the value e′ returned by Deletemin on Q. If e = e′ then
we choose e to be larger than some element x ∈ Q not affected by a corruption
in C. Such a value exists because the size of the priority queue is larger than
δ. Since e = e′ > x, Q returned an uncorrupted element that was not the
minimum uncorrupted element in Q. If e 6= e′ we choose e to be smaller than
any element in Q. With such a choice of e, no corruptions are required and the
value returned by Q was not corrupted, but still larger than e. This proves Q
is not resilient.

Adding the classical Ω(log n) bound for priority queues in the comparison
model the result follows. 2





Chapter 7

Optimal Resilient Dictionaries

In this chapter we investigate comparison based search algorithm in the faulty
memory RAM. A resilient searching algorithm must return a positive answer
if there exists an uncorrupted element in the input equal to the search key. If
there is no element, corrupted or uncorrupted, matching the search key, the
algorithm must return a negative answer. If there is a corrupted value equal to
the search key, the answer can be both positive or negative.

Our Results We propose two optimal resilient static dictionaries, a random-
ized one and a deterministic one, as well as a dynamic dictionary.

Randomized static dictionary: We introduce a resilient randomized static dic-
tionary that support searches in O(log n+ δ) time, matching the bounds
for randomized searching in [36]. We note however that our dictionary is
somewhat simpler and uses only O(log δ) worst case random bits, whereas
the algorithm in [36] uses expected O(log δ · log n) random bits. On the
downside, our dictionary assumes that the corruptions are performed by
a non-adaptive adversary, i.e. an adversary that does not perform cor-
ruptions based on the behavior of the algorithm. Given the motivation of
the model, i.e. corruptions performed by cosmic rays or alpha particles,
the assumption is reasonable.

Deterministic static dictionary: We give the first optimal resilient static deter-
ministic dictionary. It supports searches in a sorted array in O(log n+ δ)
time in the worst case, matching the lower bounds from [39]. Un-
like its randomized counterpart, the deterministic dictionary does not
make any assumptions regarding the way in which corruptions are per-
formed. Previously, the best deterministic dictionary, supported searches
in O(log n+ δ1+ε) time [36].

Dynamic dictionary: We introduce a deterministic dynamic dictionary that
significantly improves over the resilient search trees by Finocchi et al. [38].
It supports searches in O(log n+ δ) in the worst case, and insertions and
deletions in O(log n+ δ) time amortized. Also, it supports range queries
in O(log n+ δ + k) time, where k is the output size.

89
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7.1 Optimal Randomized Static Dictionary

In this section we introduce a simple randomized resilient search algorithm. It
searches for a given element in a sorted array using worst case O(log δ) random
bits and expected time O(log n+δ), assuming that corruptions are performed by
a non-adaptive adversary. The running time matches the algorithm by Finocchi
et al. [36], which, however, uses expected O(log n · log δ) random bits. The
main idea of our algorithm is to implicitly divide the sorted input array in 2δ
disjoint sorted sequences S0, . . . , S2δ−1, each of size at most dn/2δe. The j’th
element of Si, Si[j], is the element at position posi(j) = 2δj + i in the input
array. Intuitively, this divides the input array into dn/2δe consecutive blocks of
size 2δ, where Si[j] is the i’th element of the j’th block. Note that, since 2δ
disjoint sequences are defined from the input array and at most δ corruptions
are possible, at least half of the sorted sequences S0, . . . , S2δ−1 do not contain
any corrupted elements.

The algorithm generates a random number k ∈ {0, . . . , 2δ−1} and performs
an iterative binary search on Sk. We store in safe memory k, the search key e,
and the left and right indices, l and r, used by the binary search. The binary
search terminates when l and r are adjacent in Sk, and therefore 2δ elements
apart in the input array, since posk(r) − posk(l) = 2δ when r = l + 1. If the
binary search was not misled by corruptions, then the location of e is between
posk(l) and posk(r) in the input array. To check whether the search was misled,
we perform the following verification procedure. Consider the neighborhoods
Nl and Nr, containing the 2δ + 1 elements in the input array situated to the
left of posk(l) and to the right of posk(r) respectively. We compute the number
sl = |{z ∈ Nl | z ≤ e}| of elements in Nl that are smaller than e in O(δ)
time by scanning Nl. Similarly, we compute the number sr of elements in Nr

that are larger than e. If sl ≥ δ + 1 and sr ≥ δ + 1, and the search key is
not encountered in Nl or Nr, we decide whether it lies in the array or not by
scanning the 2δ− 1 elements between posk(l) and posk(r). If sl or sr is smaller
than δ + 1, a corruption has misguided the search. In this case, a new k is
randomly selected and the binary search is restarted.

Theorem 7.1 The randomized dictionary supports searches in O(log n + δ)
expected time and uses O(log δ) expected random bits.

Proof. We first prove the correctness of the algorithm. Assume that sl ≥ δ + 1
and e 6∈ Nl. Since only δ corruptions are possible, there exists an uncorrupted
element in Nl strictly smaller than e. Because the input array is sorted, no
uncorrupted elements to the left of posk(l) in the input array are equal to e. By
a similar argument, if sr ≥ δ + 1 and e 6∈ Nr, then no uncorrupted elements to
the right of posk(r) in the input array are equal to e. If no corrupted elements
are encountered during the binary search, all the uncorrupted elements of Nl

are smaller than e, and therefore sl ≥ δ + 1. Similarly, we have sr ≥ δ + 1, and
the algorithm terminates after scanning the elements between l and r.

We now analyze the running time. Each iteration generates a random num-
ber k ∈ {0, . . . , 2δ − 1}, using O(log δ) random bits. The sorted sequences
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induced by different k’s are disjoint, thus at most δ of them may contain cor-
ruptions. Since there are 2δ sorted sequences, the probability of selecting a
value k that leads to a corruption-free sequence is at least 1/2, and therefore
the expected number of iterations is at most two. Each iteration uses O(log n)
time for the binary search and O(δ) time for the verification. We conclude that
a search uses expected O(log δ) random bits and O(log n+ δ) expected time. 2

We note that for each iteration an adaptive adversary can learn about the
subsequence Sk on which we perform the binary search by investigating the
elements accessed. Subsequently a single corruption suffices to force the search
path to end far enough from its correct position such that the verification
fails. In this situation, the algorithm performs O(δ) iterations and therefore
O(δ(log n+ δ)) time regardless of the random choices of subsequences on which
to perform the binary search.

We obtain a worst case bound of O(log δ) random bits by using a stan-
dard derandomization technique. In the i’th iteration we perform the binary
search on sequence Sh(i), for h(i) = (r0 + ir1 + i2r2 + i3r3) mod k, where k is
a prime number with 2δ ≤ k < 4δ, and ri are chosen uniformly at random in
{0, . . . , k− 1}. By construction h(i) is a 4-wise independent hash function [58],
which suffices to obtain an expected constant number of iterations for our al-
gorithm [81].

7.2 Optimal Static Dictionary

In this section we close the gap between lower and upper bounds for determinis-
tic resilient searching algorithms. We present a resilient algorithm that searches
for an element in a sorted array in O(log n + δ) time in the worst case, which
is optimal [39]. It is an improvement of the previously published best deter-
ministic dictionary, which supports searches in O(log n + δ1+ε) time [36]. We
reuse the idea presented in the design of the randomized algorithm and define
disjoint sorted sequences to be used by a binary search algorithm. Similarly to
the randomized algorithm, we design a verification procedure to check the result
of the binary search. We design the adapted binary search and the verification
procedure such that we are guaranteed to advance only one level in the binary
search for each corrupted element misleading the search. We count the number
of detected corruptions and adjust our algorithm accordingly to ensure that no
element is used more than once, excepting a final scan performed only once on
two adjacent blocks. The total time used for verification is O(δ).

We divide the input array into implicit blocks. Each block consists of 5δ+1
consecutive elements of the input and is structured in three segments: the
left verification segment, LV , consists of the first 2δ elements, the next δ + 1
elements form the query segment, Q, and the right verification segment, RV ,
consists of the last 2δ elements of the block, see Figure 7.1. The left and right
verification segments, LV and RV , are used only by the verification procedure.
The elements in the query segment are used to define the sorted sequences
S0, . . . , Sδ, similarly to the randomized dictionary previously introduced. The
j’th element of sequence Si, Si[j], is the i’th element of the query segment of
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Figure 7.1: The structure of a block. The left and right verification segments,
LV and RV , contain 2δ elements each, and the query segment Q contains δ+ 1
elements.
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Figure 7.2: Example of binary search on a sequence Sk, for the search key
21. The arrows show the direction of the search. The emphasized element is
corrupted.

the j’th block, and is located at position posi(j) = (5δ + 1)j + 2δ + i in the
input array.

We store a value k ∈ {0, . . . , δ} in safe memory identifying the sequence
Sk on which we currently perform the binary search. Also, k identifies the
number of corruptions detected. Whenever we detect a corruption, we change
the sequence on which we perform the search by incrementing k. Since there
are δ + 1 disjoint sequences, there exists at least one sequence without any
corruptions.

Binary search The binary search is performed on the elements of Sk. Sim-
ilarly to the randomized algorithm, we store in safe memory the search key,
e, and the left and right sequence indices, l and r, used by the binary search.
Initially, l = −1 is the position of an implicit −∞ element. Similarly, r is the
position of an implicit ∞ to the right of the last element. Since each element
in Sk belongs to a distinct block, l and r also identify two blocks, Bl and Br.

Each step in the binary search compares the search key e against the element
at position i = b(l + r)/2c in Sk. Assume without loss of generality that this
element is smaller than e. We set l to i and decrement r by one. We then
compare e with Sk[r]. If this element is larger than e, the search continues.
Otherwise, if no corruptions have occurred, the position of the search element
is in block Br or Br+1 in the input array. When two adjacent elements are
identified as in the case just described, or when l and r become adjacent, we
invoke a verification procedure on the corresponding blocks. The pseudo-code
description of the binary search is given in Algorithm 1, and a working example
is shown in Figure 7.2.

The verification procedure determines whether the two adjacent blocks, de-
noted Bi and Bi+1, are correctly identified. If the verification succeeds, the
binary search is completed, and all the elements in the two corresponding ad-
jacent blocks, Bi and Bi+1 are scanned. The search returns true if e is found
during the scan, and false otherwise. If the verification fails, the search may



7.2. Optimal Static Dictionary 93

Algorithm 1: Pseudo-code for the binary search procedure.

l← −1
r ←last-block+1
while r − l > 1 do

i← d l+r2 e
if repk(block(i)) < e then

l← i
r ← r − 1
if repk(block(r)) < e then

if verify(r,r+1) is successful then
return success

else
Backtrack

else if repk(block(i)) > e then
Similar to previous case.

else
return success

if verify(l,r) is successful then
return success

else
Backtrack

have been misled by corruptions and we backtrack it two steps. To facilitate
backtracking, we store two word-sized bit-vectors, d and f in safe memory. The
i’th bit of d indicates the direction of the search and the i’th bit of f indicates
whether there was a rounding in computing the middle element in the i’th step
of the binary search respectively. We can easily compute the values of l and r
in the previous step of the binary search by retrieving the relevant bits of d and
f . If the verification fails, it detects at least one corruption and therefore k is
incremented, thus the search continues on a different sequence Sk.

Verification phase Verification is performed on two adjacent blocks, Bi
and Bi+1. It either determines that e lies in Bi or Bi+1 or detects corruptions.
The verification is an iterative algorithm maintaining a value which expresses
the confidence that the search key resides in Bi or Bi+1. We compute the left
confidence, cl, which is a value that quantifies the confidence that e is in Bi or
to the right of it. Intuitively, an element in LVi smaller than e is consistent
with the thesis that e is in Bi or to the right of it. However an element in LVi
larger than e is inconsistent. Similarly, we compute the right confidence, cr, to
express the confidence that e is in Bi+1 or to the left of it.

We compute cl by scanning a sub-interval of the left verification seg-
ment, LVi, of Bi. Similarly, the right confidence is computed by scanning the
right verification segment, RVi+1, of Bi+1. Initially, we set cl = 1 and cr = 1.
We scan LVi from right to left starting at the element at index vl = 2δ − 2k in
LVi. Intuitively, by the choice of vl we ensure that no element in LVi is accessed
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Algorithm 2: Pseudo-code for the verification procedure.

input : k: Number of errors identified so far
δ: maximum number of errors
l:index of the left block
r:index of the right block

LV ← index of first element in LVl
RV ← index of first element in RVr
il ← LV + 2δ − 2k
ir ← RV + 2k
cr, cl ← 1
while 0 < min(cl, cr) < δ − k + 1 do

if A[il] < e then
cl ← cl + 1

else
cl ← cl − 1
k ← k + 1

if A[ir] > e then
cr ← cr + 1

else
cr ← cr − 1
k ← k + 1

il ← il − 1
ir ← ir + 1

if min(cl, cr) = 0 then
return failure

else
Scan left and right block and return result

more than once. Similarly, we scan RVi+1 from left to right beginning with the
element at position vr = 2k. In an iteration we compare LVi[vl] and RVi+1[vr]
against e. If LVi[vl] ≤ e, cl is increased by one, otherwise it is decreased by one
and k is increased by one. Similarly, if RVi+1[vr] ≥ e, cr is increased; otherwise,
we decrease cr and increase k. The verification procedure stops when min(cr, cl)
equals δ − k + 1 or 0. The verification succeeds in the former case, and fails
in the latter. The pseudo-code for the verification procedure is introduced in
Algorithm 2, and a working example is shown in Figure 7.3.

Theorem 7.2 The resilient algorithm searches for an element in a sorted array
in O(log n+ δ) time.

Proof. We first prove that when cl or cr decrease during verification, a cor-
ruption has been detected. We increase cl when an element smaller than e is
encountered in LVi, and decrease it otherwise. Intuitively, cl can been seen as
the size of a stack S. When we encounter an element smaller than e, we treat
it as if it was pushed, and as if a pop occurred otherwise. Initially, the element
g from the query segment of Bi used by the binary search is pushed in S. Since
g was used to define the left boundary in the binary search, g < e at that time.
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2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45. . . . . .
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Figure 7.3: A verification step for δ = 3, with k = 1 initially. The search key
is 45. The verification algorithms stops with cr = 0, reporting failure. The
emphasized elements are corrupted.

Each time an element LVi[v] < e is popped from the stack, it is matched with
the current element LVi[vl]. Since LVi[v] < e < LVi[vl] and vl < v, at least one
of LVi[vl] and LVi[v] is corrupted, and therefore each match corresponds to de-
tecting at least one corruption. It follows that if 2t−1 elements are scanned on
either side during a failed verification, then at least t corruptions are detected.

We now argue that no single corrupted cell is counted twice. A corruption
is detected if and only if two elements are matched during verification. Thus it
suffices to argue that no element participates in more than one matching. We
first analyze corruptions occurring in the left and right verification segments.
Since the verification starts at index 2(δ − k) in the left verification segment
and k is increased when a corruption is detected, no element is accessed twice,
and therefore not matched twice either. A similar argument holds for the right
verification segment. Each failed verification increments k, thus no element
from a query segment is read more than once. In each step of the binary search
both the left and the right indices are updated. Whenever we backtrack the
binary search, the last two updates of l and r are reverted. Therefore, if the
same block is used in a subsequent verification, a new element from the query
segment is read, and this new element is the one initially on the stack. We
conclude that elements in the query segments, which are initially placed on the
stack, are never matched twice either.

To argue correctness we prove that if a verification is successful, and e is
not found in the scan of the two blocks, then no uncorrupted element equal to e
exists in the input. If a verification succeeds and e is not found in either block,
then cl ≥ δ − k + 1. Since only δ − k more corruptions are possible, there is
at least one uncorrupted element in LVi smaller than e and thus there can be
no uncorrupted elements equal to e to the left of Bi in the input array. By a
similar argument, if cr ≥ δ − k + 1, then all uncorrupted elements to the right
of Bi+1 in the input array are larger than e.

We now analyze the running time. We charge each backtracking of the
binary search to the verification procedure that triggered it. Therefore, the
total time of the algorithm is O(log n) plus the time required by verifications.
To bound the time used for all verification steps we use the fact that if O(f)
time is used for a verification step, then Ω(f) corruptions are detected or the
algorithm ends. At most O(δ) time is used in the last verification for scanning
the two blocks. 2
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Figure 7.4: The structure of the dynamic dictionary.

7.3 Dynamic Dictionary

In this section we describe a linear space resilient deterministic dynamic dic-
tionary supporting searches in optimal O(log n+ δ) worst case time and range
queries in optimal O(log n + δ + k) worst case time, where k is the size of the
output. The amortized update cost is O(log n+ δ).

Structure The sorted sequence of elements is partitioned into a sequence of
leaf structures, each storing Θ(δ log n) elements. For each leaf structure we
select a guiding element, and we place these O(n/(δ log n)) guiding elements
in the leaves of a reliably stored binary search tree. Each guiding element is
chosen such that it is larger than all uncorrupted elements in the corresponding
leaf structure.

For this reliable top tree T , we use the (non-resilient) binary search tree
in [24], which consists of h = log |T |+O(1) levels when containing |T | elements.
In the full version [25] it is shown that the tree can be maintained such that
the first h − 2 levels are complete. We lay the tree in memory in left-to-right
breadth first order, as specified in [24]. It uses linear space, and an update costs
amortized O(log2 |T |) time. A global rebuilding is performed when |T | changes
by a constant factor.

All the elements and pointers in the top tree are stored reliably, using repli-
cation. Since a reliable value takes O(δ) space, O(δ|T |) space is used for the en-
tire structure. The time used for storing and retrieving a reliable value is O(δ),
and therefore the additional work required to handle the reliably stored values
increases the amortized update cost to O(δ log2 |T |) time.

The leaf structure consists of a top bucket B and b buckets, B0, . . . , Bb−1,
where log n ≤ b ≤ 4 log n. Each bucket Bi contains between δ and 6δ input
elements, stored consecutively in an array of size 6δ, and uncorrupted elements
in Bi are smaller than uncorrupted elements in Bi+1. For each bucket Bi,
the top bucket B associates a guiding element larger than all elements in Bi,
a pointer to Bi, and the size of Bi, all stored reliably. Since storing a value
reliably uses O(δ) space, the total space used by the top bucket is O(δ log n).
The guiding elements of B are stored as a sorted array to enable fast searches
using the deterministic resilient search algorithm from Section 7.2.
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Lemma 7.1 The dynamic dictionary uses O(n) space to store n elements.

Proof. Since a leaf structure stores Θ(δ log n) input elements, the top tree con-
tains O(n/(δ log n)) nodes, using O(δ|T |) = O(δn/(δ log n)) = o(n) space. Each
of the O(n/(δ log n)) leaf structures uses O(δ log n) space and therefore the total
space used for leaf structures is O(n). 2

Searching The search operation consists of two steps. It first locates a leaf
in the top tree T , and then searches the corresponding leaf structure. Let h
denote the height of T . If h ≤ 3, we perform a standard tree search from the
root of T using the reliably stored guiding elements and pointers. Otherwise,
we locate two internal nodes, v1 and v2, with guiding elements g1 and g2,
such that g1 < e ≤ g2, where e is the search key. Since h − 2 is the last
complete level of T , level ` = h − 3 is complete and contains only internal
nodes. The breadth first layout of T ensures that elements of level ` are stored
consecutively in memory. The search operation locates v1 and v2 using the
deterministic resilient search algorithm from Section 7.2 on the array defined
by level `. The search only considers the 2δ + 1 cells in each node containing
guiding elements and ignores memory used for auxiliary information, e.g. sizes
and pointers. Although they are stored using replication, the guiding elements
are considered as 2δ+ 1 regular elements in the search. Since the space used by
the auxiliary information is the same for all nodes, these gaps in the memory
layout of level ` are easily excluded from the search. We modify the resilient
searching algorithm previously introduced such that it reports two consecutive
blocks with the property that if the search key is in the structure, it is contained
in one of them. The reported two blocks, each of size 5δ + 1, span O(1) nodes
of level ` and the guiding elements of these are queried reliably to locate v1 and
v2. The appropriate leaf can be in either of the subtrees rooted at v1 and v2,
and we perform a standard tree search in both using the reliably stored guiding
elements and pointers. Searching for an element in a leaf structure is performed
by using the resilient search algorithm from Section 7.2 on the top bucket, B,
similar to the way v1 and v2 were found in T . The corresponding reliably stored
pointer is then followed to a bucket Bi, which is scanned.

Range queries can be performed by scanning the level `, starting at v, and
reporting relevant elements in the leaves below it.

Lemma 7.2 The search operation of the dynamic dictionary uses O(log n+ δ)
worst case time. A range query reporting k elements is performed in worst case
O(log n+ δ + k) time.

Proof. The initial search in the top tree takes O(log n+ δ) worst case time by
Theorem 7.2. Traversing the O(1) levels to a leaf takes time O(δ). Searching
in the top bucket of the leaf structures uses O(log log n + δ) time, again using
Theorem 7.2. The final scan of a bucket takes time O(δ).

In a range query, the elements reported in any leaf completely contained in
the query range pay for the O(δ log n) time used for going through the bottom
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part of the top tree and scanning the top bucket. The search pays for the
rightmost traversed leaf. 2

Updates Efficiently updating the structure is performed using standard buck-
eting techniques. To insert an element into the dictionary, we first perform a
search to locate the appropriate bucket Bi in a leaf structure, and then the
element is appended to Bi and the size of Bi in the top bucket is updated.
When the size of Bi increases to 6δ, we split it into two buckets, Bs and Bg, of
almost equal sizes. We compute a guiding element that splits Bi in O(δ2) time
by repeatedly scanning Bi and extracting the minimum element. The element
m returned by the last iteration is kept in safe memory. In each iteration, we
select a new m which is the minimum element in Bi larger than the current
m. Since at most δ corruptions can occur, Bi contains at least 2δ uncorrupted
elements smaller than m and 2δ uncorrupted elements larger, after |Bi|/2 = 3δ
iterations. The elements from Bi smaller than m are stored in Bs, and the
remaining ones are stored in Bg. The guiding element for Bs is m, while Bg
preserves the guiding element of Bi. The new split element is reliably inserted
in the top bucket using an insertion sort step, by scanning and shifting the
elements in B from right to left, and placing the new element at its appropriate
position. Similarly, when the size of the top bucket becomes 4 log n, it is split
in two new leaf structures. The first leaf structure consists of the first 2 log n
bottom buckets, and the second leaf structure contains the rest. The second
leaf structure is associated with the original guiding element, and the guiding
element of the new leaf structure is the last guiding element in its top bucket.
This new guiding element is inserted into the top tree.

Deletions are handled similarly by first searching for the element and then
removing it from the appropriate bucket. When an element is deleted from a
bucket, we ensure that the elements in the affected bucket are stored consec-
utively by swapping the deleted element with the last element. If the affected
bucket holds fewer than δ elements after the deletion, it is merged with a neigh-
boring bucket. If the resulting bucket contains more than 6δ elements, it is split
as described above. If the top bucket contains less than log n guiding elements,
it is merged with a neighboring leaf structure which is found using a search.
Following this, the original leaf is deleted from the top tree.

Lemma 7.3 The insert and delete operations of the dynamic dictionary take
O(log n+ δ) amortized time each.

Proof. An update in the top tree takes O(δ log2 n) time and requires Ω(δ log n)
updates in the leaf structures. Thus each update costs amortized O(log n)
time for operations in the top tree. Splitting and merging a bucket of a leaf
structure takes time O(δ log n) for updates to the top bucket and O(δ2) time for
computing a split element for a bucket. A bucket is split or merged every Ω(δ)
operations resulting in an amortized update cost of O(log n+ δ). Appending or
removing a single element to a bucket takes worst case time O(δ) for updating
the size. Adding the O(log n+ δ) cost of the initial search concludes the proof.
2
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Theorem 7.3 The resilient dynamic dictionary structure uses O(n) space
while supporting searches in O(log n + δ) time worst case with an amortized
update cost of O(log n+δ). Range queries with an output size of k is performed
in worst case O(log n+ δ + k) time.





Chapter 8

Fault Tolerant External Memory

Algorithms

In this chapter we conduct the first study of external memory algorithms and
data structures in the presence of an unreliable internal and external memory.

Our Contribution The work in this chapter combines the faulty memory
RAM and the external memory model in the natural way. The model has
three levels of memory: a disk, an internal memory of size M , and O(1) CPU
registers. All computation takes place on elements placed in the registers. The
content of any cell on disk or in internal memory can be corrupted at any time,
but at most δ corruptions can occur. Moving elements between memory and
registers takes constant time and transferring a chunk of B consecutive elements
between disk and memory costs one I/O. Transfers between the different levels
are atomic, no data can be corrupted while it is being copied. Correctness of
an algorithm is proved with the assumption that an adaptive adversary may
perform corruptions during execution. For randomized algorithms we assume
that the random bits are hidden from the adversary. In two natural variants
of our model it is assumed that corruptions take place only on disk, or only in
memory.

We present I/O-efficient solutions to all problems that, to the best of our
knowledge, have previously been considered in the faulty memory RAM. It is
not clear that resilient algorithms can be optimal both in time and in I/O-
complexity. Most techniques for designing I/O-efficient algorithms naturally
try to arrange data on disk such that few blocks need to be read in order to
extract the information needed, whereas resilient algorithms try to put little
emphasis on individual, potentially corrupted, memory cells.

It is known that any resilient comparison based search algorithm must ex-
amine Ω(logN + δ) memory cells [40]. Combining this with the well-known
Ω(logB N) I/O lower bound on external memory comparison based search-
ing, we get a simple lower bound of Ω

(
logB N + δ

B

)
I/Os, and Ω(logN + δ)

time. In Section 8.1 we prove a stronger lower bound of Ω
(

1
ε logB N + δ

B1−ε

)

I/Os for a search, for all logB N ≤ δ ≤ B logN and ε given by the equation

δ = B1−ε

ε logB N . In the case where δ = Θ( B
logB loglogB N), setting ε = log logB

logB

gives a lower bound of Ω(loglogB N + δ
B logB) which is ω(logB N + δ

B ). We

101
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I/O Complexity Assumptions
I/O Tolerance

(max δ)
Time Tolerance

(max δ)

Deterministic
Dictionary

O
(

1
ε logB N + δ

B1−ε

) 1
logB < ε < 1 O(B1−ε logB N) O(logN)

Randomized
Dictionary

O(logB N + δ
B ) Memory Safe O(B logB N) O(logN)

Priority
Queue

O( 1
1−ε

1
B logM/B(NM )) δ ≤M ε, ε < 1 O(M ε) O(logN)

Sorting O( 1
1−εSort(N)) δ ≤M ε, ε < 1 O(M ε) O(

√
N logN)

Table 8.1: The first column shows the I/O upper bounds presented in our paper
with the assumptions shown in the second column. The third and fourth column
shows how many corruptions the algorithms can tolerate while still matching the
optimal algorithms in the I/O and comparison model respectively. Note that
the restriction imposed by the time bounds are orders of magnitude stronger
than the ones imposed by the I/O bounds for realistic values of M , B and N .

come to the interesting conclusion that no deterministic resilient dictionary can
obtain an I/O bound of O(logB N + δ

B ) without some assumptions on δ. The
lower bound is valid for randomized algorithms as long as the internal memory
is unreliable. For deterministic algorithms, the lower bound also holds if the
internal memory is reliable and corruptions only occur on disk.

In Section 8.2 we construct a resilient dictionary supporting searches using
expected O

(
logB N + δ

B

)
I/Os and O(logN + δ) time for any δ if corruptions

occur exclusively on disk. Thus, we have an interesting separation between
the I/O complexity of resilient randomized and resilient deterministic searching
algorithms. This also proves that it is important whether it is the disk or the
internal memory that is unreliable.

In Section 8.3 we present an optimal resilient static dictionary supporting
queries in O

(
1
c logB N + α

B1−c + δ
B

)
I/Os and O(logN + δ) time when logN ≤

δ ≤ B logN and 1
logB ≤ c ≤ 1. Queries use O(logB N+ δ

B ) I/Os and O(log n+δ)
time for δ ≤ logN and δ > B logN . Additionally, we construct randomized
and deterministic dynamic dictionaries with optimal query bounds using our
static dictionaries.

Finally, in Section 8.5 we describe a resilient multi-way merging algorithm.
We use this algorithm to design an optimal resilient sorting algorithm using
O( 1

1−εSort(N)) I/Os and O(N logN + αδ) time under the assumption that
δ ≤M ε, for 0 ≤ ε < 1. The multi-way merging algorithm is also used to design
a resilient priority queue for the case δ ≤ M ε, where 0 ≤ ε < 1. Our priority
queue supports Insert and Deletemin in optimal O( 1

1−ε(1/B) logM/B(N/M))
I/Os amortized, matching the bounds for non-resilient external memory priority
queues. The amortized time bound for both operations is O(logN+δ) matching
the time bounds of the optimal resilient priority queue of [D8].

Table 8.1 shows an overview of the upper bounds in this paper. The two last
columns in the table shows how many corruptions our algorithms can tolerate
while still achieving optimal bounds in the I/O model and comparison model
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respectively. Note that the bounds on δ required to get optimal time are orders
of magnitude smaller than the bounds required to get optimal I/O performance
for realistic values of N , M and B. We conclude that it is possible, under
realistic assumptions, to get resilient algorithms that are optimal in both the
I/O-model and the comparison model without restricting δ more than what was
required to obtain optimal time bounds in the faulty memory RAM.

8.1 Lower Bound for Dictionaries

Any resilient searching algorithm must examine Ω(logN + δ) memory cells
in the comparison model [40]. The Ω(logN) term follows from the compari-
son model lower bound for searching. It is well-known that comparison-based
searching in the I/O model requires expected Ω(logB N) I/Os. Since any re-
silient searching algorithm must read at least Ω(δ) elements to ensure at least
some non-corrupted information is the basis for the output, we get the following
trivial lower bound.

Lemma 8.1 For any comparison-based randomized resilient dictionary the
average-case expected search cost is Ω

(
logB N + δ

B

)
I/Os.

In this section we prove a stronger lower bound on the worst-case number of
I/Os required for any deterministic resilient static dictionary in the comparison
model. We do not make any assumptions on the data structure used by the
dictionary, nor on the space it uses. Additionally, we do not bound the amount
of computation time used in a query and we assume that the total order of all
elements stored in the dictionary are known by the algorithm initially. During
the search for an element e, an algorithm gains information by performing block
I/Os, each I/O reading B elements from disk. Before a block of B elements is
read into memory the adversary can corrupt the elements in the block. The
adversary is allowed to corrupt up to δ elements during the query operation,
but does not have to reveal when it chooses to do so. Also, the adversary adap-
tively decides what the rank of the search element has among the N dictionary
elements. Of course, the rank must be consistent with the previous uncorrupted
elements read by the algorithm.

Theorem 8.1 Given N and δ, any deterministic resilient static dictionary re-
quires worst-case Ω

(
1
ε logB N

)
I/Os for a search, for all ε where 1

logB ≤ ε ≤ 1

and δ ≥ 1
εB

1−ε logB N .

Proof. We design an adversary that uses corruptions to control how much in-
formation any correct query algorithm gains from each block transfer.

Let ε be a constant such that 1
logB ≤ ε ≤ 1. The strategy of the adversary

is as follows. For each I/O, the adversary narrows the candidate interval where
e can be contained in by a factor Bε. Initially, the candidate interval consists
of all N elements. For each I/O, the adversary implicitly divides the sorted
set of elements in the candidate interval into Bε slabs of equal size. Since the
search algorithm only reads B elements in an I/O, there must be at least one
slab containing at most B1−ε of these elements. The adversary corrupts these
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elements, such that they do not reveal any information, and decides that the
search element resides in this slab. The remaining elements transferred are not
corrupted and are automatically consistent with the interval chosen for e. The
game is then played recursively on the elements of the selected slab, until all
elements in the final candidate interval have been examined.

For each I/O, the candidate interval decreases by a factor Bε. The algorithm
has no information regarding elements in the slab except for the corrupted
elements from the I/Os performed so far. After k I/Os the candidate interval
has size N

(Bε)k
and the adversary has introduced at most kB1−ε corruptions. The

game continues as long as there is at least one uncorrupted element among the
elements remaining in the candidate interval, which the adversary can choose as
the search element. All corrupted elements may reside in the current candidate
interval, and the game ends when the size of the candidate interval, N

(Bε)k
,

becomes smaller than or equal to the total number of introduced corruptions,
kB1−ε. It follows that at least Ω

(
logBε

N
B1−ε

)
= Ω

(
1
ε logB N

)
I/Os are required.

The adversary introduces at most B1−ε corruptions in each step. If ε satisfies
1
εB

1−ε logB N ≤ δ, then the adversary can play the game for at least 1
ε logB N

rounds and the theorem follows. 2

For deterministic algorithms it does not matter whether elements can be
corrupted on disk or in internal memory. Since the adversary is adaptive it
knows which block of elements an algorithm will read into internal memory
next, and may choose to corrupt the elements on disk just before they are
loaded into memory, or corrupt the elements in internal memory just after they
have been written there. In randomized algorithms where the adversary does
not know the algorithm’s random choices it cannot determine which block of
elements will be fetched from disk before the transfer has started. Therefore,
the adversary can follow the strategy above only if it can corrupt elements in
internal memory.

By setting δ = 1
εB

1−ε logB N in Theorem 8.1, we get the following corollary.

Corollary 8.1 Any deterministic resilient static dictionary requires worst-case
Ω(1

ε logB N) = Ω( δ
B1−ε ) I/Os for a search, where δ ∈ [logB N,B logN ], and ε

given by δ = 1
εB

1−ε logB N .

The trivial I/O lower bound for a resilient searching algorithm is
Ω
(
logB N + δ

B

)
. Setting ε = log logB

logB in Theorem 8.1 shows that this is not
optimal.

Corollary 8.2 For δ = B
logB loglogB N any deterministic resilient static dic-

tionary requires worst-case Ω( logB
log logB (logB N + δ

B )) I/Os for a search.

8.2 Randomized Static Dictionary

In this section we describe a simple I/O-efficient randomized static dictionary,
that is resilient to corruptions on the disk. Corruptions in memory are not
allowed, thus the adversarial lower bound in Theorem 8.1 does not apply. The
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dictionary supports queries using expected O
(
logB N + δ

B

)
I/Os and O(logN+

δ) time. The algorithm is similar to the randomized binary search algorithm
in [40]. Remember that, if only elements on disk can be corrupted, the lower
bound from Theorem 8.1 also holds for deterministic algorithms. This means
that deterministic and randomized algorithms are separated by the result in
this section.

The idea is to store the N elements in the dictionary in sorted order in an
array S and to build 2δ B-trees [15], denoted T1, . . . , T2δ, of size bN2δ c. The
i’th B-tree Ti stores the 2δj + i’th element in S for j = 0, . . . , bN2δ c − 1. Each
node in each tree is represented by a faithfully ordered array of Θ(B) search
keys. The nodes of the B-tree are laid out in left to right breadth first order,
to avoid storing pointers, i.e. the c’th child of the node at index k has index
Bk + c− (B − 1).

The search for an element e proceeds as follows. A random number r1 ∈
{1, . . . , 2δ} is generated, and the root block of Tr1 is fetched into the internal
memory. In this block, a binary search is performed among the search keys
resulting in an index, i, of the child where the search should continue. A new
random number r2 ∈ {1, . . . , 2δ} is generated, and the i’th child of the root in
tree Tr2 is fetched and the algorithm proceeds iteratively as above. The search
terminates when a leaf is reached and two keys S[2δj+i] and S[2δ(j+1)+i] have
been identified such that S[2δj + i] ≤ e < S[2δ(j + 1) + i]. If the binary search
was not mislead by corruptions of elements, then e is located in the subarray
S[2δj + i, . . . , 2δ(j + 1) + i]. To check whether the search was mislead, the
following verification procedure is performed. Consider the neighborhoods L =
S[2δ(j−1)+i−1, . . . , 2δj+i−1] and R = S[2δ(j+1)+i+1, . . . , 2δ(j+2)+i+1],
containing the 2δ+ 1 elements in S situated to the left of S[2δj + i] and to the
right of S[2δ(j + 1) + i] respectively. The number sL = |{z ∈ L | z ≤ e}| of
elements in L that are smaller than e is computed by scanning L. Similarly,
the number sR of elements in R that are larger than e is computed. If sL ≥
δ + 1 and sR ≥ δ + 1, and the search key is not encountered in L or R, we
decide whether it is contained in the dictionary or not by scanning the subarray
S[2δj, . . . , 2δ(j + 1)]. If sL or sR is smaller than δ + 1, at least one corruption
has misguided the search. In this case, the search algorithm is restarted.

Theorem 8.2 The data structure described is a linear space randomized dic-
tionary supporting searches in expected O

(
logB N + δ

B

)
I/Os and O(logN + δ)

time assuming that memory cells are incorruptible and block transfers are
atomic.

Proof. The proof roughly follows the proof of [36]. First, we prove correctness
of the algorithm. Assume that sL ≥ δ + 1 and e 6∈ L. Since only δ corruptions
are possible, there exists at least one uncorrupted element in L smaller than e.
Because S is sorted, no uncorrupted elements to the left of S[2δj] in S can be
equal to e. By a similar argument, if sR ≥ δ+1 and e 6∈ R, then no uncorrupted
elements to the right of S[2δ(j + 1)] in S are equal to e. If no corruptions are
encountered during the B-tree search, all the uncorrupted elements of L are less
than or equal to e, and therefore sL ≥ δ + 1. Similarly, we have sR ≥ δ + 1,
and the algorithm terminates after scanning S[2δj, . . . , 2δ(j + 1)].
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In each step, the algorithm chooses a random B-tree among the 2δ B-trees,
and loads the next node from the randomly chosen B-tree to guide the search.
The adversary cannot know which B-tree that is used in any iteration, since
he does not know the random bits and block reads are atomic. Let βi be
the number of nodes containing corruptions on level i in each of the B-trees.
Then, the probability that the node used in iteration i contains corruptions is
at most βi

2δ and thus the probability that the algorithm does not use any blocks

containing corrupted elements is
∏logB N
i=1

(
1− βi

2δ

)
which is at least 1

2 [C1]. It

follows that the expected number of restarts caused by misguided searches due
to faults is at most 2. 2

If memory cells were corruptible the atomic transfer assumption would be
of little use. The adversary could simply corrupt the elements in the inter-
nal memory after the block transfer completes, decreasing the benefit of the
randomization.

8.3 Optimal Deterministic Static Dictionary

In this section we present a linear space deterministic resilient static dictionary.
Let c be a constant such that 1

logB ≤ c ≤ 1. The dictionary supports queries in

O
(

1
c logB N + α

B1−c + δ
B

)
I/Os and O(logN+δ) time. In Section 8.1 we proved

a lower bound on the I/O complexity of resilient dictionaries, and by choosing
c in the above bound to minimize the expression for α = δ, this bound matches
the lower bound. Thus, this dictionary is optimal.

Our data structure is based on the B-tree and the resilient binary search
algorithm from Chapter 7. In a standard B-tree search one corrupted element
can misguide the algorithm, forcing at least one I/O in the wrong part of the
tree. To circumvent this problem, each guiding element in each internal node is
determined by taking majority of B1−c copies. This gives a trade-off between
the number of corruptions required to misguide a search, and the fan-out of
the tree, which becomes Bc. Additionally, each node stores 2δ + 1 copies of
the minimum and maximum element contained in the subtree, such that the
search algorithm can reliably check whether it is on the correct path in each
step. We ensure that the query algorithm avoids reading the same corrupted
element twice by ensuring that any element is read at most once. The exact
layout of the tree and the details of the search operation are as follows.

Structure: Let S be the set of elements contained in the dictionary and let
N denote the size of S. The dictionary is a Bc-ary search tree T built on N

δ
leaves. The elements of S are distributed to the leaves in faithful order such
that each leaf contains δ elements. Each leaf is represented by a guiding element
which is smaller than the smallest uncorrupted element in the leaf and larger
than the largest uncorrupted element in the preceding leaf. The top tree is built
using these guiding elements. The tree is stored in a breadth-first left-to-right
layout on disk, such that no pointers are required.

Each internal node u in T stores three types of elements; guiding elements,
minimum elements, and maximum elements, stored consecutively on disk. The
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guiding elements are stored in d(2δ + 1)/B1−ce identical blocks. Each block
contains B1−c copies of each of the Bc guiding elements in sorted order such that
the first B1−c elements are copies of the smallest guiding element. This means
that each guiding element is stored 2δ + 1 times and can be retrieved reliably.
The minimum elements are 2δ+1 copies of the guiding element for the leftmost
leaf in the subtree defined by u, stored consecutively in d2δ+1

B e blocks. Similarly
the maximum elements are 2δ + 1 copies of the guiding element for the leaf
following the rightmost leaf in the subtree defined by u, stored consecutively in
d2δ+1

B e blocks. Additionally, minimum and maximum elements are stored with
each leaf. The minimum are 4δ copies of the guiding element representing the
leaf, stored consecutively in 4δ

B blocks, and the maximum elements are 4δ copies
of the guiding element representing the subsequent leaf, stored consecutively in
4δ
B blocks. These are used to verify that the algorithm found the only leaf that
may store an uncorrupted element matching the search element.

Query: A query operation for an element q, uses an index k that indicates
how many chunks of B1−c elements the algorithm has discarded during the
search, initially k = 0. Intuitively, a chunk is discarded if the algorithm detects
that Ω(B1−c) of its elements are corrupted. The query operation traverses the
tree top-down, storing in safe memory the index k, and O(1) extra variables
required to traverse the tree using the knowledge of its layout on disk. In an
internal node u, the algorithm starts by checking whether u is on the correct
path in the tree using the copies of the minimum and maximum elements stored
in u. This is done by scanning B1−c of the 2δ+1 copies of the minimum element
starting with the kB1−c’th copy, counting how many of these that are larger
than q. If B1−c/2 or more copies of the minimum element are larger than q the
block is discarded by incrementing k and the search is restarted (backtracked)
at node v, where v = u if u is root of the tree and the parent of u otherwise.
The maximum elements are checked similarly. If the algorithm backtracks, k is
increased ensuring that the same element is never read more than once.

If the checks succeed the k’th block storing copies of the Bc guiding elements
of u is scanned from left to right. The majority value of each of the B1−c

copies of each guiding element is extracted in sorted order using the majority
algorithm [23] and compared to q, until a retrieved guiding element larger than
q is found or the entire block is read. The traversal then continues to the
corresponding child. If any invocation of the majority algorithm fails to select
a value, or two fetched guiding elements are out of order, the block is discarded
as above by increasing k and backtracking the search to the parent node.

Upon reaching a leaf, the algorithm verifies whether the search found the
correct leaf. This is achieved by running a variant of the verification procedure
designed for the same purpose in Chapter 7. Counters cl and cr, which are
initially 1, are stored in safe memory. Then the copies of the minimum and
maximum element are scanned in chunks of B1−c elements, starting from the
2kB1−c’th element. If the majority of elements in a chunk of B1−c copies of
the minimum element are smaller than the search element, cl is increased by
1. Otherwise, cl is decreased and k increased by one. The copies of maximum
elements are treated similarly. Note that every decrement of cl or cr signals
that at least B1−c

2 corruptions have been found. Thus, cl represents the number
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of chunks scanned that has not yet been contradicted, where the majority of
copies indicates that the search element is in the current leaf or in leafs to the
right. Similar for cr. If min{cl, cr} reaches 0, we backtrack to the parent of the

leaf as above. If min{cl, cr}B
1−c

2 gets larger than δ−k(B
1−c

2 )+1 the verification
succeeds. The algorithm finishes by scanning the δ elements stored in the leaf,
returning whether it finds q or not.

Lemma 8.2 The data structure is a linear space resilient dictionary supporting
queries in O

(
1
c logB N + α

B1−c + δ
B

)
I/Os, for any 1/ logB ≤ c ≤ 1.

Proof. A value is only erroneously retrieved when at least B1−c

2 of the copies
used to determine it are corrupted. If k is incremented because of a failed check
in an internal node u, then at least one value in the parent of u was erroneously
retrieved or at least B1−c

2 copies of the minimum or maximum value read at u
were corrupted. If k is increased during a verification of a leaf, the majority
of elements in one chunk of B1−c copies of the minimum (maximum) element
was larger (smaller) than the search element and in another the majority was
smaller (larger) than the search element. Therefore, k is only increased when
B1−c

2 corruptions are detected. Since k increases before any backtracking is
performed, the algorithm never reads the same element twice, proving that all
corruptions counted are distinct.

The algorithm finishes when min{cl, cr}B
1−c

2 ≥ δ − kB2 + 1 during the ver-
ification of a leaf. Since the adversary has at most δ − kB2 corruptions left,
in at least one chunk of B1−c copies of the minimum element read during the
verification, more than half of the elements are uncorrupted. Since the major-
ity of copies in this block are smaller than the search element, no uncorrupted
elements matching the search key can be in leafs to the left. Similar for the
blocks containing copies of the maximum, proving that the correct leaf is found.

To bound the I/O complexity, we count how many nodes of the tree the
algorithm visits, that are not on the correct root to leaf path. If a search
is guided in the wrong direction (away from the correct root to leaf path), the
majority of B1−c copies of a guiding element in the relevant block are corrupted.
For each additional step performed by the algorithm after a wrong turn, either
the minimum or the maximum chunk scanned must contain B1−c

2 corruptions.

In the verification step, each time a minimum and a maximum block is
scanned either k or min{cl, cr} is increased. Therefore, if 2t− 1 I/Os were per-

formed by a failed verification k increased by t, meaning that tB1−c

2 corruptions

were detected. We conclude that the algorithm uses O(logBc N + α
B1−c + δ

B ) =

O(1
c logB N + α

B1−c + δ
B ) I/Os. 2

To obtain optimal time bounds for the dictionary, we use the resilient binary
search algorithm from Chapter 7 on each block, instead of scanning it. If more
than B1−c

2 corruptions are discovered during the search of a block, it is discarded

as above. Otherwise, B1−c

2 supporting elements are found on both sides of an
element, and the algorithm continues to the corresponding child as before. This
reduces the time used per node to O(logB+B1−c). Verification takes O(δ) time
in total.
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Lemma 8.3 For any 1
logB ≤ c ≤ 1, queries use O((B1−c + logB)(1

c logB N +
α

B1−c ) + δ) time.

Corollary 8.3 If δ > B logN , queries use O( δB ) I/Os and O(δ) time.

Proof. Follows from Lemma 8.2 and 8.3 by setting c = 1
logB in Lemma 8.2 and

8.3, i.e. T is a binary tree. 2

Corollary 8.4 If δ < logN , queries use O(logB N) I/Os and O(logN) time.

Proof. Follows from Lemma 8.2 and 8.3 by setting c = 1 − log logB
logB i.e. T has

degree B
logB . 2

Corollary 8.5 If logN ≤ δ ≤ B logN for any 1
logB ≤ c ≤ 1, queries use

O(1
c logB N + α

B1−c + δ
B ) I/Os and O(logN + δ) time.

Proof. Follows from Lemma 8.2 and 8.3 by selecting c ∈ [ 1
logB , 1−

log logB
logB ] such

that 1
c logB N = δ

B1−c . 2

8.4 Dynamic Dictionaries

In this section we present a dynamic I/O-efficient resilient dictionary based on
the techniques in used for the dynamic dictionary in Chapter 7 and the static
dictionary presented in Section 8.3. The dynamic dictionary supports queries
and updates in O(1

c logB N + α
B1−c + δ

B ) I/Os and O(logN +δ) time, worst-case
and amortized respectively for any fixed constant c in the range 1

logB ≤ c ≤ 1.

8.4.1 Structure

The data structure consists of a search tree, T , constructed on a set of
Θ(N/(δ log3N)) leaf structures, each containing Θ(δ log3N) elements.

The top-level search tree T is based on the binary trees of Brodal et al. [24],
with all elements and pointers replicated 2δ + 1 times. We maintain T such
that all levels of the tree, except possibly the last O(1) levels, are complete [24].
Additionally, we maintain an auxiliary static dictionary DT , described in Sec-
tion 8.3, containing the replicated guiding elements stored in the lowest level
of T that is guaranteed to be complete.

A leaf structure contains Θ(δ log3N) elements distributed, in sorted order,
into Θ(log3N) buffers of size Θ(δ). The buffers are the leaves of a three level
search tree LT with fan-out Θ(logN). Similar to T the components of LT are
stored reliably. Finally, the 2δ + 1 copies of each of the Θ(logN) elements in
each internal node of LT are stored in a static dictionary (Section 8.3). Note
that the elements in the buffers stored in the leaves of LT , however, are not
replicated.
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8.4.2 Operations

A query operation for an element q initially queries the dictionary DT . The
constant sized subtrees of T rooted at the nodes returned by this query are
traversed by reliably determining the replicated pointers and guiding elements.
This traversal identifies a leaf structure. The corresponding tree LT is traversed
starting from the root, using the static dictionaries stored in the internal nodes
of LT to guide the search, and retrieving the replicated pointers to traverse the
tree reliably. Upon reaching a leaf in LT , its associated buffer is scanned and
the query returns true if q is found, otherwise it returns false.

To delete an element e from the dictionary it is first removed from the buffer
that contains it. If the buffer becomes too small it is merged with a neighboring
buffer, and the representative of the merged buffer becomes the largest of the
two guiding elements associated with the respective buffers before the merge.
The smaller guiding element is then removed from all ancestors of the merged
leafs in LT by completely rebuilding them. If the leaf structure L now contains
too few elements it is merged with a neighboring leaf structure in T and rebuild.
In this case the top tree T is also updated using the algorithm of [24] and the
reliably stored elements and structural information. This update may alter the
set of elements stored in the lowest complete level of T . Each new element in the
lowest complete level overwrites the element it replaced in the static dictionary
DT . An insert is handled similarly.

Theorem 8.3 The data structure described is a deterministic dynamic resilient
dictionary supporting searches and updates in O(1

c logB N+ α
B1−c + δ

B ) I/Os and
O(logN + δ) time, worst-case and amortized respectively.

Proof. The top tree T uses O(|T |δ/B) = O(N/B) blocks and the size of each
leaf structure is dominated by the elements stored in the leaf buffers.

In a query, one static dictionary storing O( N
log3N

) elements and three static

dictionaries storing O(δ logN) elements are searched, O(1) replicated values are
retrieved reliably, and a buffer storing O(δ) elements is scanned.

Completely rebuilding a static dictionary from a sorted set of N replicated
elements takes O(δN/B) I/Os and O(δN) time. Therefore, rebuilding three
nodes in LT during an update takes O(δ logN) time and O( δB logN) I/Os.
Since the size of the buffers in the leaves can vary by a constant factor, this is
only needed every Θ(δ) updates, meaning that the amortized cost of updating
LT is O( logN

B ) I/Os and O(logN) time. Rebuilding an entire leaf structure from

a sorted set of buffers takes O( δB log3N) I/Os and O(δ log3N) time and this
only happens every Θ(δ log3N) updates. Thus, the amortized cost of updating
a leaf structure is O( 1

B ) I/Os and O(1) time.
The update time for the top tree T as presented in [24] is O(log2N). Since

all components of T are stored reliably, updating T takes O(δ log2N) time and
O(d δB e log2N) I/Os. When T is updated, all elements that have been replaced
at the lowest guaranteed complete level of T are overwritten by the value re-
placing them in this level in the auxiliary static dictionary DT . In the static
dictionary from Section 8.3, an element can exist replicated O(1) times on each
level of the tree. Therefore, it takes O(δ 1

c logB N) time and O(d δ
B1−c e1

c logB N)
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I/Os to update such a value, and amortized O(log2N) elements are changed in
each update of T . Again, since the size of the leaf structures can vary within a
constant fraction, updates to T are only needed every Θ(δ log3N) update, thus
the amortized update cost for T is O(1) I/Os and O(1) time. 2

8.5 Sorting

In this section we present a resilient multi-way merging algorithm and use it
to design a resilient I/O-efficient sorting algorithm. It is also used in the next
section to design a resilient I/O-efficient priority queue. First we show how to
merge γ faithfully ordered lists of total size x when γ ≤ min{MB , Mδ }.

8.5.1 Multi-way Merging

Initially, the algorithm constructs a perfectly balanced binary tree, T , in mem-
ory on top of the γ buffers being merged. Each edge of the binary tree is
equipped with a buffer of size 5δ + 1. Each internal node u ∈ T stores the
state of a running instance of the PurifyingMerge resilient binary merging al-
gorithm from [36]. In each round O(δ) elements from both input buffers are
read and the next δ elements in the faithful order are output. If corrupted
elements are found, these are moved to a fail buffer and the round is restarted.
The algorithm merges elements from the buffers on u’s left child edge and right
child edge into the buffer of u’s parent edge. The states and sizes of all buffers
are stored as reliable variables. The entire tree including all buffers and state
variables are stored in internal memory, along with one block from each of the
γ input streams and one block for the output stream of the root. Instead of
storing a fail buffer for each instance of PurifyingMerge, a global shared fail
buffer F is stored containing all detected corrupted elements.

Let bl and br be the buffers on the edges to the left and right child respec-
tively and let b denote the buffer on the edge from u to its parent. If u is the
root, b is the output buffer. The elements are merged using the fill operation,
which operates on u, as follows. First, it checks whether bl and br contain at
least 4δ + 1 elements, and if not they are filled recursively. Then, the stored
instance of the PurifyingMerge algorithm is resumed by running a round of the
algorithm outputting the next δ elements to its output stream. The multi-way
merging algorithm is initiated by invoking fill on the root of T which runs until
all elements have been output. Then, the elements moved to F during the fill
are merged into the output using NaiveSort and UnbalancedMerge as in [40].

Lemma 8.4 Merging γ = min{MB , Mδ } buffers of total size x ≥M uses O(x/B)
I/Os and O(x log γ + αδ) time.

Proof. The correctness follows from Lemma 1 in [40]. The size of T is O(γ(δ+
B)) = O(min{MB , Mδ }(δ + B)) = O(M). We use γ I/Os to load the first block
in each leaf of T and O(x/B) I/Os for reading the entire input and writing the
output. The final merge with F takes O(x/B) I/Os. Since T fits completely in
memory we perform no other I/Os.
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Merging two buffers of total size n using PurifyingMerge takes O(n + αδ)
time where α is the number of detected corruptions in the input buffers. Since
detected corruptions are moved to the global fail buffer each corruption is only
charged once. Each element passes through log γ nodes of T and the final merge
using NaiveSort and UnbalancedMerge takes O(x+ αδ) time. 2

8.5.2 Sorting

Assuming δ ≤ M ε for 0 ≤ ε < 1, we can use the multi-way merging algorithm
to implement the standard external memory M1−ε-way merge sort from [2]
matching the optimal external memory sorting bound for constant ε.

Theorem 8.4 Our resilient sorting algorithm uses O( 1
1−εSort(N)) I/Os and

O(N logN + αδ) time assuming δ ≤M ε.

8.6 Priority Queue

In this section we describe a comparison-based resilient priority queue which
is optimal with respect to both time and I/O performance assuming that δ ≤
M ε. An optimal I/O-efficient priority queue uses Θ(1/B logM/B(N/M)) I/Os
amortized per operation [2]. An Ω(logN+δ) time lower bound for comparison-
based resilient priority queues was proved in Chapter 6.

Our priority queue is based on an amortized version of the worst-case opti-
mal external memory priority queue of [26] and uses our new multi-way merging
algorithm to move elements between disk and internal memory.

The priority queue consists of a part on disk, denoted L, and three struc-
tures, D, I and F , in internal memory. We maintain that D stores the smallest
elements in the priority queue and that I stores newly inserted elements. We
maintain that D has more than δ + 1 elements and that both I and D have at
most M + δ + 1 elements, the former ensures that there is at least one uncor-
rupted element in D. Finally, the buffer F , of size 2δ, stores possibly corrupted
elements.

The structure on disk, L is a linked list of levels. Each level consists of a
number of faithfully ordered sequences, represented by linked lists of blocks of
size max{B, δ}, stored in a linked list. Let N` denote the number of buffers at
level `, and let Li`, 0 ≤ i ≤ N` denote the i’th buffer of level `. The elements at

level ` is L` = L0
` ∪ · · · ∪ LNi

` . We define the parameter γ = min(M/B,M/δ)
and maintain that N` < γ and that |L`| < γ`+1M . Let h denote the index
of the highest level, the first level is level 0. The pointers in the linked lists
as well as buffer offsets and sizes are stored as reliable variables. We describe
two operations, Pull and Push on L that extracts and adds M elements to L
respectively.

We will need the following result on selection in the faulty memory RAM:
We say that element x in a buffer X has faithful-rank r if there is at least
r−α− δ uncorrupted elements in X smaller than x and at most |X|− r+α+ δ
uncorrupted elements of X larger than x.
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Lemma 8.5 Given an integer k and a faithfully ordered sequence S, |S| < M ,
an element with a faithful-rank k in S can be selected in O((α+ 1)δ) time. The
element returned has index i ∈ {k, . . . , k + α} in S.

Proof. The algorithm maintains an index k′, initialized to k in safe memory.
Initially S[k′] i copied into a safe memory variable. The algorithm then checks
whether the majority of the 2δ+ 1 elements immediately to the left of S[k′] are
smaller than S[k′], and whether the majority of the 2δ + 1 immediately to the
right are larger than S[k′]. If this is the case S[k′] is returned. Otherwise, the
algorithm increments the value of k′ by one and restarts. The complexity of
the algorithm depends on the number of iterations. An iteration fails to select
an element if the element at S[k′] is corrupted to a value larger than δ + 1 of
the 2δ + 1 preceding elements or a value smaller than the δ + 1 of the 2δ + 1
succeeding elements. If S[k′] is uncorrupted the algorithm always terminates
and returns S[k′] and thus at most α iterations are performed. These arguments
also prove correctness of the algorithm. 2

8.6.1 Operations on L
This section describes the basic operations used to manipulate L. Let
merger(`, x) denote an invocation of the multi-way merging algorithm that ex-
tracts x elements from level `. Let T be the binary tree with N` leaves used in
the merging algorithm.

If x < |L`| we do not output all the elements of L`. In that case we run
the merger without fetching new elements from the leaves of T once x elements
have been output. This empties all the buffers of T . The extra elements are
gathered into a buffer E of size at most 6M . We prepend E to a buffer of
level ` making sure this buffer remains faithfully ordered. If there is a buffer,
Lj` with |Lj` | < 6δ we simply append this buffer to E and sort the result using
the resilient sorting algorithm. If no such buffer exist we use the selection
algorithm from Lemma 8.5 with k = 2δ + 2 for all N` buffers of level ` in turn
- remembering the maximum element returned so far in the reliable memory.
The algorithm from Lemma 8.5 works by repeatedly trying different elements
and checking whether or not it is consistently ordered with the 2δ+ 1 elements
to its left and the 2δ + 1 elements to its right. If not it tries the neighboring
elements and continues in this fashion. We modify the algorithm such that a
candidate element that doesn’t work are moved to our global fail buffer F and
the front of the list is compacted. Since each round and the compaction take
O(δ) time, the entire operation takes O(α′δ) time where α′ is the number of
corrupted elements we sample. By moving corrupted elements to F , we ensure
that we never spend δ time in the selection algorithm for the same corruption
more than once.

If the maximum element is from buffer Lj` we take the first 6δ elements of

Lj` and merge them with E, using the complete binary merging algorithm [36]

and prepend the resulting buffer to Lj` . Finally, the extracted elements are
returned.
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Lemma 8.6 An invocation of merger(`,x) for x ≥ M returns the x faithfully
smallest elements from L` using O(x/B) I/Os and O(x logN` + αδ) time and
leaves all buffers of L` faithfully ordered.

Proof. The I/O-complexity follows from Lemma 8.4. Extracting the x elements
from the merger and emptying the remaining elements into E uses O(x logN`+
αδ) time by Lemma 8.4. The O(N`) invocations of the selection algorithm and
performing compactions use O(N`δ + α′δ) = O(M + α′δ) = O(x + α′δ) time
where α′ is the number of corrupted elements chosen as selection candidates.

We empty the merger into a buffer E and locate a buffer m in which E
added to. Finding this list involves using selection N` times and merging the
first 6δ elements of the buffer with the elements of E, for a total cost of O(N`δ+
δα+M) = O(M + δα) = O(x+ δα).

We must also prove that the faithful ordering of the buffer Lj` in which we

insert the elements of E is maintained. Recall that Lj` was the buffer in which
the selection algorithm from Lemma 8.5 returned the largest element r when
invoked with k = 2δ+ 2. Let y be the maximum uncorrupted element of E, we
now prove that y ≤ r.

Let Lp` be the buffer from which y originated and let c be the element
returned by the selection algorithm for Lp` . Since c has faithful-rank 2δ+2 there
must be at least one uncorrupted element in Lp` smaller than c, this element is
also smaller than y and thus y ≤ c. Since r was the maximum among all the
selections we know that r ≥ c and thus we conclude that y ≤ c ≤ r. 2

Pushing elements to L

The Push operation inserts a buffer, A, of size M into L. It does so by simply
adding it as a new list of level i = 0 and incrementing Ni by one. If Ni = γ all
elements of level i are merged into a new list, A′ = merger(i, |Li|) which is then
recursively inserted into level i+ 1, level i is now empty.

Lemma 8.7 The Push operation adds M elements to L and maintains that
N` < γ and |L`| < γ`+1M for 0 ≤ ` ≤ h and that all buffers in L remain
faithfully ordered. For each visited level, `, it uses O(|L`| log γ+αδ+N`δ) time
and O(|L`|/B) I/Os while pushing |L`| elements to the next level.

Proof. By construction, the number of buffers in each level is maintained by
Push. We now prove that |L`| < γ`+1 for all levels ` after the operation.

This claim is proved by induction. Initially, all lists on level 0 has size M ,
since they are inserted when the I buffer is full and we push M elements into
L. Now assume that the claim holds for level i. Push is invoked on level i, only
when Ni = γ. Since all buffers have size γi and there are γ of them, the size of
merger(i, |Li|) is at most |Li| = γi+1 and thus, the list inserted on level i + 1
is not to large. Elements moved to the fail buffer only makes levels smaller.
The correctness of the multi-way merger proves that the buffers of L remain
faithfully ordered. 2
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Pulling elements from L
The Pull operation iterates from level i = 0 to level h and maintains a faithfully
ordered buffer S of size M+δ which contains elements that are faithfully smaller
than elements in L0 ∪ · · · ∪ Li−1. Furthermore, an index ` ≤ i is maintained
with the property that |Lj | is unchanged for j ≤ i, j 6= `, and L` contains M+δ
fewer elements than before the Pull.

Initially S = merger(0,M + δ), i = 1 and ` = 0. Each iteration proceeds as
follows. First the M+δ faithfully smallest elements from level i are extracted by
invoking A = merger(i,M + δ). The complete binary merging algorithm from
[36] is then invoked on A and S to produce a buffer C of size 2(M+δ). We now
split C into two halves C1 = C[1, . . . ,M+δ] and C2 = C[M+δ+1, . . . , 2(M+δ)].
We set S = C1. We place C2 in level ` or level i. To do this we perform the same
operation we used to put E back into L in the multi-way merging algorithm.
The only difference is that we look at all buffers on level i and on level `. If C2

is placed on level ` we set ` = i for the next iteration. When all levels have been
visited, the first M elements of A are merged with D. The remaining elements
are inserted into I.

Lemma 8.8 The Pull returns M + δ elements in faithful order and the M
first are the faithfully smallest elements of L. All buffers in L remain sorted.
Ignoring the O(α) elements moved to the fail buffer, the size of all but one level
remains the same, and the last level contains M + δ fewer elements. A Pull
uses O(hMB ) I/Os and O(hM logN` + αδ) time.

Proof. We first prove, that the M smallest uncorrupted elements of L are ex-
tracted, we then prove that buffers in L remain sorted, and finally we prove the
time and I/O bounds.

1. To prove (1) we basically need to prove that the following invariant holds:
After performing an iteration of the Pull algorithm at level i theM−δ−α
smallest uncorrupted elements of A are smaller than any uncorrupted
element in L0 ∪ · · · ∪ Li. Since |A| = M + δ, this invariant implies that
the M first elements of A are smaller than any uncorrupted elements in
L0 ∪ · · · ∪ Li.
Before proving the invariant we need to prove that the smallest M +
δ − α uncorrupted elements of C are in C1 which become the new S.
Let X denote the set containing the M + δ − α smallest uncorrupted
elements in C and let m = max{x ∈ X}. Since C is faithfully ordered, all
elements of X appear faithfully ordered in C and there are no uncorrupted
elements larger than m in positions before m by definition of X. Thus, the
only elements not in X that can be stored in C before m are corrupted
elements. There are at most α of these and thus, the index of m is
smaller than M + δ − α + α = M + δ, implying that all of X is in
C1 = C[1, . . . ,M + δ].

We prove that the invariant holds by induction. It holds in the base case
by Lemma 8.6. For the general case, assume that we have just completed
the iteration at level i and let α′ denote the number of corruptions before
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the most recent iteration, and α ≥ α′ the number of corruption after the
iteration. Let X ′ be the M + δ − α smallest elements after the iteration
and X the M+δ−α′ smallest elements before. We need to prove that any
element in X ′ is smaller than any uncorrupted element in L0, . . . ,Li under
the assumption that any element from X is smaller than any uncorrupted
element in L0, . . . ,Li−1. Since all the elements of X ′ are uncorrupted, it
is enough to prove that the largest element, m ∈ X ′ is smaller than all
uncorrupted elements in L0 ∪ · · · ∪ Li.
We split the proof in two cases.

• m ∈ X ′ − X: In this case m originates from A ⊂ Li. By the
correctness of the merger, m is smaller than everything remaining in
Li. m is also, by definition of X ′, smaller than everything in A−X ′.
We need to prove that m is also smaller than everything in L0∪· · ·∪
Li−1. Assume there is an element x ∈ X larger than m. If so, we
have that m ≤ x ≤ y for any uncorrupted element y ∈ L0∪· · ·∪Li−1,
by the induction hypothesis. We now prove that it is impossible for
m to be larger than all elements of X, we do this by contradiction
and assume that m is bigger than all x ∈ X. Thus, for m to be
the M + δ − α′ largest uncorrupted in C1 it must be smaller than
at least |X| − |X ′| + 1 = α′ − α + 1 elements from X. But since
m is uncorrupted and larger than all the elements of X which are
uncorrupted, each of the elements from X that are not in X ′ must
be corrupted instead. Thus α′ − α + 1 elements needs to have been
corrupted in S or corrupted during the merge, which is impossible
by definition of α and α′.

• m ∈ X ∩ X ′: By the induction hypothesis, x is smaller than all
uncorrupted elements of L0∪· · ·∪Li−1. It remains to be shown that
m is also smaller than all elements of Li. Since m was from X, and
thus not from A, we know that the number of elements in S, but not
in X ′, is |S − (X ′ ∩S)| ≥ |S| − |X ′|+ 1 = α′+ 1 and by definition of
α′, there is at least one uncorrupted element of S not in X ′ and the
smallest of these elements are smaller than x by definition of X ′, but
larger than all remaining uncorrupted elements in S−S ∪X ′ and Li
by Lemma 8.6.

2. We need to prove that all lists remain sorted after Pull. The only change
to the lists happen when elements are removed from the lists by the
merger, and when the elements left in the merger are re-inserted in level
` or level i. Removing elements from a buffer does not change the order
of the remaining elements. The second part was proved in Lemma 8.6.

3. The complexity of the Pull operation is upper bounded by the invoca-
tions of merger(`,M + δ) for 0 ≤ ` ≤ h.

2
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8.6.2 Operations on Internal Buffers

The internal data structures, D and I, are implemented using the optimal inter-
nal memory resilient dynamic dictionaries presented in Chapter 7. Recall that
these dictionaries maintain n elements under updates and searches in amortized
O(log n+ δ) time per operation and use O(n) space.

To insert x into the priority queue, we simply insert it into I. If I grows to
size M we push M elements into L. We do this by using the resilient binary
merging algorithm to merge I and D into a new buffer E. We now re-insert the
first |D| − δ elements of E into a D, the next δ are put in I and the remaining
M elements are pushed to L using the Push operation. If |D| < δ + 1 now it
is filled by a Pull operation.

A Deletemin finds the minimum element in F , in the first δ + 1 elements
of D and of the first min(δ + 1, |I|) elements of I and returns the minimum of
these three, the element is deleted from its buffer. To find the δ + 1 smallest
elements from D and I respectively, we need to extract the δ + 1 minimum
elements from the resilient dictionaries in Chapter 7. This dictionary stores
the elements in buffers of size Θ(δ) and one can move between successor and
predecessor buffers in O(δ) time. If a Deletemin causes D to become smaller
than δ+1, we pull M + δ from L and fill D with the M first elements. The last
δ elements are put into I. If this causes I to become larger than M we empty
I into L as above.

Since h, the number of levels of L, might not decrease even if Deletemin
is invoked many times, we use global rebuilding and rebuild the entire data
structure every Θ(N) operations.

Theorem 8.5 Our data structure is a linear space resilient prior-
ity queue supporting operations Insert and Deletemin in amortized
O( 1

1−ε(1/B) logM/B(N/M)) I/Os and O(logN + δ) time, assuming δ ≤ M ε

for 0 ≤ ε < 1.

Proof. To bound the cost of Deletemin and Insert we bound the number
of levels in L. Since a level L` is pushed to higher levels only if it is full
and since we use global rebuilding, the highest level in the priority queue is
h = O(logγ(N/M)). Both Push and Pull use O(1/B) I/Os and O(log γ) time
per element they touch on each level. Therefore, the total time, including the
operations on I and D is O(h log γ + logM + δ) = O(logN + δ) per element.
Furthermore, we use a total of O(αδ) time to cope with corrupted elements.
Thus, the total time used to performN operations isO(N((logγ(N/M))(log γ)+
logM +δ)+αδ) = O(N logN +δN +αδ), or amortized O(logN +αδ/N +δ) =
O(logN + δ) per operation.

The total I/O cost per element is O( 1
Bh) = O( 1

B logγ(N/M)). Thus, the

I/O complexity for N operations is O(N( 1
B ) logγ(N/M)) = O( 1

1−εSort(N)), or

O( 1
1−ε(1/B) logM/B(N/M)) amortized per element. 2





Chapter 9

Counting in Unreliable Memory

In this chapter we investigate the fundamental problem of counting in faulty
memory. Keeping many reliable counters in the faulty memory is easily done by
replicating the value of each counter Θ(δ) times and paying Θ(δ) time every time
a counter is queried or incremented. We decrease the expensive increment cost
to o(δ) and present upper and lower bound tradeoffs decreasing the increment
time at the cost of the accuracy of the counters.

Definition 9.1 A resilient counter with additive error γ is a data structure
with an increment operation and a query operation. The query operation re-
turns an integer between v − γ and v + γ where v is the number of increment
operations preceding the query.

We investigate upper and lower bound tradeoffs between the time needed for n
increase operations and the additive error of the counter. We only consider data
structures where no information is stored in safe memory between operations,
therefore the counters are stored completely in unreliable memory. Our results
are summarized in Table 9.1.

Our results In Section 9.1 we prove that any resilient counter with non-trivial
additive error must use Ω(δ) space, and that a deterministic query operation
requires Ω(δ) time. Furthermore, we prove a lower bound tradeoff between the
increment time and the additive error, stating that if an increment operation
takes t ≤ δ time, the additive error is at least bδ/tc in the worst case, i.e.
(increment time) × (additive error) ≥ δ. The lower bounds suggest that an
optimal resilient counting data structure is characterized by an O(δ) space
bound, O(t) increment time, O(α/t) additive error and O(δ) query time.

In Section 9.2.1 and 9.2.3 we provide deterministic data structures where
both the increment time and the additive error depend on α. The first result in
Section 9.2.1 provides a tradeoff between the increment time and the additive
error that does not blow up the space used by the data structure nor the query
time. Given any t ≥ 1 the data structure has additive error α/t and supports
n increments in O(nt log(δ/t) + α log(α/t)) time. A small change to this data
structure gives a data structure with additive error α log δ that supports n
increments in O(n+α logα) time. In Section 9.2.3 we describe a data structure
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Time (n increments) Query time Additive error Space Section

O(δn) O(δ) 0 O(δ) -

O(nt log(δ/t) + α log(α/t)) O(δ) α/t O(δ) 9.2.1

O(n+ α logα) O(δ) α log δ O(δ) 9.2.1

O(n) O(δ2) O(α2) O(δ) 9.2.2

O(n+ α
√
δ) O(δ) α O(δ) 9.2.3

Expected O(n) O(δ) α O(δ) 9.2.4

Table 9.1: Overview of our upper bounds.

with additive error α that supports n increments in O(n+ α
√
δ) time. This is

optimal for n = Ω(α
√
δ).

In Section 9.2.2 we describe a deterministic data structure where the time
used by an increment is independent of the number of possible corruptions.
The data structure supports increments in O(1) time in the worst case. The
additive error of the data structure is O(α2) and queries are supported in O(δ2)
time.

Finally, in Section 9.2.4 we present a randomized data structure with ad-
ditive error α, that supports n increments in O(n) time in expectation and
supports queries in O(δ) time in the worst case. This is optimal up to constant
factors.

The additive error of any of our resilient counters can be reduced by a factor
of t by using t counters. Each increment operation increments all t counters and
the query operation returns the sum of all t counters divided by t. However,
this produces a new tradeoff by increasing the increment time and space by a
factor of t. Similarly, any of our resilient counters can be used to create a new
counter that supports both decrement and increment operations with the same
additive error. This is achieved by using two counters; one to count the number
of increment operations and one to count the number of decrement operations.

9.1 Lower Bounds and Tradeoffs

We present some simple lower bounds on space and time for resilient counters.

Space. Any resilient counter data structure with non-trivial additive error
must use more than δ space. If the data structure uses δ space or less, the
adversary can corrupt the entire structure and force a query operation to return
any arbitrary value.

Deterministic Query. Any deterministic algorithm uses at least δ probes in
the worst case for a query. If a query algorithm reads at most δ memory cells
the adversary can simulate any value by corrupting δ cells. This means that
the adversary can completely control the value returned by a query, making it
impossible to get a non-trivial bound on the additive error.

Deterministic Increment. If an increment takes k time the adversary can roll
back the changes to the data structure done by the last bδ/kc increments, or
do the changes to the data structure corresponding to bδ/kc increments. Thus,
the counter has additive error at least bδ/kc in the worst case.
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9.2 Data Structures

9.2.1 Replicating Bits

In this section we describe a data structure that is parameterized with an integer
t, 1 ≤ t ≤ δ. The data structure uses O(δ) space and has additive error bα/tc.
The time used for n increments is O(nt log(δ/t) +α log(α/t)), and queries take
O(δ) time.

Structure. The data structure maintains the bits of the binary representation of
the counter value separately, each bit replicated depending on its significance as
follows. For i = 0, . . . , blog(δ/t)c the i’th least significant bit is replicated t2i+1

times in t2i+1 different memory cells. The value of the remaining w−blog(δ/t)c
most significant bits are stored in a reliable variable v. The memory cells are
stored in one array of size O(δ).

Increment. Increments are implemented as binary addition, where we consider
the i’th bit to be one if at least t2i of the t2i+1 copies of it are non-zero. The
i’th bit is set by writing the value of the bit in all of the t2i+1 copies.

Query. The query algorithm reliably retrieves the value of the w − blog(δ/t)c
bits stored in v. For the lower order bits, we add 2i to the sum, for i =
0, . . . , blog(δ/t)c, if at least t2i of the t2i+1 copies of the i’th least significant
bit are non-zero.

Additive Error. Since the value of the i’th bit is given by the majority value
of t2i+1 copies, the adversary must use t2i corruptions to alter the i’th bit.
Changing the i’th bit changes the value stored in the data structure by 2i,
yielding an additive error of bα/tc.
Complexity. If no corruptions occur, we update the i’bit of the counter every 2i

increments, taking O(t2i) time. Similarly, we update v after Θ(δ/t) increments
in O(δ) time. Therefore, if we ignore corruptions, the time used for n increments
is O(nt log(δ/t)).

The only way corruptions can influence the running time of increment op-
erations is by changing the value of a bit. Assume the adversary corrupts
the i’th bit, using t2i corruptions. After a number of increments a cascading
carry affects this (corrupted) bit and the increment operation writes the t2i+1

copies of the i + 1’th bit. We charge the work needed to move the t2i cor-
rupted bits to the corruptions that caused them. These corrupted bits can be
charged in log(δ/t) − i such cascading carries. However, when k increments
have been performed, where kt > α, the time used by the increments alone
is O(kt log δ/t) dwarfing the time needed to deal with corruptions. Otherwise,
the number stored in the data structure is at most k + α/t ≤ 2α/t. Thus, the
most significant bit written in an increment operation is the dlog(α/t)e least
significant bit. We conclude that the extra time needed to deal with corruptions
is O(α log(α/t)).

Theorem 9.1 The counter structure uses O(δ) space and has additive error
bα/tc. The time used for n increments is O(nt log(δ/t)+α log(α/t)) and queries
take O(δ) time.
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Trading off Additive Error for Increment Time We can reduce the time
for n increments to O(n + α logα) by storing the blog log δc least significant
bits in the same memory cell. For i = blog log δc + 1, . . . , log δ the i’th least
significant bit is replicated in 2i+1/blog δc memory cells. The remaining bits are
stored in a reliable value v as before. One corruption can change the blog log δc
least significant bits causing an additive error of at most blog δc, and 2i/blog δc
corruptions are needed to corrupt the i’th bit. The increment and the query
are basically the same.

Corollary 9.1 The counter structure uses O(δ) space and has additive error
α log δ. The time used for n increments is O(n+α logα) and queries use O(δ)
time.

9.2.2 Round-Robin Counting

In this section we describe a data structure that uses O(δ) space and has O(α2)
additive error. Increments are supported in constant time, and queries use
O(δ2) time.

Structure. The data structure consists of an array A of k = 2δ + 3 integers
C1, . . . , Ck used as counters, and a round-robin index i. The structure is ini-
tialized by setting all counters to zero and i to one. We denote by corrupted
counter a counter that has been changed directly by the adversary.

Increment. If i is not in the range 1, . . . , k, it has been corrupted and we reset
it to one. Next, we increment first Ci and then i. If i becomes k + 1 we set it
to one. Note that i could have been corrupted to a value in 1, . . . , k, but we do
not check if this happened.

Let vj be the number of times the increment algorithm has incremented Cj ,

and let v =
∑k

j=1 vj denote the correct value of the counter. If no corruption
has taken place, then C1 = · · · = Cr = d + 1 and Cr+1 = · · · = Ck = d, where
d = bv/kc and r = v mod k. Furthermore, if no counter has been corrupted,
v =

∑k
j=1Cj , regardless of corruptions of the round robin index i.

Query. Let αi be the number of times i has been corrupted. The key observation
for the query algorithm is that for any two uncorrupted counters, Ca and Cb,
we have |va − vb| ≤ αi + 1, which means that |v/k − va| ≤ αi + 1.

First, we compute a value m larger than or equal to at least one uncorrupted
counter, and smaller than or equal to at least one uncorrupted counter. Since
the difference between two uncorrupted counters is at most αi + 1, m ∈ { vk −
αi− 1, vk +αi + 1}. After computing m, simply returning mk yields an additive
error of O((α + 1)k) = O((α + 1)δ). To improve the additive error we locate
O(α) counters which are too far from m and ignore them.

We store m in safe memory and compute it as in [C1] as follows. Initially,
we set m to −∞. The k counters are scanned dk/2e times. In each iteration we
update m to the minimum counter larger than the current m. Since k = 2δ+3,
after dk/2e iterations there exist two uncorrupted counters, such that one is
smaller and one is larger than m.

Next, we find a bound, x, on the number of the counters that are too far
away from m as follows. Initially, we set x to one. Then, the number of
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counters c outside the range {m− x, . . . ,m+ x} is counted in a scan. If c ≥ x
we increment x and recompute c. This process ends when x becomes larger
than c. Finally, we scan the k counters maintaining a sum, initially zero, in
safe memory. If a counter stores a value in the range {m− x,m+ x} we add it
to the sum. If a counter is outside the range, it is far from m, and we add m
to the sum. Finally, we return the computed sum.
Additive Error. Let αc be the number of times a counter was corrupted by
the adversary. By definition, αi + αc = α ≤ δ. First we recall that for any
two uncorrupted counters, Ca and Cb, we have |vb − va| ≤ 1 + αi, and that the
value of m is in the range { vk − αi − 1, vk + αi + 1}. Therefore, if x ≥ αi + 1 in
the above algorithm, then c, the number of counters that are not in the range
{m − x,m + x}, is at most αc, the number of counter corruptions. At most
αc corrupted counters can be counted by c, and we conclude that when the
algorithm terminates, then x ≤ αi + αc + 1.

Let S be the set of counters not counted by c, i.e. all counters in the range
{m − x,m + x}. All uncorrupted counters in S are unchanged and do not
contribute to the error. Let Cj be a corrupted counter in S. By definition of
m and x we know that |vj − Cj | ≤ |vj −m|+ |m− Cj | ≤ αi + 1 + x ≤ 2α+ 1.
Therefore, each corrupted counter in S can affect the additive error by O(α).
We add m to the result for all counters outside the range {m− x,m+ x}. By
definition of m, the value for uncorrupted counters not in S differs from m by
at most αi + 1. Similarly, for any corrupted counter Cj not in S the difference
between m and vj is at most αi + 1. There are at most x = O(α) counters not
in S, and at most αc corrupted counters in S, leading to an additive error of
O(α2).
Complexity. The increment operation uses O(1) time to update a counter and
the round robin index. The query time is given by the time used to compute
m and x, that is O(δ2).

Theorem 9.2 The counter data structure described uses O(δ) space and has
an additive error of O(α2). Increments are supported in O(1) time and queries
in O(δ2) time.

9.2.3 Counting by Scanning Bits

We describe a counter data structure that uses O(δ) space with additive error
α. It performs n increments in O(n+ α

√
δ) time, and answers queries in O(δ)

time. First, we describe a simpler data structure with an additive error of α
that supports n increments in O(n + αδ) time. Subsequently, we reduce the
cost for n increments to O(n+ α

√
δ).

Structure. The data structure stores an array A of δ memory cells, a reliable
variable v, and a round-robin index i. Each cell of A is used to store a single
bit. We initialize all values in A to zero, v to zero, and i to one.
Increment. If A[i] = 0 we set A[i] = 1 and set i = 1+(i+1 mod δ). Otherwise,
we count the number of non-zero entries in A. We add this number plus one
(for the current increment) to v and set all entries in A to zero.
Query. We count the number v′ of non-zero entries in A, retrieve v, and return
v + v′.
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Additive Error. Every time we add a value, k, to the reliable value v in an
increment we have seen k − 1 non-zero entries in A. The only way a cell in A
can be non-zero is if it was set to one by an earlier increment operation, or the
adversary corrupted it. Conversely, a cell is set to zero either after updating
the reliable value or by a corruption. Thus, the number returned by a query
differs by at most α from the actual number of increments performed.

Complexity. If no corruptions occur, the increment operation takes O(1) amor-
tized time, since setting a value in A to one takes O(1) time and updating v
takes O(δ) time and occurs every δ + 1 increments. Every corruption to the
round robin index i or an element of A can force us to scan A and reliably add
a value to v, and this takes O(|A| + δ) = O(δ) time. Therefore, n increments
take O(n+ αδ) time.

Improving Increment Time by Packing We improve the time used for n
increments to O(n + α

√
δ) by packing elements in A to an auxiliary array. In

addition to the reliable value v and the array A of size δ, we store an array P of
size δ, which is logically divided into Θ(

√
δ) blocks of

√
δ consecutive memory

cells.

Increment. First, we test if i is in the range {1, . . . , δ}. If not then i has been
corrupted and we set it to one. Then, we test whether A[i] = 0 and if so, we set
A[i] = 1 and increment i. If i becomes δ+1 we set i to one. However, unlike the
simpler data structure, if A[i] 6= 0, a packing phase is initiated. In the packing
phase we scan A from left to right starting from A[1] until we encounter a zero,
or the end of A is reached. During the scan we count the amount, c, of non-zero
entries read and set all these entries to zero. After the scan i is set to one. Then,
we set c entries in P to one as follows. Let dj be the index in P of the first
element in the j’th logical block. We scan P from d1. If we see an entry storing
a zero, we set it to one, and decrement c. If we see something else we go to the
start of the following logical block and continue. We stop the packing phase
when c reaches zero or a non-zero element, or the boundary of the last block
is found. If c > 0 after the packing phase, we count the amount of non-zero
elements in A and P in a scan and set all entries to zero. This count summed
with c is added to v.

Query. The query operation returns the sum of v and the number of ones in A
and P .

Additive Error. Similarly to the simpler data structure, each corruption can
only change the value of the data structure by one. It follows that the additive
error is α.

Complexity. We analyze the time used between two consecutive updates of v
and this time-frame we denote a round. The array A consists of a number
of sections of non-zero elements separated by zeros. Note that the packing
phase removes at least one section. If no corruptions occur, increments can
only extend sections. A corruption, of a cell in A or of the index i, may extend
a section, connect two sections, create a section or split an existing section in
two. The same things can happen in an increment following a corruption of the
index i. Thus, the number of sections created during a round is bounded by
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one plus the number of corruptions, and a section is moved only once in P .
Moving t non-zero entries from A to P in a packing phase takes O(t+

√
δ)

time, and the clean ending the round takes O(δ) time. Let cp be the number of
increments and αp be the number of corruptions in the p’th round. Since the
packing phase is called at most αp + 1 times, the time used in the p’th round
is O(cp + αp

√
δ + δ). We show that the O(δ) time used for the clean can be

payed for by the cp increments and the αp corruptions, by charging O(1) per
increment and O(

√
δ) per corruption.

If we copy elements to the i’th logical block in P in a packing phase and
encounter a non-zero entry before filling all the

√
δ cells, at least one cell in the

block is corrupted. Furthermore, we never put elements in the i’th block again
unless a new corruption occur, setting a zero in the first entry of the block.
This means that the only block that is changed by a packing phase that is not
completely filled or has a cell that has been corrupted since the last time it was
updated, is the last block considered in the phase.

When an increment performs a clean, ending the round, the first block of
all logical blocks contained a non-zero entry during the packing phase. We
categorize the

√
δ logical blocks as filled blocks, corrupted blocks, and last

blocks. A filled block is a logical block which a packing phase has filled with√
δ non-zero entries, a corrupted block contains a cell that has been corrupted

during the round and which is not filled, and a last block is a block that does
not contain a corrupted cell, but was not completely filled during the packing
phase that put a one in the first entry of the block.

There are at most αp + 1 packing phases in a round, thus at most αp + 1
last blocks, and at most αp corrupted blocks. If there are f filled blocks then
we have performed at least f

√
δ−αp increments in the round. This means that

there are
√
δ−f other blocks (corrupted, last) and since there are O(αp) blocks

that are not filled,
√
δ − f = O(αp). We have charged each increment Θ(1),

which means that the increments have payed at least f
√
δ − αp. It remains

to charge δ − (f
√
δ − αp) =

√
δ(
√
δ − f) + αp to the αp corruptions. Since√

δ − f = O(αp), we have charged enough if each corruption pays Θ(
√
δ). We

conclude that n increments take O(n+ α
√
δ) time.

Theorem 9.3 The counter data structure uses O(δ) space and has additive
error α. The time used for n increments is O(n+α

√
δ) and queries are answered

in O(δ) time.

9.2.4 Using Randomization to Obtain Fast Increments

In this section we describe a randomized data structure that uses O(δ) space
and has additive error α. The expected time used for n increments is O(n),
and queries are supported in O(δ) time in the worst case. The data structure
is similar to the data structures in Section 9.2.3 but randomization is used to
find an empty cell fast.
Structure. The data structure stores an array A of size k = 3δ and a resilient
variable v. Initially, v and all entries in A are set to zero.
Increment. We pick a random index r ∈ {1, . . . , k} and probe A[r]. If A[r] = 0,
we set A[r] = 1 and return. Otherwise, the probe failed and we do one of
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two things: with probability k−1
k we restart the increment operation and with

probability 1
k we clean the array. The clean operation counts the number of

non-zero entries in A and adds this plus one (the current increment) to the
reliable value v, then it sets all entries in A to zero.

Query. The query operation is the same as the one in Section 9.2.3, it simply
counts the number of non-zero entries in A and returns the sum of this number
and v.

Additive Error. As in Section 9.2.3 the additive error is α since each unreliable
array entry contributes at most one to the result.

Complexity. The query operation simply scans A and retrieves v in O(δ) time.
The expected time analysis of the increment operation is more involved. The
sequence of n increments is logically divided into dn/te rounds of t = dδ/2e
increments. We prove that the expected cost of each round is O(t), and then
the bounds follow from linearity of expectation. We split each full round in two
parts, the first part consists of the increments performed before the first clean
in the round, and the remaining increments are the second part. If a round
does not do a clean, we additionally charge for repeatedly doing failed probes
until a clean would be performed. When the first part starts, the state of the
array A could be anything. When the second part starts, the array stores only
zero values. We divide the cost of the t increments into three.

The cost of successful probes, the cost of failed probes and the cost of doing
cleans. The cost of the successful probes is O(t). The cost of failed probes,
is divided into two, a cost for the failed probes in the first part and a cost
for the failed probes in the second part. The first part ends when the first
clean is performed. We charge the first failed probe in each increment to the
increment itself. The remaining number of failed probes is upper bounded by
the number of times we restart the increment operation before we clean, and a
clean is performed with probability k−1

k . Thus, the probability of doing exactly

f additional failed probes is (k−1
k )f 1

k . This means that the expected cost of

failed probes in the first part is bounded by t +
∑∞

f=0 f(k−1
k )f ( 1

k ) = O(t). In
the second part we place at most t ones in A and the adversary can at most
introduce δ non-zero entries. Therefore, during each increment in the second
part, half of the entries in A contains a zero. This means that for each increment
in the second part we expect to do one failed probe implying that the expected
cost of failed probes in the second part is linear in the number of increments.
Each round makes one clean in the first part, and for each increment in the
second part, the probability of doing a clean is at most 1

2

∑∞
f=1

1
2f

(k−1
k )f−1 1

k ≤
2/k. Thus, the expected cost for doing cleans in the second part is O(1) per
increment, we conclude that the expected cost of a full round is O(t).

Only the last round remains. If this is the first round, it has no first part,
and by the analysis above the cost of this round is linear in the number of
increments. If the last round is not the first round, the expected cost is O(δ)
even if zero increments has been performed. We charge this cost to the second
to last round.

Theorem 9.4 The counter data structure described uses O(δ) space and has
additive error α. The expected time used for n increments is O(n), and queries
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use O(δ) time.

9.3 Open Problems

The main open problem is whether there exists a data structure that given any
t ≥ 1 has additive error O(α/t), supports increments in O(t) time and queries
in O(δ) time. One resilient counter needs Ω(δ) space. It would be interesting
to see if one can store k counters using o(kδ) space with each counter having a
non-trivial bound on the additive error. Most of the counters presented require
Θ(δ) space for a reliable variable which seems hard to share among several
counters. It may be interesting to see if one can use the safe memory to store
some state to achieve this and possibly circumventing the lower bound tradeoff
between increments and additive error.

Most resilient algorithms use the majority algorithm from [23] to implement
reliable variables. The majority algorithm is defined for promise problems where
we know that a majority element exists in the input. It would be interesting to
solve the more general problem of finding the mode (most frequently occurring
element). An o(δ2) algorithm for this problem could help improve the query
time of the counter from Section 9.2.2. We have considered counters that can
increment and decrement by one. A natural extension of this is to consider
general counters where an increment operation is parameterized by a value ∆
to be added to the counter. Similar lower bounds apply: if ∆ is unbounded
and the update time is o(δ) then adversary is able to simulate an addition
of an arbitrary variable. We therefore need to find a different error metric
for general counters or alternatively investigate if there are efficient algorithms
when ∆ < δ.
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