
1

Comparison and Construction of
Phylogenetic Trees and Networks

Konstantinos Mampentzidis
PhD Defense

Aarhus University, Aarhus, Denmark
24 October 2019

Publications

2

▪ Gerth Stølting Brodal and Konstantinos Mampentzidis.
Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
In ESA 2017, Vienna, Austria.

▪ Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung.
Computing the Rooted Triplet Distance Between Phylogenetic Networks.
In IWOCA 2019, Pisa, Italy.

▪ Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu.
Building a Small and Informative Phylogenetic Supertree.
In WABI 2019, Niagara Falls, USA.

Algorithmic Theory and Practice

3

▪ Algorithm: sequence of steps for solving a computational problem
▪ Theory: algorithms are first designed & analyzed in a model of computation
▪ Practice: then implemented in a programming language (C, C++, python, …)

CPU

M
e

m
o

ry

RAM model
John von Neumann 1945

I/O model
Aggarwal and Vitter 1988

CPU

c
a

c
h

e

M
e

m
o

ry

I/O

B

Cache Oblivious model
Frigo, Leiserson, Prokop, Ramachandran 1999

CPU

c
a

c
h

e

M
e

m
o

ry

I/O

M

B

Computer architecture continues
becoming more complicated

Gap between
Theory and Practice

Algorithm Engineering
▪ Term first used by G. F. Italiano who organized

the “Workshop on Algorithm Engineering”
in Venice, Italy, 1997

▪ bridges the gap between theory and practice

Design

Implementation

Experiments

∞ M ∞ ∞

Analysis

Problems in Phylogenetics

4

▪ Different available data/construction algorithms can lead to trees/networks that look different
▪ Quantifying this difference can improve evolutionary inferences

ESA 2017
Given two rooted phylogenetic trees T1 and T2 over n species, how different are they?

IWOCA 2019
Given two rooted phylogenetic networks N1 and N2 over n species, how different are they?

WABI 2019
Given an input set of biological data, build a rooted phylogenetic tree that best represents it

Rooted TreePhylogenetic Rooted Phylogenetic Network (DAG)

Reticulation vertices

▪ How are the trees and networks created to begin with?

Publications

5

▪ Gerth Stølting Brodal and Konstantinos Mampentzidis.
Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
In ESA 2017, Vienna, Austria.

▪ Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung.
Computing the Rooted Triplet Distance Between Phylogenetic Networks.
In IWOCA 2019, Pisa, Italy.

▪ Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu.
Building a Small and Informative Phylogenetic Supertree.
In WABI 2019, Niagara Falls, USA.

Comparing Phylogenetic Trees

6

QUESTION
Given two rooted phylogenetic trees T1 and T2 over n species, how different are they?

▪ Tree types: rooted/unrooted, binary/arbitrary degree d
▪ Distance measures: rooted triplet distance, unrooted quartet distance, Robinson-Foulds, …

Rooted TreePhylogenetic Rooted Phylogenetic Tree

T1 T2

Rooted Triplet Distance (Trees)

7

▪ A rooted triplet is defined by 3 leaf labels and their induced tree topology
▪ A triplet is induced by a tree T’ if it appears as an embedded subtree in T’

u

v

w

Resolved triplet

xy|z

z
yx

u

v

Fan triplet

x|z|w

wzx

u

x y z

T’

Rooted Triplet Distance (Trees), Dobson [Combinatorial Mathematics III 1975]
Let T1 and T2 be two rooted trees built on the same leaf label set Λ of size n
Shared triplets = triplets that are induced by both T1 and T2

S(T1 , T2) = # shared triplets ≤ n
3

Rooted triplet distance D(T1 , T2) = n
3

− S(T1 , T2) = # non-shared triplets

Rooted Triplet Distance (Trees)

8

Rooted Triplet Distance (Trees), Dobson [Combinatorial Mathematics III 1975]
Let T1 and T2 be two rooted trees built on the same leaf label set Λ of size n
Shared triplets = triplets that are induced by both T1 and T2

S(T1 , T2) = # shared triplets ≤ n
3

Rooted triplet distance D(T1 , T2) = n
3

− S(T1 , T2) = # non-shared triplets

Example

a1 a2 a5 a3 a4

a1

a3

a4a2

a5

shared triplets

a3a4|a1

a1|a2|a5

a3a4|a5

non-shared triplets

D(T1 , T2) = 7

T1 T2
a1, a2, a3

a1, a3, a5

a1, a2, a4

a1, a4, a5

a2, a3, a5

a2, a4, a3

a2, a4, a5

Previous and New Results

9

Reference Time I/Os Space Non-Binary Trees

Critchlow et al. [Sys. Biology 1996] O(n2) O(n2) O(n2) no

Bansal et al. [TCS 2011] O(n2) O(n2) O(n2) yes

Sand et al. [BMC Bioinform. 2013] O(n∙log2 n) O(n∙log2 n) O(n) no

Brodal et al. [SODA 2013] O(n∙log n) O(n∙log n) O(n∙log n) yes

Jansson & Rajaby [JCB 2017] O(n∙log3 n) O(n∙log3 n) O(n∙log n) yes

new [ESA 2017] O(n∙log n) O(n/B∙log2(n/M)) O(n) yes

Implementation available

▪ All previous solutions rely heavily on random memory access
o Penalized by cache performance
o Do not scale to external memory

▪ The new algorithms rely on scanning continuous chunks of memory
o Scanning s elements requires O(s/B) I/Os in the cache oblivious model

o Scale to external memory

B B B B B B

s

Previous Approaches – Quadratic Algorithm

10

▪ Basis for all O(n∙polylog n) results: O(n2) algorithm for binary trees in [BMC Bioinform. 2013]

T1 T2

1 2 3 … n-1 n 9 n-4 2 … 3 7

arbitrary
height

arbitrary
height

▪ Every triplet with leaves x, y, and z is anchored in LCA(x, y, z) (anchor node)
▪ s(u): set containing all triplets anchored in u
▪ S(T1 , T2) = σu∈T1

σv∈T2
|s(u) ∩ s(v)|

u (anchor)
s(u) = {xy|z, …}

T1 T2

1 2 3 … n-1 n 9 n-4 2 … 3 7

arbitrary
height

arbitrary
heightv

x y z z y x

(anchor) v

u

|s(u) ∩ s(v)| =
lred

2
rblue +

lblue
2

rred +
rred

2
lblue +

rblue
2

lred

l r

Previous Approaches – Subquadratic Algorithms

11

v

u
T1 T2

arbitrary
height

arbitrary
height

1 2 3 … n-1 n 9 n-4 2 … 3 7x y z z x y

v

9 n-4 2 … 3 7z x y

HDT(T2)
height
O(log n)

Hierarchical
decomposition

▪ For u ∈ T1 the HDT(T2) maintains σv∈T2
|s(u) ∩ s(v)|

▪ Each leaf color change in T1 yields an update to HDT(T2)

Θ(n log n) updates, with each update corresponding to a leaf to root path
traversal of HDT(T2) Bad I/O performance

Reference Time HDT(T2)

Sand et al. [BMC Bioinform. 2013] O(n∙log2 n) Static

Brodal et al. [SODA 2013] O(n∙log n) Dynamic/Contraction

Jansson & Rajaby [JCB 2017] O(n∙log3 n)
Static

(heavy-light decomposition)

The New Algorithm for Binary Trees (ESA 2017)

12

▪ New order of visiting nodes of T1 based on DFS traversal of an HDT(T1)
▪ HDT(T1) = modified centroid decomposition

x

≤
s

2
≤

s

2
≤

s

2

c

LCA(x,c’)

c’ s
c

T1 T1

▪ Lemma 2 height(HDT(T1)) ≤ 2 + 2∙log s = O(log n)

HDT(T1)
uu

u2u2 u3

u3

u1u1

T1

▪ Order to visit the nodes in T1: DFS traversal of HDT(T1), where the children of a node u are
visited from left to right

height
O(log n)

The New Algorithm for Binary Trees (ESA 2017)

13

T2

u
T1

Cu

Contract T2

Size O(|Cu|)

T2(u) For every node u in HDT(T1) we scan
T2(u) to count σv∈T2

|s(u) ∩ s(v)|

HDT(T1)
u height

O(log n)

▪ RAM model: O(n) time per level of HDT(T1) → O(n∙log n)
▪ To scale to external memory: store every component/contracted tree in memory following

a proper layout such that scanning a component/contracted tree of size s takes O(s/B) I/Os

The New Algorithm for General Trees (ESA 2017)

14

k

u

c

x y zw

1. Anchor triplets in edges instead of nodes 2. Capture triplets with 4 colors

3. Transform T1 into a binary tree b(T1)

k

c

z x y w z

T1

k

c

z x y w z

T1

w

c

b(T1)

z x y w z

O(n2)

O(n∙log n)

RAM Experiments – Time Performance

15

Source code: https://github.com/kmampent/CacheTD

log2n log2n

se
co

n
d

s/
n

se
co

n
d

s/
n

Binary trees General trees

[SODA 2013][JCB 2017]newnew [JCB 2017] [SODA 2013]

I/O Experiments – Time Performance

16

Source code: https://github.com/kmampent/CacheTD

n [JCB 2017]
Previous best

[SODA 2013] New

215 1s 1s 1s

216 1s 2s 1s

217 1s 4s 1s

218 2s 1m:03s 1s

219 4s 1h:21m 1s

220 9s ≥ 10h 1s

221 13m:12s 3s

222 ≥ 10h 9s

223 3m:37s

224 10m:35s

Binary Trees

n [JCB 2017]
Previous best

[SODA 2013] New

215 1s 1s 1s

216 1s 1s 1s

217 1s 3s 1s

218 3s 7s 1s

219 7s 5m:20s 1s

220 3m:43s ≥ 10h 2s

221 ≥ 10h 20s

222 2m:02s

223 10m:42s

224 42m:06s

General Trees

Publications

17

▪ Gerth Stølting Brodal and Konstantinos Mampentzidis.
Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
In ESA 2017, Vienna, Austria.

▪ Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung.
Computing the Rooted Triplet Distance Between Phylogenetic Networks.
In IWOCA 2019, Pisa, Italy.

▪ Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu.
Building a Small and Informative Phylogenetic Supertree.
In WABI 2019, Niagara Falls, USA.

18

Rooted Phylogenetic Networks
Rooted TreePhylogenetic Rooted Phylogenetic Network (DAG)

Reticulation vertices

An “example” of a hybrid animal

19

Rooted Phylogenetic Networks - Example

Marcussen et al. From gene trees to a dated allopolyploid network: insights from the
angiosperm genus Viola (Violaceae). Systematic Biology 64 (1) (2015) 84–101

N1 N2

20

Rooted Triplet Distance - Networks
▪ Invented by Dobson for trees [Combinatorial Mathematics III 1975]

3 leaves → unique tree topology
▪ Gambette and Huber extended it to networks [JMB 2012]

3 leaves → one or more tree topologies
▪ A rooted triplet is defined by 3 leaf labels and their induced tree topology in the network

x y z

u

v

w

Resolved triplet

xy|z

z
yx

u

v

Fan triplet

x|z|w

wzx

u

▪ Shared triplets = triplets that appear in both N1 and N2

▪ Different triplets = triplets that appear only in N1 or only in N2

▪ S(N1 , N2) = # shared triplets ≤ 4∙ n
3

▪ Rooted triplet distance D(N1 , N2) = # different triplets = S(N1 , N1) + S(N2 , N2) - 2∙S(N1 , N2)

21

Rooted Triplet Distance - Networks

▪ Shared triplets = triplets that appear in both N1 and N2

▪ Different triplets = triplets that appear only in N1 or only in N2

▪ S(N1 , N2) = # shared triplets ≤ 4∙ n
3

▪ Rooted triplet distance D(N1 , N2) = # different triplets = S(N1 , N1) + S(N2 , N2) - 2∙S(N1 , N2)

a3

a1

a4

a2 a2

a3 a4

a1

N1 N2

shared triplets different triplets

a1a3|a2

a1|a2|a4

a1a4|a2

a1a3|a4

a1a4|a3

a2|a3|a4

a3a4|a2

a2a3|a1

a1|a3|a4

a2a4|a1

a1a2|a4

a2a3|a4

a2a4|a3

D(N1 , N2) = 6

a1|a2|a3

Example

22

Previous and New Results

▪ N1 = (V1 , E1), N2 = (V2 , E2), and n is the size of the common leaf label set
▪ d1 = maximum in-degree of a vertex in N1 . Similarly, we have d2 for N2

▪ N = max(|V1|, |V2|), M = max(|E1|, |E2|), and d = max(d1, d2)

▪ k = max(k1 , k2)

k? Measures treelikeness
▪ A subgraph H of U(Ni) is biconnected if it is not possible to

remove exactly one vertex from H to make it disconnected
▪ A subgraph H’ is a biconnected component of U(Ni) if it is a

maximal biconnected subgraph of U(Ni)
▪ Ni has level ki if there are ≤ ki reticulation vertices in any

biconnected component of U(Ni)

NiU(Ni)

0

0 0
0

0

1

3

ki = 3

Reference k (level) Degrees Time Complexity

Fortune et al. [TCS 1980] arbitrary arbitrary Ω(N7n3)

Byrka et al. [JDA 2010] arbitrary binary O(N3 + n3)

Byrka et al. [JDA 2010] arbitrary binary O(N + k2N + n3)

Brodal et al. [SODA 2013, ESA 2017] 0 (trees) arbitrary O(n∙log n)

Jansson et al. [JCB 2019] 1 (galled trees) arbitrary O(n∙log n)

new [IWOCA 2019] Algorithm I arbitrary arbitrary O(N2M + n3)

new [IWOCA 2019] Algorithm II arbitrary arbitrary O(M + k3d3n + n3)

Implementation available

23

Previous and New Results

fast in practice

▪ k = 0 (trees), arbitrary degrees

O(n2) [TCS 2011] O(n∙log n) [SODA 2013] O(n∙log3 n) [JCB 2017] O(n∙log n) [ESA 2017]
scales to external memory
fastest in practice▪ k = 1 (galled trees), arbitrary degrees

O(n2.687) [JDA 2014]
count triangles in a graph

O(n∙log n) [JCB 2019]
combine the outputs of an algorithm on O(1) instances when k = 0

▪ arbitrary k, arbitrary degrees
Ω(N7n3) [TCS 1980]

Use pattern matching algorithm to test the
consistency of a triplet in Ω(N7) time

O(N2M + n3) and O(M + k3d3n + n3) [IWOCA 2019]
Construct a data structure in O(N2M) or O(M + k3d3n) time
Use it to test the consistency of any triplet in O(1) time

▪ arbitrary k, binary degrees

O(N3 + n3) and O(N + k2N + n3) [JDA 2010] Construct a data structure in O(N3) or O(N + k2N) time
Use it to test the consistency of any triplet in O(1) time

Implementation available

Reference k (level) Degrees Time Complexity

Fortune et al. [TCS 1980] arbitrary arbitrary Ω(N7n3)

Byrka et al. [JDA 2010] arbitrary binary O(N3 + n3)

Byrka et al. [JDA 2010] arbitrary binary O(N + k2N + n3)

Brodal et al. [SODA 2013, ESA 2017] 0 (trees) arbitrary O(n log n)

Jansson et al. [JCB 2019] 1 (galled trees) arbitrary O(n log n)

new [IWOCA 2019] Algorithm I arbitrary arbitrary O(N2M + n3)

new [IWOCA 2019] Algorithm II arbitrary arbitrary O(M + k3d3n + n3)

24

Algorithm I (IWOCA 2019)

▪ We extend a technique by Shiloach and Perl [J. ACM 1973]

Input DAG G = (V, E) and 4 vertices s1, t1, s2, t2

Output Are there two disjoint paths in G, one from s1 to t1 and one from s2 to t2?
Problem

Solution
1. Build a DAG G’ in O(|V|∙|E|) time
2. Return TRUE if there exists a path from (s1, s2) to (t1, t2) in G’, FALSE o/w

▪ For a network Ni we define
a fan graph Ni

f and a fan table Ai
f

▪ We then use Ai
f to determine the

consistency of any fan triplet with Ni

in O(1) time

Fan triplets Resolved triplets

▪ For a network Ni we define
a resolved graph Ni

r and
a resolved table Ai

r

▪ We then use Ai
r to determine the

consistency of any resolved triplet
with Ni in O(1) time

Our approach

O(|Vi|
2∙|Ei|)

O(|Vi|
2∙|Ei|)

25

Algorithm II (IWOCA 2019)
Ni = (Vi , Ei)

a4

a3

a2

a5

a1

a8

a10
a6

a7

a9

b

c

d

e

f

Component tree T = (V, E)

b

c

d

e

f

a3 a10 a8

a1 a5 a2

a4

a9 a7

a6

|V b| = O(kidi + 1)
|E b| = O(kidi + 1)

a9a7a6

a3

a10

a8

a1 a2 a5

a4

a1 a2 a4

a5 a8

a9a7a6

a3

a10

a1 a2 a4

a5 a8

Component network
Cb = (Vb, Eb)

|V| = O(n)
|E| = O(n)

di = maximum in-degree in Ni

Ki = level of Ni

26

Implementation and Experiments

Algorithm I Algorithm II

Model
Build a random binary tree and add e random edges from an ancestor to a descendant

Source code: https://github.com/kmampent/ntd

cp
u

ti
m

e
(s

ec
o

n
d

s)

cp
u

ti
m

e
(s

ec
o

n
d

s)

e e

n n

Publications

27

▪ Gerth Stølting Brodal and Konstantinos Mampentzidis.
Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
In ESA 2017, Vienna, Austria.

▪ Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung.
Computing the Rooted Triplet Distance Between Phylogenetic Networks.
In IWOCA 2019, Pisa, Italy.

▪ Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu.
Building a Small and Informative Phylogenetic Supertree.
In WABI 2019, Niagara Falls, USA.

28

Phylogenetic Supertrees
▪ The Supertree Problem Given a set R of small, accurate trees over overlapping subsets of n

species, build a tree T that represents R as much as possible
▪ The output tree T is called a phylogenetic supertree

Example

R = set of rooted binary trees with three leaves

a3

a4 a5

a3

a2 a5

a5

a1 a3 a2 a4 a5 a1 a3

q-MAXRTC (q - Maximum Rooted Triplets Consistency)
R = set of resolved triplets over a leaf label set Λ of size n
T = rooted tree with q internal nodes over Λ inducing the max # triplets from R

Example

Λ = {a1 ,a2 ,a3 ,a4 ,a5}

n = 5

R = {a4a5|a3, a2a5|a3, a1a3|a5, a2a4|a5, a2a3|a1}

q = 3
a1 a4 a5 a2 a3

value = 2

a2 a4 a5 a1 a3

value = 3
optimal

T = a rooted tree, if it exists, that has all
trees from R as embedded subtrees

29

q-MAXRTC (q - Maximum Rooted Triplets Consistency)
R = set of resolved triplets over a leaf label set Λ of size n
T = rooted tree with q internal nodes over Λ inducing the max # triplets from R

Motivation – Related Work

MINRS (Minimally Resolved Supertree), Jansson et al. [SICOMP 2012]
R = set of resolved triplets over a leaf label set Λ of size n
T = rooted tree, if it exists, with the min # internal nodes over Λ inducing all triplets from R

Aho et al. [SICOMP 1981]
R = set of resolved triplets over a leaf label set Λ of size n
T = rooted tree, if it exists, over Λ inducing all triplets from R

Solvable in polynomial time
by the BUILD algorithm

▪ BUILD does not always return a tree with the min # internal nodes
▪ Jansson et al. [SICOMP 2012]: BUILD can return a tree with Ω(n) unnecessary internal nodes

⇒ may suggest false groupings of the leaves, also known as spurious novel clades
▪ Scientists typically look for simple explanations for a set of observations

▪ The decision version of MINRS is NP-Hard when # internal nodes is ≥ 4, polynomial time
solvable otherwise

▪ Very sensitive to outliers

30

q-MAXRTC (q - Maximum Rooted Triplets Consistency)
R = set of resolved triplets over a leaf label set Λ of size n
T = rooted tree with q internal nodes over Λ inducing the max # triplets from R

Motivation – Related Work

MINRS (Minimally Resolved Supertree), Jansson et al. [SICOMP 2012]
R = set of resolved triplets over a leaf label set Λ of size n
T = rooted tree, if it exists, with the min # internal nodes over Λ inducing all triplets from R

MAXRTC (Maximum Rooted Triplets Consistency), Bryant [PhD Thesis 1997]
R = set of resolved triplets over a leaf label set Λ of size n
T = rooted tree over Λ inducing the max # triplets from R

▪ MAXRTC is NP-Hard
▪ Polynomial-time approximation algorithms building trees that induce ≥ 1/3|R| triplets exist

q-MAXRTC = MINRS + MAXRTC

Reference Approximation ratio T # internal nodes

Gąsieniec et al. [JCO 1999] 1/3 caterpillar unbounded

Byrka et al. [Discr. Appl. Math. 2010] 1/3 binary n-1

Byrka et al. [JDA 2010] 1/3 binary n-1

31

Reference Deterministic q Approximation Ratio Type

Gąsieniec et al. [JCO 1999] yes unbounded 1/3 abs.

Byrka et al. [Discr. Appl. Math. 2010] yes n-1 1/3 abs.

Byrka et al. [JDA 2010] yes n-1 1/3 abs.

new [WABI 2019] no 2 1/2 rel.

new [WABI 2019] yes 2 1/4 rel.

new [WABI 2019] yes 2 4/27 abs.

new [WABI 2019] yes ≥ 3 1/3 – 4/(3(q + (q mod 2))2) abs.

Approximation Algorithms for q-MAXRTC

Implementation available

▪ n = size of the input leaf label set
▪ q = # internal nodes in output tree T
▪ Absolute approximation ratio r (abs.):

T induces ≥ r∙|R| triplets
▪ Relative approximation ratio r (rel.):

T induces ≥ r∙OPT triplets
OPT = value of the optimal solution

ap
p

ro
xi

m
at

io
n

 r
at

io

q

0.32

0.324

0.33

q = 19

q = 11

q = 9

1/3 – 4/(3(q + (q mod 2))2)

4/27

32

Approximation Algorithms for q-MAXRTC
Reference Deterministic q Approx. Ratio Type

new [WABI 2019] no 2 1/2 rel.

new [WABI 2019] yes 2 1/4 rel.

new [WABI 2019] yes 2 4/27 abs.

new [WABI 2019] yes ≥ 3 1/3 – 4/(3(q + (q mod 2))2) abs.

▪ Intuitively, the larger the value of q, the better must be the quality of the produced trees

Lemma 4

Let 2 ≤ q’ ≤ q ≤ n – 1. We have that opt(q’) ≤ opt(q) ≤
q – 1
q′ – 1 opt(q’)

q = 2

1. Build a tree with two internal nodes labelled a and b
2. For each leaf: with probability 2/3 assign it to be the

child of b, and with probability 1/3 the child of a

a

b

…

probability 2/3

…

probability 1/3

Expected # triplets consistent with T: 4|R|/27

▪ The algorithm is derandomized in O(|R|) time with the method of conditional expectations
▪ Theorem 8: 4/27 is the best possible absolute ratio

T

33

Approximation Algorithms for q-MAXRTC
Reference Deterministic q Approx. Ratio Type

new [WABI 2019] no 2 1/2 rel.

new [WABI 2019] yes 2 1/4 rel.

new [WABI 2019] yes 2 4/27 abs.

new [WABI 2019] yes ≥ 3 1/3 – 4/(3(q + (q mod 2))2) abs.

q ≥ 3
First case: q = 2k+1 for some k ∈ ℕ

1. Build a binary tree with q nodes
2. Assignment probability for a node with children: 0
3. Assignment probability for a node without children: 1/(k+1)
4. Assign all n Ieaves one by one

example

q = 7 = 2 ∙ 3 + 1

k = 3

1/4 1/4

1/4

1/4 0

0

0

Expected # triplets consistent with T: 1/3 – 4/(3(q + 1)2)

Second case: q = 2k for some k ∈ ℕ

1. Apply first case for q = q – 1 and assign all n leaves
2. Add an extra internal node in T without reducing

the total # of triplets induced by T from R

…

… …

…

T

Expected # triplets consistent with T: 1/3 – 4/(3q2)

▪ The algorithm is derandomized in O(q|R|) time with the method of conditional expectations
▪ Open problem: best possible absolute ratio?

u

u1 u2

u
u12

u1 u2

2.

34

q-MAXRTC – Implementation and Experiments

Source code: https://github.com/kmampent/qMAXRTC

Experiments on Simulated Datasets

▪ dc model: R is defined by all the triplets extracted from a binary tree with n leaves
▪ noisy model: R contains random triplets

ap
p

ro
xi

m
at

io
n

 r
at

io

ap
p

ro
xi

m
at

io
n

 r
at

io

n n

35

q-MAXRTC – Implementation and Experiments
Experiments on Real Datasets

▪ Use five published binary trees from the following two papers:

L. A. Hug et al. A new view of the tree of life. Nature Microbiology, 1, 2016.

J. M. Lang et al. Phylogeny of bacterial and archaeal genomes
using conserved genes: supertrees and supermatrices. PLoS ONE, 8(4), 2013.

▪ For every tree, extract n2 triplets at random and use them to define R

ratio = S(T1 , T2)/
n

3
, where S(T1 , T2) = # triplets that are induced by both T1 and T2 and n is

inside the parenthesis

▪ With only 9 internal nodes we can capture on average 80% of the triplets

Source code: https://github.com/kmampent/qMAXRTC

36

q-MAXRTC – Implementation and Experiments
Experiments on Real Datasets

▪ Use five published binary trees from the following two papers:

L. A. Hug et al. A new view of the tree of life. Nature Microbiology, 1, 2016.

J. M. Lang et al. Phylogeny of bacterial and archaeal genomes
using conserved genes: supertrees and supermatrices. PLoS ONE, 8(4), 2013.

▪ For every tree, extract n2 triplets at random and use them to define R

Running time in seconds

Source code: https://github.com/kmampent/qMAXRTC

37

Reference Time Space Non-Binary Trees

Critchlow et al. [Sys. Biology 1996] O(n2) O(n2) no

Bansal et al. [TCS 2011] O(n2) O(n2) yes

Sand et al. [BMC Bioinform. 2013] O(n∙log2 n) O(n) no

Brodal et al. [SODA 2013] O(n∙log n) O(n∙log n) yes

Jansson & Rajaby [JCB 2017] O(n∙log3 n) O(n∙log n) yes

Brodal & Mampentzidis [ESA 2017] O(n∙log n) O(n) yes

new [WABI 2019] O(q∙n) O(q∙n) yes

▪ n = size of the common leaf label set between the two input trees
▪ q = # internal nodes in the smaller input tree

Revisiting the Rooted Triplet Distance (Trees)

Implementation available

Open Problems

▪ O(n log n/loglog n)? O(n)?
▪ If q1 is the total # internal nodes in T1 and similarly q2 in T2, O(q1q2 + n)?
▪ Prove any non-trivial lower bound

38

Summary

Reference Deterministic q Approximation Ratio Type

new [WABI 2019] no 2 1/2 rel.

new [WABI 2019] yes 2 1/4 rel.

new [WABI 2019] yes 2 4/27 abs.

new [WABI 2019] yes ≥ 3 1/3 – 4/(3(q + (q mod 2))2) abs.

q-MAXRTC https://github.com/kmampent/qMAXRTC

Reference Time I/Os Space Non-Binary Trees

new [ESA 2017] O(n∙log n) O(n/B∙log2(n/M)) O(n) yes

new [WABI 2019] O(q∙n) O(q∙n) O(q∙n) yes

Rooted Triplet Distance (Trees) https://github.com/kmampent/{CacheTD,qtd}

Reference k (level) Degrees Time

new [IWOCA 2019] arbitrary arbitrary O(N2M + n3)

new [IWOCA 2019] arbitrary arbitrary O(M + k3d3n + n3)

Rooted Triplet Distance (Networks) https://github.com/kmampent/ntd

