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Natural logarithm
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Binary logarithm log2 a = lg a
logb 1 = 0, logb b = 1
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Matrices (1,4)

A =

 a11 · · · a1n
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. . .
...

am1 · · · amn

 m× n
matrix

Matrix addition (m× n og m× n)
C = A+B, cij = aij + bij
Matrix multiplication (m× n og n× p)
C = AB, cij =

∑n
k=1 aik · bkj

Constant multiplication (m× n)
C = cA, cij = c · aij
(A+B) + C = A+ (B + C)
A+B = B +A
c(dA) = (cd)A
c(A+B) = (cA) + (cB)
(AB)C = A(BC)
A(B + C) = (AB) + (AC)
(A+B)C = (AC) + (BC)

Sets
Set A = {a1, a2, . . . , an}
Size |A|
Membership x ∈ A, non-member x /∈ A
Empty set ∅, |∅| = 0
Subset A ⊆ B, i.e. x ∈ A⇒ x ∈ B
Set intersection A ∩B
Set union A ∪B
Set difference A \B or A−B

A \B
A B

A ∩B B \A

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \A)
Commutativity
A ∩B = B ∩A, A ∪B = B ∪A
Associativity
A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C
Distributivity
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
DeMorgan’s laws
A \ (B ∩ C) = (A \B) ∪ (A \ C)
A \ (B ∪ C) = (A \B) ∩ (A \ C)
Idempotence A ∪A = A = A ∩A
Empty set A ∪ ∅ = A, A ∩ ∅ = ∅
Complement A wrt. universe U

A = U \A where A ⊆ U , A = A
A ∪B = A ∩B, A ∩B = A ∪B
A and B are disjoint ⇔ A ∩B = ∅
Cross product/Cartesian product
A×B = {(a, b) | a ∈ A ∧ b ∈ B}
Sums (2)∑n
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Preface

These supplementary lecture notes contain material covered in the the course “Algorithms and
Data Structures” at Aarhus University on the first semester of the undergraduate program in
computer science. The primary text book used in the course is Introduction to Algorithms by
Cormen, Leiserson, Rivest and Stein (3rd edition, 2009) [5].

The notes will be updated continuously throughout the course Fall 2020.

Gerth Stølting Brodal
Fall 2020

iii



Contents

Mathematics Cheat Sheet ii

Preface iii

1 Introduction to Algorithms 1
1.1 Tent pole folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Swap sorting – The mathematics of solving a Puzzle . . . . . . . . . . . . . . . . 3
1.3 Selection sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Linear search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Binary search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 The number of cycles in a random permutation . . . . . . . . . . . . . . . . . . . 15
1.8 Algorithms on integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.10 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.11 Fast integer division* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Data Structures 43
2.1 Red-black trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Fenwick trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Amortized Analysis 53

Bibliography 55

A Examples of Exam Questions 57

B Problems 68

iv



Chapter 1

Introduction to Algorithms

Algorithms are methods to solve problems. Often algorithms are considered in the context
of computer programs, where the focus of describing an algorithm is to capture the general
idea of how to solve a problem — without having to spell out all the details required by a
computer program in a specific programming language. Algorithms can also address problems
not necessarily executed by computers. In this chapter we discuss a few simple problems, we
present algorithms to solve these problems, and we give examples of ways to reason about the
algorithms and problems.

When designing algorithms the focus is to develop correct and efficient algorithms. A correct
algorithm always produces the required output given a valid input, i.e. it is not allowed to
give a wrong output for any valid input. To prove the correctness of an algorithm one tries to
reason formally about the algorithm using mathematical tools. We measure the efficiency of an
algorithm by assigning a cost measure with each execution of the algorithm. Depending on the
context many different measures of efficiency can be considered: How much time does it take
to the solve the problem (for some abstract notion of execution time of a an algorithm)? How
many times does the algorithm compare two numbers? How much computer memory does the
algorithm need to solve the problem? How many times does the algorithm access the memory
of your computer? How many times does the algorithm access the hard disk? e.t.c. Usually the
focus is on only one cost measure when designing an algorithm, assuming this is a bottleneck
in the computation. Sometimes it can be proved formally that there is a trade-off between the
cost-measures, e.g. that it is impossible to be both fast and using little memory.

1.1 Tent pole folding

The first problem we consider is the problem of folding a tent pole consisting of seven segments
with an elastic cord inside for easy handling. We are interested in the minimum number of folds
required to completely fold an assembled pole. An assembled pole has six junctions, where it
should be unplugged and folded. We want to nicely pack the segments in parallel, i.e. we want
to get from the state in Figure 1.1(a) to the state in Figure 1.1(c). By just unplugging the six
junctions we can end up in a mess like Figure 1.1(b).

A simple way, or algorithm, to fold a pole, is to unplug the junctions sequentially from
one end to the order end, and whenever unplugging a junction to fold 180◦ around this point.
Figure 1.1(d) shows the state after such four folds: The folded segments are nicely parallel with
the last segment of the yet unfolded part.

In general, a pole of n segments has n − 1 junctions. This is easy to see: The right ends
of each of the segments are unique junctions, except for the last segment that does not have a
junction at its right end. Since the above algorithm makes exactly one fold for each junction, we
have the following general result.

Theorem 1 A tent pole with n segments can be folded with n− 1 folds.

The question that naturally arises: Is this the best possible? Can we use fewer folds? If we
are limited to only be able to unplug one junction by a fold, then the number of folds required is

1



CHAPTER 1. INTRODUCTION TO ALGORITHMS 2

(a) Assembled pole with 7 segments and 6 junctions

(b) Mess (c) Folded (d) Partially folded

(e) Before folding around dashed line (f) After folding (e)

Figure 1.1: Tent pole folding

at least the number of junctions, i.e. at least n− 1 folds are required. In this scenario, the above
algorithm achieves the minimum number of folds possible and we say it is optimal.

Let us consider a natural generalized fold: If all segments are parallel, like in Figure 1.1(e),
then we can by a single pull unplug all junctions around a point, the dashed line in Figure 1.1(e),
and fold around all these junctions by a single fold, arriving at Figure 1.1(f). This essentially
allows us to consider the state in Figure 1.1(e) as a single pole with 4 segments, and the fold to
result in a new pole with 2 segments.

Our second algorithm tries to reduce the length of the pole as much as possible, by always
making a fold at the middle point of the pole. If a pole has length m, i.e. consists of m segments,
a fold will reduce the length to m/2 — provided m is even. If m is odd, we cannot split exactly
at the middle point (we are not allowed to break the pole). Instead we fold at the immediate
junction to the left or right of the middle point. Both choices will split the pole into two pieces:
One of length dm/2e and one of length bm/2c. After folding around this point the resulting pole
has length dm/2e. We repeat folding until the resulting pole consists of one segment.

For a tent pole of length seven, see Figure 1.1(a), we perform the following three folds. The
initial pole is split into pieces of length d7/2e = 4 and b7/2c = 3, and the result of the fold
has length four and is shown Figure 1.1(e). Folding this pole at the middle results in the state
in Figure 1.1(f), and finally a fold at the middle of Figure 1.1(f) brings us to the desired state
Figure 1.1(c). We conclude that:

Lemma 1 A tent pole of length 7 can be folded with 3 folds.

Again some questions arise: Does the algorithm generalize to an arbitrary number of segments
and what is the resulting number of folds expressed as a function of the initial pole length? Is
this the best possible?

Quiz 1 check

How many folds does the algorithm use for folding a pole with 20 segments?

1 2 3 4 5 6 7 8 9 10

To analyze the general case, assume we start with a pole of length n ≥ 2. The first fold
will reduce the length to dn/2e. The second fold to length ddn/2e /2e, the third fold to length
dddn/2e /2e /2e, etc. until the length has been reduced to a single segment. The ceilings in the
expressions unfortunately make it quite cumbersome to work with. The easy case is when n is
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a power of two, say n = 2k. Since each fold exactly halves the length of the pole, it follows that
after i folds the length is reduced to exactly n/2i = 2k−i, and exactly k folds are required to
reduce the length to a single segment.

We can use this to make a general analysis. Any pole length n is uniquely between two
consecutive powers of two, 2k−1 < n ≤ 2k. A single fold will result in a pole of length dn/2e
and 2k−2 < dn/2e ≤ 2k−1, provided n ≥ 2. In general after i folds the length will be ni,
where 2k−1−i < ni ≤ 2k−i. It follows that after exactly k folds the length nk is reduced to
1/2 < nk ≤ 1. Since ni is an integer, we have nk = 1, and the algorithm performs exactly k
folds. Since 2k−1 < n ≤ 2k, we can apply the binary logarithm function to each side of the
inequalities, and get

log2(2k−1) < log2 n ≤ log2(2k) ,

i.e. k − 1 < log2 n ≤ k and we get k = dlog2 ne. The performance of the algorithm can be
summarized by the following lemma.

Lemma 2 A tent pole with n segments can be folded with dlog2 ne folds.

The question that remains: Can we do better? This question can be addressed by either
trying to come up with further algorithms and analyze these, and hope they perform better, or
by proving that no algorithm can perform better. We will take the second approach.

Any algorithm that makes a single fold to a pole of length n, will fold it into two pieces of
length x and n − x, and the resulting length is max(x, n − x). Since max(x, n − x) ≥ n/2 for
all values x, the length after the fold is at least n/2, independently of what the algorithm does.
Note that n/2 is not necessarily an integer. It follows that any algorithm that performs i folds,
can at most reduce the length to n/2i. If the number of folds i < log2 n, then n/2i > n/2log2 n =
n/n = 1, and the length is still strictly larger than one segment. If follows that at least log2 n
folds are required to fold a pole with n segments. Since the number of folds is an integer, it
follows that the number folds required by any algorithm is at least dlog2 ne. We can summarize
our insights in the following lemma.

Lemma 3 Any algorithm folding a tent pole with n segments requires at least dlog2 ne folds to
reduce the length to one segment.

We conclude that our algorithm performs the minimal number of folds possible. We say that
the algorithm performs an optimal number of folds.

Summary : The tent pole example is an algorithmic problem that can be stated independently
of computers and computer programs. Our cost measure is the number of folds performed. We
analyzed the performance of a specific algorithm and gave an upper bound on the number of
folds performed by this specific algorithm. Furthermore we argued generally about the behavior
of any algorithm and proved that there is a lower bound for the number of folds that need to be
performed by any algorithm. The binary logarithm showed up naturally when reasoning about
the problem.

1.2 Swap sorting – The mathematics of solving a Puzzle

Our second algorithmic problem is to solve a puzzle by swapping pieces. Consider a rectangular
puzzle consisting of n squared pieces, where all pieces have been permuted. All pieces have the
correct orientation except that they may be placed at a wrong position. Your goal is to find the
minimum number of pairwise swaps required to solve the puzzle, i.e. to bring all pieces to their
correct positions. A single swap takes two arbitrary pieces x and y and interchanges the two
pieces. Figure 1.2 shows a puzzle and a possible first swap.

A simple algorithm to solve this problem is to repeatedly identify a misplaced piece x and
to swap x with the piece y occupying the correct position of x. This algorithm, that we name
Puzzle, can be described by the pseudocode in Figure 1.2. Pseudocode is a mixture of constructs
found in common programming languages, mathematical notation, and textual descriptions. The
aim with pseudocode is to be sufficiently precise so that the overall idea of how to solve a problem
is conveyed — but without giving all the details. This allows one to focus on the overall ideas of
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Figure 1.2: Puzzle by swapping pieces

different solutions. The underlaying assumption is that the reader of the pseudocode is able to fill
in the omitted details in a meaningful manner. Depending on the detailedness of the pseudocode
there may be many ways to fill in the details. An example is the algorithm in Figure 1.3 where
it is unspecified in what order misplaced pieces should be considered.

Algorithm Puzzle
1 while there exists a misplaced piece x do
2 let y be the piece at x’s correct position
3 swap x and y

Figure 1.3: Algorithm to solve a puzzle by swaps

Several natural questions arise about the algorithm in Figure 1.2 and the problem in general:
How many swaps are performed by the algorithm? Does the number of swaps performed depend
on the order the misplaced pieces are considered? Can one come up with another algorithm that
performs fewer swaps? How does the minimal number of required swaps depend on the start
configuration of the pieces? What is the worst-case number of swaps necessary for a puzzle of
size n, i.e. what is a worst-case permutation of the pieces? These are all algorithmic questions
stated without having to talk about computer programs.

We start by making some observations about algorithm Puzzle.

Lemma 4 Algorithm Puzzle never moves a piece placed correctly.

Proof. Swapping two pieces x and y is triggered by x not being at its correct position. Further-
more, y is occupying x’s correct position, i.e. y’s correct position is not its current position. It
follows that when the algorithm swaps two pieces x and y, both pieces are misplaced before the
swap. �

Lemma 5 For any puzzle with n pieces, algorithm Puzzle performs at most n− 1 swaps.

Proof. Since each swap moves the piece x to its correct position, and neither x and y were at
their correct position before the move (by Lemma 4), we know that each move decreases the
number of misplaced pieces by at least one (the number of misplaced pieces is decreased by
two if y happens to also be moved to its correct position by a swap). Since we start with at
most n misplaced pieces, after k swaps at most n − k pieces can be misplaced, and no piece is
misplaced at the end, the total number of swaps is at most n. By observing that we cannot have
a configuration where exactly one piece is misplaced (since the other n − 1 pieces occupy their
correct positions), it follows that after n− 1 swaps all pieces must be at their correct position.
�

The above lemma allows us to draw the conclusion that at most n − 1 swaps are necessary
to solve any puzzle of size n, i.e. we have proved an upper bound on the worst-case complexity of
solving puzzles of size n. It is not immediate that there exist start configurations for the puzzle
requiring n−1 swaps. In the following we will argue there indeed exist such start configurations.
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1.2.1 Tighter analysis

Obviously the number of swaps required to solve a puzzle depends on the start configuration,
e.g. if all pieces happen to be placed correctly then no swaps are required. In the following we
will give a more refined analysis of the number of swaps performed by the algorithm Puzzle for
a given puzzle and also give a lower bound on the number of swaps required by any algorithm
for a given puzzle. The next exercise asks you to prove that there exist inputs requiring at least
dn/2e swaps by any algorithm.

Exercise 1.1 Argue that if none of the n pieces in the start configuration are placed at their
correct position, then any algorithm will require at least dn/2e swaps on such an input. C

In the following we will describe the state of a puzzle with n pieces by a list of n integers.
Assume we have numbered the positions of the puzzle 1 to n, enumerating the first row left-to-
right, followed by the second row, etc. The top-left position is position 1 whereas the bottom
right is position n (see Figure 1.2 (right)). We identify each piece by its correct position: the
ith element in the list is the correct position of the piece currently at position i. Example
(2, 4, 3, 1, 6, 5) is a puzzle where piece 2 is currently at position 1, piece 4 for at position 2,
piece 3 is at its correct position, piece 1 at position 4 in the list, and pieces 5 and 6 are mutually
interchanged. A solved puzzle corresponds to (1, 2, 3, . . . , n).

If we for each piece draw an arrow to its correct position in the list, we get the below picture.
Note that a piece that is at its correct position has an arrow to itself.

2, 4, 3, 1, 6, 5

Since there is exactly one outgoing and one ingoing arrow for each position in the list, the arrows
give rise to a partition of the pieces into a set of cycles: A cycle consists of the nodes reachable
by following the arrows from a start node until one gets back to the start node. In the above
example there are three cycles: pieces 2, 4, and 1 form a cycle, pieces 6 and 5 form a cycle, and
piece 3 is a cycle by itself.

Lemma 6 When all n pieces are at their correct position there are exactly n cycles.

Proof. When each of the n pieces is placed correctly, it will be a cycle by itself, and the lemma
follows. �

Quiz 2 check

How many cycles are there in the puzzle configuration (3, 4, 5, 2, 1, 6) ?

1 2 3 4 5 6

Exercise 1.2 What are the cycles in the puzzle in Figure 1.2 (left)? C

The hardness of a puzzle is related to the number of cycles in the start configuration. The
following lemma captures the effect of swapping two pieces on the number of cycles.

Lemma 7 Swapping two pieces in the same cycle increases the number of cycles by one, and
swapping two pieces in two different cycles reduces the number of cycles by one.

Proof. Assume the two pieces to be swapped are pieces x and y currently at positions i and j,
respectively. They point at their correct positions x and y, respectively. By swapping x and y,
they still point at their correct positions, but x is now at position j, and y at position j. If x
and y are in the same cycle, we are in the left situation below (possibly with positions x = j
and/or y = i). The swap breaks the existing cycle into two cycles, i.e. increases the number of
cycles by one. If instead x and y were in two different cycles (right situation below), then the
swap will join the two cycles, i.e. reduce the number of cycles of one.
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The cases when one or two of the initial or resulting cycles have length one, is just a special case
of the above. �

Note that the above lemma is independent of the placement of the two pieces — it holds
independently of if the pieces are placed at their correct position before or after the swap.

Exercise 1.3 Can the puzzle in Figure 1.2 (left) be solved using 9 swaps? (Note that a swap
requires two distinct pieces). C

We will first use the lemma to give a refined analysis of the algorithm Puzzle.

Lemma 8 On a puzzle with n pieces and initially k cycles, algorithm Puzzle performs exactly
n− k swaps.

Proof. Each swap by the algorithm swaps a piece x with the piece y at the correct position of x,
i.e. x and y are in the same cycle and y is the successor of x in the cycle. By swapping x and y
we create one more cycle, in particular x becomes a cycle by itself. It follows that each swap
creates exactly one more cycle. Since the initial number of cycles is k and the final number of
cycles is n, exactly n− k swaps must be formed. �

Lemma 9 Any algorithm that solves a puzzle with n pieces and k cycles in the start configuration
requires at least n− k swaps.

Proof. Since any swap can create at most one additional cycle, at least n− k swaps are required
to get from k to n− k cycles. �

Since algorithm Puzzle performs the provably best possible number of swaps, we say that the
algorithm optimal. The following two exercises stretches the point that optimal swap sequences
can contain many swaps that do not move any piece to a correct position, but still the swaps
provably contribute towards solving the puzzle.

Exercise 1.4 Give a start configuration of a puzzle with four pieces and an optimal sequence
of swaps (i.e. performs a minimal number of swap) that solves the puzzle, but where at least one
of the swaps does not move any piece to its correct position. C

The next exercise asks you to generalize your answer from Exercise 1.4 to an arbitrary number
of pieces.

Exercise 1.5 Given a number of pieces n, give a start configuration of a puzzle with n pieces and
an optimal sequence of swaps (i.e. performs a minimal number of swap) that solves the puzzle,
but maximizing the number of swaps which do not move any piece to their correct position. Argue
that this is the worst-case number of swaps. Hint. The largest number of swaps not moving any
element to a correct position is

⌊
n
2

⌋
− 1. C

1.2.2 Strategies for finding swaps

Algorithm Puzzle does not specify how to find the piece x to be moved to its correct position.
We here give two simple strategies, see the pseudocodes in Figure 1.4.

The first algorithm, PuzzlePull, scans through the positions of the puzzle, and first fills the
first position with a correct piece, then the second position, etc. by performing at most a single
swap. When considering position x, there are two possibilities. If position x contains piece x,
then we proceed to the next position x + 1 without performing a swap. Otherwise position x
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Algorithm PuzzlePull
1 for x = 1 to n do
2 if x is not placed correctly then
3 swap x with the piece y at position x

Algorithm PuzzlePush
1 for i = 1 to n do
2 while position i does not contain piece i do
3 swap the piece x at position i with the piece y at position x

Figure 1.4: Two variations of algorithm puzzle

contains a piece y, and we find x on the board and swap x and y. It is an invariant of this
algorithm that whenever we consider a position x, then all positions 1, . . . , x − 1 contain the
correct pieces.

Our second algorithm variation, PuzzlePush, also considers the positions of the puzzle in
increasing order. But whenever considering position i, and finds here a misplaced piece x, then
instead of looking for piece i on the board, it just pushes x to its correct position by swapping it
with the current piece y at position x. Such a swap will not necessarily guarantee that position i
is filled with its correct piece, so we just repeat the same step until position i gets the correct
value. Since each swap moves one new piece to its correct position we still only have to perform
n− k swaps.

1.2.3 Random puzzle

We have seen that the number of cycles in the initial configuration of a puzzle determines the
optimal number of swaps needed to solve the puzzle. For a random permutation of the pieces
(where all permutations are equally likely with probability 1

n! ), the following theorem (proof in
Section 1.7) captures the number of expected cycles in the permutation of the pieces. From the
theorem it follows that the expected optimal number of swaps for a random puzzle is n−

∑n
i=1

1
i .

Theorem 2 The expected number of cycles in a random permutation of n pieces is

Hn =

n∑
i=1

1

i
.

Hn denotes the n-th harmonic number and is approximately

Hn ≈ lnn+ γ +
1

2n
− 1

12
n−2 +

1

120
n−4 − 1

252
n−6 + · · · ,

where γ = 0.577215664901 . . . is the Euler-Mascheroni constant.

1.3 Selection sort

There exist many different sorting algorithms. In this section we discuss the selection sorting
algorithm, with the focus on reasoning about a simple algorithm. Sorting by selection is likely one
of the most canonical ways of sorting. Assume you have a pile of n cards C labeled with distinct
numbers, and you want to sort the cards in order of increasing labels. Algorithm SelectionSort
proceeds by first finding the card with minimum label in C, and moving this to a stack S (initially
empty). We now repeatedly remove the card with minimum label from C and put it on top of S.
The algorithm terminates when all cards have been moved from C to S, and S is the sorted
result.
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Figure 1.5: Distribution of the number of cycles in 10.000.000 random puzzles with 64 pieces.
The expected number of cycles is H64 ≈ 4.7439.
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It might be clear to you already that this process will extract the cards in increasing label
order, but let us argue a little bit more formally about the process. Throughout the execution
of SelectionSort the states of C and S satisfy some properties. We will use invariants to
capture these properties, and more importantly to argue that the output is the correct result.
We will consider the following three invariants:

(a) C and S together equal the initial set of cards.

(b) S is sorted in increasing label order (lowest label at the bottom).

(c) All cards in S have smaller labels than all cards in C.

To argue that these statement are in fact invariants for SelectionSort, we need to argue
that: i) the invariants are satisfied in the initial state, and ii) whenever the algorithm moves
a card from C to S in a state where the invariants are satisfied, then the invariants are also
satisfied after the move.

In the initial state C contains the initial set of cards whereas S is empty, implying (a)–(c) are
satisfied. Whenever a card x is moved from C to S, the cards in C and S are the same cards as
before the move, i.e. if (a) is satisfied before the move, then (a) is also satisfied after the move.
To argue that (b) is satisfied after the move, we need (b) and (c) to be satisfied before the move.
When moving a card x from C to the top of S, we by (c) know that x is larger than all cards
currently on S, and by (b) that S is sorted, i.e. S remains sorted by moving x to the top of S,
and (b) is satisfied after the move (note that this argument holds for any card x moved from C
to S). Finally, to argue that (c) remains satisfied by moving the minimum card x from C to S,
we note that (c) before the move ensures that all previous cards in S are smaller than all cards
in C. Since we only add x to S, and x was the smallest card in C, then x is also smaller than
all remaining cards in C, i.e. (c) remains satisfied.

To conclude that the algorithm computes the correct result, we first need to argue that the
algorithm in fact terminates. But since |C| decreases by exactly one for each move, the total
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Figure 1.6: A state during the minimum search in algorithm SelectionSort

number of moves is n, i.e. the algorithm is guaranteed to terminate. To reason about the final
state, we first observe that when algorithm terminates C is empty. Invariant (a) then implies
that S contains the initial set of cards and (b) that these are sorted. The above argument allows
us to conclude that:

Theorem 3 Algorithm SelectionSort correctly sorts cards in increasing label order.

Note that we only needed invariants (a) and (b) to conclude that S is the correct sorted
output in the final state. Invariant (c) is needed to be able to reason about the intermediate
states, in particular we could not reason that (b) is an invariant, without having (c) in our set
of invariants.

Quiz 3 – SelectionSort check

State for each of the below statements if they are valid invariants for SelectionSort ?

yes no

1 ≤ |C| ≤ n
0 ≤ |C| ≤ n
|S|+ |C| = n

yes no

|S| ≤ |C|
minC ≤ maxS

maxS ≤ minC

We let max (min) on an empty set be −∞ (+∞).

1.3.1 Finding the minimum

Algorithm SelectionSort repeatedly finds the card with minimum label among the remaining
cards C. Let us spell out this (easy) task. The simplest way to do this is to run through the
cards in C, and to keep track of the mimimum card seen to far. To capture the progress of this
search we can partition C into three sets of cards U , M and L: The set of cards not considered
yet U , the current minimum M , and the set of rejected cards L with labels larger than M . The
situation is illustrated in Figure 1.6. The invariants that should be maintained by the algorithm
are:

(a) L, U , M and S together equal the initial set of cards.

(b) S is sorted in increasing label order (lowest label at the bottom).

(c) All cards in S have smaller labels than all cards in L ∪ U ∪M .

(d) M contains at most one card.
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(e) If L is non-empty, then M contains exactly one card, and this card has smaller label than
all cards in L.

At the beginning of the minimum search all cards are in U , and L and M are empty. If M
is empty (and L is empty by invariant (e)), we move an arbitrary card from U to M . While U
is non-empty, pick from U an arbitrary card c and compare its label with the card in M . If c is
larger, we move c to L. Otherwise the card in M is moved to L and c is movd to M . When U
becomes empty, we move the card in M to the top of S, and move all cards from L to U , and
start over. By a simple case analyis it can be verified that each move maintains all the above
invariants.

We are now in a position where we can analyze the number of comparisons performed between
the labels of two cards by algorithm SelectionSort.

Theorem 4 Algorithm SelectionSort sorts n cards using n(n−1)
2 label comparisons.

Proof. For the ith card moved to S, this is found among the n + 1 − i remaining cards in C.
Since we perform exactly one comparison per card we move out of U , except for the first card,
this requires |C| − 1 = n + 1 − i − 1 = n − i comparisons. It follows that the total number of

comparisons is (n− 1) + (n− 2) + · · ·+ 1 =
∑n−1
i=1 i = n(n−1)

2 . �

Exercise 1.6 Consider the card with the ith smallest label. What is the smallest number and
largest number of comparisons this card can participate in? In particular what are these values
for the cards with smallest label (i = 1) and largest label (i = n)? C

1.3.2 Pseudocode

Until now we have studied the properties of SelectionSort without refering to pseudocode.
When turning to code, we assume that we have an array A[1..n] of n values that should be sorted.
Instead of creating two additional arrays C and S, storing the remaining values to be sorted and
the already sorted values, we will work directly on A, by swapping values in A, letting S be
represented by a prefix of A, and C the remaining values. Since the algorithm works directly
on the input array without creating new arrays we denote SelectionSort to be an implicit
algorihtm.

The progress of the algorithm can be captured by the below visual invariant together with
invariants (a)–(c). Position i is the next position to be filled with the minimum from C = A[i..n].

1 · · · i · · · n

A 1 2 3 4 8 7 5 9 6︸ ︷︷ ︸
sorted S

︸ ︷︷ ︸
C

The algorithm stated as pseudocode is shown in SelectionSortAbstract in Figure 1.7.
Below is illustrated the progression of the algorithm on an input of size five. The underbraced
part is the sorted part corresponding to S, and arrows indicate the next swap. Note that when
A[i] = minA[i..n], then A[i] is just swapped with itself (below the case where i = 3), and that
A[n] is guaranteed to be the largest value after n− 1 swaps.

1 2 3 4 5

A 3 4 1 5 2
i = 1

1 4 3 5 2︸︷︷︸ i = 2
1 2 3 5 4︸ ︷︷ ︸ i = 3
1 2 3 5 4︸ ︷︷ ︸ i = 4
1 2 3 4 5︸ ︷︷ ︸
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Algorithm SelectionSortAbstract(A)
1 for i = 1 to |A| − 1 do
2 swap A[i] and minimum of A[i..|A|]

Algorithm SelectionSort(A)
1 for i = 1 to |A| − 1 do
2 k = i
3 for j = i+ 1 to |A| do
4 # A[k] = minA[i..j − 1]
5 if A[j] < A[k] then
6 k = j
7 # A[k] = minA[i..|A|]
8 tmp = A[i]
9 A[i] = A[k]
10 A[k] = tmp

Figure 1.7: Pseudocode for SelectionSort.

Again, SelectionSortAbstract does not provide the details of how to find minA[i..n].
The pseudocode SelectionSort in Figure 1.7 (right) spells out these details, in particular how
to find the minimum of A[i..n] by letting j run over the positions i+ 1..n and remembering the
position k with smallest value among the values considered so far, i.e. A[k] = minA[i..j − 1].
The last three lines swap A[i] and A[k]. The pseudocode is very close to real code — but the
basic idea behind the solution gets blurred.

1.4 Linear search

In this section we consider the most simple searching algorithm called linear search as a warm
up for the binary search in Section 1.5. Assume we want to find an element x in an array A
of length n containing elements a1, a2, . . . , an, or to report that x is not contained in A. The
obvious algorithm is to compare x to a1, then x and a2, etc. until we find the i where ai = x, or
we have compared x unsuccessfully to all elements in A. In the worst-case we perform exactly n
comparisons, namely one between x and each of the n elements in A.

In Figure 1.8 the details are spelled out as pseudocode, in particular we represent the result
“x not in A” by returning the value −1 (a somewhat arbitrary choice). We maintain an index i
where ai is the next element to be compared to i, and more importantly we have the invariant
that aj 6= x for all 1 ≤ j < i. We can illustrate this by the visual invariant:

6= x ?A ai

1 i n

The visual invariant captures the progress of the algorithm. It clearly states what the first
index and last index of the array are (not being explicit abouth this is a common source for
programming errors, since sometimes algorithms assume arrays to start at 0, sometimes at 1,
and sometimes even at −1 if this becomes convenient for describing the pseudocode), and that i
is the next index to be considered (opposed to the last index found to be 6= x). One special case
not illustrated well by the visual invariant, is that at the end i can have value n + 1, when all
values of A have been considered. This is special case is better captured by the following general
mathematical invariant.

1 ≤ i ≤ n+ 1 ∧ xj 6= x for all 1 ≤ j < i

By stating both the visual invariant and the mathematical invariant it should be quite clear,
if not obvious, how to fill in the code. For linear search it might not appear that necessary to
provide visual invariants, mathematical invariants, and pseudocode to solve the problem. But
for slightly more complex algorithms they become crucial tools in the process of reasoning about
the algorithm. Binary search is such an example.
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Algorithm LinearSearch(A, x)
Input Array A[1..n] and search key x
Output Index i where A[i] = x; −1 if x /∈ A
1 i = 1
2 while i ≤ |A| do
3 if A[i] = x then
4 return i
5 i = i+ 1
6 return −1

Figure 1.8: Linear search

1.5 Binary search

For linear search we did not assume anything about A except that we should be able to test
if two elements are equal. The price was that in the worst-case we have to do n comparisons.
Binary search considers the situation where we can arrange the elements in A in sorted order
with respect to some ordering of the elements. The goal by sorting the elements is to perform
repeated searches with fewer comparisons. This is an example of a very simple data structure,
where we can perform efficient queries on our data by putting a structure on the data.

That binary search can be tricky to get right is well known. Jon Bentley [2, Section 4.1]
asked a group of professional programmers to implement binary search (without testing):

I was amazed: given ample time, only about ten percent of professional programmers
were able to get this small program right. But they aren’t the only ones to find this
task difficult: in the history in Section 6.2.1 of his Sorting and Searching, Knuth
points out that while the first binary search was published in 1946, the first published
binary search without bugs did not appear until 1962.

Assume we are searching for an element x in a sorted array A = a1, a2, . . . , an. The basic
idea of binary search can be captured by the following invariant.

< x > xA amid

1 low mid high n

(1 ≤ low ≤ high ≤ n+ 1) ∧ (aj < x for all 1 ≤ j < low) ∧ (x < aj for all high ≤ j ≤ n)

The idea is to have two indexes low and high into A, where we have discarded the prefix
a1, a2, . . . , alow−1 of A as being elements smaller than x, and the suffix ahigh , ahigh+1, . . . , an
of A as being elements larger than x. The elements alow , . . . , ahigh−1 are the remaining candi-
dates that can be equal to n. To reduce the set of candidates we compare x with the middle
element amid , where mid = b(low + high)/2c and low ≤ mid < high. If x = amid we have found
x and can return mid . Otherwise, if x < amid all elements amid , . . . , xn are > x, since A is
sorted, and we can decrease high to mid . Finally, if amid < x all elements a1, . . . , amid are < x,
and we can increase low to mid + 1. If the candidate set is reduced to the empty set, we know
x is not in A, and return this. Figure 1.9 gives the pseudocode.

Let us now turn towards the number of comparisons performed by BinarySearch. We
assume that a single comparison between x and A[mid ] determines if x < A[mid ], x = A[mid ],
or x > A[mid ]. If s = high − low is the number of candidates before a comparison where
amid 6= x, then the number of candidates is reduced to bs/2c if s is odd, and s/2 − 1 or s/2 if
k is even. In the worst case always bs/2c elements remain. To analyze how many comparisons
BinarySearch performs in the worst case on an array of size n, we need to analyze how many
times we need to divide by two and round down until we reach zero.

n→ bn/2c → bbn/2c /2c → bbbn/2c /2c /2c → · · · → 0

Fortunately, if the length is a power of two minus one, i.e. n = 2k−1, then this sequence becomes
manageable:

2k − 1→ 2k−1 − 1→ 2k−2 − 1→ 2k−3 − 1→ · · · → 2k−(k−1) − 1→ 2k−k − 1 = 0
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Algorithm BinarySearch(A, x)
Input Sorted array A[1..n] and search key x
Output Index i where A[i] = x; −1 if x /∈ A
1 low = 1
2 high = n+ 1
3 while low < high do
4 mid = b(low + high)/2c
5 if x = A[mid ] then
6 return mid
7 else if x < A[mid ] then
8 high = mid
9 else if x > A[mid ] then
10 low = mid + 1
11 return −1

Figure 1.9: Binary search

i.e. exactly k comparisons are required in the worst case. For an array of length n ≤ 2k − 1, the
worst case size of the candidate set after i comparisons is at most the corresponding worst case
size of the candidate set after i comparisons for input size 2k − 1. It follows that on any input of
size n ≤ 2k − 1, at most k comparisons are performed by BinarySearch. By adding 1 on both
sides, and taking the binary logarithm, we can rewrite the constraint on n to

log2(n+ 1) ≤ log2(2k) = k .

For a given n, this is satisfied for k = dlog2(n+ 1)e, i.e. the algorithm performs at most k =
dlog2(n+ 1)e comparisons.

Theorem 5 Binary search on array of length n performs worst case dlog2(n+ 1)e comparisons.

Example 1.1 Consider an array A of size 1.000.000. Here LinearSearch in the worst case
performs 1.000.000 comparisons, whereas BinarySearch at most performs dlog2 1.000.001e =
20 comparisons. �

Quiz 4 check

How many comparisons does BinarySearch in the worst case perform on an array of size
1.000.000.000.000?

30 40 400 1600 20.000 1.000.000 20.000.000

Exercise 1.7 Can line 4 in BinarySearch be changed to mid = d(low + high)/2e? C

Exercise 1.8 Describe a variant of binary search where low is the index of the last element of
A known to be < x. Modify the invariant and the pseudocode to match the new invariant. C

1.5.1 Optimality of binary search

We have seen that in the worst case the algorithm BinarySearch requires dlog2(n+ 1)e com-
parisons for searching in a sorted arrays of size n. In this section we show that this is the best
possible for algorithms that are only allowed to do comparisons on the elements.

Assume that an arbitrary searching algorithm is given a sorted array A = a1, . . . , an and
an element x — but the only information the algorithm can gain about x and the ais is by
comparing x with an ai, and will only learn if x < ai, x = ai or x > ai. Our goal is to construct
an adversary that answers the comparison queries by the algorithm in such a way that it forces
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the algorithm to make as many comparisons as possible — essentially the adversary tries to
postpone settling the value for x as long as possible.

The adversary fixes a1 = 1, a2 = 2, . . . , an = n. It also maintains a range ]`, h[ that x can
be assigned values from, while being consistent with the already answered comparison queries.
Initially ]`, h[ = ]0, n+ 1[. Whenever the algorithm compares x with an ai, the adversary answers
x < ai if i ≤ `, and answers x > ai if i ≥ h. If ` < i < h, the adversary sets h = i if
|A∩ ]`, i[ | ≥ |A∩ ]i, h[ |, otherwise ` = i. After this i /∈ ]`, h[ and the adversary answers the query
as above. If before the query there are s = |A∩ ]`, h[ | possible values for x, then after the query
there are still at least d(s− 1)/2e possible values for x. As long as there is at least one possible
value for x in A ∩ ]`, h[, the algorithm cannot have determined if x is in A, since the adversary
is still free to assign x a value from A or one not in A.

A lower bound for the number of comparisons required by the algorithm is how many times
we need to apply s→ d(s− 1)/2e, to get from having n candidate values for x until there is zero.
For n = 2k the sequence of lower bounds we have on the number of candidates becomes

2k → 2k−1 → 2k−2 → · · · → 2k−k → 0 ,

i.e. at least k + 1 comparisons are required by any algorithm to be able to answer correctly. For
n ≥ 2k, also at least k+ 1 comparisons are required, since it is sufficient for the adversary to run
the adversary strategy on the first 2k elements of A. Letting k = blog2 nc, implies n = 2log2 n ≥
2k, i.e. at least k+1 = blog2 nc+1 comparisons are required. Since blog2 nc+1 = dlog2 (n+ 1)e,
we have the following theorem.

Theorem 6 Any comparison based searching algorithm on a sorted array requires worst case at
least dlog2 (n+ 1)e comparisons.

Corollay 1 Algorithm BinarySearch performs an optimal worst case number of comparisons.

1.6 Logarithms

In this section we summarize important properties of logarithm functions typically used in the
analysis algorithms. We have already seen several examples involving logarithms in the previous
sections. In the analysis of the tent pole problem in Section 1.1 and the algorithm Binary-
Search in Section 1.5 the binary logarithm showed up naturally, both in the analysis in the
respective algorithms, and the lower bound arguments for the problems. In Section 1.2 we ana-
lyzed the number of swaps required to solve a puzzle, and related this to the number of cycles
in a permutation, that according to Theorem 2 for a random puzzle was expected to be close to
the natural logarithm of the number of pieces.

Definition 1.1 For a real value x > 0 and real base b > 1, the logarithm of x with base b,
denoted logb x, is defined as the inversion of the exponential function

y = logb x ⇔ by = x

�

Figure 1.10 illustrates three often used logarithmic functions: the binary logarithm log2 x,
the decimal logarithm log10 x, and the natural logarithm lnx = loge x. All logarithms have
logb 1 = 0. Some very useful identities involving logarithm functions are the following, where
x > 0, y > 0, and p can be any real value.

logb(x · y) = logb x+ logb y (1.1)

logb(x/y) = logb x− logb y (1.2)

logb(x
p) = p · logb x (1.3)

logb x =
loga x

loga b
(1.4)

logb(b
p) = p (1.5)
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Figure 1.10: Logarithm functions lnx, log2 x and log10 x

To prove (1.1) and (1.2) we use ab+c = ab · ac and ab−c = ab/ac to get the identites

blogb x+logb y = blogb x · blogb y def
= x · y def

= blogb(x·y)

blogb x−logb y = blogb x/blogb y def
= x/y

def
= blogb(x/y) ,

from which it follows that logb x + logb y = logb(x · y) and logb x − logb y = logb(x/y), since
f(x) = bx is a strictly increasing function for b > 1. Similarly for (1.3) we use (ab)c = ab·c and
have

blogb (xp) def
= xp

def
= (blogb x)p = b(logb x)·p = bp·logb x ,

i.e. logb (xp) = p · logb x. Equation 1.4 follows from

aloga x def
= x

def
= blogb x def

= (aloga b)logb x = a(loga b)·(logb x) ,

i.e. loga x = (loga b) · (logb x). Finally, (1.5) follows from (1.3) by

logb(b
p)

(1.3)
= p · logb b

def
= p · 1 = p .

The relationship between two logarithm functions with different bases a and b is captured
by (1.4), stating that the difference is a constant factor loga b. In subsequent chapters we often
ignore constant factors when using the so called O-notation, and (1.4) therefor in many cases
allows us to omit the base on the logarithm.

The natural logarithm lnx is the logarithm with base e = 2.7182818 . . ., i.e. lnx = loge x.
The natural logarithm is characterized by having derivative equal to one at x = 1. Some essential
properties of the natural logarithm are

d

dx
lnx =

1

x
(1.6)

ln y =

∫ y

1

1

x
dx (1.7)

Hn − lnn → γ for n→∞ , (1.8)

where Hn =
∑n
i=1

1
i is the nth harmonic number and γ = 0.577215664901 . . . is the Euler-

Mascheroni constant.

1.7 The number of cycles in a random permutation

In this section we will sketch the proof of Theorem 2, i.e. that a random permutation has
expected Hn cycles. The proof illustrates how we can use the analysis of an algorithm to obtain
mathematical insights in random permutations.

The first question is how to generate a random permutation. One solution is the algorithm
Shuffle in Figure 1.11 (left). The algorithm considers the elements a1, a2, . . . , an one by one,
maintaining the invariant that when the algorithm considers ai, A[1..i − 1] contains a random
permutation of the i − 1 elements a1, . . . , ai−1, and all (i − 1)! permutations have equal proba-
bility 1/(i− 1)!.
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uniformly permuted original inputA ai

1 i n

By swapping ai with any element from A[1..i], the algorithm maintains this invariant since this
random choice is (intuitively and mathematically) independent from previous choices: ai remains
at position i with probability 1/i, i.e. any permutation with ai as the last element has probability
1/i · 1/(i − 1)! = 1/i!, since A[1..i − 1] had this permutation with probability 1/(i − 1)!. If ai
is swapped with A[j], for a specific j, where 1 ≤ j < i, then this happens with probability 1/i.
Any permutation of a1, . . . , ai with A[j] = ai, has been created by swapping ai with the previous
A[j]. Since the permutation before this swap had probability 1/(i−1)!, the resulting permutation
of a1, . . . , ai has probability 1/i · 1/(i − 1)!) = 1/i!. It follows that after having processed all
a1, . . . , an all permutations have equal probability 1/n!.

Algorithm Shuffle(A)
Input Array A[1..n] to be randomly shuffled
1 for i = 1 to n do
2 j = random integer in {1, 2, . . . , i}
3 swap A[i] and A[j]

Algorithm BadShuffle(A)
Input Array A[1..n] non-uniformly shuffled
1 for i = 1 to n do
2 j = random integer in {1, 2, . . . , n}
3 swap A[i] and A[j]

Figure 1.11: Permute A randomly

It should be emphasized that the random integer in line 2 in algorithm Shuffle is taken
from the range 1, . . . , i. In algorithm BadSuffle(A), Figure 1.11 (right), i has been replaced
by n in line 2. This innocent change unfortunately makes the algorithm generate permutations
with non-uniform probabilities, e.g. if A = [1, 2, 3], then it can be shown that [1, 2, 3], [3, 1, 2],
[3, 2, 1] are generated with probability 4/27, whereas [1, 3, 2], [2, 1, 3], [2, 3, 1] are generated with
probability 5/27.

Finally let us turn to the expected number of cycles in the generated random permutations.
When algorithm Shuffle adds ai to the permuted part, there are two possible actions: Either
ai stays at position i, in which case ai becomes a new cycle of length one. Otherwise, the swap
inserts ai into an existing cycle and the number of cycles does not change. It follows that when
considering ai, with probability 1/i one new cycle is introduced, and with probability 1−1/i the
number of cycles remains unchanged. It follows that expected 1/i cycles are introduced when
including ai in the permutation. Summing over all i, the total number of cycles introduced is
expected

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
=

n∑
i=1

1

i
= Hn

(1.8)
≈ lnn .

1.8 Algorithms on integers

Computers are number crunchers. The basic unit stored in a computer is a bit , which is a
number that either equals zero or one. The power of computers is achieved by how we interpret
and work with bits. The physical RAM (random access memory) of a modern computer stores
on the order 100.000.000.000 bits. In this section we will consider basic algorithms for working
with integers presented by a sequence of bits.

1.8.1 Number representations

Let us start with a recap of the basic definition of decimal numbers. For small numbers zero,
one, two, ..., nine we have special symbols to represent these values, denoted digits.

Symbol/digit 0 1 2 3 4 5 6 7 8 9

Unary

For numbers larger than nine, we use a positional number system where we write several
digits after each other. In particular ten is written 10. The value of an n digit decimal number
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dn−1dn−2 · · · d1d0 equals

n−1∑
i=0

di · 10i = dn−1 · 10dn−1 + dn−2 · 10dn−2 + · · ·+ d1 · 101 + d0 · 100 .

Here we assume the reader to familiar with basic arithmetic and that 100 = 1. An example could
be the value

184910 = 1 · 103 + 8 · 102 + 4 · 101 + 9 · 100 .

Note that we subscript the value by the base of the number system. If the base is obvious from
the context the base will in most cases by omitted. Otherwise the default base is 10.

Other typical positional digit systems are binary numbers (base 2), octal numbers (base 8),
and hexadecimal numbers (base 16). A base b system uses b different symbols for the values zero
to b − 1. For hexadecimal numbers we are in the special case that we can only reuse the digits
0 – 9 for the values zero to nine, but for the values ten to fifteen new symbols are needed. Here
the convention is to use the six letters A – F.

Decimal value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Binary symbol 0 1
Octal symbol 0 1 2 3 4 5 6 7
Hexadecimal symbol 0 1 2 3 4 5 6 7 8 9 A B C D E F

The value of an n digit number dn−1dn−2 · · · d1d0 in base b equals
∑n−1
i=0 di ·bi, e.g. ACDC16 =

10 · 163 + 12 · 162 + 13 · 161 + 12 · 160 = 44252.

184910 = 111001110012 = 34718 = 73916

The popularity of octal and hexadecimal numbers is due to the fact that 8 and 16 are both
powers of two, respectively 23 and 24. This makes it easy to convert a binary number to the
corresponding octal and hexadecimal numbers. For octal numbers groups of three bits make up
one octal digit, whereas for hexadecimal numbers one considers blocks of four bits.

011︸︷︷︸
3

100︸︷︷︸
4

111︸︷︷︸
7

001︸︷︷︸
1

2 = 34718 0111︸︷︷︸
7

0011︸︷︷︸
3

1001︸︷︷︸
9

2 = 73916

In the above we prepend the binary number with the digit 0 to make the length divisible by
three and four, respectively.

1.8.2 Addition

Consider computing the decimal sum 843 + 572 = 1415. The classic addition algorithm (in the
following denoted the school method) so is to write the numbers below each other, and proceed
right-to-left adding the two digits above each other and possibly a carry, write down the least
significant digit below the numbers and the possible most significant digit as a carry over the
next position to the left.

1 1

8 4 3
+ 5 7 2

1 4 1 5
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+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

+ 0 1

0 0 1
1 1 10

Figure 1.12: Decimal (left) and binary (right) addition tables

This essentially states the following rewriting in a very compact form and using the addition
table in Figure 1.12 (left):

843 + 572 = (8 · 102 + 4 · 101 + 3 · 100) + (5 · 102 + 7 · 101 + 2 · 100)

= (8 + 5) · 102 + (4 + 7) · 101 + (3 + 2) · 100

= (8 + 5) · 102 + (4 + 7) · 101 + 5 · 100

= (8 + 5) · 102 + 11 · 101 + 5 · 100

= (8 + 5) · 102 + (1 · 10 + 1) · 101 + 5 · 100

= (8 + 5) · 102 + (1 · 102 + 1 · 101) + 5 · 100

= ((8 + 5) + 1) · 102 + 1 · 101 + 5 · 100

= (13 + 1) · 102 + 1 · 101 + 5 · 100

= 14 · 102 + 1 · 101 + 5 · 100

= (1 · 10 + 4) · 102 + 1 · 101 + 5 · 100

= 1 · 103 + 4 · 102 + 1 · 101 + 5 · 100

= 1415

Binary numbers are added in exactly the same way, except that we use the binary addition
table Figure 1.12 (right). In particular note that 12 + 12 = 102.

1 1 1

1 1 1 0 2

+ 1 0 1 1 2

1 1 0 0 1 2

The above binary addition, corresponds to the following computation. Note that we allow us to
write 102

3 where the base is in binary representation and the exponent is in decimal notation,
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3 3 2

2 7 7
+ 9 5 5
+ 7 7 6
+ 4 9 1
+ 1 5 2 4
+ 3 3 6

4 3 5 9

1 10 10

9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9
+ 9 9

1 0 9 8

1 1 1

2 7 7
+ 9 5 5

1 1

1 2 3 2
+ 7 7 6

2 0 0 8
+ 4 9 1

1 1 1

2 4 9 9
+ 1 5 2 4

4 0 2 3
+ 3 3 6

4 3 5 9

Figure 1.13: School method for adding multiple decimal numbers

e.g. 102
3 = 10002.

11102 + 10112 = (1 · 102
3 + 1 · 102

2 + 1 · 102
1 + 0 · 102

0)

+ (1 · 102
3 + 0 · 102

2 + 1 · 102
1 + 1 · 102

0)

= (1 + 1) · 102
3 + (1 + 0) · 102

2 + (1 + 1) · 102
1 + (0 + 1) · 102

0

= (1 + 1) · 102
3 + (1 + 0) · 102

2 + (1 + 1) · 102
1 + 1 · 102

0

= (1 + 1) · 102
3 + (1 + 0) · 102

2 + (102) · 102
1 + 1 · 102

0

= (1 + 1) · 102
3 + (1 + 0) · 102

2 + (102 + 0) · 102
1 + 1 · 102

0

= (1 + 1) · 102
3 + ((1 + 0) + 1) · 102

2 + 0 · 102
1 + 1 · 102

0

= (1 + 1) · 102
3 + (1 + 1) · 102

2 + 0 · 102
1 + 1 · 102

0

= (1 + 1) · 102
3 + 102 · 102

2 + 0 · 102
1 + 1 · 102

0

= (1 + 1) · 102
3 + (102 + 0) · 102

2 + 0 · 102
1 + 1 · 102

0

= ((1 + 1) + 1) · 102
3 + 0 · 102

2 + 0 · 102
1 + 1 · 102

0

= (102 + 1) · 102
3 + 0 · 102

2 + 0 · 102
1 + 1 · 102

0

= 1 · 102
4 + 1 · 102

3 + 0 · 102
2 + 0 · 102

1 + 1 · 102
0

= 110012

1.8.3 Adding multiple numbers

The school method for the addition of two decimal numbers easy generalizes to adding multiple
decimal numbers, see Figure 1.13. Instead of only adding two digits, you add all the digits above
each other. This method has the drawback that you need to add more than two digits, where
the addition table, Figure 1.12, only supports adding two digits. To solve this, you often end
up doing an intermediate sequence of additions of a multiple digit number with a single digit
number, i.e. an easier form of addition. E.g. in Figure 1.13 (left), for the first column you end up
performing the following sequence of additions 7 + 5 = 12, 12 + 6 = 18, 18 + 1 = 19, 19 + 4 = 23,
23 + 6 = 29. Another complication is that the carry is now not limited to the value 0 or 1, as
is the case for adding only two numbers (in any base, actually). In Figure 1.13 (middle) is an
example where the carry even has more decimal digits.

Exercise 1.9 Adding n decimal numbers (with an arbitrary number of digits), how big can the
carry become? How many digits are there in the carry (when written in decimal)? C

To avoid having to deal with carries larger than one, the trick is to use repeated addition of
two numbers, using the identity

x1 + x2 + · · ·+ xn = ((· · · ((x1 + x2) + x3) + · · · ) + xn−1) + xn .
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+ 0 1 2 3 4 5 6 7 8 9

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 1 0 -1 -2 -3 -4 -5 -6 -7 -8
2 2 1 0 -1 -2 -3 -4 -5 -6 -7
3 3 2 1 0 -1 -2 -3 -4 -5 -6
4 4 3 2 1 0 -1 -2 -3 -4 -5
5 5 4 3 2 1 0 -1 -2 -3 -4
6 6 5 4 3 2 1 0 -1 -2 -3
7 7 6 5 4 3 2 1 0 -1 -2
8 8 7 6 5 4 3 2 1 0 -1
9 9 8 7 6 5 4 3 2 1 0

+ 0 1

0 0 -1
1 1 0

Figure 1.14: Decimal (left) and binary (right) subtraction tables

See Figure 1.13 (right) for a resulting computation. For any number system this will guarantee
that the carries are always either zero or one.

1.8.4 Negative numbers and subtraction

We will not go into the low level representation of negative numbers on computers, but just
assume a negative number is represented as a number in some positional number system with a
prefix “−”, e.g. −4210.

When subtracting two non-negative numbers x− y, we assume x ≥ y, since otherwise we can
just compute −(y−x) instead, i.e. subtract x and y and negate the result. Similarly to addition,
we can write the digits above each other, and subtract for each position, starting at the lowest
position, possible with a negative carry.

-1 -1

5 3 4 7
− 1 8 6 3

3 4 8 4

In the above example 7 − 3 = 4 at position 0, but 4 − 6 = −2 at position 1. Here we exploit
−2 = −10 + 8, i.e. we get a carry of −1. For position 2, we have 3 − 8 − 1 = (3 − 8) − 1 =
−5− 1 = −(5 + 1) = −6 = −10 + 4, i.e. again a carry of −1, and finally for position 3 we have
5− 1− 1 = (5− 1)− 1 = 4− 1 = 3.

For binary represented numbers the calculation becomes similar.

-1 -1 -1

1 0 0 1 0 12
− 1 1 0 1 02

0 0 1 0 1 12

For position 0, we have 1 − 0 = 0. For position 1, we have 0 − 1 = −1 = −102 + 1, i.e. a −1
carry. Position 2, 1− 0− 1 = 0. Position 3, 0− 1 = −1 = −102 + 1, and a −1 carry. Position 4,
0− 1− 1 = −102 + 0, ie. a −1 carry. Finally position 5, 1− 1 = 0.

To subtract many numbers, we just do one subtraction and many additions using the identity

x1 − x2 − x3 − · · · − xn = (· · · ((x1 − x2)− x3)− · · · )− xn = x1 − (x2 + x3 + · · ·+ xn) .

1.8.5 Multiplication

Addition and subtraction are easy operations, in the sense we can consider each position inde-
pendently, possibly taking a carry into account from the previous position. The total number of
bit operations, e.g. table lookups, required to add or subtract two binary numbers with n digits
is on the order n. Multiplication is a harder problem.

The first simple observation is that multiplying a decimal number by 10, results in the same
decimal number with a zero added to the right, e.g. 10 · 42 = 420. Furthermore, multiplying by
the kth power of 10, corresponds to adding k zeors to the right, e.g. 103 · 42 = 42000. The same
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· 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
8 0 8 16 24 32 40 48 56 64 72
9 0 9 18 27 36 45 54 63 72 81

· 0 1

0 0 0
1 0 1

Figure 1.15: Decimal (left) and binary (right) multiplication tables

applys for any base: Multiplying a base b number by bk = 10b
k is the same b-ary number with

k zeros added to the right.
Let us consider the computation of the product 365 · 427:

365 · 427 = (3 · 102 + 6 · 101 + 5 · 100) · 427

= 3 · 427 · 102 + 6 · 427 · 101 + 5 · 427 · 100

= 1281 · 102 + 2562 · 101 + 2135 · 100

= 128100 + 25620 + 2135

= 155855

A common way to write this is something like the below.

3 6 5 · 4 2 7
1 2 8 1

2 5 6 2
2 1 3 5

1 5 5 8 5 5

Addition of multiple numbers we know how to do from previous sections, but the basic step
of multiplying a number with a digit has not been described yet, e.g. 6 · 427. Assuming we can
multiply two digits, e.g. by a table lookup to Figure 1.15, we can do the following computation.

6 · 427 = 6 ·
(
4 · 102 + 2 · 101 + 7 · 100

)
= 6 · 4 · 102 + 6 · 2 · 101 + 6 · 7 · 100

= 24 · 102 + 12 · 101 + 42 · 100

= 24 · 102 + (12 + 4) · 101 + 2 · 100

= 24 · 102 + 16 · 101 + 2 · 100

= (24 + 1) · 102 + 6 · 101 + 2 · 100

= 25 · 102 + 6 · 101 + 2 · 100

= 2 · 103 + 5 · 102 + 6 · 101 + 2 · 100

= 2562

The above calculations can be compactly written by something like the below.

2 1 4

6 · 4 2 7
2 5 6 2

When turning to multiplying numbers in the binary representation calculations becomes
simpler, since multiplying a number x with a digit d is either x if d = 1 or 0 if d = 0. Multiplying
two numbers x and y with n bits each now reduces to adding n numbers, each being either 0 or
the binary representation of x shifted some positions to the left (i.e. with between 0 and n − 1
zeros added as the least significant digits).
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1 0 1 1 12 · 1 0 1 0 12
1 0 1 0 12

0 0 0 0 02
1 0 1 0 12

1 0 1 0 12
1 0 1 0 12

1 1 1 1 0 0 0 1 12

In total this implies that the total number of bit operations is on the order n2, since we are
adding n numbers each with at most 2n bits.

Exercise 1.10 Let x be the binary number 111 · · · 1112 consisting of n digits all equal to 1.
What is the binary representation of x2? C

In practice the following observation is used to speed up multiplications. Assume x =
j︷ ︸︸ ︷

11111

i︷ ︸︸ ︷
000002. Then we have x = 1

i+j︷ ︸︸ ︷
0000000000 2 − 1

i︷ ︸︸ ︷
000002. To compute x · y, for some y,

it is sufficient to compute a single subtraction y · 2i+j − y · 2i, instead of adding j numbers
y ·2i+y ·2i+1 + · · ·+y ·2i+j−1. It follows when we multiply x and y, we can replace a consecutive
block of 1s in the binary representation of x by a single addition and a single subtraction. If
there are few (say k) consecutive blocks of 1s in the binary representation of x, we only need to
perform few additions and subtractions (k additions and at most k subtractions; we only have
subtractions for blocks containing at least two 1s).

1 0 1
︷ ︸︸ ︷

1 12 · 1 0 1 0 12
1 0 1 0 12{

+ 1 0 1 0 12
− 1 0 1 0 12

1 1 1 1 0 0 0 1 12

Exercise 1.11 What is the order of bit operations done to multiply two binary numbers x and y,
each with n digits, and where x has k blocks of 1s? C

Karatsuba in 1960 [13] presented a, by now classic, simple divide-and-conquer algorithm to
multiply two n bit binary numbers using on the order nlog2 3 = n1.58... bit operations, significantly
improving the n2 bound achieved by the school method (that at this point of time was conjectured
to be the best possible). In 1971, Schönhage and Strassen improved the bound further to n ·
log n · log log n. Karatsuba in 1995 wrote an article on the history on multiplication [12]. Only
recently, Harvey and van der Hoeven in 2019 [11] announced an algorithm for multiplying binary
numbers where the number of bit operations is on the order n log n (with a gigantic constant).

1.8.6 Division

In this section we consider how to perform binary integer division, i.e. given two integers x ≥ 0
and y ≥ 1 in binary representation, to compute the binary representation of i = bx/yc.

Let us first recall how to do decimal division bx/yc. Assume x has n digits and y has m digits,
and the most significant digit in y is non-zero, i.e. ym−1 6= 0. Since x < 10n and y ≥ 10m−1, we
have bx/yc ≤ x/y < 10n/10m−1 = 10n−m+1, i.e. bx/yc < 10n−m+1 and the result has at most
n−m+ 1 digits dn−m, . . . , d1, d0. We have

x =
(
dn−m · 10n−m + · · ·+ d1 · 101 + d0 · 100

)
· y + r ,

where r is the remainder satisfying 0 ≤ r < y. We find the digits of the result in decreasing index
order, i.e. first we find dn−m, then dn−m−1, e.t.c. The remainder starts with r = x. We first find
dn−m to be the largest digit satisfying dn−m ·10n−m · y ≤ r and update r to r−dn−m ·10n−m · y,
and then repeat for the remaining digits. To find di we can e.g. repeatedly apply addition by
y · 10i, until the result becomes larger than r, or perform a binary search over the digits 0..9.
Figure 1.16 gives an example of a decimal division.
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x︷ ︸︸ ︷ y︷ ︸︸ ︷ d4 d3 d2 d1 d0

2 7 0 3 9 4 0 / 3 6 5 = 0 7 4 0 8
2 7 0 3 9 4 0

− 0 0 0 = 0 · 104 · 365
2 7 0 3 9 4 0

− 2 5 5 5 = 7 · 103 · 365
1 4 8 9 4 0

− 1 4 6 0 = 4 · 102 · 365
2 9 4 0

− 0 0 0 = 0 · 101 · 365
2 9 4 0

− 2 9 2 0 = 8 · 100 · 365
2 0 = remainder r

Figure 1.16: Decimal division b2703940/365c = 7408

To perform a binary division the algorithm is similar, except that it is simpler since each
digit di is either zero or one. The idea is again to identify the digits at positions p in the binary
representation of the result i in decreasing position order, starting with the maximum position p,
where y · 2p ≤ x. We start with the remainder r = x. Whenever y · 2p ≤ r, we add 1 to the
binary representation of i at position p, and subtract y · 2p from r. This process maintains the
invariant that i · y + r = x and that the remainder is bounded r < y · 2p+1, i.e. br/yc can be
written with digits dpdp−1 . . . d1d0. The pseudocode for the binary integer division is given in
Figure 1.17 and an example is shown in Figure 1.18.

Algorithm IntegerDivision(x, y)
Input Integers x ≥ 0 and y ≥ 1
Output Integer i = bx/yc, i.e. 0 ≤ x− i · y < y
1 p = 0
2 while y · 2p+1 ≤ x do
3 p = p+ 1
4 i = 0
5 r = x
6 # Invariant: x = i · y + r and r < y · 2p+1

7 while y ≤ r do
8 if y · 2p ≤ r then
9 i = i+ 2p # set position p in i = 1
10 r = r − y · 2p
11 p = p− 1
12 return i

Figure 1.17: Binary integer division

Let us consider the number of bit operations in a division. Assume x and y have at most n
and m digits in their binary representation, respectively. The result i has at most n − m + 1
digits, i.e. at most n −m + 1 comparisons and subtractions of numbers are performed, each of
length at most n. Observing that for each iteration we need to consider only the m + 1 most
significant bits of the remainder in the subtraction, the total number of bit operations is at most
on the order (n−m+ 1)(m+ 1).

Note. As mentioned, multiplication can be performed significantly faster than order n2. In
fact division can be performed as fast as multiplication by using the Newton-Raphson method
for finding roots of a function, and applying multiplication with increasing number of digits.
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x︷ ︸︸ ︷ y︷ ︸︸ ︷ d4 d3 d2 d1 d0

1 1 1 1 1 0 1 0 02 / 1 0 1 0 12 = 1 0 1 1 12
1 1 1 1 1 0 1 0 0

− 1 0 1 0 1
p = 4

1 0 1 0 0 1 0 0
− 0 0 0 0 0

p = 3

1 0 1 0 0 1 0 0
− 1 0 1 0 1

p = 2

1 0 1 0 0 0 0
− 1 0 1 0 1

p = 1

1 0 0 1 1 0
− 1 0 1 0 1

p = 0

1 0 0 0 1 remainder r

Figure 1.18: Binary division bx/yc = b500/21c = b1111101002/101012c = 101112 = 23

Algorithm BaseRepresentation(x, b)
Input Integers x ≥ 0 and base b ≥ 2
Output Digits d0, d1, . . . of the b-ary representation of x
1 p = 0
2 while x > 0 do
3 i = bx/bc # IntegerDivision(x, b)
4 dp = x− i · b
5 x = i
6 p = p+ 1

Figure 1.19: Converting an integer to base b representation

1.8.7 Converting binary to decimal representation

Computers operate internally using the binary representation of numbers, but humans prefer
numbers to be presented as decimal numbers. We can find the decimal representation of a
number x by first computing the least significant digit d0 = x− 10 · bx/10c, i.e. the remainder of
dividing x by 10, and then repeatedly finding the binary representation of bx/10c. Figure 1.19
shows pseudocode for converting a number to an arbitrary base b number representation. Note
that line 3 uses the algorithm IntegerDivision. Since in each iteration we essentially make one
division (algorithm IntegerDivision also finds the remainder, it is stored in the variable r). If
n is the number of bits in the binary representation of x, then the number of digits in the b-ary
representation is x ≈ logb x = (log2 x)/(log2 b) ≈ n/ log2 b. Since a division takes order n2 bit
operations, the total number of bit operations is order n3/ log2 b.

Exercise 1.12 Assume you have an n bit binary number x, and you want to know the k most
significant digits of the decimal representation of x. We want to avoid generating all the digits
in the decimal representation of x, since n can be much larger than k. Describe an algorithm
and state the order of bit operations performed as a function of k and n. C

1.9 Induction

A key concept in computer science is proofs by mathematical induction. Induction is used
intensively in the analysis of algorithms, both to prove the correctness of algorithms and to
analyze their resource requirements. But induction is also inherent to the design process of
algorithms — but often just implicit. Before giving a formal definition of mathematical induction
and a sequence of examples of proofs by mathematical induction, let us consider a very simple
example of designing an algorithm.

Consider the following problem:
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Compute the sum of n numbers x1, . . . , xn.

If we let Si = x1 + · · ·+ xi denote the sum of the first i numbers, the goal is to compute Sn. A
simple observation is that Sn can be expressed in terms of Sn−1 by the equation

Sn = x1 + x2 + · · ·+ xn−1︸ ︷︷ ︸
Sn−1

+ xn = Sn−1 + xn . (1.9)

This observation is implicitly used in the standard way you would compute the sum of n
numbers, expressed by the below expression, that also can be derived by unfolding the above
observation until only x1 remains.

Sn = ((· · · (((x1 + x2) + x3) + x4)︸ ︷︷ ︸
Si−1

+ x5)

︸ ︷︷ ︸
Si

· · · ) + xn−1) + xn

The above equality naturally gives raise to the following algorithm to compute S1, . . . , Sn.
Note how (1.9) is explicit in line 3 of the code.

1 S1 = x1
2 for i = 2 to n do
3 Si = Si−1 + xi

Since we only need the final value Sn, there is no need to remember all S1, . . . Sn, except for
the most recently computed. This will result in the following simplified code only maintaining a
single sum S.

1 S = x1
2 for i = 2 to n do
3 S = S + xi

To argue about the correctness of this algorithm, one would go along stating that before an
iteration of the loop we will have S = Si−1 and after the iteration S = Si making essential use
of (1.9). To stick the pieces together to a formal proof one applies mathematical induction.

1.9.1 Induction principle

Induction principle
Assume you want to prove a finite or infinite sequence of statements

P1, P2, P3, . . . , Pn, Pn+1, . . .

The induction principle states that to prove all these statements, it is sufficient to prove

Base case (basis): P1 is true.

Induction step: Pn ⇒ Pn+1 for all n ≥ 1. We denote Pn to be the induction hypothesis
(i.h.).

In the induction principle we have indexed the statements beginning with P1. This is not
important. Depending of the context it might be more convenient to have the first statement
indexed P0, P2, P42 or something completely different. Also the induction principle is stated
parameterized by the variable n. You can of course also use other variable names to do the
induction on.

Sometimes it comes convenient to assume all P1, . . . , Pn are true when proving Pn+1, instead
of only using the induction hypothesis Pn. This corresponds to proving the following sequence
of statements Q1, Q2, . . . , Qn, Qn+1 . . . by induction, where

Qn = P1 ∧ P2 ∧ · · · ∧ Pn .

In the proof below for the Fibonacci numbers we apply this idea.
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1.9.2 Finite sums

Our first application of mathematical induction is to prove some statements about finite and
infinite sums repeatedly appearing in the analysis of algorithms. The first is

∑n
i=1 i = 1 + 2 +

3 + · · ·+ n, as e.g. appearing in the analysis of selection sort. That this sum equals n2/2 + n/2
has a simple visual argument, see below right: The value i corresponds to i unit squares stacked
on top of each other. The sum 1 + 2 + · · ·+n corresponds to the area of the gray squares. These
clearly constitute half of the big n × n square plus n half squares (above the dashed diagonal).
It follows that the sum has value n2/2 + n/2 = n(n+ 1)/2.

P1 : 1 =
1(1 + 1)

2
= 1

P2 : 1 + 2 =
2(2 + 1)

2
= 3

P3 : 1 + 2 + 3 =
3(3 + 1)

2
= 6

...

Pn : 1 + 2 + · · ·+ n =

n∑
i=1

i =
n(n+ 1)

2 1 2 3 · · · n

1

2

3

...

n

To prove the statement by induction, we define the infinite sequence of statements P1, P2, . . .

where Pn is the statement
∑n
i=1 i = n(n+1)

2 .

Theorem 7
∑n
i=1 i = 1 + 2 + 3 + · · ·+ (n− 1) + n = n(n+1)

2 for all n ≥ 1.

Proof. Proof by induction in n. The base case is when n = 1. Here
∑n
i=1 i = 1 = 1(1+1)

2 , i.e. the
statement is true for the base case n = 1. For the induction step n ≥ 1, we make the induction

hypothesis that the statement is true for n, i.e.
∑n
i=1 i = n(n+1)

2 . We should prove that the

statement is true for n+ 1, i.e.
∑n+1
i=1 i = (n+1)((n+1)+1)

2 . We have

n+1∑
i=1

i
def
= (n+ 1) +

n∑
i=1

i
i.h.
= (n+ 1) +

n(n+ 1)

2
=

2(n+ 1) + n(n+ 1)

2
=

(n+ 1)((n+ 1) + 1)

2
,

i.e. the statement is true for n+ 1. By the induction principle
∑n
i=1 i = n(n+1)

2 for all n ≥ 1. �

Our next sum is α0 + α1 + · · · + αn. For α > 1 this is the sum of exponentially increasing
terms, but the following statement actually holds for all real α, except and α = 1. For α = 1 the
sum

∑n
i=0 1i is trivially n. Note that in the below proof the base case is when n = 0.

Theorem 8
∑n
i=0 α

i = α0 + α1 + α2 + · · ·+ αn−1 + αn = αn+1−1
α−1 , for α 6= 1.

Proof. Proof by induction in n. The base case is when n = 0. Here
∑0
i=0 α

i = α0 = 1 = α1−1
α−1 ,

since α 6= 1, i.e. the statement is true for the base case n = 0. For the induction step when n ≥ 0,

we make the induction hypothesis that the statement is true for n, i.e.
∑n
i=0 α

i = αn+1−1
α−1 . We

have to prove the statement for n+ 1, i.e.
∑n+1
i=0 α

i = α(n+1)+1−1
α−1 . We have

n+1∑
i=0

αi
def
= αn+1 +

n∑
i=0

αi
i.h.
= αn+1 +

αn+1 − 1

α− 1
=
αn+1(α− 1) + αn+1 − 1

α− 1
=
α(n+1)+1 − 1

α− 1
,

i.e. the statement is true for n+ 1. The theorem follows by the induction principle. �

Note that for |α| < 1, we have limn→∞
αn+1−1
α−1 = 0−1

α−1 .

Corollay 2
∑∞
i=0 α

i = 1
1−α for |α| ≤ 1.

For the special case α = 2 we have.

Corollay 3
∑n
i=0 2i = 20 + 21 + · · ·+ 2n = 2n+1 − 1.

For n a power of two, i.e. n = 2k, we have
∑k
i=0 2i = 1+2+4+· · ·+n/2+n = 2k+1−1 = 2n−1.

Corollay 4 n+ n/2 + n/4 + · · ·+ 4 + 2 + 1 = 2n− 1 for n a power of two.
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1.9.3 Fibonacci numbers

The Fibonacci numbers are an infinite sequence of numbers F0, F1, F2, . . . defined by F0 = 0,
F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. We say that the Fibonacci numbers are recursively
defined. The Fibonacci numbers F0 . . . F10 are:

n 0 1 2 3 4 5 6 7 8 9 10
Fn 0 1 1 2 3 5 8 13 21 34 55

The Fibonacci numbers grow rapidly, e.g. F100 = 354224848179261915075, in fact exponentially.

Theorem 9 below states that Fn ≈ ϕn, where ϕ = 1+
√
5

2 = 1.6180 . . . is the golden ratio. The
properties of the Fibonacci sequence have been intensely studied in mathematics, and in computer
science they e.g. appear naturally in the analysis of the data structure called Fibonacci heaps [9].
The purpose of this section is to apply induction to analyze the properties of a recursively defined
sequence of numbers.

Exercise 1.13 Compute F20. C

Theorem 9 For all n ≥ 1, ϕn−2 ≤ Fn ≤ ϕn−1 where ϕ = 1+
√
5

2 is the golden ratio.

Proof. To prove an exponential upper bound on Fn, we will try to prove Fn ≤ c · αn for some
constants c > 0 and α ≥ 1. We will do this by a proof by induction. The statement Pn that we
will prove by induction is the following for n ≥ 2.

Pn : Fi ≤ c · αi for all 1 ≤ i ≤ n .

During the proof some restrictions will be realized on the possible values for c and α, for having
a valid proof by induction.

We have F1 = 1, i.e. F1 ≤ c · α1 provided c ≥ 1/α, and F2 = 1 ≤ c · α2 provided c ≥ 1/α2.
It follows that the base case n = 2 is true, provided c ≥ max(1/α, 1/α2). For the induction
step n ≥ 2, we consider the induction hypothesis that Fi ≤ c · αi for all 1 ≤ i ≤ n, and prove
that this implies that Fi ≤ c · αi for all all 1 ≤ i ≤ n+ 1. To prove this, it is sufficient to prove
Fn+1 ≤ c · αn+1 under the induction hypothesis.

Fn+1
def
= Fn + Fn−1

i.h.
≤ c · αn + c · αn−1 = c · αn+1 · (α−1 + α−2) ≤ c · αn+1 ,

provided α−1 + α−2 ≤ 1. We conclude that Fn ≤ c · αn, provided c ≥ max{1/α, 1/α2} and
α−1 +α−2 ≤ 1. The conditions reduce to c ≥ 1/α (since α ≥ 1) and 0 ≤ α2−α− 1 (multiply by

α2 and rearrange). The later is satisfied for α ≥ −(−1)+
√

(−1)2−4·(−1)·1
2·1 = ϕ. It follows that by

setting α = ϕ and c = 1/ϕ, we have a valid induction argument and Fn ≤ c·αn = ϕ−1·ϕn = ϕn−1.
For the lower bound, we similarly assume Fn ≥ c · αn for some constants c > 0 and α ≥ 1.

Doing the same calculations but replacing “≤” by “≥”, we arrive at the the conditions c ≤
min{1/α, 1/α2} and α ≤ ϕ. Setting α = ϕ and c = α−2 yields the lower bound Fn ≥ ϕn−2. �

In the above proof we could have used Fn ≤ ϕn−1 directly as the induction hypothesis without
introducing c and α. This would simplify for the proof and the following exercise asks you to do
this.

Exercise 1.14 Prove Fn ≤ ϕn−1, for all n ≥ 1, directly using this as an induction hypothesis.
C

In fact the Fibonnacci numbers have a closed formula (Binet’s formula), that you can prove
by a simple induction argument using 1 + ϕ = ϕ2 and 2− ϕ = (1− ϕ)2,

Fn =
ϕn − (1− ϕ)n√

5
where ϕ =

1 +
√

5

2
.
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1.9.4 Bounding recurrence inequalities

Assume you have an infinite sequence of positive numbers T0, T1, T2, T3, . . .. Furthermore assume
that the numbers satisfy the following recurrence inequality upper bounding each of the Tn values
by a function of the previous values.

Tn ≤

{
1 if 0 ≤ n ≤ 3

1 + Tn−1 + Tn−4 if n > 3 .

Exercise 1.15 Use the recurrence inequality to give upper bounds for T0, . . . , T20. C

This recurrence inequality pops up in the analysis of an algorithm for solving the independent
set problem on graphs (Problem 1.3 and [7]). We will use induction to prove the following upper
bound on Tn.

Theorem 10 Tn ≤ 2 · 1.38028n − 1.

Proof. We prove by induction in n that Tn ≤ c ·αn− 1 for constants c and α. The statement we
prove by induction is the following for all n ≥ 3:

Pn : Ti ≤ c · αi − 1 for all 0 ≤ i ≤ n .

The base case is P3, where we have Ti = 1 ≤ c− 1 ≤ c ·αi − 1, for 0 ≤ i ≤ 3, provided c ≥ 2 and
α ≥ 1. For the induction step we assume the induction hypothesis Ti ≤ c · αi − 1 to be true for

all 0 ≤ i ≤ n, and only need to prove Tn+1 ≤ c · αn+1 − 1. We have Tn+1

def
≤ 1 + Tn + Tn−3

i.h.
≤

1 + (c ·αn− 1) + (c ·αn−3− 1) = c ·αn+1(α−1 +α−4)− 1 ≤ c ·αn+1− 1, provided α−1 +α−4 ≤ 1,
or equivalently α4 −α3 − 1 ≥ 0, which is satisfied for α ≥ 1.38028. It follows that the statement
is true for c ≥ 2 and α ≥ 1.38028. �

Exercise 1.16 Prove by induction that the following recurrence equality for T1, T2, T3, . . .

Tn =

{
1 if n = 1

n+ 2 · Tn−1 if n > 1 ,

has solution Tn = 2n+1−n−2. (This recurrence occurs e.g. in the analysis of building the binary
heap data structure). C

1.9.5 Euler’s formula for planar graphs

Next we will use an induction proof to prove an essential statement about planar graphs known
as Euler’s formula. Below is an example of a planar graph.

a b

c d

e f

g

h i

The graph consists of a set of vertices V (also called vertices) shown as circles, and a set of edges
E connecting pairs of vertices show as strait lines between vertices (we assume that there is at
most one edge between any pair of vertices, i.e. there are no parallel edges, and an edge does not
connect a vertex with itself, i.e. there are no self-loops).

V = {a, b, c, d, e, f, g, h, i}
E = {(a, b), (a, c), (b, d), (b, e), (c, d), (d, e), (e, f), (f, g), (f, h), (g, h), (h, i)}

A graph is planar if it can be drawn in the plane without crossing edges, we call such a drawing
of the graph a planar embedding. A graph is connected if for all pairs of vertices u and v there
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is a sequence of edges (a path) leading from u to v (you are allowed to walk in both directions
along an edge). For a planar embedding we denote a region of the plane bounded by edges a
face. In the above we have the faces bounded by the three cycles (a, b, c, d), (b, e, d) and (f, g, h),
and the unbounded outer face, i.e. in total 4 faces.

Quiz 5 – Faces in a planar graph check

How many faces are there in the above planar graph?

a

b c

d

ef

g

1 2 3 4 5 6 7

Euler’s formula relates the number of vertices V and edges E in a planar graph with the
number of faces F in any embedding of the graph.

Theorem 11 (Euler’s formula) Any embedding of a planar connected graph with V ≥ 1 ver-
tices, E edges, and F faces satisfies F + V − E = 2.

Proof. We will prove this by induction in the number of edges E in the graph. We first observe
that any connected planar graph can be drawn by the following process: Draw a start vertex v,
and repeatedly add edges by either i) connect two already drawn vertices by an edge, ii) connect
a new vertex to the existing graph with an edge. Figure 1.20 shows an example. In each of
the twelve steps the new edges and vertices are shown with bold edges. Steps 6, 7 and 11 are
examples of i, whereas steps 2, 3, 4, 5, 8, 9, 10 and 12 are examples of ii.

The statements P0, P1, . . . we prove by induction is:

Pn: Any planar connected graph with E ≤ n edges, V ≥ 1 vertices, and F faces
satisfies F + V − E = 2.

For the base case P0, there is only one possible connected graph: A graph with single vertex
and no edges. The unbounded face is the only face. We have V = 1, E = 0, and F = 1, i.e.
F + V − E = 1 + 1− 0 = 2 and the base case is true.

For the induction step assume the induction hypothesis Pn is true, i.e. all graphs with at
most n edges satisfies the formula. We should prove Pn + 1, i.e. we should prove that any graph
n+ 1 edges satisfies the inequality. Consider any connected planar graph with n+ 1 edges. This
graph can be drawn using i and ii above. Before the last step, the graph has exactly n edges,
and say V vertices and F faces. By construction this graph is connected, i.e. we can use the
induction hypothesis to conclude F +V −E = 2. If the last step is of type i, two existing vertices
are connected by an edge. This new edge is drawn through an existing face (either a bounded or
the unbounded face). Steps 6 and 11 in Figure 1.20 split the unbounded region, whereas step 7
splits a bounded region. Since the two vertices were connected before inserting the edge, there
must exist a path along the boundary of the split face between these two nodes, i.e. the new edge
splits an existing face into two faces, where at least one of the faces is bounded. It follows that
the number of vertices remains unchanged, whereas the number of edges and faces both increase

by one, and we have (F + 1) + V − (E + 1) = F + V − E i.h.
= 2. On the other hand, if the last

step is of type ii, then both the number of vertices and edges increase by one, but the number

faces remains unchanged, and we have F + (V + 1)− (E + 1)) = F + V −E i.h.
= 2. We conclude

Pn+1 is true. �
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a a b

a b

c

a b

c d

a b

c d

e

1 2 3 4 5

a b

c d

e

a b

c d

e

a b

c d

e f

6 7 8

a b

c d

e f

g a b

c d

e f

g

h

9 10

a b

c d

e f

g

h

a b

c d

e f

g

h i

11 12

Figure 1.20: Drawing a connected planar graph

If a planar graph is not connected, we can make it connected by adding edges between
disconnected parts until the graph is connected, without introducing new vertices and faces (the
new edges will have the same face on both sides). Since the resulting graph satisfies Euler’s
formula, and we only added edges, we have:

Corollay 5 Any planar graph with V ≥ 1 vertices, E edges, and F faces satisfies F+V −E ≥ 2.

Note the above statements are true even for the case where there are parallel edges and self-
loops. Furthermore, a consequence is all embeddings of a planar given graph will have the same
number of faces.

Exercise 1.17 In this exercise we show that in any planar graphs with no parallel edges and
self-loops, the number of edges is at most linear in the number of vertices.

(a) Prove that any connected planar graph with at least three vertices and without parallel
edges and self-loops satisfies E ≤ 3V − 6. Hint. The boundary of each face consists of at
least three edges, and each edge is adjacent to at most two faces.

(b) Prove that any planar graph without parallel edges and self-loops satisfies E ≤ 3V . Hint.
Consider each connected component of the graph independently.

C

1.10 Invariants

Invariants are statements that are true throughout a computation. In the following we try to give
a general definition, although we will primarily apply invariants in the context of loop invariants.
Let S0 → S1 → S2 → · · · be states during a finite or infinite computation. An example of a
state could be the content of the variables of a program and “→” the execution of an iteration
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of a while-loop, transforming the state of the variables before the execution of the loop, to the
state after the execution of the loop. Our goal is to prove that all states in the sequence of
states satisfy some invariant I, i.e. I(Si) is true for all i ≥ 0. Here I maps each possible state to
true/false values.

Invariance principle
Consider a finite or infinite sequence of states

S0 → S1 → S2 → · · · → Sn → Sn+1 → · · ·

The invariance principle states that to prove all states in the sequence to satisfy invariant I,
it is sufficient to prove

Base case: I(S0) is true.

Induction step: If S → S′ then I(S)⇒ I(S′). Here I(S) is the induction hypothesis.

Consider the below algorithm that 10 times increments a variable s with a random value in
the range 2 to 5. It might be obvious that at the end the variable s has a value between 20 and
50, but let us try to reason about it using the invariance principle. When applying the invariance
principle to a loop, we call it a loop invariant.

Algorithm RandomIncrements
1 i = 0
2 s = 0
3 # Invariant: 0 ≤ i ≤ 10 and 2i ≤ s ≤ 5i
4 while i < 10 do
5 r = random integer from {2, 3, 4, 5}
6 s = s+ r
7 i = i+ 1

For a state we only consider the variables i and s. Let S0 be the state when we reach the
while-loop from the preceding code and Si the state after the ith iteration of the while loop. The
first simple invariant is I(S) : i ≥ 0. To see this we have the base case when we reach the loop
the first time, where i = 0, i.e. the invariant is satisfied for S0. For the induction step we assume
S → S′, i.e. the loop is executed, and I(S) is true before the execution of the loop (induction
hypothesis). Let i and s denote the values before the execution of the loop, and i′ and s′ the

values after the execution of the loop. Since i′ = i + 1 we have i′
def
= i + 1 ≥ i

i.h.
≥ 0, i.e. I(S′)

is true and therefor the induction step is true. It follows that in any execution of the program,
i ≥ 0 is an invariant for the while-loop.

Typically we use invariants to express relationships between the different components of a
state. In the previous example we can prove that 2i ≤ s ≤ 5i will be a loop invariant for any
execution of RandomIncrement: In S0 we have s = 0 and i = 0, i.e. 2i ≤ s ≤ 5i. For the
induction step we have 2i ≤ s ≤ 5i, and an execution of the loop results in i′ = i+1 and s′ = s+r

for some random r, where 2 ≤ r ≤ 5. It follows that s′
def
= s+r

def
≤ s+5

i.h.
≤ 5i+5 = 5(i+1)

def
= 5i′.

Similarly we can prove s′ ≥ 2i′. It follows that 2i ≤ s ≤ 5i is an invariant for any execution of
the loop.

A tricky detail is that the invariant should hold after each execution of the while-loop, in
particular after the last iteration. The statement i ≤ 10 is a valid invariant, if we assume i
can only take integer values: For S0 we have i = 0, i.e. i ≤ 10 is satisfied. Assume the loop is
executed in a state S → S′. Since we execute the loop, we know the condition of the loop is true,
i.e. i < 10. Since i is an integer, this implies i ≤ 9. We have i′ = i+ 1 ≤ 9 + 1 = 10, i.e. invariant
holds for the induction step. On the other hand, the statement i < 10 is not an invariant, since
it is not satisfied after the last iteration of the loop.

To be able to conclude that 20 ≤ s ≤ 50 when the loop terminates, we can argue the following
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is an invariant for the loop:

i is an integer ∧ 0 ≤ i ≤ 10 ∧ 2i ≤ s ≤ 5i .

Having done so, we can conclude that when the loop terminates, the condition i < 10 is false,
i.e. i ≥ 10. Together with the invariant i ≤ 10, we conclude i = 10. Plugging i = 10 into the
invariant 2i ≤ s ≤ 5i, gives us the bound 20 ≤ s ≤ 50 for the final state.

Quiz 6 check

State for each statements if it is a valid invariant for RandomIncrements.

Yes No

i ≥ −1

i ≤ 11

i ≥ 7

s ≤ 10i

s > i

Exercise 1.18 Prove that s = i2 is a valid loop invariant for algorithm Square. Prove that at
the end of the execution of the algorithm s = n2.

Algorithm Square(n)
Input Integer n ≥ 1
Output s = n2

1 i = 1
2 s = 1
3 # Invariant: s = i2

4 while i < n do
5 s = s+ 2 · i+ 1
6 i = i+ 1

C

Exercise 1.19 Prove that the algorithm Squared(n) computes s = n2. Find an appropriate
loop invariant I, and use this to conclude that s = n2 when the algorithm terminates.

Algorithm Squared(n)
Input Integer n ≥ 0
Output s = n2

1 i = 0
2 s = 0
3 # Invariant: I
4 while i < n do
5 i = i+ 1
6 s = s+ i
7 s = s+ s− n

C

1.11 Fast integer division*

In this section we show how to perform the integer division bN/Dc, where N is the numerator
and D is the denominator. The goal is to achieve that the number of bit operations used is on the
same order as for a single multiplication. This correlation between multiplication and division
was first observed by Cook in 1966 [4] (see textbook by Aho, Hopcroft and Ullman et al. [1,
Chapter 8.2]). A fast integer multiplication algorithm will imply an equally fast integer division
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algorithm (up to a constant factor), e.g. when using Karatsuba’s multiplication algorithm using
order nlog2 3 = n1.58... bit operations. This is important when performing calculations on numbers
with many digits, say millions of digits. The basic idea is to apply the Newton-Raphson root
finding algorithm to an appropriate function to compute the fraction 1/D as a positional binary
number, and then to multiply this result with N . Here 1/D is not an integer, so along the
way we need to consider how to represent the approximation of fractional numbers using binary
positional numbers.

1.11.1 Fractions as binary numbers

For positional decimal numbers the ith digit after the point represents 1/10i, i.e. 0.1 = 10−1,
0.01 = 10−2, 0.001 = 10−3, . . .. An example is

123.45610 = 1 · 102 + 2 · 101 + 3 · 100 + 4 · 10−1 + 5 · 10−2 + 6 · 10−3

For positional binary numbers with a point we have the same interpretation, except that the
base is 2.

100.1012 = 1 · 22 + 0 · 21 + 0 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 = 4 + 0.5 + 0.125 = 4.625

The general value of a binary number with fractions is

bn · · · b1b0 . b−1b−2 · · · b−m =

n∑
i=−m

bi · 2i .

As with decimal numbers, where we require an infinite number of digits to represent some
values, e.g. 1/3 = 0.3333 . . ., the same applies to binary numbers. In particular we cannot
represent 1/10 exactly as a positional binary number with a finite number of digits

1

10
= 0.110 = 0.000110011001100110011001100110011 . . .2

In practice for numbers stored as “float” or “double” on a computer only the most significant
bits are stored, i.e. only approximations of numbers are stored (typically only the 24 or 53 most
significant bits are stored). We end up with strange results as

0.3− 0.2− 0.1 = −2.7755575615628914 · 10−17 = −2−55

when using 64 bit IEEE 754 floats.

1.11.2 Computing 1/D using Newton-Raphson

We start by considering the Newton-Raphson algorithm to compute 1/D, for D ∈
[
1
2 , 1
[
, with an

arbitrary precision (using real numbers, or ”floats” when executed on a computer). The magic
is the following: Computing 1/D is equivalent to computing the root of the function

f(x) = D − 1/x .

Clearly, f(1/D) = D − 1/(1/D) = D − D = 0, i.e. 1/D is a root of f (and the only root).
Furthermore, for D ∈

[
1
2 , 1
[

we have 1/D ∈ ]1, 2].
The Newton-Raphson algorithm repeatedly finds better-and-better approximations x0 <

x1 < x2 < · · · to 1/D, where each xi < 1/D. We will just set x0 = 1 (other initial ap-
proximations are discussed below). Given an xi, the next xi+1 is defined by the intersection of
the x-axis with the tangent through (xi, f(xi)). See Figure 1.21. Since the slope of the tangent
at (x, f(x)) is f ′(x) = 1/x2, we have

xi+1 = xi − f(xi)/f
′(xi) = xi − (D − 1/xi) · x2i = 2 · xi −D · x2i = (2−D · xi) · xi .

The beauty is that xi+1 can be computed from xi only using two multiplications and one sub-
traction (of real numbers). In Figure 1.22 the pseudocode is given.
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1 2

(x0, f(x0))

x1

(x1, f(x1))

x2

(x2, f(x2))

1
D

f(x) = D − 1/x

−f(x0)/f ′(x0)

−f(x0)

Figure 1.21: Newton-Raphson root finding for f(x) = D − 1/x when D ∈ [ 12 , 1[; above D = 0.7

Algorithm Newton-Raphson-Reciprocal(D)
Input Real value D ∈ [ 12 , 1[
Output Real value x ≈ 1/D
1 last = 0
2 x = 1
3 # Loop only terminates if fractional values have limited precision
4 while last < x do
5 last = x
6 x = (2−D · x) · x

Figure 1.22: Computation of 1/D

Although, mathematically the xis form an infinite strictly increasing sequence of numbers
< 1/D (since f is a concave function with f ′′(x) = −2

x3 < 0 for x ≥ 1), on a computer the limited
precision caused by the number of digits represented implies that eventually xi+1 = xi, and the
computation terminates. For 64-bit floats (IEEE 754), this algorithm terminates amazingly fast.
Table 1.1 shows that 5–6 iterations are sufficient for D ∈ {0.5, 0.7, 0.9}. The number of iterations
can be reduced if we choose the initial approximation x0 closer to 1/D. E.g. Table 1.2 shows the
reduced number of iterations if x0 = max(1, 2

√
2− 2 ·D) ≤ 1/D (note that 2

√
2 ≈ 2.8284 is just

a constant).

0.5 1

1

2 1/D

max(1, 2
√

2− 2 ·D)

D

In fact, the Newton-Raphson algorithm also works if the initial approximation x0 > 1/D. Since
f is concave, the next approximation x1 < 1/D, and subsequently x1 < x2 < x3 < · · · < 1/D.
This allows for an even smaller initial error. In the following, we stick to x0 = 1, ensuring that
x0 < x1 < x2 < · · · is an increasing sequence of lower bound approximations for 1/D.

Let us consider the error during the computation. The error εi for the approximation xi is
defined as εi = 1/D − xi, i.e. how far xi is from the correct result 1/D. For the initial x0 = 1
we have ε0 = 1/D − 1. For the subsequent errors we have

εi+1
def
=

1

D
− xi+1

def
=

1

D
− (2 · xi −D · x2i ) = D

(
1

D2
− 2 · xi

D
+ x2i

)
= D

(
1

D
− xi

)2
def
= D · ε2i .
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D 0.5 0.7 0.9

x0 1.0 1.0 1.0
x1 1.5 1.3 1.1
x2 1.875 1.4170000000000003 1.111
x3 1.9921875 1.4284777000000002 1.1111111
x4 1.999969482421875 1.428571422421897 1.111111111111111
x5 1.9999999995343387 1.4285714285714286 1.1111111111111112
x6 2.0

Table 1.1: Convergence of 1/D computations (using 64 bit floats), x0 = 1.0

D 0.5 0.7 0.9

x0 1.8283999999999998 1.4284 1.0283999999999998
x1 1.9852767199999999 1.428571408 1.1049540959999997
x2 1.9998916125130208 1.4285714285714284 1.1110769931595406
x3 1.9999999941260767 1.4285714285714286 1.11111111006348
x4 2.0 1.1111111111111112

Table 1.2: Convergence of 1/D computations (using 64 bit floats), x0 = max(1, 2
√

2− 2 ·D)

Since D < 1, it follows that if εi ≤ 10−k then εi+1 < ε2i ≤ 10−2k, i.e. the number of correct
digits after the point doubles by each iteration. This explains the fast termination. Specifically,
we have

ε1 = D · ε20 ε2 = D · ε21 = D(D · ε20)2 = D3 · ε40 ε3 = D · ε22 = D(D3 · ε40)2 = D7 · ε80 e.t.c.

The next exercise asks you to prove that εi = D2i−1 · ε2i0 .

Exercise 1.20 Prove by induction that εi = D2i−1 · ε2i0 . C

Since ε0 = 1/D − x0 = 1/D − 1, we have

εi = D2i−1 ·
(

1

D
− 1

)2i

=

(
D
(

1
D − 1

))2i
D

=
(1−D)2

i

D
,

and using D ∈
[
1
2 , 1
[
, we get the following upper bound

εi ≤
(
1− 1

2

)2i
1
2

= 2 ·
(

1

2

)2i

= 21−2
i

.

Example: For 6 iterations, the error ε6 ≤ 2−63 ≈ 1.08 · 10−19. This is consistent with the
picture we see in Table 1.1 that six iterations are sufficient.

1.11.3 Integer division

We now turn to the integer division bN/Dc, where N ≥ 0 and D ≥ 1 are integers. The task
is to compute two unique integers, the quotient q = bN/Dc and the remainder r, satisfying
N = q ·D + r and 0 ≤ r < D.

Before describing the algorithm we introduce some simple operations on binary numbers. For
a non-negative integer w, we let bits(w) denote the number of bits in the binary representation
of w, i.e. 2bits(w)−1 ≤ w < 2bits(w) for w > 0 and bits(0) = 0. For a positive integer w, we
let lsb(w) denote the position of the least significant bit equal to 1 in the binary representation
of w. Example: bits(1101102) = 6 and lsb(1011010002) = 3. Two further useful operations are
left shift and right shift . The left shift operator w << i appends i zeros to the right of the binary
representation of w, whereas the right shift operator w>>i drops the i rightmost bits of the binary
representation of w. Example 110102<<3 = 110100002 and 110102>>2 = 1102. When w and i are
non-negative integers, the result of the two shift operators are w<< i = w ·2i and w>> i =

⌊
w/2i

⌋
.

Many programming languages support the operators << and >> natively. Furthermore for a real
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value x and a nonnegative integer d, we will use the notation bxcd =
⌊
x · 2d

⌋
/2d, i.e. x rounded

down to the first d digits after the point. In particular bxc0 = bxc. E.g. b10.10100112c3 = 10.1012.
Similarly dxed =

⌈
x · 2d

⌉
/2d, e.g. d1.1101001012e4 = 1.11102. Note that if there is a digit=1

somewhere to the right of the d first digits, then dxed = bxcd + 1
2d

.

Quiz 7 check

The value of 13 << 2.

0 13 26 39 52 1300

The value of 13 >> 2.

0 1 2 3 3.25 4 6 6.5

In the following we let n = bits(N) and m = bits(D) denote the number of digits in the
binary representations of N and D, in particular 2m−1 ≤ D < 2m. We let D̃ = D/2m, i.e.
D̃ ∈

[
1
2 , 1
[
. The basic idea is to apply Newton-Raphson to compute an approximation x to 1/D̃,

where 1/D̃ = x+ ε for a sufficiently small ε ≥ 0. Here x will be a binary positional number with
a limited, but sufficient, number of digits. To avoid computing on unessential digits, during the
iterations of the Newton-Raphson algorithm, we will increase exponentially the number of digits
in the involved computations. The thereby introduced increase in the errors is marginal. The
multiplications in the last iteration will dominate the running time of all iterations.

The goal is to achieve ε ≤ 2m−n. Then, since N < 2n, we have x · N/2m = (1/D̃ − ε) ·
N/2m = (1/(D/2m) − ε) · N/2m = N/D − ε · N/2m > N/D − ε · 2n/2m ≥ N/D − 1, i.e.
N/D − 1 ≤ x · N/2m ≤ N/D and bN/Dc − 1 ≤ bx ·N/2mc ≤ bN/Dc. Since q = bN/Dc, it
follows that

q = bx ·N/2mc or q = bx ·N/2mc+ 1 . (1.10)

We have seen that the core of the Newton-Raphson algorithm is the update step

xi+1 = (2− D̃ · xi) · xi . (1.11)

We will only compute an approximation of each xi with di digits after the point, where 0 = d0 ≤
d1 ≤ d2 ≤ · · · is a non-decreasing sequence. Instead of using all digits of D̃ in the computation
of xi+1, we will only use the di+1 most significant digits Di+1 = dD̃edi+1

. The ceiling ensures

1 ≥ D1 ≥ D2 ≥ · · · ≥ D̃, i.e. 1 ≤ 1
D1
≤ 1

D2
≤ · · · ≤ 1

D̃
. More precisely instead of computing

(1.11) we will compute
xi+1 = b(2−Di+1 · xi) · xicdi+1

. (1.12)

To avoid working with fractional binary numbers, in the pseudocode in Figure 1.23, instead
of computing xi, we compute integers yi = xi · 2di . The update (1.12) becomes

yi+1 =
((

(2 << (di + di+1))−
(
Di+1 · 2di+1

)
· yi
)
· yi
)
>> 2di , (1.13)

where

Di+1 · 2di+1 = ((D << di+1) >>m) +

{
0 if lsb(D) ≥ m− di+1

1 if lsb(D) < m− di+1 .

To bound the errors, let δi = 2−di , i.e. Di − D̃ < δi. Since x0 = 1, we have ε0 = 1
D̃
− 1. For
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Algorithm Integer-Division(N/D)
Input Integers N ≥ 0 and D ≥ 1
Output Integers q and r, where N = D · q + r and 0 ≤ r < D
1 y = 1 # x0 = 1
2 d = 0 # x0 has no digits after the point
3 k = 0 # Error ε ≤ 2−k

4 while k < bits(N)− bits(D) do
5 dlast = d # di
6 if d = 0 then
7 d = 6 # d1 = 6, k1 = 0
8 else if k = 0 then
9 k = 2 # d2 = 6, k2 = 2
10 else
11 k = k + k − 1 # ki+1 = 2 · ki − 1
12 d = k + 4 # di+1 = ki+1 + 4
13 D = (D << d) >> bits(D) # Di+1 = di+1 most significant bits of D
14 if d < bits(D)− lsb(D) then
15 D = D + 1 # rounded up if a pruned digit equals 1
16 y = (((2 << (d+ dlast))−D · y) · y) >> 2dlast # yi+1 = xi+1 · 2di+1

17 q = (N · y) >> (d+ bits(D)) # q =
⌊
N · x/2bits(D)

⌋
18 r = N −D · q
19 if r ≥ D then
20 q = q + 1 # q =

⌊
N · x/2bits(D)

⌋
+ 1

21 r = r −D
22 return (q, r)

Figure 1.23: Integer division using Newton-Raphson iteration

N = 347682327897 = 1010000111100110111101101001101010110012
D = 234707 = 1110010100110100112
q = 1481346 = 1011010011010100000102
r = 52275 = 11001100001100112

i ki di yi = xi · 2di Di · 2di
0 0 0 12 D = 1110010100110100112
1 0 6 10001102 1110102
2 2 6 10001102 1110102
3 3 7 100011102 11100112
4 5 9 10001110112 1110010112
5 9 13 100011101111012 11100101001112
6 17 21 10001110111101101000102 1110010100110100110002
7 33 37 100011101111011010001011011001101001102 11100101001101001100000000000000000002

Figure 1.24: Computing N/D
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the subsequent iterations we have

εi+1
def
=

1

D̃
− xi+1

def
=

1

D̃
− b(2−Di+1 · xi) · xicdi+1

<
1

D̃
− (2−Di+1 · xi) · xi + δi+1

<
1

D̃
− 2 · xi + D̃ · xi · xi + 4δi+1 + δi+1 since xi ≤ 2 and Di+1 − D̃ < δi+1

= D̃

((
1

D̃

)2

− 2 · xi
D̃

+ x2i

)
+ 5δi+1

= D̃

(
1

D̃
− xi

)2

+ 5δi+1

def
= D̃ · ε2i + 5δi+1

If we let d1 = d2 = 6, i.e. δ1 = δ = 2−6 = 1
64 , then for all D̃ ∈

[
1
2 , 1
[

we get the error bounds

ε0 =
1

D̃
− 1 ≤ 1 since x0 = 1

ε1 < D̃

(
1

D̃
− 1

)2

+ 5δ1 < 0.58

ε2 < D̃

(
D̃

(
1

D̃
− 1

)2

+ 5δ1

)2

+ 5δ2 < 0.25

0.5 1

0.25

0.5

0.75

1

ε0

ε1

ε2

D̃

For i ≥ 2 we will aim at an error bound εi ≤ 2−ki , where ki = 2i−2 + 1. We achieve this by
setting di = ki + 4. We first observe that for i = 2, then ki = 22−2 + 1 = 20 + 1 = 1 + 1 = 2
and d2 = k2 + 4 = 2 + 4 = 6 and 2−ki = 1

4 > ε2 is consistent with the above. To compute the ki
values we observe

ki+1 = 2(i+1)−2 + 1 = 2 · 2i−2 + 1 = 2 · (2i−2 + 1)− 1 = 2ki − 1 .

Finally, for i ≥ 2, we get the error bound εi < 2−ki by induction

εi+1 < D̃ · ε2i + 5δi+1

< ε2i + 8δi+1 since D̃ ≤ 1

i.h.
≤
(
2−ki

)2
+ 2−(ki+1+4)+3 since δi+1 = 2−di+1 = 2−(ki+1+4)

= 2−2ki + 2−(2ki−1+4)+3 since ki+1 = 2ki − 1

= 2 · 2−2ki

= 2−(2ki−1)

= 2−ki+1 .
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In the beginning we observed that we can terminate when εi ≤ 2m−n. Since εi ≤ 2−ki ,
we can terminate when −ki ≤ m − n, i.e. when ki = 2i−2 + 1 ≥ n − m, or equivalently after
i ≥ 2 + log2(n−m− 1) iterations.

To bound the total number of bit operations, we observe that in the ith iteration we work
on integers with at most 1 + di digits. Since all operations (additions, subtractions, shiftings)
can be performed with order di bit operations, the bottleneck becomes the two multiplications
in (1.13). Assuming these can be performed in time Tmult(di), the total time becomes order∑

i

Tmult(di) =
∑
i

Tmult

(
2i−2 + 1 + 4

)
≈
∑
i

Tmult

(
2i
)

≈
∑
i

Tmult

(
n−m

2i

)
last di ≈ n−m

≤
∑
i

1

2i
· Tmult (n−m) (*)

≈ Tmult (n−m) ·
∑
i

1

2i

≈ Tmult (n−m) , since

∞∑
i=0

1

2i
= 2

where we in (*) use the assumption Tmult(c · n) ≥ c · Tmult(n), for c ≥ 1, i.e. multiplying twice as
long numbers takes at least twice as long time.

In the final steps of the computation of q and r, we perform two additional multiplications.
We conclude that if two integers with n bits can be multiplied using Tmult(n) bit operations, then
we can also divide two integers with n bits using order Tmult(n) bit operations. The pseudocode
in Figure 1.23 summarizes the previous discussion and Figure 1.24 gives an example of the
computation in the loop.

1.12 Problems

The following Problems 1.1–1.7 illustrate questions that can be solved by general algorithmic
techniques covered later in the course. For each problem the relevant technique is stated, but
you should try to solve the problems without looking into the relevant material.

Problem 1.1 What is the shortest path from A to B in the below maze? Black cells are blocked
and the length of a path is the number of times you move from a cell to an adjacent unblocked
cell. Describe the steps of your algorithm.

B

A

(The problem can be solved using the breadth first search algorithm, BFS). C

Problem 1.2 Find a longest increasing subsequence in the following sequence of distinct num-
bers:

30 83 73 80 59 63 41 78 68 82 53 31 22 74 6 36 99 57 43 60
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Your task is to remove as few numbers as possible such that remaining numbers in the sequence
appear in increasing order. Can you formulate your solution as a general algorithm? Hint: For
each value, find the length of the longest increasing subsequences ending with this value. (The
problem can be solved efficiently using the technique of dynamic programming).

Can you use the insights in the solution to prove the following classic result by Paul Erdős
and George Szekeres from 1935? Any sequence of n distinct numbers contains an increasing or
decreasing subsequence of length at least d

√
ne. C

Problem 1.3 Find a maximum independent set of nodes in the below graph.

A

B

C

D

E

F

G

H

I

J

K

L

A graph consists of a set of nodes, here {A,B,C, . . . ,K}, and a set of edges, where each edge con-
nects a pair of nodes. Two nodes connected by an edge are said to be adjacent. An independent
set is a subset of the nodes where no pair of nodes are adjacent The goal is to find a set of nodes
of maximum cardinality that is an independent set. The set {A,D, J} is a set of independent
nodes, since none of the possible pairs (A,D), (A, J) and (D, J) are connected by an edge in the
graph. In fact this is a maximal solution, since you cannot add any of the remaining nodes,
without introducing a pair of adjacent nodes. But there exist larger independent sets of nodes
— your task is to find a largest. (This problem is known to be “NP-complete”, i.e. “complete”
for the complexity class Nondeterministic Polynomial time; in practice this means that the most
efficient algorithms essentially try all possible subsets of nodes to solve the problem; see e.g. the
text book by Fomin and Kratsch [7]). C

Problem 1.4 In the below directed weighted graph find a shortest path from A to J.

AB

CD

E

F

G HI

J
8

3

8

4

-22

1

5 -4

34

9
6

3

4

5

1

6

1

In a directed graph each edge has an orientation, e.g. the edge between A and G is oriented
from A to G. If we consider edges indicating where we can walk, then we can go from A to G
along the edge from A to G, but we cannot go in the opposite direction along the edge. A path
from a node u to another node v is a sequence of directed edges that allows you to walk from u
to v. In this problem each edge has an associated weight denoting the price to walk along the
edge. The length of a path is the sum of the weights of the edges along the path. E.g. the path
G→D→F→I has length 6 + 2 − 4 = 4. Your task is to find a path from A to J with minimum
length. Note that in the example some edges have negative weights. (This problem can be solved
using Bellman-Ford’s single source shortest path algorithm). C

Problem 1.5 Find two nodes u and v in the below graph, such that the distance from u to v
is as large as possible. The distance from a node to another node is the length of the shortest
path between the nodes (see Problem 1.4). If no path exists the distance is +∞.
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A

B

C

D

E

F

G

HI

J

4

3

7

4

6
3

5
8

3

8
2

3

1

52

1

2

1

(This problem can be solved using Floyd-Warshall’s or Dijkstra’s shortest paths algorithms). C

Problem 1.6 You are given the below spreadsheet. Describe an order to compute the equations
in the spreadsheet, i.e. the cells starting with “=”. To compute an equation, the content of the
cells that it depends on must already have been computed or be simple values.

A B C D E F G
1 2 10 =B1 =A1∗B1 =D1 =B1/C4 =F1∗G4
2 4 12 =B2+C1 =A2∗B2 =D2+E1 =B2/C4 =F2∗G4
3 3 15 =B3+C2 =A3∗B3 =D3+E2 =B3/C4 =F3∗G4
4 =C3 =E3 80 =E4−F4

(This problem can be solved by topological sorting the directed graph of the dependencies). C

Problem 1.7 For the US presidential election in 2020 each state has the following electoral
votes. The candidate with the most votes in a state receives all the electoral votes of the state.
In total there are 538 electoral votes. Determine if it is possible that the election between two
candidates ends in a tie, i.e. both candidates receives an equal number of electoral votes.

Alabama 9
Alaska 3
Arizona 11
Arkansas 6
California 55
Colorado 9
Connecticut 7
District of Columbia 3
Delaware 3
Florida 29
Georgia 16
Hawaii 4
Idaho 4
Illinois 20
Indiana 11
Iowa 6
Kansas 6

Kentucky 8
Louisiana 8
Maine 4
Maryland 10
Massachusetts 11
Michigan 16
Minnesota 10
Mississippi 6
Missouri 10
Montana 3
Nebraska 5
Nevada 6
New Hampshire 4
New Jersey 14
New Mexico 5
New York 29
North Carolina 15

North Dakota 3
Ohio 18
Oklahoma 7
Oregon 7
Pennsylvania 20
Rhode Island 4
South Carolina 9
South Dakota 3
Tennessee 11
Texas 38
Utah 6
Vermont 3
Virginia 13
Washington 12
West Virginia 5
Wisconsin 10
Wyoming 3

(This is an example of a partitioning problem that can be solved efficiently using the general
technique of dynamic programming for integer values). C

Problem 1.8 (Searching an infinite sorted list *) Assume we have an infinite long in-
creasing sequence of real values x1 < x2 < x3 < · · · and we want to find the position of a real
value y > x1 in this list. More specifically, we want to find the index d where xd−1 < y ≤ xd,
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i.e. xd = y if y if y is in the list, and otherwise xd is the successor of y in the list. E.g. for the
sequence 3 5 7 9 11 17 19 23 31 33 37 . . . and y = 11 we have d = 5, since y = d5 = 11, whereas
for y = 24 we have d = 9, since 23 = d8 < y ≤ d9 = 31. We assume the sequence to be divergent,
i.e. there always exists such a d.

Describe an algorithm to find the index d, where the number of comparisons performed
between y and the xis is a function of the final value of d. What is the most efficient algorithm
(fewest number of comparisons performed) you can find? Argue that your algorithm finds the
correct index d, such that either y = xd or xd−1 < y < xd. Analyze your algorithm — how many
comparisons does your algorithm perform as a function of d?

(This problem is intentionally open ended; it was studied by Bentley and Yao in 1976 [3] if
you are interested in the research on the problem). C

Problem 1.9 (Rank lookup in two sorted lists*) Assume you are given two sorted lists
X = x1, . . . , xn and Y = y1, . . . , ym. Assume all elements are distinct. Given an index r, how
fast (number of comparisons) can you find the rth smallest element in X ∪ Y ? We denote this
the element of rank r in X ∪ Y . State the worst-case number of comparisons as a function of n,
m and/or r. Example: If X = 3, 7, 12, 13, 27, 31, 42, Y = 4, 11, 17, 33, 37, 39, 51, and r = 8, then
27 has rank 8 in X ∪ Y . (Frederickson and Johnson [8] considered the problem for an arbitrary
number of sorted lists). C

Problem 1.10 (Interpolation search) Assume you are going to search in a sorted array
with n real numbers x1, . . . , xn, where each number has been chosen uniformly at random in the
interval [0, 1], i.e. you can expect the numbers to be somehow evenly distributed in the interval.
Assume you are going to search for a value y ∈ [0, 1]. Can you come up with an algorithm that
exploits that the input is somehow evenly distributed? (You do not need to give a formal analysis
of your algorithm; Yao and Yao [15] proved that a search can be performed in order expected
log(log n) comparisons). C
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Data Structures

2.1 Red-black trees

Red-black trees were introduced by Guibas and Sedgewick in 1978 [10], as a class of balanced
binary search trees with logarithmic time operations. A red-black tree is a binary search tree,
where each node is colored either red or black. A valid red-black tree must satisfy the following
two invariants:

� Each red node must have a black parent, in particular the root must be black.

� The number of black nodes on all root-to-leaf paths is the same.

Here we assume a leaf is an external node not storing an element, and all internal nodes store an
element. This ensures all internal nodes have two children. In an actual implementation a leaf
would just be a null pointer. Figure 2.1 shows a valid red-black tree, where red nodes are shown
as double circles and leaves as squares. All root-to-leaf paths have two black nodes.

18

22

24

10

12

1311

9

4

Figure 2.1: A red-black tree

Quiz 8 – Red-black tree invariants check

For each of the sets of nodes, state if the binary search tree is a valid red-black tree if exactly
these nodes are colored red.

4

7

9

8

6

5

2

31

Yes No

2, 5, 6, 8, 9

1, 3, 5, 7, 8

4, 5, 8

2, 5, 7, 8

5, 8

43
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(rotate y up)
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Figure 2.2: Rotations in a search tree

Not all binary search trees can be colored into a valid red-black tree. The following theorem
captures the essential consequence of the red-black tree invariants.

Theorem 12 A red-black tree with n elements has height O(log n).

Proof. Assume a highest leaf v in a red-black tree has depth d (where the root has depth zero).
The root-to-leaf path to v contains at most d black internal nodes. By assumption, the topmost
d levels of the tree do not contain a leaf, i.e. they are filled with

∑d−1
i=0 2i = 2d−1 internal nodes.

We have 2d−1 ≤ n, i.e. d ≤ log2(n+1). For a deepest leaf u in the tree, the root-to-leaf path to u
also contains at most d black nodes. Since each red node must have black parent, the path also
contains at most d red nodes. It follows that the path to u contains at most 2d ≤ 2 log2(n+ 1)
internal nodes. In Figure 2.1, v could be the left child of 22 with depth d = 2, and u any child
of 4, 11 or 13. �

2.1.1 Insertions

Insertions into red-black trees is conceptually quite simple, although an implementation requires
several symmetric cases to be handled explicitly, making an implementation less trivial. Here we
will focus presenting the overall idea. The pseudocode for the insertion is shown in Figure 2.3,
and Figure 2.4 visualizes the three types of transformations used to reestablish the red-black tree
invariants. The result of inserting 15 into the red-black tree in Figure 2.1 is shown in Figure 2.5.

To insert an element e we first perform a standard top-down search tree search for the leaf x
where e should be inserted. The leaf x is replaced by a red internal node storing e and with two
leaves below. The new leaves have depth one larger than the depth of x, but by coloring x red
the root-to-leaf paths to these leaves contain the same number of black nodes as before. The
only problem with respect to the red-black invariants is that x might not have a black parent.
The method FixInsert(x) solves this problem, by repeatedly applying the three transformations
below until the problem is gone.

Case I is when x is the root, but x is red. Then we color x black. This increases by one the
number of black nodes on all root-to-leaf paths.

The cases II and II apply when x is red, and its parent p is red. Then the parent of p′′ of p
must exist and be black (since x is the only red node that might not have a black parent).

Case II is when the sibling p′ of p is a red node. In this case we color p′ and p black and p′′

red, and let x = p′′ be the new red node that potentially has no black parent. This recoloring
ensures all leaves below p′′ still have the same number of black nodes on their root-to-leaf paths.
Figure 2.5 from a) to b) illustrates this case.

Case III is when the sibling p′ of p is a black node or a leaf. Then we restructure the three
nodes x, p′ and p′′ into a perfect balanced three with three nodes left-to-right a, b, c, where a
and c are red and b is black. Let T1, T2, T3, T4 be the four trees, left-to-right, that are rooted at
the two children of x, the sibling of x, and the sibling p′ of p. T1 and T2 become the children of
a, and T3 and T4 become the children of c. The number of black nodes on root-to-leaf paths to
leaves in T1, T2, T3, T4 remains unchanged (of x, p, p′′ only p′′ contributed a black node before the
restructuring, and after only b does, since a and c are red). Figure 2.5 from b) to c) illustrates
this case.

Cases I and III eliminate the invariant violations, whereas case II eliminates the invariant
violation at node x but potentially creates a new invariant violation at p′′. But the distance
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Algorithm RedBlackInsert(e)
1 perform a top-down search to identify the leaf x where e should be inserted
2 let x become a red internal node storing e with two leaves below
3 FixInsert(x)

Algorithm FixInsert(x)
Input x is a red node, potentially with a red parent
1 if x is the root then
2 color x black # case I
3 else if parent p of x is red then
4 if the sibling p′ of p is a red node then
5 color p and p′ black, and parent p′′ of p red # case II
6 FixInsert(p′′)
7 else
8 let a, b, c be x, p and the parent p′′ of p in sorted order # case III
9 let T1, T2, T3, T4 be the subtrees left-to-right rooted at children of x, p and p′′

(but not containing x)
10 let b be black and replacing p′′

11 let a be red and left child of b, with left child T1 and right child T2
12 let c be red and right child of b, with left child T3 and right child T4

Figure 2.3: Red-black tree insertion

from the problematic node to the root decreases by two, i.e. case II needs to be applied at
most O(log n) times by Theorem 12. It follows that insertions take O(log n) time. In an actual
implementation, case III will restructure the tree by one or two rotations, followed by recoloring
a few nodes. The rotations are drawn as circular arcs above the nodes in Figure 2.4. The two
types of rotations, left and right, are shown in Figure 2.2.
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Figure 2.4: FixInsert(x) transformations (each subtree Ti has either a black root or is a leaf;
case II shows one out of four symmetric cases, and case III shows two out of four symmetric
cases)
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Figure 2.5: Red-black tree insert(15)

2.1.2 Deletions

To delete an element from a red-black tree, we first perform a standard top-down search tree
search for the node x containing the element to be deleted. Similarly to the unbalanced tree
case, if x has two children, first we swap x with its successor y to ensure that the node to be
removed has at most one child. Since x is crucial to the red-black tree invariants if it is black, we
cannot just delete it. If x is red, it is safe to remove x, but otherwise we need to restructure the
tree before removing x. The nine cases (with symmetric cases omitted) are shown in Figure 2.6,
where x is the node to be deleted. The pseudocode for the deletion algorithm can be found in
Figure 2.7.

As already stated, if the node x is red, we can just delete it (case 1). If it is black, but its
child is red, we can color the child red, and remove x (case 2). This will guarantee that the
number of black nodes on all root-to-leaf paths to leaves below x remains unchanged. If x is still
in the tree, it is now guaranteed that it is black and its only child is black or a leaf. We then
repeatedly apply transformations 3–8 in Figure 2.6 until x has been deleted. In cases 3 and 6–8
we immediately get rid of the problematic node, case 4 makes the parent of x red, where one
of the cases 6–8 in the next step will remove x. Only case 5 does not remove the problematic
node, but here x is moved one level closer to the root, i.e. case 5 can at most be applied O(log n)
times, and the total time for a deletion becomes O(log n). In the illustration of the cases, the
symmetric cases are omitted, where x is the right child.

In case 3, x has been moved all the way to the root. In this case we we can just remove x.
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Figure 2.6: Deletion transformations (each subtree Ti has either a black root or is a leaf)

Recall that we are guaranteed that the child of x is black. This will reduce by one the number of
black nodes on all root-to-leaf paths. Otherwise, x is not the root, and it must have a parent p.
Furthermore, x must have a sibling y, since otherwise the number of black nodes would not be
the same on all root-to-leaf paths. Case 4 is when y is red. Then p must be black and the children
of y cannot be red. In this case we can rotate y up, color p red, and y black; see Figure 2.6.
This guarantees that the red-black tree invariants remains satisfied, and the parent of x is now
red and the sibling of x is black. The remaining cases only need to consider when y is black.

If y is black and has no red child, we are in cases 5 and 6. If p is also black, we can move x
above p by letting x become the child of the parent of p, and letting the child of x replace x as
a child of p. By coloring y red, the invariants remain satisfied. This is case 5 where x is moved
one level closer to the root. If p instead is red, we can just remove x and swap the colors of x
and y. This is case 6. In the remaining cases 7–8, y is black and has at least one red child (p
can be either red or black). Let u and v be two children of y, such that v is furthest away from
x in the tree (and sorted order). If v is red, then we are in cases 7, where we rotate y up, color v
black, swap the colors of y and p, and remove x. This will guarantee that the number of black
nodes to a leaf remains unchanged. The final case 8, is when u is red and v is black. In this case
we rotate u up two levels, let u have the color of p, color p black, and remove x.

In an actual implementation one would not let x be explicitly represented in the tree while
performing the transformations. Instead one would remove x at the beginning of the deletion,
and implicitly represent x by keeping track on which tree edge the node x is on. This will in
particular simplify the updates to the tree caused by case 5 (that can be repeated O(log n) times
during a deletion): Only y needs to be colored red.
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Algorithm RedBlackDelete(x)
Input Delete node x from a red-black tree
1 if x has two children then
2 y = min(x.right) # successor of x
3 swap elements at x and y
4 x = y
5 # x has at most one non-leaf child; if both are leaves we say x has a single leaf child
6 if x is red then
7 remove x (replace x by its child in the tree) # case 1
8 else if x has a red child then
9 color the child black and remove x # case 2
10 else
11 FixDelete(x)

Algorithm FixDelete(x)
Input x is a black node to be deleted and its single child is black or a leaf
1 if x is the root then
2 remove x # case 3
3 else if sibling y of x is red then
4 rotate y up # case 4
5 FixDelete(x) # only cases 6–8 will apply
6 else if y has no red child then
7 color y red
8 if parent p of x is black then
9 the child of x replaces x as a child of p, make x the parent of p # case 5
10 FixDelete(x) # distance to root reduced by one
11 else
12 color p black, remove x # case 6
13 else
14 let u and v be children of y, such that u is closest to x
15 if v is a red node then
16 swap colors of p and y, rotate y up, remove x # case 7
17 else
18 rotate u up twice, color u with the color of p, color p black # case 8

Figure 2.7: Red-black tree deletion
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2.1.3 Join

Assume we have two red-black trees T1 and T2, with n1 and n2 elements, respectively, and where
x1 ≤ x2 for all x1 ∈ T1 and x2 ∈ T2. The operation Join(T1, T2) should create a red-black tree
containing all elements of both T1 and T2 (and T1 and T2 cease to exist). To implement this
operation we first delete the minimum element x from T2, such that x1 ≤ x for all x1 ∈ T1 and
x ≤ x2 for all x2 ∈ T2, and instead consider the operation Join(T1, x, T2). Let the black height
of a node v be the number of internal black nodes on a path from v to a leaf.

Assume the black height of the root of T1 is at least the black height of the root of T2 (the
case where T2 has higher black height is symmetric). We can implement Join(T1, x, T2) by first
traversing the rightmost path of T1 to find the black node t1 with black height equal to that
of the root t2 of T2. Let p be the parent of t1. By letting x be a red node, with left child t1
and right child t2, and parent p, we have spliced T2 into T1 such that it is a search tree where
all root-to-leaf paths still have the same number of black nodes, and all red nodes have a black
parent, except for possibly x. To fix the potential color problem at x, we call FixInsert(x).
The time for Join will be O(log(n1 + n2)). Figure 2.8 illustrates the steps of Join(T1, 37, T2),
where c) and d) are the steps performed when calling FixInsert(x).

2.2 Fenwick trees

A common task is to keep track of prefix sums of an array A[0..n], while entries of A change.
More specifically we consider data structures supporting

� inc(i, d) update A[i] = A[i] + d, where d can be both positive and negative,

� sum(i) return
∑i
j=0A[j].

If we only maintain A, we can support inc in time O(1) and sum in time O(i), i.e. worst-case
time O(n). The Fenwick tree [6] is a very simple data structure supporting both operations in
time O(log n). It stores a single array F , of the same size as A, and without storing A.

Conceptually, the basic idea is to maintain a perfectly balanced tree with A as the leaves
(assuming A contains a power of two elements), and each internal node stores the sum of all
leaves in the subtree. An inc(i, d) operation adds d to leaf i and all its ancestors, and sum(i)
adds the roots of maximal complete subtrees with span in A[0..i] (the gray nodes in Figure 2.9).
Both operations take time proportional to the height of the tree, i.e. O(log n). The Fenwick tree
stores an array F , where F [i] stores the sum at the lowest ancestor of the ith leaf, that is a left
child of its parent. Note that F [i] = A[i] for all even i, and only a subset of the tree nodes is
stored.

The pseudocodes for the operations on a Fenwick tree are given in Figure 2.10, where “|” and
“&” denote bitwise or and and on binary numbers. It is amazingly short. The init operation
assumes all A to be zeros, i.e. all subtree sums are also zero and F should contain zeros only.

For sum(i), we observe that F [i] stores the sum of the leaves in the largest subtree, where leaf i
is the rightmost leaf. If j is leftmost leaf in this subtree, then sum(i) = F [i] + sum(j − 1). The
expression i & (i+ 1) computes j, by setting all the rightmost ones in the binary representation
of i to zero (the binary representation of i corresponds to the left/right branching on the root-to-
leaf path in the tree). In Figure 2.9 sum(13) = F [13] + F [11] + F [7], where 13 & (13 + 1) = 12,
11 & (11 + 1) = 8, and 7 & (7 + 1) = 0.

i = 10112 = 1110
i+ 1 = 11002 = 1210

i & (i+ 1) = 10002 = 810

To perform inc(i, d) all nodes stored in F representing sums spanning A[i] need to be in-
cremented. These are store at indexes ≥ i in F and are exactly the ancestors that are a left
child of their parent. These can be computed by repeatedly setting in i the least significant bit
equal to zero to one. For an increment to A[9], we in F need to increment positions 9 = 10012,
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Figure 2.8: Join(T1, x, T2)
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Figure 2.9: The Fenwick tree F for an array A

Algorithm init(n)
1 F [0..n] = array with zeros

Algorithm sum(i)
1 s = 0
2 while i ≥ 0 do
3 s = s+ F [i]
4 i = (i & (i+ 1))− 1
5 return s

Algorithm inc(i, d)
1 while i ≤ n do
2 F [i] = F [i] + d
3 i = i | (i+ 1)

Figure 2.10: Fenwick tree algorithms

11 = 10112, and 15 = 11112. The expression i | (i+ 1) sets the lowest bit equal to zero to one.

i = 10112 = 1110
i+ 1 = 11002 = 1210

i | (i+ 1) = 11112 = 1510

Exercise 2.1 Given the Fenwick tree F for an array A, describe how to support get(i) that
returns A[i] when only F is available. What is the running time? C

Exercise 2.2 We can construct the Fenwick tree F for an array A[0..n] by calling inc(i, A[i]),
for i = 0, . . . , n, in time O(n log n). Describe how to construct F from A in time O(n). C
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Amortized Analysis

Quiz 10 – Linear probing in dynamic arrays check

Assume we store a set of n numbers in an array of size N using hashing and linear probing,
such that the load factor is in the interval

[
1
4 ,

3
4

]
, i.e. 1

4N ≤ n ≤ 3
4N . Whenever n < 1

4N or
n > 3

4N , the n elements are reinserted into a new array of size N = 2n (using a new hash
function), i.e. for the new array we have n = 1

2N . State the potential function Φ that can be
used to prove that the total number of reinsertions into the hash table is amortized O(1) per
insertion in and deletion from the set.

N − n n 3
4N − n n− 1

4N 2 · |2n−N |
(
n− 1

4N
) (

3
4N − n

)
Note: In this question we use a potential function to argue about the number of reinsertions
instead of the running time.

Quiz 11 – Red-black trees with deletions in amortized constant time check

Red-black trees support Insert and Delete on a tree with n elements in worst-case
time O(log n). State the potential function Φ that can be used to argue that Insert takes
amortized time O(log n) and Delete amortized time O(1).∑n

i=1 i
∑n
i=1 log i log n n n+ log n

Note: In this exercise the cost of deleting elements is charged to the insertion of the elements.

Quiz 12 – Deletions in binary heaps check

A binary max-heap supports Insert og ExtractMax in worst-case O(log n) tid. State the
potential function Φ that can be used to argue that Insert takes amortized time O(log n) and
ExtractMax amortized time O(1).

log n n n+ log n n− log n n log n

Note: In this exercise the cost of deleting elements is charged to the insertion of the elements.

53
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Quiz 13 – Binary heaps in dynamic arrays check

Consider a binary max-heap containing n elements stored in an array of size N . The operations
Insert and ExtractMax are implemented as in a standard binary max-heap, except when
Insert is performed when n = N , where the heap is copied to a new array of size 2n before
a standard heap insertion is performed, i.e. N is doubled. State the potential function Φ that
can be used to argue that Insert takes amortized time O(log n) and ExtractMax amortized
time O(1).

N − n+ log n n log n |2n−N |+
∑n
i=1 log i N + n log n n+ log n

Note: In this exercise both the cost of deleting elements and resizing the array are charged
to the insertions.

Quiz 14 – Binary counter in a dynamic array check

Consider an array A[0..N − 1] of length N , where each A[i] either equals 0 or 1. We consider

A to represent the binary number n =
∑N−1
i=0 2i ·A[i]. The operation Inc(A) increases n by 1

by flipping A[0], A[1], ... until the first A[i] flips from 0 to 1. If all entries of A were 1 (i.e.
n = 2N − 1 before Inc(A) is performed), the array A is replaced with a new array of double
size 2N , where all A[i] = 0 except A[N ] = 1. State the potential function Φ that can be
used to argue that Inc takes amortized O(1) time. Below k is the number of A[i] = 1, i.e.
k = |{i | A[i] = 1}|.

k n N − k log n− 1
2N |2k −N |

Note: In this exercise the potential should both cover flipping a sequence of 1s to 0s, and for
the doubling of the array
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Appendix A

Examples of Exam Questions

Quiz 15 – Asymptotic notation check

Below log n denotes the binary logarithm of n.

Yes No

n · log n is O(log n)

n0.001 is O(n0.01)

(log n)/5 is O(log(n!))

4logn is O(n3)

6 log n2 + (log n)6 is O(n · log n)

n · (log n)/2 + n · (log n)/2 is O(n1/3)

n0.1/4 is O(n0.01)

2n1/3 is O(n3)

2n0.001 is O(23 logn)

(log n)2 is O(n · log n)

log n is O(
√
n)

nn is O(
√
n)

8logn is O(n)

2n2/3 is O((log n)3)

n2 is O(2n)

n · log n is O(1)√
n/5 is O(n)

n2 is O(23 logn)

nn + n
√
n is Ω(n · log n)

5 · 8logn is Θ(23 logn)

n0.001 is Θ(3n)

n2 is Ω(2n)

3
√
n is Θ(n · log n)

22 logn is Ω(n0.01)

57
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Quiz 16 – Analysis of running times of loops check

State for each of the below algorithms the running time as a function of n in Θ-notation.

Algorithm loop1(n)
1 i = n
2 while i > 0 do
3 i = i− 1

Algorithm loop2(n)
1 i = 1
2 while i ≤ n do
3 i = i+ i

Algorithm loop3(n)
1 s = 0
2 i = 1
3 while s ≤ n do
4 s = s+ i
5 i = i+ 1

Algorithm loop4(n)
1 s = 1
2 i = 1
3 while i ≤ n do
4 for j = 1 to i do
5 s = s+ 1
6 i = 2 ∗ i

Algorithm loop5(n)
1 i = 1
2 while i ≤ n do
3 j = 1
4 while j ≤ n do
5 j = 2 ∗ j
6 i = 2 ∗ i

Algorithm loop6(n)
1 s = 1
2 for i = 1 to n do
3 j = s
4 while j > 0 do
5 s = s+ 1
6 j = j − 1

Θ(2n) Θ(n log n) Θ(log n) Θ(n2) Θ(
√
n) Θ(n) Θ((log n)2) Θ(n3)

loop1

loop2

loop3

loop4

loop5

loop6

Quiz 17 – Insertions into an unbalanced search tree check

11

14

17

25

28

KJ

I

15

HG

F

2

9

E8

D5

CB

A

State at which leaf A–K each of the elements 27, 16, 7, 23 and 13 should be inserted (for each
insertion it is assumed that the tree only contains the above ten elements).

A B C D E F G H I J K

Insert(27)

Insert(16)

Insert(7)

Insert(23)

Insert(13)
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Quiz 18 – Insertions into a max-heap check

The resulting binary max-heap after insertion the elements 2, 9, 6, 3, 12, 8 and 5 in the given
order with Max-Heap-Insert, starting with an initial empty heap.

1 2 3 4 5 6 7

12 9 8 2 3 6 5

1 2 3 4 5 6 7

12 9 8 6 5 3 2

1 2 3 4 5 6 7

12 9 8 3 2 6 5

1 2 3 4 5 6 7

2 9 6 3 12 8 5

1 2 3 4 5 6 7

9 12 8 3 2 6 5

Quiz 19 – Build-Max-Heap check

1 2 3 4 5 6 7 8 9

7 1 6 5 2 8 9 4 3

The result of applying Build-Max-Heap to the above array.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

7 5 9 4 2 8 6 1 3

1 2 3 4 5 6 7 8 9

9 5 8 4 2 6 7 1 3

1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9

9 5 8 4 2 7 6 1 3

Quiz 20 – Deletion from a max-heap check

1 2 3 4 5 6 7 8 9 10 11 12 13

23 22 20 16 21 18 17 1 11 3 2 7 4

The result of applying Heap-Extract-Max to the above max-heap.

1 2 3 4 5 6 7 8 9 10 11 12

22 21 20 16 4 18 17 1 11 3 2 7

1 2 3 4 5 6 7 8 9 10 11 12

22 21 17 20 18 16 1 11 3 2 7 4

1 2 3 4 5 6 7 8 9 10 11 12

22 21 20 16 3 18 17 1 11 4 2 7

1 2 3 4 5 6 7 8 9 10 11 12

22 21 20 16 3 18 17 1 11 2 7 4

1 2 3 4 5 6 7 8 9 10 11 12 13

22 21 20 16 3 18 17 1 11 2 7 4
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Quiz 21 – Partition check

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27 26 11 14 4 24 20 23 3 10 25 7 18 6 8

The result of applying Partition(A, 3, 14) to the above array A.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 4 6 7 8 10 11 14 18 20 23 24 25 26 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27 26 3 4 6 7 10 11 14 18 20 23 24 25 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27 26 4 3 6 24 20 23 14 10 25 7 18 11 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27 26 4 3 6 11 14 24 20 23 10 25 7 18 8

Quiz 22 – Radix-sort check

4011 0013 4113 4403 3113 0003

Consider Radix-Sort applied to the above list of numbers (d = 4, k = 5). State the partially
sorted list after Radix-Sort has sorted the numbers after the two least significant digits.

4011 4403 0003 0013 4113 3113

0003 0013 3113 4011 4113 4403

4403 0003 4011 0013 4113 3113

0013 0003 3113 4011 4113 4403

0003 4403 4011 0013 3113 4113

Quiz 23 – Linear probing check

0 1 2 3 4 5 6 7 8 9 10

14 3 17 4 2

The above hash table of size 11 has been constructed using linear probing using the hash
function h(k) = 5k mod 11.

State for each of the elements 0, 1, 6, 8 and 9 where it will be inserted in the hashtable (for
each insertion the hash table only contains the above elements 2, 3, 4, 14 and 17).

0 1 2 3 4 5 6 7 8 9 10

Insert(0)

Insert(1)

Insert(6)

Insert(8)

Insert(9)
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Quiz 24 – Quadratic probing check

0 1 2 3 4 5 6 7 8 9 10

5 12 10 17 6

The above hash table of size 11 has been constructed using quadratic probing using the hash
functions h′(k) = 5k mod 11 and h(k, i) = (h′(k) + 5i+ 5i2) mod 11.

State for each of the elements 1, 2, 3, 7 and 8 where it will be inserted in the hashtable (for
each insertion the hash table only contains the above elements 5, 6, 10, 12 og 17).

0 1 2 3 4 5 6 7 8 9 10

Insert(1)

Insert(2)

Insert(3)

Insert(7)

Insert(8)

Quiz 25 – Double hashing check

0 1 2 3 4 5 6 7 8 9 10

0 19 8 15 5

The above hash table of size 11 has been constructed using double hashing using the hash
functions h1(k) = 2k mod 11 and h2(k) = 1 + (3k mod 10).

State for each of the elements 1, 3, 4, 6 and 10 where it will be inserted in the hashtable (for
each insertion the hash table only contains the above elements 0, 5, 8, 15 and 19).

0 1 2 3 4 5 6 7 8 9 10

Insert(1)

Insert(3)

Insert(4)

Insert(6)

Insert(10)
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Quiz 26 – Valid red-black trees check

4

7

9

8

5

6

2

31

For each of the below sets, state if the above binary tree is a valid red-black if these nodes are
the red nodes.

Yes No

4, 6, 8

6, 8

2, 6, 7, 8

2, 5, 6, 8, 9

1, 3, 6, 7, 8

Quiz 27 – Insertions into red-black trees check

18

22

24

11

12

13

9

104

State the resulting red-black tree by insertion 25 in the above red-black tree (double circles
are red nodes).

13

22

25

24

18

10

12

11

9

4

18

22

24

25

11

12

13

9

104

18

24

2522

11

12

13

9

104

18

22

24

25

11

12

13

9

104
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Quiz 28 – Union find operations check

makeset(a)
makeset(b)
makeset(c)
makeset(d)
makeset(e)
makeset(f)
union(a, d)
union(c, a)
union(f , e)
union(c, f)
union(c, b)
Find-Set(a)

State the resulting union-find data structure after the above sequence of operations, when
using union-by-rank and path compression.

e
2

f
0

d
1

c
0

b
0

a
0

e
2

f
0

d
1

c
0

b
0

a
0

b
3

e
2

f
0

c
0

d
1

a
0

e
2

f
0

d
1

a
0

c
0

b
0

Quiz 29 – Recurrence equations check

State the solution to each of the below recurrence equations, where T (n) = 1 for n ≤ 1.

Θ(logn) Θ(
√
n) Θ(n) Θ(n logn) Θ(n2) Θ(n2 logn) Θ(n3)

T (n) = 9 · T (n/3) + 2

T (n) = T (n− 1) + 2

T (n) = 9 · T (n/3) + n2

T (n) = 5 · T (n/5) + n

T (n) = 2 · T (n/3) + n3

T (n) = 8 · T (n/2) + 2

T (n) = T (n− 1) + n2

T (n) = 3 · T (n/5) + n

T (n) = 4 · T (n/2) + 2

T (n) = 2 · T (n/3) + n2



APPENDIX A. EXAMPLES OF EXAM QUESTIONS 64

Quiz 30 – Breadth first seach (BFS) check

A

B C

D

E

F

G

H

Consider a breadth first search of the above graph starting at node A. State the order the
nodes are removed from the queue Q by the BFS algorithm. It is assumed that the graph is
given by alphabetically sorted adjacency lists.

A F D H E B C G A F D E H B C G A F D E H C B G A F E D C B H G

Quiz 31 – Valid BFS trees check

A

B

C

D

E F

State for each of the below sets of it is a valid BFS tree for a breadth first search of the above
graph starting at the node A and for an arbitrary ordering of the adjacency lists.

Yes No

(A,B) (A,F) (B,D) (C,E) (D,C)

(A,B) (A,F) (B,D) (D,C) (F,E)

(A,B) (A,C) (A,F) (B,D) (F,E)

(A,B) (A,C) (A,F) (C,D) (F,E)

(A,B) (A,C) (A,F) (B,D) (C,E)
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Quiz 32 – Depth first search (DFS) check

A

B

C

D E

F

GH I

Consider a depth first search of the above graph stating in node A, and the outgoing edges
of a node are visted in alphabetical order. State the order the nodes are assigned discovery
time.

A B H I D C E G F A D B H I C E G F A B D H I C E F G A B H I D C E F G

State for each of the below edges the type it gets by running the DFS algorithm.

Tree edge Back edge Cross edge Forward edge

(C, E)

(F, D)

(A, D)

(G, C)

Quiz 33 – Dijkstra’s algorithm check

A

B

C DE

F G

H

I

J

1

5

1

3

77

2

5

4

2

3
4

8

3

73

6

8

Consider the application of Dijkstra’s algorithm to compute the shortest distance from node A
to all the nodes in the above graph. State the order the nodes are removed from the priority
queue in Dijkstra’s algorithm.

A B F C D G J E I H

A B F H C E D I G J

A B F H C E D G J I

A B F H C I D E G J
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Quiz 34 – Prim’s algorithm check

A

B C D

E

F

GH

I

-3

-3

-3

6

11

6

1

10

-3

0

1

13

10

11

-1

Consider finding a minimum spanning tree in the above graph using Prim’s algorithm starting
at node A. State the order the nodes are included in the minimum spanning tree (removed
from the priority queue by Prim’s algorithm).

A H B C E D G F I A H B C E D F G I A H B C E D F I G A H B C E D I G F

Quiz 35 – Topological sorting check

A

B C

D

For each of the below orders state if it is a valid topological ordering of the nodes of the above
graph.

Yes No

A B C D

C B D A

A C D B

D B A C

A B D C
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Quiz 36 – Strongly connected components check

A

B CD

E

F

G

H

I

The number of strongly connected components in the above graph.

1 2 3 4 5 6 7 8 9



Appendix B

Problems

Problem B.1 (Nuts and bolts) You are given n nuts and n bolts, which fit pairwise, and all
bolts and all nuts have distinct sizes. Given a nut and a bolt, you can decide if they fit, or the
nut is too small or too large for the bolt. It is not possible to directly decide the relative sizes of
two bolts, or the relative size of two nuts. The only way you can gain information is to compare
a nut and a bolt. Describe an algorithm to pair the nuts and the bolts. What is the running
time of the algorithm? (This problem has a simple randomized solution with expected running
time O(n log n); to find a deterministic algorithm with running time O(n log n) turned to be a
much harder problem, i.e. to find an algorithm that does not use randomization [14]). C

Problem B.2 (Skyline) The outlines of buildings in a city can be represented by a set of
rectangles. A building with height h is a represented by the triple (l, h, r), where the lower-left
corner of the rectangle is (l, 0) and the upper-right is (r, h).

0 5 10 15 20 25 30

(1,11,5) (2,6,7) (3,13,9) (12,7,16) (14,3,25) (19,18,22) (23,13,29) (24,4,28)

The skyline of a city with n buildings can be represented by a polygonal line, that can be
described by the sequence

(x0, h1, x1, h2, x2, . . . , xk−1, hk, xk) ,

where x0 < x1 < x2 < · · · < xk and hi is the height between xi−1 and xi. Note that the skyline
of a single building (l, h, r) is also (l, h, r).

The skyline for the above set of rectangles is the below.

68
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0 5 10 15 20 25 30

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29)

(a) Describe an algorithm that can add a new building (l, h, r) to an existing skyline
(x0, h1, x1, . . . , xn−1, hn, xn) in time O(n).

(b) Generalize the solution from (a) to an algorithm to combine two skylines for n and m
buildings, respectively, to a single skyline in time O(n+m).

(c) Describe a divide-and-conquer algorithm for computing the skyline of n buildings, that
uses (b) as a subroutine. What is the running time of your algorithm?

C

Problem B.3 (Merging words)
Let x = x1x2 . . . xn, y = y1y2 . . . ym and z = z1z2 . . . zn+m be three strings of lengths n, m,

and n + m, respectively. We say that z is a merge of x and y, if x and y can be found as two
disjoint subsequences in z. Example t h r e e n e s s is a merge of t r e e s and h e n s.

For 0 ≤ i ≤ n and 0 ≤ j ≤ m, we let M [i, j] denote the boolean value that is true if and
only if z1z2 . . . zi+j is a merge of x1x2 . . . xi and y1y2 . . . yj . Note that for i = 0 we let x1x2 . . . xi
denote the empty string. M [i, j] can be described by the following recurrence:

M [i, j] =


true if i = 0 ∧ j = 0

zj = yj ∧ M [0, j − 1] if i = 0 ∧ j > 0

zi = xi ∧ M [i− 1, 0] if i > 0 ∧ j = 0

(zi+j = yj ∧ M [i, j − 1]) ∨ (zi+j = xi ∧ M [i− 1, j]) if i > 0 ∧ j > 0 .

(a) Fill out the below table for M when x = s h o e, y = e a r s and z = s e a h o r s e.

M [i, j]
e a r s

0 1 2 3 4
0

s 1
h 2
o 3
e 4

(b) Give an algorithm based on dynamic programming that decides if z is a merge of x and y.
Describe the algorithm using pseudocode. What is the running time of the algorithm?

(c) Extend the algorithm to also report the indexes into z, that constitute the subsequence
equal to x.

C
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Problem B.4 (Grid graphs) A grid graph is a graph with k2 organized in a grid of k rows
and k columns, with node vi,j being the jth node in row i, where row one is the bottom row.
Let s = v1,1. The nodes and edges of a grid graph are:

V = {vi,j | 1 ≤ i ≤ k ∧ 1 ≤ j ≤ k}
E = {(vi,j , vi,j+1) | 1 ≤ i ≤ k ∧ 1 ≤ j < k} ∪

{(vi,j , vi,j−1) | 1 ≤ i ≤ k ∧ 1 < j ≤ k} ∪
{(vi,j , vi+1,j) | 1 ≤ i < k ∧ 1 ≤ j ≤ k}

The below is the grid graph for k = 5.

s

In the following we assume that the edges all have assigned a positive weight.

(a) State the number of nodes n and edges m in a grid graph as a function of k.

(b) What is the running time of Dijkstra’s algorithm when used to find the shortest distance
from s to all the nodes of the graph? State the running time as a function of k.

(c) Describe an algorithm that finds the shortest distance from s to all nodes in a grid graph
in time O(m). Argue for the running time and the correctness of the algorithm.

C
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